Home
Login
Register
Search
Home
Wartsila2005
Wartsila2005
March 21, 2018 | Author: 123habib123fikri | Category:
Marine Propulsion
,
Engines
,
Diesel Engine
,
Ships
,
Turbocharger
DOWNLOAD
Share
Report this link
Comments
Description
Ship Power Systems 2005Wärtsilä offers the most effective solutions to all marine power and propulsion needs, supported by being the most responsive and efficient partner from first concepts throughout the lifetime of the vessel. 2 Table of Contents The Ship Power Supplier . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Environmental care. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Two-stroke engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Four-stroke engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Dual-fuel engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Pre-engineered propulsion packages . . . . . . . . . . . . . . . . . . 40 Generating sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Auxiliary systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Controllable pitch propellers . . . . . . . . . . . . . . . . . . . . . . .56 Fixed pitch propellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Coastal and Inland Propulsion Systems (CIPS) . . . . . . . . . . . 60 Nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Efficiency rudder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Steerable thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Propulsion solutions with waterjets. . . . . . . . . . . . . . . . . . . 70 Transverse thrusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Reduction gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Propulsion control systems . . . . . . . . . . . . . . . . . . . . . . . . .80 Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Lips - SNF (Special Non-Ferro) products . . . . . . . . . . . . . . 91 Wärtsilä Ship Power services . . . . . . . . . . . . . . . . . . . . . . . .92 Wärtsilä Ship Power worldwide . . . . . . . . . . . . . . . . . . . . . 94 3 reliability and environmental performance over the entire lifecycle of the installation.The Ship Power Supplier Wärtsilä is the leading supplier of ship machinery. propulsion and manoeuvring solutions for all types of marine vessels and offshore applications. ensuring maximum efficiency. Wärtsilä is the only company in its field with a worldwide service network able to take complete care of customers’ ship machinery at every lifecycle stage. Wärtsilä ship power solutions are based on technological expertise. close customer co-operation and industry-leading innovations spanning the complete range of marine power and propulsion needs. These solutions are customized to the specific ship design and operational requirements. 4 . AUXPAC and PROPAC. SULZER.Ship power systems overview Wärtsilä offers a wide range of innovative and industry-leading products from engines through the gearbox to the ship’s propeller and control systems. Wärtsilä offers unparalleled freedom to tailor a complete ship power solution or more limited solutions from a single source supplier for any marine vessel or offshore application. The Wärtsilä product portfolio covers the product names WÄRTSILÄ. LIPS. DEEP SEA SEALS. JMT. With its comprehensive product portfolio and close customer support. n n n n n Two-stroke engines Four-stroke engines Generating sets Auxiliary systems Controllable pitch propellers n n n n n n n n n n Fixed pitch propellers Steerable thrusters Transverse thrusters Nozzles Jets Gears Propulsion control systems Rudders Seals Bearings 5 . 6 . SCR SCR (Selective Catalytic Reduction) can reduce NOX emissions by 85-95%. and the sequential shut-off of injectors gives steady running at very low running speeds without smoking.Environmental care Wärtsilä’s solutions are customized to specific ship design and operational requirements to ensure maximum efficiency. Precise control of injection. high injection pressures at low speed. Particular attention has been given to making the RT-flex system reliable. dual-fuel engines for LNG carriers and environmentally friendly stern tube sealing systems. reliability and environmental performance over the entire lifecycle of the installation. thus enabling operation without visible smoke over the whole operation field. Examples of Wärtsilä’s recent achievements in environmental care are RT-flex engines. The design of the common-rail system is optimized for new engines but it can also be retrofitted to existing engines. All Wärtsilä and Sulzer diesel engines included in this booklet comply with the speed-dependent NOX limit. 7 . EnviroEngine for four-stroke engines Common rail Common-rail fuel injection technology keeps the fuel injection pressure high and constant over the entire load range. Reduced running costs of Sulzer RT-flex engines derive from reduced maintenance requirements and lower part-load fuel consumption. adding to reliability and safety. IMO NOX regulation The Annex VI of the MARPOL 73/78 convention enters into force on 19 May 2005. Environmental concepts for two-stroke engines RT-flex Sulzer RT-flex engines offer distinct benefits to shipowners. The common-rail concept also has inherent redundancy. A clearly visible benefit is smokeless operation at all ship speeds. down to 10-12% of nominal speed. Superior operation is demonstrated at all speeds and loads. The NOX reduction is up to 50%.. water is injected under high pressure directly into the engine cylinders. Gas engines with superior environmental performance Gas engines have low exhaust gas emissions due to the clean burning properties of natural gas and the high efficiency of the Wärtsilä gas engines. due to the high temperature of the compressed air.90°C CASS The newest NOX reduction technology developed by Wärtsilä is called CASS – Combustion Air Saturation System. DWI DWI (Direct Water Injection) can reduce NOX emissions by 50%. 8 . thus lowering the combustion temperatures and the formation of NOX. The low carbon content in the natural gas also results in lower CO2 emissions.Compressor Water injection Saturated air 70. In this system. SCR SCR (Selective Catalytic Reduction) can reduce NOX emissions by 85-95%.. and the water consumption is about two times the fuel oil consumption. The pressurized water is added to the intake air after the turbocharger. and enters the cylinders as steam. The water evaporates immediately. The principle of CASS technology is to introduce pressurized water into the combustion process to reduce NOX formation. The HR nozzle The HR (high efficiency) nozzle differs from the conventional nozzle through a special rounded leading edge and S-shaped outer surface. with its air-induced controlled pressure components. CoastGuard and Airguard EnviroSeal Any oil loss to the environment from a ship's stern shaft sealing system is unacceptable. bulk carriers and many other vessel types to prevent both the leakage of bearing oil into the seaway and the ingress of water into the bearing system. containers. These sealing systems are now used on cruise ships. The Efficiency Rudder features a fixed bulb attached to the rudder horn immediately behind the propeller. The rudder blade can be equipped with a flap at its trailing edge to increase the lift generated by the rudder. The bulb is removable to facilitate withdrawal of the tail shaft. with no unplanned dry-dockings for emergency repairs. The CoastGuard system is unique in that it enables all potentially polluting oil to be contained within the vessel using a double barrier.Propulsion and seals The Efficiency Rudder Vessels can be supplied with an Efficiency Rudder to increase propulsion efficiency and improve steering characteristics. to be specified by owners for newbuildings. After introduction with small propellers (less than 3. They ensure continuous operation between planned maintenance periods. Wärtsilä's EnviroSeals offer pollution-free sealing systems with a proven track record on all types of vessels. The Airguard system. This means an improvement of up to 13% in free-running conditions compared to a conventional nozzle. The EnviroSeals are equally suited to retrofitting into existing standard seal installations or. as is now common.5 m diameter) several hundred have since been applied to a wide variety of vessels. ensures the seal is a truly anti-pollution lip seal. 9 . Full-scale tests on several vessels indicate an improved bollard pull in the order of 7-10%. low-pressure void space. LNG carriers. RTA50 RTA52U RT-flex58T-B. RTA96C MW 10 . RTA84T-D RTA84C RT-flex96C.Two-stroke engines RTA48T-B RT-flex50. RTA58T-B RT-flex60C RTA62U-B RT-flex68-B. RTA68-B RTA72U-B RT-flex84T-D. exhaust valve actuator pumps and reversing servomotors.Power range for two-stroke engines Speed rpm 102–127 99–124 108–135 84–105 91–114 92–115 76–95 79–99 61–76 82–102 92–102 5 10 15 20 30 40 60 80 Sulzer RTA-series engines Sulzer RTA-series engines are traditional low-speed two-stroke diesel engines with mechanically-driven camshaft. with simpler engine setting and extendable times between overhauls n Lower steady running speeds 11 . As well as the proven benefits of the RTA engines. double-valve controlled fuel injection pumps. Sulzer RT-flex engines Sulzer RT-flex engines are based on the RTA-series but have electronically-controlled common-rail systems for fuel injection and valve actuation. the RT-flex engines have the additional benefits of: n Smokeless operation at all running speeds n Better fuel economy in the part-load range n Reduced maintenance requirements. . . 480 mm Piston stroke . .RTA48T Main data: Version B Cylinder bore . . . . . . . .127 rpm Mean effective pressure at R1. . . . bar 171 19. . . . . .0 bar Piston speed. . . . . . . . . . . 2000 mm Speed. 19. . . . . .9 g/bhph 126 g/kWh 167 16. 8. . . . . . R1 kW 5 6 7 8 7 275 8 730 10 185 11 640 bhp 9 900 11 880 13 860 15 840 kW 5 100 6 120 7 140 8 160 R2 bhp 6 925 8 310 9 695 11 080 kW 5 825 6 990 8 155 9 320 R3 bhp 7 925 9 510 11 095 12 680 kW 5 100 6 120 7 140 8 160 R4 bhp 6 925 8 310 9 695 11 080 102 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . . . . . . . 102 . . . . . . . . . . . For definitions see page 24. . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 127 rpm Cyl. can be reduced with tilted piston withdrawal. . . . .6 g/bhph 123 Principal engine dimensions (mm) and weights (tonnes) Cyl. . .5 m/s Fuel specification: Fuel oil. . . . . . . . 5 6 7 8 A 4 966 5 800 6 634 7 468 B 3 170 3 170 3 170 3 170 C 1 085 1 085 1 085 1 085 D 7 334 7 334 7 334 7 334 E 3 253 3 253 3 253 3 253 F* 9 030 9 030 9 030 9 030 G 1 700 1 700 1 700 1 700 I 603 603 603 603 K 348 348 348 348 Weight 171 205 225 250 * Standard piston dismantling height. . . . . . . .0 g/bhph 126 g/kWh 163 13. . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . 12 . . . . .3 g/bhph 120 g/kWh 171 18. . . . . . . . 2050 mm Speed. . . . . . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 124 rpm Cyl. . . can be reduced with tilted piston withdrawal. . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . . . . . . . . . . .0 g/bhph 126 g/kWh 167 17. . . . . . bar 171 20. . Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. . . .0 g/bhph 126 g/kWh 165 13. . . R1 kW 5 6 7 8 8 300 9 960 11 620 13 280 bhp 11 300 13 560 15 820 18 080 kW 5 800 6 960 8 120 9 280 R2 bhp 7 900 9 480 11 060 12 640 kW 6 650 7 980 9 310 10 640 R3 bhp 9 050 10 860 12 670 14 480 kW 5 800 6 960 8 120 9 280 R4 bhp 7 900 9 480 11 060 12 640 99 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . For definitions see page 24. . . . . . . 500 mm Piston stroke . .RT-flex50 Main data Cylinder bore . . . . . . . . . . .5 g/bhph 123 Principal engine dimensions (mm) and weights (tonnes) A 5 6 7 8 5227 6107 6987 7867 B 3 150 3 150 3 150 3 150 C 1 085 1 085 1 085 1 085 D 7 750 7 750 7 750 7 750 E 3 300 3 300 3 300 3 300 F* 9 250 9 250 9 250 9 250 G 1636 1636 1636 1636 I 631 631 631 631 K 355 355 355 355 Weight 200 225 255 280 * Standard piston dismantling height. there may be differences in weights for the RT-flex50. . . . . . . . . . .0 bar Piston speed. 8. .5 m/s RTA50 Fuel specification: Fuel oil. . .9 g/bhph 121 g/kWh 171 20. . . 99-124 rpm Mean effective pressure at R1. . . . . All the above data apply to both RTA50 and RT-flex50 versions. . . . 20. . E F D C K A I G B 13 . However. . . . . . . . . . 5 6 7 8 A 5 605 6 525 7 445 8 365 B 3 030 3 030 3 030 3 030 C 1 150 1 150 1 150 1 150 D 7 480 7 480 7 480 7 480 E 3 540 3 540 3 540 3 281 F* 8 745 8 745 8 745 8 745 G 1 595 1 595 1 595 1 595 I 570 570 570 570 K 480 480 480 480 Weight 210 240 270 300 * Standard piston dismantling height. . R1 kW 5 6 7 8 7 800 9 360 10 920 12 480 bhp 10 600 12 720 14 840 16 960 kW 5 450 6 540 7 630 8 720 R2 bhp 7 400 8 880 10 360 11 840 kW 6 250 7 500 8 750 10 000 R3 bhp 8 500 10 200 11 900 13 600 kW 5 450 6 540 7 630 8 720 R4 bhp 7 400 8 880 10 360 11 840 108 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP.8 g/bhph 124 Principal engine dimensions (mm) and weights (tonnes) Cyl. . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 135 rpm Cyl. . . . . . . . . . . 14 . . . . . 520 mm Piston stroke . . . . . .7 g/bhph 122 g/kWh 173 18.135 rpm Mean effective pressure at R1. . . . can be reduced with tilted piston withdrawal. . . 18. . . 1800 mm Speed. . . . . . . .1 g/bhph 128 g/kWh 166 12. . . . . . 108 . . . . . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . . . . . . . . . . .1 g/bhph 128 g/kWh 169 15. . . bar 174 18. . . .1 m/s Fuel specification: Fuel oil. . . . .RTA52U Main data Cylinder bore . . 8. .1 bar Piston speed. For definitions see page 24. . . . . . . . . . . . 5 6 7 8 A 5 981 6 987 7 993 8 999 B 3 820 3 820 3 820 3 820 C 1 300 1 300 1 300 1 300 D 8 810 8 810 8 810 8 810 E 3 475 3 475 3 475 3 475 F* 10 880 10 880 10 880 10 880 G 2 000 2 000 2 000 2 000 I 604 604 604 604 K 400 400 400 400 Weight 281 322 377 418 * Standard piston dismantling height. . . . . 580 mm Piston stroke .5 bar Piston speed. . . . . . . .105 rpm Mean effective pressure at R1. . . . . . 84 . . R1 kW 5 6 7 8 10 900 13 080 15 260 17 440 bhp 14 825 17 790 20 755 23 720 kW 7 650 9 180 10 710 12 240 R2 bhp 10 400 12 480 14 560 16 640 kW 8 700 10 440 12 180 13 920 R3 bhp 11 850 14 220 16 590 18 960 kW 7 650 9 180 10 710 12 240 R4 bhp 10 400 12 480 14 560 16 640 84 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP.5 g/bhph 125 g/kWh 166 17. . . . 15 . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 105 rpm Cyl. . . . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217.1 g/bhph 122 Principal engine dimensions (mm) and weights (tonnes) Cyl. For definitions see page 24. . . . . . . . 8. . . All the above data apply to both RTA58T-B and RT-flex58T-B versions. However. . . . . . Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. . bar 170 19. . . there may be differences in weights for the RT-flex58T-B engines. . . .7 g/bhph 119 g/kWh 170 19. . 19. can be reduced with tilted piston withdrawal. . . . 2416 mm Speed. . . . . . . . . .RT-flex58T Main data: Version B Cylinder bore . . . . . . . .5 g/bhph 125 g/kWh 162 13. .5 m/s RTA58T Fuel specification: Fuel oil. . . . . . . . . . 600 mm Piston stroke . . . . . . . . . bar 170 19. . . . . . . . . For definitions see page 24. .RT-flex60C Main data Cylinder bore .5 g/bhph 125 g/kWh 164 13. . . can be reduced with tilted piston withdrawal. . . . . . . . Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. . . . . . . . . . . .6 m/s Fuel specification: Fuel oil. . . 5 6 7 8 9 A 6 213 7 253 8 293 9 333 10 373 B 3 700 3 700 3 700 3 700 3 700 C 1 300 1 300 1 300 1 300 1 300 D 8 570 8 570 8 570 8 570 8 570 E 3 660 3 660 3 660 3 660 3 660 F* 10 350 10 350 10 350 10 350 10 350 G 1 955 1 955 1 955 1 955 1 955 I 588 588 588 588 588 K 425 425 425 425 425 Weight 268 322 377 428 480 * Standard piston dismantling height. . R1 kW 5 6 7 8 9 11 800 14 160 16 520 18 880 21 240 bhp 16 050 19 260 22 470 25 680 28 890 kW 8 250 9 900 11 550 13 200 14 850 R2 bhp 11 200 13 440 15 680 17 920 20 160 kW 9 400 11 280 13 160 15 040 16 920 R3 bhp 12 800 15 360 17 920 20 480 23 040 kW 8 250 9 900 11 550 13 200 14 850 R4 bhp 11 200 13 440 15 680 17 920 20 160 91 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP.5 bar Piston speed. . . 19. . . .5 g/bhph 125 g/kWh 166 17. . . . 91 .114 rpm Mean effective pressure at R1. . . E F D C K A I G B 16 . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . 2250 mm Speed. . . . . . 8. . . . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 114 rpm Cyl. . . . . . . . .0 g/bhph 122 Principal engine dimensions (mm) and weights (tonnes) Cyl. . . . .7 g/bhph 120 g/kWh 170 19. . . . . . . . . . . . . . 8. . . . . . . .9 g/bhph 123 g/kWh 173 18. .1 g/bhph 124 Principal engine dimensions (mm) and weights (tonnes) Cyl. 2150 mm Speed. 5 6 7 8 A 6 457 7 557 8 657 9 757 B 3 560 3 560 3 560 3 560 C 1 350 1 350 1 350 1 350 D 8 750 8 750 8 750 8 750 E 3 520 3 470 3 520 3 520 F* 10 300 10 300 10 300 10 300 G 1 880 1 880 1 880 1 880 I 615 615 615 615 K 383 383 383 383 Weight 320 370 420 470 * Standard piston dismantling height. . can be reduced with tilted piston withdrawal. . . . . . . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 115 rpm Cyl. . . .4 g/bhph 127 g/kWh 167 12. . R1 kW 5 6 7 8 11 425 13 710 15 995 18 280 bhp 15 550 18 660 21 770 24 880 kW 8 000 9 600 11 200 12 800 R2 bhp 10 875 13 050 15 225 17 400 kW 9 150 10 980 12 810 14 640 R3 bhp 12 450 14 940 17 430 19 920 kW 8 000 9 600 11 200 12 800 R4 bhp 10 875 13 050 15 225 17 400 92 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. bar 173 18. . . . . . . . . . . . . . 620 mm Piston stroke . . . .2 m/s Fuel specification: Fuel oil. . . . . . . . . . . . . . . .4 bar Piston speed. . . . For definitions see page 24. . . . . 92 . . . . . . .4 g/bhph 127 g/kWh 169 16. . . . .115 rpm Mean effective pressure at R1. . . 17 . . .RTA62U Main data: Version B Cylinder bore . . 18. . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 95 rpm Cyl. . . . . . . . . . . . . .RT-flex68 Main data: Version B Cylinder bore . 76 . 2720 mm Speed. . . . . . .6 bar Piston speed. . . .6 g/bhph 124 g/kWh 161 13. . However. . . . can be reduced with tilted piston withdrawal. . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . there may be differences in weights for the RT-flex68-B.2 g/bhph 121 Principal engine dimensions (mm) and weights (tonnes) Cyl. . . . . . . . . .95 rpm Mean effective pressure at R1. Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. For definitions see page 24. All the above data apply to both RTA68-B and RT-flex68-B versions. . . . . . 5 6 7 8 A 7 025 8 205 9 385 10 565 B 4 300 4 300 4 300 4 300 C 1 520 1 520 1 520 1 520 D 10 400 10 400 10 400 10 400 E 3 748 3 748 3 748 3 748 F* 12 200 12 200 12 200 12 200 G 2 340 2 340 2 340 2 340 I 658 658 658 658 K 505 505 505 505 Weight 412 472 533 593 * Standard piston dismantling height. . . . E F D C K A I G B 18 . . . . . . . . . . 680 mm Piston stroke . . R1 kW 5 6 7 8 15 350 18 420 21 490 24 560 bhp 20 875 25 050 29 225 33 400 kW 10 750 12 900 15 050 17 200 R2 bhp 14 625 17 550 20 475 23 400 kW 12 250 14 700 17 150 19 600 R3 bhp 16 650 19 980 23 310 26 640 kW 10 750 12 900 15 050 17 200 R4 bhp 14 625 17 550 20 475 23 400 76 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . . 8. . . . . .7 g/bhph 118 g/kWh 169 19. . . bar 169 19. . . . .6 m/s RTA68 Fuel specification: Fuel oil. . . . . . 19.6 g/bhph 124 g/kWh 165 17. . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . For definitions see page 24. . . . . 18. . .1 g/bhph 123 Principal engine dimensions (mm) and weights (tonnes) Cyl. R1 kW 5 6 7 8 15 400 18 480 21 560 24 640 bhp 20 950 25 140 29 330 33 520 kW 10 775 12 930 15 085 17 240 R2 bhp 14 650 17 580 20 510 23 440 kW 12 300 14 760 17 220 19 680 R3 bhp 16 725 20 070 23 415 26 760 kW 10 775 12 930 15 085 17 240 R4 bhp 14 650 17 580 20 510 23 440 79 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . . . . .3 bar Piston speed. . . .3 m/s Fuel specification: Fuel oil. . can be reduced with tilted piston withdrawal. . .3 g/bhph 126 g/kWh 165 12. . 720 mm Piston stroke . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 7 8 A 7 505 8 795 10 085 11 375 B 4 070 4 070 4 070 4 070 C 1 570 1 570 1 570 1 570 D 10 195 10 195 10 195 10 195 E 3 843 3 843 3 843 3 843 F* 11 875 11 875 11 875 11 875 G 2 155 2 155 2 155 2 155 I 715 715 715 715 K 475 475 475 475 Weight 485 565 640 715 * Standard piston dismantling height. . .4 g/bhph 126 g/kWh 167 16. . . 8. . . . . . .99 rpm Mean effective pressure at R1. . . . . . . . .RTA72U Main data: Version B Cylinder bore . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 99 rpm Cyl. . .8 g/bhph 121 g/kWh 171 18. . . . . . 2500 mm Speed. . . . . 79 . . bar 171 18. . . . . . . . . . . . . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 76 rpm Cyl. . . . . . . .0 g/bhph 123 g/kWh 160 13. . . . . . . .RT-flex84T Main data: Version D Cylinder bore . . .0 m/s RTA84T Fuel specification: Fuel oil. . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . . . . For definitions see page 24. . 3150 mm Speed. . . .0 g/bhph 123 g/kWh 164 16. . 20 . . Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. . . R1 kW 5 6 7 8 9 21 000 25 200 29 400 33 600 37 800 bhp 28 575 34 290 40 005 45 720 51 435 kW 14 700 17 640 20 580 23 520 26 460 R2 bhp 20 000 24 000 28 000 32 000 36 000 kW 16 850 20 220 23 590 26 960 30 330 R3 bhp 22 900 27 480 32 060 36 640 41 220 kW 14 700 17 640 20 580 23 520 26 460 R4 bhp 20 000 24 000 28 000 32 000 36 000 61 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . . . . . . can be reduced with tilted piston withdrawal. . .6 g/bhph 121 Principal engine dimensions (mm) and weights (tonnes) Cyl. . . . . . The RTA84T-B is available at lower power outputs than the version D above. 8. .76 rpm Mean effective pressure at R1. . . 61 . . . . .0 bar Piston speed. . . bar 167 19. . . . . However. there may be differences in weights for the RT-flex84T-D. and complies with the IMO NOx regulation. . . . . 840 mm Piston stroke . . 19. . . . . . 5 6 7 8 9 A 8 890 10 390 11 890 14 390 15 890 B 5 000 5 000 5 000 5 000 5 000 C 1 800 1 800 1 800 1 800 1 800 D 11 933 11 933 11 933 11 933 11 933 E 4 196 4 715 4 715 4 196 4 715 F* 14 500 14 500 14 500 14 500 14 500 G 2 700 2 700 2 700 2 700 2 700 I 760 760 760 760 760 K 805 805 805 805 805 Weight 740 870 990 1 140 1 260 * Standard piston dismantling height. . .3 g/bhph 118 g/kWh 167 19. . All the above data apply to both RTA84T-D and RT-flex84T-D versions. . .9 bar Piston speed. . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . can be reduced with tilted piston withdrawal. . . . . . . .9 g/bhph 127 g/kWh 167 15. . . . . . . . . . . . . . 6 7 8 9 10 11 12 A 11 080 12 680 15 280 16 880 18 480 20 080 21 680 B 4 320 4 320 4 320 4 320 4 320 4 320 4 320 C 1 600 1 600 1 600 1 600 1 600 1 600 1 600 D 11 315 11 315 11 315 11 315 11 315 11 315 11 315 E 4 749 4 749 4 749 4 191 4 191 4 191 4 749 F* 13 130 13 130 13 130 13 130 13 130 13 130 G 2 205 2 205 2 205 2 205 2 205 2 205 I 696 696 696 696 696 696 K 920 920 920 920 920 920 Weight 850 960 1 110 1 230 1 350 1 460 1 570 * Standard piston dismantling height. . 8. . bar 171 17. . .RTA84C Main data Cylinder bore . . . . 17. . . . . 840 mm Piston stroke . . . . 2400 mm Speed. For definitions see page 24.9 g/bhph 126 g/kWh 163 12. . .6 g/bhph 123 Principal engine dimensions (mm) and weights (tonnes) Cyl. . . . . R1 kW 6 7 8 9 10 11 12 24 300 28 350 32 400 36 450 40 500 44 550 48 600 bhp 33 060 38 570 44 080 49 590 55 100 60 610 66 120 kW 17 040 19 880 22 720 25 560 28 400 31 240 34 080 R2 bhp 23 160 27 020 30 880 34 740 38 600 42 460 46 320 kW 19 500 22 750 26 000 29 250 32 500 35 750 39 000 R3 bhp 26 520 30 940 35 360 39 780 44 200 48 620 53 040 kW 17 040 19 880 22 720 25 560 28 400 31 240 34 080 R4 bhp 23 160 27 020 30 880 34 740 38 600 42 460 46 320 82 rpm Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP. . . 82 . . . . . . . . . . . . . . . . . . . . 21 . . . . . .102 rpm Mean effective pressure at R1. . . . . . .2 m/s Fuel specification: Fuel oil. . . . . . . .6 g/bhph 120 g/kWh 172 17. category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at 102 rpm Cyl. . . . . . . . . . . . . . . . . . Sulzer RT-flex engines are also available with part-load optimisation for lower fuel consumptions. . . . . . . . . For definitions see page 24. .6 g/bhph 126 g/kWh 163 13. . . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . E F D C K G A I B 22 .4 g/bhph 121 Principal engine dimensions (mm) and weights (tonnes) Cyl.6 bar Piston speed. . . . 18. However. . . . . . . . . . .RT-flex96C Main data Cylinder bore . . . . .5 m/s RTA96C Fuel specification: Fuel oil. . . . kW 6 7 8 9 10 11 12 13 14 34 320 40 040 45 760 51 480 57 200 62 920 68 640 74 360 80 080 102 rpm R1 bhp 46 680 54 460 62 240 70 020 77 800 85 580 93 360 101 140 108 920 kW 24 000 28 000 32 000 36 000 40 000 44 000 48 000 52 000 56 000 R2 bhp 32 640 38 080 43 520 48 960 54 400 59 840 65 280 70 720 76 160 kW 30 960 36 120 41 280 46 440 51 600 56 760 61 920 67 080 72 240 R3 bhp 42 120 49 140 56 160 63 180 70 200 77 220 84 240 91 260 98 280 kW 24 000 28 000 32 000 36 000 40 000 44 000 48 000 52 000 56 000 92 rpm R4 bhp 32 640 38 080 43 520 48 960 54 400 59 840 65 280 70 720 76 160 Brake specific fuel consumption (BSFC) g/kWh Load 100% BMEP.6 g/bhph 126 g/kWh 164 14.102 rpm Mean effective pressure at R1. . . . . . 92 . there may be differences in weights for the RT-flex96C. bar 171 18. . 960 mm Piston stroke . 8. .0 g/bhph 120 g/kWh 171 18. . 2500 mm Speed. . . . . . . . . category ISO-F-RMK 55 Rated power: Propulsion Engines Output in kW/bhp at Cyl. 6 7 8 9 10 11 12 13 14 A 11 564 13 244 15 834 17 514 19 194 20 874 22 554 24 234 25 914 B 4 480 4 480 4 480 4 480 4 480 4 480 4 480 4 480 4 480 C 1 800 1 800 1 800 1 800 1 800 1 800 1 800 1 800 1 800 D 10 925 10 925 10 925 10 925 10 925 10 925 10 925 10 925 10 925 E 5 232 5 232 5 232 5 232 5 232 5 232 5 232 5 232 5 232 F* 12 880 12 880 12 880 12 880 12 880 12 880 12 880 12 880 12 880 G 2 594 2 594 2 594 2 594 2 594 2 594 2 594 2 594 2 594 I 723 723 723 723 723 723 723 723 723 K 676 676 676 676 676 676 676 676 676 Weight 1 160 1 290 1 470 1 620 1 760 1 910 2 050 2 160 2 300 All the above data apply to both RTA96C and RT-flex96C versions. . . . . . . . . . . . . . . . . Main data Cylinder bore Piston stroke Mean effective pressure.3 bar 8. Data below are for the R1 ratings on the usual layout fields.2 bar 8.2 bar 8.3 m/s 124 rpm Main data Cylinder bore Piston stroke Mean effective pressure. R1 Piston speed Speed at R1 Power at R1 Cylinders 5 6 7 8 9 BSFC at R1 Load 100% kW 19 400 23 280 27 160 31 040 34 920 g/kWh 168 bhp 26 400 31 680 36 960 42 240 47 520 g/bhph 123 g/kWh 170 g/bhph 125 g/kWh 171 g/bhph 126 kW 10 000 12 000 14 000 16 000 bhp 13 600 16 320 19 040 21 760 kW 6 800 8 160 9 520 10 880 bhp 9 250 11 100 12 950 14 800 RTA84T-B 840 mm 3150 mm 18.2 bar 8.RTA Series Other Sulzer RTA-series engines remain in production at licensees.1 m/s 97 rpm RTA62U 620 mm 2150 mm 18.1 m/s 113 rpm bhp 20 350 24 420 28 490 32 560 g/bhph 126 kW 11 100 13 320 15 540 17 760 g/kWh 173 bhp 15 100 18 120 21 140 24 160 g/bhph 127 23 .8 m/s 74 rpm RTA58T 580 mm 2416 mm 18. R1 Piston speed Speed at R1 Power at R1 Cylinders 5 6 7 8 BSFC at R1 Load 100% kW 14 950 17 940 20 930 23 920 g/kWh 171 RTA72U 720 mm 2500 mm 18.0 bar 7.3 m/s 103 rpm RTA48T 480 mm 2000 mm 18. with sea water · . and is not binding. 24 . please contact our local offices. without oil and water. Sulzer RT-flex engines have a lower part-load fuel consumption than the corresponding Sulzer RTA engines. ISO standard reference conditions Total barometric pressure at R1 · · · · · · · Suction air temperature · · · · · · · · · Relative humidity · · · · · · · · · Charge air or scavenge air cooling water temperature: . Fuel consumption All brake specific fuel consumptions (BSFC) are quoted for fuel of lower calorific value 42. The BSFC figures are given with a tolerance of +5%. For definitive values. The engine weight is net in metric tonnes (t).7 MJ/kg (10 200 kcal/kg). R1 is the nominal maximum continuous rating (MCR). Any power and speed within the respective engine layout field may be selected as the Contract-MCR (CMCR) point for an engine. and discrepancies occur between these and the corresponding brake horsepower (bhp) values owing to the rounding of numbers. and for ISO standard reference conditions (ISO 15550 and 3046).Definitions and notes Definitions and notes for two-stroke engines Dimensions and weights n n All dimensions are in millimetres and are not binding. R2.with fresh water Rating points for Sulzer engines · · · · · · · · 1.0 bar · · · · · · · · 25 °C · · · · · · · · 30% · · · · · · · · 25 °C · · · · · · · · 29 °C The engine layout fields for Sulzer low-speed diesel engines are defined by the power/speed rating points R1. The values of power in kilowatts and fuel consumption in g/kWh are the standard figures. R3 and R4 (see diagram right). 1 g/kWh for Sulzer RTA and RT-flex engines built to the current design standard. It has been standard in Sulzer low-speed engines since the late 1970s. Not only are cylinder wear rates low (typically less than 0. For further information on this subject. Load-dependent control ensures that the specific feed rate (g/kWh) remains virtually constant with reference to the actual operating load.9 g/kWh or less can be used after analysis of engine performance by a Wärtsilä service engineer. and has been further developed over the years with the application of electronic control. For further information please consult your nearest Wärtsilä company.Cylinder lubrication The guide feed rate for cylinder lubricating oil is 1. The low cylinder oil feed rates are made possible by the excellent and very stable piston-running behaviour routinely obtained by Sulzer low-speed engines built to today’s standard designs.5% upwards. This applies for engine loads in the range of 50 to 100% and for all fuel sulphur contents from 1. please contact the local Wärtsilä companies.04 mm/1000 hours) but also the TBO (time between overhauls) is meeting today’s requirement. A still lower guide rate of 0. These good results are being achieved by the well-established Sulzer load-dependent accumulator cylinder lubricating system. 25 . The Wärtsilä engines offer high efficiency. or a merchant vessel operating in environmentally sensitive areas. Dual-fuel engines Wärtsilä is continuously developing its portfolio of gas and multi-fuel engines to suit different marine applications.Four-stroke engines Diesel engines Wärtsilä 20 Wärtsilä 26 Wärtsilä Vasa 32LN Wärtsilä 32 Wärtsilä 38 Wärtsilä 46 Wärtsilä 46F Wärtsilä 64 Dual-fuel engines Wärtsilä 32DF Wärtsilä 50DF Propac kW Diesel engines The design of the Wärtsilä four-stroke engine range is based on the vast amount of knowledge accumulated over years of successful operation. low exhaust gas emissions and 26 . integrated monitoring and control system. and built-on modularized auxiliary systems. Robust engines derived from pioneering heavy fuel technology have been engineered to provide the unquestionable benefits for the owners and operators of Wärtsilä engines and generating sets: n Proven reliability n Low emissions n Low operating costs n Multi-fuel capability Benefits for the shipyard include installation friendliness. be they offshore oil and gas installation where gaseous fuel is available from the process. Power range for four-stroke engines 5000 10000 15000 20000 25000 safe operation. The innovative multi-fuel technology allows flexibility to choose between gas or liquid fuel. When necessary, the engines are capable of switching from one fuel to the other without interruption on the power generation. Propac The comprehensive product portfolio places Wärtsilä in a unique position to offer a tailored and complete propulsion solution for practically any mechanical propulsion application. In-house design, manufacturing and project management ensure matching components and total responsibility, without forgetting lifetime support for the complete system from a single contact. In order to reduce implementation time and costs Wärtsilä has developed a range of pre-engineered propulsion packages named Propac for two selected application types. Propac CP: four-stroke medium-speed engine, controllable pitch propeller, reduction gear with built-in clutch, shaft, seals, bearings and an integrated control system. Propac ST: four-stroke medium-speed engine, steerable thruster with either fixed pitch or controllable pitch propeller, clutch, shafting, bearings and an integrated control system. 27 20 Main data Cylinder bore . . . . . . . . . . . . . . . . . 200 mm Piston stroke . . . . . . . . . . . . . . . . . 280 mm Cylinder output . . . . . . . . . 180, 200 kW/cyl Speed . . . . . . . . . . . . . . . . . . . . . 1000 rpm Mean effective pressure . . . . 24.6, 28.0 bar Piston speed. . . . . . . . . . . . . . . . . . 9.3 m/s Fuel specification: Fuel oil. . . . . . . . . . . . . . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217, category ISO-F-RMK 55 SFOC 184-193 g/kWh at ISO condition Options: Common rail fuel injection, humidification of combustion air for NOX reduction. Rated power 180 kW/cyl Engine type kW 4L20 6L20 8L20 9L20 720 1 080 1 440 1 620 bhp 980 1 470 1 960 2 200 kW 800 1 200 1 600 1 800 bhp 1 085 1 630 2 175 2 450 200 kW/cyl Dimensions (mm) and weights (tonnes) Engine type 4L20 6L20 8L20 9L20 A* – 3 254 3 973 4 261 A 2 510 3 108 3 783 4 076 B* – 1 528 1 614 1 614 B 1 348 1 348 1 465 1 449 C* – 1 580 1 756 1 756 C 1 483 1 579 1 713 1 713 D 1 800 1 800 1 800 1 800 F 725 624 624 624 Weight 7.2 9.3 11.0 11.6 *Turbocharger at flywheel end. For definitions see page 44. 28 26 Main data Cylinder bore . . . . . . . . . . . . . . . . . 260 mm Piston stroke . . . . . . . . . . . . . . . . . 320 mm Cylinder output . . . . . . . . 310 - 340 kW/cyl Speed . . . . . . . . . . . . . . . . . 900, 1000 rpm Mean effective pressure . . . . 23.0, 25.5 bar Piston speed . . . . . . . . . . . . . 9.6, 10.7 m/s Fuel specification: Fuel oil. . . . . . . . . . . . . . . . . . 730 cSt/50°C 7200 sR1/100°F ISO 8217, category ISO-F-RMK 55 SFOC 182-184 g/kWh at ISO condition Options: Humidification of combustion air for NOX reduction (CASS). Rated power 900 rpm Engine type 310 kW/cyl kW 6L26 8L26 9L26 12V26 16V26 18V26 1 860 2 480 2 790 3 720 4 960 5 580 bhp 2 530 3 375 3 795 5 060 6 745 7 590 325 kW/cyl kW 1 950 2 600 2 925 3 900 5 200 5 850 bhp 2 650 3 535 3 975 5 300 7 070 7 955 325 kW/cyl kW 1 950 2 600 2 925 3 900 5 200 5 850 bhp 2 650 3 535 3 975 5 300 7 070 7 955 1000 rpm 340 kW/cyl kW 2 040 2 720 3 060 4 080 5 440 6 120 bhp 2 775 3 700 4 160 5 545 7 395 8 320 Dimensions (mm) and weights (tonnes) Engine type 6L26 8L26 9L26 12V26 16V26 18V26 A* 4 278 5 370 5 760 5 364 6 204 6 624 A 4 212 5 249 5 639 5 124 5 964 6 384 B 1 871 1 886 1 886 2 012 2 012 2 012 C 1 815 1 863 1 863 2 474 2 474 2 474 D 2 420 2 420 2 420 2 060 2 060 2 060 F wet sump F dry sump 952 952 952 1 262 1 262 1 262 793 793 793 800 800 800 Weight 18.0 23.0 25.5 30.5 37.0 41.0 *Turbocharger at flywheel end. For definitions see page 44. 29 8. 350 mm Cylinder output . .5 58. . . . . . . category ISO-F-RMK 55 SFOC 179-182 g/kWh at ISO condition Options: Humidification of combustion air for NOX reduction. Rated power Engine type kW 4R32LN 6R32LN 8R32LN 9R32LN 12V32LN 16V32LN 18V32LN 1 500 2 250 3 000 3 375 4 500 6 000 6 750 375 kW/cyl bhp 2 040 3 060 4 080 4 590 6 120 8 160 9 170 kW 1 640 2 460 3 280 3 690 4 920 6 560 7 380 410 kW/cyl bhp 2 230 3 340 4 460 5 020 6 690 8 920 10 030 Dimensions (mm) and weights (tonnes) Engine type 4R32LN 6R32LN 8R32LN 9R32LN 12V32LN 16V32LN 18V32LN A* 4 788 5 919 6 612 6 941 6 323 7 518 8 070 A 3 945 5 083 6 113 6 603 5 686 6 860 7 420 B* 2 259 2 413 2 712 2 806 2 571 2 851 2 881 B 2 259 2 345 2 712 2 736 2 571 2 851 2 881 C 1 981 1 993 2 034 2 034 2 310 2 585 2 585 D 2 550 2 550 2 550 2 550 2 330 2 330 2 330 F 1 135 1 135 1 135 1 135 1 150 1 150 1 150 Weight 20. . . .3 29. . .4. . . For definitions see page 44. .4 *Turbocharger at flywheel end. . . . . . . . . 750 rpm Mean effective pressure . .4 42. . . . . 30 . . . . 8. . . . .2 40. . . . . . . . . . . . .3. . . . . .3 bar Piston speed . . . . . 410 kW/cyl Speed . . . . . 23. . . . . .5 44. . . . . . . 21. 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . .Vasa 32LN Main data Cylinder bore . . . . . . . .0 61. .8 m/s Fuel specification: Fuel oil. . . . . . 320 mm Piston stroke . . . . . . 375. . 0 82.5 41. . category ISO-F-RMK 55 SFOC 175-180 g/kWh at ISO condition Options: Common rail fuel injection. . . . 24. 31 . .0 m/s Fuel specification: Fuel oil. . . . . . . . . .32 Main data Cylinder bore . . 500 kW/cyl Speed . .5 60. . . . . 400 mm Cylinder output . . . .9 bar Piston speed. . 460. . . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . .0 45. . . . . . 750 rpm Mean effective pressure . . . . . . . . . . . . . . humidification of combustion air for NOX reduction. . . . . 10. . . . .0 48. 320 mm Piston stroke . . . . . . Rated power Engine type kW 6L32 7L32 8L32 9L32 12V32 16V32 18V32 2 760 3 220 3 680 4 140 5 520 7 360 8 280 460 kW/cyl bhp 3 750 4 380 5 000 5 630 7 500 10 000 11 260 kW 3 000 3 500 4 000 4 500 6 000 8 000 9 000 500 kW/cyl bhp 4 080 4 760 5 440 6 120 8 160 10 870 12 240 Dimensions (mm) and weights (tonnes) Engine type 6L32 7L32 8L32 9L32 12V32 16V32 18V32 A* 5 108 – 6 478 6 968 6 795 – – A 5 267 5 758 6 480 7 086 6 435 7 890 8 450 B* 2 268 – 2 438 2 438 2 350 – – B 2 268 2 490 2 418 2 418 2 390 2 523 2 523 C 2 207 2 297 2 207 2 207 2 870 3 293 3 293 D 2 345 2 345 2 345 2 345 2 120 2 120 2 120 F 1 153 1 153 1 153 1 153 1 475 1 475 1 475 Weight 35. . . . .9. . . . . . . For definitions see page 44. . . 22. . . .5 *Turbocharger at flywheel end. . . . . .5 76. . . . . . . . . . . . . . . . . . . . humidification of combustion air for NOX reduction. . category ISO-F-RMK 55 SFOC 173-175 g/kWh at ISO condition Options: Common rail fuel injection. For definitions see page 44. . . 9. . . . . . . 725 kW/cyl Engine speed . 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . .9 bar Piston speed. . Rated power 725 kW/cyl Engine type kW 6L38 8L38 9L38 12V38 16V38 4 350 5 800 6 525 8 700 11 600 Dimensions (mm) and weights (tonnes) Engine type 6L38 8L38 9L38 12V38 16V38 A* 6 281 7 852 8 552 7 560 9 139 A 6 369 7 569 8 169 7 417 8 917 B 2 637 2 782 2 782 2 900 3 067 C 2 210 2 352 2 352 3 027 3 027 D 3 640 3 640 3 640 3 000 3 000 F 1 115 1 115 1 115 1 435 1 435 Weight 51 62 72 88 110 bhp 5 915 7 885 8 870 11 830 15 770 * Turbocharger at flywheel end. . . . . . . . . . . . . . . . . . . .5 m/s Fuel specification: Fuel oil. . . . . . . . . . . . . . . 32 . . . . . . . 475 mm Cylinder output . . . . . 26. . . . . 380 mm Piston stroke . . . . . . . . . . . . . . . . . . . . . . . . . 600 rpm Mean effective pressure . . . . .38 Main data Cylinder bore . . . . . . . . . . . . 460 mm Piston stroke . 1) Depending on output. 1155 kW/cyl Engine speed. . . . . . . . . . . . . 33 . . . . . . . . 975. . 1050. . category ISO-F-RMK 55 SFOC 170-177 g/kWh at ISO condition Options: Common rail fuel injection. . . . 500. .6 . . . . .46 Main data Cylinder bore . 9. 2) Depending on turbocharger and output. . . . . . . . 514 rpm 1155 kW/cyl bhp 9 420 12 560 14 135 18 845 25 125 28 265 * 18V46 for diesel electric propulsion only. . Dimensions (mm) and weights (tonnes) Engine type 6L46 8L46 9L46 12V46 16V46 18V46 A* A B C D 3820 3820 3820 3600 3600 3600 F 1 460 1 460 1 460 1 500 1 500 1 500 Weight 95 120 137 169 214 240 8 290 3 340 2 880 7 580 10 005 3 260/3 6001) 3 180 9 490 3 600 10 830 3 270 10 310 3 660 10 210 3 810/4 5302) 10 260 12 345/12 4601) 12 480/12 5901) 3 660/3 9901) 4 530/5 3501) – 13 670 3 990 5 350 * Turbocharger at flywheel end. 514 rpm Mean effective pressure . . . 23. . . . For definitions see page 44. . . .7. . . . . . . . . Rated power 500. . 730 cSt/50°C 7200 sR1/100°F ISO 8217. 9.28. . .9 m/s Fuel specification: Fuel oil . . . . crude oil.8 bar Piston speed . . . . . . 514 rpm 1050 kW/cyl bhp 8 565 11 420 12 850 17 130 22 840 25 695 kW 6 930 9 240 10 395 13 860 18 480 20 790 500. . . humidification of combustion air for NOX reduction. 514 rpm Engine type kW 6L46 8L46 9L46 12V46 16V46 18V46* 5 850 7 800 8 775 11 700 15 600 17 550 975 kW/cyl bhp 7 950 10 600 11 930 15 900 21 210 23 860 kW 6 300 8 400 9 450 12 600 16 800 18 900 500. . . . . 580 mm Cylinder output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 mm Cylinder output . . . . . . . . . . . . . . 730 cSt/50 °C 7200 sR1/100 °F ISO 8217. . . .Main data Cylinder bore . . . . . . . . . . . . 11. . . . 600 rpm Mean effective pressure . . . . 34 . . . . . . . . . . . . .9 bar Piston speed. . . 460 mm Piston stroke . . category ISO-F-RMG-RMK 55 SFOC 170-173 g/kWh at ISO condition Options: Twin plunger injection pumps instead of common rail fuel injection. Rated power Engine type 6L46F 7L46F 8L46F 9L46F 12V46F 16V46F kW 7 500 8 750 10 000 11 250 15 000 20 000 bhp 10 200 11 900 13 600 15 300 20 400 27 200 Dimensions (mm) and weights (tonnes) Engine type 6L46F 7L46F 8L46F 9L46F A* 8 330 9 150 9 970 10 820 A 8 500 9 350 10 200 11 000 B 3 500 3 500 3 800 3 800 C 2 835 2 835 2 950 2 950 D 3 750 3 750 3 750 3 750 F 1 430 1 430 1 430 1 430 Weight 97 113 124 140 * Turbocharger at flywheel end. . . . . . . . . .6 m/s Fuel specification: Fuel oil . . . . . . . . humidification of combustion air for NOx reduction. . . . 25. . . . 1250 kW/cyl Speed . . . variable inlet valve closure. . . . . . . . For definitions see page 44. 6 rpm 21. 427. 2150 kW/cyl 327.8. Speed . . . . 333. Mean effective pressure. . .64 Main data Cylinder bore . . Cylinder output . .6 rpm 1 940 kW/cyl kW – – – 23 280 bhp – – – 31 650 Dimensions (mm) and weights (tonnes) Engine type 6L64 7L64 8L64 12V64 A* 10 250 11 300 12 350 12 765 A 10 470 11 620 12 740 13 310 B 4 355 4 465 4 465 5 450 C 4 170 4 165 4 165 6 430 D 5 345 5 345 5 345 4 850 F 1 905 1 905 1 905 2 010 Weight 237 269 297 437 * Turbocharger at flywheel end. . . In-line engines 640 mm 900 mm 2010. . 333. . 23. . . . 11 m/s 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . 427. . Piston speed . .5 bar 10.3.3 rpm 25. . category ISO-F-RMK 55 SFOC 169 g/kWh at ISO condition Options: Humidification of combustion air for NOX reduction. . . 27. Rated power 327. 35 .3. . . . .3 rpm 2 150 kW/cyl kW 12 900 15 050 17 200 – bhp 17 540 20 460 23 390 – 400. . . 10 m/s V-engines 640 mm 770 mm 1940 kW/cyl 400. . . .2 bar 9. 333. .0. . . .3.3 rpm Engine type 2 010 kW/cyl kW 6L64 7L64 8L64 12V64 12 060 14 070 16 080 – bhp 16 400 19 130 21 860 – 327. . .9. For definitions see page 44. . . . Fuel oil specification: .3. Piston stroke . 4. .75 m/s Fuel specification: Fuel oil . . . 350 mm Cylinder output . . . . . . . 750 rpm Mean effective pressure . . . . . . . . . . . . . 24 MJ/nm³. . . . . . . . 720 rpm Engine kW 6R32DF 9R32DF 12V32DF 18V32DF 2 010 3 015 4 020 6 030 Gen. . . 19. . . Engine dimensions (mm) and weights (tonnes) Engine type 6R32DF 9R32DF 12V32DF 18V32DF A 5 085 6 605 5 685 7 420 B 2 345 2 735 2 570 2 880 C 1 995 2 035 2 310 2 585 D 2 550 2 550 2 330 2 330 F 1 135 1 135 1 150 1 150 Weight 30 45 43 62 For definitions see page 44. . . kW 1 930 2 890 3 860 5 790 50 Hz 350 kW/cyl. 750 rpm Engine kW 2 100 3 150 4 200 6 300 Gen. . . . .32DF Main data Cylinder bore . . 320 mm Piston stroke . . . . . . . . . 720. . . DMA and DMB Natural gas MethaneNumber: 80 LHV: min. .9 bar Piston speed . . . . kW 2 020 3 020 4 030 6 050 Generator output based on a generator efficiency of 96%. . 350 kW/cyl Engine speed . . . .8. . . . . . . . 8. 4 bar BSEC 7700 kJ/kWh Rated power 60 Hz Engine type 335 kW/cyl. . . . . . . . Marine diesel oil ISO 8217. . . . . 19. 335. 36 . category ISO-F-DMX. . . . 8. . . For definitions see page 53. . . . . 0. .Main data Voltage .95 – 0. 0. . . 37 . . . .4 – 13. .97 Generating set dimensions (mm) and weights (tonnes) Engine type 6R32DF 9R32DF 12V32DF 18V32DF A* 8 600 10 630 10 040 11 580 E* 2 560 2 890 3 060 3 060 I* 1 785 1 625 1 700 1 700 K 2 550 2 550 2 330 2 330 L* 4 130 4 360 4 270 4 580 Weight 48 75 82 105 * Dependent on generator type. . . . . . . . . . . . . . .8 kV Generator efficiency . . 5 bar BSEC 7500 kJ/kWh Rated power 50 Hz. . . 9. . . . 60 Hz Engine type Engine kW 6L50DF 8L50DF 9L50DF 12V50DF 16V50DF 18V50DF 5 700 7 600 8 550 11 400 15 200 17 100 Gen. . . . . . . . . . . . . .50DF Main data Cylinder bore . . . . . . . . . 9.0. . . . . . DMA and DMB Natural gas MethaneNumber: 80 LHV: min. .5%. . 580 mm Cylinder output . . . . . . . . . . Engine dimensions (mm) and weights (tonnes) Engine type 6L50DF 8L50DF 9L50DF 12V50DF 16V50DF 18V50DF A 8 115 9 950 10 800 10 465 12 665 13 725 B 3 580 3 600 3 600 4 055 4 055 4 280 C 2 850 3 100 3 100 3 810 4 530 4 530 D 3 820 3 820 3 820 3 600 3 600 3 600 F 1 455 1 455 1 455 1 500 1 500 1 500 Weight 96 128 148 175 220 240 For definitions see page 44.5 bar Piston speed . . . . . . . . . . . . . 19. 38 . 28 MJ/nm³. . . . . . . . . kW 5 500 7 330 8 250 11 000 14 670 16 500 Generator output based on a generator efficiency of 96. . . 950 kW/cyl Engine speed . . 500 mm Piston stroke . . . 20. .9 m/s Fuel specification: Fuel oil . . .7. . . . . . . category ISO-F-DMX. . . . . . Marine diesel oil ISO 8217. 500. . 514 rpm Mean effective pressure . . . 39 . no ice class. Wärtsilä 26 . Wärtsilä 20 . medium-speed Propulsion Control Monitoring Propac CP main dimensions Eng. ø [mm] Gear size SCV 1900-2200 2300-2500 2100-2400 2600-2700 2800 2200-2700 2800-3100 3200 2300-2500 2600 2700-2900 3000 3100-3300 2600-2800 2900-3100 3200-3300 3400-3500 2800-3000 3100-3500 3600-3700 3800 3000-3300 3400-3500 3600-3900 4000 38 38 42 42 46 46 50 56 46 50 50 56 56 56 56 62 62 62 68 68 75 68 68 75 75 Hub size 4D505 4D550 4D600 4D650 4D650 4D650 4D710 4D710 4D650 4D650 4D710 4D710 4D775 4D710 4D775 4D775 4D845 4D775 4D845 4D920 4D920 4D845 4D920 4D920 4D1000 Aft seal size 170 190 200 200 220 220 240 240 240 240 240 240 260 260 260 260 280 280 300 300 300 300 300 330 330 A [mm] 373 402 432 467 467 467 506 506 467 467 506 506 550 506 550 550 574 550 574 631 631 574 631 631 674 B [mm] 1348 1348 1348 1348 1348 1465 1465 1465 1449 1449 1449 1449 1449 1871 1871 1871 1871 1886 1886 1886 1886 1886 1886 1886 1886 B* [mm] NA NA 1528 1528 1528 1614 1614 1614 1614 1614 1614 1614 1614 1871 1871 1871 1871 1886 1886 1886 1886 1886 1886 1886 1886 6L20 8L20 9L20 6L26 8L26 9L26 *Turbocharger at flywheel end. 2) 624 if dry sump. Applicable to DNV class. medium-speed Propulsion Control Monitoring Propac ST Steerable thruster – Fixed pitch – Controllable pitch High speed shafting Nozzle – 19A – HR Slipping clutch and/or flexible coupling Engine – 4-stroke. Dimension M is project specific but a minimum service space Mmin must be respected. seals and bearings Reduction gearbox – PTO – Clutch Flexible coupling Engine – 4-stroke. 4L20 Prop. 3) 800 if dry sump. 1) Coupling and flywheel are project specific. Sterntube length P is a project specific dimension.Propac CP CPP – Hub with built-in servo Shafts. 40 .180 kW/cyl at 1000 rpm. Gear size = vertical offset in cm.325 kW/cyl at 1000 rpm. . 200 kW/cyl 1000 rpm 24. . . . .5 bar 9.6. . . . . . Cylinder output. . Engine speed.25. . . . . . Piston stroke . . category ISO-F-RMK 55 C1) [mm] 460 460 530 530 530 530 530 530 570 570 570 570 570 530 530 530 530 580 580 580 580 580 580 580 580 E [mm] 551 574 600 627 627 627 670 670 642 642 670 670 714 675 714 714 750 714 750 790 790 750 790 790 829 F [mm] 725 725 8242) 8242) 8242) 8242) 8242) 8242) 8242) 8242) 8242) 8242) 8242) 9603) 9603) 9603) 9603) 9603) 9603) 9603) 9603) 9603) 9603) 9603) 9603) G [mm] 1480 1480 2080 2080 2080 2680 2680 2680 2980 2980 2980 2980 2980 2870 2870 2870 2870 3650 3650 3650 3650 4040 4040 4040 4040 H [mm] 155 155 155 155 155 155 155 155 155 155 155 155 155 170 170 170 170 170 170 170 170 170 170 170 170 L [mm] 990 990 1090 1090 1195 1195 1505 1630 1195 1505 1505 1630 1630 1630 1630 1720 1720 1720 1875 1875 1960 1875 1875 1960 1960 N [mm] 665 665 663 663 663 738 738 738 731 731 731 731 731 1020 1020 1020 1020 1275 1275 1275 1275 1275 1275 1275 1275 N* [mm] NA NA 585 585 585 585 585 585 585 585 585 585 585 732 732 732 732 787 787 787 787 787 787 787 787 41 . . Mean effective pressure Piston speed . .3 m/s Wärtsilä 26 260 mm 320 mm 310 . Wärtsilä 20 200 mm 280 mm 180. . Fuel oil specification: . . . . . .Main data of engines Cylinder bore . . . . . .6. . . . . . 28. . . .0 . . . . 10. . .340 kW/cyl 900. . .0 bar 9. . .7 m/s 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . . 1000 rpm 23. . 770 361 1600 1800 6L20 1200 1630 1000 200 3.650 274 2100 2300 1620 2200 1000 225 3.895 257 2400 2600 Bollard pull with twin thrusters in 19A nozzle in HR nozzle tonnes tonnes 32 35 34 37 38 42 40 43 46 51 48 53 50 55 53 57 58 64 60 65 Modulating clutch type for FPP LD type HD type 3000-3 3000-3 3000-3 3000-3 3000-4 3000-4 3000-4 3000-4 3000-5 3000-5 3000-3 3000-3 3000-4 3000-4 3000-6 3000-6 3000-7 3000-7 3000-7 3000-7 Variations per type l Two different propeller diameters l Controllable pitch propeller (CS) or fixed pitch propeller (FS) l 19A nozzle.Propac ST selection table Engine type MCR engine power kW bhp MCR engine speed Thruster type Reduction ratio Propeller speed Propeller diameter rpm mm rpm 1080 1470 1000 175 2. Heavy duty (HD) modulates between 0 and maximum engine speed 42 . 100% MCR power and 7% thrust deduction l Selections are valid for classification without ice class. final selection is subjected to rules of classification societies l Thrusters with controllable pitch propellers improve manoeuverability and efficiency over the complete speed range.650 274 2100 2300 9L20 1800 2450 1000 250 3.146 318 1900 2100 8L20 1440 1960 1000 225 3. and protect the engine against overload l Thrusters with controllable pitch propellers are very suitable for constant speed operation l The weld-in stembox provides easy installation and maximum stiffness of the construction in the vessel l The can-mounted thruster provides the possibility to install or remove the thruster while the ship is afloat l Modulating clutches (MCD) improve manoeuverability for thrusters with fixed pitch propellers at low speeds l Low duty (LD) modulates between 0 and idle engine speed. HR nozzle or open propeller l Reduction ratios optimised for application l Weld-in stembox or can-mounted l Soft on/off clutch or modulating clutch Remarks l The propellers are designed for bollard pull condition in tug boat application l Bollard pull calculations are based on twin installations. 592 218 3000 2800 3000 62 67 64 69 64 70 66 72 79 86 82 89 85 94 88 96 90 99 93 102 93 102 96 105 3000-5 3000-7 3000-5 3000-7 3000-5 3000-7 3000-5 3000-7 not available --> not available --> Propac ST main dimensions Thruster type FS/CS A mm 1600 175 1800 1900 200 2100 2100 225 2300 2400 250 2600 2600 275 2800 2800 300 2900 2850 1870 3700 2850 1765 1770 3620 3700 1465 3090 1860 2100 1575 1665 3200 3500 1465 3010 3090 1735 1735 2100 1450 1525 2830 3100 1435 2612 2890 1615 1615 1900 1350 1400 2600 2630 1210 2368 2512 1425 1485 1600 1230 1300 2200 2500 1200 2148 2168 1305 1305 B mm C mm 1200 D mm 2100 910 1843 2048 1110 1180 E mm H mm 1743 M mm 985 43 .6L26 1950 2650 1000 250 3.592 218 9L26 3060 4160 1000 300 4.895 257 2600 2600 2600 3535 1000 275 4.592 218 2800 2800 3000 2800 2925 3975 1000 300 4.084 245 8L26 2720 3700 1000 300 4.895 257 2400 2600 2400 2040 2775 1000 250 3. F Distance from the crankshaft centreline to the bottom of the oil sump. ISO standard reference conditions Total barometric pressure Suction air temperature Charge air. B Height from the crankshaft centreline to the highest point. Dimensions and weights n n Dimensions are in millimetres and weights are in metric tonnes.0 bar · · · · · · · · · · · · · · · · · 25 °C · · · · · · · · · · · · · · · · · 25 °C · · · · · · · · · · · · · · · · · 30% .Definitions and notes Definitions and notes for four-stroke engines Engine dimensions A* Total length of the engine when the turbocharger is located at the flywheel end. cooling water temperature Relative humidity 44 · · · · · · · · · · · · · · · · · 1. or scavenge air. B* Height from the crankshaft centreline to the highest point when the turbocharger is located at the flywheel end. Cylinder configurations: L = in-line and V = v-form (for Wärtsilä Vasa 32LN engine R = in-line). C Total width of the engine. C* Total width of the engine when the turbocharger is located at the flywheel end. D Minimum height from the crankshaft centerline when removing a piston. A Total length of the engine when the turbocharger is located at the free end. Indicated values are for guidance only and are not binding. Specific fuel oil consumption At ISO standard reference conditions Lower calorific value of fuel 42 700 kJ/kg Tolerance 5% Without engine driven pumps At 85% load. 45 . Auxpac generating sets are offered only as 400V/690V . which are Low Voltage only. 46 . Other benefits of pre-engineering include readily available documentation. also including models in Tribon® format. which together with the compact design of the engine and the selected generator. are available for both service power generation and for diesel-electric propulsion. Larger diesel generators are delivered for separate mounting of the diesel engine and generator. All generating sets listed in this section are based on medium-speed diesel engines designed for operating on heavy fuel oil. The common baseframe is optimized for the package. offers unmatched power-to-space and power-to-weight ratio. Generating sets with dual-fuel engines are presented separately under dual-fuel engines. Auxpac The Auxpac generating sets are available in a selected range as pre-engineered and pre-commissioned auxiliary generating sets. and short lead-times. The generating sets are resiliently mounted and the generator voltage can be selected in all cases except for the Auxpac generating sets.50Hz and 450V/690V .60 Hz in the power range 500 kW to 2800 kW.Generating sets Power range Auxpac Wärtsilä 20 Wärtsilä 26 Wärtsilä Vasa 32LN Wärtsilä 32 Wärtsilä 38 kW 0 2000 4000 6000 8000 10000 12000 A wide range of generating sets. comprising generator and diesel engine mounted on a common baseframe. IP 44 * Class F Air. .0 41. . . IP 44 * Class F Air.7 46. 1000 rpm 8. . . . 7200 sR1/100°F. . . . . . . .9 17. . . . .1 21.4 14. .0 41. .3 46. .6. .0 13. . . .3 m/s 50 Hz 400.9 19. . .0 17.8 47 . . Cooling . . . . . . . .5 18. 690 V IP 23. . 690 V IP 23. . . 1000 rpm 9. . . . .1 21.7 42. 10.5 46. .5 Dimensions (mm) and weights (tonnes) E 1 720 1 720 1 720 1 720 1 720 1 920 1 920 1 920 1 920 2 300 2 300 2 300 2 300 L 2 243 2 243 2 243 2 243 2 243 2 243 2 490 2 474 2 474 3 080 3 090 3 090 3 090 Weight 13. .4 34. . . . .0 17. . . . .2 23. . ISO 8217. . .AUXPAC Main data of generators Voltage . . . . . . category ISO-F-RMK 55 60 Hz Output Type 520W4520 645W4L20 760W6L20 875W6L20 975W6L20 1050W6L20 1200W8L20 1400W9L20 1600W9L20 1800W6L26 2100W8L26 2400W8L26 2700W9L26 kWe 520 645 760 875 975 1 050 1 200 1 400 1 600 1 800 2 100 2 400 2 700 kVA 650 806 950 1 094 1 219 1 313 1 500 1 750 2 000 2 250 2 625 3 000 3 375 A 3 837 4 390 4 988 5 048 5 158 5 083 5 758 6 163 6 513 7 096 8 400 8 480 9 080 50 Hz Output Type 520W4L20 670W4L20 790W6L20 860W6L20 1000W6L20 1140W6L20 1350W8L20 1550W9L20 1740W9L20 1950W6L26 2250W8L26 2550W9L26 2850W9L26 kWe 520 670 790 860 1 000 1 140 1 350 1 550 1 740 1 950 2 250 2 550 2 850 kVA 650 838 988 1 075 1 250 1 425 1 688 1 938 2 175 2 438 2 813 3 188 3 563 A 3 648 3 837 4 988 5 048 5 158 5 288 5 758 6 163 6 513 7 096 8 400 8 950 9 050 Dimensions (mm) and weights (tonnes) E 1 770 1 770 1 770 1 770 1 770 1 770 1 920 1 920 1 920 2 300 2 300 2 300 2 300 L 2 243 2 243 2 243 2 243 2 243 2 243 2 490 2 474 2 474 3 080 3 090 3 090 3 090 Weight 13. Piston speed .6 16. .3 17.4. . Engine speed. . . .6 34. . water * Wärtsilä 26 260 mm 320 mm 900. 60 Hz 450.2 16. 9. . water * Wärtsilä 20 200 mm 280 mm 900. Protection class . . Piston stroke . . . .7 m/s . Fuel oil specification: 730 cSt/50°C. * Option Main data of engines Cylinder bore . . . Temperature rise and isolation . .2 23.7 22. .9 24. . . 130 . 280 mm Cylinder output . . . .200 kW/cyl Engine speed . . 720 rpm Engine type Eng. 0. .7 . .95 . . . . . . .9. .3 m/s Generator voltage.4 . .8 kV Generator efficiency . . . . 0. . . . . . . . . . kW 740 1 110 1 480 1 665 Gen. . . kW 515 770 1 025 1 155 180 kW/cyl. . . . kW 760 1 140 1 520 1 710 Gen.8 20. 720 . . 200 mm Piston stroke . . . . . . .13.7 23. . 750 rpm Eng.0. . . kW 495 740 990 1 110 Eng. . . . . . . kW 800 1 200 1 600 1 800 Gen.20 Main data Cylinder bore .0 bar Piston speed . kW 680 1 020 1 360 1 530 Rated power 50 Hz Engine type 4L20 6L20 8L20 9L20 135 kW/cyl. 1000 rpm Eng. . Rated power 60 Hz 130 kW/cyl. kW 645 970 1 290 1 455 Eng. . . kW 4L20 6L20 8L20 9L20 520 780 1 040 1 170 Gen. . .194 g/kWh at ISO condition Options: Common rail fuel injection. . 1000 rpm Eng. .28. . kW 540 810 1 080 1 215 Gen. . kW 720 1 080 1 440 1 620 Gen. . . .0 16. . . Dimensions (mm) and weights (tonnes) Engine type 4L20 6L20 8L20 9L20 A* 4 910 5 325 6 030 6 535 E* 1 770/1 920 1 770/1 920/2 070 1 920/2 070 2 070/2 300 I* 990 895/975/1 025 1 025/1 075 1 075/1 125 K 1 800 1 800 1 800 1 800 L* 2 338 2 243/2 323/2 373 2 474/2 524 2 524/2 574 Weight* 14. . . . For definitions see page 53. .8 * Dependent on generator type and size. 24. kW 700 1 055 1 405 1 580 170 kW/cyl.6 . 900 rpm 185 kW/cyl. 6. . . . .1000 rpm Mean effective pressure . 48 . . . . . kW 685 1 025 1 370 1 540 200 kW/cyl. . humidification of combustion air for NOX reduction. . 900 rpm Generator output based on a generator efficiency of 95%.96 Fuel oil specification: 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . category ISO-F-RMK 55 SFOC 185 . . kW 1 950 2 600 2 925 3 900 5 200 5 850 Gen.26 Main data Cylinder bore . kW 2 040 2 720 3 060 4 080 5 440 6 120 Gen.8 kV Generator efficiency . 23.13. 0. . .7 m/s Generator voltage. . . Dimensions (mm) and weights (tonnes) Engine type 6L26 8L26 9L26 12V26 16V26 18V26 A* 7 380 8 560 8 950 8 980 9 820 10 000 E* 2 300 2 500 2 500 2 900 2 900 2 900 I* 1 250 1 340 1 340 1 640 1 640 1 640 K 2 420 2 420 2 420 2 060 2 060 2 060 L* 3 130 3 230 3 230 3 660 3 660 3 660 Weight* 36 44 49 59 69 74 * Dependent on generator type and size. . category ISO-F-RMK 55 SFOC 183 . . . 900.95 .185 g/kWh at ISO condition Options: Humidification of combustion air for NOX reduction. . . . . . .0. . . . kW 6L26 8L26 9L26 12V26 16V26 18V26 1 860 2 480 2 790 3 720 4 960 5 580 Gen. . kW 1 870 2 495 2 810 3 745 4 990 5 615 340 kW/cyl. . . .0 . . 1000 rpm Mean effective pressure . . . . 10. . . . . . . . 1000 rpm Eng. . . . . 320 mm Cylinder output . . kW 1 785 2 380 2 680 3 570 4 760 5 355 325 kW/cyl. .25. . 310 . . . kW 1 950 2 600 2 925 3 900 5 200 5 850 Gen. . . . . . .96 Fuel oil specification: 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . . . kW 1 870 2 495 2 810 3 745 4 990 5 615 50 Hz 325 kW/cyl. . 9. .6. . . 0. . . . . kW 1 960 2 610 2 940 3 915 5 220 5 875 Generator output based on a generator efficiency of 96%. . .4 . . . 900 rpm Eng. .5 bar Piston speed . For definitions see page 53. 900 rpm Eng. . . 1000 rpm Eng. . . . . Rated power 60 Hz Engine type 310 kW/cyl. . . . . . . . . 260 mm Piston stroke . . .340 kW/cyl Engine speed. . 49 . . .8 kV Generator efficiency . . 320 mm Piston stroke . . 23. . . . kW 1 560 2 330 3 110 3 500 4 670 6 220 7 000 50 Hz 375 kW/cyl. . . .97 Fuel specification: Fuel oil 730 cSt/50°C 7200 sR1/100°F ISO 8217. . 370.2 bar Piston speed .0 75. . . . . . . . . . . . . . . . . . . . 24. . . .0 49. . . . . humidification of combustion air for NOX reduction. For definitions see page 53. . 375. . . . . . . 50 .0 105. 720 rpm Engine kW 1 620 2 430 3 240 3 645 4 860 6 480 7 290 Gen. 0. . . . . 750 rpm Engine kW 1 500 2 250 3 000 3 375 4 500 6 000 6 750 Gen. .0 * Dependent on generator type and size.4. . . 750 rpm Engine kW 1 640 2 460 3 280 3 690 4 920 6 560 7 380 Gen. . . . 21. . kW 1 570 2 360 3 150 3 540 4 720 6 300 7 080 Dimensions (mm) and weights (tonnes) Engine type 4R32LN 6R32LN 8R32LN 9R32LN 12V32LN 16V32LN 18V32LN A* 6 833 8 602 10 479 10 625 10 041 10 893 11 593 E* 2 140 2 290 2 690 2 890 3 060 3 060 3 060 I* 1 550 1 550 1 730 1 730 1 730 1 730 1 730 K 2 550 2 550 2 550 2 550 2 330 2 330 2 330 L* 3 809 3 896 4 442 4 466 4 301 4 581 4 611 Weight* 36. . kW 1 440 2 160 2 880 3 240 4 320 5 760 6 480 410 kW/cyl. .0 100. 8. . Generator output based on a generator efficiency of 96%. 21.Vasa 32LN Main data Cylinder bore . . . Rated power 60 Hz Engine type 370 kW/cyl. 410 kW/cyl Speed . . . . . . 0. . .8 m/s Voltage . .0.0 82. . . . . .9. . 720 rpm Engine kW 4R32LN 6R32LN 8R32LN 9R32LN 12V32LN 16V32LN 18V32LN 1 480 2 220 2 960 3 330 4 440 5 920 6 660 Gen. . 405. . . . . 8.3. . . . . . . . 350 mm Cylinder output. 720.95 – 0. .4 – 13. . kW 1 420 2 130 2 840 3 200 4 260 5 680 6 390 405 kW/cyl. . . 750 rpm Mean effective pressure .0 67. . category ISO-F-RMK 55 SFOC 178-182 g/kWh at ISO condition Options: Crude oil. . . . . 720 rpm Engine kW 2 880 3 360 3 840 4 320 5 760 7 680 8 640 Gen. . . kW 2 760 3 230 3 690 4 150 5 530 7 370 8 290 50 Hz 460 kW/cyl. . 0. . . . . . . . . kW 2 650 3 090 3 530 3 970 5 300 7 070 7 950 500 kW/cyl. category ISO-F-RMK 55 SFOC 174 . . . 10. . . . 480.0 79.32 Main data Cylinder bore . . . For definitions see page 53. . kW 2 880 3 360 3 840 4 320 5 760 7 680 8 640 Dimensions (mm) and weights (tonnes) Engine type 6L32 7L32 8L32 9L32 12V32 16V32 18V32 A* 9 029 9 520 10 463 10 612 9 992 11 692 12 007 E* 2 290 2 490 2 690 2 890 3 060 3 060 3 360 I* 1 450 1 630 1 630 1 630 1 700 1 850 1 850 K 2 345 2 345 2 345 2 345 2 120 2 120 2 120 L* 3 718 4 120 4 055 4 025 4 089 4 373 4 373 Weight* 58. 320 mm Piston stroke . . . 22. Generator output based on a generator efficiency of 96%. .4 – 13. . . 720. . . . .8 kV Generator efficiency . . 400 mm Cylinder output. . . . 450. . . . . . 24. 460.5 * Dependent on generator type and size. . . . 0.6. . . . . . kW 2 590 3 020 3 460 3 890 5 180 6 910 7 780 480 kW/cyl. 500 kW/cyl Speed .5 75. . . . . 750 rpm Mean effective pressure. . . 51 . .9. . humidification of combustion air for NOX reduction. . . . . .9 bar Piston speed . . . . . . .0 132. . 750 rpm Engine kW 3 000 3 500 4 000 4 500 6 000 8 000 9 000 Gen. . . crude oil. 720 rpm Engine kW 6L32 7L32 8L32 9L32 12V32 16V32 18V32 2 700 3 150 3 600 4 050 5 400 7 200 8 100 Gen. . .3. . . . . . . . . Rated power 60 Hz Engine type 450 kW/cyl.5 115.95 – 0. . . . .180 g/kWh at ISO condition Options: Common rail fuel injection. .5 65.0 m/s Voltage . . .97 Fuel specification: Fuel oil 730 cSt/50°C 7200 sR1/100°F ISO 8217. . . 9. 23. . . . . . 750 rpm Engine kW 2 760 3 220 3 680 4 140 5 520 7 360 8 280 Gen. . . . .5 100. . . . . 60 Hz Engine type Eng. . . . . . . Rated power 50 Hz. . . . . . 380 mm Piston stroke . 52 . . . . . . . . . . . .0. . . 9. . . . . . . . .96 . . . . 0. . . . . .8 kV Generator efficiency . . kW 6L38 8L38 9L38 12V38 16V38 4 350 5 800 6 525 8 700 11 600 Gen. . . . .5 m/s Generator voltage. . . . . .4 .13. . 600 rpm Mean effective pressure . . . . . . . . . humidification of combustion air for NOX reduction. .98 Fuel oil specification: 730 cSt/50°C 7200 sR1/100°F ISO 8217. . Dimensions (mm) and weights (tonnes) Engine type 6L38 8L38 9L38 12V38 16V38 A* 10 050 11 670 12 300 11 700 13 280 E* 2 890 2 890 3 160 3 760 3 760 I* 1 660 1 710 1 810 2 020 2 020 K 3 520 3 520 3 520 3 000 3 000 L* 4 320 4 450 4 550 4 920 5 090 Weight* 92 116 132 175 200 * Dependent on generator type and size. . 26.38 Main data Cylinder bore .5%. For definitions see page 53. . . category ISO-F-RMK 55 SFOC 175 . . kW 4 200 5 600 6 300 8 400 11 200 Generator output based on a generator efficiency of 96. . . 0. . . . . . . . . . . . . . 475 mm Cylinder output .179 g/kWh at ISO condition Options: Common rail fuel injection. . . . . . . . 725 kW/cyl Engine speed. . . . . . . . . . .9 bar Piston speed. . . . K Minimum height from the crankshaft centreline when removing a piston. L Total height of the generating set.0 bar · · · · · · · · · · · · · · · · · 25 °C · · · · · · · · · · · · · · · · · 25 °C · · · · · · · · · · · · · · · · · 30% 53 . or scavenge air. cooling water temperature Relative humidity · · · · · · · · · · · · · · · · · 1.Definitions and notes for generating sets Generating set dimensions A Total length of the generating set. E Total width of the generating set. Indicated values are for guidance only and are not binding. Dimensions and weights Dimensions are in millimetres and weights are in metric tonnes. Cylinder configurations: L = in-line. Specific fuel oil consumption At ISO standard reference conditions Lower calorific value of fuel 42 700 kJ/kg Tolerance 5% Without engine driven pumps At 85% load. I Distance from the bottom of the common baseframe to the crankshaft centreline. ISO standard reference conditions Total barometric pressure Suction air temperature Charge air. and V = V-form (for Wärtsilä Vasa 32LN engine R = in-line). Whenever necessary. Depending on the engine type and application.Auxiliary systems All auxiliary equipment needed for the diesel engines can be delivered by Wärtsilä. seawater pumps. fuel-separating modules. HT. central coolers. fuel pump. lubricating oil automatic filters. such as fuel booster modules. the auxiliary systems are tailored to optimize the operating performance for a specific trade. oil filters and coolers. starting air vessels. and the rest can be delivered loose or grouped in modules. lubricating oil pump. cooling water preheating modules and starting air compressor modules.and LT-cooling water pumps. Stand by pumps. Standardized modular auxiliary units are available for several systems. Tailor made modular auxiliary units are available on request. exhaust gas silencers and boilers are typically delivered for separate mounting. Some equipment can be built on the engine. The systems are specified to minimise building costs and operating costs for a specific combination of main and auxiliary engines. Fuel booster unit 54 . pre-lubricating oil pump and thermostatic valves can be built on the engine. lubricating oil separating modules. Maximum compatibility is ensured when auxiliary systems are delivered together with main propulsion engines and diesel generator sets. thermostatic valve and fuel oil cooler Separator Unit 55 .Automatic lubricating oil filter Auxiliary module with preheater. central cooler. CP PROPELLERS Controllable pitch propellers Lips controllable pitch propellers offer excellent manoeuvrability. For ships with frequent port calls.o. Lips CP propellers are the ideal choice for diesel mechanical plants with medium-speed engines.The combinator curve can be shaped to avoid ship and machinery resonances. Engine overload is avoided in all conditions. – Available for all applications – Exceptionally well-suited for heavy duty applications. Full power is available in heavy and light conditions by automatic pitch adjustment. n Compact. CP propellers permit high skew angles to minimize noise and vibrations. and to assure optimum operation of the complete propulsion system. customised to suit the customer’s needs by applying wake-adapted propeller designs and ship-construction related shaft designs. CPS and C-hub 330-2800 mm 56 .The CP propellers are manufactured in following hub types: Type D-hub Material CuNiAl Bronze or stainless steel Hub diameter 330-1540 mm Special features – One piece hub casting with integrated hub-cover for extra rigidity. delivered as pre-assembled complete system n Under water replacement of blades Lips CP propellers are all of standard hub design. robust design n Small overhang weight n Accurate stepless hydraulic pitch control n Reduced hydraulic power requirement n Easy to install. well proven. saving ship time and tug costs. – Navy installations – 5-bladed propeller – Feathering propellers E-hub CuNiAl Bronze or stainless steel CuNiAl Bronze or stainless steel 1095-2085 mm Specific application i. strong hub designs n Few components. Propeller hub range for D-hub 4D1540 4D1415 4D1300 4D1190 4D1095 4D1000 4D920 4D845 4D775 4D710 4D650 4D600 4D550 0 2 4 6 8 10 Power [MW] 12 14 16 Propeller hub range for E-hub 4E2000 4E1915 4E1835 4E1680 4E1540 4E1415 4E1300 4E1190 4E1095 0 10 20 30 Power [MW] 40 50 60 57 . Fixed pitch propellers are usually applied for ocean sailing vessels. for example n Container vessels n Tankers n Bulk carriers n Dry cargo vessels Lips FP propellers for all shiptypes guarantee maximum efficiency and minimum noise and vibration levels due to tailor-made designs with the latest available technology. reliability and robustness are required. the propeller must be a perfect match with the engine and the hull. A fixed pitch propeller is the choice when optimum efficiency. In order to achieve the highest possible total efficiency of the vessel. 58 .FP PROPELLERS Fixed pitch propellers Each ship’s hull has its own characteristics. An additional advantage is the good repairability.5 m upwards (for smaller sizes. Lips FP propellers can be produced with any required blade number and size from 3. FP propeller package In addition to the propeller following items can be included in the scope of supply n n n n n n n n n n Hydrodynamic consultancy Alignment calculations Jackload calculations Whirling calculations Build-up propellers Propeller caps Hydraulic nut/ring Hydraulic mounting tools Ropeguard Netcutters n n n n n n n Sterntubes Torque measurement device Turning device Thrust bearing Earthing device Shaft locking device Shaft brake 3D model FPP package 59 .Material Lips patented Cunial® material provides excellent casting. machining and fatigue properties. see chapter on Lips CIPS). 5 or 6 blades Material: Cunial bronze (patented) Iceclass available CIPS fixed pitch propeller sizes 60 .CIPS Coastal and Inland Propulsion Systems (CIPS) CIPS are tailor-made propulsion systems with small fixed pitch propellers (diameter below 3. coasters and luxury (mega) yachts. n n n n n n Standard and custom-made nozzles Shaft installations Class II. fishery vessels. I and S Tailor-made propellers with 3. 4.5 m) suitable for inland navigation vessels. Nozzles for CIPS Nozzle HR 1000 HR 1050 HR 1100 HR 1150 HR 1200 HR 1250 HR 1300 HR 1350 HR 1400 HR 1450 HR 1500 HR 1550 HR 1600 HR 1650 HR 1700 HR 1750 HR 1800 HR 1850 HR 1900 HR 1950 HR 2000 Ød 1010 1060 1110 1160 1210 1260 1310 1360 1410 1460 1510 1560 1610 1660 1710 1760 1810 1860 1910 1960 2010 ØD 1238 1300 1360 1422 1483 1545 1606 1667 1730 1790 1852 1913 1974 2032 2098 2158 2220 2282 2342 2404 2465 G 619* 650* 680* 711* 742* 772* 803* 834* 865* 895* 926* 957* 987* 1016* 1049* 1079* 1110* 1141* 1171* 1202* 1233* H 1019* 1050* 1080* 1111* 1142* 1172* 1203* 1234* 1265* 1295* 1326* 1357* 1387* 1416* 1449* 1479* 1510* 1541* 1571* 1602* 1633* J 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* 400* K 840* 900* 970* 960* 1200* 1012* 1064* 1104* 1144* 1186* 1226* 1264* 1306* 1344* 1380* 1420* 1680* 1502* 1542* 1582* 1620* L 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000 * = Dimensions can be adjusted according to ship’s hull. Cross section HR-profile 61 . This sophisticated shape improves the water flow both into and out of the nozzle. can produce over 10% more thrust than conventional nozzles. increasing thrust performance. Significant savings can be achieved in terms of fuel consumption. The nozzle profile offers double profiled cross section (outside and innerside). 62 . The improved high efficiency nozzle.NOZZLES Two Lips FP-propellers in HR nozzles. both in bollard pull as in free sailing condition. combined with a Lips propeller. depending on the number of revolutions and the capacity of the motor. Nozzles The application of a nozzle increases the thrust at relatively low ship speeds. type HR. RUDDERS Efficiency Rudder Efficiency Rudder is an integrated concept that reduces fuel consumption. 63 Twin screw vessels: n n . In general a noise reduction of 3 to 6 dB is expected. Fixed pitch propellers: Fuel saving of minimum 3%. Fuel saving of 2 to 6%.45% reduction of propeller induced vibration level. Efficiency gain increase with increasing hub ratio. i. At high vessel speeds and high power the risk of cavitation erosion is also reduced. Single screw vessels: n n n Controllable pitch propellers: Fuel saving of minimum 5%. vibration and noise level compared to traditional design. 30 .e. About 25% reduction of propeller induced vibration level. propeller hub/ propeller diameter ratio. L-drive and Z-drive Electric pumps for steering and lubrication Various shaft arrangements Diesel or electric driven up to 7000 kW Optional mounting can available Can-mounted modular steerable thruster.STEERABLE THRUSTERS Steerable thrusters With steerable thrusters thrust can be applied in any direction. n n n n n n n High thrust-to-power ratio Modular flexible design or compact standard design Fixed pitch propeller or controllable pitch propeller With or without nozzle Variable propeller diameter Maintenance friendly Low operating costs Easy mounting by welding Robust design High thrust-to-power ratio Standardized Z.or L-drive design Diesel or electric driven up to 3000 kW Maintenance friendly Optional mounting can Modular steerable thruster. Lips steerable thrusters are durable and reliable. Flexible design. 64 . achieving superior manoeuvrability. Lips compact thrusters n n n n n n n Lips modular thruster range: Modular steerable thrusters n n n n n Compact thruster. L-drive Customized container Electric driven up to 7000 kW Optional retractable Optional retrievable 65 .Retractable steerable thrusters n n n L-drive and Z-drive Retraction system with cylinders or spindles Electric driven up to 7000 kW Retractable steerable thruster. Underwater demountable steerable thrusters n n n L-drive and Z-drive Stable three-wire handling Electric driven up to 7000 kW Underwater demountable steerable thrusters. Containerized steerable thrusters n n n n n Containerized steerable thrusters. final selection is subjected to rules of classification societies l Thrusters with controllable pitch propellers improve manoeuvrability and efficiency over the complete speed range l Thrusters with controllable pitch propellers are very suitable for constant speed operation l Thrusters with controllable pitch propellers protect the engines against overload l The weld-in stembox provides easy installation and maximum stiffness of the construction in the vessel l The can-mounted thruster provides the possibility to install or remove the thruster while the ship is afloat l Modulating clutches (MCD) improve manoeuvrability for thrusters with fixed pitch propellers at low speeds l Low duty (LD) modulates between 0 and idle engine speed.146 318 3.770 361 3. 100% MCR power and 7% thrust deduction l Selections are not valid for classification with iceclass.STEERABLE THRUSTERS Wärtsilä engines connected to Lips compact thrusters Engine type MCR engine power kW HP MCR engine speed Thruster type Propeller diameter Reduction ratio Propeller speed Bollard pull in 19A nozzle in HR nozzle tonne tonne 32 35 34 37 38 42 40 43 46 51 48 53 50 55 53 57 58 64 60 65 rpm mm rpm 1080 1469 1000 175 1600 1800 6L20 1200 1632 1000 200 1900 2100 8L20 1440 1958 1000 225 2100 2300 1620 2203 1000 225 2100 2300 9L20 1800 2448 1000 250 2400 2600 2.895 257 MCD type for steerable thrusters with FPP LD type HD type 3000-3 3000-3 3000-3 3000-3 3000-4 3000-4 3000-4 3000-4 3000-5 3000-5 3000-3 3000-3 3000-4 3000-4 3000-6 3000-6 3000-7 3000-7 3000-7 3000-7 Variations per type l Two different propeller diameters l Fixed pitch propeller (FS) or controllable pitch propeller (CS) l 19A nozzle. Heavy duty (HD) modulates between 0 and maximum engine speed l Heavy duty modulating clutches are required for constant speed operation 66 .650 274 3.650 274 3. HR nozzle or no nozzle l Reduction ratios optimized for application l Weld-in stembox or can-mounted l Soft on/off clutch or modulating clutch Remarks l The propellers are designed for bollard pull condition in typical tug boat application l Bollard pull calculations are based on twin installations. 084 245 4.592 218 4.895 257 3.6L26 1950 2652 1000 250 2400 2600 2400 2040 2774 1000 250 2600 2600 2600 3536 1000 275 8L26 2720 3699 1000 300 2800 2800 3000 2800 2925 3978 1000 300 9L26 3060 4162 1000 300 3000 2800 3000 3.592 218 62 67 64 69 64 70 66 72 79 86 82 89 85 94 88 96 90 99 93 102 93 102 96 105 3000-5 3000-7 3000-5 3000-7 3000-5 3000-7 3000-5 3000-7 not available --> not available --> Lips compact thrusters dimensions Thruster type FS/CS A mm 1600 175 1800 1900 200 2100 2100 225 2300 2400 250 2600 2600 275 2800 2800 300 2900 2850 1870 3700 2850 1765 1770 3620 3700 1465 3090 1860 2100 1575 1665 3200 3500 1465 3010 3090 1735 1740 2100 1450 1525 2830 3100 1435 2612 2890 1615 1615 1900 1350 1400 2600 2630 1210 2368 2512 1425 1485 1600 1230 1300 2200 2500 1200 2148 2168 1305 1305 B mm C mm 1200 D mm 2100 910 1843 2048 1110 1180 E mm H mm 1743 M mm 985 67 .895 257 4.592 218 4. Steerable thrusters dimensions Dmin (PAL) Thruster type A mm B mm C mm FS mm 3375 4365 3980 4660 5900 CS mm 3690 – 4330 5060 6380 FS mm 1295 1525 1525 2000 2220 E CS mm 1610 – 1875 2400 2620 F mm Gmin FS mm 3112 3901 3495 4020 5220 CS mm 3427 – 3902 4090 5330 Hmin mm L mm M mm 1510 2500 2510 3500 5000 2700 3000 3400 3600 4200 1620 1945 1965 2000 2700 1855 2130 2250 2635 3050 1020 1240 1240 1340 1500 2430 3170 2785 3260 4400 1950 2260 2390 2650 3070 1620 1775 1960 2240 2560 Remarks Dimensions are based on thrusters with nozzle.STEERABLE THRUSTERS Steerable thrusters selection Thruster type Maximum allowable power Maximum allowable input speed kW rpm rpm Propeller diameter in nozzle mm mm Z-drive L-drive Maximum Standard 1510 2300 1200 1000 2900 2700 2500 3200 1200 900 3200 3000 2510 3500 1200 900 3400 3200 3500 5500 900 750 3800 3600 5000 7000 900 750 4400 4200 Remarks Mentioned power and input speed do not necessarily coincide. Steerable thruster L-drive Steerable thruster Z-drive 68 . Actual maximum power depends on application and class rules. The propellers are designed for bollard pull condition at 100% MCR power in DP application. Lips retractable thrusters dimensions Thruster type 175 200 225 FS CS FS CS FS CS A mm 1700 1900 2100 B mm 2700 2850 2850 3000 3300 3450 C mm 2950 3050 3590 D mm 4050 4160 4625 E mm 2200 2450 2650 F mm 2400 2700 3000 Hmin mm 7700 8600 9000 Estimated Weight motor height unit kg mm 1850 1900 2000 18000 19000 20000 21000 22000 23000 Weight auxiliaries kg 2000 2500 2000 2500 2000 2500 Notes Minimum total height of the thruster unit is depending on selected electric motor.154 380 1900 2. Selections are not valid for classification with iceclass.923 342 1000 1360 60 1200 50 1000 200 1900 2.Lips retractable thruster selection up to 1500 kW Electric motor MCR motor power Frequency Nominal motor speed Thruster type Propeller diameter Reduction ratio Propeller speed Thrust at zero knots in 19A nozzle in HR nozzle kN kN 165 180 200 220 250 270 rpm mm 1700 2.929 307 1500 2040 60 900 Variations per type Fixed pitch propeller (FS) or controllable pitch propeller (CS) 19A nozzle. Subject to change without prior notice. Dimensions can be changed for better fit in the vessel structure. 69 .929 307 2100 3.643 378 kW HP Hz rpm 50 1000 175 1700 3. Weight of unit is empty and without electric motor. final selection is subjected to rules of classification societies.308 302 1200 1632 60 900 50 1000 225 2100 2. HR nozzle or no nozzle Reduction ratios optimized for application L-drive and Z-drive are available Remarks Above information is for vertical electric drive only. 70 .the use of two fixed or controllable pitch propellers in combination with a centre waterjet . The unique design features of the Lips jet will ensure access to even the smallest ports.combine the best of both worlds. low noise and vibrations and a smaller propeller diameter. resulting in improved efficiency. The propellers are used for normal cruising while the combination of the propellers with the centre waterjet is used to achieve the top speed. Hybrid systems allow optimization of the propellers for the normal cruising condition.JETS Propulsion solutions with waterjets Waterjets propulsion is the most successful and efficient method of propulsion for high-speed applications. Hybrid propulsion systems . but also lower vessel resistance due to the absence of underwater appendages like shafts. The advantages are not only higher efficiency. The absence of any parts below the waterline also makes waterjets an ideal solution for shallow water operation. rudders and shaftstruts. Intermediate sizes for the above range like a LJ160E or LJ175E size and the data for the range up to the LJ400E size are available on request. 3) Inboard length may vary depending on the optimized shape of the inlet duct. 4) Transom flange connections can be custom designed. Please contact us for the weights of the jet sizes above the LJ99E based on the power density of your design. Smaller transom flange diameters are possible if the requirements for the interface with the hull are met. but exclude hydraulic powerpacks and oil lubrication sets. 2) The data in brackets is the maximum outboard length in full reverse and steering. 6) Water in the inlet duct is calculated to the transom and based on the standard shaft height. 71 . 5) Weights are calculated based on jet power density.Lips jet E-series. 6-bladed waterjets Generic weights and dimensions for the most often used waterjet sizes outboard length inboard length Waterjet Outboard Inboard Transom size1) length [mm]2) length [mm]3) flange Æ4) LJ43E LJ47E LJ51E LJ55E LJ60E LJ65E LJ71E LJ77E LJ84E LJ91E LJ99E LJ108E LJ114E LJ120E LJ127E LJ135E LJ142E LJ150E LJ157E LJ164E LJ171E LJ179E LJ190E LJ200E 1175 (1260) 1275 (1370) 1395 (1490) 1505 (1620) 1635 (1760) 1780 (1910) 1935 (2070) 2110 (2250) 2290 (2450) 2490 (2660) 2705 (2890) 2945 (3140) 3100 (3320) 3270 (3500) 3465 (3700) 3685 (3930) 3880 (4140) 4095 (4370) 4285 (4570) 4475 (4770) 4665 (4980) 4880 (5210) 5185 (5530) 5460 (5830) 1870 2040 2210 2380 2600 2810 3070 3330 3630 3940 4280 4670 4930 5190 5490 5830 6140 6480 6780 7090 7390 7730 8210 8640 725 795 860 930 1015 1100 1200 1300 1420 1535 1670 1825 1925 2025 2145 2280 2400 2535 2650 2770 2890 3025 3210 3380 Weight steering [kg]5) 475 615 780 995 1290 1635 2070 2690 3400 4470 5510 5730 ~ 6860 6720 ~ 8100 7805 ~ 9635 9415 ~ 11170 11160 ~ 13160 13100 ~ 15390 15630 ~ 18560 18120 ~ 21170 20505 ~ 23815 23205 ~ 27815 26410 ~ 31605 32805 ~ 37240 38100 ~ 43870 Weight booster [kg]5) 330 435 545 695 910 1155 1465 1890 2420 3160 3915 4085 ~ 4730 4755 ~ 5535 5605 ~ 6570 6625 ~ 7630 7925 ~ 9065 9395 ~ 10725 11195 ~ 12765 12985 ~ 14755 14715 ~ 16635 16745 ~ 19255 19320 ~ 21940 23671 ~ 26075 27900 ~ 30255 Entrained water [ltr]6) 250 330 420 530 690 880 1150 1460 1900 2410 3100 4030 4740 5530 6550 7870 9160 10800 12380 14120 16000 18350 21950 25600 Notes 1) The waterjets defined in the above table are the most often used waterjet sizes. Weights include an inboard bearing. 6-bladed waterjets Relation between power and vessel speed for the most often used waterjet sizes 4000 3500 LJ60E 3000 LJ553 2500 LJ51E 2000 1500 1000 500 0 20 25 30 35 40 Vessel speed (knots) 45 50 LJ47E LJ43E LJ43E–LJ65E sizes LJ65E Engine power (BkW) LJ71E–LJ99E sizes 9000 8000 LJ91E 7000 LJ84E 6000 5000 4000 3000 2000 1000 20 25 30 35 40 Vessel speed (knots) 45 50 LJ77E LJ71E LJ99E 72 Engine power (BkW) .JETS Lips jet E-series. 000 kW.22000 20000 18000 LJ108E–LJ150E sizes LJ150E LJ142E LJ135E LJ127E LJ120E LJ114E LJ108E Engine power (BkW) 16000 14000 12000 10000 8000 6000 4000 2000 20 25 30 35 40 Vessel speed (knots) 45 50 5E 13 LJ LJ157E–LJ200E sizes 40000 36000 32000 LJ200E LJ190E LJ179E 28000 24000 20000 16000 12000 8000 4000 20 25 30 35 40 Vessel speed (knots) 45 50 LJ171E LJ164E LJ157E Waterjet selection The above graphs indicate the jet size required based on the relation between the engine power and the design speed of the vessel. DXF / DWG format general arrangement drawings of the most often used sizes are available. A ship with three 9000 kW engines and 37 knots will need three LJ135E jets. or for details of waterjets for speeds above 50 knots and 40. For instance a ship with four 4000 kW engines and a corresponding design speed of 35 knots will need four LJ91E jets. The above size range is not complete but represents the most often-used waterjet sizes up to 50 knots. Please contact us for an accurate jet selection based on the specific vessel design parameters. We are available from the earliest design stages of the vessel to work with you on an optimized propulsion system. The correct jet size is thus indicated by the line above the intersection of the power and the design speed (see examples in above graphs). Engine power (BkW) 73 . power is dependent on sailing profile and classification society requirements. (Hz) 60 50 60 50 60 50 60 50 60 50 50 60 60 50 60 50 50 60 60 50 50 60 50 60 60 50 60 50 50 60 Max. power1 (kW) 450 405 614 516 880 735 1025 900 995 829 1394 1115 1515 1262 1785 1487 1827 1649 2175 1813 2213 1998 2805 2532 2569 2145 3145 2625 3550 3405 D (mm) 1200 1250 1500 1750 1750 2000 2000 2250 2250 2500 2500 2750 2750 3000 3000 L (mm) 1275 1487 1711 1926 1926 2181 2181 2285 2285 2482 2482 2704 2704 2916 2916 Mass2 (kg) 2040 2600 3800 5600 5600 7550 7550 10600 10600 12700 12700 15600 15600 22500 22500 CT/FT04 CT/FT125 CT/FT150 CT/FT175 H CT/FT175 M CT/FT200 H CT/FT200 M CT/FT225 H CT/FT225 M CT/FT250 H CT/FT250 M CT/FT275 H CT/FT275 M CT/FT300 H CT/FT300 M 1755 1465 1755 1465 1755 1465 1755 1465 1170 975 1465 1170 1170 975 1170 975 975 880 1170 975 975 880 975 880 880 735 880 735 735 705 1) Max. n Controllable or fixed pitch propeller n Maximum thrust with small diameter n Robust reliable design n Easy installation n Low noise version available Type Rational frequency Input (rpm) Output (rpm) 522 436 519 433 430 359 379 316 371 309 329 263 324 270 287 239 295 266 265 221 259 233 239 216 238 199 216 180 219 210 Electr. freq.TRANSVERSE THRUSTERS Transverse thrusters Bevel-gear driven propeller in a transverse tunnel. 74 . 2) Includes a standard tunnel with e-motor support. The thruster noise experienced in the adjacent accommodation reduces with 5-8 dB(A) compared to the basic arrangement. Type CT/FT04 CT/FT125 CT/FT150 CT/FT175H CT/FT175M CT/FT200H CT/FT200M CT/FT225H CT/FT225M CT/FT250H CT/FT250M CT/FT275H CT/FT275M CT/FT300H CT/FT300M A (mm) 1770 1920 2220 2420 2420 2620 2620 2720 2720 2920 2920 3220 3220 3420 3420 B (mm) 1952 2002 2262 2515 2515 2768 2768 3032 3032 3285 3285 3535 3535 3797 3797 H1 (mm) 965 990 1120 1245 1245 1370 1370 1505 1505 1630 1630 1755 1755 1885 1885 H2 (mm) 1060 1140 1350 1480 1480 1630 1630 1760 1760 1960 1960 2160 2160 2360 2360 Mass (kg) 3800 4100 5600 7300 7300 12600 12600 14400 14400 18000 18000 21000 21000 29000 29000 Transverse thruster.Low noise arrangement In the low noise arrangement. 75 . the tunnel part containing the propeller is isolated acoustically from the ship’s hull using tunnel seals and flexible elements. To facilitate the APD option a standard gearbox with a multidisc clutch is supplied with an additional Wärtsilä reduction gears – Output range 76 . reliability and low noise and vibration.GEARS Reduction gears The core function of a reduction gearbox is to reduce the main engine speed to the optimum propeller speed. Single input. The Wärtsilä gears have been designed to meet the highest standards of operational efficiency.8 m horizontal offsets. single output gears are available with vertical or horizontal offsets of the shafts. which means that the PTO is running also when the propeller has been disconnected. Gear configurations The gears can be supplied with built in multidisc clutches. Twin input single output gears can be delivered with up to 3. Customized solutions like secondary driven-. Auxiliary propulsion drive for increased safety The basic idea of the Auxiliary Propulsion Drive (APD) is to be able to utilise the power from the auxiliary engines for propulsion as back up for the main engine.and two-speed PTOs are also available. twin. The standardized solutions are primary driven. Power take-off arrangements More than 90% of all gearbox deliveries include a built-in Power Take-Off (PTO) for shaft generators. For safety reasons the gear mechanically drives the main pump for the propeller.disconnecting coupling between the gear and the main engine. All gears can also be interfaced to a separate hydraulic power unit. as the complete hydraulic power unit for the CP propeller will be left out.SCV Gear size SCV 50 SCV 56 SCV 62 SCV 68 SCV 75 SCV 85 SCV 95 SCV 105 SCV 116 SCV 128 SCV 142 A 500 560 620 680 750 850 950 1050 1160 1280 1420 B Standard -Max 380 410 440-470 460-510 480-530 510-560 580-630 630 650 800 1000 C 1724 1848 2210 2370 2460 2720 3025 3302 3525 3970 4520 D 150 160 180 200 220 250 280 300 150 275 305 E 590 645 740 800 880 F G H 720 800 880 960 J 470 530 570 625 660 730 800 880 L 592 650 662 720 800 915 1025 1125 765 840 928 N 420 450 350 370 450 550 450 500 885 900 910 O SCV/SV 1035 1100 1150 1250 P 745 760 1000 1010 1340 1024 1500 1110 1580 1240 1720 1360 1850 1480 1040 1300/1095 1035 1470/1220 1170 1640/1350 1385 1700/1400 1346 1800/1025 1235 2270/1120 1760 2270/1320 1950 1000 2100 1680 1178 1145 2350 1880 1327 1265 2600 2100 1487 1400 2580 2300 1800 1535 1536 3160 2645 1815 1700 1704 3505 2645 2012 1885 77 . Single marine reduction gears Vertical offset gears – Dimensions SV. Integrated or separate hydraulic system for gear and CP propeller Most of the Wärtsilä gears are purposely designed with an integrated hydraulic system for both the gear and the CP propeller. The APD may also be used for operation modes with low vessel speeds. This will reduce installation cost for the yard and operational costs for the owner. GEARS Horizontal offset gears – Dimensions SH.SCH Gear size SCH 75 SCH 85 SCH 95 SCH 105 SCH 116 SCH 128 SCH 142 A 750 850 950 B 530 580 580 C 15° 15° 15° 20° 20° 20° 20° D 280 E F G H I 735 830 J K L N 515 550 700 O 1670 1800 1640 P – – 1390 885 2230 1220 865 660 1115 800 730 1245 915 320 1000 2495 1440 970 450 500 550 750 2710 1520 2250 830 1215 1420 540 771 2995 1658 2195 910 1405 1545 560 850 3300 2240 2500 1015 1535 1715 725 – – 1050 630 1160 670 1280 740 1420 820 750 1510/1700 1480 830 1800/1100 1150 915 1015 1915 2100 – 2000 590 1550 3640 1960 2675 1090 1600 1870 620 1720 4040 2180 2970 1380 1700 2240 78 . Wärtsilä Gear type TCH200V65/2. designed for diesel electric propulsion. Twin input single output gear with two stage reduction. gear ratio 10:1.5° 10° 10° 10° 10° D 320 450 560 640 700 760 E 980 1400 1450 1660 1855 2015 F 2750 3700 4290 4900 5370 5800 G 890 1150 1305 1490 1630 1760 J 555 800 990 1160 1270 1380 M 2300 3230 3520 4020 4380 4770 N 360 570 630 720 790 860 O 995 1290 1700 1960 2140 2300 P 830 1170 1895 - 79 . Twin input-single output reduction gears Dimensions Gear Size TCH190 TCH250 TCH280 TCH320 TCH350 TCH380 A 1900 2500 2800 3200 3500 3800 B 400 530 650 760 850 960 C 10° 12. Remote control for controllable pitch propellers: Lipstronic 7000 propulsion control systems is designed to optimise the control of any propulsion machinery. Both systems are based on Programmable Logic Control (PLC) technology with high accuracy and tailored to the individual 80 . The system exists in two versions. This system is applicable for single engine configurations (including twin screw). designed to monitor and control all components in a modern propulsion system with high accuracy. This gives high flexibility and multi functionality. The Lipstronic 7000 advanced introduces a modular designed system with communication on a two-wire field bus. This system is applicable to as well for single as for twin engines configurations. tailored to the individual applications. The Lipstronic 7000 basic is a cost effective standardised system to meet most of the demands in the market for propulsion control.CONTROL SYSTEMS Propulsion control systems Optimised control of the propulsion machinery The Lipstronic 7000 propulsion control system is computer based. the basic and the advanced. and engine load control system developed on the basis of research and experience over many years. Up to 31 extra panels can be supplied as options. 81 . This gives information of the propulsion plant and is used for calibration of the system.applications. A user-friendly operator panel is delivered. Included is a propeller. A large amount of special functions to optimise ship operations are available. The system controls the propeller pitch position and engine speed either combined or in split modes. Remote control for azimuthing thrusters: For vessels such as harbour tugs an integrated control concept similar as for jets is available. including features such as a simplex DP-mode and anchoring mode. For vessels equipped with podded propulsors a dedicated Lips-stick is available. also a bow thruster is required. Co-ordinating control systems: The Lips-stick concept is a co-ordinating control system for offshore supply vessels. except an integrated joystick system which is an option for catamarans and monohulls. The joystick is a single lever manoeuvring enhancing system. For monohulls. cable-layers and other ships which require manoeuvring enhancing systems. individual controls for propulsion and steering are available. This includes standardised interfaces with third party DP-systems. For large off-shore platforms.CONTROL SYSTEMS Special functions as: n n n n n n n n n n Pitch reduction zone Cost effective universal reduces propeller wear controls for any propulsion Fuel measurement program system l Robust design with type Windmilling prevention approval PTI/PTO functions l Joy-stick available for small Multiple combinator and large vessels l Field bus application modes available Frequency variation mode Cruise control Fine tuning pitch Electric shaft levers Engine start/stop and safety system (Some functions not available in the Basic) Controls Remote control for jets: These systems are similar to the one used for controllable pitch propellers. in case of joystick control. 82 . Sterntube seals Sealing type Specially designed seals CoastGuard EnviroSeal ManeSeal MA/MD/M9 Face type ManeGuard FSE ManeBar ManeCraft EM/EY AIRGUARD 3AS SafeGuard Lip type STAND-BY SEAL 4BL STERNGUARD MKII (M) 80-330 50-330 25-65 340-1172 ³ 315 116-1172 56-1172 Fully split design / water Oil/water / grease Water / economical Air seal type / anti-polluting Anti-polluting Standby seal ring Highly resistant to wear and to attack by seawater and oil Shaft size/mm All sizes ³ 315 161-1040 Special features On demand Pollution free Water Bulkhead seals ManeSafe ND Manesafe Lightweight ND Gland type 50-1000 50-1000 91-800 Bi-directional diaphragm type Bi-directional diaphragm type Rudderstock seals ManeGuide ER Face type ManeGuide ES ManeGuide EJ/EK Lip type MK II ³ 530 200-530 50-330 155-1250 Split Split Economical Can be renewed in situ by vulcanizing/split or solid 83 .MARINE SEALS MARINE SEALS Seals Wärtsilä is the world’s leading supplier of marine engineered sealing systems. and the only supplier in the world to offer a full range of both radial and axial seal types. whether naval or commercial. The products are reliable. The range of seals is unequalled in the market. efficient and easy to maintain through the global Wärtsilä service network. commonly known as face seals and lip seals. for any ship type or ship size. in particular for cruise vessels. It is also less susceptible to wear MC type CoastGuard seal and tear and ageing than conventional seals. enabling lip seal replacement without the need to remove the propeller. SafeGuard SafeGuard The SafeGuard seal is an anti-pollution sealing system. separated by a vented and drained void space. the CoastGuard system eliminates oil loss from the outboard seal. but also forms a “coffer AC type CoastGuard seal dam” between the seawater and the oil. acts as a back-up seal if excessive water should enter the drain space. In the outboard seal assembly. bulk carriers. water is excluded by a radial face seal.MARINE SEALS CoastGuard EnviroSeal The CoastGuard sterntube sealing system has proved its worth as a reliable pollution free system. 84 . even if it is fouled or badly damaged. It is ideally suited either for retrofitting to existing vessels or for use on new tonnage. which surrounds and encloses an oil sealing unit comprising a single elastomeric lip seal. tankers. The void space is fitted with a drain line to enable the condition of the aft seal to be continuously monitored. A second lip seal. positioned forward of the oil seal. The aft seal is of a four ring type incorporating two water exclusion rings and two opposed lips. The outer housings for the two water exclusion rings are fully split. This drain space not only allows any oil or water passing to freely drain inboard. offshore vessels and RoRo’s. Thanks to its unique design. This lip seal bears on a chromium steel liner which rotates with the shaft. SANDGUARD 3AS-D AIRGUARD 3AS The SANDGUARD 3AS-D is an improved version of the AIRGUARD 3AS seal and is specifically designed for use on Dredgers. The aft seal is a built-up version of the MKII type of seal assemblies with a regulated air barrier chamber. Dredging vessels create and operate in a muddy and sandy environment which normally causes severe wear to the rubber sealing rings in the sterntube seals. and consequently minimizes the wear to the rubber sealing rings. Muddy/sandy water Air Fresh water #1S/R #2S/R #3S/R FSP Fresh water Air Air chamber Stand-by seal 85 .MARINE SEALS AIRGUARD 3AS The AIRGUARD 3AS anti-pollution sterntube seal is a follow-up to the successful STERNGUARD seal assemblies. SANDGUARD prevents both lubricating oil leakage outboard and seawater ingress inboard by supplying an outflow of air and freshwater. The “Unnet” protects the seal from fishing lines. The use of air prevents the spilling of lubrication oil from the seal and water ingress into the seal system. and includes an “Unnet” system. survey and maintenance purposes. The ManeGuard FSE can be fitted and serviced without removing the shaft. The FSE accepts misalignment. such as tugs and trawlers. and other high powered vessels. The seal is bi-directional and can be fitted on whichever side of the bulkhead is more convenient. ND type bulkhead seal ManeGuard FSE The ManeGuard FSE is a face type seal for high performance applications in a fully split design with an elastomeric body and silicon carbide interfaces. For applications with open sterntubes the inboard seal has an emergency seal for safety.ManeSafe Bulkhead Seals ManeSafe bulkhead seals ensure the integrity of watertight bulkheads where penetrated by the main and auxiliary propulsion shafts. offshore ManeGuard FSE supply vessels. thus reducing the installation time to a minimum. ManeGuard FSE 86 . vibrations and large axial movements. The FSE is particularly suitable for high speed vessels. In case of an emergency. Under normal circumstances the standby ring is kept practically load-free. The Details of Unnet forward sliding face of the “P-Ring”. Unnet Aft Seal Protection 87 . Protector spring (P-spring) which is pressed against the inside cover. STAND-BY SEAL 4BL STERNGUARD MKII (M) STERNGUARD MKII (M) The STERNGUARD MKII (M) type sterntube seal is a lip type seal using NBR (£ #380) or Viton seal rings (all sizes).MARINE SEALS STAND-BY SEAL 4BL The STAND-BY SEAL 4BL is developed from the MKII seals. provided that the vessel can be trimmed sufficiently. Both types are highly resistant to wear and to attack by seawater and oil. It incorporates an extra (standby) seal ring. STERNGUARD MKII (M) seals are easily monitored. the seal ring is activated to perform as a normal oil side seal. Aft Fore The Unnet is available as a complete sliding sliding face face system and available for lip type seals: MKII. They can be inspected in situ and renewed without disconnecting the tailshaft assembly even without docking. Net Cutters are available net for mounting between the rope guard Liner and the propeller boss for all seal Fin Protector ring (P-ring) types. also provides double security. so no wear will occur. SafeGuard and 3AS Fishing (standard). which can easily be activated by closing two valves in the engine room. 4BL. Unnet aft seal protection system This simple and highly effective system prevents lines or ropes from reaching the seals by the forward sliding face of the fin on a “P-Ring” which is pressed against the liner. One fitted to and rotating with the propeller or shaft and one stationary. This allows the seal to accept normal ship and machinery movements whilst ensuring sustained and MD type sterntube seal uniform face contact between the sealing elements. ManeBar ManeBar seals are designed for rugged. EL type ManeBar seal 88 . coasters. The stationary main seal unit is attached to the sterntube by means of a mounting ring and a flexible bellows assembly. tugs and offshore supply vessels. reliable service in small to medium sized vessels such as trawlers. ManeBar seals accommodate large axial.ManeSeal The ManeSeal consists of two large assemblies. The design of the ManeSeal seal facilitates complete inspection of the seal face without the need to disturb either the propeller or the shaft. These extremely durable seals completely overcome the limitations of packing and stuffing boxes which are associated with worn shafts or shaft liners. Design simplicity provides maximum sealing with leakage virtually eliminated. radial and angular shaft movements. leaking gland plates and continuous maintenance. This design offers simple installation in situ without having to lower the rudderstock.MARINE SEALS MARINE SEALS ManeCraft The ManeCraft propeller shaft seal is designed specifically to meet the demanding requirements of today’s pleasure and commercial craft. On monitored vessels ManeCraft have completed in excess of 10. ManeGuide rudderstock seals Rudderstock seals are available in both radial and axial sealing solutions. offering a leak-free seal to keep bilges dry and clean. and will not damage the shaft. in common with all other fittings under the waterline. After installation all they require is a quick regular inspection. ER-type seal 89 . Easy to install.000 hours of service or 10. Unlike a conventional packed gland the ManeCraft automatically compensates for wear and requires no adjustment. they replace old style propeller packed glands. In both cases they are derived from ManeBar and MKII seals and adapted to this specific application. offering savings in time and expense. They also have the advantage of a built-in emergency safety seal for added security and are ABS and GL approved.000 sea miles. MARINE BEARINGS Bearings B-SL line shaft bearings Uncomplicated low maintenance design Self lubricating n Suitable for seawater or fresh water cooling n Local temperature readout B-SL line shaft bearing n Dip stick for oil level check n Available in straight seat and spherical. this allows optimum oil film formation on the pad surface during operation. each supported by the spherical surface on the back. This design is used widely in journal & thrust bearings e. n n B-FL line shaft bearings Line shaft bearings with forced lubrication. Designed to tilt slightly. They are available for shaft sizes from 100 mm up to 1150 mm. the bearing consists of several tilting pads. Thrust bearings Sterntube bearing Enclosed in a sturdy housing. self-aligning configurations n Optional remote temperature sensor n Wingmounted housings available B-SL Line Shaft Bearings can be supplied with top and bottom shells. Thrust bearings 90 . Sterntube bearings The white metal lined sterntube bearings are B-FL line shaft bearing designed for trouble. in diesel-electric ships.free service throughout the lifetime of the vessel. Shaft sizes from 121 mm and up. or as tunnel bearing with a bottom shell only.g. Particularly suitable for shafts during low speed operations. Impeller Tube plates 91 . Wärtsilä is also able to offer other products made of Aluminum Bronze or Manganese Bronze such as: n Channels n Covers n Impellers n Pump parts n Hydro parts for electric power installations n Tube plates n Bearing houses for water lubricated systems (naval applications) These products belong to the category of Lips SNF products (SNF = Special Non-Ferro). rough machined or fully machined castings up to 80. Wärtsilä works to the highest standards of quality.000 kg. With an experienced bronze casting shop and a modern machine shop with CNC machines and Cad/Cam systems.SNF (Special Non-Ferro) products Besides propulsion systems. The combination of metallurgical knowledge. Experts from Wärtsilä are always available to give advice on material application and design problems related to non ferro products.Lips . Wärtsilä is able to supply unmachined. Our non-ferrous foundry has grown out 100 years of know-how and experience in casting and machining aluminum bronze and manganese bronze materials. experience and modern mould techniques enables Wärtsilä to make Special NonFerro castings of high precision and great complexity. Wärtsilä Ship Power services Total Service – The service commitment A power system is a long-term investment. and preventive and predictive maintenance. With a Wärtsilä service agreement. Remote monitoring. Our Total Service is clearly targeted: to add value to your business by maximizing the performance. With Wärtsilä’s focused training strategy. Full OEM quality reconditioning is available through our network of one-stop workshops and ship repair centres. diagnostics and Condition Based Maintenance (CBM) can be incorporated in our technical support solutions. Wärtsilä service agreements can incorporate implementation of agreed performance and environmental targets. and qualified personnel. auxiliary systems. Wärtsilä upgrade solutions bring older power systems up to today’s technical standards and cover all types of engines. at anytime. with the built-in requirement of short payback time. Whether you aim at tactical or strategic outsourcing of operation & maintenance Wärtsilä has the solution. availability and reliability of your power system. you can optimize your personnel training and obtain the best value for your training 92 . global network of training centres. propulsion systems and gear components supplied by Wärtsilä. Wärtsilä philosophy is proactive – involving operation support. Service-oriented professionals in 60 countries worldwide enable us to provide outstanding field service support – anywhere. and even complete operation & maintenance packages. you can focus on what matters – the productivity of your investment. enabling you to access instruction manuals. Total Service gives you: n n n 93 . maintenance. one responsibility” – integration for peace of mind. Extensive training programmes for your personnel are provided through the Wärtsilä Land & Sea Academy (WLSA) covering all aspects of operation. offering all the options and benefits of a total service portfolio. technical and CBM support Training Parts Field service Workshop and ship repair services Reconditioning. maintenance and safety. Wärtsilä’s range of online services is easily integrated with your business activities and processes. To sum up. Wärtsilä Service product areas n n n n n n n n n Commissioning Operation. upgrades and modernization services LTSAs and operations & maintenance agreements Online services Customized service solutions for optimal performance Long-term operational reliability for total economy “One supplier.investment. view spare parts information and order parts online – anytime and from anywhere. Wärtsilä is your natural choice of service partner. . . . +86 411 252 9100 Wärtsilä Taiwan Ltd 13F-4. . . . Panyu Guangdong 511440 Tel: . . . . . . . . . Brasil Tel: . +56 2 685 0500 Fax: . . . . . . . . +886 28 227 1067 Corporation Network AUSTRALIA Wärtsilä Australia Pty Ltd 48 Huntingwood Drive 2148 Huntingwood NSW Tel: . . . . . . .O. . . . Dartmouth (Halifax). . . +55 21 3878 8900 Fax: . . . . . +886 28 227 1066 Fax: . . . . . +358 10 709 5700 CHILE Wärtsilä Chile Ltda. . . . . Finland Tel: . . . . Nova Scotia B3B 1Z5 Tel: . . Tel: . NT. . . . . . . . . . Americanas Street P. . . +61 89 377 33 38 BRAZIL Wärtsilä Brasil Ltda. . . . Bassendean Tel: . . . Dalian Changjiang Plaza Office Building. . . . . . . Tsing Yi Island. . . . . . +56 2 685 0600 Wärtsilä Chile Ltda. . +852 2528 6605 Fax: . Flat 101. . . . . . . . +357 5 313 761 Fax: . . . . . . . . Presidente Eduardo Frei Montalva 6001. Avda. . . .São Cristovão Rio de Janeiro. . .A. +33 2 40411600 Wärtsilä Lips Defence Bagnoli della Rosandra 334 34018 San Dorligo della Valle. . . . . . . . . . . . . . Santiago Tel: . . . Block C. . . . . . +1 902 4681 265 CYPRUS Wärtsilä Corporation Lordos River Beach. . Office Room 1929. . . . . . . . . 164 Akerley Boulevard. Sai Tso Wan Road. . . . 6054. . . 14/F. +86 21 5877 8800 Fax: . . . . Ltd Unit A. . . . . Hong Kong Tel: . . . +56 41 420 229 Navy Business Wärtsilä Lips Defence S. . . . . . .Box 52471. . . Talcahuano Tel: . . . Local 71 Conchalí. . . . . . . . . . . France Tel: . . . 4064 Limassol Tel: . . . . . . . Italy Tel: . . . . . . . . . . . . . . . . . . +55 21 3878 8902 CANADA Wärtsilä Canada Inc. . . . . . . +86 20 8486 6241 Fax: . . . FIN-00531 Helsinki. . . . . . . . . +39 040 319 5000 Fax: . . . 44275 Nantes Cedex 2. . . Trieste. . . . . . .C. . +357 5 812 195 94 . . W. . . . . . No. Dalian 116001 Tel: . . . +61 89 377 33 37 Fax: . . . . +61 2 9672 8585 Wärtsilä Australia Pty Ltd 109 Broadway. . . . World Plaza 855 Pu Dong Nan Lu Shanghai 200120 Tel: . . 123 Changjiang Road. +86 20 8486 6240 Wärtsilä Dalian Repr. . . .A. . . +56 41 421 561 Fax: . . . . . . . . . .Wärtsilä Ship Power worldwide Headquarters Wärtsilä Corporation P. . . Taipei Hsieng 235 Taiwan R. . . . . . . . . . . . 3 Boulevard de la Loire BP 97511. . 354 20910-060 . . . . . Autopista 5980. . +86 411 252 9799 Fax: . . +61 2 9672 8200 Fax: . . +39 040 319 5301 CHINA Wärtsilä China Ltd TYTL 108 RP. . . +852 2529 9488 Wärtsilä Engine (Shanghai) Co. +33 2 40411602 Fax: . . . . . .O. . . . . . . . . . . . . .O. Guaranteed Processing Zone. . . . . . . . . . . . . . . . . . . . . . . . . Rua São Luiz Gonzaga. +358 10 709 0000 Fax: . .Box 196. . 186 Jian Yi Road Chung Ho City. . +1 902 4681 264 Fax: . . . . +86 21 5877 1619 Wärtsilä Panyu Service Station Lian Hua Shan. 25 Akti Miaouli 185 35 Piraeus. . . . . Mumbai . . . . +33 1 64 24 90 04 Fax: . . . . . . . . . . . +358 10 709 4166 GREECE Wärtsilä Greece S. . . . . .Societe Marine de Service Allée Caumartin. . . Kent. +302 10 411 7902 ICELAND Vélar og Skip ehf. . . . . . P. . . . . . . . . . 1st floor DK-1609 Copenhagen V Tel: . . . . . . . . . . . . . P. . . . . . . . . .400 021 Tel: . D-21107 Hamburg Tel: . . . . . . . . +62 21 893 76 54 Fax: .O. +358 10 709 0000 Fax: . . . . +353 1 462 6722 95 . . .DENMARK Wärtsilä Danmark A/S Axeltorv 8. . . . . . . +358 10 709 0000 Fax: . . + 33 1 64 24 96 46 INDONESIA P. . . . . Jawa Barat Tel: . .Box 50. +44 1224 871 166 Fax: . . . . . . . . . . . . . . . . . . . . . . . . . . +358 6 317 1906 Wärtsilä Finland Oy Tarhaajantie 2. P. . +45 33 454 130 GREAT BRITAIN Wärtsilä UK Ltd Riverside Business Centre.O. . . . +44 23 92400121 Fax: . . Jababeka XVI. . . . . . . . . . . Tonbridge. . .A. . . . . . . . . +91 22 2281 5601 Fax: . . . . . . . . +354 56 200 95 Fax: . . . . . . . . Kav. . . . . . . . . . . 21200 Raisio Tel: . . . . . . . . +33 5 46 30 3119 SMS . . . Greece Tel: . . Hólmaslóð 4. . +358 10 709 0000 Fax: . . . . . . Free Press House Nariman Point. . . . . TN9 1EP Tel: . +44 1732 783571 Fax: . . . . +358 10 709 0000 Fax: . +358 2 234 2419 Wärtsilä Finland Oy Solutions Department Purokatu 3. . . . .P. . . +44 1224 871 188 Wärtsilä Propulsion UK 4 Marples Way. . +302 10 413 5450 Fax: . . . +91 22 2284 0427 FRANCE Wärtsilä France SAS La Combe. 101 Reykjavik Tel: .O. . . . . +62 21 893 76 61 GERMANY Wärtsilä Deutschland GmbH Schlenzigstrasse 6. . . . . . . . . +354 56 210 95 INDIA Wärtsilä India Ltd 76. . . . . +44 1732 362626 Wärtsilä UK Ltd Girdleness Trading Estate. . . . . . . . . . . . . . +49 40 751 900 Fax: . . . . . . . . Bolte Postale 113 17700 Surgeres Tel: . . Hants PO9 1NX Tel: . . . . . . . . . +45 33 454 133 Fax: . .Box 244 FIN-65101 Vaasa Tel: . . . . . B. . . W-28 Bekasi 17530. . .T. +358 6 356 7188 Wärtsilä Finland Oy Stålarminkatu 45. +33 5 46 30 3118 Fax: . . . . . . . . . . . +44 23 92492470 FINLAND Wärtsilä Finland Oy Järvikatu 2-4. . . . . . . . . . . River Lawn Road. . . . . . . . . . . . . . +353 1 462 6700 Fax: . . . Havant. . . . . . . . . . . . . . Wärtsilä Indonesia Cikarang Industrial Estate JL. . . . . 5 F-77250 Villecerf Tel: . . FIN-20811 Turku Tel: . . . . . . . . . . . . . . . . . Wellington Road Aberdeen AB11 8DG Tel: . . . . . . +49 40 7519 0190 IRELAND Wärtsilä Ireland Ltd 54 Broomhill Drive Tallaght Dublin 24 Tel: . . .Box 252 FIN-65101 Vaasa Tel: . . . . . . . . + 81 3 5159 8710 Japan Marine Technologies Ltd 14-37. . . . . +39 010 373 0779 Fax: . Port Wellington P. Jung-Gu. . . . +82 55 267 4270 Fax: . . . . . Box 10608. P. . Kyungnam 641-420 Tel: . .ITALY Wärtsilä Italia S. . . . . . . + 82 51 731 4110 Lipsstraat 52. . . . . / Quality Management Dept. . . +82 55 261 8658 Japan Marine Technologies Ltd JAPAN Wärtsilä Japan Co. . +82 52 234 5916 Wärtsilä HSD Site Office C/O HSD Engine Co.r. . . . . Minatojima Chuo-ku. . . . . . . . 1780-9. . . . . . . . . . .l. I-16147 Genova Tel: . . +81 78 304 7501 Fax: . . . +82 52 230 7437 Fax: . +31 45 5218835 96 . Trieste Tel: . . . . Chuo-ku Tokyo 104-0031 Tel: . +64 4 473 0831 THE NETHERLANDS Wärtsilä Nederland B. . +82 51 462 2666 Fax: . . . . . . 7th floor. . +39 040 319 5728 Wärtsilä Navim Diesel S. . . . . San Dorligo della Valle. +81 76 451 3161 Japan Marine Technologies Ltd 3rd Floor Fukken Building 5-1-21 Kitanagasa-Dori. . . . . +81 78 303 6171 Japan Marine Technologies Ltd 5th Floor.Box 193. . . Port of Wellington Authority Complex. . . . . 6-7-2. . . . . Mukaishinjyo-Machi Toyama 930-0916 Tel: . . . . . . Cheonha-Dong. . . . . . +81 3 3564 1736 Wärtsilä Japan Co. . . . . 5150 BB Drunen Tel: . . Via Carrara 24-26. . . . . . . . . . . . . Dong-Ku Ulsan 682-792 Tel: . . . . Haeundae-gu Busan 612-010 Tel: . . .A. . . . . +64 4 473 0830 Fax: . . Engine & Machinery Div. . . . . . .V. . 6430 AD Hoensbroek Tel: . . . . . . . . +39 010 373 0757 Wärtsilä Hyundai Site Office C/O Hyundai Heavy Industries Ltd. . . . . 69-3. . . . . . . 4-GA. . . . Changwon-city. . . . . . .V. Jungang-Dong. . . .O. . . Shed 29. . . . . . . . . . . . . . . . . . Kobe 650-0045 Tel: . . . . . +81 78 341 5624 2nd Floor Samyang Buidling No. . . . . . +81 76 451 3150 Fax: . . . . . . .O. Boulevard de la Résistance Casablanca 21700 Tel: . . . . . . . . . . . . . . Hinemoa Street. . . . . +31 38 4253 352 Wärtsilä Propulsion Netherlands B. . +31 45 5217070 Fax: . . . . . . . . . . . . . . . . . . . . . . . . . . +212 2 2306 675 NEW ZEALAND Wärtsilä New Zealand Pty Ltd. . . . . . . . . . . Box 1375 Tel: . . . . . . . Ltd. . 1. +31 416 388115 Fax: . . NTC Building 1-11-2 Kyobashi. . . 8000 GB Zwolle Tel: . . . . Ltd. . .O. . Sinchon-dong. . . . . . . . . . NTC Building 1-11-2 Kyobashi. 85-8. . . . . . . +31 38 4253 253 Fax: . . . . . . . .V.. . . Box 6. +82 51 731 6950 Fax: . . . +39 040 319 5000 Fax: . . . . Pusan Tel: . . . . . . . Jung-dong. . . + 81 3 5159 8700 Fax: . . . . Engine Q/M Dept. . . . . . . . Ltd 5th Floor. . KOREA Wärtsilä Korea Ltd.O. . . . .p. . . . . . +81 3 3564 1731 Fax: . +31 416 373162 Wärtsilä Propulsion Heerlen B. . Chuo-ku Tokyo 104-0031 Tel: . . .. . . +82 51 462 2667 MOROCCO Société Salva 93. . . . +81 78 341 0361 Fax: . . 7-Chome. . . . +212 2 2304 038 Fax: . P. P. . . . . . Bagnoli della Rosandra 334 I-34018. . . . . . . . . Woo-Min Bldg. Chuo-Ku Kobe 650-0012 Tel: . . . . . . . . . . . . 81-740 Sopot Tel: .O. . . . . . +65 6264 0802 Wärtsilä Propulsion Singapore Pte Ltd Chuwac Engineering Pte Ltd 11 Pandan Crescent. . . . . . . . z. . . . . . . . . . . . . . . . . . +7 812 118 6330 Wärtsilä Corporation Vladivostok Representative office Svetlanovskaya St. . . 2. . +63 49 5430 381 SINGAPORE Wärtsilä Singapore Pte Ltd. . . . .A. . .A. . . . . +47 53 42 25 01 Wärtsilä Norway A/S Hestehagen 5. . . . . . . . . Apartado 137. . Poligono Industrial Landabaso. . . . +7 4232 26 67 95 PERU Wärtsilä del Perú S. . No 6. . . . . 36 Neptune Str. . . Pasaje Mártir Olaya N° 129 Centro Empresarial José Pardo Torre "A". . 11/25 3-d floor. . s/n. . . +47 53 42 2200 Fax: . . . Cabuyao. . . . . . Diode Street. . . +7 095 937 75 90 Wärtsilä Russia Shvedsky Pereulok. . . . . . . . . . . . . Laguna Tel: . . . . . . . . . . 11 Pandan Crescent. . . . . . . +48 22 550 6173 Wärtsilä Polska Sp. . . +34 94 6170 100 Fax: . +51 1 444 6867 SAUDI ARABIA Wärtsilä Saudi Arabia Ltd Khalid Bin Waleed St. 2901-901 Setúbal Tel: . . . . . .o. . Building 3. . . . . +966 2 650 3882 PHILIPPINES Wärtsilä Philippines Inc. . . . Paardeen Eiland 7405 P. . . . Holter Industriområde N-1440 Drøbak Tel: . . . . . . . . +47 53 42 25 00 Fax: . . . . . . +351 265 719 331 SPAIN Wärtsilä Ibérica S. . . Singapore 128467 Tel: . . . . Oficina 1101 Miraflores. Apartado 135. . . . . . . . . . . +656 264 4003 POLAND Wärtsilä Polska Sp. Jeddah 21451 Tel: .NORWAY Wärtsilä Norway A/S N-5420 Rubbestadneset Tel: . . . +351 21 3915918 Fax: . 109 034 Moscow Tel: . . . Branch Office in Sopot UI. . . . . . . . . . . +966 2 637 6470 Fax: . . . . +47 53 42 28 41 Wärtsilä Propulsion Norway A/S N-5420 Rubbestadneset Tel: . . +27 21 511 1230 Fax: . . . . +34 94 6170 113 97 . . . . . . . . . . . . . . . . . . . . . . . +351 265 719 330 Fax: . . 48370 Bermeo (Viscaya) Tel: . . . . . . . . . . . +48 22 550 6172 Fax: . . . . +27 21 511 1412 PORTUGAL Repropel Lda Estaleiro da Mitrena. . . . . . . . . Singapore 128467 Tel: . . . . . . +351 21 3915924 RUSSIA Wärtsilä Russia Sechenovsky Pereulok. . . . . . . . . Conde de Obidos. . . . . . . . +48 58 345 23 44 Fax: . . . 690091 Vladivostok Tel: . . . . .o. . Jakuba Kubickiego 13 02-954 Warszawa Tel: . . +656 265 9122 Fax: . . . . RU-191186 St. +7 4232 26 67 95 Fax: . . . . . . . . . . . . . . . . . . . . . . . . +51 1 241 7030 Fax: . . . 6. . +7 095 937 75 89 Fax: . . . . . . . . . . . . . Petersburg Tel: . . Sharafiyah. . . . . . . . . . . . . . . . . . . +48 58 341 67 44 SOUTH AFRICA Wärtsilä South Africa (Pty) Ltd. .Box 356. . . +7 812 118 6331 Fax: . Paardeen Eiland 7420 Tel: . . Light Industry and Science Park Bo.o. . . . Lima-18 Tel: . . . . . office 5. Ul. . . . . . . . . . . . . . . . . . . . . . . . 1399-036 Lisbon Tel: . Diezmo. . . . Piso 11. .Polna 58/60. . . . . +65 6265 9122 Fax: . . . . +47 53 42 2201 Repropel Lda Estaleiro da Rocha. z o. . . . . . +47 53 42 28 40 Fax: . +63 49 5430 382 Fax: . O. . . . . . . . . . . . Inc. . . . . . . . +84 8 7221 822 SWITZERLAND Wärtsilä Switzerland Ltd Zürcherstrasse 12. . . . . . . +1 360 779 5927 CROATIA “3. . . +385 51 261 127 ITALY Isotta Fraschini Motori S. . . . Louisiana 70058 Tel: . . .p. . . . . +81 3 3257 8220 98 . . . . . . . . +41 52 262 49 22 Fax: . . Ho Chi Minh City Tel: . . Maj” Engines & Cranes Liburnijska 3. . + 1 757 558 3627 Wärtsilä Lips Inc. Via F. . . . . . . . . . . Süleyman Seba Cad. . +971 48 838 704 U. .O. . +86 717 646 9752 China Steel Machinery Corporation 3. . . . . . . . . . . . . . . 77032-5100 Texas Tel: . . . . . 313 MacArthur Ave. +39 080 5311 009 JAPAN Diesel United Ltd (Head Office) 8th Floor. . . . . +886-7-8033515 TURKEY Wärtsilä-Enpa Dis Ticaret A. . . . . . . de Blasio . . . . . . +1 360 779 1444 Fax: . . . +90 212 327 1535 UNITED ARAB EMIRATES Wärtsilä Gulf FZE P. . Prime Kanda Building 8. 80610 Besiktas Istanbul Tel: . . .S. . . . . . . . . Houston. . . . . +1 504 341 0426 Wärtsilä North America Inc. . . Tai-Chi Road. . . . . . . . . . . . Taiwan R. . . . . . . + 1 757 558 3625 Fax: . . . . . . . . +886-7-8020111 Fax: . . . . . . . Poulsbo Washington 98370 . . Wärtsilä North America. . . . . . . . . . . 51000 Rijeka Tel: . . +84 8 7221 819 Fax: . . . . . . . . . . +971 48 838 979 Fax: . . . . . . . . . . . . . . . . . . . . . . Xiling 2 Road. . . . . . . . . . . . . . . 443 002 Yichang Tel: . . .A. . . . +385 51 262 700 Fax: .O. . . +86 411 441 7273 Fax: . Box 414 CH-8401 Winterthur Tel: . . . . . . Kanda Suda-cho Chiyoda-ku. +90 212 327 1530 Fax: . . . PO Box 197. . . . . . . . . No 92 Besiktas Plaza A Blok Zemin Kat.SWEDEN Wärtsilä Sweden AB Götaverksgatan 10 P. . . . . Thu Duc District. . Dubai Tel: . . . . . . . . . . . +1 504 341 7201 Fax: . +385 51 262 666 .Box 61494. +86 717 646 8890 Fax: . . . . . . +1 281 233 62 33 Wärtsilä Lips Inc. . +86 21 5871 3222 Fax: . . . . . . . 2-chome. . P. . . . . .1 Hai Fang Street. 116021 Dalian Tel: . . . . . . . . . . . . . . .A. . . . . . . .9435 Tel: . . . . . +1 281 233 62 00 Fax: . +46 31 744 46 70 VIETNAM Wärtsilä Vietnam 19 Nguyen Van Ba Street. . 3617 Koppens Way. . . . 16330 Air Center Boulevard. . . . . . . . Jebel Ali. . 26264 Twelve Trees Lane. +46 31 744 46 00 Fax: . .C. . . +86 21 5846 2023 Dalian Marine Diesel Works (DMD) No. . Box 8006 SE-40277 Gothenburg Tel: .Zona Industriale 70123 Bari Tel: . .S. . . . . . . . . . . . . . . . . . . . . . . . . .O. . . . Tokyo 101-0041 Tel: . . . . Hsiao Kang Kaohsiung 812. . . . . . . 200129 Shanghai Tel: . +81 3 3257 8222 Fax: . . Harvey. +39 080 5345 000 Fax: . . . Chesapeake Virginia 23323 Tel: . . . +41 52 262 07 04 Sulzer engine licensees CHINA Hudong Heavy Machinery Co Ltd (HHM) 2851 Pudong Dadao. Tel: . . . . . +86 411 441 7499 Yichang Marine Diesel Engine Plant (YMD) 93. . . . . . . . . . . . . . . . . . All rights reserved. . . . . . . . . Ltd Engine and Machinery Division #1. Tokyo 100-8315 Tel: . . Marunouchi. . . . . . . . . . . . . . . 28 Czerwca 1956 Nr. . . . +81 3 3217 3320 Fax: . . . +48 61 833 1441 . . . . . . . . . . Korea 641-370 Tel: . . . Kobe 652-8585 Tel: . . . . . . . . . . . . . . . . . . . . . Hitotsubashi 1-chome Chiyoda-ku. . . Tsurumi-Ku Yokohama 230-8611 Tel: . . . . . . . . +48 61 833 0978 Zaklady Urzadzen Technicznych “Zgoda” SA ul. . . . +81 3 3212 9779 For the works of: Mitsubishi Heavy Industries. . +82 55 260 6983 POLAND H. Suminoe-ku Osaka 559-8559 Tel: . +81 968 78 70 36 Hitachi Zosen Corporation (Tokyo Office) Palaceside Building. . . . +82 522 30 7281 . . . . . . . . 1-chome Chiyoda-ku. . . . . . . . . . . . . . . . Dong-ku Ulsan City 682-792 Tel: . +81 78 672 3695 NKK Corporation 1-2. . . . . +81 3 3217 8504 Fax: . . . . Ltd (Kobe Shipyard & Machinery Works) 1-1. . . . . . . . . . . . +81 45 505 7507 Fax: . +48 32 45 72 15 . . . . . . . . . . Cegielski-Poznañ SA (HCP) ul. . . . 99 . . . . . . . . . .For the works of: Diesel United Ltd (Aioi Works) 5292 Aioi. . . . . . . . . . . . . +81 45 505 7624 KOREA Hyundai Heavy Industries Co. Changwon-City Kyungnam. . . . . Aioi City. Hyogo Pref. . . . 678-0041 Tel: . +81 6 6569 0001 Fax: . . . . +48 61 832 1541 . Nanko-kita. . . . . +82 522 30 7282 Fax: . . . . . . . . . . . . . . . . . Wadasaki-Cho Hyogo-ku. . +81 7912 4 2605 Fax: . . . . . . . . . . . . . . 7th Floor 1-1. . . . . . . . . . . . . . . +81 968 78 21 78 Fax: . . . . . . . . Tokyo 100 -8121 Tel: . Wojska Polskiego 66/68 41-603 Swietochlowice Tel: . . . . . . . . . . . . Sinchon-Dong. . . . 2-chome Chiyoda-ku. . . . . . . ©2005 Wärtsilä Corporation. . . . +48 32 45 72 70 Fax: . . . . . . . . . Tokyo 100-8202 Tel: . . 223/229 60-965 Poznañ Tel: . . . . +81 78 672 3791 Fax: . . . . . . . . . . . . . . . . . . . +82 55 260 6001 Fax: . . . . +82 522 30 7424 . . . . . Tamana-gun Kumamoto 859-0193 Tel: . . . . . . Cheonha-dong. . . . . . . . . . 1-chome. . +81 7912 3 3886 Hitachi Zosen Corporation (Head Office) 1-7-89. . . . . +48 61 831 1350 . . +81 3 3212 9164 Fax: . +81 6 6569 0002 For the works of: Hitachi Zosen Diesel & Engineering Corporation Nagasu-machi. . . . . . +48 61 831 2350 Fax: . . . +82 522 30 7427 HSD Engine Co Ltd 69-3. . . . +81 3 3214 8421 For the works of: NKK Corporation 2-1 Suehiro-cho. +48 32 45 72 71 Information in this publication is subject to change without notice. . . . . . . . . . +81 3 3217 8453 Mitsubishi Heavy Industries Ltd (Head Office) 5-1 Marunouchi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2005 Bock´s Office/ Waasa Graphics . We are the only company with a global service network to take complete care of customers’ ship machinery at every lifecycle stage. For more information visit www.Wärtsilä is The Ship Power Supplier for builders. owners and operators of vessels and offshore installations. which specializes in special engineering steels. Wärtsilä is a leading provider of power plants. operation and lifetime care services in decentralized power generation. The Wärtsilä Group includes Imatra Steel.wartsila.com W01.
Report "Wartsila2005"
×
Please fill this form, we will try to respond as soon as possible.
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Copyright © 2025 DOKUMEN.SITE Inc.