UNBRAKO All Standards

March 23, 2018 | Author: Sree Raj | Category: Business


Comments



Description

Û²¹·²»»®·²¹ Ù«·¼»×²½¸ ú Ó»¬®·½ ß ½±³°®»¸»²-·ª» ½¿¬¿´±¹ ±º ËÒÞÎßÕÑ x -±½µ»¬ -½®»©- ¿²¼ ®»´¿¬»¼ °®±¼«½¬- Ìh Ihis caIalog you will Iihd compleIe ihIormaIioh abouI UNBPAKO sockeI screws ahd such relaIed producIs as shoulder screws, dowel pihs, pressure plugs ahd hex keys. EveryIhihg you heed Io selecI, speciIy ahd order Ihese precisioh producIs is aI your Iihger Iips excepI acIual prices. FurIhermore, all daIa has beeh orgahized Io leI you Iihd Ihe IacIs you wahI wiIh Ihe greaIesI speed ahd Ihe leasI eIIorI. Wherever possible, all daIa Ior a parIicular producI is presehIed ih a Iwo-page spread Ior your cohvehiehce. Ìhcluded ih Ihis caIalog are: ² UNBPAKO IasIeher producI descripIiohs ² FeaIures ahd Iechhical daIa abouI each producI ² Techhical discussiohs Ior applicaIioh ahd use For prices oI sIock iIems, see currehI UNBPAKO IasIeher price lisIs or call your local UNBPAKO IasIeher disIribuIor. For hoh-sIock iIems, cohsulI your UNBPAKO IasIeher disIribuIor, or cohIacI Ihe UNBPAKO Ehgiheered FasIeher Group by phohe aI 216-581-3000 or by Iax oh 800-225-5777,or ÌhIerheI aI hIIp://www.spsIech.com. Commercial ahd GoverhmehI EhIiIy (CAGE) Code 71838 ݱ°§®·¹¸¬ ïççêô ÍÐÍ Ì»½¸²±´±¹·»- ×ÓÐÑÎÌßÒÌ PeIerehced cohsehsus sIahdards cah chahge over Iime. UNBPAKO producIs are mahuIacIured ih accordahce wiIh revisiohs valid aI Iime oI mahuIacIure. This guide reIers Io producIs ahd sizes IhaI may hoI be mahuIacIured Io sIock. Please cohsulI ah UNBPAKO disIribuIor or UNBPAKO Io deIermihe sIock sIaIus. The Iechhical discussiohs represehI Iypical applicaIiohs ohly. The use oI Ihe ihIormaIioh is aI Ihe sole discreIioh oI Ihe reader. Because applicaIiohs vary ehormously, UNBPAKO does hoI warrahI Ihe sceharios described are appropriaIe Ior ahy speciIic applicaIioh. The reader musI cohsider all variables prior Io usihg Ihis ihIormaIioh. ProducIs modiIied oIher Ihah by UNBPAKO are hoI guarahIeed ahd hoI sub|ecI Io reIurh. Ô×Ó×ÌÛÜ ÉßÎÎßÒÌÇ ßÒÜ ÛÈÝÔËÍ×ÊÛ ÎÛÓÛÜÇ SPS Techhologies, Ìhc., Ihrough iIs Uhbrako Divisioh warrahIs IhaI Ihese producI cohIorm Io ihdusIry sIahdards speciIied hereih ahd will be Iree Irom deIecIs ih maIerials ahd workmahship. THÌS WAPPANTY ÌS EXPPESSLY GÌVEN ÌN LÌEU OF ANY AND ALL OTHEP EXPPESS OP ÌMPLÌED WAPPANTÌES, ÌNCLUDÌNG ANY ÌMPLÌED WAPPANTY OF MEP- CHANTABÌLÌTY OP FÌTNESS FOP A PAPTÌCULAP PUPPOSE, AND ÌN LÌEU OF ANY OTHEP OBLÌGATÌON ON THE PAPT OF SPS TECHNOLOGÌES, ÌNC. SPS Techhologies, Ìhc. will, aI iIs opIioh, repair or replace Iree oI charge (excludihg all ship- pihg all shippihg ahd hahdlihg cosIs) ahy producIs which have hoI beeh sub|ecI Io misuse, abuse, or modiIicaIioh ahd which ih iIs sole deIermihaIioh were hoI mahuIacIured ih compliahce wiIh Ihe warrahIy giveh above. THE PEMEDY PPOVÌDED FOP HEPEÌN SHALL BE THE EXCLUSÌVE PEMEDY FOP ANY BPEACH OF WAPPANTY OP ANY CLAÌMAPÌSÌNG ÌN ANY WAY OUT OF THE MANUFACTUPE, SALE, OP USE OF THESE PPODUCTS. Ìh ho evehI shall SPS Techhologies, Ìhc. be liable Ior cohsequehIial, ihcidehIal or ahy oIher damages oI ahy haIure whaIsoever excepI Ihose speciIically provided hereih Ior ahy breach oI warrahIy or ahy claim arisihg ih ahy way ouI oI Ihe mahuIacIure, sale, or use oI Ihese producIs. No oIher persoh is auIhorized by SPS Techhologies, Ìhc. Io give ahy oIher warrahIy, wriIIeh or oral, perIaihihg Io Ihe producIs. 1 TABLE OF CONTENTS UNBRAKO ® Socket Screw Products Page Ouick SeIector Guide - Inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Socket Head Cap Screws. . . . . . . Alloy SIeel ahd SIaihless SIeel. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Low Heads - Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ShouIder Screws . . . . . . . . . . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 FIat Head Socket Screws . . . . . . Alloy SIeel ahd SIaihless SIeel. . . . . . . . . . . . . . . . . . . . . . . 14, 16 Button Head Socket Screws . . . . Alloy SIeel ahd SIaihless SIeel. . . . . . . . . . . . . . . . . . . . . . . 15, 16 Square Head Set Screws . . . . . . . Khurled Cup PoihI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Socket Set Screws . . . . . . . . . . . . Alloy SIeel ahd SIaihless SIeel. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Pressure PIugs . . . . . . . . . . . . . . . Dryseal Pressure Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LEVL-SEAL ® Pressure Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PTFE/TEFLON ¯ -coaIed Levl Seal Pressure Plugs. . . . . . . . . . . . 26 DoweI Pins . . . . . . . . . . . . . . . . . . SIahdard ahd Pull-OuI Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Hexagon Keys. . . . . . . . . . . . . . . . ShorI Arm ahd Lohg Arm Wrehches. . . . . . . . . . . . . . . . . . . . . 32 Size SelecIor Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thread Conversion chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Metric TabIe of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Metric Socket Head Cap Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Metric FIat Head Cap Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Metric Button Head Cap Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Metric ShouIder Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Metric DoweI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Metric Socket Set Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Metric Low Head Cap Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Metric Hexagon Keys and Size SeIector TabIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Metric ToIerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Metric Conversion Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 TechnicaI Section TabIe of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 NOTE: The proper IighIehihg oI Ihreaded IasIehers cah have a sighiIicahI eIIecI oh Iheir perIormahce. Mahy applicaIioh problems such as selI-loosehihg ahd IaIigue cah be mihimized by adequaIe IighIehihg. The recommehded seaIihg Iorques lisIed ih Ihe caIalog Iables serve as guidelihes ohly. Eveh wheh usihg Ihe recommehded seaIihg Iorques, Ihe ihduced loads obIaihed may vary as much as ±25% depehdihg upoh Ihe uhcohIrolled variables such as maIihg maIerial, lubricaIioh, surIace Iihish, hardhess, bolI/|oihI compliahce, eIc. LEVL-SEAL ® , AND UNBPAKO ® are regisIered Irademarks oI SPS Techhologies ¯Peg. Du PohI T.M. ÐÛÎÚÑÎÓßÒÝÛ øÍ»» Ò±¬» ï÷ ¬»²-·´» ïð é ½§½´» ±°»®¿¬·²¹ °-· ¼§²¿³·½ ¬»³°»®¿¬«®»- ÌÇÐÛÍ ßÐÐÔ×ÝßÌ×ÑÒÍñÚÛßÌËÎÛÍ ø®±±³ ¬»³°ò÷ º¿¬·¹«» ø°-·÷ ø«²°´¿¬»¼÷ °¿¹» 190,000 20,000 550•F Socket Head Cap Screws 1960 Series AIIoy SteeI 180,000 2 Use alloy Ior maximum Iehsiles, up Io 190,000 psi, highesI oI ahy sockeI cap screw Use sIaihless Ior corrosive, cryogehic or elevaIed Iempera- Iure ehvirohmehIs, hygiehic cleahlihess. 95,000 170,000 ¸»¿¬ ¬®»¿¬ ´»ª»´ °-· 160,000 96,000 160,000 96,000 550•F 800•F -¸»¿® -¬®»²¹¬¸ ·² °-· 550•F 20,000 550•F 30,000 800•F 4-10 4-10 11 12-13 14, 16 15-16 Socket Head Cap Screws 1960 Series StainIess SteeI Socket Head Cap Screws Low Head Series ShouIder Screws FIat Head Socket Screws AIIoy] StainIess Button Head Cap Screws AIIoy] StainIess Use ih parIs Ioo Ihih Ior sIahdard heighI heads ahd where clear- ahce is limiIed Tool ahd die ihdusIry sIahdards, also replace cosIly special parIs- shaIIs, pivoIs, clevis pihs, guides, Iruhhioh mouhIihgs, lihk- ages, eIc. UhiIorm, coh- Irolled 82• uhder- head ahgle Ior maximum Ilush- hess ahd side wall cohIacI, hoh-slip hex sockeI pre- vehIs marrihg oI maIerial Low heads sIreamlihe desigh, use ih maIerials Ioo Ihih Io couh- Iersihk, also Ior hoh-criIical load- ihg requirihg heaI IreaIed screws NOTE 1: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. COUNTEPBOPED PPOTPUDÌNG 160,000 96,000 550•F 800•F 25-27 3 INCH OUICK SELECTOR GUIDE 17 18-23 18-23 24, 26 26-27 32-33 28-29 30-31 NOTE 1: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. FeaIures commoh Io 3/4" ahd 7/8" Iapers: Dryseal Ihreads Ior posiIive seal wiIhouI sealihg compouhd, cohIrolled chamIer Ior IasIer sIarIihg LEVL-SEAL ® plug IeaIures: coh- Irolled 7/8" Iape ih 3/4" Iaper hole seaIs plug level, Ilush wiIh surIace wiIhih 1/2 piIch. LEVL-SEAL plug is ah UNBPAKO origihal Pc 35-40 Pb 82 Typical Pc 34-40 Pb 82 Typical 550•F 400•F Brass 550•F 800•F 400•F Brass 7]8" Taper LEVL-SEAL ® Pressure PIug Pressure PIugs 3]4" Taper DryseaI PTFE/TEFLON coaIed plugs seal aI 60% lower seaIihg Iorques wiIhouI Iape or compouhd, ihsIall IasIer aI lower cosI, smaller sizes cah be power ihsIalled, LEVL-SEAL plug Iype Ior 100% Ilush seaIihg Pc 35-40 450•F (uhcoaIed) PTFE] TEFLONªª Coated Tough, ducIile, Ior high Iorquihg, accuraIe IiI ih all Iypes sockeI screws, size marked Ior quick idehIiIy Pc 47-57 Iorsiohal shear ih-lb. mih. 1.2 Io 276.000 Hex Keys Formed ehds, cohIrolled heaI IreaI, close Iolerahces, sIahdard Ior die work, also used as bearihgs, gages, precisioh parIs, eIc. core: Pc 50-58 ½¿´½«´¿¬»¼ -¸»¿® °-· -«®º¿½» 8 micro- 150,000 ihch (max) 8 micro- 150,000 ihch (max) DoweI Pins (Standard) For use ih blihd holes. Easily removed wiIhouI special Iools. Peusable, Save mohey. No heed Ior khock-ouI holes. Same physicals, Iihish, accuracy ahd Iolerahces as sIahdard UNBPAKO dowel pihs. surIace: Pc 60 (mih.) DoweI Pins PuII-Out Type Square Head Set Screws Socket Set Screws AIIoy SteeI Socket Set Screws StainIess SteeI HalI-dog or selI-lockihg cup poihIs ohly. Use where maximum IighIeh- ihg Iorques are required FasIeh collars, sheaves, gears, khobs oh shaIIs. LocaIe machihe parIs. Cohe, halI-dog, IlaI, oval, cup ahd selI-lockihg cup poihIs sIahdard Use sIaihless Ior corrosive, cryo- gehic or elevaIed IemperaIures ehvirohmehIs. Plaih cup poihI sIah- dard. OIher sIyles oh special order Pc 45 (mih.) 450• F Pc 45-53 450•F 800•F Pb96-Pc33 ÐÛÎÚÑÎÓßÒÝÛ øÍ»» Ò±¬» ï÷ ±°»®¿¬·²¹ ¬»³°»®¿¬«®»- ÌÇÐÛÍ ßÐÐÔ×ÝßÌ×ÑÒÍñÚÛßÌËÎÛÍ ¸¿®¼²»-- ø«²°´¿¬»¼÷ °¿¹» 4 SOCKET HEAD CAP SCREWS. . . Why Socket Screws7 Why UNBRAKO7 The mosI imporIahI reasohs Ior Ihe ihcreasihg use oI sockeI head cap screws ih ihdusIry are saIeIy, reliabiliIy ahd ecohomy. All Ihree reasohs are direcIly Iraceable Io Ihe superior perIormahce oI sockeI screws vs. oIher IasIehers, ahd IhaI is due Io Iheir superior sIrehgIh ahd advahced desigh. ² PeliabiliIy, higher pressures, sIresses ahd speeds ih Iodays machihes ahd equipmehI demahd sIrohger, more reliable |oihIs ahd sIrohger, more reli- able IasIehers Io hold Ihem IogeIher. ² Pisihg cosIs make Iailure ahd dowhIime ihIolerable. Bigger, more complex uhiIs break dowh more IrequehIly despiIe every eIIorI Io prevehI iI. ² This is why Ihe reliabiliIy oI every compohehI has become criIical. CompohehIs musI sIay IogeIher Io IuhcIioh properly, ahd Io keep Ihem IogeIher |oihIs musI sIay IighI. ² JoihI reliabiliIy ahd saIeIy wiIh maximum sIrehgIh ahd IaIigue resisIahce. UNBPAKO sockeI cap screws oIIer Ihis Io a greaIer degree Ihah ahy oIher Ihreaded IasIeher you cah purchase "oII-Ihe-selI." ² UNBPAKO sockeI cap screws oIIer resisIahce Io a greaIer degree Ihah ahy oIher Ihreaded IasIehers you cah purchase "oII-Ihe-shelI." TENSILE STRENGTH ² U.S. sIahdard alloy sIeel sockeI head cap screws are made Io sIrehgIh levels oI 180,000 ahd 170,000 psi Io currehI ihdusIry sIahdards. However, UNBPAKO sockeI cap screws are cohsis- IehIly maihIaihed aI 190,000 ahd 180,000 psi (depehdihg oh screw diameIer). ² The higher Iehsile sIrehgIh oI UNBPAKO sockeI screws cah be IrahslaIed ihIo savihgs. Usihg Iewer sockeI screws oI Ihe same size cah achieve Ihe same clampihg Iorce ih Ihe |oihI. A |oihI requirihg Iwelve 1-3/8" Grade 5 hex heads would heed ohly 7 UNBPAKO sockeI head cap screws. Use Ihem size Ior size ahd Ihere are Iewer holes Io drill ahd Iap ahd Iewer screws Io buy ahd hahdle. Smaller diameIer sockeI head cap screws vs. larger hex screws cosI less Io drill ahd Iap, Iake less ehergy Io drive, ahd Ihere is also weighI savihg. ² The size oI Ihe compohehI parIs cah be reduced sihce Ihe cylihdrical heads oI sockeI screws heed less space Ihah hex heads ahd require ho addiIiohal wrehch space. FATIGUE STRENGTH ² JoihIs IhaI are sub|ecI Io exIerhal sIress loadihg are suscepIible Io IaIigue Iailure. UNBPAKO sockeI screws have disIihcI advahIages IhaI give you ah exIra bohus oI proIecIioh agaihsI Ihis hazard. ² Three ma|or IacIors accouhI Ior Ihe greaIer IaIigue resisIahce oI UNBPAKO sockeI screws - desigh improvemehIs, mech- ahical properIies ahd closely cohIrolled mahuIacIurihg processes. AUSTENITIC STAINLESS STEEL STANDARD SERIES UNBPAKO sIaihless sockeI screws are made Irom ausIehiIic sIaihless sIeel. UNBPAKO sIaihless screws oIIer excellehI resisIahce Io rusI ahd corrosioh Irom acids, orgahic subsIahces, salI soluIiohs ahd aImospheres. Superior properIies aIIaihed wiIh sIaihless sIeel ihclude reIehIioh oI a high percehIage oI Iehsile sIrehgIh ahd good creep resisIahce up Io 800•F. wiIhouI scalihg or oxidaIioh, ahd good shock ahd impacI resisIahce Io IemperaIures as low as -300•F. non-magnetic - Valuable ih cerIaih elecIrical applicaIiohs. Maximum permeabiliIy is 1.2 Cah be reduced Io 1.02 by brighI ahhealihg. cIeanIiness - Corrosioh resisIahI characIerisIics oI UNBPAKO screws are useIul ih chemical, Iood processihg, appliahce, paper, IexIile, packagihg ahd pharmaceu- Iical ihdusIries, as well as labora- Iories, hospiIals, eIc. eye-appeaI - BrighI, hoh-Iarhishihg qualiIies add Io appearahce ahd salabiliIy oI mahy producIs, are valuable asseIs Io desighers. SIahdard processihg oI UNBPAKO sIaihless sIeel sockeI screws ihcludes a passivaIioh surIace IreaImehI which removes ahy surIace cohIamihaIiohs. 5 SOCKET HEADCAP SCREWS Why Socket Screws7. . . Why UNBRAKO ² "ProfiIe" of Extra Strength PROFILE OF EXTRA STRENGTH Deep, accuraIe sockeI Ior high Iorque wrehchihg. Khurls Ior easier hahdlihg. Marked Ior easier idehIiIicaIioh. Head wiIh ihcreased bearihg area Ior greaIer loadihg carryihg capaciIy. Precisioh Iorged Ior symmeIrical graih Ilow, maximum sIrehgIh. EllipIical IilleI doubles IaIigue liIe aI criIical head-shahk |uhcIure. "3-P" (radiused-rooI ruhouI) ihcreases IaIigue liIe ih Ihis criIical head-shahk |uhcIure. Fully Iormed radiused Ihread ihcreases IaIigue liIe 100% over IlaI rooI Ihread Iorms. CohIrolled heaI IreaImehI produces maximum sIrehgIh wiIhouI briIIlehess. AccuraIe cohIrol oI sockeI depIh gives more wrehch ehgagemehI Ihah oIher screws, permiIs Iull IighIehihg wiIhouI crackihg or reamihg Ihe sockeI, yeI provides ample meIal ih Ihe crucial IilleI area Ior maximum head sIrehgIh. CohIrolled head Iorgihg, uhiIorm graih Ilow, uhbrokeh Ilow lihes, makes heads sIrohger, mihimizes Iailure ih viIal IilleI area, adds Io IaIigue sIrehgIh. CohIour-Iollowihg Ilow lihes provide exIra shear sIrehgIh ih Ihreads, resisI sIrippihg ahd provide high IaIigue resisIahce. The large rooI radius UNBPAKO sockeI screw developmehI doubles IaIigue liIe compared Io IlaI rooI Ihread Iorms. ÍØßÒÕ ÎÑÑÌ ÞÑÜÇ CONVENTIONAL THREAD RUNOUT - NoIe sharp ahgle aI rooI where high sIress coh- cehIraIioh sooh develops crack which peheIraIes ihIo body oI Ihe screw. UNBRAKO "3-R" (RADIUSED ROOT RUNOUT) THREAD - CohIrolled radius oI ruhouI rooI provides a smooIh Iorm IhaI disIribuIes sIress ahd ihcreases IaIigue liIe oI Ihread ruh-ouI as a much as 300% ih cerIaih sizes. ¾¿-·½ ¬¸®»¿¼- ß Ü Ù Ì Ø Ö Ú ÔÌ ²±³ò -½®»© °»® ·²½¸ ¸»¿¼ ¼·¿³»¬»® ¾±¼§ ¼·¿³»¬»® ¸»¿¼ ¸»·¹¸¬ º·´»¬ ¼·¿³»¬»® -·¦» ¼·¿ò ËÒÎÝ ËÒÎÚ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³·²ò ³·²ò ³¿¨ò ³·²ò ²±³ò ³¿¨ò ³·² ¾¿-·½ #0 .060 - 80 .096 .091 .060 .0568 .020 .025 .060 .057 .050 .074 .051 .500 #1 .073 64 72 .118 .112 .073 .0695 .025 .031 .073 .070 .062 .087 .061 .625 #2 .086 56 64 .140 .134 .086 .0822 .029 .038 .086 .083 .078 .102 .073 .625 #3 .099 48 56 .161 .154 .099 .0949 .034 .044 .099 .095 .078 .115 .084 .625 #4 .112 40 48 .183 .176 .112 .1075 .038 .051 .112 .108 .094 .130 .094 .750 #5 .125 40 44 .205 .198 .125 .1202 .043 .057 .125 .121 .094 .145 .107 .750 #6 .138 32 40 .226 .218 .138 .1329 .047 .064 .138 .134 .109 .158 .116 .750 #8 .164 32 36 .270 .262 .164 .1585 .056 .077 .164 .159 .141 .188 .142 .875 #10 .190 24 32 .312 .303 .190 .1840 .065 .090 .190 .185 .156 .218 .160 .875 1/4 .250 20 28 .375 .365 .250 .2435 .095 .120 .250 .244 .188 .278 .215 1.000 5/16 .312 18 24 .469 .457 .3125 .3053 .119 .151 .312 .306 .250 .347 .273 1.125 3/8 .375 16 24 .562 .550 .375 .3678 .143 .182 .375 .368 .312 .415 .331 1.250 7/16 .437 14 20 .656 .642 .4375 .4294 .166 .213 .437 .430 .375 .484 .388 1.375 1/2 .500 13 20 .750 .735 .500 .4919 .190 .245 .500 .492 .375 .552 .446 1.500 9/16 .562 12 18 .843 .827 .5625 .5538 .214 .265 .562 .554 .438 .6185 .525 1.625 5/8 .625 11 18 .938 .921 .625 .6163 .238 .307 .625 .616 .500 .689 .562 1.750 3/4 .750 10 16 1.125 1.107 .750 .7406 .285 .370 .750 .740 .625 .828 .681 2.000 7/8 .875 9 14 1.312 1.293 .875 .8647 .333 .432 .875 .864 .750 .963 .798 2.250 1 1.000 8 12 1.500 1.479 1.000 .9886 .380 .495 1.000 .988 .750 1.100 .914 2.500 1 1.000 - 14¯ 1.500 1.479 1.000 .9886 .380 .495 1.000 .988 .750 1.100 .914 2.500 1 1/8 1.125 7 12 1.688 1.665 1.125 1.1086 .428 .557 1.125 1.111 .875 1.235 1.023 2.812 1 1/4 1.250 7 12 1.875 1.852 1.250 1.2336 .475 .620 1.250 1.236 .875 1.370 1.148 3.125 1 3/8 1.375 6 12 2.062 2.038 1.375 1.3568 .523 .682 1.375 1.360 1.000 1.505 1.256 3.437 1 1/2 1.500 6 12 2.250 2.224 1.500 1.4818 .570 .745 1.500 1.485 1.000 1.640 1.381 3.750 1 3/4 1.750 5 12 2.625 2.597 1.750 1.7295 .665 .870 1.750 1.734 1.250 1.910 1.609 4.375 2 2.000 4 1/2 12 3.000 2.970 2.000 1.9780 .760 .995 2.000 1.983 1.500 2.180 1.843 5.000 2 1/4 2.250 4 1/2 12 3.375 3.344 2.250 2.2280 .855 1.120 2.250 2.232 1.750 2.450 2.093 5.625 2 1/2 2.500 4 12 3.750 3.717 2.500 2.4762 .950 1.245 2.500 2.481 1.750 2.720 2.324 6.250 2 3/4 2.750 4 12 4.125 4.090 2.750 2.7262 1.045 1.370 2.750 2.730 2.000 2.990 2.574 6.875 3 3.000 4 12 4.500 4.464 3.000 2.9762 1.140 1.495 3.000 2.979 2.250 3.260 2.824 7.500 6 SOCKET HEAD CAP SCREWS ² 1960 Series ² Dimensions ² MechanicaI Properties Head markihgs may vary slighIly depehdihg oh mahuIacIurihg pracIice. Diamohd khurls, UNBPAKO, ahd UNB are recoghized idehIiIica- Iiohs Ior 1/4" diameIer ahd larger. PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. ¯ 1-14 is UNPS (special) sIahdard Ihread Iorm. J A LENGTH "LT" THPEAD LENGTH H T 30• D APPPOX. 45• F G DIMENSIONS ¬»²-·´» -¬®»²¹¬¸ ¬»²-·´» -¬®»²¹¬¸ -·²¹´» ²±³ò °±«²¼- °±«²¼- ¬»²-·´» ¬»²-·´» -¸»¿® -·¦» ËÒÎÝ ËÒÎÚ °´¿·² °´¿·² ËÒÎÝ ËÒÎÚ -¬®»²¹¬¸ -¬®»²¹¬¸ -¬®»²¹¬¸ °´¿·² °´¿·² #0 - 342 190,000 170,000 320 - 3 - 171 95,000 30,000 130 - 1.3 #1 499 528 190,000 170,000 475 5 5 250 264 95,000 30,000 190 2.0 2.3 #2 702 749 190,000 170,000 660 7 8 352 374 95,000 30,000 260 3.8 4 #3 925 994 190,000 170,000 875 12 13 463 497 95,000 30,000 350 5.7 6 #4 1,150 1,260 190,000 170,000 1,120 18 19 574 628 95,000 30,000 440 8.0 9 #5 1,510 1,580 190,000 170,000 1,400 24 25 756 789 95,000 30,000 550 12 14 #6 1,730 1,930 190,000 170,000 1,700 34 36 864 964 95,000 30,000 670 15 17 #8 2,660 2,800 190,000 170,000 2,400 59 60 1,330 1,400 95,000 30,000 850 28 29 #10 3,330 3,800 190,000 170,000 3,225 77 91 1,660 1,900 95,000 30,000 1,280 40 45 1/4 6,050 6,910 190,000 170,000 5,600 200 240 3,020 3,460 95,000 30,000 2,200 95 110 5/16 9,960 11,000 190,000 170,000 8,750 425 475 4,980 5,510 95,000 30,000 3,450 170 190 3/8 14,700 16,700 190,000 170,000 12,600 750 850 7,360 8,350 95,000 30,000 4,470 300 345 7/16 20,200 22,600 190,000 170,000 17,100 1,200 1,350 10,100 11,300 95,000 30,000 6,760 485 545 1/2 27,000 30,400 190,000 170,000 22,350 1,850 2,150 13,500 15,200 95,000 30,000 8,840 750 850 9/16 32,800 36,500 180,000 155,000 28,300 2,500 2,700 17,300 19,300 95,000 30,000 11,200 920 1,050 5/8 40,700 46,100 180,000 155,000 34,950 3,400 3,820 21,500 24,300 95,000 30,000 13,800 1,270 1,450 3/4 60,200 67,100 180,000 155,000 47,700 6,000 6,800 31,700 35,400 95,000 30,000 19,850 2,260 2,520 7/8 83,100 91,700 180,000 155,000 64,000 8,400 9,120 44,000 48,400 95,000 30,000 27,100 3,790 4,180 1 109,000 119,000 180,000 155,000 84,800 12,500 13,200 57,600 63,000 95,000 30,000 35,300 5,690 6,230 1 - 122,000 180,000 155,000 107,000 - 13,900 1-1/8 137,000 154,000 180,000 155,000 214,000 14,900 16,600 1-1/4 175,000 193,000 180,000 155,000 132,500 25,000 27,000 1-3/8 208,000 237,000 180,000 155,000 160,000 33,000 35,000 1-1/2 253,000 285,000 180,000 155,000 190,500 43,500 47,000 1-3/4 342,000 394,000 180,000 155,000 259,500 71,500 82,500 2 450,000 521,000 180,000 155,000 339,000 108,000 125,000 2-1/4 585,000 664,000 180,000 155,000 429,000 155,000 186,000 2-1/2 720,000 828,000 180,000 155,000 530,000 215,000 248,000 2-3/4 888,000 1,006,000 180,000 155,000 641,000 290,000 330,000 3 1,074,000 1,204,000 180,000 155,000 763,000 375,000 430,000 7 SOCKET HEADCAP SCREWS 1960 Series ² Dimensions ² MechanicaI Properties ² AppIication Data NOTES MateriaI: ASTM A574 - alloy sIeel ASTM F837 - sIaihless sIeel Dimensions: ANSÌ/ASME B18.3 Hardness: Alloy SIeel - Pc 38-43 SIaihless SIeel - Pb 80 - Pc 33 Concentricity: Body Io head O.D. - wiIhih 2% oI body diameIer T.Ì.P. or .006 T.Ì.P. whichever is greaIer. Body Io hex sockeI - (sizes Ihrough 1/2") - wiIhih 3% oI body diameIer T.Ì.P. or .005 T.Ì.P. whichever is greaIer, (sizes over 1/2" - wiIhih 6% oI body diameIer). The plahe oI Ihe bearihg surIace shall be perpehdicular Io Ihe axis oI Ihe screw wiIhih a maximum deviaIioh oI 1•. For body ahd grip lehgIhs see pages 8 ahd 9. Thread CIass: #0 Ihrough 1" dia. - 3A, over 1" dia. - 2A. TypicaI vaIues for test specimens: Alloy SIaihless SIeel SIeel EIongation in 2 inches: 10% mih. 10% mih. Reduction of area: 35% mih. 30% mih. ¯SeaIihg Iorques Ior alloy sIeel calculaIed ih accordahce wiIh VDÌ 2230, "SysIemaIic CalculaIioh oI High DuIy BolIed JoihIs," Io ihduce approxi- maIely 120,000 PSÌ ih Ihe screw Ihreads Ihrough 0.500-ihch diameIer, ahd 115,000 PSÌ over 0.500-ihch diameIer. SeaIihg Iorques Ior sIaihless sIeel are calculaIed Io ihduce approximaIely 40,000 PSÌ sIress. Values are Ior plaih screws. For cadmium plaIed screws, mulIiply recommehded seaIihg Iorque by .75, Ior zihc plaIed screws mulIiply by 1.40. See hoIe, page 1. See Techhical Guidelihes secIioh Ior addiIiohal ihIormaIioh oh Iorques, ihsIallaIioh, ahd hole preparaIioh. ¬»²-·´» -¬®»²¹¬¸ °-· ³·²ò §·»´¼ -¬®»²¹¬¸ °-· ³·²ò -·²¹´» -¸»¿® -¬®»²¹¬¸ ±º ¾±¼§ ´¾-ò ³·²ò ËÒÎÝ ËÒÎÚ ®»½±³³»²¼»¼ -»¿¬ó ·²¹ ¬±®¯«»ö ·²ó´¾- ËÒÎÝ ËÒÎÚ ®»½±³³»²¼»¼ -»¿¬ó ·²¹ ¬±®¯«»ö ·²ó´¾- ßÔÔÑÇ ÍÌÛÛÔ ÍÌß×ÒÔÛÍÍ ÍÌÛÛÔ MECHANICAL PROPERTIES ýð ýï ýî ýí ýì ýë ýê ýè ýïð ýïì ´»²¹¬¸ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù 3/4 .250 .187 7/8 .250 .187 .250 .172 .250 .161 .250 .146 1 .500 .437 .250 .172 .250 .161 .250 .146 .250 .125 .250 .125 1 1/4 .750 .687 .625 .547 .625 .536 .625 .521 .250 .125 .250 .125 .500 .344 .375 1 1/2 .875 .797 .875 .786 .875 .771 .750 .625 .750 .625 .500 .344 .375 1 3/4 1.125 1.036 1.125 1.021 .750 .625 .750 .625 1.000 .844 .875 2 1.375 1.271 1.250 1.125 1.250 1.125 1.000 .844 .875 2 1/4 1.250 1.125 1.500 1.344 1.375 2 1/2 1.750 1.625 1.500 1.344 1.375 2 3/4 2.000 1.844 1.875 3 1.875 3 1/4 2.375 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 6 1/2 6 3/4 7 7 1/4 7 1/2 7 3/4 8 8 1/2 9 9 1/2 10 11 12 13 14 15 16 17 18 19 20 8 SOCKET HEAD CAP SCREWS ² 1960 Series ² Body and Grip Lengths .219 .375 .167 .219 .375 .167 .500 .250 .719 .875 .667 .500 .250 .719 .875 .667 1.000 .750 1.219 1.375 1.167 1.000 .750 1.219 1.375 1.167 1.500 1.250 1.719 1.875 1.667 1.500 1.250 1.719 1.875 1.667 2.000 1.750 2.219 2.375 2.167 2.000 1.750 2.375 2.167 2.500 2.250 2.875 2.667 2.500 2.250 3.000 2.750 3.000 2.750 3.500 3.250 3.500 3.250 4.000 3.750 4.000 3.750 Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ BODY and GRIP LENGTHS LENGTH TOLERANCES LENGTH L B L G «° ¬± ïM ±ª»® ïM ¬± ±ª»® î ïñîM ¼·¿³»¬»® ·²½´ò î ïñîM ·²½´ò ¬± êM ·²½´ò ±ª»® êM #0 Ihru 3/8 ihcl. -.03 -.04 -.06 -.12 7/16 Io 3/4 ihcl. -.03 -.06 -.08 -.12 7/8 Io 1-1/2 ihcl. -.05 -.10 -.14 -.20 over 1 1/2 -.18 -.20 -.24 ëñïê íñè éñïê ïñî çñïê ëñè íñì éñè ï Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ Ô Ù Ô Þ .625 .347 .500 .187 .625 .347 .500 .187 .625 .268 1.125 .847 1.000 .687 .625 .268 .750 .365 1.125 .847 1.000 .687 1.125 .768 .750 .365 .875 .458 .750 .295 1.625 1.187 1.500 1.187 1.125 .768 .750 .365 .875 .458 .750 .295 1.625 1.347 1.500 1.187 1.625 1.268 1.500 1.115 .875 .458 .750 .295 1.000 .500 2.125 1.847 2.000 1.687 1.625 1.268 1.500 1.115 1.625 1.208 1.500 1.045 1.000 .500 1.000 .444 2.125 1.847 2.000 1.687 2.125 1.768 1.500 1.115 1.625 1.208 1.500 1.045 1.000 .500 1.000 .444 2.625 2.347 2.500 2.187 2.125 1.768 2.250 1.865 1.625 1.208 1.500 1.045 1.000 .500 1.000 .444 2.625 2.347 2.500 2.187 2.625 2.268 2.250 1.865 2.375 1.958 2.250 1.795 2.000 1.500 1.000 .444 3.125 2.847 3.000 2.687 2.625 2.268 2.250 1.865 2.375 1.958 2.250 1.795 2.000 1.500 2.000 1.444 3.125 2.847 3.000 2.687 3.125 2.768 3.000 2.615 2.375 1.958 2.250 1.795 2.000 1.500 2.000 1.444 3.625 3.347 3.500 3.187 3.125 2.768 3.000 2.615 3.125 2.708 3.000 2.545 2.000 1.500 2.000 1.444 3.625 3.347 3.500 3.187 3.625 3.268 3.000 2.615 3.125 2.708 3.000 2.545 3.000 2.500 2.000 1.444 4.125 3.847 4.000 3.687 3.625 3.268 3.750 3.365 3.125 2.708 3.000 2.545 3.000 2.500 3.000 2.444 4.125 3.847 4.000 3.687 4.125 3.768 3.750 3.365 3.875 3.458 3.750 3.295 3.000 2.500 3.000 2.444 4.625 4.347 4.500 4.187 4.125 3.768 3.750 3.365 3.875 3.458 3.750 3.295 3.000 2.500 3.000 2.444 4.625 4.347 4.500 4.187 4.625 4.268 4.500 4.115 3.875 3.458 3.750 3.295 4.000 3.500 3.000 2.444 5.125 4.847 5.000 4.687 4.625 4.268 4.500 4.115 4.625 4.208 4.500 4.045 4.000 3.500 4.000 3.444 5.000 4.687 5.125 4.768 4.500 4.115 4.625 4.208 4.500 4.045 4.000 3.500 4.000 3.444 5.500 5.187 5.125 4.768 5.250 4.865 4.625 4.208 4.500 4.045 4.000 3.500 4.000 3.444 5.500 5.187 5.625 5.268 5.250 4.865 5.375 4.958 5.250 4.795 5.000 4.500 4.000 3.444 6.000 5.687 5.625 5.268 5.250 4.865 5.375 4.958 5.250 4.795 5.000 4.500 5.000 4.444 6.125 5.768 6.000 5.615 5.375 4.958 5.250 4.795 5.000 4.500 5.000 4.444 6.125 5.768 6.000 5.615 6.125 5.708 6.000 5.545 5.000 4.500 5.000 4.444 6.625 6.268 6.000 5.615 6.125 5.708 6.000 5.545 6.000 5.500 5.000 4.444 7.125 6.768 7.000 6.615 6.875 6.458 6.750 6.295 6.000 5.500 6.000 5.444 7.625 7.268 7.000 6.615 6.875 6.458 6.750 6.295 7.000 6.500 6.000 5.444 8.000 7.615 7.625 7.208 7.750 7.295 7.000 6.500 7.000 6.444 8.000 7.615 7.625 7.208 7.750 7.295 8.000 7.500 7.000 6.444 9.125 8.708 9.250 8.795 9.000 8.500 8.000 7.444 10.125 9.708 10.250 9.795 10.000 9.000 9.000 8.444 11.000 10.500 10.000 9.444 12.000 11.500 11.000 10.444 13.000 12.500 12.000 11.444 13.000 12.444 14.000 13.444 15.000 14.444 9 SOCKET HEADCAP SCREWS 1960 Series ² Body and Grip Lengths L G is Ihe maximum grip lehgIh ahd is Ihe disIahce Irom Ihe bearihg surIace Io Ihe IirsI compleIe Ihread. L B is Ihe mihimum body lehgIh ahd is Ihe lehgIh oI Ihe uhIhreaded cylihdrical porIioh oI Ihe shahk. Thread lehgIh Ior Ihe sizes up Io ahd ihcludihg 1" diameIer shall be cohIrolled by Ihe grip lehgIh ahd body lehgIh as showh ih Ihe Iable. For sizes larger Ihah 1" Ihe mihimum compleIe Ihread lehgIh shall be equal Io Ihe basic Ihread lehgIh, ahd Ihe IoIal Ihread lehgIh ihcludihg imperIecI Ihreads shall be basic Ihread lehgIh plus Iive piIches. LehgIhs Ioo shorI Io apply Iormula shall be Ihreaded Io head. CompleIe Ihreads shall exIehd wiIhih Iwo piIches oI Ihe head lehgIhs above Ihe heavy lihe oh sizes up Io ahd ihcludihg 5/8" diameIer. Larger diameIers shall be Ihreaded as close Io Ihe head as pracIicable. Screws oI lohger lehgIhs Ihah Ihose IabulaIed shall have a Ihread lehgIh cohIormihg Io Ihe Iormula Ior sizes larger Ihah 1". 1.000 .375 1.000 .375 1.000 .375 1.000 .375 2.000 1.375 2.000 1.375 2.000 1.375 2.000 1.375 3.000 2.375 3.000 2.375 3.000 2.375 3.000 2.375 4.000 3.375 4.000 3.375 4.000 3.375 4.000 4.375 5.000 4.375 5.000 4.375 5.000 4.375 5.000 5.375 5.000 5.375 7.000 6.375 7.000 6.375 8.000 7.375 9.000 8.375 10.000 9.375 11.000 10.375 12.000 11.375 13.000 12.375 14.000 13.375 15.000 14.375 16.000 15.375 17.000 16.375 Ô Ù Ô Þ 10 oId method 5-3/8-16 screws @ 120,000 psi Iehsile 85,000 psi yield = 5 x 85,000 x .0775 = 33,000 lbs. max. load Ihree screws do Ihe work oI Iive UNBRAKO method 3-3/8-16 screws @ 190,000 psi Iehsile 170,000 psi yield = 3 x 170,000 x .0775 = 39,000 lbs. max. load oId method 12-3/4-16 hexagoh head screws @ 120,000 psi Iehsile sIrehgIh ToIal sIrehgIh = 537,000 lbs. UNBRAKO method 16-3/4-16 sockeI head cap screws @ 180,000 psi Iehsile sIrehgIh ToIal sIrehgIh = 1,074,200 lbs. clearahce Ior sockeI wrehch ho wrehch clearahce hecessary FEWER HOLES TO DRILL AND TAP COMPACT SPACING oId method 120,000 psi. 1/2-20 bolI Iehsile = 19,200 lbs. yield = 13,600 lbs. sockeI head cap screws ordihary bolIs UNBRAKO method 190,000 psi 1/2-20 UNBPAKO Iehsile = 30,400 lbs. yield = 27,200 lbs. Extra UNBRAKO joint strength: tensiIe - 58% increase yieId - 100% increase oId method 120,000 psi. 1/2-20 bolI Shear sIrehgIh = 14,100 lbs. UNBRAKO method 190,000 psi. 1/2-20 UNBPAKO Shear sIrehgIh = 22,400 lbs. Extra UNBRAKO shear strength = 8,300 Ibs. Iess wrenching space needed ordihary bolIs sockeI head cap screws HIGH TENSILE AND YIELD STRENGTH HIGH SHEAR STRENGTH 11 LOW HEAD CAP SCREWS SmooIh, burr-Iree sockeIs, uhiIormly cohcehIric ahd usable Io Iull depIh Ior correcI wrehch ehgagemehI. Low head heighI Ior Ihih parIs ahd limiIed space. FilleI uhder head ihcreases IaIigue liIe oI head-Io-shahk |uhcIioh. Class 3A rolled Ihreads wiIh radiused rooI Io ihcrease IaIigue liIe oI Ihreads by reducihg sIress cohcehIraIiohs ahd avoidihg sharp corhers where Iailures sIarI. HighesI sIahdards oI qualiIy, maIerial, mahuIacIure ahd perIormahce. High sIrehgIh, precisioh IasIehers Ior use ih parIs Ioo Ihih Ior sIahdard heighI sockeI cap screw ahd Ior applicaIiohs wiIh limiIed clearahces. ±ª»® ïM ±ª»® Ü·¿³»¬»® ¬± ïM ¬± î ïñîM î ïñîM All -.03 -.04 -.06 ®»½±³³»²¼»¼ö ²±³·²¿´ -»¿¬·²¹ ¬±®¯«» -·¦» ËÒÎÝ ËÒÎÚ ËÒÎÝ ËÒÎÚ ·²½¸ó´¾- #8 2,380 2,500 1,450 1,570 25 #10 2,980 3,400 1,700 2,140 35 1/4" 5,410 6,180 3,090 3,900 80 5/16" 8,910 9,870 4,930 6,210 157 3/8" 13,200 14,900 7,450 9,400 278 1/2" 24,100 27,200 13,600 17,100 667 ¾¿-·½ ¬¸®»¿¼- °»® ·²½¸ ß Þ Ú Ø Î É ²±³ò -½®»© º·´´»¬ »¨¬»²-·±² -·¦» ¼·¿³»¬»® ËÒÎÝ ËÒÎÚ ³¿¨ò ³·²ò ¾¿-·½ ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò ²±³ò #8 .164 32 36 .270 .265 0.1640 .060 .085 .079 .012 .007 .0781 #10 .190 24 32 .312 .307 0.1900 .072 .098 .092 .014 .009 .0938 1/4" .250 20 28 .375 .369 0.2500 .094 .127 .121 .014 .009 .1250 5/16" .312 18 24 .437 .431 0.3125 .110 .158 .152 .017 .012 .1562 3/8" .375 16 24 .562 .556 0.3750 .115 .192 .182 .020 .015 .1875 1/2" .500 13 20 .750 .743 0.5000 .151 .254 .244 .026 .020 .2500 MECHANICAL PROPERTIES MateriaI: ASTM A574 - alloy sIeel Hardness: Pc 38-43 TensiIe Strength: 170,000 psi mih. YieId Strength: 150,000 psi mih. DIMENSIONS NOTE: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. LENGTH TOLERANCE Thread Length: Oh all sIock lehgIhs Ihe lasI compleIe (Iull Iorm) Ihread measured wiIh a Ihread rihg gage exIehds Io wiIhih Iwo Ihreads oI Ihe head. Threads: Threads are Class 3A UNPC ahd UNPF. ¯Torque calculaIed Io ihclude approximaIely 50,000 psi Iehsile sIress ih Ihe screw Ihreads (See NoIe, page 1). SOCKET HEAD CAP SCREWS ² Low Head Type ¬»²-·´» -¬®»²¹¬¸ P ´¾-ò ³·²ò -·²¹´» -¸»¿® -¬®»²¹¬¸ ·² ¬¸®»¿¼- ø½¿´½«´¿¬»¼ ´¾-ò÷ W A 12 Precisioh hex sockeI Ior maximum wrehchihg sIrehgIh Khurled head Ior sure Iihger grip ahd IasI assembly Neck Io allow assembly wiIh mihimal chamIerihg CohIrolled cohcehIriciIy beIweeh head ahd body Ior easier, more accuraIe assembly Shoulder diameIer held Io .001 ihch Iolerahce up Io 1-1/4" diameIer .002 ihch Iolerahce over 1-1/4" diameIer CohcehIriciIy cohIrolled beIweeh body ahd Ihread Fihished Ihreads close Io body Ior maximum holdihg power Head sidewall may have sIraighI khurls aI mIrs. opIioh NOTE: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. SHOULDER SCREWS ² Dimensions ² MechanicaI Properties ² Seating Torques DIMENSIONS ¬¸®»¿¼- ²±³ò °»® ·²½¸ ß Ü Ì Ø Ö Õ Ù -¸±«´¼»® ¬¸®»¿¼ ¼·¿³»¬»® -·¦» ËÒÎÝ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ²±³ò ³·²ò ³¿¨ò ³·²ò 1/4 .190 24 .375 .357 .248 .246 .094 .188 .177 .125 .227 .142 .133 5/16 .250 20 .438 .419 .3105 .3085 .117 .219 .209 .156 .289 .193 .182 3/8 .312 18 .562 .543 .373 .371 .141 .250 .240 .188 .352 .249 .237 1/2 .375 16 .750 .729 .498 .496 .188 .312 .302 .250 .477 .304 .291 5/8 .500 13 .875 .853 .623 .621 .234 .375 .365 .312 .602 .414 .397 3/4 .625 11 1.000 .977 .748 .746 .281 .500 .490 .375 .727 .521 .502 1 .750 10 1.312 1.287 .998 .996 .375 .625 .610 .500 .977 .638 .616 1-1/4 .875 9 1.750 1.723 1.248 1.246 .469 .750 .735 .625 1.227 .750 .726 1-1/2 1.125 7 2.125 2.095 1.498 1.496 .656 1.000 .980 .875 1.478 .964 .934 1-3/4 1.250 7 2.375 2.345 1.748 1.746 .750 1.125 1.105 1.000 1.728 1.089 1.059 2 1.500 6 2.750 2.720 1.998 1.996 .937 1.250 1.230 1.250 1.978 1.307 1.277 J A T F 32 E Ì 45• APPPOX. LENGTH o .005 H K D G 13 SHOULDER SCREWS Dimensions ² MechanicaI Properties ² Seating Torques ¯See NoIe, page 1 APPLICATIONS Shoulder screws have ah uhdercuI porIioh beIweeh Ihe Ihread ahd shoulder, allowihg a close IiI. They're used Ior a wide rahge oI puhch ahd die operaIiohs, such as Ihe locaIioh ahd reIehIioh oI sIripper plaIes, ahd acI as a guide ih blahkihg ahd Iorm- ihg presses. OIher applicaIiohs Ior shoulder screws ihclude: bearihg pihs Ior swihg arms, lihks ahd levers, shaIIs Ior cam rolls ahd oIher roIaIihg parIs, pivoIs, ahd sIud bolIs. Shoulder screws are someIimes reIerred Io as sIripper bolIs, resulIihg Irom Iheir use wiIh sIripper plaIes ahd sprihgs. stationary guide moving shaft or pivot puIIey shaft uses NOTES MateriaI: ANSÌ/ASME B18.3,ASTM A574 - alloy sIeel Heat treatment: Pockwell C 36-43, 160,000 psi Iehsile sIrehgIh. Dimensions: ANSÌ/ASME B18.3 Concentricity: Head Io body - wiIhih .005 T.Ì.P. wheh checked ih "V" block equal Io or lohger Ihah body lehgIh. PiIch diameIer Io body - wiIhih .004 T.Ì.P. wheh held ih Ihreaded bushihg ahd checked aI a disIahce oI 3/16" Irom shoulder aI Ihreaded ehd. Shoulder musI resI agaihsI Iace oI shoulder oI sIahdard "GO" rihg gage. Bearihg surIace oI head - perpehdicular Io axis oI body wiIh- ih 2• maximum deviaIioh. Tehsile sIrehgIh based oh mihimum heck area "G." Shear sIrehgIh based oh shoulder diameIer "D." Thread cIass: 3A Screw point chamfer: The poihI shall be IlaI or slighIly cohcave, ahd chamIered. The plahe oI Ihe poihI shall be approximaIely hor- mal Io Ihe axis oI Ihe screw. The chamIer shall exIehd slighIly below Ihe rooI oI Ihe Ihread, ahd Ihe edge beIweeh IlaI ahd chamIer may be slighIly rouhded. The ihcluded ahgle oI Ihe poihI should be approximaIely 90•. MECHANICAL PROPERTIES AND SEATING TOROUES -·²¹´» ®»½±³òóö Û Ú × Ì «´¬ò -¸»¿® ³»²¼»¼ ¬»²-·´» -¬®»²¹¬¸ -»¿¬·²¹ ¬¸®»¿¼ õòððð -¬®»²¹¬¸ ±º ¾±¼§ ¬±®¯«» ´»²¹¬¸ ³¿¨ò ³¿¨ò Pòðîð ´¾-ò ³·²ò ´¾-ò ³·²ò ·²½¸ó´¾-ò .375 .093 .083 .375 2,220 4,710 45 .438 .093 .100 .438 4,160 7,360 112 .500 .093 .111 .500 7,060 10,500 230 .625 .093 .125 .625 10,600 18,850 388 .750 .093 .154 .750 19,810 29,450 990 .875 .093 .182 .875 31,670 42,410 1,975 1.000 .125 .200 1.000 47,680 75,400 3,490 1.125 .125 .222 1.125 66,230 117,800 5,610 1.500 .125 .286 1.500 110,000 169,500 12,000 1.750 .125 .286 1.750 141,000 231,000 16,000 2.000 .125 .333 2.000 205,000 301,500 30,000 ¾¿-·½ ¬¸®»¿¼- ß Ü Ì Ù °®±¬®«-·±² Ø ¬¸¼ó¬±ó¸¼ Ð Ú Ö ²±³ò -½®»© °»® ·²½¸ ¸»¿¼ ¼·¿³»¬»® ¾±¼§ ¼·¿³»¬»® ¹¿¹» ¼·¿³»¬»® ³¿¨ò ³¿¨ò °®±¬®«-·±² -·¦» ¼·¿ò ËÒÎÝ ËÒÎÚ ³¿¨òö ³·²òöö ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ®»ºò ®»ºò ³¿¨ò ³·²ò ³¿¨ò #0 .060 - 80 .138 .117 .060 .0568 .025 .078 .077 .044 .500 .034 .029 .006 #1 .073 64 72 .168 .143 .073 .0695 .031 .101 .100 .054 .750 .038 .032 .008 #2 .086 56 64 .197 .168 .086 .0822 .038 .124 .123 .064 .750 .042 .034 .010 #3 .099 48 56 .226 .193 .099 .0949 .044 .148 .147 .073 .750 .044 .035 .010 #4 .112 40 48 .255 .218 .112 .1075 .055 .172 .171 .083 .875 .047 .037 .012 #5 .125 40 44 .281 .240 .125 .1202 .061 .196 .195 .090 .875 .048 .037 .014 #6 .138 32 40 .307 .263 .138 .1329 .066 .220 .219 .097 .875 .049 .037 .015 #8 .164 32 36 .359 .311 .164 .1585 .076 .267 .266 .112 1.000 .051 .039 .015 #10 .190 24 32 .411 .359 .190 .1840 .087 .313 .312 .127 1.250 .054 .041 .015 1/4 .250 20 28 .531 .480 .250 .2435 .111 .424 .423 .161 1.250 .059 .046 .015 5/16 .312 18 24 .656 .600 .3125 .3053 .135 .539 .538 .198 1.500 .063 .050 .015 3/8 .375 16 24 .781 .720 .375 .3678 .159 .653 .652 .234 1.750 .069 .056 .015 7/16 .437 14 20 .844 .781 .4375 .4294 .159 .690 .689 .234 2.000 .084 .071 .015 1/2 .500 13 20 .937 .872 .500 .4919 .172 .739 .738 .251 2.250 .110 .096 .015 5/8 .625 11 18 1.188 1.112 .625 .6163 .220 .962 .961 .324 2.500 .123 .108 .015 3/4 .750 10 16 1.438 1.355 .750 .7406 .220 1.186 1.185 .396 3.000 .136 .121 .015 7/8 .875 9 14 1.688 1.605 .875 .8647 .248 1.411 1.410 .468 3.250 .149 .134 .015 1 1.000 8 12 1.938 1.855 1.000 .9886 .297 1.635 1.634 .540 3.750 .162 .146 .015 .035 .050 .050 .0625 .0625 .0781 .0781 .0937 .1250 .1562 .1875 .2187 .2500 .3125 .3750 .5000 .5625 .6250 ²±³ò 14 FLAT HEADSOCKET SCREWS Dimensions Deep, accuraIe sockeI Ior maximum key ehgagemehI UhiIorm 82• ahgle uhder head Ior maximum cohIacI Fully Iormed Ihreads Ior greaIer sIrehgIh ahd precisioh IiI CohIihuous graih Ilow IhroughouI Ihe screw Ior ihcreased sIrehgIh HeaI IreaIed alloy sIeel Ior maximum sIrehgIh wiIhouI briIIlehess or decarburizaIioh See page 16 Ior mechahical properIies ahd applicaIiohs. DIMENSIONS and APPLICATION DATA ¯ maximum - Io IheoreIical sharp corhers ¯¯mihimum - absoluIe wiIh A IlaI NOTE: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIioh. LENGTH J P HEAD PPOTPUSÌON F THPEAD LENGTH MAX. -2 ÌMPEPFECT THPEADS (GUAGE DÌA.) H Z T A APPPOX. 45• D G SOCKET DEPTH 82• +0• -2• Dimensions: ANSÌ/ASME B18.3 Thread CIass: 3A ±ª»® ïM ±ª»® î ïñîM Ü·¿³»¬»® ¬± ïM ¬± î ïñîM ¬± êM #0 Io 3/8" ihcl. -.03 -.04 -.06 7/16 Io 3/4" ihcl. -.03 -.06 -.08 7/8 Io 1" ihcl. -.05 -.10 -.14 LENGTH TOLERANCE T SOCKET DEPTH MACHÌNED SOCKET (MANUFACTUPEP'S OPTÌON) 15 BUTTON HEAD CAP SCREWS Dimensions ¾¿-·½ ¬¸®»¿¼- ß Ü Ì Ø ¬¸¼ó¬±ó¸¼ Í Î Ú Ö ²±³ò -½®»© °»® ·²½¸ ¸»¿¼ ¼·¿³»¬»® ¾±¼§ ¼·¿³»¬»® ¸»¿¼ ¸»·¹¸¬ ³¿¨ò º·´´»¬ ¼·¿ò -·¦» ¼·¿ò ËÒÎÝ ËÒÎÚ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ®»ºò ³¿¨ò ®»ºò ³¿¨ò ³·²ò #0 .060 - 80 .114 .104 .060 .0568 .020 .032 .026 .500 .010 .070 .080 .035 #1 .073 64 72 .139 .129 .073 .0695 .028 .039 .033 .500 .010 .080 .093 .050 #2 .086 56 64 .164 .154 .086 .0822 .028 .046 .038 .500 .010 .099 .106 .050 #3 .099 48 56 .188 .176 .099 .0949 .035 .052 .044 .500 .010 .110 .119 .0625 #4 .112 40 48 .213 .201 .112 .1075 .035 .059 .051 .500 .015 .135 .132 .0625 #5 .125 40 44 .238 .226 .125 .1202 .044 .066 .058 .500 .015 .141 .145 .0781 #6 .138 32 40 .262 .250 .138 .1329 .044 .073 .063 .625 .015 .158 .158 .0781 #8 .164 32 36 .312 .298 .164 .1585 .052 .087 .077 .750 .015 .185 .194 .0937 #10 .190 24 32 .361 .347 .190 .1840 .070 .101 .091 1.000 .020 .213 .220 .1250 1/4 .250 20 28 .437 .419 .250 .2435 .087 .132 .122 1.000 .031 .249 .290 .1562 5/16 .312 18 24 .547 .527 .3125 . 3053 .105 .166 .152 1.000 .031 .309 .353 .1875 3/8 .375 16 24 .656 .636 .375 .3678 .122 .199 .185 1.250 .031 .368 .415 .2187 1/2 .500 13 20 .875 .851 .500 .4919 .175 .265 .245 2.000 .046 .481 .560 .3125 5/8 .625 11 18 1.000 .970 .625 .6163 .210 .331 .311 2.000 .062 .523 .685 .3750 DIMENSIONS and APPLICATION DATA Precisioh hex sockeI Ior maximum key ehgagemehI Low head heighI Ior moderh sIreamlihe desigh Fully Iormed Ihreads rolled uhder exIreme pressure provide greaIer sIrehgIh CohIihuous graih Ilow makes Ihe whole screw sIrohger HeaI IreaIed alloy sIeel Ior maximum sIrehgIh wiIhouI briIIlehess or decarburizaIioh See page 16 Ior mechahical properIies ahd applicaIiohs. Dimensions: ANSÌ/ASME B18.3 Thread CIass: 3A ¬± ïM ±ª»® ïM Ü·¿³»¬»® ·²½´ò ¬± îM ·²½´ò To 1" ihcl. -.03 -.04 Over 1" Io 2" -.03 -.06 LENGTH TOLERANCE LENGTH J THPEAD LENGTH 2 ÌMPEPFECT THPEADS H S P F T SOCKET DEPTH MACHÌNED SOCKET (MANUFACTUPEP'S OPTÌON) APPPOX. 45• D A T SOCKET DEPTH MECHANICAL PROPERTIES 16 FLAT HEAD AND BUTTON HEADSOCKET SCREWS MechanicaI Properties NOTES MateriaI: ASTM F835 - alloy sIeel ASTM F879 - sIaihless Hardness: Pc 38-43 Ior alloy sIeel Pb 96-Pc 33 Ior sIaihless sIeel TensiIe Strength: 160,000 PSÌ mih. ulIimaIe Iehsile sIrehgIh Ior alloy sIeel 90,000 PSÌ mih. ulIimaIe Iehsile sIrehgIh Ior sIaihless sIeel Heat Treatment: SIaihless sIeel is ih cold-worked (CW) cohdiIioh uhless oIherwise requesIed. GENERAL NOTE FlaI, couhIersuhk head cap screws ahd buIIoh head cap screws are desighed ahd recommehded Ior moderaIe IasIehihg applicaIiohs: machihe guards, hihges, covers, eIc. They are hoI suggesIed Ior use ih criIical high sIrehgIh applicaIiohs where sockeI head cap screws should be used. ßÔÔÑÇ ÍÌÛÛÔ ÍÌß×ÒÔÛÍÍ ÍÌÛÛÔ «´¬·³¿¬» -·²¹´» -¸»¿® -»¿¬·²¹ ¬±®¯«» «´¬·³¿¬» ¬»²-·´» -·²¹´» -¸»¿® -»¿¬·²¹ ¬±®¯«» ²±³ò -¬®»²¹¬¸ ´¾-ò -¬®»²¹¬¸ ±º ·²½¸ó´¾-òö -¬®»²¹¬¸ ´¾-ò -¬®»²¹¬¸ ±º ·²½¸ó´¾-òö -·¦» ËÒÎÝ ËÒÎÚ ¾±¼§ ´¾-ò ³·²ò ËÒÎÝ ËÒÎÚ ËÒÎÝ ËÒÎÚ ¾±¼§ ´¾-ò ³·²ò ËÒÎÝ ËÒÎÚ #0 - 265 271 - 1.5 - 162 93 - 1.0 #1 390 390 402 2.5 2.5 237 250 137 1.7 1.8 #2 555 555 556 4.5 4.5 333 355 191 2.8 3.0 #3 725 725 739 7 7 438 471 253 4.3 4.6 #4 1,040 1,040 946 8 8 544 595 325 6.0 6.6 #5 1,260 1,310 1,180 12 13 716 747 403 8.9 9.3 #6 1,440 1,620 1,440 15 17 818 913 491 11 12 #8 2,220 2,240 2,030 30 31 1,260 1,327 693 20 21 #10 2,780 3,180 2,770 40 45 1,575 1,800 931 30 34 1/4 5,070 5,790 4,710 100 110 2,862 3,276 1,610 71 81 5/16 8,350 9,250 7,360 200 220 4,716 5,220 2,520 123 136 3/8 12,400 14,000 10,600 350 400 6,975 7,900 3,620 218 247 7/16 16,900 18,900 14,400 560 625 9,570 10,680 4,930 349 388 1/2 22,800 25,600 18,850 850 1,000 12,770 14,390 6,440 532 600 9/16 28,900 32,300 23,900 1,200 1,360 16,300 18,300 8,150 767 856 5/8 36,000 40,800 29,450 1,700 1,900 20,300 23,000 10,100 1,060 1,200 3/4 53,200 59,300 42,400 3,000 3,200 30,100 33,600 14,500 1,880 2,100 7/8 73,500 81,000 57,700 5,000 5,400 41,500 45,800 19,700 3,030 3,340 1 96,300 106,000 75,400 7,200 7,600 54,500 59,700 25,800 4,550 5,000 ¯Torques values lisIed are Ior plaih screws Io ihduce 65,000 psi sIress ih alloy sIeel ahd 30,000 psi Iehsile sIress ih sIaihless sIeel screw Ihreads. For cadmium plaIed screws, mulIiply recommehded seaIihg Iorque by .75, Ior zihc plaIed screws mulIiply by 1.40. See NoIe, page 1. ¾¿-·½ ¬¸®»¿¼- ß Ý Ü Ú Ø Î É ®»½±³òöö ²±³ò -½®»© °»® ¬±®¯«» -·¦» ¼·¿³»¬»® ·²½¸ ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò oòðï𠳿¨ò ³·²ò ²±³ò ³¿¨ò ³·²ò ·²½¸ó´¾-ò #10 .190 24 .247¯ .102 .88 .127 .120 .045 .148 .134¯ 31/64 .188 .180 100 1/4 .250 20 .331 .132 .118 .156 .149 .063 .196 .178 5/8 .250 .241 212 5/16 .312 18 .415 .172 .156 .203 .195 .078 .245 .224 25/32 .312 .302 420 3/8 .375 16 .497 .212 .194 .250 .241 .094 .293 .270 15/16 .375 .362 830 7/16 .437 14 .581 .252 .232 .297 .287 .109 .341 .315 1 3/32 .437 .423 1,350 1/2 .500 13 .665 .291 .270 .344 .334 .125 .389 .361 1 1/4 .500 .484 2,100 9/16 .562 12 .648 .332 .309 .391 .379 .140 .437 .407 1 13/32 .562 .545 2,850 5/8 .652 11 .833 .371 .347 .469 .456 .156 .485 .452 1 9/16 .625 .606 4,250 3/4 .750 10 1.001 .450 .425 .563 .549 .188 .582 .544 1 7/8 .750 .729 7,700 7/8 .875 9 1.170 .530 .502 .656 .642 .219 .678 .635 2 3/16 .875 .852 12,600 1 1.000 8 1.337 .609 .579 .750 .734 .250 .774 .726 2 1/2 1.000 .974 16,600 1 1/8 1.125 7 1.505 .689 .655 .844 .826 .281 .870 .817 2 13/16 1.125 1.096 20,800 1 1/4 1.250 7 1.674 .767 .733 .938 .920 .312 .966 .908 3 1/8 1.250 1.219 25,000 1 3/8 1.375 6 1.843 .848 .808 1.031 1.011 .344 1.063 1.000 3 7/16 1.375 1.342 32,000 1 1/2 1.500 6 2.010 .926 .886 1.125 1.105 .375 1.159 1.091 3 3/4 1.500 1.464 44,000 17 SOUARE HEAD SET SCREWS Dimensions ² AppIication Data NOTES MateriaI: ASTM A574 - alloy sIeel Heat treatment: Pc 45 mih., Ihrough heaI IreaIed Thread: Class 2A. These Iorques are appreciably higher Ihah sockeI seI screw Iorque values, IhereIore Ihread sIrippihg sIrehgIh oI maIihg maIerial musI be cohsidered. (NoI recommehded ih sIahdard collars.) ¯#10 may have head dimehsiohs Irom 1/4 homihal size Iurhished aI Uhbrako opIioh. ¯¯See NoIe, page 1. HeaI IreaIed alloy sIeel Ior maximum sIrehgIh wiIhouI briIIlehess or decarburizaIioh Fully Iormed Ihreads wiIh cohIihu- ous graih Ilow Ior greaIer sIrehgIh ahd precisioh IiI Khurled cup poihI Ior posiIive selI-lockihg ahd vibraIioh resisIahce Threads per ANSÌ B 1.1, Hahdbook H-28. ANSÌ B18.6.2 «° ¬± ïM ïM ¬± îM îM ¿²¼ Ü·¿³»¬»® ·²½´ò ·²½´ò ±ª»® up Io 5/8" -.03 -.06 -.09 3/4" ahd over -.06 -.12 -.18 LENGTH TOLERANCE DIMENSIONS and APPLICATION DATA VIBRATIONAL HOLDING POWER vs. SEATING TOROUE Size: 5]16"-18x1]2" GREATER TIGHTENING TOROUES oI UNBPAKO Square Heads, made oI high qualiIy alloy sIeel, provide 50% more axial holdihg power Ihah ordihary carboh sIeel square heads. Ahd, because oI Ihe ihcreased Iorque plus Ihe Khurled Cup PoihI, UNBPAKO Square Head SeI Screws deliver up Io 400 percehI more VibraIiohal Holdihg Power. îðð ð ìðð êðð èðð ïððð Í»½±²¼- ïðð îðð íðð ìðð ìððû³±®» Ê·¾®¿¬·±²¿´ ر´¼·²¹ б©»® ÝßÎÞÑÒÍÌÛÛÔ ÍÏËßÎÛ ØÛßÜÍ øд¿·²Ý«°Ð±·²¬÷ ËÒÞÎßÕÑ ßÔÔÑÇÍÌÛÛÔ ÍÏËßÎÛØÛßÜÍ ÍÛßÌ×ÒÙ ÌÑÎÏËÛ øײ½¸ Ô¾-ò÷ SELF-LOCKÌNG KNUPLED CUP POÌNT ÌNTEPNAL OP EXTEPNAL KNUPL FUPNÌSHED AT UNBPAKO OPTÌON ¾¿-·½ ²±³ò -½®»© ¬¸®»¿¼- °»® ·²½¸ ß Ý Ð -·¦» ¼·¿³»¬»® ËÒÎÝ ËÒÎÚ ³¿¨ò ËÒÎÝ ËÒÎÚ ³¿¨ò ³·²ò ³¿¨ò ³·²ò #0 .060 - 80 .0600 - .0568 .033 .027 .040 .037 #1 .073 64 72 .0730 .0692 .0695 .040 .033 .049 .045 #2 .086 56 64 .0860 .0819 .0822 .047 .039 .057 .053 #3 .099 48 56 .0990 .0945 .0949 .054 .045 .066 .062 #4 .112 40 48 .1120 .1069 .1075 .061 .051 .075 .070 #5 .125 40 44 .1250 .1199 .1202 .067 .057 .083 .078 #6 .138 32 40 .1380 .1320 .1329 .074 .064 .092 .087 #8 .164 32 36 .1640 .1580 .1585 .087 .076 .109 .103 #10 .190 24 32 .1900 .1825 .1840 .102 .088 .127 .120 1/4 .250 20 28 .2500 .2419 .2435 .132 .118 .156 .149 5/16 .312 18 24 .3125 .3038 .3053 .172 .156 .203 .195 3/8 .375 16 24 .3750 .3656 .3678 .212 .194 .250 .241 7/16 .437 14 20 .4375 .4272 .4294 .252 .232 .297 .287 1/2 .500 13 20 .5000 .4891 .4919 .291 .207 .344 .334 9/16 .562 12 18 .5625 .5511 .5538 .332 .309 .390 .379 5/8 .625 11 18 .6250 .6129 .6163 .371 .347 .469 .456 3/4 .750 10 16 .7500 .7371 .7406 .450 .425 .562 .549 7/8 .875 9 14 .8750 .8611 .8647 .530 .502 .656 .642 1 1.000 8 12 1.0000 .9850 .9886 .609 .579 .750 .734 1 1/8 1.125 7 12 1.1250 1.1086 1.1136 .689 .655 .844 .826 1 1/4 1.250 7 12 1.2500 1.2336 1.2386 .767 .733 .938 .920 1 3/8 1.375 6 12 1.3750 1.3568 1.3636 .848 .808 1.031 1.011 1 1/2 1.500 6 12 1.5000 1.4818 1.4886 .926 .886 1.125 1.105 18 SOCKET SET SCREWS ² Dimensions ² AppIication Data ² Seating Torques C APPPOX. 45• SEE NOTE¯¯ 118• T LENGTH - SEE NOTE APPPOX. 30• J A Ý ÚÔßÌ ßÐÐÎÑÈò ìë• Ý ÐÔß×ÒÝËÐ ßÐÐÎÑÈò ìë• ÍÛÛ ÒÑÌÛöö ïïè• Ð ØßÔÚóÜÑÙ Ï ÝÑÒÛ ÍÛÛ ÒÑÌÛ ï çð• Ý ÕÒËÎÔÛÜÝËÐ ÍÛÛ ÒÑÌÛ î ïïè• ßÐÐÎÑÈò ìë• Î ÑÊßÔ DIMENSIONS NOTE: PerIormahce daIa lisIed are Ior sIahdard producIioh iIems ohly. Noh-sIock iIems may vary due Io variables ih meIhods oI mahuIacIure. ÌI is suggesIed IhaI Ihe user veriIy perIormahce oh ahy hoh-sIahdard parIs Ior criIical applicaIiohs. òêí ¿²¼ ±ª»® òêí ±ª»® îM Ü·¿³»¬»® «²¼»® ¬± îM ¬± êM ±ª»® êM All ±.01 ±.02 ±.03 ±.06 LENGTH TOLERANCE ß°°´·½¿¾´» ±²´§ ¬± ²±³·²¿´ ³·²·³«³ ´»²¹¬¸- -¸±©² ±® ´±²¹»® Ï Ìö Ö Î ²±³ò ³·²ò ³·²ò µ»§ ³¿¨ò ³·²ò ³·²ò ²±³ò ¾¿-·½ ¿´´±§ -¬»»´ -¬¿·²´»-- -½®»© ´»²¹¬¸ »²¹¿¹»³»²¬ .017 .013 .035 .028 .045 1.0 .4 3/32 .050 .021 .017 .035 .035 .055 1.8 1.2 1/8 .060 .024 .020 .035 .035 .064 1.8 1.2 1/8 .060 .027 .023 .060 .050 .074 5 4 5/32 .070 .030 .026 .075 .050 .084 5 4 5/32 .070 .033 .027 .075 .0625 .094 10 7 5/32 .080 .038 .032 .075 .0625 .104 10 7 3/16 .080 .043 .037 .075 .0781 .123 20 16 3/16 .090 .049 .041 .105 .0937 .142 36 26 3/16 .100 .067 .059 .105 .125 .188 87 70 5/16 .125 .082 .074 .140 .1562 .234 165 130 3/8 .156 .099 .089 .140 .1875 .281 290 230 7/16 .188 .114 .104 .190 .2187 .328 430 340 1/2 .219 .130 .120 .210 .250 .375 620 500 9/16 .250 .146 .136 .265 .250 .422 620 500 5/8 .250 .164 .148 .265 .3125 .469 1,325 980 11/16 .312 .196 .180 .330 .375 .562 2,400 1,700 3/4 .375 .227 .211 .450 .500 .656 3,600 3,000 3/4 .500 .260 .240 .550 .5625 .750 5,000 4,000 7/8 .562 .291 .271 .650 .5625 .844 7,200 5,600 1 .562 .323 .303 .700 .625 .938 9,600 7,700 1 1/8 .625 .354 .334 .700 .625 1.031 9,600 7,700 1 1/4 .625 .385 .365 .750 .750 1.125 11,320 9,100 1 1/4 .750 19 SOCKET SET SCREWS Dimensions ² AppIication Data ² Seating Torques Padiused sockeI corhers - Pouhded corhers resisI crackihg ahd allow UNBPAKO seI screws Io wiIhsIahd high IighIehihg Iorques Deep sockeI - Key IiIs deeply ihIo sockeI Io provide exIra wrehchihg area Ior IighIer IighIehihg wiIhouI reamihg Ihe sockeI or rouhdihg oII corhers oI key CohIihuous graih Ilow - Flow lihes oI rolled Ihreads Iollow closely Ihe cohIour oI Ihe screw Fully Iormed Ihreads - are rolled, hoI cuI or grouhd. MeIal is compressed, makihg iI exIra sIrohg. Threads resisI shearihg, wiIhsIahd higher IighIehihg Iorques Class 3A Ihreads - Formed wiIh closesI ihIerchahgeable IiI Ior maximum cross- secIioh wiIh smooIh assembly. Assure beIIer maIihg oI parIs Balahced heaI IreaImehI - ÌI's cusIomized Io ihdividual loIs oI screws Ior uhiIorm hardhess, assurihg maximum sIrehgIh wiIhouI briIIlehess CouhIerbored khurled cup poihI - Exclusive UNBPAKO selI-lockihg poihI provides 5 Iimes greaIer vibraIiohal holdihg power Ihah oIher khurled poihIs NOTES MateriaI: ASTM F912 - alloy sIeel ASTM F880 - sIaihless sIeel Dimensions: ASME/ANSÌ B18.3 Hardness: Pc 45-53 (alloy sIeel ohly), Pb 96-Pc 33 (sIaihless sIeel) Thread cIass: 3A 1. Wheh lehgIh equals homihal diam- eIer or less, ihcluded ahgle is 118•. (#4 x 1/8 ahd #8 x 3/16 also have 118 ahgle) 2. Wheh lehgIh equals homihal diam- eIer or less, ihcluded ahgle is 130•. DIMENSIONS RECOMMENDED SEATING TOROUES - INCH-LBS.ªª ªCAUTION: Values showh ih columh T are Ior mihimum sIock lehgIh cup poihI screws. Screws shorIer Ihah homihal mihimum lehgIh showh do hoI have sockeIs deep ehough Io uIilize Iull key capabiliIy which cah resulI ih Iailure oI sockeI, key or maIihg Ihreads. ¯¯See NoIe, page 1. 20 SockeI seI screws oIIer Ihree Iypes oI holdihg power: Iorsiohal (resisIahce Io roIaIioh), axial (resisIahce Io laIeral movemehI), ahd vibraIiohal. Size seIection is ah imporIahI IacIor ih holdihg power. The screw diameIer should be roughly 1/2 IhaI oI Ihe shaII as a rule-oI-Ihumb. (For more speciIic size daIa see pages 18-19.) AddiIiohal desigh cohsideraIiohs appear below. HoIding power is almosI direcIly pro- porIiohal Io seaIihg Iorque ih a cup, IlaI, ahd oval poihI screws. Holdihg power cah be ihcreased by ihcreasihg seaIihg Iorque. GreaIer holdihg power reduces Ihe humber oI screws required ahd Ihe assembled cosI oI Ihe applicaIioh. By iIs peheIraIioh, Ihe seI screw poihI cah add as a much as 15% Io IoIal holdihg power. Cohe poihIs, wiIh deepesI peheIraIioh, give Ihe greaIesI ihcrease, oval poihIs, wiIh mihimum peheIraIioh, Ihe leasI. Makihg 1 Ihe ihdex Ior cup poihI, holdihg power values Irom Iables oh pages 22 ahd 23 cah be mulIiplied by 1.07 Ior cohe poihI, 0.92 Ior IlaI or dog poihIs, ahd 0.90 Ior oval poihI. ReIative hardness beIweeh seI screw ahd shaII is also a IacIor. A 10-poihI diIIerehIial beIweeh Ihe screw's hor- mal Pockwell C 50 ahd shaII should be maihIaihed Ior Iull holdihg power. As much as 15% loss ih holdihg power cah resulI Irom a lower diIIer- ehIial. Vibration resistance cah be achieved by correcI size ahd proper IighIehihg. The UNBPAKO khurl cup seI screw oIIers addiIiohal mechahical lockihg resisIahce wheh required. POINT SELECTION According to AppIication PoihI selecIioh is hormally deIermihed by Ihe haIure oI Ihe applicaIioh - maIerials, Iheir relaIive hardhess, Irequehcy oI assembly ahd re-assembly ahd oIher IacIors. Peviewed here are sIahdard poihI Iypes, Iheir geheral IeaIures ahd mosI IrequehI areas oI applicaIioh oI each Iype. SOCKET SET SCREWS ² Point SeIection According to AppIication knurIed cup For quick ahd permahehI locaIioh oI gears, collars, pulleys or khobs oh shaIIs. Exclusive couhIerclockwise lockihg khurls resisI screw loosehihg, eveh ih poorly Iapped holes. PesisIs mosI severe vibraIioh. pIain cup Use agaihsI hardehed shaIIs, ih zihc, die casIihgs ahd oIher soII maIerials where high IighIehihg Iorques are impracIical. 21 SOCKET SET SCREWS Point SeIection According to AppIication fIat Use where parIs musI be IrequehIly re-seI, as iI causes liIIle or ho damage Io parI iI bears agaihsI. Cah be used agaihsI hard- ehed shaIIs (usually wiIh grouhd IlaI Ior beIIer coh- IacI) ahd as ad|usIihg screw. PreIerred Ior Ihih wall Ihickhess ahd oh soII plugs. ovaI Use Ior IrequehI ad|usI- mehI wiIhouI deIormaIioh oI parI iI bears agaihsI, also Ior seaIihg agaihsI ah ahgular surIace. Circular U-grooves or axial V-grooves someIimes puI ih shaII Io permiI roIaIiohal or lohgiIudihal ad|usImehI. cone For permahehI locaIioh oI parIs. Deep peheIraIioh gives highesI axial ahd holdihg power. Ìh maIerial over Pockwell C15 poihI is spoIIed Io halI iIs lehgIh Io develop shear sIrehgIh across poihI. Used Ior pivoIs ahd Iihe ad|usImehI. haIf dog Used Ior permahehI loca- Iioh oI ohe parI Io ahoIher. PoihI is spoIIed ih hole drilled ih shaII or agaihsI IlaI (milled). OIIeh replaces dowel pihs. Works well agaihsI hardehed members or hollow Iubihg. STAINLESS STEEL ADVANTAGES ² Corrosioh resisIahce, Wide IemperaIure rahge (-300• F Io +800• F), Freedom Irom scalihg or oxidaIioh. ² Noh-magheIic, a valuable properIy ih cerIaih elecIrical ahd elecIrohic applica- Iiohs. (Maximum permeabiliIy is 1.2 ahd cah be reduced Io 1.02 by brighI ahhealihg.) Corrosioh-resisIahce useIul where cleahlihess is imporIahI. ² SIahdard processihg oI Ihese sockeI seI screws ihcludes a passivaIioh IreaI- mehI which heuIralizes surIace cohIamihaIioh. -»¿¬·²¹ -¸¿º¬ ¼·¿³»¬»® ø-¸¿º¬ ¸¿®¼²»-- ν ïë ¬± ν íë÷ ²±³ò ¬±®¯«» ïñïê íñíî ïñè ëñíî íñïê éñíî ïñì ëñïê íñè éñïê ïñî çñïê -·¦» ·²½¸ó´¾-ò ¬±®-·±²¿´ ¸±´¼·²¹ °±©»® ·²½¸ó´¾-ò #0 1.0 50 1.5 2.3 3.1 3.9 4.7 5.4 6.2 #1 1.8 65 2.0 3.0 4.0 5.0 6.1 7.1 8.1 10.0 #2 1.8 85 2.6 4.0 5.3 6.6 8.0 9.3 10.6 13.2 16.0 #3 5 120 3.2 5.6 7.5 9.3 11.3 13.0 15.0 18.7 22.5 26.3 #4 5 160 7.5 10.0 12.5 15.0 17.5 20.0 25.0 30.0 35.0 40.0 #5 10 200 12.5 15.6 18.7 21.8 25.0 31.2 37.5 43.7 50.0 56.2 #6 10 250 19 23 27 31 39 47 55 62 70 #8 20 385 30 36 42 48 60 72 84 96 108 #10 36 540 51 59 68 84 101 118 135 152 1/4 87 1,000 125 156 187 218 250 281 5/16 165 1,500 234 280 327 375 421 3/8 290 2,000 375 437 500 562 7/16 430 2,500 545 625 702 1/2 620 3,000 750 843 9/16 620 3,500 985 5/8 1,325 4,000 3/4 2,400 5,000 7/8 3,600 5,600 1 5,000 6,500 22 SIZE SELECTION OF SOCKET SET SCREWS The user oI a seI-screw-IasIehed assembly is primarily buyihg sIaIic holdihg power. The daIa ih Ihis charI oIIers a simpliIied meahs Ior selecIihg diameIer ahd seaIihg Iorque oI a seI screw oh a giveh diameIer shaII. Torsiohal holdihg power ih ihch-pouhds ahd axial holdihg power ih pouhds are Iabu- laIed Ior various cup poihI sockeI screws, seaIed aI recommehded ihsIallaIioh Iorques. ShaIIihg used was hardehed Io Pockwell C15. TesI ihvolved Class 3A screw Ihreads ih Class 2B Iapped holes. DaIa was deIermihed experi- mehIally ih a lohg series oI IesIs ih which holdihg power was deIihed as Ihe mihimum load Io produce 0.010 ihch relaIive movemehI oI shaII ahd collar. From Ihis basic charI, values cah be mod- iIied by percehIage IacIors Io yield suiIable desigh daIa Ior almosI ahy sIahdard seI screw applicaIioh. NOTES TabulaIed axial ahd Iorsiohal holdihg powers are Iypical sIrehgIhs ahd should be used accordihgly, wiIh speciIic saIeIy IacIors appropriaIe Io Ihe giveh applicaIioh ahd load cohdiIiohs. Good resulIs have beeh obIaihed wiIh a IacIor oI 1.5-2.0 uhder sIaIic load cohdiIiohs (i.e., where a collar is supporIihg a verIical load oh a posI) ahd oI 4.0-8.0 Ior various dyhamic siIuaIiohs. Values ih bold Iype ih Ihe charI ihdicaIe recommehded seI screw sizes oh Ihe basis IhaI screw diameIer should be roughly ohe-halI shaII diameIer. SOCKET SET SCREWS ² TorisionaI and AxiaI HoIding Power 200 100 60 120 Ú·¹ò ï ßÒÙÔÛ ÞÛÌÉÛÛÒ ÍÝÎÛÉÍô ø¼»¹ò÷ 180 ¿¨·¿´ ¸±´¼·²¹ °±©»® ø°±«²¼-÷ TORSIONAL and AXIAL HOLDING POWER (Based on Recommended Seating Torques - Inch-Lbs.) -»¿¬·²¹ -¸¿º¬ ¼·¿³»¬»® ø-¸¿º¬ ¸¿®¼²»-- ν ïë ¬± ν íë÷ ²±³ò ¬±®¯«» ëñè íñì éñè ï ï ïñì ï ïñî ï íñì î î ïñî í í ïñî ì -·¦» ·²½¸ó´¾-ò ¬±®-·±²¿´ ¸±´¼·²¹ °±©»® ·²½¸ó´¾-ò #0 1.0 50 #1 1.8 65 #2 1.8 85 #3 5 120 #4 5 160 #5 10 200 62 #6 10 250 78 94 109 #8 20 385 120 144 168 192 #10 36 540 169 202 236 270 338 1/4 87 1,000 312 357 437 500 625 750 5/16 165 1,500 468 562 656 750 937 1125 1310 1500 3/8 290 2,000 625 750 875 1000 1250 1500 1750 2000 7/16 430 2,500 780 937 1095 1250 1560 1875 2210 2500 3125 1/2 620 3,000 937 1125 1310 1500 1875 2250 2620 3000 3750 4500 9/16 620 3,500 1090 1310 1530 1750 2190 2620 3030 3500 4370 5250 6120 5/8 1,325 4,000 1250 1500 1750 2000 2500 3000 3750 4000 5000 6000 7000 8000 3/4 2,400 5,000 1875 2190 2500 3125 3750 4500 5000 6250 7500 8750 10000 7/8 3,600 5,600 2620 3000 3750 4500 5250 6000 7500 9000 10500 12000 1 5,000 6,500 3500 4375 5250 6120 7000 8750 10500 12250 14000 23 SOCKET SET SCREWS TorsionaI and AxiaI HoIding Power ÌI you khow seI screws, you khow IhaI Ihe IighIer you cah IighIeh Ihem, Ihe beIIer Ihey hold ahd Ihe more Ihey resisI loosehihg Irom vibraIioh. BuI Ihere's a limiI Io how much you cah IighIeh Ihe average sockeI seI screw. ÌI you're hoI careIul, you cah ream or crack Ihe sockeI, ahd ih some cases, eveh sIrip Ihe Ihreads. So you're hever quiIe sure wheIher or hoI iI will acIually sIay IighI. WiIh UNBPAKO seI screws iI's a diIIerehI sIory. A uhique combihaIioh oI desigh ahd careIully cohIrolled mahuIacIurihg ahd heaI IreaIihg gives Ihese screws exIra sIrehgIh IhaI permiIs you Io IighIeh Ihem apprecia- bly IighIer Ihah ordihary screws wiIh mihimal Iear oI reamihg or crackihg Ihe sockeI. Ihis exIra sIrehgIh repre- sehIs a subsIahIial bohus oI exIra holdihg power ahd Ihe addiIiohal saIeIy ahd reliabiliIy IhaI goes wiIh iI. Design - Deeper UNBPAKO sock- eIs give more key ehgagemehI Io leI you seaI Ihe screws IighIer. Corhers are radiused Io saIeguard agaihsI reamihg or crackihg Ihe sockeI wheh Ihe exIra IighIehihg Iorque is applied. The sharp corhers oI oIher seI screws creaIe high sIress cohcehIraIiohs ahd cah cause crackihg, eveh aI lower IighIehihg Iorques. By elimihaIihg Ihe corhers, Ihe radii disIribuIe IighIehihg sIresses Io reduce Ihe chahce oI spliI- Iihg Io a mihimum. ControIIed Manufacturing - The Iully-Iormed Ihreads oI UNBPAKO seI screws are rolled uhder exIreme pres- sure Io mihimize sIrippihg ahd hahdle Ihe higher IighIehihg Iorques. Also, wiIh rolled Ihreads, Iolerahces cah be more closely maihIaihed. UNBPAKO seI screws have Class 3A Ihreads, closesI ihIerchahgeable IiI, givihg maximum cross-secIioh wiIh smooIh assembly. The Ihread Iorm iIselI has Ihe radiused rooI IhaI ihcreases Ihe sIrehgIh oI Ihe Ihreads ahd resisIahce Io shear. ControIIed Heat Treatment - This is Ihe Ihird elemehI oI Ihe combiha- Iioh. Too liIIle carboh ih Ihe Iurhace aImosphere (decarburizaIioh) makes screws soII, causihg reamed sockeIs, sIripped Ihreads ahd sheared poihIs wheh screws are IighIehed. Too much carboh (carburizaIioh) makes screws briIIle ahd liable Io crack or IracIure. The heaI IreaImehI is liIerally Iailored Io each "heaI" oI UNBPAKO screws, maihIaihihg Ihe hecessary cohIrolled Pc 45-53 hardhess Ior maximum sIrehgIh. Fihally, poihI sIyle aIIecIs holdihg power. As much as 15% more cah be cohIribuIed, depehdihg oh Ihe depIh oI peheIraIioh. The cohe poihI (wheh used wiIhouI a spoIIihg hole ih Ihe shaII) gives greaIesI ihcrease because oI iIs greaIer peheIraIioh. The oval poihI, wiIh Ihe leasI cohIacI area, aIIords Ihe leasI. The cup poihI lies ih beIweeh, buI is by Iar Ihe mosI commohly used, because oI Ihe wide rahge oI applicaIiohs Io which iI is adapIable. However, Ihere is ohe cup poihI IhaI cah give you boIh a maximum oI holdihg power ahd oI resisIahce Io vibraIioh. ÌI is Ihe exclusive UNBPAKO khurled cup poihI, whose lockihg khurls biIe ihIo Ihe shaII ahd resisI Ihe Iehdehcy oI Ihe screw Io back ouI oI Ihe Iapped hole. The charI oh Ihis page shows clearly how much beIIer Ihe UNBPAKO seI screws resisI vibraIioh ih comparisoh wiIh plaih cup poihI seI screws. UNBPAKO khurled cup poihI selI-lockihg seI screws give you excellehI perIor- mahce uhder cohdiIiohs oI exIreme vibraIioh. ¿¨·¿´ ¸±´¼·²¹ °±©»® ø°±«²¼-÷ UNBRAKO SOCKET SET SCREWS - UNRC or UNRF Thread - Seated Against SteeI Shaft 24 PRESSURE PLUGS DRYSEAL TYPE with 3]4-inch taper per foot Precisioh hex sockeI wiIh maximum depIh Ior posiIive wrehchihg aI higher seaIihg Iorques Dryseal-Ihread Iorm achieves a seal wiIhouI heed Ior compouhd HeaI IreaIed alloy sIeel Ior sIrehgIh Pouhdhess-closely cohIrolled Ior beIIer sealihg UhiIorm Iaper oI 3/4 ihch per IooI CohIrolled chamIer Ior IasIer sIarIihg Threads NPTF per ANSÌ B1.20.3 See NoIes oh page 25 See ApplicaIioh DaIa oh page 26 ¯¯.750 Ior LEVL-SEAL ²±³·²¿´ ¾¿-·½ ¬¸®»¿¼ ¼·³»²-·±² ¬¸®»¿¼ ¬¸®»¿¼- ß Ú Ù Ô É È -·¦» °»® ·²ò ®»ºò ³·²ò ³·²ò oòðïð ²±³ò ²±¬» ì Û ð Û ï Ô ï 1/16 .062 27 .318 .062 .140 .312 .156 .003 .27118 .28118 .160 1/8 .125 27 .411 .062 .140 .312 .188 .003 .36351 .37360 .1615 1/4 .250 18 .545 .073 .218 .437 .250 .003 .47739 .49163 .2278 3/8 .375 18 .684 .084 .250 .500 .312 .005 .61201 .62701 .240 1/2 .500 14 .847 .095 .312 .562 .375 .005 .75843 .77843 .320 3/4 .750 14 1.061 .125 .312 .625 .562 .007 .96768 .98887 .339 1 1.000 11 1/2 1.333 .125 .375 .750 .625 .007 1.21363 1.23863 .400 1 1/4 1.250 11 1/2 1.679 .126 .437 .812 .750 .010 1.55713 1.58338 .420 1 1/2 1.500 11 1/2 1.918 .156 .437 .812 1.000¯¯ .010 1.79609 1.82234 .420 2 2.000 11 1/2 2.395 .156 .437 .875 1.000¯¯ .010 2.26902 2.29627 .436 DIMENSIONS 25 PRESSURE PLUGS LEVL SEAL ® TYPE DryseaI Thread Form with 7]8-inch per foot Precisioh hex sockeI wiIh maximum depIh Ior posiIive wrehchihg aI higher seaIihg Iorques HeaI IreaIed alloy sIeel Ior sIrehgIh Pouhdhess closely cohIrolled Ior beIIer sealihg High pressure is developed Ihrough a deliberaIe diIIerehce oI Iaper beIweeh Ihe plug ahd Ihe Iapped hole havihg sIahdard 3/4" Iaper Flush seaIihg is achieved Ihrough closer cohIrol oI Ihread Iorms, sizes ahd Iaper-improves saIeIy ahd appearahce. Fully Iormed PTF dryseal Ihreads Ior beIIer sealihg wiIhouI Ihe use oI a compouhd CohIrolled chamIer Ior IasIer See ApplicaIioh DaIa oh page 27 NOTES 1. MateriaI: ASTM A574 alloy sIeel, ausIehiIic sIaihless sIeel or brass. 2. Hardness: Pc 35-40 Ior sIeel. 3. Basic pitch diameter: E-piIch dia. aI a disIahce oI ohe-halI piIch Irom large ehd oI plug. PTF Ihread Irom 7/8-ihch Iaper per IooI. E0 - piIch diameIer aI small ehd oI plug, E1 - piIch diameIer aI L1 disIahce Irom ehd oI plug, L1 - lehgIh oI hahd-IighI ehgagemehI. 4. BoIIom oI plug Io be IlaI wiIhih "X" T.Ì.P. DPY-SEAL ahd LEVL-SEAL: Small ehd oI plug Io be Ilush wiIh Iace oI sIahdard NPTF rihg gages wiIhih ohe Ihread (L1, L2 ahd Iapered rihg). Large ehd oI plug Io be Ilush wiIh Iace oI special 7/8 Iaper rihg gages wiIhih ohe-halI Ihread. 5. UhdercuI ih sockeI aI mIrs. opIioh 6. Six equally spaced idehIiIicaIioh grooves (1/16-27 plug Io have 3 idehIiIicaIioh grooves) oh alloy sIeel plugs. (LEVL-SEAL) 7. Dimehsiohs apply beIore plaIihg ahd/or coaIihg. DIMENSIONSª ²±³·²¿´ Ô Û ¬¸®»¿¼ ß Ú Ù õòððð ²±¬» í -·¦» ®»ºò ³·²ò ³·²ò Pòðïë ®»ºò 1/16 .062 .307 .052 .141 .250 .28118 1/8 .125 .401 .049 .141 .250 .37360 1/4 .250 .529 .045 .266 .406 .49163 3/8 .375 .667 .040 .266 .406 .62701 1/2 .500 .830 .067 .329 .531 .77843 3/4 .750 1.041 .054 .329 .531 .98887 1 1.000 1.302 .112 .360 .656 1.23863 1 1/4 1.250 1.647 .102 .360 .656 1.58338 1 1/2 1.500 1.885 .102 .360 .656 1.82234 2 2.000 2.360 .084 .360 .656 2.29627 See page 24 Ior Ihreads per ihch, w hom., ahd X. ¯Dimehsiohs beIore coaIihg Ior PTFE/TEFLON-coaIed LEVL-SEAL pressure plugs. ¬¸®»¿¼- ¬¿° ¬¿° ®»½±³³»²¼»¼ ²±³ò °»® ¼®·´´ ¼®·´´ ¬±®¯«» -·¦» ·²½¸ -·¦»õ -·¦» õõ ·²òó´¾-ö 1/16 27 15/64 1/4 150 1/8 27 21/64 11/32 250 1/4 18 27/64 7/16 600 3/8 18 9/16 37/64 1200 1/2 14 11/16 23/32 1800 3/4 14 57/64 59/64 3000 1 11 1/2 1 1/8 1 5/32 4200 1 1/4 11 1/2 37.5mm - 5400 1 1/2 11 1/2 43.5mm - 6900 2 11 1/2 2 3/16 - 8500 26 Pressure plugs are hoI pipe plugs. Pipe plugs (plumber's IiIIihgs) are limiIed Io pressures oI 600 psi, are sealed wiIh a compouhd, ahd are made oI casI iroh wiIh cuI Ihreads ahd proIrudihg square drive. Pressure plugs are made Io closer Iolerahces, are geherally oI higher qualiIy, ahd almosI all have Iaper Ihreads. Properly made ahd used, Ihey will seal aI pressures Io 5000 psi ahd wiIhouI a sealihg com- pouhd (pressure IesIs are usually aI 20,000 psi.) Ihey are oIIeh used ih hydraulic ahd pheumaIic desighs. Performance Requirements Pressure plugs used ih ihdusIrial applicaIiohs should: ² hoI leak aI pressures Io 5000 psi ² heed ho sealihg compouhds ² be reusable wiIhouI seizure ² give a good seal wheh reused ² seal low viscosiIy Iluids ² require mihimum seaIihg Iorque ² require mihimum re-Ioolihg or special Iools. For a saIisIacIory seal, Ihe Ihreads oI Ihe plug ahd Ihose ih Ihe maIihg hole musI hoI gall or seize up Io maximum possible IighIehihg Iorque. Gallihg ahd seizure are caused by meIal pickup oh Ihe maIihg surIaces ahd are direcIly relaIed Io Iorce oh Ihe surIace, maIerial hardhess, lubrica- Iioh used, ahd Ihread Iihish. How Pressure PIugs SeaI Sealihg is achieved by crushihg Ihe cresI oI ohe Ihread agaihsI Ihe rooI oI Ihe maIihg Ihread. ÌI Ioo much oI compressive Iorce is required Io Iorque Ihe plug, iI will Iehd Io gall ih Ihe hole. Too liIIle Iorce will hoI deIorm Ihe cresI oI Ihreads ehough Io produce a seal. Ìhcreasihg Ihe hardhess oI Ihe maIerial will reduce gallihg buI will also ihcrease Ihe required sealihg Iorce. Geherally a hardhess rahge oI Pc 30 Io 40 will meeI mosI requiremehIs. The IighIeh- ihg Iorce musI be low ehough Io cause ho gallihg ih Ihis rahge. Cost Considerations Dryseal plugs are more IrequehIly used, especially where reuse is Ire- quehI. Peasoh: more Ihreads are ehgaged ahd Ihey IhereIore resisI leakage beIIer. They are also pre- Ierred ih soII meIals Io reduce oI over-Iorquihg. TYPES OF PRESSURE PLUG THREADS Three Ihread Iorms are commohly used Ior pipe plugs ahd pressure plugs: NPT: NaIiohal Pipe Ihread, Tapered. This is Ihe Ihread Iorm commohly used Ior commercial pipe ahd IiIIihgs Ior low pressure applicaIiohs. A lubri- cahI ahd sealer are geherally used. ANPT: AerohauIical NaIiohal Pipe Ihread, Tapered. Covered by MÌL-S- 7105, Ihis Ihread Iorm was developed Ior aircraII use. ÌI is basically Ihe same as Ihe NPT Ihread excepI IhaI Iolerahces have beeh reduced abouI 50 percehI. Plugs made wiIh Ihis Ihread should be used wiIh lubricahIs ahd sealers. They are hoI Io be used Ior hydraulic applicaIiohs. NPTF: NaIiohal Pipe Ihread, Tapered, Fuel. This is Ihe sIahdard Ihread Ior pressure plugs. They make pressure- IighI |oihIs wiIhouI a sealahI. Tolerahces are abouI 1/4 Ihose Ior NPT Ihreads. The sIahdard which applies is ANSÌ B1.20.3. Applicable Ior Iluid power applicaIiohs. Uhbrako recommehds usihg a Iapered reamer wiIh correspohdihg size Iap drill (see page 27). +WiIh use oI reamer (Iaper Ihread). ++WiIhouI use oI Iapered reamer. ¯Pecommehded Iorques Ior alloy sIeel ohly. MulIiply by .65 Ior sIaihless sIeel ahd .50 Ior brass. NPTF Iully Iormed Dryseal Ihreads achieve seal ih Iapped holes wiIhouI heed Ior sealihg compouhds. APPLICATION DATA - DRYSEAL TYPE PRESSURE PLUGS ² AppIication Data 27 PRESSURE PLUGS PTFE]TEFLON-Coated LEVL-SEAL Type DryseaI Thread Form with 7]8-inch Taper per Foot APPLICATION DATA - LEVL-SEAL and LEVL-SEAL with PTFE]TEFLON DeliberaIe diIIerehce ih Iaper beIweeh Ihe plug ahd Ihe Iapped hole. Ìdeal Ior use ih assemblies where clearahce is limiIed ahd ih hydraulic lihes hear movihg parIs. Desighed Ior use ih hard maIerials ahd ih Ihick-walled secIiohs as well as Ior hormal plug applicaIiohs. ¯For Iaper Ihread (usihg Iapered reamer). For Iap drill size (wiIhouI usihg Iapered reamer) see Iable ahd correspohdihg commehI oh page 26. ¯¯Maximum Ior PTFE/TEFLON-coaIed buI cah be reduced as much as 60% ih mosI applicaIiohs. PTFE]TEFLON Coated LEVL-SEAL Type Typical Ihickhess is 0.0005-ihch LEVL-SEAL precisioh coaIed wiIh Iough, corrosioh-resisIahI PTFE/TEFLON. ÌhsIallaIioh oI Ihe hew plugs is IasIer wiIh Ihe coaIihg oI PTFE/TEFLON which acIs as a lubricahI as well as seal. Power equipmehI cah be used Io ihsIall Ihe smaller sizes ihsIead oI Ihe mahual wrehchihg required by higher Iorques oI uhcoaIed plugs. SuiIed Ior ih assembly lihe producIioh. Higher hydraulic ahd pheumaIic workihg pressures cah be eIIecIively sealed. Seal is eIIecIive wiIhouI use oI Iapes or sealihg compouhds, eveh wiIh liquids oI very low viscosiIy. SPS LaboraIories have IesIed Ihese plugs wiIh surges up Io 13,500 psi 8 Iimes ih 5 mihuIes, Iheh held peak pressure Ior 6 Iull hours wiIhouI Irace oI leakage. Flush seaIihg improves appear- ahce ahd adds saIeIy. LEVL-SEAL plugs seaI Ilush because oI a combi- haIioh oI (1) gagihg procedures, ahd (2) a deliberaIe diIIerehce ih Iaper beIweeh Ihe plug ahd a hormally Iapped NPTF hole. (The Iaper oI Ihe plug is 7/8" per IooI , while IhaI oI Ihe hole is 3/4" per IooI.) PTFE/TEFLON was selecIed Ior Ihe coaIihg maIerial because oI iIs combihaIioh oI exIra hardhess ahd abrasioh resisIahce which permiI reuse up Io 5 Iimes wiIhouI apprecia- ble loss oI seal. The coaIihg is serviceable Io +450•F wiIhouI deIerioraIioh. TemperaIures lower Ihah -100•F require Ihe use oI sIaihless sIeel plugs. These are available ih Ihe same rahge oI sizes as Ihe alloy sIeel plugs. WiIh ho Iape or sealihg compouhd ihvolved, Ihere is ho dahger oI Ioreigh maIIer ehIerihg ahd cohIamihaIihg Ihe sysIem or equipmehI. The coaIihg reduces ahy Iehdehcy oI Ihe plug Io "Ireeze" ih Ihe hole because oI rusI or corrosioh. PLUG NPTF ÌNTEPNAL THPEADS (HOLE) ihIerhal rooI crushes exIerhal cresI here exIerhal rooI crushes ihIerhal cresI here ®»½±³³»²¼»¼ ¸±´» ¼·¿³»¬»® ¬¿°°·²¹ ·²º±®³¿¬·±² ·³°»®º»½¬ ®»½±³³»²¼»¼ ²±³ò ¬¸®»¿¼- ¬¿° °®±¶»½¬·±² ¬¸®« Ô ï ®·²¹ ¬¸®»¿¼- ¬¿°ö ¼®·´´ ¬±®¯«» ø·²½¸ó´¾-ò÷ -·¦» °»® ·²½¸ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ¿´´±©¿¾´» -·¦» ¿´´±§ -¬»»´öö 1/16 27 .2374 .2334 .375 .250 4 15/64 150 1/8 27 .3311 .3271 .375 .250 4 21/64 250 1/4 18 .4249 .4209 .521 .397 4 27/64 600 3/8 18 .5655 .5615 .516 .392 4 9/16 1200 1/2 14 .6905 .6865 .641 .517 4 11/16 1800 3/4 14 .8936 .8896 .627 .503 4 57/64 3000 1 11 1/2 1.1280 1.1240 .772 .584 4 1 1/8 4200 1 1/4 11 1/2 1.4794 1.4754 .780 .592 4 37.5mm 5400 1 1/2 11 1/2 1.7165 1.7116 .793 .605 4 43.5mm 6900 2 11 1/2 2.1905 2.8165 .761 .573 4 2 3/16 8500 High pressure seaI - Achieved Ihrough meIal-Io-meIal cohIacI aI Ihe large ehd oI Ihe plug. High load placed oh Ihe Iew maIihg Ihreads hear Ihe Iop oI Ihe hole. FIush seating - Desigh oI LEVL-SEAL plug permiIs seaIihg wiIhih halI a piIch ih a hormally Iapped hole. CohvehIiohal plugs have Ihe greaIer Iolerahce oI a Iull piIch ahd usually proIrude above Ihe surIace. PTF Iully Iormed Dryseal Ihreads desighed Io achieve seal ih Iapped holes wiIhouI heed Ior sealihg com- pouhds. 28 Formed ehds resisI chippihg SurIace hardhess: Pockwell "C" 60 mihimum SurIace Iihish: 8 microihch maximum Core hardhess: Pockwell "C" 50-58 Case depIh: .020-ihch mihimum Shear sIrehgIh: 150,000 psi (calculaIed based oh cohversioh Irom hardhess) HeaI IreaIed alloy sIeel Ior sIrehgIh ahd Ioughhess Held Io precise Iolerahce by auIomaIic gagihg ahd elecIrohic Ieed-back equipmehI MaIerial, HeaI TreaImehI, Dimehsiohs: ASME B18.8.2 .0002 - ihch oversize Iypically used Ior IirsI ihsIallaIioh. .0010 - ihch oversize Iypically used aIIer hole ehlarges. InstaIIation Warning - Do hoI sIrike. Use saIeIy shield or glasses wheh pressihg chamIered ehd ih IirsI. Sihgle shear load calculaIed as 150,000 psi x ° (hom. A) 2 í 4 DOWEL PINS ² Dimensions ² AppIication Data A LENGTH - o .010 B D 8 4•-16• P ß Ü Î ®»½±³³»²¼»¼ Þ ½¿´½«´¿¬»¼ ¸±´» -·¦» -·²¹´» -¸»¿® øòðððî ±ª»® ²±³ò÷ òðððî ±ª»® ²±³ò òððï ±ª»® ²±³ò -¬®»²¹¬¸ ²±³ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³·²ò ø°±«²¼-÷ ³¿¨ò ³·²ò 1/16 .0628 .0626 .0636 .0634 .058 .016 .008 465 .0625 .0620 3/32 .0941 .0939 .0949 .0947 .089 .018 .012 1,035 .0937 .0932 1/8 .1253 .1251 .1261 .1259 .120 .022 .016 1,845 .1250 .1245 5/32 .1565 .1563 .1573 .1571 .150 .022 .020 2,880 .1562 .1557 3/16 .1878 .1876 .1886 .1884 .180 .023 .023 4,140 .1875 .1870 1/4 .2503 .2501 .2511 .2509 .240 .031 .031 7,370 .2500 .2495 5/16 .3128 .3126 .3136 .3134 .302 .034 .039 11,500 .3125 .3120 3/8 .3753 .3751 .3761 .3759 .365 .038 .047 16,580 .3750 .3745 7/16 .4378 .4376 .4386 .4384 .424 .047 .055 22,540 .4375 .4370 1/2 .5003 .5001 .5011 .5009 .486 .047 .063 29,460 .5000 .4995 9/16 .5628 .5626 .5636 .5634 .548 .047 .070 37,270 .5625 .5620 5/8 .6253 .6251 .6261 .6259 .611 .047 .078 46,020 .6250 .6245 3/4 .7503 .7501 .7511 .7509 .735 .059 .094 66,270 .7500 .7495 7/8 .8753 .8751 .8761 .8759 .860 .059 .109 90,190 .8750 .8745 1 1.0003 1.0001 1.0011 1.0009 .980 .059 .125 117,810 1.0000 .9995 DIMENSIONS and APPLICATION DATA 29 DOWEL PINS Dimensions ² AppIication Data Continuous grain fIow resisIs chip- pihg oI ehds. Precisioh heaI IreaIed Ior greaIer sIrehgIh ahd surIace hardhess. Chamfered end provides easier ihserIioh ih hole. SurIace Iihish Io 8 microihch maximum. APPLICATIONS Widely used as plug gages ih various producIioh operaIiohs, ahd as guide pihs, sIops, wrisI pihs, hihges ahd shaIIs. Also used as posiIioh locaIors oh ihdexihg machihes, Ior alighihg parIs, as Ieeler gages ih assembly work, as valves ahd valve pluhgers oh hydraulic equipmehI, as IasIehers Ior lamihaIed secIiohs ahd machihe parIs, ahd as roller bearihgs ih casIers ahd Iruck wheels. 30 Tapped hole Ior easy pull-ouI (ANSÌ B1.1) Exclusive spiral grooves aIIord uhiIorm relieI Ior ihserIioh ahd removal, reduce chahces oI hole-scorihg SurIace hardhess-Pockwell C60 mihimum SurIace Iihish-8 microihch maximum Core hardhess-Pockwell C 50-58 Shear sIrehgIh: 150,000 psi (calculaIed based oh cohversioh Irom hardhess) HeaI IreaIed alloy sIeel Ior sIrehgIh ahd Ioughhess Held Io precise Iolerahce - .0002-ihch oh diameIer ahd rouhdhess Io 50 milliohIhs oI ah ihch (T.Ì.P.) Formed ehds resisI chippihg MaIerial ahd HeaI TreaImehI: ASME B18.8.2 Sihgle shear load calculaIed as 150,000 psi x ° (hom. A) 2 í 4 ½¿´½«´¿¬»¼ ®»½±³³»²¼»¼ Þ ß Ü Ð Ì È -·²¹´» ¸±´» ¼·¿³»¬»® -¸»¿® -·¦» ¬¸®»¿¼ ²±¬» ï -¬®»²¹¬¸ ²±³ò -·¦» ³¿¨ò ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ²±¬» î ø°±«²¼-÷ ³¿¨ò ³·²ò 1/4 #8-32 UNC-2B .237 .2503 .2501 .031 .500 .212 7/16 7,370 .2500 .2495 5/16 #10-32 UNF-2B .302 .3128 .3126 .034 .625 .243 1/2 11,500 .3125 .3120 3/8 #10-32 UNF-2B .365 .3753 .3751 .038 .625 .243 9/16 16,580 .3750 .3745 7/16 #10-32 UNF-2B .424 .4378 .4376 .047 .625 .243 5/8 22,540 .4315 .4370 1/2 1/4-20 UNC-2B .486 .5003 .5001 .047 .750 .315 3/4 29,460 .5000 .4995 5/8 1/4-20 UNC-2B .611 .6253 .6251 .047 .750 .315 3/4 46,020 .6250 .6245 3/4 5/16-18 UNC-2B .735 .7503 .7501 .059 .875 .390 13/16 66,270 .7500 .7495 7/8 3/8-16 UNC-2B .860 .8753 .8751 .059 .875 .390 13/16 90,190 .8750 .8745 1 3/8-16 UNC-2B .980 1.0003 1.0001 .059 .875 .390 13/16 117,810 1.0000 .9995 NOTES 1. LehgIhs equal Io or shorIer Ihah "P" max. values may be drilled Ihrough. 2. PoihI ahgle (approx.) 5• oh poihI Ior lehgIhs equal Io or lohger Ihah X. For shorIer lehgIhs, use 15• ahgle. DIMENSIONS and APPLICATION DATA PULL-OUT DOWEL PINS ² Dimensions ² AppIication Data B DÌA. 4•-16• 8 A DÌA. THPEADS PEP ANSÌ B1.1 31 PULL-OUT DOWEL PINS Dimensions ² AppIication Data 5 WAYS TO SAVE UNBRAKO Pull-OuI Dowel Pihs are easier, more accuraIe ahd more ecohomical Ihah "do-iI-yourselI" modiIicaIiohs oI sIahdard dowels. They save you mohey FÌVE ways: 1. YOU SAVE COST OF SEPARATE KNOCK-OUT HOLES IN BLIND HOLES WHERE PINS MUST BE REMOVED. UNBPAKO pull-ouI pihs are easy Io ihsIall ih blihd holes, easy Io remove. Exclusive spiral grooves release Irapped air Ior ihserIioh or removal wiIhouI dahger oI hole-scorihg. 2. YOU MUST SAVE COST OF NEW PINS EACH TIME DIE IS SERVICED OR DISMANTLED. UNBPAKO pull-ouI dowel pihs are reusable. The hole Iapped ih ohe ehd Ior a removal screw or Ihreaded "puller" makes iI easy ahd IasI Io remove Ihe pih wiIhouI damage Io pih or hole, permiIs repeaIed re-use. 3. YOU SAVE MONEY IN REDUCED DOWNTIME AND LOSS OF PRODUCTION UNBPAKO pull-ouI dowel pihs speed up die servicihg ahd reworkihg. You cah remove Ihem wiIhouI Iurhihg Ihe die over, ahd you cah Iake ouI ihdividual secIiohs oI Ihe die Ior rework or service wiIhouI removihg ehIire die assembly Irom Ihe press. 4. YOU SAVE MODIFICATIONS COSTS, YOU AVOID HEADACHES AND YOU SAVE YOUR SKILLED PEOPLE FOR PROFITABLE WORK. UNBPAKO pull-ouI dowel pihs have Iapped holes ahd relieI grooves builI ih. Time-cohsumihg "do-iI-yourselI" modiIicaIioh oI sIahdard pih elimihaIed. No heed Ior ahhealihg (Io make pihs soII ehough Io drill ahd Iap) ahd re-hardehihg, which cah resulI ih damage Io Iihish, ahd ih ihaccuracies ahd disIorIioh. 5. YOU SAVE TIME AND MONEY BECAUSE OF THIS OUALITY "REPEATABILITY." NO SPECIAL PREPARATION OF INDIVIDUAL HOLES NEEDED-YOU CAN BE SURE OF ACCURATE FIT EVERY TIME. UNBPAKO pull-ouI dowel pihs are idehIical ahd ihIer- chahgeable wiIh sIahdard UNBPAKO dowels. They have Ihe same physical, Iihish, accuracy ahd Iolerahces. Ahd Ihey are cohsisIehIly uhiIorm. Their exclusive spiral relieI grooves provide more uhiIorm relieI Ihah oIher Iypes oI removable pihs, assurihg more uhiIorm pull-ouI values. You doh'I heed ahy special Iools Io remove UNBPAKO pull-ouI dowels-|usI ah ordihary die hook ahd a sockeI head cap or buIIoh head sockeI screw. µ»§ -·¦» Ý Þ ¬±®-·±²¿´ É ´»²¹¬¸ ±º ´±²¹ ¿®³ ´»²¹¬¸ ±º -¸±®¬ ¿®³ -¸»¿® ¬±®-·±²¿´ -¸±®¬ -»®·»- ´±²¹ -»®·»- -¬®»²¹¬¸ §·»´¼ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò êM ´±²¹ ¿®³ ³¿¨ò ³·²ò ·²½¸ó´¾-ò ³·²ò ·²½¸ó´¾-ò ³·²ò òðîè òðîéë ïòíïî ïòïîë îòêèè îòëðð P òíïî òïîë ïòï òç òðíë òðíìë ïòíïî ïòïîë îòéêê îòëéè P òìíè òîëð îòí îòð òðëð òðìç ïòéëð ïòëêî îòçíè îòéëð P òêîë òìíè êòë ëòê ïñïê òðêïë ïòèìì ïòêëê íòðçì îòçðê P òêëê òìêç ïîòî ïðòë ëñêì òðééï ïòçêç ïòéèï íòîèï íòðçì êòððð òéðí òëïê îë îï íñíî òðçîé îòðçì ïòçðê íòìêç íòîèï êòððð òéëð òëêî ìí íë éñêì òïðéç îòîïç îòðíï íòêëê íòìêç êòððð òéçé òêðç êè êð ïñè òïîíë îòíìì îòïëê íòèìì íòêëê êòððð òèìì òêëê çè èë çñêì òïíçï îòìêç îòîèï ìòðíï íòèìì êòððð òèçï òéðí ïìê ïîë ëñíî òïëìé îòëçì îòìðê ìòîïç ìòðíï êòððð òçíè òéëð ïçë ïêë íñïê òïèêð îòèìì îòêëê ìòëçì ìòìðê êòððð ïòðíï òèìì íìî îçë éñíî òîïéî íòðçì îòçðê ìòçêç ìòéèï êòððð ïòïîë òçíè ëíë ìêð ïñì òîìèë íòíìì íòïëê ëòíìì ëòïëê êòððð ïòîïç ïòðíï éèð êéð ëñïê òíïïð íòèìì íòêëê êòðçì ëòçðê êòððð ïòíìì ïòïëê ïôêðð ïôíéð íñè òíéíë ìòíìì ìòïëê êòèìì êòêëê êòððð ïòìêç ïòîèï îôêíð îôîêð éñïê òìíëë ìòèìì ìòêëê éòëçì éòìðê P ïòëçì ïòìðê ìôëðð íôèéð ïñî òìçéë ëòíìì ëòïëê èòíìì èòïëê P ïòéïç ïòëíï êôíðð ëôìîð çñïê òëêðð ëòèìì ëòêëê çòðçì èòçðê P ïòèìì ïòêëê èôçðð éôêëð ëñè òêîîë êòíìì êòïëê çòèìì çòêëê P ïòçêç ïòéèï ïîôîðð ïðôëðð íñì òéìéð éòíìì éòïëê ïïòíìì ïïòïëê P îòîïç îòðíï ïçôëðð ïêôèðð éñè òèéîð èòíìì èòïëê ïîòèìì ïîòêëê P îòìêç îòîèï îçôððð îìôçðð ï òççéð çòíìì çòïëê ïìòíìì ïìòïëê P îòéïç îòëíï ìíôëðð íéôìðð ï ïñì ïòîìí ïïòëðð ïïòððð P íòîëð îòéëð éïôçðð êîôëðð ï ïñî ïòìçí ïíòëðð ïíòððð P íòéëð íòîëð ïîìôððð ïðèôððð ï íñì ïòéìí ïëòëðð ïëòððð P ìòîëð íòéëð ïçèôððð ïéîôððð î ïòççí ïéòëðð ïéòððð P ìòéëð ìòîëð îéêôððð îìðôððð íî HEX KEYS ² Dimensions ² MechanicaI Properties ² Screw Size TabIe DIMENSIONS MECHANICAL PROPERTIES Þ Ý ß½½«®¿¬»´§ -·¦»¼ ¿½®±-- º´¿¬- ¿²¼ ½±®²»®- ¬± ·²-«®» -²«¹ º·¬ ¿²¼ º«´´ ©¿´´ ½±²¬¿½¬ Ø»¿¬ ¬®»¿¬»¼ ¿´´±§ -¬»»´óµ»§ ·- ¸¿®¼ô ¬±«¹¸ ¿²¼ ¼«½¬·´» ½´»¿® ¬¸®±«¹¸ º±® ´±²¹»® ´·º» ¿²¼ ®»¬»²¬·±² ±º ¼·³»²-·±²¿´ ¿½½«®¿½§ Í·¦» -¬¿³°»¼ º±® »¿-§ ·¼»²¬·º·½¿¬·±² P ëñêìMóïM ¿½®±-- º´¿¬- ͯ«¿®» ½«¬ »²¼ »²¹¿¹»- ¬¸» -±½µ»¬ º«´´ ¼»°¬¸ º±® ¾»¬¬»® ¬·¹¸¬»²·²¹ ±º -½®»© ÙÙÙóÕóîéëò ßÒÍ× Þïèòí ïçêð Í»®·»- ´±© ¸»¿¼- -±½µ»¬ ¾«¬¬±² º´¿¬ ¿²¼ -±½µ»¬ ¸»¿¼ ¸»¿¼ ¸»¿¼ -¸±«´¼»® -»¬ °®»--«®»ö ½¿° -½®»©- -½®»©- -½®»©- -½®»©- -½®»©- °´«¹- #0 #0 #0 #1, #2 #0 #1,#2 #1,#2 #3, #4 #1 #3,#4 #3, #4 #5,#6 #2,#3 #5,#6 #5,#6 #8 #4,#5 #8 #8 #10 #6 #10 #10 1/4 1/4 #8 #10 1/4 1/4 5/16 5/16 1/16 1/4 5/16 5/16 3/8 3/8 1/8 3/8 3/8 7/16 5/16 7/16 1/2 1/2 1/4 3/8 1/2 1/2, 9/16 5/8 5/8 3/8 7/16,1/2 5/8 5/8 3/4 3/4 1/2 9/16 5/8 3/4 7/8, 1 7/8 7/8 1, 1/8 3/4 3/4 1 1 1/4 1 1/4, 1 3/8 1 7/8,1 1 1/2 1-1/4, 1-1/2 1 1/8, 1 1/4 1 1/2 1 3/8, 1 1/2 1 3/4 1/2,2 1 3/4 2 2 2 1/4, 2 1/2 2 3/4 33 HEXAGON KEYS Why UNBRAKO keys tighten socket screws tighter, safeIy Ah UNBPAKO key is hoI ah ordihary hexagoh key - iI is a precisioh ihIer- hal wrehchihg Iool oI greaI sIrehgIh ahd ducIiliIy. WiIh ah UNBPAKO key, Iar more IighIehihg Iorque Ihah is heeded cah be applied wiIhouI dam- agihg Ihe screw or Ihe key, ahd iI cah be dohe saIely. This is ah imporIahI IeaIure, especially Irue oI Ihe smaller sizes (5/32" ahd uhder) which are hormally held ih Ihe hahd. PhoIographs oI a desIrucIioh IesI show whaI we meah. Uhder exces- sive Iorque a 5/64" UNBPAKO key IwisIs buI does hoI shear uhIil a Iorque has beeh reached IhaI is approximaIely 20% greaIer Ihah cah be applied wiIh ah ordihary key. AI his poihI iI shears oII cleah, Ilush wiIh Ihe Iop oI Ihe sockeI, leavihg ho |agged edge Io gash a hahd. SIill Ihe UNBPAKO screw has hoI beeh harmed. The brokeh piece oI Ihe key is hoI wedged ihIo Ihe sockeI. ÌI cah be liIIed ouI wiIh a small magheI, cohvihcihg prooI IhaI Ihe sockeI has hoI beeh reamed or oIherwise damaged. NOTE: The use oI ah exIehsioh ih Ihese illusIraIiohs is Ior demohsIraIioh purposes ohly. The mahuIacIurer does hoI recommehd Ihe use oI exIehsiohs wiIh ahy hex key producI uhder hormal cohdiIiohs. A 5/64" UNBPAKO key will IwisI up Io 180• wiIhouI weakehihg. TwisIed Io abouI 270•, Ihe key shears oII cleah. NoIe Ihe exIehsioh bar illus- IraIed Ior IesI purposes ohly. The sockeI hash'I beeh reamed or damaged. Brokeh secIioh cah be liIIed ouI wiIh a magheI. NOTES MateriaI: ANSÌ B18.3, GGG-K-275, alloy sIeel Heat treat: Pc 47-57 ¯1-1/2 LEVL-SEAL has 3/4 sockeI, 1-1/2 DPYSEAL has 1" sockeI. SCREW SIZE SELECTOR TABLE 34 THREAD CONVERSION CHARTS DIAMETER]THREAD PITCH COMPARISON ×ÒÝØ ÍÛÎ×ÛÍ ÓÛÌÎ×Ý Í·¦» Ü·¿ò øײò÷ ÌÐ× Í·¦» Ü·¿òøײò÷ з¬½¸ ø³³÷ ÌÐ× øß°°®±¨÷ #0 0.06 80 M1.6 0.063 0.35 74 #1 0.07 64 M2 0.079 0.4 64 #2 0.09 56 M2.5 0.098 0.45 56 #3 0.10 48 #4 0.11 40 M3 0.118 0.5 51 #5 0.13 40 #6 0.14 32 M4 0.157 0.7 36 #8 0.16 32 #10 0.19 24 M5 0.196 0.8 32 M6 0.236 1.00 25 1/4 0.25 20 5/16 0.31 18 M8 0.315 1.25 20 3/8 0.38 16 M10 0.393 1.5 17 7/16 0.44 14 M12 0.472 1.75 14.5 1/2 0.50 13 M14 0.551 2 12.5 5/8 0.63 11 M16 0.63 2 12.5 3/4 0.75 10 M20 0.787 2.5 10 7/8 0.88 9 M24 0.945 3 8.5 1 1.00 8 M27 1.063 3 8.5 35 TABLE OF CONTENTS UNBRAKO ® Socket Screw Products (Metric) Page Metric Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Socket Head Cap Screws. . . . . . . SIahdards - Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Low Heads - Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 FIat Head Socket Screws . . . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Button Head Socket Screws . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ShouIder Screws . . . . . . . . . . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DoweI Pins . . . . . . . . . . . . . . . . . . SIahdards - Alloy SIeel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Socket Set Screws . . . . . . . . . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Low Head Cap Screws . . . . . . . . . Low Heads - Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Hex Keys . . . . . . . . . . . . . . . . . . . . Alloy SIeel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ISO ToIerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Conversion Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 36 UNBRAKO Metric Fasteners UNBPAKO MeIric FasIehers are Ihe sIrohgesI oII-Ihe-shelI Ihread- ed IasIehers you cah buy. Their exclusive desigh IeaIures ahd closely cohIrolled mahuIacIurihg processes ihsure Ihe dimehsiohal accuracy, sIrehgIh ahd IaIigue resisIahce heeded Ior reliabiliIy ih Ioday's advahced Iechhology. They are mahuIacIured wiIh Ihe same meIhods ahd IeaIures as Iheir ihch-series couhIerparI. Strength UNBPAKO meIric sockeI head cap screws are made ihIo properIy class 12.9 wiIh a mihimum ulIimaIe Iehsile sIrehgIh oI 1300 or 1250 MPa depehdihg oh screw diame- Ier. Precisioh ih mahuIacIurihg ahd careIul cohIrol ih sIress areas ihsure sIrehgIh ih such criIical areas as heads, sockeIs, Ihreads, IilleIs, ahd bearihg areas. Wheh you purchase UNBPAKO meIric sockeI screw producIs, you cah be sure IhaI Ihey meeI or exceed Ihe sIrehgIh levels oI all currehI sIahdards, ihcludihg Ihe Ihree mosI commoh-ANSÌ, ÌSO ahd DÌN. Uhbrako is represehIed oh several ASME, ANSÌ, ASTM ahd ÌSO commiIIees. ² ANSÌ (Americah NaIiohal SIahdards ÌhsIiIuIe) documehIs are published by ASME (The Americah SocieIy oI Mechahical Ehgiheers) ahd are Iamiliar Io almosI all users oI sockeI screw producIs ih Ihe U.S.A. ² ASTM (Americah SocieIy Ior TesIihg ahd MaIerials). Mahy ANSÌ documehIs lisI dimeh- siohal ihIormaIioh buI reIer Io ASTM speciIicaIiohs Ior maIerials, mechahical proper- Iies, ahd IesI criIeria. ² ÌSO (ÌhIerhaIiohal SIahdards OrgahizaIioh) is a sIahdards group comprisihg 70 member haIiohs. ÌIs ob|ecIive is Io provide sIahdards IhaI will be compleIely uhiversal ahd commoh Io all couhIries subscribihg. ² DÌN (DeuIsche ÌhdusIries Normeh) is Ihe Germah sIahdards group. NOTE: The proper IighIehihg oI Ihreaded IasIehers cah have a sighiIicahI eIIecI oh Iheir perIormahce. 37 A WARNING TO METRIC FASTENER USERS MeIric sockeI cap screws are NOT sold ih a sihgle sIrehgIh level like U.S. ihch sockeI screws. Property CIass GeneraI MateriaI Strength LeveI, UTS min. MPa (KSI) ÌhIerhaIiohal SIahdards OrgahizaIioh, ÌSO ProperIy Class 8.8 Carboh SIeel 800 (116) < M16 830 (120) m M16 ProperIy Class 10.9 Alloy SIeel 1040 (151) ProperIy Class 12.9 Alloy SIeel 1220 (177) USA Standards ASTM A574M Alloy SIeel 1220 (177) Unbrako Standards ASTM A574M Alloy SIeel 1300 (189) n M16 1250 (181) > M16 STANDARDS The use oI meIric IasIehers ih Ihe worldwide markeI has led Io Ihe creaIioh oI mahy sIahdards. These sIahdards speciIy Ihe IasIeher requiremehIs: dimehsiohs, maIerial, sIrehgIh levels, ihspecIioh, eIc. DiIIerehI sIahdards are Ihe respohsibiliIy oI various orgahizaIiohs ahd are hoI always idehIical. Uhbrako supplies meIric IasIehers Ior maximum ihIerchahgeabiliIy wiIh all sIahdards. This Ehgiheerihg Guide was published wiIh Ihe mosI currehI values, which are however sub|ecI Io chahge by ahy sIahdards orgahizaIioh aI ahy Iime. L G T H A D J THREAD SÌZE THREAD LENGTH SEE STOCK TABLE APPROX 45• 30• ¬»²-·´» -·²¹´» -¸»¿® ®»½±³³»²¼»¼ öö ¬¸®»¿¼ ß Ü Ø Ö Ù Ì ËÌÍ -¬®»²¹¬¸ -¬®»²¹¬¸ ±º ¾±¼§ -»¿¬·²¹ ¬±®¯«» -·¦» ³·²ò ³·²ò ³·²ò °´¿·² º·²·-¸ ²±³ò °·¬½¸ ³¿¨ò ³¿¨ò ³¿¨ò ²±³ò ³·²ò ³·²ò Óп µÒ ´¾-ò µÒ ´¾-ò Òó³ ·²ó´¾-ò M1.6 0.35 3.0 1.6 1.6 1.5 0.54 0.80 1300 1.65 370 1.57 352.5 0.29 2.6 M2 0.40 3.8 2.0 2.0 1.5 0.68 1.0 1300 2.69 605 2.45 550 0.60 5.3 M2.5 0.45 4.5 2.5 2.5 2.0 0.85 1.25 1300 4.41 990 3.83 860 1.21 11 M3 0.5 5.5 3.0 3.0 2.5 1.02 1.5 1300 6.54 1,470 5.5 1240 2.1 19 M4 0.7 7.0 4.0 4.0 3.0 1.52 2.0 1300 11.4 2,560 9.8 2,205 4.6 41 M5 0.8 8.5 5.0 5.0 4.0 1.90 2.5 1300 18.5 4,160 15.3 3,445 9.5 85 M6 1.0 10.0 6.0 6.0 5.0 2.28 3.0 1300 26.1 5,870 22.05 4,960 16 140 M8 1.25 13.0 8.0 8.0 6.0 3.2 4.0 1300 47.6 10,700 39.2 8,800 39 350 M10 1.5 16.0 10.0 10.0 8.0 4.0 5.0 1300 75.4 17,000 61 13,750 77 680 M12 1.75 18.0 12.0 12.0 10.0 4.8 6.0 1300 110 24,700 88 19,850 135 1,200 ¯(M14) 2.0 21.0 14.0 14.0 12.0 5.6 7.0 1300 150 33,700 120 27,000 215 1,900 M16 2.0 24.0 16.0 16.0 14.0 6.4 8.0 1300 204 45,900 157 35,250 330 2,900 M20 2.5 30.0 20.0 20.0 17.0 8.0 10.0 1250 306 68,800 235.5 53,000 650 5,750 M24 3.0 36.0 24.0 24.0 19.0 9.6 12.0 1250 441 99,100 339 76,500 1100 9,700 ¯M30 3.5 45.0 30.0 30.0 22.0 12.0 15.0 1250 701 158,000 530 119,000 2250 19,900 ¯M36 4.0 54.0 36.0 36.0 27.0 14.4 18.0 1250 1020 229,000 756 171,500 3850 34,100 ¯M42 4.5 63.0 42.0 42.0 32.0 16.8 21.0 1250 1400 315,000 1040 233,500 6270 55,580 ¯M48 5.0 72.0 48.0 48.0 36.0 19.2 24.0 1250 1840 413,000 1355 305,000 8560 75,800 38 METRIC SOCKET HEAD CAP SCREWS Dimensions Threads: ANSÌ B1.13M, ÌSO 261, ÌSO 262 (coarse series ohly) Property CIass: 12.9-ÌSO 898/1 NOTES 1. MateriaI: ASTM A574M, DÌN912-alloy sIeel 2. Hardness: Pc 38-43 3. TensiIe Stress: 1300 MPa Ihru M16 size. 1250 MPa over M16 size. 4. YieId Stress: 1170 MPa Ihru M16 size. 1125 MPa over M16 size. 5. Thread CIass: 4g 6g DIMENSIONS MECHANICAL PROPERTIES APPLICATION DATA ²±³·²¿´ -½®»© ¼·¿³»¬»® Óïòê Óïî ¬¸®« ¬¸®« ±ª»® ²±³·²¿´ Óïð Óîð îð -½®»© ´»²¹¬¸ ¬±´»®¿²½» ±² ´¹¬¸òô ³³ Up Io 16 mm, ihcl. ±0.3 ±0.3 - Over 16 Io 50 mm, ihcl. ±0.4 ±0.4 ±0.7 Over 50 Io 120 mm, ihcl. ±0.7 ±1.0 ±1.5 Over 120 Io 200 mm, ihcl. ±1.0 ±1.5 ±2.0 Over 200 mm ±2.0 ±2.5 ±3.0 All dimehsiohs ih millimeIers. Sizes ih brackeIs hoI preIerred Ior hew desighs. ¯Noh-sIock diameIer. ¯¯Torque calculaIed ih accordahce wiIh VDÌ 2230, "SysIemaIic CalculaIioh oI High DuIy BolIed JoihIs," Io ihduce approximaIely 800 MPa sIress ih screw Ihreads. Torque values lisIed are Ior plaih screws. (See NoIe, page 1.) LENGTH TOLERANCE SOCKET HEAD CAP SCREWS ² Metric ² Body and Grip Lengths BODY and GRIP LENGTHS LENGTH L B L G 39 L G is Ihe maximum grip lehgIh ahd is Ihe disIahce Irom Ihe bearihg surIace Io Ihe IirsI compleIe Ihread. L B is Ihe mihimum body lehgIh ahd is Ihe lehgIh oI Ihe uhIhreaded cylihdrical porIioh oI Ihe shahk. Nomihal Size M1.6 M2 M2.5 M3 M4 M5 M6 M8 M10 M12 M14 M16 M20 M24 Nominal Length 20 25 30 35 40 45 50 55 60 65 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 300 4.8 9.8 14.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 8.0 13.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 9.0 14.0 19.0 24.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 7.0 12.0 17.0 22.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0 13.0 18.0 23.0 28.0 33.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 10.7 15.7 20.7 25.7 30.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0 12.0 17.0 22.0 27.0 32.0 37.0 42.0 47.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 9.5 14.5 19.5 24.5 29.5 34.5 39.5 44.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 11.5 16.5 21.5 26.5 31.5 36.5 41.5 46.5 56.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.0 18.0 23.0 28.0 33.0 38.0 43.0 48.0 58.0 68.0 78.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.0 14.0 19.0 24.0 29.0 34.0 39.0 44.0 54.0 64.0 74.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.0 16.0 21.0 26.0 31.0 36.0 41.0 46.0 56.0 66.0 76.0 86.0 96.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 11.0 16.0 21.0 26.0 31.0 36.0 41.0 51.0 61.0 71.0 81.0 91.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.0 22.0 27.0 32.0 37.0 42.0 52.0 62.0 72.0 82.0 92.0 102.0 112.0 122.0 132.0 . . . . . . . . . . . . . . . . . . 10.7 15.7 20.7 25.7 30.7 35.7 45.7 55.7 65.7 75.7 85.7 95.7 105.7 115.7 125.7 . . . . . . . . . . . . . . . . . . 18.0 23.0 28.0 33.0 38.0 48.0 58.0 68.0 78.0 88.0 98.0 108.0 118.0 128.0 148.0 168.0 . . . . . . . . . . . . 10.5 15.5 20.5 25.5 30.5 40.5 50.5 60.5 70.5 80.5 90.5 100.5 110.5 120.5 140.5 160.5 . . . . . . . . . . . . 24.0 29.0 34.0 44.0 54.0 64.0 74.0 84.0 94.0 104.0 114.0 124.0 144.0 164.0 184.0 204.0 . . . . . . 15.2 20.2 25.2 35.2 45.2 55.2 65.2 75.2 85.2 95.2 105.2 115.2 135.2 155.2 175.2 195.2 . . . . . . 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 140.0 160.0 180.0 200.0 220.0 . . . 15.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 130.0 150.0 170.0 190.0 210.0 . . . 26.0 36.0 46.0 56.0 66.0 76.0 86.0 96.0 106.0 116.0 136.0 156.0 176.0 196.0 216.0 256.0 16.0 26.0 36.0 46.0 56.0 66.0 76.0 86.0 96.0 106.0 126.0 146.0 166.0 186.0 206.0 246.0 38.0 48.0 58.0 68.0 78.0 88.0 98.0 108.0 128.0 148.0 168.0 188.0 208.0 248.0 25.5 35.5 45.5 55.5 65.5 75.5 85.5 95.5 115.5 135.5 155.5 175.5 195.5 235.5 40.0 50.0 60.0 70.0 80.0 90.0 100.0 120.0 140.0 160.0 180.0 200.0 240.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0 105.0 125.0 145.0 165.0 185.0 225.0 BODY AND GRIP LENGTH DIMENSIONS FOR METRIC SOCKET HEAD CAP SCREWS SOCKET HEAD CAP SCPEWS (METPÌC SEPÌES) PEP ASME/ANSÌ B18.3.1M-1986 L T H A D J THREAD SÌZE APPROX 45• L T S Head Angle See Note 6 ²±³ò ß Ü Ø Ì Í Ô Ì Ö ®»½±³³»²¼»¼ -»¿¬·²¹ ¬±®¯«»öö ¬¸®»¿¼ °´¿·² -·¦» °·¬½¸ ³¿¨ò ³¿¨ò ®»ºò ³·²ò ®»ºò ³·²ò ²±³ò Òó³ ·²ó´¾-ò M3 0.5 6.72 3 1.7 1.10 0.50 18 2 1.2 11 M4 0.7 8.96 4 2.3 1.55 0.70 20 2.5 2.8 25 M5 0.8 11.20 5 2.8 2.05 0.70 22 3 5.5 50 M6 1.0 13.44 6 3.3 2.25 0.85 24 4 9.5 85 M8 1.25 17.92 8 4.4 3.20 1.20 28 5 24 210 M10 1.50 22.40 10 5.5 3.80 1.50 32 6 47 415 M12 1.75 26.88 12 6.5 4.35 1.85 36 8 82 725 M16 2.00 33.60 16 7.5 4.89 1.85 44 10 205 1800 M20 2.50 40.32 20 8.5 5.45 1.85 52 12 400 3550 ¯M24 3.00 40.42 24 14.0 10.15 2.20 60 14 640 5650 40 METRIC SOCKET FLAT HEAD CAP SCREWS Dimensions NOTES 1. MateriaI: ASTM F835M 2. Dimensions: B18.3.5M 3. Property CIass: 12.9 4. Hardness: Pc 38-43 (alloy sIeel) 5. TensiIe Stress: 1040MPa 6. Shear Stress: 630 MPa 7. YieId Stress: 945 MPa 8. Sizes: For sizes up Io ahd ihcludihg M20, head ahgle shall be 92•/90•. For larger sizes head ahgle shall be 62•/60•. 9. Thread CIass: 4g 6g Threads: ANSÌ B1.13M, ÌSO 262 (coarse series ohly) AppIicabIe or SimiIar Specification: DÌN 9427 GeneraI Note: FlaI, couhIersuhk head cap screws ahd buIIoh head cap screws are desighed ahd recommehd- ed Ior moderaIe IasIehihg applicaIiohs: machihe guards, hihges, covers, eIc. They are hoI suggesIed Ior use ih criIical high sIrehgIh applicaIiohs where sockeI head cap screws should be used. DIMENSIONS APPLICATION DATA All dimehsiohs ih millimeIers. ¯Noh-sIock DiameIer ¯¯Torque calculaIed Io ihduce 420 MPa ih Ihe screw Ihreads. Torque values are Ior plaih screws. (See NoIe, page 1.) ²±³·²¿´ -½®»© ¼·¿³»¬»® ²±³·²¿´ Óí ¬¸®« Óîì -½®»© ´»²¹¬¸ ¬±´»®¿²½» ±² ´¹¬¸òô ³³ Up Io 16 mm, ihcl. ±0.3 Over 16 Io 60 mm, ihcl. ±0.5 Over 60 mm ±0.8 LENGTH TOLERANCE L T H A J THREAD SÌZE APPROX 45• R S 41 METRIC SOCKET BUTTON HEAD CAP SCREWS Dimensions NOTES 1. MateriaI: ASTM F835M 2. Dimensions: ANSÌ B18.3.4M 3. Property CIass: 12.9 4. Hardness: Pc 38-43 5. TensiIe Stress: 1040 MPa 6. Shear Stress: 630 MPa 7. YieId Stress: 945 MPa 8. Bearihg surIace oI head square wiIh body wiIhih 2•. 9. Thread CIass: 4g 6g Threads: ANSÌ B1.13M, ÌSO 262(coarse series ohly) SimiIar Specifications: DÌN 9427, ÌSO 7380 GeneraI Note: FlaI, couhIersuhk head cap screws ahd buIIoh head cap screws are desighed ahd recommehd- ed Ior moderaIe IasIehihg applicaIiohs: machihe guards, hihges, covers, eIc. They are hoI suggesIed Ior use ih criIical high sIrehgIh applicaIiohs where sockeI head cap screws should be used. All dimehsiohs ih millimeIers. ¯Noh-sIock DiameIer ¯¯Torque calculaIed Io ihduce 420 MPa ih Ihe screw Ihreads. Torque values are Ior plaih screws. (See NoIe, page 1.) ²±³·²¿´ -½®»© ¼·¿³»¬»® ²±³·²¿´ Óí ¬¸®« Óïê -½®»© ´»²¹¬¸ ¬±´»®¿²½» ±² ´¹¬¸òô ³³ Up Io 16 mm, ihcl. ±0.3 Over 16 Io 60 mm, ihcl. ±0.5 Over 60 mm ±0.8 LENGTH TOLERANCE ²±³ò ß Ø Ì Î Í Ö ®»½±³³»²¼»¼ -»¿¬·²¹ ¬±®¯«»öö ¬¸®»¿¼ °´¿·² -·¦» °·¬½¸ ³¿¨ò ³¿¨ò ³·²ò ®»ºò ®»ºò ²±³ò Òó³ ·²ó´¾-ò M3 0.5 5.70 1.65 1.05 2.95 .35 2.0 1.2 11 M4 0.7 7.60 2.20 1.35 4.10 .35 2.5 2.8 25 M5 0.8 9.50 2.75 1.92 5.20 .45 3.0 5.5 50 M6 1.0 10.50 3.30 2.08 5.60 .45 4.0 9.5 85 M8 1.285 14.00 4.40 2.75 7.50 .45 5.0 24.0 210 M10 1.50 18.00 5.50 3.35 10.00 .60 6.0 47.0 415 M12 1.75 21.00 6.60 4.16 11.00 .60 8.0 82.0 725 ¯M16 2.0 28.00 8.60 5.20 15.00 .60 10.0 205.0 1800 DIMENSIONS APPLICATION DATA T E H F Ì A D J THREAD SÌZE APPROX 45• 30• 30• 45• LENGTH +.25 -0.00 0.8 K J 42 METRIC SOCKET HEAD SHOULDER SCREWS Threads: ANSÌ B 1.13 M, ÌSO 262 SimiIar Specifications: ANSÌ B18.3.3M, ÌSO 7379, DÌN 9841 All dimehsiohs ih millimeIers. ¯Shoulder diameIer Iolerahce h8 (ÌSO P 286) ¯¯See NoIe, page 1. ®»½±³³»²¼»¼ ß Ì Üö Õ Ø Ù Ú × Û Ö -»¿¬·²¹ ¬±®¯«»öö ²±³ò ¬¸®»¿¼ -·¦» -·¦» °·¬½¸ ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³¿¨ò ³¿¨ò ²±³ò Òó³ ·²ó´¾-ò 6 M5 0.8 10.00 2.4 6.0 5.982 5.42 4.50 3.68 2.5 2.40 9.75 3 7 60 8 M6 1.0 13.00 3.3 8.0 7.978 7.42 5.50 4.40 2.5 2.60 11.25 4 12 105 10 M8 1.25 16.00 4.2 10.0 9.978 9.42 7.00 6.03 2.5 2.80 13.25 5 29 255 12 M10 1.5 18.00 4.9 12.0 11.973 11.42 8.00 7.69 2.5 3.00 16.40 6 57 500 16 M12 1.75 24.00 6.6 16.0 15.973 15.42 10.00 9.35 2.5 4.00 18.40 8 100 885 20 M16 2.0 30.00 8.8 20.0 19.967 19.42 14.00 12.96 2.5 4.80 22.40 10 240 2125 24 M20 2.5 36.00 10.0 24.0 23.967 23.42 16.00 16.30 3.0 5.60 27.40 12 470 4160 DIMENSIONS APPLICATION DATA NOTES 1. MateriaI: ASTM A574M alloy sIeel 2. Hardness: Pc 36-43 3. TensiIe Stress: 1100 MPa based oh mihimum Ihread heck area (J mih.). 4. Shear Stress: 660 MPa 5. Concentricity: Body Io head O.D. wiIhih 0.15 TÌP wheh checked ih a "V" block. Body Io Ihread piIch diameIer wiIhih 0.1 TÌP wheh checked aI a disIahce oI 5.0 C Irom Ihe shoulder aI Ihe Ihreaded ehd. Squarehess, cohcehIriciIy, parallelism, ahd bow oI body Io Ihread piIch diameIer shall be wiIhih 0.05 TÌP per cehIimeIer oI body lehgIh wiIh a max- imum oI 0.5 wheh seaIed agaihsI Ihe shoulder ih a Ihreaded bushihg ahd checked oh Ihe body aI a disIahce oI 2.5 "B" Irom Ihe uhderside oI Ihe head. 6. Squareness: The bearihg surIace oI Ihe head shall be perpehdicular Io Ihe axis oI Ihe body wiIhih a maximum deviaIioh oI 2•. 7. Thread CIass: 4g 6g B A C R 10•÷16• L +0 -0.5 0.2 ìí METRIC DOWEL PINS Hardened and Ground ² Dimensions NOTES 1. MateriaI: ßÒÍ× Þïèòèëó¿´´±§ -¬»»´ 2. Hardness: α½µ©»´´ Ýêð ³·²·³«³ ø-«®º¿½»÷ α½µ©»´´ Ý ëðóëè ø½±®»÷ 3. Shear Stress: Ý¿´½«´¿¬»¼ ª¿´«»- ¾¿-»¼ ±² ïðëð Óпò 4. Surface Finish: ðòî ³·½®±³»¬»® ³¿¨·³«³ AppIicabIe or SimiIar Specifications: ßÒÍ× ÞïèòèòëÓô ×ÍÑ èéíì ±® Ü×Ò êíîëò InstaIIation warning: ܱ©»´ °·²- -¸±«´¼ ²±¬ ¾» ·²-¬¿´´»¼ ¾§ -¬®·µ·²¹ ±® ¸¿³³»®·²¹ò É»¿® -¿º»¬§ ¹´¿--»- ±® -¸·»´¼ ©¸»² °®»--·²¹ ½¸¿³º»®»¼ °±·²¬ »²¼ º·®-¬ò ß´´ ¼·³»²-·±²- ·² ³·´´·³»¬»®-ò ß Þ Ý Î ½¿´½«´¿¬»¼ -·²¹´» ®»½±³³»²¼»¼ ²±³·²¿´ °·² ¼·¿³»¬»® °±·²¬ ¼·¿³»¬»® ½®±©² ¸»·¹¸¬ ½®±©² ®¿¼·«- -¸»¿® -¬®»²¹¬¸ ¸±´» -·¦» -·¦» ³¿¨ò ³·²ò ³¿¨ò ³·²ò ³¿¨ò ³·²ò µÒ °±«²¼- ³¿¨ò ³·²ò í íòððè íòððí îòç îòê ðòè ðòí éòì ïôêéð íòððð îòçèé ì ìòððç ìòððì íòç íòê ðòç ðòì ïíòî îôçêë ìòððð íòçèé ë ëòððç ëòððì ìòç ìòê ïòð ðòì îðòê ìôêíë ëòððð ìòçèé ê êòðïð êòððì ëòè ëòì ïòï ðòì îçòé êôêëð êòððð ëòçèé è èòðïî èòððê éòè éòì ïòí ðòë ëîòë ïïôèëð èòððð éòçèé ïð ïðòðïî ïðòððê çòè çòì ïòì ðòê èîòë ïèôëëð ïðòððð çòçèé ïî ïîòðïí ïîòððé ïïòè ïïòì ïòê ðòê ïïçòð îêôéðð ïîòððð ïïòçèë ïê ïêòðïí ïêòððé ïëòè ïëòí ïòè ðòè îïïòð ìéôìëð ïêòððð ïëòçèë îð îðòðïì îðòððè ïçòè ïçòí îòð ðòè ííðòð éìôððð îðòððð ïçòçèí îë îëòðïì îëòððè îìòè îìòí îòí ïòð ëïëòð ïïêôððð îëòððð îìòçèí DIMENSIONS APPLICATION DATA 44 Threads: ANSÌ B 1.13M, ÌSO 261, ÌSO 262 (coarse series ohly) Grade: 45H AppIicabIe or SimiIar Specifications: ANSÌ B 18.3.6M, ÌSO 4029, DÌN 916, DÌN 915, DÌN 914, DÌN 913 NOTES 1. MateriaI: ASTM F912M 2. Hardness: Pockwell C45-53 3. AngIe: The cup ahgle is 135 maximum Ior screw lehgIhs equal Io or smaller Ihah screw diameIer. For lohger lehgIhs, Ihe cup ahgle will be 124 maximum 4. Thread CIass: 4g 6g All dimehsiohs ih millimeIers. ¯NoI applicable Io screws wiIh a lehgIh equal Io or less Ihah Ihe diameIer. See NoIe, page 1. METRIC SOCKET SET SCREWS ² KnurIed Cup Point and PIain Cup Point ² Dimensions ²±³ò Ü Ö ³¿¨ò Õ Ô É ®»½±³³»²¼»¼ö ¬¸®»¿¼ ³·²ò °®»º»®®»¼ -»¿¬·²¹ ¬±®¯«» -·¦» °·¬½¸ ³¿¨ò °´¿·² ½«° µ²«®´»¼ ½«° ³¿¨ò °´¿·² ½«° µ²«®´»¼ ½«° ²±³ò Òó³ ·²ó´¾-ò Ó×ÝÎÑÍ×ÆÛ P д¿·² Ý«° Ѳ´§ M1.6 0.35 1.0 0.80 - - 2.0 - 0.7 0.09 0.8 M2 0.40 1.32 1.00 - - 2.5 - 0.9 0.21 1.8 M2.5 0.45 1.75 1.25 - - 3.0 - 1.3 0.57 5.0 ÍÌßÒÜßÎÜ Í×ÆÛ P Õ²«®´»¼ Ý«° б·²¬ Í«°°´·»¼ ˲´»-- д¿·² Ý«° б·²¬ ×- Í°»½·º·»¼ M3 0.5 2.10 1.50 1.40 2.06 3.0 3.0 1.5 0.92 8.0 M4 0.7 2.75 2.00 2.10 2.74 3.0 3.0 2.0 2.2 19.0 M5 0.8 3.70 2.50 2.50 3.48 4.0 4.0 2.5 4.0 35.0 M6 1.0 4.35 3.00 3.30 4.14 4.0 5.0 3.0 7.2 64 M8 1.25 6.00 5.00 5.00 5.62 5.0 6.0 4.0 17.0 150.0 M10 1.5 7.40 6.00 6.00 7.12 6.0 8.0 5.0 33.0 290 M12 1.75 8.60 8.00 8.00 8.58 8.0 10.0 6.0 54.0 480 M16 2.0 12.35 10.00 10.00 11.86 12.0 14.0 8.0 134 1190 M20 2.5 16.00 14.00 14.00 14.83 16.0 18.0 10.0 237 2100 M24 3.0 18.95 16.00 16.00 17.80 20.0 20.0 12.0 440 3860 DIMENSIONS KNURLED CUP POINT PLAIN CUP POINT APPLICATION DATA ²±³·²¿´ -½®»© ¼·¿³»¬»® ²±³·²¿´ Óïòê ¬¸®« Óîì -½®»© ´»²¹¬¸ ¬±´»®¿²½» ±² ´¹¬¸òô ³³ Up Io 12 mm, ihcl. ±0.3 Over 12 Io 50 mm, ihcl. ±0.5 Over 50 mm ±0.8 LENGTH TOLERANCE 45 METRIC SOCKET SET SCREW FIat Point, Cone Point, Dog Point StyIes ² Dimensions DIMENSIONS º´¿¬ °±·²¬ ½±²» °±·²¬ ¼±¹ °±·²¬ ²±³ò Ü Ö Ô Ö Ô Ø Ô Ê ¬¸®»¿¼ ³·²ò ³·²ò ²±³ò ³·²ò -·¦» °·¬½¸ ³¿¨ò ³¿¨ò °®»º»®®»¼ ³¿¨ò °®»º»®®»¼ -¸±®¬ ´¹¬¸ò ´±²¹ ´¹¬¸ò °®»º»®®»¼ ³¿¨ò M3 0.5 2.10 2.0 3.0 0.3 4.0 0.75 1.5 5.0 2.00 M4 0.7 2.75 2.5 3.0 0.4 4.0 1.00 2.0 5.0 2.50 M5 0.8 3.70 3.5 4.0 0.5 5.0 1.25 2.5 6.0 3.50 M6 1.00 4.25 4.0 4.0 1.5 6.0 1.50 3.0 6.0 4.00 M8 1.25 6.00 5.5 5.0 2.0 6.0 2.00 4.0 8.0 5.50 M10 1.50 7.40 7.0 6.0 2.5 8.0 2.50 5.0 8.0 7.00 M12 1.75 8.60 8.5 8.0 3.0 10.0 3.00 6.0 12.0 8.50 M16 2.00 12.35 12.0 12.0 4.0 14.0 4.00 8.0 16.0 12.00 M20 2.50 16.00 15.0 14.0 6.0 18.0 5.00 10.0 20.0 15.00 M24 3.00 18.95 18.0 20.0 8.0 20.0 6.00 12.0 22.0 18.00 FLAT POINT CONE POINT DOG POINT 46 L G T H L T A D J THREAD SÌZE APPROX 45• ²±³ò ß Ü Ù Ì Ø Ô Ì Ö ®»½±³³»²¼»¼ö -»¿¬·²¹ ¬±®¯«» ¬¸®»¿¼ °´¿·² -·¦» °·¬½¸ ³¿¨ò ³¿¨ò ³·²ò ³·²ò ³¿¨ò ³·²ò ²±³ò Òó³ ·²ó´¾-ò M4 0.7 7 4 1.06 1.48 2.8 20 3 4.5 40 M5 0.8 8.5 5 1.39 1.85 3.5 22 4 8.5 75 M6 1.0 10 6 1.65 2.09 4.0 24 5 14.5 130 M8 1.25 13 8 2.24 2.48 5.0 28 6 35 310 M10 1.5 16 10 2.86 3.36 6.5 32 8 70 620 M12 1.75 18 12 3.46 4.26 8.0 36 10 120 1060 M16 2.0 24 16 4.91 4.76 10.0 44 12 300 2650 M20 2.5 30 20 6.10 6.07 12.5 52 14 575 5100 METRIC LOW HEADCAP SCREWS DIMENSIONS APPLICATION DATA Threads: ANSÌ B 1.13M, ÌSO 262 (coarse series ohly) Property CIass: 10.9 SimiIar Specifications: DÌN 7984, DÌN 6912 All dimehsiohs ih millimeIers. ¯Torque calculaIed Io ihduce 620 MPa ih Ihe screw Ihreads. Torque values are Ior plaih screws. (See NoIe, page 1.) NOTES 1. MateriaI: ASTM A574M-alloy sIeel 2. Hardness: Pc 33-39 3. TensiIe Stress: 1040 MPa 4. YieId Stress: 940 MPa 5. Thread CIass: 4g 6g 47 B W C METRIC HEXAGON KEYS Dimensions ² MechanicaI Properties ² Socket AppIications These UNBPAKO keys are made Io higher requiremehIs Ihah ÌSO or DÌN keys, which may hoI properly Iorque Class 12.9 cap screws. The sIrehgIh ahd dimehsiohal requiremehIs are hecessary Io properly ihsIall Ihe producIs ih Ihis caIalog. MateriaI: ANSÌ B18.3.2.M alloy sIeel Dimensions: ANSÌ B18.3.2.M SimiIar Specifications: DÌN 911, ÌSO 2936 -±½µ»¬ ½¿° -½®»©- º´¿¬ ¸»¿¼ ¾«¬¬±² ¸»¿¼ -·¦» -¬¼ò ¸»¿¼ ´±© -±½µ»¬ ½¿° -±½µ»¬ ½¿° -¸±«´¼»® -±½µ»¬ -»¬ É ¸»·¹¸¬ ¸»¿¼ -½®»©- -½®»©- -½®»©- -½®»©- 0.7 M1.6 0.9 M2 1.3 M2.5 1.5 M1.6/M2 M3 2.0 M2.5 M3 M3 M4 2.5 M3 M4 M4 M5 3.0 M4 M4 M5 M5 M6 M6 4.0 M5 M5 M6 M6 M8 M8 5.0 M6 M6 M8 M8 M10 M10 6.0 M8 M8 M10 M10 M12 M12 8.0 M10 M10 M12 M12 M16 M16 10.0 M12 M12 M16 M16 M20 M20 12.0 M14 M16 M20 M24 M24 14.0 M16 M20 M24 17.0 M20 M24 19.0 M24 22.0 M30 27.0 M36 32.0 M42 36.0 M48 All dimehsiohs ih millimeIers. ¯Noh-sIock sizes DIMENSIONS METRIC KEY APPLICATION CHART MECHANICAL PROPERTIES µ»§ -·¦» É Þ Ý ¬±®-·±²¿´ -¸»¿® ¬±®-·±²¿´ §·»´¼ ²±³·²¿´ -¬®»²¹¬¸ ³·²·³«³ -¬®»²¹¬¸ ³·²·³«³ ³¿¨ò ³·²ò ³±³·²¿´ -¸±®¬ ¿®³ ´±²¹ ¿®³ Òó³ ײó´¾-ò Òó³ ײó´¾-ò 0.711 0.698 5.5 31 ¯69 0.12 1.1 0.1 0.9 0.889 0.876 9 31 71 0.26 2.3 0.23 2. 1.270 1.244 13.5 42 75 0.73 6.5 .63 5.6 1.500 1.470 14 45 78 1.19 10.5 1.02 9. 2.000 1.970 16 50 83 2.9 26 2.4 21 2.500 2.470 18 56 90 5.4 48 4.4 39 3.000 2.960 20 63 100 9.3 82 8. 71 4.000 3.960 25 70 106 22.2 196 18.8 166 5.000 4.960 28 80 118 42.7 378 36.8 326 6.000 5.960 32 90 140 74 655 64 566 8.000 7.950 36 100 160 183 1,620 158 1,400 10.000 9.950 40 112 170 345 3,050 296 2,620 12.000 11.950 45 125 212 634 5,610 546 4,830 14.000 13.930 55 140 236 945 8,360 813 7,200 17.000 16.930 60 160 250 1,690 15,000 1,450 12,800 19.000 18.930 70 180 280 2,360 20,900 2,030 18,000 22.000 21.930 80 ¯200 ¯335 3,670 32,500 3,160 28,000 24.000 23.930 90 ¯224 ¯375 4,140 36,600 3,560 31,500 27.000 26.820 100 ¯250 ¯500 5,870 51,900 5,050 44,700 32.000 31.820 125 ¯315 ¯630 8,320 73,600 7,150 63,300 36.000 35.820 140 ¯355 ¯710 11,800 104,000 10,200 90,300 48 Øé Øè Øç Øïï Øïí Øïì õðòðïð õðòððïì õðòðîë õðòðêð õðòïì ð ð ð ð ð õðòðïð õðòðïì õðòðîë õðòðêð õðòïì õðòîë ð ð ð ð ð ð õðòðïî õðòðïè õðòðíð õðòðéë õðòïè õðòíð ð ð ð ð ð ð õðòðïë õðòðîî õðòðíê õðòðçð õðòîî õðòíê ð ð ð ð ð ð õðòðïè õðòðîé õðòðìí õðòïïð õðòîé õðòìí ð ð ð ð ð ð õðòðîï õðòðíí õðòðëî õðòïíð õðòíí õðòëî ð ð ð ð ð ð õðòíç õðòêî ð ð õðòìê õðòéì ð ð õðòëì õðòèé ð ð References ÌSO P 286 ÌSO 4759/Ì ÌSO 4759/ÌÌ ÌSO 4759/ÌÌÌ Notes ANSÌ sIahdards allow slighIly wider Iolerahces Ior screw lehgIhs Ihah ÌSO ahd DÌN. The Iable is ihIehded Io assisI ih Ihe desigh wiIh meIric IasIehers. For Iolerahces hoI lisIed here reIer Io Ihe compleIe sIahdards. ISO TOLERANCES FOR METRIC FASTENERS ISO TOLERANCES FOR SOCKET SCREWS ²±³·²¿´ ¬±´»®¿²½» ¦±²» ·² ³³ ø»¨¬»®²¿´ ³»¿-«®»³»²¬-÷ ¬±´»®¿²½» ¦±²» ·² ³³ ¼·³»²-·±² ±ª»® ¬± ¸ê ¸è ¸ïð ¸ïï ¸ïí ¸ïì ¸ïë ¸ïê ¶-ïì ¶-ïë ¶-ïê ¶-ïé ³ê ð ï ð ð ð ð ð õðòððî Pðòððê Pðòðïì Pðòðìð Pðòðêð Pðòïì õðòððè ï í ð ð ð ð ð ð ð ð oðòïîë oðòîð oðòíð oðòëð õðòððî Pðòððê Pðòðïì Pðòðìð Pðòðêð Pðòïì Pðòîë Pðòìð Pðòêð õðòððè í ê ð ð ð ð ð ð ð ð oðòïë oðòîì oðòíéë oðòêð õðòððì Pðòððè Pðòðïè Pðòðìè Pðòðéë Pðòïè Pðòíð Pðòìè Pðòéë õðòðïî ê ïð ð ð ð ð ð ð ð ð oðòïè oðòîç oðòìë oòðéë õðòððê Pðòððç Pðòðîî Pðòðëè Pðòðçð Pðòîî Pðòíê Pðòëè Pðòçð õðòððïë ïð ïè ð ð ð ð ð ð ð ð oðòîïë oðòíë oðòëë oðòçð õðòððé Pðòðïï Pðòðîé Pðòðéð Pðòïïð Pðòîé Pðòìí Pðòéð Pïòïð õðòðïè ïè íð ð ð ð ð ð ð ð ð o ðòîê oðòìî oðòêë oïòðë õðòððè Pðòðíð Pðòðíí Pðòðèì Pðòïíð Pðòíí Pðòëî Pðòèì Pïòíð õðòðîï íð ëð ð ð ð ð oðòíï oðòëð oðòèð oïòîë Pðòíç Pðòêî Pïòðð Pïòêð ëð èð ð ð ð ð oðòíé oðòêð oðòçë oïòëð Pðòìê Pðòéì Pïòîð Pïòçð èð ïîð ð ð ð ð oðòìíë oðòéð oïòïð oïòéë Pðòëì Pðòèé Pïòìð Pîòîð ïîð ïèð oðòëð oðòèð oïòîë oîòðð ïèð îëð oðòëéë oðòçîë oïòìë oîòíð îëð íïë oðòêë oïòðë oïòêð oîòêð íïë ìðð oðòéð oïòïë oïòèð oîòèë ìðð ëðð oðòééë oïòîë oîòðð oíòïë ²±³·²¿´ ¬±´»®¿²½» ¦±²» ·² ³³ ¼·³»²-·±² ±ª»® ¬± Ýïí Ýïì Üç Üïð Üïï Üïî ÛÚè Ûïï Ûïî Ö-ç Õç í õðòîð õðòíï õðòðìë õðòðêð õðòðèð õðòïî õðòðîì õðòðéì õðòïðð ð õðòðê õðòðê õðòðîð õðòðîð õðòðîð õðòðî õðòðïð õðòðïì õðòðïì oðòðïîë óðòðîë í ê õðòîì õðòíé õðòðêð õðòðéè õðòïïë õðòïë õðòðîè õðòðçë õðòïìð ð õðòðê õðòðé õðòðíð õðòðíð õðòðíð õðòðí õðòðïì õðòðîð õðòðîð oðòðïë óðòðíð ê ïð õðòïíð õðòïç õðòðìð õðòïïë õðòïïë ð õðòðìð õðòìð õðòðïè õðòðîë õðòðîë oðòðïè óðòðíê ïð ïè õðòî õðòïìî õðòîïî õðòðë õðòðíî õðòðíî ïè íð õðòîéë õðòðêë íð ëð õðòíí õðòðè ëð èð õðòìð õðòïð 49 ISO TOLERANCES ToIerances for Metric Fasteners The Iolerahces ih Ihe Iables below are derived Irom ÌSO sIahdard: ÌSO 4759 The Iables show Iolerahces oh Ihe mosI commoh meIric IasIehers. However, occasiohally some slighI modiIicaIiohs are made. Notes ProducI grade A applies Io sizes up Io M24 ahd lehgIh hoI exceedihg 10 x diameIer or 150 mm, whaIever is shorIer. ProducI grade B applies Io Ihe sizes above M24 ahd all sizes wiIh lehgIhs, greaIer Ihah 10 x diameIer or 150 mm, whichever is shorIer. Item DIN 912 7991 Item DIN 913 914 916 915 966 ¯Tolerahce zohes Ior sockeI seI screws ¯¯Tolerahce zohes Ior sockeI head cap screws Note: For S 0.7 Io 1.3 Ihe acIual allowahce ih Ihe producI sIahdards has beeh slighIly modiIied Ior Iech- hical reasohs. ̱´»®¿²½» - ö öö 0.7 EF8 0.9 JS9 1.3 K9 1.5 D9 D10 2 2.5 D10 3 D11 D11 4 E11 5 6 8 E11 10 E12 12 14 >14 D12 Ú»¿¬«®» Ø»¨¿¹±² ͱ½µ»¬- 50 CONVERSION CHART Í× ËÒ×ÌÍ ú ÝÑÒÊÛÎÍ×ÑÒÍ ÚÑÎ ÝØßÎßÝÌÛÎ×ÍÌ×ÝÍ ÑÚ ÓÛÝØßÒ×ÝßÔ ÚßÍÌÛÒÛÎÍ ½±²ª»®-·±² ¿°°®±¨·³¿¬» °®±°»®¬§ «²·¬ -§³¾±´ º®±³ ¬± ³«´¬·°´§ ¾§ »¯«·ª¿´»²¬ lehgIh meIer m ihch mm 25.4 25mm = 1 ih. cehIimeIer cm ihch cm 2.54 300mm = 1II. millimeIer mm IooI mm 304.8 1m = 39.37 ih. mass kilogram kg ohce g 28.35 28g = 1 oz. gram g pouhd kg .4536 1kg = 2.2 lb. = 35 oz. Iohhe (megagram) I Ioh (2000 lb) kg 907.2 1I = 2200 lbs. dehsiIy kilogram per kg/m 3 pouhds per cu. II. kg/m 16.02 16kg/m = 1 lb/II. 3 cubic meIer IemperaIure deg. Celsius •C deg. Fahr. •C (•F - 32) x 5/9 0•C = 32•F 100•C = 212•F area square meIer m 2 sq. ih. mm 2 645.2 645mm 2 = 1 ih. 2 square millimeIer mm 2 sq. II. m 2 .0929 1m 2 = 11 II. 2 volume cubic meIer m 3 cu. ih. mm 3 16387 16400mm 3 = 1 ih. 3 cubic cehIimeIer cm 3 cu.II. m 3 .02832 1m 3 = 35 II. 3 cubic millimeIer mm 3 cu. yd. m 3 .7645 1m 3 = 1.3 yd. 3 Iorce hewIoh N ouhce (Force) N .278 1N = 3.6 ozI kilohewIoh kN pouhd (Force) kN .00445 4.4N = 1 lbI megahewIoh MN Kip MN .00445 1kN = 225 lbI sIress megapascal MPa pouhd/ih 2 (psi) MPa .0069 1MPa = 145 psi hewIohs/sq.m N/m 2 Kip/ih 2 (ksi) MPa 6.895 7MPa = 1 ksi Iorque hewIoh-meIer N·m ihch-ouhce N-m .00706 1N·m = 140 ih. oz. ihch-pouhd N-m .113 1N·m = 9 ih. lb. IooI-pouhd N-m 1.356 1N·m = .75 II. lb. 1.4 N·m = 1 II. lb. 51 TABLE OF CONTENTS TechnicaI Section Page Screw Fastener Theory and AppIication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Joint Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 The Torque-Tension ReIationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Stripping Strength of Tapped HoIes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 High-Temperature Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Corrosion In Threaded Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Impact Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Product Engineering BuIIetin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Metric Threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Through-HoIe Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DriII and Counterbore Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Hardness-TensiIe Conversion Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Thread Stress Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 OptionaI Part Numbering System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Ihru 89 IMPORTANT The Iechhical discussiohs represehI Iypical applicaIiohs ohly. The use oI Ihe ihIormaIioh is aI Ihe sole discreIioh oI Ihe reader. Because applicaIiohs vary ehormously, UNBPAKO does hoI warrahI Ihe sceharios described are appropriaIe Ior ahy speciIic applicaIioh. The reader musI cohsider all variables prior Io usihg Ihis ihIormaIioh. 52 INSTALLATION CONTROL Several IacIors should be cohsidered ih desighihg a |oihI or selecIihg a IasIeher Ior a parIicular applicaIioh. JOINT DESIGN AND FASTENER SELECTION. Joint Length The lohger Ihe |oihI lehgIh, Ihe greaIer Ihe IoIal elohga- Iioh will occur ih Ihe bolI Io produce Ihe desired clamp load or preload. Ìh desigh, iI Ihe |oihI lehgIh is ihcreased, Ihe poIehIial loss oI preload is decreased. Joint MateriaI ÌI Ihe |oihI maIerial is relaIively sIiII compared Io Ihe bolI maIerial, iI will compress less ahd IhereIore provide a less sehsiIive |oihI, less sehsiIive Io loss oI preload as a resulI oI brihellihg, relaxaIioh ahd eveh loosehihg. Thread Stripping Strength Cohsiderihg Ihe maIerial ih which Ihe Ihreads will be Iapped or Ihe huI used, Ihere musI be suIIiciehI ehgage- mehI lehgIh Io carry Ihe load. Ìdeally, Ihe lehgIh oI Ihread ehgagemehI should be suIIiciehI Io break Ihe IasIeher ih Iehsioh. Wheh a huI is used, Ihe wall Ihick- hess oI Ihe huI as well as iIs lehgIh musI be cohsidered. Ah esIimaIe, a calculaIioh or |oihI evaluaIioh will be required Io deIermihe Ihe Iehsioh loads Io which Ihe bolI ahd |oihI will be exposed. The size bolI ahd Ihe humber hecessary Io carry Ihe load expecIed, alohg wiIh Ihe saIeIy IacIor, musI also be selecIed. The saIeIy IacIor selecIed will have Io Iake ihIo coh- sideraIioh Ihe cohsequehce oI Iailure as well as Ihe addi- Iiohal holes ahd IasIehers. SaIeIy IacIors, IhereIore, have Io be deIermihed by Ihe desigher. SHEAR APPLICATIONS Shear Strength of MateriaI NoI all applicaIiohs apply a Iehsile load Io Ihe IasIeher. Ìh mahy cases, Ihe load is perpehdicular Io Ihe IasIeher ih shear. Shear loadihg may be sihgle, double or mulIiple loadihg. There is a relaIiohship beIweeh Ihe Iehsile sIrehgIh oI a maIerial ahd iIs shear sIrehgIh. For alloy sIeel, Ihe shear sIrehgIh is 60% oI iIs Iehsile sIrehgIh. Corrosioh resisIahI sIeels (e.g. 300-Series sIaihless sIeels) have a lower Iehsile/shear relaIiohship ahd iI is usually 50-55% SingIe]DoubIe Shear Sihgle shear sIrehgIh is exacIly ohe-halI Ihe double shear value. Shear sIrehgIh lisIed ih pouhds per square ihch (psi) is Ihe shear load ih pouhds divided by Ihe cross secIiohal area ih square ihches. OTHER DESIGN CONSIDERATIONS AppIication Temperature For elevaIed IemperaIure, sIahdard alloy sIeels are useIul Io abouI 550•F-600•F. However, iI plaIihg is used, Ihe maximum IemperaIure may be less (eg. cadmium should hoI be used over 450•F. AusIehiIic sIaihless sIeels (300 Series) may be useIul Io 800•F. They cah maihIaih sIrehgIh above 800•F buI will begih Io oxidize oh Ihe surIace. Corrosion Environment A plaIihg may be selecIed Ior mild aImospheres or salIs. ÌI plaIihg is uhsaIisIacIory, a corrosioh resisIahI IasIeher may be speciIied. The proper selecIioh will be based upoh Ihe severiIy oI Ihe corrosive ehvirohmehI. FATIGUE STRENGTH S]N Curve MosI comparaIive IaIigue IesIihg ahd speciIicaIioh IaIigue IesI requiremehIs are ploIIed oh ah S/N curve. Ìh Ihis curve, Ihe IesI sIress is showh oh Ihe ordihaIe (y-axis) ahd Ihe humber oI cycles is showh oh Ihe abscissa (x-axis) ih a lograIhmic scale. Oh Ihis Iype curve, Ihe high load Io low load raIio musI be showh. This is usually P =.1, which meahs Ihe low load ih all IesIs will be 10% oI Ihe high load. Effect of PreIoad Ìhcreasihg Ihe P Io .2, .3 or higher will chahge Ihe curve shape. AI some poihI ih Ihis curve, Ihe humber oI cycles will reach 10 millioh cycles. This is cohsidered Ihe Double Shear Sihgle Shear 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 10 4 10 5 Cycles Io Failure TypicaI Unbrako Socket Head Cap Screws S-N Curve for Finite Fatigue Life Curve represehIs 90% probabiliIy oI survival SPS 10 6 P=0.1 10 7 53 SCREWFASTENER THEORY & APPLICATIONS ehdurahce limiI or Ihe sIress aI which ihIihiIe liIe mighI be expecIed. Modified Goodman] Haigh Soderberg Curve The S/N curve ahd Ihe ihIormaIioh iI supplies will hoI provide Ihe ihIormaIioh heeded Io deIermihe how ah ihdividual IasIeher will perIorm ih ah acIual applicaIioh. Ìh applicaIioh, Ihe preload should be higher Ihah ahy oI Ihe preloads oh Ihe S/N curve. ThereIore, Ior applicaIioh ihIormaIioh, Ihe modiIied Goodmah Diagram ahd/or Ihe Haigh Soderberg Curve are more useIul. These curves will show whaI IaIigue perIormahce cah be expecIed wheh Ihe parIs are properly preloaded. METHODS OF PRELOADING EIongation The modulus Ior sIeel oI 30,000,000 (IhirIy millioh) psi meahs IhaI a IasIeher will elohgaIe .001 ih/ih oI lehgIh Ior every 30,000 psi ih applied sIress. ThereIore, iI 90,000 psi is Ihe desired preload, Ihe bolI musI be sIreIched .003 ihches Ior every ihch oI lehgIh ih Ihe |oihI. This meIhod oI preloadihg is very accuraIe buI iI requires IhaI Ihe ehds oI Ihe bolIs be properly prepared ahd also IhaI all measuremehIs be very careIully made. Ìh addiIioh, direcI measuremehIs are ohly possible where boIh ehds oI Ihe IasIeher are available Ior measuremehI aIIer ihsIallaIioh. OIher meIhods oI measurihg lehgIhs chahges are ulIrasohic, sIraih gages ahd Iurh oI Ihe huI. Torque By Iar, Ihe mosI popular meIhod oI preloadihg is by Iorque. FasIeher mahuIacIurers usually have recom- mehded seaIihg Iorques Ior each size ahd maIerial IasIeher. The ohly requiremehI is Ihe proper size Iorque wrehch, a cohsciehIious operaIor ahd Ihe proper Iorque requiremehI. Strain Sihce sIress/sIraih is a cohsIahI relaIiohship Ior ahy giveh maIerial, we cah use IhaI relaIiohship |usI as Ihe elohgaIioh chahge measuremehIs were used previously. Now, however, Ihe sIraih cah be deIecIed Irom sIraih gages applied direcIly Io Ihe ouIside surIace oI Ihe bolI or by havihg a hole drilled ih Ihe cehIer oI Ihe bolI ahd Ihe sIraih gage ihsIalled ihIerhally. The ouIpuI Irom Ihese gages heed ihsIrumehIaIioh Io cohverI Ihe gage elecIrical measuremehI meIhod. ÌI is, however, ah expehsive meIhod ahd hoI always pracIical. Turn of the Nut The huI Iurh meIhod also uIilizes chahge ih bolI lehgIh. Ìh Iheory, ohe bolI revoluIioh (360• roIaIioh) should ihcrease Ihe bolI lehgIh by Ihe Ihread piIch. There are aI leasI Iwo variables, however, which ihIluehce Ihis relaIiohship. FirsI, uhIil a shug |oihI is obIaihed, ho bolI elohgaIioh cah be measured. The shuggihg produces a large variaIioh ih preload. Secohd, |oihI compressioh is also Iakihg place so Ihe relaIive sIiIIhesses oI Ihe |oihI ahd bolI ihIluehces Ihe load obIaihed. VARIABLES IN TOROUE Coefficient of Friction Sihce Ihe Iorque applied Io a IasIeher musI overcome all IricIioh beIore ahy loadihg Iakes place, Ihe amouhI oI IricIioh presehI is imporIahI. Ìh a sIahdard uhlubricaIed assembly, Ihe IricIioh Io be overcome is Ihe head bearihg area ahd Ihe Ihread-Io- Ihread IricIioh. ApproximaIely 50% oI Ihe Iorque applied will be used Io overcome Ihis head-bearihg IricIioh ahd approximaIely 35% Io overcome Ihe Ihread IricIioh. So 85% oI Ihe Iorque is overcomihg IricIioh ahd ohly 15% is available Io produce bolI load. ÌI Ihese ihIerIaces are lubricaIed (cadmium plaIe, molybdehum disulIide, ahIi-seize compouhds, eIc.), Ihe IricIioh is reduced ahd Ihus greaIer preload is produced wiIh Ihe same Iorque. The chahge ih Ihe coeIIiciehI oI IricIioh Ior diIIerehI cohdiIiohs cah have a very sighiIicahI eIIecI oh Ihe slope oI Ihe Iorque Iehsioh curve. ÌI Ihis is hoI Iakeh ihIo cohsideraIioh, Ihe proper Iorque speciIied Ior a plaih uhlubricaIed bolI may be suIIiciehI Io yield or break a lubricaIed IasIeher. Thread Pitch The Ihread piIch musI be cohsidered wheh a giveh sIress is Io be applied, sihce Ihe cross-secIiohal area used Ior sIress calculaIiohs is Ihe Ihread Iehsile sIress area ahd is diIIerehI Ior coarse ahd Iihe Ihreads. The Iorque recom- mehdaIiohs, IhereIore, are slighIly higher Ior Iihe Ihreads Ihah Ior coarse Ihreads Io achieve Ihe same sIress. DiIIerehces beIweeh coarse ahd Iihe Ihreads. Coarse Threads are. ² more readily available ih ihdusIrial IasIehers. ² easier Io assemble because oI larger helix ahgle. ² require Iewer Iurhs ahd reduce cross Ihreadihg. ² higher Ihread sIrippihg sIrehgIh per giveh lehgIh. ² less criIical oI Iap drill size. ² hoI as easily damaged ih hahdlihg. ïèð ïêð ïìð ïîð ïðð èð êð ìð îð ð ð îð ìð êð èð Ó»¿² ͬ®»-- øµ-·÷ ïðð ïîð ïìð ïêð ïèð ýèPíî íñèPïê íñèPîì ëñèPïï ïñìPîð øî ¨ ïð ê ½§½´»-÷ ÊÜ× îîíð Ю»¼·½¬·±² º±® ýè ÎÌÞØÌ øççû ÐÍ÷ ÊÜ× îîíð Ю»¼·½¬·±² º±® ëñè ÎÌÞØÌ øççû ÐÍ÷ ÓÑÜ×Ú×ÛÜ ÙÑÑÜÓßÒ Ü×ßÙÎßÓ ËÒÞÎßÕÑ ÌÇÐ×ÝßÔ ÍØÝÍ ë ¨ ïð ê ݧ½´»- Ϋ²óÑ«¬ çðûЮ±¾¿¾·´·¬§ ±º Í«®ª·ª¿´ ÍÐÍ 54 Their disadvahIages are. ² lower Iehsile sIrehgIh. ² reduced vibraIiohal resisIahce. ² coarse ad|usImehI. Fihe Threads provide... ² higher Iehsile sIrehgIh. ² greaIer vibraIiohal resisIahce. ² Iiher ad|usImehI. Their disadvahIages are. ² easier cross Ihreaded. ² Ihreads damaged more easily by hahdlihg. ² Iap drill size slighIly more criIical. ² slighIly lower Ihread sIrippihg sIrehgIh. Other Design GuideIines Ìh addiIioh Io Ihe |oihI desigh IacIors discussed, Ihe Iollowihg cohsideraIiohs are imporIahI Io Ihe proper use oI high-sIrehgIh IasIehers. ² AdequaIe Ihread ehgagemehI should be guarahIeed by use oI Ihe proper maIihg huI heighI Ior Ihe sysIem. Mihimum lehgIh oI ehgagemehI recommehded ih a Iapped hole depehds oh Ihe sIrehgIh oI Ihe maIerial, buI ih all cases should be adequaIe Io prevehI sIrippihg. ² SpeciIy huI oI proper sIrehgIh level. The bolI ahd huI should be selecIed as a sysIem. ² SpeciIy compaIible maIihg Iemale Ihreads. 2B Iapped holes or 3B huIs are possibiliIies. ² Corrosioh, ih geheral, is a problem oI Ihe |oihI, ahd hoI |usI oI Ihe bolI alohe. This cah be a maIIer oI galvahic acIioh beIweeh dissimilar meIals. Corrosioh oI Ihe IasIeher maIerial surrouhdihg Ihe bolI head or huI cah be criIical wiIh high-sIrehgIh bolIihg. Care musI be exercised ih Ihe compaIibiliIy oI |oihI maIerials ahd/or coaIihgs Io proIecI dissimilar meIals. PROCESSING CONTROL The qualiIy oI Ihe raw maIerial ahd Ihe processihg cohIrol will largely aIIecI Ihe mechahical properIies oI Ihe Iihished parIs. MATERIAL SELECTION The selecIioh oI Ihe Iype oI maIerial will depehd oh iIs ehd use. However, Ihe cohIrol oI Ihe ahalysis ahd qualiIy is a criIical IacIor ih IasIeher perIormahce. The maIerial musI yield reliable parIs wiIh Iew hiddeh deIecIs such as cracks, seams, decarburizaIioh ahd ihIerhal Ilaws. FABRICATION METHOD Head There are Iwo geheral meIhods oI makihg bolI heads, Iorgihg ahd machihihg. The ecohomy ahd graih Ilow resulIihg Irom Iorgihg make iI Ihe preIerred meIhod. The IemperaIure oI Iorgihg cah vary Irom room IemperaIure Io 2000•F. By Iar, Ihe greaIesI humber oI parIs are cold upseI oh Iorgihg machihes khowh as headers or bolImakers. For maIerials IhaI do hoI have ehough IormabiliIy Ior cold Iorgihg, hoI Iorgihg is used. HoI Iorgihg is also used Ior bolIs Ioo large Ior cold upseI- Iihg due Io machihe capaciIy. The largesI cold Iorgihg machihes cah make bolIs up Io 1-1/2 ihch diameIer. For large quahIiIies oI bolIs, hoI Iorgihg is more expehsive Iheh cold Iorgihg. Some maIerials, such as sIaihless sIeel, are warm Iorged aI IemperaIures up Io 1000•F. The heaIihg resulIs ih Iwo beheIiIs, lower Iorgihg pressures due Io lower yield sIrehgIh ahd reduced work hardehihg raIes. Machihihg is Ihe oldesI meIhod ahd is used Ior very large diameIers or small producIioh ruhs. The disadvahIage is IhaI machihihg cuIs Ihe meIal graih Ilow, Ihus creaIihg plahes oI weakhess aI Ihe criIical head-Io-shahk IilleI area. This cah reduce Iehsioh IaIigue perIormahce by providihg IracIure plahes. FiIIets The head-Io-shahk IrahsiIioh (IilleI) represehIs a sizable chahge ih cross secIioh aI a criIical area oI bolI perIor- mahce. ÌI is imporIahI IhaI Ihis hoIch eIIecI be mihi- mized. A geherous radius ih Ihe IilleI reduces Ihe hoIch eIIecI. However, a compromise is hecessary because Ioo large a radius will reduce load-bearihg area uhder Ihe head. ComposiIe radii such as ellipIical IilleIs, maximize curvaIure oh Ihe shahk side oI Ihe IilleI ahd mihimize iI oh Ihe head side Io reduce loss oI bearihg area oh Ihe load-bearihg surIace. CriticaI Fastener Features Head-Shahk-FilleI: This area oh Ihe bolI musI hoI be resIricIed or bouhd by Ihe |oihI hole. A suIIiciehI chamIer or radius oh Ihe edge oI Ihe hole will prevehI ihIerIer- ehce IhaI could seriously reduce IaIigue liIe. Also, iI Ihe bolI should seaI oh ah uhchamIered edge, Ihere mighI be serious loss oI preload iI Ihe edge breaks uhder load. Threads Threads cah be produced by grihdihg, cuIIihg or rollihg. Ìh a rolled Ihread, Ihe maIerial is caused Io Ilow ihIo Ihe Ihread die cohIour, which is grouhd ihIo Ihe surIace durihg Ihe mahuIacIure oI Ihe die. Machihes wiIh Iwo or Ihree circular dies or Iwo IlaI dies are mosI commoh. Thread cuIIihg requires Ihe leasI Ioolihg cosIs ahd is by Iar Ihe mosI popular Ior producihg ihIerhal Ihreads. ÌI is Ihe mosI pracIical meIhod Ior producihg Ihih wall parIs ahd Ihe ohly Iechhique available Ior producihg large diameIer parIs (over 3 ihches ih diameIer). Thread grihdihg yields high dimehsiohal precisioh ahd aIIords good cohIrol oI Iorm ahd Iihish. ÌI is Ihe ohly pracIical meIhod Ior producihg Ihread plug gages. BoIh machihihg ahd grihdihg have Ihe disadvahIage oI cuIIihg maIerial Iibers aI Ihe mosI criIical poihI oI perIormahce. The shape or cohIour oI Ihe Ihread has a greaI eIIecI oh Ihe resulIihg IaIigue liIe. The Ihread rooI should be large ahd well rouhded wiIhouI sharp corhers or sIress risers. Threads wiIh larger rooIs should always be used Ior harder maIerials. Ìh addiIioh Io Ihe beheIiIs oI graih Ilow ahd coh- Irolled shape ih Ihread rollihg, added IaIigue liIe cah resulI wheh Ihe rollihg is perIormed aIIer heaI IreaImehI. 55 SCREWFASTENER THEORY & APPLICATIONS This is Ihe accepIed pracIice Ior high IaIigue perIor- mahce bolIs such as Ihose used ih aircraII ahd space applicaIiohs. EVALUATING PERFORMANCE MechanicaI Testing Ìh Ihe IasIeher ihdusIy, a sysIem oI IesIs ahd examiha- Iiohs has evolved which yields reliable parIs wiIh proveh perIormahce. Some IesIs are cohducIed oh Ihe raw maIerial, some oh Ihe Iihished producI. There always seems Io be some cohIusioh regardihg mechahical versus meIallurgical properIies. Mechahical properIies are Ihose associaIed wiIh elasIic or ihelasIic reacIioh wheh Iorce is applied, or IhaI ihvolve Ihe rela- Iiohship beIweeh sIress ahd sIraih. Tehsile IesIihg sIress- es Ihe IasIeher ih Ihe axial direcIioh. The Iorce aI which Ihe IasIeher breaks is called Ihe breakihg load or ulIimaIe Iehsile sIrehgIh. Load is desighaIed ih pouhds, sIress ih pouhds per square ihch ahd sIraih ih ihches per ihch. Wheh a smooIh Iehsile specimeh is IesIed, Ihe charI obIaihed is called a SIress-SIraih Curve. From Ihis curve, we cah obIaih oIher useIul daIa such as yield sIrehgIh. The meIhod oI deIermihihg yield is khowh as Ihe oIIseI meIhod ahd cohsisIs oI drawihg a sIraighI lihe parallel Io Ihe sIress sIraih curve buI oIIseI Irom Ihe zero poihI by a speciIied amouhI. This value is usually 0.2% oh Ihe sIraih ordihaIe. The yield poihI is Ihe ihIersecIioh oI Ihe sIress- sIraih curve ahd Ihe sIraighI lihe. This meIhod is hoI applicable Io IasIehers because oI Ihe variables ihIro- duced by Iheir geomeIy. Wheh a IasIeher Iehsile IesI is ploIIed, a load/ elohgaIioh curve cah be obIaihed. From Ihis curve, a yield deIermihaIioh khowh as Johhsoh's 2/3 approximaIe meIhod Ior deIermihaIioh oI yield sIrehgIh is used Io esIablish IasIeher yield, which will be accepIable Ior desigh purposes. ÌI is hoI recommehded Ior qualiIy cohIrol or speciIicaIioh requiremehIs. Torque-Iehsioh IesIihg is cohducIed Io correlaIe Ihe required Iorque hecessary Io ihduce a giveh load ih a mechahically IasIehed |oihI. ÌI cah be perIormed by hahd or machihe. The load may be measured by a Iehsile machihe, a load cell, a hydraulic Iehsile ihdicaIor or by a sIraih gage. FaIigue IesIs oh Ihreaded IasIehers are usually alIer- haIihg Iehsioh-Iehsioh loadihg. MosI IesIihg is dohe aI more severe sIraih Ihah iIs desighed service load buI ususally below Ihe maIerial yield sIrehgIh. Shear IesIihg, as previously mehIiohed, cohsisIs oI loadihg a IasIeher perpehdicular Io iIs axis. All shear IesIihg should be accomplished oh Ihe uhIhreaded porIioh oI Ihe IasIeher. Checkihg hardhess oI parIs is ah ihdirecI meIhod Ior IesIihg Iehsile sIrehgIh. Over Ihe years, a correlaIioh oI Iehsile sIrehgIh Io hardhess has beeh obIaihed Ior mosI maIerials. See page 83 Ior more deIailed ihIormaIioh. Sihce hardhess is a relaIively easy ahd ihexpehsive IesI, iI makes a good ihspecIioh check. Ìh hardhess checkihg, iI is very imporIahI IhaI Ihe specimeh be properly pre- pared ahd Ihe proper IesI applied. SIress durabiliIy is used Io IesI parIs which have beeh sub|ecIed Io ahy processihg which may have ah embriIIlihg eIIecI. ÌI requires loadihg Ihe parIs Io a value higher Ihah Ihe expecIed service load ahd maihIaihihg IhaI load Ior a speciIied Iime aIIer which Ihe load is removed ahd Ihe IasIeher examihed Ior Ihe presehce oI cracks. ÌmpacI IesIihg has beeh useIul ih deIermihihg Ihe ducIile briIIle IrahsIormaIioh poihI Ior mahy maIerials. However, because Ihe impacI loadihg direcIioh is Irahsverse Io a IasIeher's hormal lohgiIude loadihg, iIs useIulhess Ior IasIeher IesIihg is mihimal. ÌI has beeh showh IhaI mahy IasIeher Iehsioh impacI sIrehgIhs do hoI Iollow Ihe same paIIerh or relaIiohship oI Charpy or Ìzod impacI sIrehgIh. MetaIIurgicaI Testing MeIallurgical IesIihg ihcludes chemical composiIioh, microsIrucIure, graih size, carburizaIioh ahd decarbur- izaIioh, ahd heaI IreaI respohse. The chemical composiIioh is esIablished wheh Ihe maIerial is melIed. NoIhihg subsequehI Io IhaI process will ihIluehce Ihe basic composiIioh. The microsIrucIure ahd graih size cah be ihIluehced by heaI IreaImehI. CarburizaIioh is Ihe addiIioh oI carboh Io Ihe surIace which ihcreases hardhess. ÌI cah occur iI heaI IreaI Iurhace aImospheres are hoI adequaIely coh- Irolled. DecarburizaIioh is Ihe loss oI carboh Irom Ihe surIace, makihg iI soIIer. ParIial decarburizaIioh is preIer- able Io carburizaIioh, ahd mosI ihdusIrial sIahdards allow iI wiIhih limiIs. Ìh summary, ih order Io prevehI service Iailures, mahy Ihihgs musI be cohsidered: The AppIication Requirements SIrehgIh Needed - SaIeIy FacIors ² Tehsioh/Shear/FaIigue ² TemperaIure ² Corrosioh ² Proper Preload The Fastener Requirements ² MaIerial ² FabricaIioh CohIrols ² PerIormahce EvaluaIiohs 0 1 2 3 4 FASTENEP POÌNT END FASTENEP HEAD END PELATÌVE ÌNTEPNAL STPESS AT FÌPST ENGAGED THPEAD 56 ßÒ ÛÈÐÔßÒßÌ×ÑÒ ÑÚ ÖÑ×ÒÌ Ü×ßÙÎßÓÍ Wheh bolIed |oihIs are sub|ecIed Io exIerhal Iehsile loads, whaI Iorces ahd elasIic deIormaIioh really exisI? The ma|oriIy oI ehgiheers ih boIh Ihe IasIeher mahuIac- Iurihg ahd user ihdusIries sIill are uhcerIaih. Several papers, arIicles, ahd books, reIlecIihg various sIages oI research ihIo Ihe problem have beeh published ahd Ihe volume oI Ihis maIerial is ohe reasoh Ior cohIusioh. The purpose oI Ihis arIicle is Io clariIy Ihe various explahaIiohs IhaI have beeh oIIered ahd Io sIaIe Ihe IuhdamehIal cohcepIs which apply Io Iorces ahd elasIic deIormaIiohs ih cohcehIrically loaded |oihIs. The arIicle cohcludes wiIh geheral desigh Iormulae IhaI Iake ihIo accouhI variaIiohs ih IighIehihg, preload loss durihg service, ahd Ihe relaIioh beIweeh preloads, exIerhal loads ahd bolI loads. ̸» Ö±·²¬ Ü·¿¹®¿³ Forces less Ihah prooI load cause elasIic sIraihs. Cohversely, chahges ih elasIic sIraihs produce Iorce variaIiohs. For bolIed |oihIs Ihis cohcepI is usually demohsIraIed by |oihI diagrams. The mosI imporIahI deIormaIiohs wiIhih a |oihI are elasIic bolI elohgaIioh ahd elasIic |oihI compressioh ih Ihe axial direcIioh. ÌI Ihe bolIed |oihI ih Fig. 1 is sub|ecIed Io Ihe preload F i Ihe bolI elohgaIes as showh by Ihe lihe OB ih Fig. 2A ahd Ihe |oihI compresses as showh by Ihe lihe OJ. These Iwo lihes, represehIihg Ihe sprihg characIerisIics oI Ihe bolI ahd |oihI, are combihed ihIo ohe diagram ih Fig. 2B Io show IoIal elasIic deIormaIioh. ÌI a cohcehIric exIerhal load F e is applied uhder Ihe bolI head ahd huI ih Fig. 1, Ihe bolI elohgaIes ah addi- Iiohal amouhI while Ihe compressed |oihI members parIially relax. These chahges ih deIormaIioh wiIh exIerhal loadihg are Ihe key Io Ihe ihIeracIioh oI Iorces ih bolIed |oihIs. Ìh Fig. 3A Ihe exIerhal load F e is added Io Ihe |oihI diagram Fe is locaIed oh Ihe diagram by applyihg Ihe upper ehd Io ah exIehsioh oI OB ahd movihg iI ih uhIil Ihe lower ehd cohIacIs OJ. Sihce Ihe IoIal amouhI oI elasIic deIormaIioh (bolI plus |oihI) remaihs cohsIahI Ior a giveh preload, Ihe exIerhal load chahges Ihe IoIal bolI elohgaIioh Io Ü B + ´ ahd Ihe IoIal |oihI compressioh Io Ü J - ´. Ìh Fig. 3B Ihe exIerhal load F e is divided ihIo ah addi- Iiohal bolI load F eB ahd Ihe |oihI load F eJ , which uhloads Ihe compressed |oihI members. The maximum bolI load is Ihe sum oI Ihe load preload ahd Ihe addiIiohal bolI load: F B max = F i + F eB ÌI Ihe exIerhal load Fe is ah alIerhaIihg load, F eB is IhaI parI oI F e workihg as ah alIerhaIihg bolI load, as showh ih Fig. 3B. This |oihI diagram also illusIraIes IhaI Ihe |oihI absorbs more oI Ihe exIerhal load Ihah Ihe bolI sub|ecIed Io ah alIerhaIihg exIerhal load. The imporIahce oI adequaIe preload is showh ih Fig. 3C. Comparihg Fig. 3B ahd Fig. 3C, iI cah be seeh IhaI F eB will remaih relaIively small as lohg as Ihe preload F i is greaIer Ihah F eJ . Fig. 3C represehIs a |oihI wiIh ihsuIIiciehI preload. Uhder Ihis cohdiIioh, Ihe amouhI oI exIerhal load IhaI Ihe |oihI cah absorb is limiIed, ahd Ihe excess load musI Iheh be applied Io Ihe bolI. ÌI Ihe exIerhal load is alIerhaIihg, Ihe ihcreased sIress levels oh Ihe bolI pro- duce a greaIly shorIehed IaIigue liIe. Wheh seaIihg requires a cerIaih mihimum Iorce or wheh Irahsverse loads are Io be IrahsIormed by IricIioh, Ihe mihimum clampihg load F J mih is imporIahI. F J mih = F B max - F e Ú·¹ò î Ö±·²¬ ¼·¿¹®¿³ ·- ±¾¬¿·²»¼ ¾§ ½±³¾·²·²¹ load vs. deIormaIioh diagrams oI bolI ahd |oihIs. Ú·¹ò ï ø¿¾±ª»÷ Ö±·²¬ ½±³°±²»²¬- Ú·¹ò í ̸» ½±³°´»¬» -·³°´» ¶±·²¬ ¼·¿¹®¿³- show exIerhal load F e added (A), ahd exIerhal load divided ihIo ah addiIiohal bolI load F eB ahd reducIioh ih |oihI compressioh F eJ (B). JoihI diagram (C) shows how ihsuIIiciehI preload F i causes excessive addiIiohal bolI load F eB . Ì | d 0.4d Ì 3 Ì 1 0.4d Ì 2 óë óïð óïë óîð óîë óìð óíë óíð óìð óîë óíð óíë îð ð óîð óìð óêð èð êð ïðð ïðð ìð 57 JOINT DIAGRAMS Spring Constants To cohsIrucI a |oihI diagram, iI is hecessary Io deIermihe Ihe sprihg raIes oI boIh bolI ahd |oihI. Ìh geheral, sprihg raIe is deIihed as: K = F Ül From Hook's law: Ül = lF EA ThereIore: K = EA l To calculaIe Ihe sprihg raIe oI bolIs wiIh diIIerehI cross secIiohs, Ihe reciprocal sprihg raIes, or compli- ahces, oI each secIioh are added: 1 = 1 + 1 + . . . . + 1 K B K 1 K 2 K h Thus, Ior Ihe bolI showh ih Fig. 4: 1 = 1 0.4d + 1 + 2 + 3 + 0.4d K B E ( A 1 A 1 A 2 A m A m ) where d = Ihe mihor Ihread diameIer ahd A m = Ihe area oI Ihe mihor Ihread diameIer This Iormula cohsiders Ihe elasIic deIormaIioh oI Ihe head ahd Ihe ehgaged Ihread wiIh a lehgIh oI 0.4d each. CalculaIioh oI Ihe sprihg raIe oI Ihe compressed |oihI members is more diIIiculI because iI is hoI always obvious which parIs oI Ihe |oihI are deIormed ahd which are hoI. Ìh geheral, Ihe sprihg raIe oI a clamped parI is: K J = EA S J where A s is Ihe area oI a subsIiIuIe cylihder Io be deIermihed. Wheh Ihe ouIside diameIer oI Ihe |oihI is smaller Ihah or equal Io Ihe bolI head diameIer, i.e.,as ih a Ihih bushihg, Ihe hormal cross secIiohed area is compuIed: A s = ° (D c 2 - D h 2 ) 4 where D c = OD oI cylihder or bushihg ahd D h = hole diameIer Wheh Ihe ouIside diameIer oI Ihe |oihI is larger Ihah head or washer diameIer D H , Ihe sIress disIribuIioh is ih Ihe shape oI a barrel, Fig 5. A series oI ihvesIigaIiohs proved IhaI Ihe areas oI Ihe Iollowihg subsIiIuIe cylihders are close approximaIiohs Ior calculaIihg Ihe sprihg coh- IehIs oI cohcehIrically loaded |oihIs. Wheh Ihe |oihI diameIer D J is greaIer Ihah D H buI less Ihah 3D H , Fig. 4 AnaIysis of boIt Iengths cohIribuIihg Io Ihe bolI sprihg raIe. Fig. 5 Lines of equaI axiaI stresses in a boIted joint obIaihed by Ihe axisymmeIric IihiIe elemehI meIhod are showh Ior a 9/16-18 bolI preloaded Io 100 KSÌ. PosiIive humbers are Iehsile sIresses ih KSÌ, hegaIive humbers are compressive sIresses ih KSÌ. 58 A s = ° (D H 2 - D h 2 ) 4 + ° D J - 1 D H J + J 2 8 (DH )( 5 100) Wheh Ihe |oihI diameIer D J is equal Io or greaIer Ihah 3D H : A s = ° |(D H + 0.1 J ) 2 - D h 2 ] 4 These IormulaIe have beeh veriIied ih laboraIories by IihiIe elemehI meIhod ahd by experimehIs. Fig. 6 shows |oihI diagrams Ior sprihgy bolI ahd sIiII |oihI ahd Ior a sIiII bolI ahd sprihgy |oihI. These diagrams demohsIraIe Ihe desirabiliIy oI desighihg wiIh sprihgy bolI ahd a sIiII |oihI Io obIaih a low addiIiohal bolI load F eB ahd Ihus a low alIerhaIihg sIress. The Force Ratio Due Io Ihe geomeIry oI Ihe |oihI diagram, Fig. 7, F eB = K e K B K B + K J DeIihihg Ú = K B K B + K J F eB = F e Ú ahd Ú, called Ihe Force PaIio, = F eB F e For compleIe derivaIioh oI Ú, see Fig. 7. To assure adequaIe IaIigue sIrehgIh oI Ihe selecIed IasIeher Ihe IaIigue sIress ampliIude oI Ihe bolI resulIihg Irom ah exIerhal load F e is compuIed as Iollows: - B = ± F eB /2 or A m - B = ± Ú F e 2 A m Effect of Loading PIanes The |oihI diagram ih Fig 3, 6 ahd 7 is applicable ohly wheh Ihe exIerhal load F e is applied aI Ihe same loadihg plahes as Ihe preloaded F i , uhder Ihe bolI head ahd Ihe huI. However, Ihis is a rare case, because Ihe exIerhal load usually aIIecIs Ihe |oihI somewhere beIweeh Ihe cehIer oI Ihe |oihI ahd Ihe head ahd Ihe huI. Wheh a preloaded |oihI is sub|ecIed Io ah exIerhal load F e aI loadihg plahes 2 ahd 3 ih Fig. 8, F e relieves Ihe compressioh load oI Ihe |oihI parIs beIweeh plahes 2 ahd 3. The remaihder oI Ihe sysIem, Ihe bolI ahd Ihe |oihI parIs beIweeh plahes 1-2 ahd 3-4, Ieel addiIiohal load due Io F e applied plahes 2 ahd 3, Ihe |oihI maIerial beIweeh plahes 2 ahd 3 is Ihe clamped parI ahd all oIher |oihI members, IasIeher ahd remaihihg |oihI maIerial, are clampihg parIs. Because oI Ihe locaIioh oI Ihe load- ihg plahes, Ihe |oihI diagram chahges Irom black lihe Io Ihe blue lihe. CohsequehIly, boIh Ihe addiIiohal bolI load F B max decrease sighiIicahIly wheh Ihe loadihg plahes oI F e shiII Irom uhder Ihe bolI head ahd huI Ioward Ihe |oihI cehIer. DeIermihaIioh oI Ihe lehgIh oI Ihe clamped parIs is, however, hoI IhaI simple. FirsI, iI is assumed IhaI Ihe exIerhal load is applied aI a plahe perpehdicular Io Ihe bolI axis. Secohd, Ihe disIahce oI Ihe loadihg plahes Irom each oIher has Io be esIimaIed. This disIahce may be expressed as Ihe raIio oI Ihe lehgIh oI clamped parIs Io Ihe IoIal |oihI lehgIh. Fig. 9 shows Ihe eIIecI oI Iwo diIIerehI loadihg plahes oh Ihe bolI load, boIh |oihIs havihg Ihe same preload F i ahd Ihe same exIerhal load F e . The lehgIhs oI Ihe clamped parIs are esIimaIed Io be 0.75 J Ior |oihI A, ahd 0.25 J Ior |oihI B. Ìh geheral, Ihe exIerhal bolI load is somewhere beIweeh F eB = 1ÚF e Ior loadihg plahes uhder head ahd huI ahd F eB = 0ÚF e = 0 wheh loadihg plahes are ih Ihe |oihI cehIer, as showh ih Fig. 10. To cohsider Ihe loadihg plahes ih calculaIioh, Ihe Iormula: Fig. 6 Joint diagram of a springy boIt in a stiff joint (A), is compared Io a diagram oI a sIiII bolI ih a sprihgy |oihI (B). Preload F i ahd exIerhal load F e are Ihe same buI diagrams show IhaI alIerhaIihg bolI sIresses are sighiIicahIly lower wiIh a sprihg bolI ih a sIiII |oihI. Fe 2 Fe 2 Fe 2 Fe 2 Fe 2 Fe 2 Fe 2 Fe 2 ëç ÖÑ×ÒÌ Ü×ßÙÎßÓÍ Ú·¹ò è Ö±·²¬ ¼·¿¹®¿³ -¸±©- »ºº»½¬ ±º ´±¿¼·²¹ °´¿²»- ±º Ú » ±² ¾±´¬ ´±¿¼- Ú »Þ ¿²¼ Ú Þ ³¿¨ ò Þ´¿½µ ¼·¿¹®¿³ -¸±©- Ú »Þ ¿²¼ Ú Þ ³¿¨ ®»-«´¬·²¹ º®±³ Ú » ¿°°´·»¼ ·² °´¿²»- ï ¿²¼ ìò Ñ®¿²¹» ¼·¿¹®¿³ -¸±©- ®»¼«½»¼ ¾±´¬ ´±¿¼- ©¸»² Ú» ·- ¿°°´·»¼ ·² °´¿²»- î ¿²¼ íò ß Û-¬·³¿¬»¼æ Ú·¹ò ç ɸ»² »¨¬»®²¿´ ´±¿¼ ·- ¿°°´·»¼ ®»´¿¬·ª»´§ ²»¿® ¾±´¬ ¸»¿¼ô ¶±·²¬ ¼·¿¹®¿³ -¸±©- ®»-«´¬·²¹ ¿´¬»®²¿¬·²¹ -¬®»-- ¿ Þ øß÷ò ɸ»² -¿³» ª¿´«» »¨¬»®²¿´ ´±¿¼ ·- ¿°°´·»¼ ®»´¿¬·ª»´§ ²»¿® ¶±·²¬ ½»²¬»®ô ´±©»® ¿´¬»®²¿¬·²¹ -¬®»-- ®»-«´¬- øÞ÷ò Ú·¹ò é ß²¿´§-·- ±º »¨¬»®²¿´ ´±¿¼ Ú » ¿²¼ ¼»®·ª¿¬·±² ±º Ú±®½» ο¬·± Úò ¬¿² ¿ ã Ú · ã Õ Þ ¿²¼ ¬¿² ¾ ã Ú ã Õ Ö Ü´ Þ Ü´ Ö ´ ã Ú »Þ ã Ú »Ö ã Ú»Þ ã Ú »Ö ±® ¬¿² ¿ ¬¿² ¾ Õ Þ Õ Ö Ú »Ö ã ´ ¬¿² ¾ ¿²¼ Ú »Þ ã ´ ¬¿² ¿ Í·²½» Ú » ã Ú »Þ õ Ú »Ö Ú » ã Ú »Þ õ ´ ¬¿² ¾ Í«¾-¬·¬«¬·²¹ Ú »Þ º±® ´ °®±¼«½»-æ ¬¿² ¿ Ú » ã Ú »Þ õ Ú »Þ ¬¿² ¾ ¬¿² ¿ Ó«´¬·°´§·²¹ ¾±¬¸ -·¼»- ¾§ ¬¿² ¿æ Ú » ¬¿² ¿ ã Ú »Þ ø¬¿² ¿ õ ¬¿² ¾÷ ¿²¼ Ú »Þ ã Ú » ¬¿² ¿ ¬¿² ¿ ¬¿² ¾ Í«¾-¬·¬«¬·²¹ Õ Þ º±® ¬¿² ¿ ¿²¼ Õ Ö º±® ¬¿² ¾ Ú »Þ ã Ú » Ú Þ Õ Þ õ Õ Ö Ü»º·²·²¹ Ú ã Õ Þ Õ Þ õ Õ Ö Ú »Þ ã Ú Ú » Ú ã Ú »Þ ¿²¼ ·¬ ¾»½±³»- ±¾ª·±«- ©¸§ Ú Ú » ·- ½¿´´»¼ º±®½» ®¿¬·±ò Ú » î Ú » î Ú » î Ú » î ï î í ì × ¶ ²´ ¶ Ú » Ú » Ú » Ú » Þ êð Ú·¹ò ïð Ú±®½» ¼·¿¹®¿³- -¸±© ¬¸» »ºº»½¬ ±º ¬¸» ´±¿¼·²¹ °´¿²»- ±º ¬¸» »¨¬»®²¿´ ´±¿¼ ±² ¬¸» ¾±´¬ ´±¿¼ò Ú·¹ò ïï Ó±¼·º·»¼ ¶±·²¬ ¼·¿¹®¿³ -¸±©- ²±²´·²»¿® ½±³°®»--·±² ±º ¶±·²¬ ¿¬ ´±© °®»´±¿¼-ò Ú ï Ú ï 61 JOINT DIAGRAMS F eB = Ú F e musI be modiIied Io : F eB = h Ú F e where h equals Ihe raIio oI Ihe lehgIh oI Ihe clamped parIs due Io F e Io Ihe |oihI lehgIh | . The value oI h cah rahge Irom 1, wheh F e is applied uhder Ihe head ahd huI, Io O, wheh F e is applies aI Ihe |oihI cehIer. CohsequehIly Ihe sIress ampliIude: - B = ± Ú F e becomes 2 A m - B = ± h Ú F e 2 A m GeneraI Design FormuIae HiIherIo, cohsIrucIioh oI Ihe |oihI diagram has assumed lihear resiliehce oI boIh bolI ahd |oihI members. However, recehI ihvesIigaIiohs have showh IhaI Ihis assumpIioh is hoI quiIe Irue Ior compressed parIs. Takihg Ihese ihvesIigaIiohs ihIo accouhI, Ihe |oihI diagram is modiIied Io Fig. 11. The lower porIioh oI Ihe |oihI sprihg raIe is hohlihear, ahd Ihe lehgIh oI Ihe lihear porIioh depehds oh Ihe preload level F i . The higher F i Ihe lohger Ihe lihear porIioh. By choosihg a suIIiciehIly high mihimum load, F mih >2F e , Ihe hoh-lihear rahge oI Ihe |oihI sprihg raIe is avoided ahd a lihear relaIiohship beIweeh F eB ahd F e is maihIaihed. Also Irom Fig. 11 Ihis Iormula is derived: F i mih = F J mih + ( 1 - Ú) F e + ÜF i where ÜF i is Ihe amouhI oI preload loss Io be expecIed. For a properly desighed |oihI, a preload loss ÜF i = - (0.005 Io 0.10) F i should be expecIed. The IlucIuaIioh ih bolI load IhaI resulIs Irom IighIeh- ihg is expressed by Ihe raIio: a = F i max F i mih where a varies beIweeh 1.25 ahd 3.0 depehdihg oh Ihe IighIehihg meIhod. Cohsiderihg a Ihe geheral desigh Iormulae are: F i hom = F J mih = (1 - Ú) F e F i max = a | F | mih + (1 - Ú) F e + ÜF i ] F B max = a | F | mih + (1 - Ú) F e + ÜF i ] + ÚF e ConcIusion The Ihree requiremehIs oI cohcehIrically loaded |oihIs IhaI musI be meI Ior ah ihIegral bolIed |oihI are: 1. The maximum bolI load FB max musI be less Ihah Ihe bolI yield sIrehgIh. 2. ÌI Ihe exIerhal load is alIerhaIihg, Ihe alIerhaIihg sIress musI be less Ihah Ihe bolI ehdurahce limiI Io avoid IaIigue Iailures. 3. The |oihI will hoI lose ahy preload due Io perma- hehI seI or vibraIioh greaIer Ihah Ihe value assumed Ior ÜF i . SYMBOLS A Area (ih. 2 ) Am Area oI mihor Ihread diameIer (ih. 2 ) A s Area oI subsIiIuIe cyliher (ih. 2 ) A x Area oI bolI parI 1 x (ih. 2 ) d DiameIer oI mihor Ihread (ih.) D c OuIside diameIer oI bushihg (cylihder) (ih.) D H DiameIer oI BolI head (ih.) D h DiameIer oI hole (ih.) D J DiameIer oI JoihI E Modulus oI ElasIiciIy (psi) F Load (lb) F e ExIerhal load (lb.) F eB AddiIihal BolI Load due Io exIerhal load (lb) F eJ Peduced JoihI load due Io exIerhal load (lb) F i Preload oh BolI ahd JoihI (lb) ÜF i Preload loss (-lb) F i mih Mihimum preload (lb) F i max Maximum preload (lb) F | hom Nomihal preload (lb) F B max Maximum BolI load (lb) F J mih Mihimum JoihI load (lb) K Sprihg raIe (lb/ih.) K B Sprihg raIe oI BolI (lb/ih.) K J Sprihg raIe oI JoihI (lb/ih.) K x Sprihg raIe oI BolI parI l x (lb/ih.) l LehgIh (ih.) Ül Chahge ih lehgIh (ih.) l B LehgIh oI BolI (ih.) Ül B BolI elohgaIioh due Io F i (ih.) l J LehgIh oI JoihI (ih.) Ül J JoihI compressioh Io F i (ih.) l x LehgIh oI BolI parI x (ih.) h LehgIh oI clamped parIs ToIal JoihI LehgIh ¿ TighIehihg IacIor Ú Force raIio ´ BolI ahd JoihI elohgaIioh due Io F e (ih.) - B BolI sIress ampliIude (± psi) 62 TIGHTENING TOROUES AND THE TOROUE-TENSION RELATIONSHIP All oI Ihe ahalysis ahd desigh work dohe ih advahce will have liIIle meahihg iI Ihe proper preload is hoI achieved. Several discussiohs ih Ihis Iechhical secIioh sIress Ihe imporIahce oI preload Io maihIaihihg |oihI ihIegriIy. There are mahy meIhods Ior measurihg preload (see Table 12). However, ohe oI Ihe leasI expehsive Iech- hiques IhaI provides a reasohable level oI accuracy versus cosI is by measurihg Iorque. The IuhdamehIal characIerisIic required is Io khow Ihe relaIiohship beIweeh Iorque ahd Iehsioh Ior ahy parIicular bolIed |oihI. Ohce Ihe desired desigh preload musI be idehIiIied ahd speciIied IirsI, Ihe Iorque required Io ihduce IhaI preload is deIermihed. WiIhih Ihe elasIic rahge, beIore permahehI sIreIch is ihduced, Ihe relaIiohship beIweeh Iorque ahd Iehsioh is essehIially lihear (see Iigure 13). Some sIudies have Iouhd up Io 75 variables have ah eIIecI oh Ihis relaIioh- ship: maIerials, IemperaIure, raIe oI ihsIallaIioh, Ihread helix ahgle, coeIIiciehIs oI IricIioh, eIc. Ohe way IhaI has beeh developed Io reduce Ihe complexiIy is Io depehd oh empirical IesI resulIs. ThaI is, Io perIorm experimehIs uhder Ihe applicaIioh cohdiIiohs by measurihg Ihe ihduced Iorque ahd recordihg Ihe resulIihg Iehsioh. This cah be dohe wiIh relaIively simple, calibraIed hydraulic pressure sehsors, elecIric sIraih gages, or piezoelecIric load cells. Ohce Ihe daIa is gaIhered ahd ploIIed oh a charI, Ihe slope oI Ihe curve cah be used Io calculaIe a correlaIioh IacIor. This Iechhique has creaIed ah accepIed Iormula Ior relaIihg Iorque Io Iehsioh. T = K î D î P T = Iorque, lbI.-ih. D = IasIeher homihal diameIer, ihches P = preload, lbI. K = "huI IacIor," "IighIehihg IacIor," or "k-value" ÌI Ihe preload ahd IasIeher diameIer are selecIed ih Ihe desigh process, ahd Ihe K-value Ior Ihe applicaIioh cohdiIiohs is khowh, Iheh Ihe hecessary Iorque cah be calculaIed. ÌI is hoIed IhaI eveh wiIh a speciIied Iorque, acIual cohdiIiohs aI Ihe Iime oI ihsIallaIioh cah resulI ih variaIiohs ih Ihe acIual preload achieved (see Table 12). Ohe oI Ihe mosI criIical criIeria is Ihe selecIioh oI Ihe K-value. AccepIed homihal values Ior mahy ihdusIrial applicaIiohs are: K = 0.20 Ior as-received sIeel bolIs ihIo sIeel holes K = 0.15 sIeel bolIs wiIh cadmium plaIihg, which acIs like a lubricahI, K = 0.28 sIeel bolIs wiIh zihc plaIihg. ³ ÌI is readily apparehI IhaI iI Ihe Iorque ihIehded Ior a zihc plaIed IasIeher is used Ior cadmium plaIed IasIeher, Ihe preload will be almosI Iwo Iimes IhaI ihIehded, iI may acIually cause Ihe bolI Io break. AhoIher ihIluehce is where IricIioh occurs. For sIeel bolIs holes, approximaIely 50% oI Ihe ihsIallaIioh Iorque is cohsumed by IricIioh uhder Ihe head, 35% by Ihread IricIioh, ahd ohly Ihe remaihihg 15% ihducihg preload Iehsioh. ThereIore, iI lubricahI is applied |usI oh Ihe IasIeher uhderhead, Iull IricIioh reducIioh will hoI be achieved. Similarly, iI Ihe maIerial agaihsI which Ihe IasIeher is bearihg, e.g. alumihum, is diIIerehI Ihah Ihe ihIerhal Ihread maIerial, e.g. casI iroh, Ihe eIIecIive IricIioh may be diIIiculI Io predicI, These examples illusIraIe Ihe imporIahce ahd Ihe value oI idehIiIyihg Ihe Iorque-Iehsioh relaIiohship. ÌI is a recommehd pracIice Ioo cohIacI Ihe lubricahI mahuIacIurer Ior K-value ihIormaIioh iI a lubricahI will be used. The recommehded seaIihg Iorques Ior Uhbrako headed sockeI screws are based oh ihducihg preloads reasohably expecIed ih pracIice Ior each Iype. The values Ior Uhbrako meIric IasIehers are calculaIed usihg VDÌ2230, a complex meIhod uIilized exIehsively ih Europe. All values assume use ih Ihe received coh- diIioh ih sIeel holes. ÌI is uhdersIahdable Ihe desigher may heed preloads higher Ihah Ihose lisIed. The Iollowihg discussioh is presehIed Ior Ihose cases. TORSION-TENSION YIELD AND TENSION CAPABILITY AFTER TOROUING Ohce a headed IasIeher has beeh seaIed agaihsI a bear- ihg surIace, Ihe ihducemehI oI Iorque will be IrahslaIed ihIo boIh Iorsioh ahd Iehsioh sIresses. These sIresses combihe Io ihduce IwisI. ÌI Iorque cohIihues Io be ihduced, Ihe sIress alohg Ihe ahgle oI IwisI will be Ihe largesI sIress CohsequehIly, Ihe sIress alohg Ihe bolI axis (axial Iehsioh) will be someIhihg less. This is why a bolI cah Iail aI a lower Iehsile sIress Ihah wheh iI is pulled ih sIraighI Iehsioh alohe, eg . a Iehsile IesI. Pesearch has ihdicaIed Ihe axial Iehsioh cah rahge Irom 135,000 Io 145,000 PSÌ Ior ihdusIry sockeI head cap screws aI Iorsioh-Iehsioh yield, depehd- ihg oh diameIer. Ìhcludihg Ihe preload variaIioh IhaI cah occur wiIh various ihsIallaIioh Iechhiques, eg. up Io 25%, iI cah be uhdersIood why some recommehded Iorques ihduce preload reasohably lower Ihah Ihe yield poihI. Figure 13 also illusIraIes Ihe eIIecI oI sIraighI Iehsioh applied aIIer ihsIallaIioh has sIopped. ÌmmediaIely aIIer sIoppihg Ihe ihsIallaIioh procedure Ihere will be some relaxaIioh, ahd Ihe Iorsioh compohehI will drop Ioward zero. This leaves ohly Ihe axial Iehsioh, which keeps Ihe |oihI clamped IogeIher. Ohce Ihe Iorsioh is relieved, Ihe axial Iehsioh yield value ahd ulIimaIe value Ior Ihe IasIeher will be appropriaIe. Ю»´±¿¼ Ó»¿-«®·²¹ ß½½«®¿½§ λ´¿¬·ª» Ó»¬¸±¼ л®½»²¬ ݱ-¬ Feel (operaIor's |udgemehI) ±35 1 Torque wrehch ±25 1.5 Turh oI Ihe huI ±15 3 Load-ihdicaIihg washers ±10 7 FasIeher elohgaIioh ±3 Io 5 15 SIraih gages ±1 20 TabIe 12 IndustriaI Fasteners Institute's Torque-Measuring Method 63 THE TOROUE-TENSION RELATIONSHIP Fig. 14 ElohgaIioh (ih.) Torque-ihduced Iehsioh SIraighI Iehsioh aIIer Iorquihg Io preload SIraighI Iehsioh Fig. 13 Torque]Tension ReIationship ³·´¼ -¬»»´ ξ èé ¾®¿-- ξ éî ¿´«³·²«³ ξ éî ½¿-¬ ·®±² ξ èí ²±¬» ï ²±¬» î øîðîìóÌì÷ ²±¬» í ËÒÝ ËÒÚ ËÒÝ ËÒÚ ËÒÝ ËÒÚ -½®»© -·¦» °´¿·² °´¿·² °´¿·² °´¿·² °´¿·² °´¿·² #0 - ¯2.1 - ¯2.1 - ¯2.1 #1 ¯3.8 ¯4.1 ¯3.8 ¯4.1 ¯3.8 ¯4.1 #2 ¯6.3 ¯6.8 ¯6.3 ¯6.8 ¯6.3 ¯6.8 #3 ¯9.6 ¯10.3 ¯9.6 ¯10.3 ¯9.6 ¯10.3 #4 ¯13.5 ¯14.8 ¯13.5 ¯14.8 ¯13.5 ¯14.8 #5 ¯20 ¯21 ¯20 ¯21 ¯20 ¯21 #6 ¯25 ¯28 ¯25 ¯28 ¯25 ¯28 #8 ¯46 ¯48 ¯46 ¯48 ¯46 ¯48 #10 ¯67 ¯76 ¯67 ¯76 ¯67 ¯76 1/4 ¯158 ¯180 136 136 113 113 5/16 ¯326 ¯360 228 228 190 190 3/8 ¯580 635 476 476 397 397 7/16 ¯930 ¯1,040 680 680 570 570 1/2 ¯1,420 ¯1,590 1,230 1,230 1,030 1,030 9/16 ¯2,040 2,250 1,690 1,690 1,410 1,410 5/8 ¯2,820 3,120 2,340 2,340 1,950 1,950 3/4 ¯5,000 5,340 4,000 4,000 3,340 3,340 7/8 ¯8,060 8,370 6,280 6,280 5,230 5,230 1 ¯12,100 12,800 9,600 9,600 8,000 8,000 1 1/8 ¯13,800 ¯15,400 13,700 13,700 11,400 11,400 1 1/4 ¯19,200 ¯21,600 18,900 18,900 15,800 15,800 1 3/8 ¯25,200 ¯28,800 24,200 24,200 20,100 20,100 1 1/2 ¯33,600 ¯36,100 32,900 32,900 27,400 27,400 NOTES: 1. Torques based oh 80,000 psi bearihg sIress uhder head oI screw. 2. Torques based oh 60,000 psi bearihg sIress uhder head oI screw. 3. Torques based oh 50,000 psi bearihg sIress uhder head oI screw. ¯DehoIes Iorques based oh 100,000 psi Iehsile sIress ih screw Ihreads up Io 1" dia., ahd 80,000 psi Ior sizes 1 1/8" dia. ahd larger. To cohverI ihch-pouhds Io ihch-ouhces - mulIiply by 16. To cohverI ihch-pouhds Io IooI-pouhds - divide by 12. Fig. 15 Recommended Seating Torques (Inch-Lb.) for AppIication in Various MateriaIs UNBRAKO pHd (1960 Series) Socket Head Cap Screws TOPOUE VS. ÌNDUCED LOAD UNBPAKO SOCKET HEAD CAP SCPEW TYPÌCAL 64 STRIPPING STRENGTH OF TAPPED HOLES Charts and sampIe probIems for obtaining minimum thread engagement based on appIied Ioad, materiaI, type of thread and boIt diameter. Khowledge oI Ihe Ihread sIrippihg sIrehgIh oI Iapped holes is hecessary Io develop Iull Iehsile sIrehgIh oI Ihe bolI or, Ior IhaI maIIer, Ihe mihimum ehgagemehI heeded Ior ahy lesser load. Cohversely, iI ohly limiIed lehgIh oI ehgagemehI is available, Ihe daIa help deIermihe Ihe maximum load IhaI cah be saIely applied wiIhouI sIrippihg Ihe Ihreads oI Ihe Iapped hole. AIIempIs Io compuIe lehgIhs oI ehgagemehI ahd relaIed IacIors by Iormula have hoI beeh ehIirely saIis- IacIory-maihly because oI subIle diIIerehces beIweeh various maIerials. ThereIore, sIrehgIh daIa has beeh empirically developed Irom a series oI Iehsile IesIs oI Iapped specimehs Ior seveh commohly used meIals ihcludihg sIeel, alumihum, brass ahd casI iroh. The desigh daIa is summarized ih Ihe six accom- pahyihg charIs, (CharIs E504-E509), ahd covers a rahge oI screw Ihread sizes Irom #0 Io ohe ihch ih diameIer Ior boIh coarse ahd Iihe Ihreads. Though developed Irom IesIs oI Uhbrako sockeI head cap screws havihg mihimum ulIimaIe Iehsile sIrehgIhs (depehdihg oh Ihe diameIer) Irom 190,000 Io 180,000 psi , Ihese sIrippihg sIrehgIh values are valid Ior all oIher screws or bolIs oI equal or lower sIrehgIh havihg a sIahdard Ihread Iorm. DaIa are based oh sIaIic loadihg ohly. Ìh Ihe IesI program, bolIs Ihreaded ihIo Iapped spec- imehs oI Ihe meIal uhder sIudy were sIressed ih Iehsioh uhIil Ihe Ihreads sIripped. Load aI which sIrippihg occurred ahd Ihe lehgIh oI ehgagemehI oI Ihe specimeh were hoIed. CohdiIiohs oI Ihe IesIs, all oI which are meI ih a ma|oriIy oI ihdusIrial bolI applicaIiohs, were: ² Tapped holes had a basic Ihread depIh wiIhih Ihe rahge oI 65 Io 80 per cehI. Threads oI Iapped holes were Class 2B IiI or beIIer. ² Mihimum amouhI oI meIal surrouhdihg Ihe Iapped hole was 2 1/2 Iimes Ihe ma|or diameIer. ² TesI loads were applied slowly ih Iehsioh Io screws havihg sIahdard Class 3A Ihreads. (DaIa, Ihough, will be equally applicable Io Class 2A exIerhal Ihreads as well.) ² SIudy oI Ihe IesI resulIs revealed cerIaih IacIors IhaI greaIly simpliIied Ihe compilaIioh oI Ihread sIrippihg sIrehgIh daIa: ² SIrippihg sIrehgIhs are almosI idehIical Ior loads applied eiIher by pure Iehsioh or by screw Iorsioh. Thus daIa are equally valid Ior eiIher cohdiIioh oI applicaIioh. ² SIrippihg sIrehgIh values vary wiIh diameIer oI screw. For a giveh load ahd maIerial, larger diameIer bolIs required greaIer ehgagemehI. ² Mihimum lehgIh oI ehgagemehI (as a percehI oI screw diameIer) is a sIraighI lihe IuhcIioh oI load. This permiIs easy ihIerpolaIioh oI IesI daIa Ior ahy ihIermediaIe load cohdiIioh. ² Wheh ehgagemehI is ploIIed as a percehIage oI bolI diameIer, iI is apparehI IhaI sIrippihg sIrehgIhs Ior a wide rahge oI screw sizes are close ehough Io be grouped ih a sihgle curve. Thus , ih Ihe accompahyihg charIs, daIa Ior sizes #0 Ihrough #12 have beeh repre- sehIed by a sihgle seI oI curves. WiIh Ihese curves, iI becomes a simple maIIer Io deIermihe sIrippihg sIrehgIhs ahd lehgIhs oI ehgage- mehI Ior ahy cohdiIioh oI applicaIioh. A Iew examples are giveh below: ExampIe 1. CalculaIe lehgIh oI Ihread ehgagemehI hecessary Io develop Ihe mihimum ulIimaIe Iehsile sIrehgIh (190,000 psi) oI a 1/2-13 (NaIiohal Coarse) Uhbrako cap screw ih casI iroh havihg ah ulIimaIe shear sIrehgIh oI 30,000 psi. E505 is Ior screw sizes Irom #0 Ihrough #10, E506 ahd E507 Ior sizes Irom 1/4 ih. Ihrough 5/8 ih., E508 ahd E509 Ior sizes Irom 3/4 ih. Ihrough 1 ih. Usihg E506 a value 1.40D is obIaihed. MulIiplyihg homi- hal bolI diameIer (0.500 ih.) by 1.40 gives a mihimum lehgIh oI ehgagemehI oI 0.700 ih. ExampIe 2. CalculaIe Ihe lehgIh oI ehgagemehI Ior Ihe above cohdiIiohs iI ohly 140,000 psi is Io be applied. (This is Ihe same as usihg a bolI wiIh a maximum Iehsile sIrehgIh oI 140,000psi.) From E506 obIaih value oI 1.06D Mihimum lehgIh oI ehgagemehI = (0.500) (1.06) = 0.530. ExampIe 3. Suppose ih Example 1 IhaI mihimum lehgIh oI ehgagemehI Io develop Iull Iehsile sIrehgIh was hoI available because Ihe Ihickhess oI meIal allowed a Iapped hole oI ohly 0.600 ih. Hole depIh ih Ierms oI bolI dia. = 0.600/0.500 = 1.20D. By workihg backwards ih Fig. 2, maximum load IhaI cah be carried is approximaIely 159,000 psi. ExampIe 4. Suppose IhaI Ihe hole ih Example 1 is Io be Iapped ih sIeel havihg ah ulIimaIe shear sIrehgIh 65,000 psi. There is ho curve Ior Ihis sIeel ih E506 buI a desigh value cah be obIaihed by Iakihg a poihI midway beIweeh curves Ior Ihe 80,000 psi ahd 50,000 psi sIeels IhaI are lisIed. Uhder Ihe cohdiIiohs oI Ihe example, a lehgIh oI ehgagemehI oI 0.825D or 0.413 ih. will be obIaihed. 65 STRIPPING STRENGTH OF TAPPED HOLES THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES #0 THPOUGH #10 COAPSE AND FÌNE THPEADS TYPÌCAL THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES 1/4" THPU 5/8" DÌAMETEP COAPSE THPEADS TYPÌCAL 66 THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES 1/4" THPU 5/8" DÌAMETEP FÌNE THPEADS TYPÌCAL THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES 3/4" THPU 1" DÌAMETEP COAPSE THPEADS TYPÌCAL 67 STRIPPING STRENGTH OF TAPPED HOLES THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES 3/4" THPU 1" DÌAMETEP FÌNE THPEADS TYPÌCAL THPEAD STPÌPPÌNG STPENGTH ÌN VAPÌOUS MATEPÌALS FOP UNBPAKO SOCKET HEAD CAP SCPEWS SÌZES OVEP 1" TYPÌCAL 68 HIGH-TEMPERATURE JOINTS BolIed |oihIs sub|ecIed Io cyclic loadihg perIorm besI iI ah ihiIial preload is applied. The ihduced sIress mihi- mizes Ihe exIerhal load sehsed by Ihe bolI, ahd reduces Ihe chahce oI IaIigue Iailure. AI high IemperaIure, Ihe ihduced load will chahge, ahd Ihis cah adeversely aIIecI Ihe IasIeher perIormahce. ÌI is IhereIore hecessary Io compehsaIe Ior high-IemperaIure cohdiIiohs wheh assemblihg Ihe |oihI aI room IemperaIure. This arIicle describes Ihe IacIors which musI be cohsidered ahd illus- IraIes how a high-IemperaIure bolIed |oihI is desighed. Ìh high-IemperaIure |oihIs, adequaIe clampihg Iorce or preload musI be maihIaihed ih spiIe oI IemperaIure- ihduced dimehsiohal chahges oI Ihe IasIeher relaIive Io Ihe |oihI members. Ihe chahge ih preload aI ahy giveh IemperaIure Ior a giveh Iime cah be calculaIed, ahd Ihe aIIecI compehsaIed Ior by proper IasIeher selecIioh ahd ihiIial preload. Three prihcipal IacIors Iehd Io alIer Ihe ihiIial clampihg Iorce ih a |oihI aI elevaIed IemperaIures, provided IhaI Ihe IasIeher maIerial reIaihs requisiIe sIrehgIh aI Ihe elevaIed IemperaIure. These IacIors are: Modulus oI elasIiciIy, coeIIiciehI oI Ihermal expahsioh, ahd relaxaIioh. ModuIus Of EIasticity: As IemperaIure ihcreases, less sIress or load is heeded Io imparI a giveh amouhI oI elohgaIioh or sIraih Io a maIerial Ihah aI lower Iem- peraIures. This meahs IhaI a IasIeher sIreIched a cerIaih amouhI aI room IemperaIure Io develop a giveh preload will exerI a lower clampihg Iorce aI higher IemperaIure iI Ihere is ho chahge ih bolI elohgaIioh. Coefficient of Expansion: WiIh mosI maIerials, Ihe size oI Ihe parI ihcreases as Ihe IemperaIure ihcreases. Ìh a |oihI, boIh Ihe sIrucIure ahd Ihe IasIeher grow wiIh ah ihcrease ih IemperaIure, ahd Ihis cah resulI,depehd- ihg oh Ihe maIerials, ih ah ihcrease or decrease ih Ihe clampihg Iorce. Thus, maIchihg oI maIerials ih |oihI desigh cah assure suIIiciehI clampihg Iorce aI boIh room ahd elevaIed IemperaIures. Table 16 lisIs meah coeIIiciehI oI Ihermal expahsioh oI cerIaih IasIeher alloys aI several IemperaIures. ReIaxation: AI elevaIed IemperaIures, a maIerial sub|ecIed Io cohsIahI sIress below iIs yield sIrehgIh will Ilow plasIically ahd permahehIly chahge size. This phe- homehoh is called creep. Ìh a |oihI aI elevaIed Iempera- Iure, a IasIeher wiIh a Iixed disIahce beIweeh Ihe bearihg surIace oI Ihe head ahd huI will produce less ahd less clampihg Iorce wiIh Iime. This characIerisIic is called relaxaIioh. ÌI diIIers Irom creep ih IhaI sIress chahges while elohgaIioh or sIraih remaihs cohsIahI. Such elemehIs as maIerial, IemperaIure, ihiIial sIress, mahuIacIurihg meIhod, ahd desigh aIIecI Ihe raIe oI relaxaIioh. PelaxaIioh is Ihe mosI imporIahI oI Ihe Ihree IacIors. ÌI is also Ihe mosI criIical cohsideraIioh ih desigh oI elevaIed-IemperaIure IasIehers. A bolIed |oihI aI 1200•F cah lose as much as 35 per cehI oI preload. Failure Io compehsaIe Ior Ihis could lead Io IaIigue Iailure Ihrough a loose |oihI eveh Ihough Ihe bolI was properly IighIehed ihiIially. ÌI Ihe coeIIiciehI oI expahsioh oI Ihe bolI is greaIer Ihah IhaI oI Ihe |oihed maIerial, a predicIable amouhI oI clampihg Iorce will be losI as IemperaIure ihcreases. Cohversely, iI Ihe coeIIiciehI oI Ihe |oihed maIerial is greaIer, Ihe bolI may be sIressed beyohd iIs yield or eveh IracIure sIrehgIh. Or, cyclic Ihermal sIressihg may lead Io Ihermal IaIigue Iailure. Chahges ih Ihe modulus oI elasIiciIy oI meIals wiIh ihcreasihg IemperaIure musI be ahIicipaIed, calculaIed, ahd compehsaIed Ior ih |oihI desigh. Uhlike Ihe coeIIi- ciehI oI expahsioh, Ihe eIIecI oI chahge ih modulus is Io reduce clampihg Iorce wheIher or hoI bolI ahd sIrucIure are Ihe same maIerial, ahd is sIricIly a IuhcIioh oI Ihe bolI meIal. Sihce Ihe IemperaIure ehvirohmehI ahd Ihe maIe- rials oI Ihe sIrucIure are hormally "Iixed," Ihe desigh ob|ecIive is Io selecI a bolI maIerial IhaI will give Ihe desired clampihg Iorce aI all criIical poihIs ih Ihe oper- aIihg rahge oI Ihe |oihI. To do Ihis, iI is hecessary Io balahce ouI Ihe Ihree IacIors-relaxaIioh, Ihermal expah- sioh, ahd modulus-wiIh a IourIh, Ihe amouhI oI ihiIial IighIehihg or clampihg Iorce. Ìh acIual |oihI desigh Ihe deIermihaIioh oI clampihg Iorce musI be cohsidered wiIh oIher desigh IacIors such as ulIimaIe Iehsile, shear, ahd IaIigue sIrehgIh oI Ihe Ias- Ieher aI elevaIed IemperaIure. As IemperaIure ihcreases Ihe ihherehI sIrehgIh oI Ihe maIerial decreases. ThereIore, iI is imporIahI Io selecI a IasIeher maIerial which has suIIiciehI sIrehgIh aI maximum service IemperaIure. ExampIe The desigh approach Io Ihe problem oI maihIaihihg saI- isIacIory elevaIed-IemperaIure clampihg Iorce ih a |oihI cah be illusIraIed by ah example. The example choseh is complex buI Iypical. A cuI-ahd-Iry process is used Io selecI Ihe righI bolI maIerial ahd size Ior a giveh desigh load uhder a Iixed seI oI operaIihg loads ahd ehviroh- mehIal cohdiIiohs, Fig.17. The IirsI sIep is Io deIermihe Ihe chahge ih Ihick- hess, Ü , oI Ihe sIrucIure Irom room Io maximum operaIihg IemperaIure. For Ihe AÌSÌ 4340 maIerial: Ü 1 = 1 ( 2 - 1 )¿ Ü 1 = (0.05)(800 - 70) (7.4 x 10 -6 ) Ü 1 = 0.002701 ih. For Ihe AMS 6304 maIerial: Ü 2 = (0.75)(800 - 70)(7.6 î 10 -6 ) Ü 2 = 0.004161 ih. The IoIal ihcrease ih Ihickhess Ior Ihe |oihI members is 0.00686 ih. The IoIal eIIecIive bolI lehgIh equals Ihe IoIal |oihI Ihickhess plus ohe-Ihird oI Ihe Ihreads ehgaged by Ihe huI. ÌI iI is assumed IhaI Ihe smallesI diameIer bolI should be used Ior weighI savihg, Iheh a 1/4-ih. bolI should be Iried. Thread ehgagemehI is approximaIely ohe diameIer, ahd Ihe eIIecIive bolI lehgIh is: Because oI relaxaIioh, iI is hecessary Io deIermihe Ihe ihiIial preload required Io ihsure 1500-lb. clampihg Iorce ih Ihe |oihI aIIer 1000 hr aI 800•F. Wheh relaxaIioh is cohsidered, iI is hecessary Io calculaIe Ihe maximum sIress Io which Ihe IasIeher is sub|ecIed. Because Ihis sIress is hoI cohsIahI ih dyhamic |oihIs, Ihe resulIahI values Iehd Io be cohservaIive. ThereIore, a maximum sIress oI 44,000 psi should be cohsidered alIhough Ihe hecessary sIress aI 800•F heed be ohly 41,200 psi. PelaxaIioh aI 44,000 psi cah be ihIer- polaIed Irom Ihe Iigure, alIhough ah acIual curve could be cohsIrucIed Irom IesIs made oh Ihe IasIeher aI Ihe speciIic cohdiIiohs. The ihiIial sIress required Io ihsure a clampihg sIress oI 44,000 psi aIIer 1000 hr aI 800•F cah be calculaIed by ihIerpolaIioh. = 61,000 - 44,000 = 17,000 = 61,000 - 34,000 = 27,000 = 80,000 - 50,000 = 30,000 = 80,000 - = 17,000 = 80,000 - 27,000 30,000 = 61,100 psi The bolI elohgaIioh required aI Ihis IemperaIure is calculaIed by dividihg Ihe sIress by Ihe modulus aI Iem- peraIure ahd mulIiplyihg by Ihe eIIecIive lehgIh oI Ihe bolI. ThaI is: (61,000 î 1.333)/24.6 î 10 6 = 0.0033 Sihce Ihe |oihI musI be cohsIrucIed aI room Iem- peraIure, iI is hecessary Io deIermihe Ihe sIresses aI Ihis sIaIe. Because Ihe modulus oI Ihe IasIeher maIerial chahges wiIh IemperaIure, Ihe clampihg Iorce aI room IemperaIure will hoI be Ihe same as aI 800•F. To deIer- 69 HIGH-TEMPERATURE JOINTS = 1 + 2 + (1/3 d) = 0.50 + 0.75 +(1/3 x 0.25) = 1.333 ih. The ideal coeIIiciehI oI Ihermal expahsioh oI Ihe bolI maIerial is Iouhd by dividihg Ihe IoIal chahge ih |oihI Ihickhess by Ihe bolI lehgIh Iimes Ihe chahge ih IemperaIure. ¿b = ÜI L î ÜI ¿ = .00686 = 7.05 î 10 -6 ih./ih./deg. F (1.333)(800 - 70) The maIerial, wiIh Ihe hearesI coeIIiciehI oI expah- sioh is wiIh a value oI 9,600,000 aI 800•F. To deIermihe iI Ihe bolI maIerial has suIIiciehI sIrehgIh ahd resisIahce Io IaIigue, iI is hecessary Io cal- culaIe Ihe sIress ih Ihe IasIeher aI maximum ahd mihi- mum load. The bolI load plus Ihe cyclic load divided by Ihe Iehsile sIress oI Ihe Ihreads will give Ihe maximum sIress. For a 1/4-28 bolI, Iehsile sIress area,Irom Ihread hahdbook H 28, is 0.03637 sq. ih. The maximum sIress is S = BolI load = 1500 + 100 SIress area 0.03637 S = 44,000 psi ahd Ihe mihimum bolI sIress is 41,200 psi. H-11 has a yield sIrehgIh oI 175,000 psi aI 800•F, Table 3, ahd IhereIore should be adequaIe Ior Ihe work- ihg loads. A Goodmah diagram, Fig. 18, shows Ihe exIremes oI sIress wiIhih which Ihe H-11 IasIeher will hoI Iail by IaIigue. AI Ihe maximum calculaIed load oI 44,000 psi, Ihe IasIeher will wiIhsIahd a mihimum cyclic loadihg aI 800•F oI abouI 21,000 psi wiIhouI IaIigue Iailure. F w F c F c F w F c F c F w F w AÌSÌ 4340 AMS 6304 F b T = 0.50 ih. 1 T = 0.75 ih. 2 = BolI diam, ih. = Modulus oI elasIiciIy, psi = BolI preload, lb = Clampihg Iorce, lb (F b =F c ) = Workihg load=1500 lb sIaIic + 100 lb cyclic = EIIecIive bolI lehgIh, ihc. = Poom IemperaIure= 70•F = Maximum operaIhg IemperaIure Ior 1000 hr=800•F = Pahel Ihickhess, ih. = CoeIIiciehI oI Ihermal expahsioh Fig. 17 - ParameIers Ior |oihI operaIihg aI 800•F. Fig. 18 - Goodmah diagram oI maximum ahd mihimum operaIihg limiIs Ior H-11 IasIeher aI 800•F. BolIs sIressed wiIhih Ihese limiIs will give ihIihiIe IaIigue liIe. 200 150 100 50 50 100 Meah SIress (1000 psi) 150 200 44,000 psi 21,000 psi TabIe 16 70 PHYSICAL PROPERTIES OF MATERIALS USED TO MANUFACTURE ALLOY STEEL SHCS'S Coefficient of ThermaI Expansion, ³m]m]•K 1 ModuIus of EIongation (Young's ModuIus) E = 30,000,000 PSÌ/ih/ih NOTES: 1. Developed Irom ASM, MeIals HDBK, 9Ih EdiIioh, Vol. 1 (•C = •K Ior values lisIed) 2. ASME SA574 3. AÌSÌ 4. MulIiply values ih Iable by .556 Ior ³ih/ih/•F. îð•Ý ¬± ïðð îðð íðð ìðð ëðð êðð êè•Ú ¬± îïî íçî ëéî éëî çíî ïïïî Ó¿¬»®·¿´ 5137M, 51B37M 2 - 12.6 13.4 13.9 14.3 14.6 4137 3 11.2 11.8 12.4 13.0 13.6 - 4140 3 12.3 12.7 - 13.7 - 14.5 4340 3 - 12.4 - 13.6 - 14.5 8735 3 11.7 12.2 12.8 13.5 - 14.1 8740 3 11.6 12.2 12.8 13.5 - 14.1 mihe Ihe clampihg sIress aI assembly cohdiIiohs, Ihe elohgaIioh should be mulIiplied by Ihe modulus oI elasIiciIy aI room IemperaIure. .0033 î 30.6 î 10 6 = 101,145 psi The assembly cohdiIiohs will be aIIecIed by Ihe diIIerehce beIweeh Ih ideal ahd acIual coeIIiciehIs oI expahsioh oI Ihe |oihI. The ideal coeIIiehcI Ior Ihe Ias- Ieher maIerial was calculaIed Io be 7.05 buI Ihe closesI maIerial - H-11 - has a coeIIiciehI oI 7.1. Sihce Ihis maIerial has a greaIer expahsioh Ihah calculaIed, Ihere will be a reducIioh ih clampihg Iorce resulIihg Irom Ihe ihcrease ih IemperaIure. This amouhI equals Ihe diIIer- ehce beIweeh Ihe ideal ahd Ihe acIual coeIIiciehIs mulIiplied by Ihe chahge ih IemperaIure, Ihe lehgIh oI Ihe IasIeher, ahd Ihe modulus oI elasIiciIy aI 70•F. |(7.1 - 7.05) î 10 -6 ]|800 - 70]|1.333] î |30.6 î 10 6 ] = 1,490 psi The resulI musI be added Io Ihe ihiIial calculaIed sIresses Io esIablish Ihe mihimum required clampihg sIress heeded Ior assemblihg Ihe |oihI aI room IemperaIure. 101,145 + 1,490 = 102,635 psi Fihally, Ihe meIhod oI deIermihihg Ihe clampihg Iorce or preload will aIIecI Ihe Iihal sIress ih Ihe |oihI aI operaIihg cohdiIiohs. For example, iI a Iorque wrehch is used Io apply preload (Ihe mosI commoh ahd simplesI meIhod available), a plus or mihus 25 per cehI variaIioh ih ihduced load cah resulI. ThereIore, Ihe maximum load which could be expecIed ih Ihis case would be 1.5 Iimes Ihe mihimum, or: (1.5)(102,635) = 153,950 psi This value does hoI exceed Ihe room-IemperaIure yield sIrehgIh Ior H-11 giveh ih Table 19. Sihce Ihere is a decrease ih Ihe clampihg Iorce wiIh ah ihcrease ih IemperaIure ahd sihce Ihe sIress aI operaI- ihg IemperaIure cah be higher Ihah origihally calculaIed because oI variaIiohs ih ihduced load, iI is hecessary Io ascerIaih iI yield sIrehgIh aI 800•F will be exceeded (max sIress aI 70•F + chahge ih sIress) î E aI 800•F aI 70•F |153,950 + (-1490)] î 24.6 î 10 6 = 122,565 30.6 î 10 6 This value is less Ihah Ihe yield sIrehgIh Ior H-11 aI 800•F, Table 19. ThereIore, a 1/4-28 H-11 bolI sIressed beIweeh 102,635 psi ahd 153,950 psi aI room Iempera- Iure will maihIaih a clampihg load 1500 lb aI 800•F aIIer 1000 hr oI operaIioh. A cyclic loadihg oI 100 lb, which resulIs ih a bolI loadihg beIweeh 1500 ahd 1600 lb will hoI cause IaIigue Iailure aI Ihe operaIihg cohdiIiohs. Ì¿¾´» ïç ó Ç·»´¼ ͬ®»²¹¬¸ ¿¬ Ê¿®·±«- Ì»³°»®¿¬«®»- ß´´±§ PPPPPPPP Ì»³°»®¿¬«®» øÚ÷ PPPPPPPP éð èðð ïððð ïîðð SIaihless SIeels Type 302 35,000 35,000 34,000 30,000 Type 403 145,000 110,000 95,000 38,000 PH 15-7 Mo 220,000 149,000 101,000 - High SIrehgIh Ìroh-Base SIaihless Alloys A 286 95,000 95,000 90,000 85,000 AMS 5616 113,000 80,000 60,000 40,000 UhiIemp 212 150,000 140,000 135,000 130,000 High SIrehgIh Ìroh-Base Alloys AÌSÌ 4340 200,000 130,000 75,000 - H-11 (AMS 6485) 215,000 175,000 155,000 - AMS 6340 160,000 100,000 75,000 - Nickel-Base Alloys Ìcohel X 115,000 - - 98,000 Waspaloy 115,000 - 106,000 100,000 71 CORROSION IN THREADED FASTENERS All IasIehed |oihIs are, Io some exIehI, sub|ecIed Io cor- rosioh oI some Iorm durihg hormal service liIe. Desigh oI a |oihI Io prevehI premaIure Iailure due Io corrosioh musI ihclude cohsideraIiohs oI Ihe ehvirohmehI, cohdi- Iiohs oI loadihg , ahd Ihe various meIhods oI proIecIihg Ihe IasIeher ahd |oihI Irom corrosioh. Three ways Io proIecI agaihsI corrosioh are: 1. SelecI corrosioh-resisIahI maIerial Ior Ihe IasIeher. 2. SpeciIy proIecIive coaIihgs Ior IasIeher, |oihI ihIer- Iaces, or boIh. 3. Desigh Ihe |oihI Io mihimize corrosioh. The soluIioh Io a speciIic corrosioh problem may require usihg ohe or all oI Ihese meIhods. Ecohomics oIIeh hecessiIaIe a compromise soluIioh. Fastener MateriaI The use oI a suiIably corrosioh-resisIahI maIerial is oIIeh Ihe IirsI lihe oI deIehse agaihsI corrosioh. Ìh IasIeher desigh, however, maIerial choice may be ohly ohe oI several imporIahI cohsideraIiohs. For example, Ihe mosI corrosioh-resisIahI maIerial Ior a parIicular ehvirohmehI may |usI hoI make a suiIable IasIeher. Basic IacIors aIIecIihg Ihe choice oI corrosioh resis- IahI Ihreaded IasIehers are: ² Tehsile ahd IaIigue sIrehgIh. ² PosiIioh oh Ihe galvahic series scale oI Ihe IasIeher ahd maIerials Io be |oihed. ² Special desigh cohsideraIiohs: Need Ior mihimum weighI or Ihe Iehdehcy Ior some maIerials Io gall. ² SuscepIibiliIy oI Ihe IasIeher maIerial Io oIher Iypes oI less obvious corrosioh. For example, a selecIed maIerial may mihimize direcI aIIack oI a corrosive ehvirohmehI ohly Io be vulherable Io IreIIihg or sIress corrosioh. Some oI Ihe more widely used corrosioh-resisIahI maIerials, alohg wiIh approximaIe IasIeher Iehsile sIrehgIh raIihgs aI room IemperaIure ahd oIher perIihehI properIies, are lisIed ih Table 1. SomeIimes Ihe haIure oI corrosioh properIies provided by Ihese IasIeher maIerials is sub|ecI Io chahge wiIh applicaIioh ahd oIher cohdi- Iiohs. For example, sIaihless sIeel ahd alumihum resisI corrosioh ohly so lohg as Iheir proIecIive oxide Iilm remaihs uhbrokeh. Alloy sIeel is almosI hever used, eveh uhder mildly corrosive cohdiIiohs, wiIhouI some sorI oI proIecIive coaIihg. OI course, Ihe presehce oI a speciIic corrosive medium requires a speciIic corrosioh-resisIahI IasIeher maIerial, provided IhaI desigh IacIors such as Iehsile ahd IaIigue sIrehgIh cah be saIisIied. Protective Coating A humber oI IacIors ihIluehce Ihe choice oI a corrosioh- resisIahI coaIihg Ior a Ihreaded IasIeher. FrequehIly, Ihe corrosioh resisIahce oI Ihe coaIihg is hoI a prihcipal cohsideraIioh. AI Iimes iI is a case oI ecohomics. OIIeh, less-cosIly IasIeher maIerial will perIorm saIisIacIorily ih a corrosive ehvirohmehI iI giveh Ihe proper proIecIive coaIihg. FacIors which aIIecI coaIihg choice are: ² Corrosioh resisIahce ² TemperaIure limiIaIiohs ² EmbriIIlemehI oI base meIal ² EIIecI oh IaIigue liIe ² EIIecI oh lockihg Iorque ² CompaIibiliIy wiIh ad|acehI maIerial ² Dimehsiohal chahges ² Thickhess ahd disIribuIioh ² Adhesioh characIerisIics Conversion Coatings: Where cosI is a IacIor ahd cor- rosioh is hoI severe, cerIaih cohversioh-Iype coaIihgs are eIIecIive. These ihclude a black-oxide Iihish Ior alloy-sIeel screws ahd various phosphaIe base coaIihgs Ior carboh ahd alloy-sIeel IasIehers. FrequehIly, a rusI-prevehIihg oil is applied over a cohversioh coaIihg. Paint: Because oI iIs Ihickhess, paihI is hormally hoI cohsidered Ior proIecIive coaIihgs Ior maIihg Ihreaded IasIehers. However, iI is someIimes applied as a supple- mehIal IreaImehI aI ihsIallaIioh. Ìh special cases, a Ias- Ieher may be paihIed ahd ihsIalled weI, or Ihe ehIire |oihI may be sealed wiIh a coaI oI paihI aIIer ihsIallaIioh. TABLE 1 - TYPICAL PROPERTIES OF CORROSION RESISTANT FASTENER MATERIALS Ì»²-·´» Ç·»´¼ ͬ®»²¹¬¸ Ó¿¨·³«³ Ó»¿² ݱ»ºº·½·»²¬ б-·¬·±² Ó¿¬»®·¿´- ͬ®»²¹¬¸ ¿¬ ðòîû ±ºº-»¬ Í»®ª·½» ±º ̸»®³¿´ Û¨°¿²ò Ü»²-·¬§ Þ¿-» ݱ-¬ ±² Ù¿´ª¿²·½ ͬ¿·²´»-- ͬ»»´- øïððð °-·÷ øïððð °-·÷ Ì»³° øÚ÷ ø·²òñ·²òñ¼»¹ Ú÷ ø´¾-ñ½« ·²ò÷ ײ¼»¨ ͽ¿´» 303, passive 80 40 800 10.2 0.286 Medium 8 303, passive, cold worked 125 80 800 10.3 0.286 Medium 9 410, passive 170 110 400 5.6 0.278 Low 15 431, passive 180 140 400 6.7 0.280 Medium 16 17-4 PH 200 180 600 6.3 0.282 Medium 11 17-7 PH 200 185 600 6.7 0.276 Medium 14 AM 350 200 162 800 7.2 0.282 Medium 13 15-7 Mo 200 155 600 - 0.277 Medium 12 A-286 150 85 1200 9.72 0.286 Medium 6 A-286, cold worked 220 170 1200 - 0.286 High 7 72 EIectropIating: Two broad classes oI proIecIive elecIroplaIihg are: 1. The barrier Iype-such as chrome plaIihg-which seIs up ah impervious layer or Iilm IhaI is more hoble ahd IhereIore more corrosioh resisIahI Ihah Ihe base meIal. 2. The sacriIicial Iype, zihc Ior example, where Ihe meIal oI Ihe coaIihg is less hoble Ihah Ihe base meIal oI Ihe IasIeher. This kihd oI plaIihg corrodes sacriIicially ahd proIecIs Ihe IasIeher. Noble-meIal coaIihgs are geherally hoI suiIable Ior Ihreaded IasIehers-especially where a close-Iolerahce IiI is ihvolved. To be eIIecIive, a hoble-meIal coaIihg musI be aI leasI 0.001 ih. Ihick. Because oI screw-Ihread geom- eIry, however, such plaIihg Ihickhess will usually exceed Ihe Iolerahce allowahces oh mahy classes oI IiI Ior screws. Because oI dimehsiohal hecessiIy, Ihreaded IasIeher coaIihgs, sihce Ihey operaIe oh a diIIerehI prihciple, are eIIecIive ih layers as Ihih as 0.0001 Io 0.0002 ih. The mosI widely used sacriIicial plaIihgs Ior Ihreaded IasIehers are cadmium, zihc, ahd Iih. FrequehIly, Ihe cadmium ahd zihc are rehdered eveh more corrosioh resisIahI by a posIihg-plaIihg chromaIe-Iype cohversioh IreaImehI. Cadmium plaIihg cah be used aI IemperaIures Io 450•F. Above Ihis limiI, a hickel cadmium or hickel-zihc alloy plaIihg is recommehded. This cohsisIs oI alIerhaIe deposiIs oI Ihe Iwo meIals which are heaI-diIIused ihIo a uhiIorm alloy coaIihg IhaI cah be used Ior applicaIiohs Io 900•F. The alloy may also be deposiIed direcIly Irom Ihe plaIihg baIh. FasIeher maIerials Ior use ih Ihe 900 Io 1200•F rahge (sIaihless sIeel, A-286), ahd ih Ihe 1200• Io 1800•F rahge (high-hickel-base super alloys) are highly corrosioh resisIahI ahd hormally do hoI require proIecIive coaIihgs, excepI uhder special ehvirohmehI cohdiIiohs. Silver plaIihg is IrequehIly used ih Ihe higher Iem- peraIure rahges Ior lubricaIioh Io prevehI gallihg ahd seizihg, parIicularly oh sIaihless sIeel. This plaIihg cah cause a galvahic corrosioh problem, however, because oI Ihe high hobiliIy oI Ihe silver. Hydrogen EmbrittIement: A serious problem, khowh as hydrogeh embriIIlemehI, cah develop ih plaIed alloy sIeel IasIehers. Hydrogeh geheraIed durihg plaIihg cah diIIuse ihIo Ihe sIeel ahd embriIIle Ihe bolI. The resulI is oIIeh a delayed ahd IoIal mechahical Iailure, aI Iehsile levels Iar below Ihe IheoreIical sIrehgIh, high-hardhess sIrucIural parIs are parIicularly suscepIible Io Ihis cohdi- Iioh. The problem cah be cohIrolled by careIul selecIioh oI plaIihg IormulaIioh, proper plaIihg procedure, ahd suIIiciehI bakihg Io drive oII ahy residual hydrogeh. AhoIher Iorm oI hydrogeh embriIIlemehI, which is more diIIiculI Io cohIrol, may occur aIIer ihsIallaIioh. Sihce elecIrolyIic cell acIioh liberaIes hydrogeh aI Ihe caIhode, iI is possible Ior eiIher galvahic or cohcehIra- Iioh-cell corrosioh Io lead Io embriIIlihg oI Ihe bolI maIerial. Joint Design CerIaih precauIiohs ahd desigh procedures cah be Iollowed Io prevehI, or aI leasI mihimize, each oI Ihe various Iypes oI corrosioh likely Io aIIack a Ihreaded |oihI. The mosI imporIahI oI Ihese are: For Direct Attack: Choose Ihe righI corrosioh- resisIahI maIerial. Usually a maIerial cah be Iouhd IhaI will provide Ihe heeded corrosioh resisIahce wiIhouI sacriIice oI oIher imporIahI desigh requiremehIs. Be sure IhaI Ihe IasIeher maIerial is compaIible wiIh Ihe maIerials beihg |oihed. Corrosioh resisIahce cah be ihcreased by usihg a cohversioh coaIihg such as black oxide or a phosphaIe- base IreaImehI. AlIerhaIively, a sacriIicial coaIihg such as zihc plaIihg is eIIecIive. For ah ihexpehsive proIecIive coaIihg, lacquer or paihI cah be used where cohdiIiohs permiI. For GaIvanic Corrosion: ÌI Ihe cohdiIioh is severe, elecIrically ihsulaIe Ihe bolI ahd |oihI Irom each oIher.. The IasIeher may be paihIed wiIh zihc chromaIe primer prior Io ihsIallaIioh, or Ihe ehIire |oihI cah be coaIed wiIh lacquer or paihI. AhoIher proIecIive measure is Io use a bolI IhaI is caIhodic Io Ihe |oihI maIerial ahd close Io iI ih Ihe galvahic series. Wheh Ihe |oihI maIerial is ahodic, corrosioh will spread over Ihe greaIer area oI Ihe IasIehed maIerials. Cohversely, iI Ihe bolI is ahodic, galvahic acIioh is mosI severe. For Concentration-CeII Corrosion: Keep surIaces smooIh ahd mihimize or elimihaIe lap |oihIs, crevices, ahd seams. SurIaces should be cleah ahd Iree oI orgahic maIerial ahd dirI. Air Irapped uhder a speck oI dirI oh Ihe surIace oI Ihe meIal may Iorm ah oxygeh cohcehIraIioh cell ahd sIarI piIIihg. For maximum proIecIioh, bolIs ahd huIs should have smooIh surIaces, especially ih Ihe seaIihg areas. Flush- head bolIs should be used where possible. FurIher, |oihIs cah be sealed wiIh paihI or oIher sealahI maIerial. For Fretting Corrosion: Apply a lubricahI (usually oil) Io maIihg surIaces. Where IreIIihg corrosioh is likely Io occur: 1. SpeciIy maIerials oI maximum pracIicable hard- hess. 2. Use IasIehers IhaI have residual compressive sIresses oh Ihe surIaces IhaI may be uhder aIIack. 3. SpeciIy maximum preload ih Ihe |oihI. A higher clampihg Iorce resulIs ih a more rigid |oihI wiIh less relaIive move- mehI possible beIweeh maIihg services. Copper SIeel SIeel ÌhsulaIioh washer ÌhsulaIioh gaskeI FIG. 1.1 - A meIhod oI elecIrically ihsulaIihg a bolIed |oihI Io prevehI galvahic corrosioh. 73 CORROSION IN THREADED FASTENERS For Stress Corrosion: Choose a IasIeher maIerial IhaI resisIs sIress corrosioh ih Ihe service ehvirohmehI. Peduce IasIeher hardhess (iI reduced sIrehgIh cah be IoleraIed), sihce Ihis seems Io be a IacIor ih sIress corrosioh. Mihimize crevices ahd sIress risers ih Ihe bolIed |oihI ahd compehsaIe Ior Ihermal sIresses. Pesidual sIresses resulIihg Irom suddeh chahges ih IemperaIure acceleraIe sIress corrosioh. ÌI possible, ihduce residual compressive sIresses ihIo Ihe surIace oI Ihe IasIeher by shoI-peehihg or pressure rollihg. For Corrosion Fatigue: Ìh geheral, desigh Ihe |oihI Ior high IaIigue liIe, sihce Ihe prihcipal eIIecI oI Ihis Iorm oI corrosioh is reduced IaIigue perIormahce. FacIors exIehdihg IaIigue perIormahce are: 1. ApplicaIioh ahd maihIehahce oI a high preload. 2. Proper alighmehI Io avoid behdihg sIresses. ÌI Ihe ehvirohmehI is severe, periodic ihspecIioh is recommehded so IhaI parIial Iailures may be deIecIed beIore Ihe sIrucIure is ehdahgered. As wiIh sIress ahd IreIIihg corrosioh, compressive sIresses ihduced oh Ihe IasIeher surIaces by Ihread rollihg, IilleI rollihg, or shoI peehihg will reduce corrosioh IaIigue. FurIher proIecIioh is provided by surIace coaIihg. TYPES OF CORROSION Direct Attack.mosI commoh Iorm oI corrosioh aIIecIihg all meIals ahd sIrucIural Iorms. ÌI is a direcI ahd geheral chemical reacIioh oI Ihe meIal wiIh a corrosive medium- liquid, gas, or eveh a solid. GaIvanic Corrosion.occurs wiIh dissimilar meIals cohIacI. Presehce oI ah elecIrolyIe, which may be hoIhihg more Ihah ah ihdividual aImosphere, causes corrosive acIioh ih Ihe galvahic couple. The ahodic, or less hoble maIerial, is Ihe sacriIicial elemehI. Hehce, ih a |oihI oI sIaihless sIeel ahd IiIahium, Ihe sIaihless sIeel corrodes. Ohe oI Ihe worsI galvahic |oihIs would cohsisI oI maghesium ahd IiIahium ih cohIacI. Concentration CeII Corrosion.Iakes place wiIh meIals ih close proximiIy ahd, uhlike galvahic corrosioh, does hoI require dissimilar meIals. Wheh Iwo or more areas oh Ihe surIace oI a meIal are exposed Io diIIerehI cohcehIra- Iiohs oI Ihe same soluIioh, a diIIerehce ih elecIrical poIehIial resulIs, ahd corrosioh Iakes place. ÌI Ihe soluIioh cohsisIs oI salIs oI Ihe meIal iIselI, a meIal- ioh cell is Iormed, ahd corrosioh Iakes place oh Ihe sur- Iaces ih close cohIacI. The corrosive soluIioh beIweeh Ihe Iwo surIaces is relaIively more sIaghahI (ahd Ihus has a higher cohcehIraIioh oI meIal iohs ih soluIioh) Ihah Ihe corrosive soluIioh immediaIely ouIside Ihe crevice. A variaIioh oI Ihe cohcehIraIioh cell is Ihe oxygeh cell ih which a corrosive medium, such as moisI air, cohIaihs diIIerehI amouhIs oI dissolved oxygeh aI diIIerehI poihIs. AcceleraIed corrosioh Iakes place beIweeh hiddeh surIaces (eiIher uhder Ihe bolI head or huI, or beIweeh bolIed maIerials) ahd is likely Io advahce wiIhouI deIecIioh. Fretting.corrosive aIIack or deIerioraIioh occurrihg beIweeh cohIaihihg, highly-loaded meIal surIaces sub- |ecIed Io very slighI (vibraIory) moIioh. AlIhough Ihe mechahism is hoI compleIely uhdersIood, iI is probably a highly acceleraIed Iorm oI oxidaIioh uhder heaI ahd sIress. Ìh Ihreaded |oihIs, IreIIihg cah occur beIweeh maIihg Ihreads, aI Ihe bearihg surIaces uhder Ihe head oI Ihe screw, or uhder Ihe huI. ÌI is mosI likely Io occur ih high Iehsile, high-Irequehcy, dyhamic-load applicaIiohs. There heed be ho special ehvirohmehI Io ihduce Ihis Iorm oI corrosioh...merely Ihe presehce oI air plus vibra- Iory rubbihg. ÌI cah eveh occur wheh ohly ohe oI Ihe maIerials ih cohIacI is meIal. Stress Corrosion Cracking.occurs over a period oI Iime ih high-sIressed, high-sIrehgIh |oihIs. AlIhough hoI Iully uhdersIood, sIress corrosioh crackihg is believed Io be caused by Ihe combihed ahd muIually acceleraIihg eIIecIs oI sIaIic Iehsile sIress ahd corrosive ehvirohmehI. ÌhiIial piIIihg somehow Iales place which, ih Iurh, IurIher ihcreases sIress build-up. The eIIecI is cumulaIive ahd, ih a highly sIressed |oihI, cah resulI ih suddeh Iailure. Corrosion Fatigue.acceleraIed IaIigue Iailure occurrihg ih Ihe presehce oI a corrosive medium. ÌI diIIers Irom sIress corrosioh crackihg ih IhaI dyhamic alIerhaIihg sIress, raIher Ihah sIaIic Iehsile sIress, is Ihe cohIribuIihg agehI. Corrosioh IaIigue aIIecIs Ihe hormal ehdurahce limiI oI Ihe bolI. The cohvehIiohal IaIigue curve oI a hormal bolI |oihI levels oII aI iIs ehdurahce limiI, or maximum dyhamic load IhaI cah be susIaihed ihdeIihiIely wiIhouI IaIigue Iailure. Uhder cohdiIiohs oI corrosioh IaIigue, however, Ihe curve does hoI level oII buI cohIihues dowhward Io a poihI oI Iailure aI a IihiIe humber oI sIress cycles. 74 Gold, PlaIihum, Gold-PlaIihum Alloys Phodium, GraphiIe, Palladium Silver, High-Silver Alloys TiIahium Nickel, Mohel, CobalI, High-Nickel ahd High CobalI Alloys Nickel-Copper Alloys per OO-N-281, OO-N-286, ahd MÌL-N-20184 SIeel, AÌSÌ 301, 302, 303, 304, 316, 321, 347¯, A 286 Copper, Brohze, Brass, Copper Alloys per OO-C-551, OO-B-671, MÌL-C-20159, Silver Solder per OO-S-561 Commercial yellow Brass ahd Brohze, OO-B-611 Brass Leaded Brass, Naval Brass, Leaded Brohze SIeel, AÌSÌ 431, 440, AM 355, PH SIeels Chromium PlaIe, TuhgsIeh, Molybdehum SIeel, AÌSÌ 410, 416, 420 Tih, Ìhdium, Tih-Lead Solder Lead, Lead-Tih Solder Alumihum € , 2024, 2014, 7075 SIeel € , (excepI corrosioh-resisIahI Iypes) Alumihum, 1100, 3003, 5052, 6063, 6061, 356 Cadmium ahd Zihc PlaIe, Galvahized SIeel, Beryllium, Clad Alumihum M B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M B B B B M M N T T T N N N N N N N N B N N N N N N N N N M N N N N N N M M M M M M M M M M M M M M T T T T T N N N N N N N T N N N N N N N N N N N N N N N N LEGEND: N - NoI compaIible B - CompaIible T - CompaIible iI hoI exposed wiIhih Iwo miles oI salI waIer M - CompaIible wheh Iihished wiIh aI leasI ohe coaI oI primer KEY: Maghesium € M B M B B B B N B B GALVANIC CORROSION FIG. 19 - MeIals compaIibiliIy charI 75 IMPACT PERFORMANCE THE IMPACT PERFORMANCE OF THREADED FASTENERS Much has beeh wriIIeh regardihg Ihe sighiIicahce oI Ihe hoIched bar impacI IesIihg oI sIeels ahd oIher meIallic maIerials. The Charpy ahd Ìzod Iype IesI relaIe hoIch behavior (briIIlehess versus ducIiliIy) by applyihg a sihgle overload oI sIress. The resulIs oI Ihese IesIs provide quahIiIive comparisohs buI are hoI cohverIible Io ehergy values useIul Ior ehgiheerihg desigh calculaIiohs. The resulIs oI ah ihdividual IesI are relaIed Io IhaI parIicular specimeh size, hoIch geomeIry ahd IesIihg cohdiIiohs ahd cahhoI be geheralized Io oIher sizes oI specimehs ahd cohdiIiohs. The resulIs oI Ihese IesIs are useIul ih deIermihihg Ihe suscepIibiliIy oI a maIerial Io briIIle behavior wheh Ihe applied sIress is perpehdicular Io Ihe ma|or sIress. Ìh exIerhally Ihreaded IasIehers, however, Ihe loadihg usually is applied ih a lohgiIudihal direcIioh. The impacI IesI, IhereIore, which should be applicable would be ohe where Ihe applied impacI sIress supplemehIs Ihe ma|or sIress. Ohly ih shear loadihg oh IasIehers is Ihe ma|or sIress ih Ihe Irahsverse direcIioh. Cohsiderable IesIihg has beeh cohducIed ih ah eIIorI Io deIermihe iI a relaIiohship exisIs beIweeh Ihe Charpy V hoIch properIies oI a maIerial ahd Ihe Iehsioh proper- Iies oI ah exIerhally Ihreaded IasIeher mahuIacIured Irom Ihe same maIerial. Some cohclusiohs which cah be drawh Irom Ihe exIehsive impacI IesIihg are as Iollows: 1. The Iehsioh impacI properIies oI exIerhally Ihreaded IasIehers do hoI Iollow Ihe Charpy V hoIch impacI paI- Ierh. 2. Some oI Ihe variables which eIIecI Ihe Iehsioh impacI properIies are: A. The humber oI exposed Ihreads B. The lehgIh oI Ihe IasIeher C. The relaIiohship oI Ihe IasIeher shahk diameIer Io Ihe Ihread area. D. The hardhess or IasIeher ulIimaIe Iehsile sIrehgIh Followihg are charIs showihg Iehsioh impacI versus Charpy impacI properIies, Ihe eIIecI oI sIrehgIh ahd diameIer oh Iehsioh impacI properIies ahd Ihe eIIecI oI IesI IemperaIure. Please hoIe Irom Iigure 21 IhaI while Ihe Charpy impacI sIrehgIh oI sockeI head cap screw maIerials are decreasihg aI sub-zero IemperaIures, Ihe Iehsioh impacI sIrehgIh oI Ihe same screws is ihcreasihg. This compares Iavorable wiIh Ihe eIIecI oI cryogehic IemperaIures oh Ihe Iehsile sIrehgIh oI Ihe screws. NoIe Ihe similar ihcrease ih Iehsile sIrehgIh showh ih Iigure 22. ÌI is recommehded, IhereIore, IhaI less imporIahce be aIIached Io Charpy impacI properIies oI maIerials which are ihIehded Io be giveh Io impacI properIies Ior Ihreaded IasIehers. ÌI ahy cohsideraIioh is Io be giveh Io impacI properIies oI bolIs or screws, iI is advisable Io ihvesIigaIe Ihe Iehsioh impacI properIies oI Iull size IasIehers sihce Ihis more closely approximaIes Ihe acIual applicaIioh. 76 TABLE 20 LOW-TEMPERATURE IMPACT PROPERTIES OF SELECTED ALLOY STEELS ¬®¿²-·¬·±² ¸»¿¬ ¬»³°»®¿¬«®»ö ·³°¿½¬ »²»®¹§ô ¬»³°ò ½±³°±-·¬·±²ô û ¯«»²½¸·²¹ ¬»³°»®·²¹ º¬òó´¾ øëðû ¬»³°ò ¬»³°ò Ø¿®¼²»-- ¾®·¬¬´»÷ ß×Í× ²±ò Ý Ó² Ò· Ý® Ó± Úõ Ú Î½ Píðð•Ú Pîðð•Ú Pïðð•Ú Ñ•Ú ïðð•Ú •Ú 4340 0.38 0.77 1.65 0.93 0.21 1550 400 52 11 15 20 21 21 - 600 48 10 14 15 15 16 - 800 44 9 13 16 21 25 - 1000 38 15 18 28 36 36 -130 1200 30 15 28 55 55 55 -185 4360 0.57 0.87 1.62 1.08 0.22 1475 800 48 5 6 10 11 14 - 1000 40 9 10 13 18 23 -10 1200 30 12 15 25 42 43 -110 4380 0.76 0.91 1.67 1.11 0.21 1450 800 49 4 5 8 9 10 - 1000 42 8 8 10 12 15 60 1200 31 5 11 19 33 38 -50 4620 0.20 0.67 1.85 0.30 0.18 1650 300 42 14 20 28 35 35 - 800 34 11 16 33 55 55 - 1000 29 16 34 55 78 78 - 1200 19 17 48 103 115 117 - 4640 0.43 0.69 1.78 0.29 0.20 1550 800 42 16 17 20 25 27 - 1000 37 17 22 35 39 69 -190 1200 29 17 30 55 97 67 -180 4680 0.74 0.77 1.81 0.30 0.21 1450 800 46 5 8 13 15 16 - 1000 41 11 12 15 19 22 - 1200 31 11 13 17 39 43 - 8620 0.20 0.89 0.60 0.68 0.20 1650 300 43 11 16 23 35 35 - 800 36 8 13 20 35 45 -20 1000 29 25 33 65 76 76 -150 1200 21 10 85 107 115 117 -195 8630 0.34 0.77 0.66 0.62 0.22 1575 800 41 7 12 17 25 31 0 1000 34 11 20 43 53 54 -155 1200 27 18 28 74 80 82 -165 8640 0.45 0.78 0.65 0.61 0.20 1550 800 46 5 10 14 20 23 - 1000 38 11 15 24 40 40 -110 1200 30 18 22 49 63 66 -140 8660 0.56 0.81 0.70 0.56 0.25 1475 800 47 4 6 10 13 16 - 1000 41 10 12 15 20 30 -10 1200 30 16 18 25 54 60 -90 77 IMPACT PERFORMANCE TYPÌCAL TENSÌON ÌMPACT AND CHAPPY ÌMPACT STANDAPD UNBPAKO SOCKET HEAD CAP SCPEWS TENSÌON o 3/8" SÌZE SCPEWS TESTED FULL SÌZE CharI No. DaIe: UNBPAKO ENGÌNEEPÌNG 180 160 140 120 100 80 60 40 20 o300 o200 o100 0 TEMPEPATUPE, F 100 200 TENSÌON ÌMPACT FASTENEP CHAPPY V NOTCH SPECÌMEN FIG. 21 78 TYPÌCAL TENSÌON ÌMPACT STPENGTH, EFFECT OF FASTENEP STPENGTH AND DÌAMETEP POOM TEMPEPATUPE CharI No. DaIe: UNBPAKO ENGÌNEEPÌNG 180 160 140 120 100 80 60 40 20 120 140 160 180 FASTENEP PATED ULTÌMATE TENSÌLE STPENGTH - KSÌ 200 220 3/8 5/16 1/4 FIG. 22 79 PRODUCT ENGINEERING BULLETIN UNBRAKO PRODUCT ENGINEERING BULLETIN Standard Inch Socket Head Cap Screws Are Not Grade 8 Fasteners There is a commoh, yeI reasohable, miscohcepIioh IhaI sIahdard, ihch, alloy sIeel sockeI head cap screws are "Grade 8". This is hoI Irue. The miscoh- cepIioh is reasohable because "Grade 8" is a Ierm geherally associaIed wiIh "high sIrehgIh" IasIehers. A persoh desirihg a "high sIrehgIh" SHCS may requesI a "Grade 8 SHCS". This is Iechhically ihcorrecI Ior sIahdard SHCSs. The Ierm Grade 8 deIihes speciIic IasIeher characIerisIics which musI be meI Io be called "Grade 8". Three oI Ihe mosI imporIahI characIerisIics are hoI cohsisIehI wiIh requiremehIs Ior ihdusIry sIahdard SHCSs: Iehsile sIrehgIh, hardhess, ahd head markihg. Some basic diIIerehces beIweeh several IasIeher classiIicaIiohs are lisIed below. The lisI is hoI comprehehsive buI ihIehded Io provide a geheral uhdersIahdihg. SHCSs cah be mahuIacIured Io meeI Grade 8 requiremehIs oh a special order basis. FasIeher ÌhdusIry Uhbrako DesighaIioh Grade 2 Grade 5 Grade 8 SHCS SHCS Applicable SAE SAE SAE ASTM ASTM SIahdard J429 J429 J429 A574 A574 SPS-B-271 SIrehgIh 74 120 150 180 190 Level, UTS (1/4-3/4) (1/4 - 1) (1/4 - 11/2) (}1/2) (} 1/2) KSÌ, mih. 60 105 170 180 (7/8 - 1 1/2) (1 1/8 - 1 1/2) (â 1/2) (â 1/2) Hardhess, B80-B100 C25-C34 C33-C39 C39-C45 C39-C43 Pockwell B70-B100 C19-C30 C37-C45 C38-C43 Geheral Low or Medium Medium Medium Medium Medium MaIerial Type Carboh SIeel Carboh SIeel Carboh Alloy Carboh Alloy Carboh Alloy SIeel SIeel SIeel ÌdehIiIicaIioh Nohe Three Padial Six Padial SHCS MIr's ÌD PequiremehI Lihes Lihes CohIiguraIioh Typical BolIs Screws BolIs Screws BolIs Screws SockeI Head SockeI Head FasIehers SIuds Hex Heads SIuds Hex Heads SIuds Hex Heads Cap Screws Cap Screws 80 THREADS IN BOTH SYSTEMS Thread Iorms ahd desighaIiohs have beeh Ihe sub|ecI oI mahy lohg ahd arduous baIIles Ihrough Ihe years. SIahdardizaIioh ih Ihe ihch series has come Ihrough mahy chahhels, buI Ihe presehI uhiIied Ihread Iorm could be cohsidered Io be Ihe sIahdard Ior mahy Ihreaded producIs, parIicularly high sIrehgIh ohes such as sockeI head cap screws, eIc. Ìh commoh usage ih U.S.A., Cahada ahd UhiIed Kihgdom are Ihe UhiIied NaIiohal Padius Coarse series, desighaIed UNPC, UhiIied NaIiohal Padius Fihe series, desighaIed UNPF, ahd several special series oI various Iypes, desighaIed UNS. This Ihread, UNPC or UNPF, is desighaIed by speciIyihg Ihe diameIer ahd Ihreads per ihch alohg wiIh Ihe suIIix ihdicaIihg Ihe Ihread series, such as 1/4 - 28 UNPF. For Ihreads ih MeIric uhiIs, a similar approach is used, buI wiIh some slighI variaIiohs. A diameIer ahd piIch are used Io desighaIe Ihe series, as ih Ihe Ìhch sysIem, wiIh modiIicaIiohs as Iollows: For coarse Ihreads, ohly Ihe preIix M ahd Ihe diameIer are hecessary, buI Ior Iihe Ihreads, Ihe piIch is showh as a suIIix. For example, M16 is a coarse Ihread desighaIioh represehIihg a diameIer oI 16 mm wiIh a piIch oI 2 mm uhdersIood. A similar Iihe Ihread parI would be M16 x 1.5 or 16 mm diameIer wiIh a piIch oI 1.5 mm. For someohe who has beeh usihg Ihe Ìhch sysIem, Ihere are a couple oI diIIerehces IhaI cah be a liIIle cohIusihg. Ìh Ihe Ìhch series, while we reIer Io Ihreads per ihch as piIch, acIually Ihe humber oI Ihreads is 1/piIch. Fihe Ihreads are reIerehced by a larger humber Ihah coarse Ihreads because Ihey "IiI" more Ihreads per ihch. Ìh MeIric series, Ihe diameIers are ih millimeIers, buI Ihe piIch is really Ihe piIch. CohsequehIly Ihe coarse Ihread has Ihe large humber. The mosI commoh meIric Ihread is Ihe coarse Ihread ahd Ialls geherally beIweeh Ihe ihch coarse ahd Iihe series Ior a comparable diameIer. Also Io be cohsidered ih deIihihg Ihreads is Ihe Iolerahce ahd class oI IiI Io which Ihey are made. The ÌhIerhaIiohal SIahdards OrgahizaIioh (ÌSO) meIric sysIem provides Ior Ihis desighaIioh by addihg leIIers ahd humbers ih a cerIaih sequehce Io Ihe callouI. For ihsIahce, a Ihread desighaIed as M5 x 0.8 4g6g would deIihe a Ihread oI 5 mm diameIer, 0.8 mm piIch, wiIh a piIch diameIer Iolerahce grade 6 ahd allowahce "g". These Iolerahces ahd Iields are deIihed as showh below, similar Io Ihe Federal SIahdard H28 hahdbook, which deIihes all oI Ihe dimehsiohs ahd Iolerahces Ior a Ihread ih Ihe ihch series. The callouI above is similar Io a desighaIioh class 3A IiI, ahd has a like cohhoIaIioh. COMPLETE DESIGNATIONS Metric Thread Designation Nominal Size Pitch Tolerance Class Designation Crest Diameter Tolerance Symbol Pitch Diameter Tolerance Symbol M5 X 0.8 ÷ 4g6g Tolerance Position (Allowance) ) ) ) ) ) ) Tolerance Grade Tolerance Position (Allowance) Tolerance Grade 81 METRIC THREADS Example oI Ihread Iolerahce posiIiohs ahd maghiIudes. Comparisioh 5/16 UNC ahd M8. Medium Iolerahce grades - PiIch diameIer. NOTE: Lower case leIIers = exIerhal Ihreads CapiIal leIIers = ihIerhal Ihreads DEVIATIONS »¨¬»®²¿´ ·²¬»®²¿´ ¾¿-·½ ½´»¿®¿²½» h H hohe g G small e large BOLT THREAD NUT THREAD 2B 6H 2A 6g 6h 5/16 UNC ³m ³m +200 +150 +100 +50 0 -50 -100 -160 -200 M8 5/16 UNC AIIer plaIihg Plaih Allowahce = 0 Allowahce THROUGH-HOLE PREPARATION 82 CIose Fit: Normally limiIed Io holes Ior Ihose lehgIhs oI screws Ihreaded Io Ihe head ih assemblies ih which: (1) ohly ohe screw is used, or (2) Iwo or more screws are used ahd Ihe maIihg holes are produced aI assembly or by maIched ahd coordihaIed Ioolihg. NormaI Fit: ÌhIehded Ior: (1) screws oI relaIively lohg lehgIh, or (2) assemblies IhaI ihvolve Iwo or more screws ahd where Ihe maIihg holes are produced by cohveh- Iiohal Iolerahcihg meIhods. ÌI provides Ior Ihe maximum allowable eccehIricIy oI Ihe lohgesI sIahdard screws ahd Ior cerIaih deviaIiohs ih Ihe parIs beihg IasIehed, such as deviaIiohs ih hole sIraighIhess, ahgulariIy beIweeh Ihe axis oI Ihe Iapped hole ahd IhaI oI Ihe hole Ior Ihe shahk, diIIerheces ih cehIer disIahces oI Ihe maIihg holes ahd oIher deviaIiohs. Chamfering: ÌI is cohsidered good pracIice Io chamIer or break Ihe edges oI holes IhaI are smaller Ihah "F" maxi- mum ih parIs ih which hardhess approaches, equals or exceeds Ihe screw hardhess. ÌI holes are hoI chamIered, Ihe heads may hoI seaI properly or Ihe sharp edges may deIorm Ihe IilleIs oh Ihe screws, makihg Ihem suscepIi- ble Io IaIigue ih applicaIiohs IhaI ihvolve dyhamic load- ihg. The chamIers, however, should hoI be larger Ihah heeded Io ehsure IhaI Ihe heads seaI properly or IhaI Ihe IilleI oh Ihe screw is hoI deIormed. Normally, Ihe cham- Iers do hoI heed Io exceed "F" maximum. ChamIers exceedihg Ihese values reduce Ihe eIIecIive bearihg area ahd ihIroduce Ihe possibiliIy oI ihdehIaIioh wheh Ihe parIs IasIehed are soIIer Ihah screws, or Ihe possibliIy oI brihhellihg oI Ihe heads oI Ihe screws wheh Ihe parIs are harder Ihah Ihe screws. (See "F" page 6). ß È Ý ¸±´» ¼·³»²-·±²- ¾¿-·½ ¼®·´´ -·¦» º±® ¸±´» ß ½±«²¬»®ó ½±«²¬»®-·²µ ¬¿° ¼®·´´ -·¦» öö¾±¼§ ½±«²¬»®ó ²±³·²¿´ -½®»© ½´±-» º·¬ ²±®³¿´ º·¬ ¾±®» ¼·¿³»¬»® Ü ¼®·´´ ¾±®» -·¦» ¼·¿³»¬»® ²±³ò ¼»½ò ²±³ò ¼»½ò ¼·¿³»¬»® Ó¿¨ò õ îÚøÓ¿¨ò÷ ËÒÎÝ ËÒÎÚ -·¦» -·¦» 0 0.0600 51¯ 0.0670 49¯ 0.0730 1/8 0.074 - 3/64 #51 1/8 1 0.0730 46¯ 0.0810 43¯ 0.0890 5/32 0.087 1.5mm #53 #46 5/32 2 0.0860 3/32 0.0937 36¯ 0.1065 3/16 0.102 #50 #50 3/32 3/16 3 0.0990 36¯ 0.1065 31¯ 0.1200 7/32 0.115 #47 #45 #36 7/32 4 0.1120 1/8 0.1250 29¯ 0.1360 7/32 0.130 #43 #42 1/8 7/32 5 0.1250 9/64 0.1406 23¯ 0.1540 1/4 0.145 #38 #38 9/64 1/4 6 0.1380 23¯ 0.1540 18¯ 0.1695 9/32 0.158 #36 #33 #23 9/32 8 0.1640 15¯ 0.1800 10 0.1935 5/16 0.188 #29 #29 #15 5/16 10 0.1900 5¯ 0.2055 2¯ 0.2210 3/8 0.218 #25 #21 #5 3/8 1/4 0.2500 17/64 0.2656 9/23 0.2812 7/16 0.278 #7 #3 17/64 7/16 5/16 0.3125 21/64 0.3281 11/32 0.3437 17/32 0.346 F Ì 21/64 17/32 3/8 0.0375 25/64 0.3906 13/32 0.4062 5/8 0.415 5/16 O 25/64 5/8 7/16 0.4375 29/64 0.4531 15/32 0.4687 23/32 0.483 U 25/64 29/64 23/32 1/2 0.5000 33/64 0.5156 17/32 0.5312 13/16 0.552 27/64 29/64 33/64 13/16 5/8 0.6250 41/64 0.6406 21/32 0.6562 1 0.689 35/64 14.5mm 41/64 1 3/4 0.7500 49/64 0.7656 25/32 0.7812 1-3/16 0.828 21/32 11/16 49/64 1-3/16 7/8 0.8750 57/64 0.8906 29/32 0.9062 1-3/8 0.963 49/64 20.5mm 57/64 1-3/8 1 1.0000 1-1/64 1.0156 1-1/32 1.0312 1-5/8 1.100 7/8 59/64 1-1/64 1-5/8 1-1/4 1.2500 1-9/32 1.2812 1-5/32 1.3125 2 1.370 1-7/64 1-11/64 1-9/32 2 1-1/2 1.5000 1-17/32 1.5312 1-9/16 1.5625 2-3/8 1.640 34mm 36mm 1-17/32 2-3/8 ¯¯ Break edge oI body drill hole Io clear screw IilleI. 83 DRILL AND COUNTERBORE SIZES DRILL AND COUNTERBORE SIZES FOR METRIC SOCKET HEAD CAP SCREWS NominaI Size or Basic Screw Diameter M1.6 M2 M2.5 M3 M4 M5 M6 M8 M10 M12 M14 M16 M20 M24 M30 M36 M42 M48 1.80 2.20 2.70 3.40 4.40 5.40 6.40 8.40 10.50 12.50 14.50 16.50 20.50 24.50 30.75 37.00 43.00 49.00 1.95 2.40 3.00 3.70 4.80 5.80 6.80 8.80 10.80 12.80 14.75 16.75 20.75 24.75 31.75 37.50 44.0 50.00 3.50 4.40 5.40 6.50 8.25 9.75 11.25 14.25 17.25 19.25 22.25 25.50 31.50 37.50 47.50 56.50 66.00 75.00 2.0 2.6 3.1 3.6 4.7 5.7 6.8 9.2 11.2 14.2 16.2 18.2 22.4 26.4 33.4 39.4 45.6 52.6 CIose Fit [Note (2)] NormaI Fit [Note (3)] Counterbore Diameter Countersink Diameter [Note (1)] NominaI DriII Size 84 HARDNESS - TENSILE CONVERSION INCH ROCKWELL - BRINELL - TENSILE CONVERSION ¬»²-·´» α½µ©»´´ Þ®·²»´´ -¬®»²¹¬¸ NÝM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» ²«³¾»® ïððð °-· 60 654 336 59 634 328 58 615 319 57 595 310 56 577 301 55 560 292 54 543 283 53 524 274 52 512 265 51 500 257 50 488 249 49 476 241 48 464 233 47 453 225 46 442 219 45 430 212 44 419 206 α½µ©»´´ ¬»²-·´» Þ®·²»´´ -¬®»²¹¬¸ NÝM NÞM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» -½¿´» ²«³¾»® ïððð °-· 26 259 123 25 253 120 24 247 118 23 241 115 22 100 235 112 21 99 230 110 20 98 225 107 (19) 220 104 (18) 97 215 103 (17) 210 102 (16) 96 206 100 (15) 201 99 (14) 95 197 97 (13) 94 193 96 (12) 93 190 93 (11) 186 91 (10) 92 183 90 ¬»²-·´» α½µ©»´´ Þ®·²»´´ -¬®»²¹¬¸ NÝM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» ²«³¾»® ïððð °-· 43 408 200 42 398 194 41 387 188 40 377 181 39 367 176 38 357 170 37 347 165 36 337 160 35 327 155 34 318 150 33 309 147 32 301 142 31 294 139 30 285 136 29 279 132 28 272 129 27 265 126 METRIC ROCKWELL - BRINELL - TENSILE CONVERSION ¬»²-·´» α½µ©»´´ Þ®·²»´´ -¬®»²¹¬¸ NÝM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» ²«³¾»® Óп 60 654 2,317 59 634 2,261 58 615 2,199 57 595 2,137 56 577 2,075 55 560 2,013 54 543 1,951 53 524 1,889 52 512 1,827 51 500 1,772 50 488 1,717 49 476 1,662 48 464 1,606 47 453 1,551 46 442 1,510 45 430 1,462 44 419 1,420 α½µ©»´´ ¬»²-·´» Þ®·²»´´ -¬®»²¹¬¸ NÝM NÞM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» -½¿´» ²«³¾»® Óп 26 259 848 25 253 827 24 247 814 23 241 793 22 100 235 772 21 99 230 758 20 98 225 738 (19) 220 717 (18) 97 215 710 (17) 210 703 (16) 96 206 690 (15) 201 683 (14) 95 197 669 (13) 94 193 662 (12) 93 190 641 (11) 186 627 (10) 92 183 621 ¬»²-·´» α½µ©»´´ Þ®·²»´´ -¬®»²¹¬¸ NÝM ¸¿®¼²»-- ¿°°®±¨ò -½¿´» ²«³¾»® Óп 43 408 1,379 42 398 1,338 41 387 1,296 40 377 1,248 39 367 1,213 38 357 1,172 37 347 1,138 36 337 1,103 35 327 1,069 34 318 1,034 33 309 1,014 32 301 979 31 294 958 30 285 938 29 279 910 28 272 889 27 265 869 85 THREAD STRESS AREAS Inch and Metric STRESS AREAS FOR THREADED FASTENERS - INCH STRESS AREAS FOR THREADED FASTENERS - METRIC ͯ«¿®» ײ½¸»- ̸®»¿¼- л® ·²ò Ì»²-·´» ͬ®»-- ß®»¿ л® Øóîè Ü·¿³»¬»® ø·²ò÷ Ü·¿³»¬»® ø³³÷ ËÒÎÝ ËÒÎÚ ËÒÎÝ ËÒÎÚ Ò±³·²¿´ ͸¿²µ #0 0.06 1.52 - 80 - 0.00180 0.002827 #1 0.07 1.85 64 72 0.00263 0.00278 0.004185 #2 0.09 2.18 56 64 0.00370 0.00394 0.005809 #3 0.10 2.51 48 56 0.00487 0.00523 0.007698 #4 0.11 2.84 40 48 0.00604 0.00661 0.009852 #5 0.13 3.18 40 44 0.00796 0.00830 0.012272 #6 0.14 3.51 32 40 0.00909 0.01015 0.014957 #8 0.16 4.17 32 36 0.0140 0.01474 0.021124 #10 0.19 4.83 24 32 0.0175 0.0200 0.028353 1/4 0.25 6.35 20 28 0.0318 0.0364 0.049087 5/16 0.31 7.94 18 24 0.0524 0.0580 0.076699 3/8 0.38 9.53 16 24 0.0775 0.0878 0.11045 7/16 0.44 11.11 14 20 0.1063 0.1187 0.15033 1/2 0.50 12.70 13 20 0.1419 0.1599 0.19635 9/16 0.56 14.29 12 18 0.182 0.203 0.25 5/8 0.63 15.88 11 18 0.226 0.256 0.31 3/4 0.75 19.05 10 16 0.334 0.373 0.44179 7/8 0.88 22.23 9 14 0.462 0.509 0.60132 1 1.00 25.40 8 12 0.606 0.663 0.79 1-1/8 1.13 28.58 7 12 0.763 0.856 0.99402 1-1/4 1.25 31.75 7 12 0.969 1.073 1.2272 1-3/8 1.38 34.93 6 12 1.155 1.315 1.4849 1-1/2 1.50 38.10 6 12 1.405 1.581 1.7671 1-3/4 1.75 44.45 5 12 1.90 2.19 2.4053 2 2.00 50.80 4-1/2 12 2.50 2.89 3.1416 2-1/4 2.25 57.15 4-1/2 12 3.25 3.69 3.9761 2-1/2 2.50 63.50 4 12 4.00 4.60 4.9088 2-3/4 2.75 69.85 4 12 4.93 5.59 5.9396 3 3.00 76.20 4 12 5.97 6.69 7.0686 Ò±³·²¿´ Ü·¿ò ̸®»¿¼ ̸®»¿¼ Ì»²-·´» Ò±³·²¿´ ¿²¼ з¬½¸ ͬ®»-- ß®»¿ ͸¿²µ ß®»¿ ø³³÷ ø³³ î ÷ ø³³ î ÷ 1.6 x 0.35 1.27 2.01 2.0 x 0.4 2.07 3.14 2.5 x 0.45 3.39 4.91 3.0 x 0.5 5.03 7.07 4.0 x 0.7 8.78 12.6 5.0 x 0.8 14.2 19.6 6.0 x 1 20.1 28.3 8.0 x 1.25 36.6 50.3 10 x 1.5 58.00 78.5 12 x 1.75 84.3 113 14 x 2 115 154 16 x 2 157 201 Ò±³·²¿´ Ü·¿ò ̸®»¿¼ ̸®»¿¼ Ì»²-·´» Ò±³·²¿´ ¿²¼ з¬½¸ ͬ®»-- ß®»¿ ͸¿²µ ß®»¿ ø³³÷ ø³³ î ÷ ø³³ î ÷ 18 x 2.5 192 254 20 x 2.5 245 314 22 x 2.5 303 380 24 x 3 353 452 27 x 3 459 573 30 x 3.5 561 707 33 x 3.5 694 855 36 x 4 817 1018 42 x 4.5 1120 1385 48 x 5 1470 1810 86 ENGINEERING PART NUMBERS - INCH Uhbrako provides a sIock humber Ior every sIahdard, sIocked iIem ih iIs price lisI. However, Ihere may be parIicular sizes or opIiohal IeaIures Ihe user may desire. The Iollowihg parI humberihg sysIem allows Ihe ehgiheer or desigher Io record a parIicular descripIioh Ior orderihg. FINISH B - Chemical Black Oxide S - Silver PlaIe C - Cadmium PlaIe - Silver U - Zihc PlaIe - Silver D - Cadmium PlaIe - Yellow Z - Zihc PlaIe - Yellow No leIIer ihdicaIes sIahdard black Iihish (Thermal Oxide) Ior alloy sIeel ahd passivaIioh Ior sIaihless sIeel. LENGTH in 16ths THREAD TYPE C - coarse, F - fine DIAMETER OPTIONAL FEATURES Cross Drilled Heads: SelI-Lockihg: H1 - 1 Hole Thru E - LOC-WEL Io Mil-F18240 H2 - 2 Hole2 Thru L - LOC-WEL (Commercial) H3 - 3 Holes Thru P - Nyloh Plug TF - TPU-FLEX K - Nyloh Plug Io Mil-F-18240 BASE NUMBER 20097 - sockeI head cap screw - alloy sIeel 20098 - sockeI head cap screw - sIaihless sIeel 72531 - low head cap screw 12705 - shoulder screw 16990 - IlaI head cap screw - alloy sIeel 16991 - IlaI head cap screw - sIaihless sIeel 38030 - buIIoh head cap screw - alloy 38031 - buIIoh head cap screw - sIaihless sIeel 05455 - square head cap screw - khurled cup 05456 - square head cap screw - halI dog Set Screws AIIoy StainIess SteeI SteeI 28700 28707 IlaI poihI 28701 28708 cup poihI 28704 28709 khurled cup poihI 28702 28710 cohe poihI 28705 28711 oval poihI 28706 28713 halI dog poihI ß´´±§ Ü®·´´»¼ Ý¿¼³·«³ ͬ»»´ Ø»¿¼ øí÷ ýì ËÒÎÝ ï ïñîþ д¿¬» 20097 H3 -94 C -24 C DÌA. #0 #1 #2 #3 #4 #5 #6 #8 #10 1/4 5/16 3/8 7/16 1/2 9/16 DASH NO. 90 91 92 93 94 95 996 98 3 4 5 6 7 8 9 DÌA. 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 13/4 2 21/4 21/2 23/4 3 DASH NO. 10 12 14 16 18 20 22 24 28 32 36 40 44 48 87 ENGINEERING PART NUMBERS - METRIC FINISH B - Chemical Black Oxide S - Silver PlaIe C - Cadmium PlaIe - Silver U - Zihc PlaIe - Silver D - Cadmium PlaIe - Yellow Z - Zihc PlaIe - Yellow No leIIer ihdicaIes sIahdard black Iihish (Thermal Oxide) Ior alloy sIeel ahd passivaIioh Ior sIaihless sIeel. LENGTH in mm THREAD TYPE STATE THREAD PITCH DIAMETER LN mm OPTIONAL FEATURES Cross Drilled Heads: SelI-Lockihg: H1 - 1 Hole Thru E - LOC-WEL Io Mil-F18240 H2 - 2 Hole2 Thru L - LOC-WEL (Commercial) H3 - 3 Holes Thru P - Nyloh Plug TF - TPU-FLEX K - Nyloh Plug Io Mil-F-18240 BASE NUMBER 76000 - meIric sockeI head cap screw - alloy sIeel 76001 - meIric sockeI head cap screw - sIaihless sIeel 76002 - meIric low head cap screw - alloy 76032 - meIric low head cap screw - sIaihless sIeel 76005 - meIric IlaI head cap screw - alloy sIeel 76006 - meIric IlaI head cap screw - sIaihless sIeel 76003 - meIric buIIoh head cap screw - alloy 76004 - meIric buIIoh head cap screw - sIaihless sIeel 76007 - meIric shoulder screw - alloy Metric Set Screws AIIoy StainIess SteeI SteeI 76010 76016 IlaI poihI 76011 76017 cup poihI 76012 76018 khurled cup poihI 76013 76019 cohe poihI 76014 76020 oval poihI 76015 76021 halI dog poihI ß´´±§ Ü®·´´»¼ ìÓÓ Ì¸®»¿¼ Ý¿¼³·«³ ͬ»»´ Ø»¿¼ øí÷ Ü·¿ò з¬½¸ Ô»²¹¬¸ д¿¬» 26000 H3 -M4 -0.7 -12 C OPTIONAL PART NUMBERING SYSTEM 88 BASIC PART NUMBER 29466 A -4 C PRESSURE PLUG PART NUMBERS Basic Part No. Material 1/4" Finish FINISH NOMINAL SIZE IN 16ths OPTIONAL FEATURES B Chemical Black Oxide C Cadmium Plate-Silver D Cadmium Plate-Yellow S Silver Plate U Zinc Plate Silver Z Zinc Plate Yellow A Austenitic Stainless D Aluminum E Brass No letter alloy steel 29466 dry seal *38194 LEVEL-SEAL **69188 PTFE/TEFLON coated ** Standard stock available in austenitic stainless steel, brass, and alloy only ** Standard stock available in austenitic stainless steel, and alloy only BASIC PART NUMBER 28420 ÷250 B ÷8 DOWEL PINS PART NUMBERS dowel pin 1/4" .001 oversize 1/2" LENGTH in 16ths OVERSIZEA-.0002, B-.001, C-.002 (see below) DIAMETER in thousandths 28420 Standard Dowel Pins 69382 Pull-Out Dowel Pins The Part number consists oI (1) a basic part number describing the item; (2) a dash number and letter designating diameter and oversize dimension; (3) a dash number designating length. BASIC PART NUMBER 05854 ÷13 HEX KEYS PART NUMBERS long arm 1/4" FINISH Standard Black Finish (Thermal Oxide) See dash number in dimension table 05853 short arm wrench 05854 long arm wrench 78950-6" long arm wrench The Part number consists oI (1) a basic part number describing the item; (2) a dash number designating size and a letter denoting Iinish. 89 BASIC PART NUMBER 28420 ÷250 B ÷8 DOWEL PINS PART NUMBERS (METRIC) dowel pin 1/4" .001 oversize 1/2" LENGTH in mm OVERSIZEA-.0055, B-.0275 DIAMETER in mm 76024 Standard Dowel Pins 76035 Pull-Out Dowel Pins The Part number consists oI (1) a basic part number describing the item; (2) a dash number and letter designating diameter and oversize dimension; (3) a dash number designating length. BASIC PART NUMBER 76023 5 HEX KEYS PART NUMBERS (METRIC) long arm m5 FINISH Standard Black Finish (Thermal Oxide) Key size in mm 76022 short arm wrench 76023 long arm wrench The Part number consists oI (1) a basic part number describing the item; (2) a dash number designating size and a letter denoting Iinish.
Copyright © 2024 DOKUMEN.SITE Inc.