TN H01-Hand Book for Design of Steel Structures

March 20, 2018 | Author: Edward van Martino | Category: Structural Steel, Strength Of Materials, Structural Load, Steel, Materials Science


Comments



Description

TN H01ACECOMS Technical Notes On Hand Book for Design of Steel Structures Naveed Anwar Buddhi S. Sharma © Asian Center for Engineering Computations and Software COPYRIGHT These technical tones and all associated documentation are proprietary and copyrighted products. Worldwide rights of ownership are those of ACECOMS, AIT. Reproduction of the documentation in any form, without prior written authorization from ACECOMS, AIT, explicitly prohibited. Further information and copies of this documentation may be obtained from: ACECOMS, AIT, PO Box 4, Klong Luang Pathumthani, 12120 – Thailand. Tel: (662) 524-5539 Fax: (662) 524-6059 E-mail: [email protected] Web: www.acecoms.ait.ac.th Material from various sources including books and websites has been acknowledged. Hand Book for Design of Steel Structures ii Author Naveed Anwar Buddhi S. Sharma © Copyright 2003 by ACECOMS, AIT, Thailand All rights reserved. No part of this compilation may be reproduced in any form, by Photostat, microfilm, xerography or any other means or incorporated into any information retrieval system, electronic or mechanical, without the permission of its copyright owner. All inquiries should be addressed to: Asian Center for Engineering Computations and Software ACECOMS, AIT, P.O. Box 4, Klong Luang, Pathumthani, Thailand 12120. http://www.acecoms.ait.ac.th Hand Book for Design of Steel Structures 3 ACKNOWLEDGEMENTS First, the author wishes to express his appreciation to his wife, Farah, for her love, support and years of understanding during development of software and writing of these books. Author is also grateful to his parents for their love and support. Numerous people have guided and helped in writing of these notes. The foremost is Prof. Worsak Kanok-Nukulchai, who as a teacher, advisor and as the Director of ACECOMS and Dean of School of Civil Engineering has inspired, encouraged and guided the author for nearly 10 years in both professional as well as personal endeavors. Hand Book for Design of Steel Structures 4 related to analysis and design of slab systems.RELATED SOFTWARE Several software packages are available through the Asian Center for Engineering Computations and Software (ACECOMS). which stands for 'Siam Yamato Steel Designer'. to be used under windows platform (Win95/98 and WinNT). is a software developed by ACECOMS. has been developed for the design of structural steel members for hot rolled steel specifically those produced by SYS. AIT for Siam Yamato Co. Hand Book for Design of Steel Structures 5 . Ltd. This software. The software carries out it internal calculations based on working stress design method (AISC/ASD). Thailand. These include: SYSDesigner: SYSDesinger. RELATED PUBLICATIONS Various publications are available through Asian Center for Engineering Computations and Software (ACECOMS). These publications include: o WN A04-Integrated Approach to Steel Design o WN E01-Design of Steel Beams o WN E02-Design of Steel Columns o WN E03-Design of Strut and Ties Hand Book for Design of Steel Structures vi . giving in-depth knowledge and understanding of the topic as a whole. related to these technical notes. ..... 3..................................................................... 5............................................................... INTRODUCTION...................................................................................................................................................................................................1.................. 7.........................................................................................................................................5-10 DESIGN EXAMPLES ...................................................................................................... 9..........................................................................................................................................................................................................................................................................................................................................................................................5-7 CHECK FOR SHEAR ... OVERVIEW OF VARIOUS SPECIFICATIONS FOR HOT-ROLLED STEEL SHAPES ...................................4-15 SOFTWARE IMPLEMENTATION ............................4-15 DESIGN OF BEAMS .....................5-22 DESIGN OF COLUMNS........................................ 2.............................................................................................................................................................................. 11.....................................................................................................................................................................................................4-1 MODES OF FAILURE OF COMPRESSION MEMBER .................................................................................... 10..........................................................................................................................3-1 EFFECTIVE NET AREA........................................................................I GENERAL .............................................................2.................................................................... 1............................... 9.............................. 1.......................................................................................................................................................................... 8......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2................................................................................................................................................................................. 2...........................................5-1 LATERAL TORSIONAL BUCKLING..........5-21 SOFTWARE IMPLEMENTATION ..................................................................................... 1.......................5-5 LOCAL BUCKLING OF BEAM ELEMENTS AND SECTION COMPACTNESS ....... Allowable Stress Design (ASD).............. 2....................... 5............................................. 1. 1............................................................................ 6....................................................... Limit State Design (LRFD) ..... 3........................ 4..................................................... 4................... 5................ INTRODUCTION....................................................................................... INTRODUCTION TO STEEL STRUCTURES........................5-12 DESIGN TABLES AND CHARTS ................................ 8.................................................................... INTRODUCTION.....................1-6 SIAM YAMATO STEEL SECTIONS.................................................................... 3.............................2-3 DESIGN OF TENSION MEMBERS ................................... 6.................1-3 3............................................................................................................................................................................................................................................................................... 4.................................................................................4-4 STRESS REDUCTION FACTOR QS ...........4-2 GENERAL PROCEDURE FOR DESIGN OF COMPRESSION MEMBER ............................5-5 DESIGN FOR MOMENT ............3-2 DESIGN EXAMPLES .4-1 FACTORS INFLUENCING THE STRENGTH OF COMPRESSION MEMBER .............................................. INTRODUCTION..................3-1 GENERAL PROCEDURE...............................5-1 GENERAL PROCEDURE................................................................................................................................. 1.......................................4-6 EFFECTIVE LENGTH FACTOR K................................................... 7........................................................ CODES AND SPECIFICATIONS ......................... 10...........................................................................6-1 Hand Book for Design of Steel Structures 1-i ..........................................................3-6 SOFTWARE IMPLEMENTATION..................... 2...........................................5-8 CHECK FOR CRIPPLING ..................................4-7 DESIGN EXAMPLES ............................................................1-3 2..............Table of content TABLE OF CONTENT ............................................................................................................................................................................................5-9 CHECK FOR SIDE SWAY WEB BUCKLING .........................................................................................................................................................1-6 5.................................... 3.............2-1 PRODUCT SPECIFICATIONS....................................................1-4 4..............................................4-8 DESIGN TABLES ..........3-7 DESIGN OF COMPRESSION MEMBERS...................................................2-1 SIZES AND PROPERTIES ................1-3 2....................... MECHANICAL PROPERTIES ................................................................................................ INTRODUCTION..............3-4 DESIGN TABLES ..............................................................................................................................................1-3 DESIGN PHILOSOPHIES..............................................................4-6 EFFECTIVE AREA FACTOR QA................................................................................................ 6...................................................................................... ............ 6....................................... INTRODUCTION……………………………………………………………………………………………...6-1 COLUMN INTERACTION EQUATIONS ....................6-7 SOFTWARE IMPLEMENTATION................................................... 6............................................... 2..... 3... MOMENT AMPLIFICATION .........................................................................6-4 DESIGN EXAMPLES .............. 7-3 BUILDING FRAME CONNECTIONS……………………………………………………………………………...6-3 GENERAL PROCEDURE...................................... 5...........6-11 INTRODUCTION TO CONNECTION DESIGN ..................................................................................................... 4.................................................................................................. 1............................. 4............................................ 3.............................2....... 7-1 TRUSS CONNECTIONS………………………………………………………………………………………........... 5......................... 7-15 Hand Book for Design of Steel Structures 1-ii ......................................... 7-1 PORTAL FRAME CONNECTIONS………………………………………………………………………………... 7-11 DESIGN EXAMPLES…………………………………………………………………………………………........................................................... 7-6 COLUMN BASES……………………………………………………………………………………………..................................... Two philosophies of design in current use are: • Working Stress Design • Limit State Design The Working Stress Design is also known as Allowable Stress Design (ASD). Steel structures have always had the advantages of lightness. and the upgrading in the standards of structural steel design as well as the wide dissemination of excellent material are some of these factors.Chapter 1 General 1. In general. "Load Factor Design (LFD)". "Limit Design (LD) " and the recently "Load and Resistance Factor Design (LRFD)". 2. stiffness. So. Limit State Design includes the methods commonly known as "Ultimate Strength Design (USD)". various assumptions and simplifications made in analysis. in a condensed form. The advances in steel fabrication techniques. 2. "Strength Design (SD)". "Plastic Design (PD) ".1. and strength and lend themselves to rapid construction compared to other construction materials. no matter what philosophy of design is used. improved understanding of structural behavior. The entire variability of the loads and the strengths is placed on the strength side of the equation. The analysis and design are fully based on elastic analysis. This manual is intended to present. Hand Book for Design of Steel Structures 1-3 . a thorough analysis of all uncertainties that might influence the structural strength during the service life of the structure is not practical or perhaps even possible. Introduction to Steel Structures Steel is one of the most versatile building materials. The significant increase in the use of steel is due to the facts that new improvements have been made in the various aspect of steel technology. uncertainties in the estimation of imposed loads. the relevant information likely to be useful to the modern structural steel designer. Design Philosophies Structures and structural elements must provide adequate safety. the structural safety can only be based on probabilistic methods. These can arise from various sources like variation of material properties. The design must provide some reserve strength for the possibility of overload and under strength. Allowable Stress Design (ASD) In this philosophy all loads are assumed to have the same average variability. The design procedure includes the determination of allowable or working stress on a structure member by applying factor of safety on the actual stress induced by the expected design load (service load). and imperfections in construction procedures. A36 and A572.3.1. Gr.2.4. which cover the yield strength from 245 Mpa of SM 400 to 460 Mpa of SM 570 are included in the JIS G3106. the more the classification of structural steel. respectively. they have some specific properties. 3. The grades of 43 and 50. and 6 out of those are available in hot rolled steel shapes. BS (British Standards) Structural steel available in the UK consists of four main grades: 40. Each grade in subdivided into a descending order of the values of C. In the design specification for steel buildings of American Institute of Steel Construction (AISC. the above-mentioned grades of steel. there are only two. the higher the industrialization level.2. This is due to a need of various types and grades of structural steel in the complicated projects of those industrialized countries. 50 and 55. which have the yield strength of 275 Mpa and 355 Mpa. (Carbon Equivalent. Grades SM.1. 3. more realistic weightage are given for different type of loads and behavior depending upon the probability of occurrence and uncertainties involved in their prediction. 3. such as corrosion-resistant of A242 and A588. respectively.e. where the figures denote the approximated value of ultimate strength in kgf/mm2. the classification of hot-rolled steel shapes in various specifications is different. 50 with included in the design chart and table. For other ASTM hot-rolled grades. In general. which is a measure of weldability) from A to E.e. As this is the probability-based model. or briefly referred to as St 37 and St 52. JIS (Japanese Industrial Standards) In the steel buildings. are frequently used in the steel buildings. which have the yield strength of 245 Mpa and 355 Mpa. materials to be used in the hot-rolled shape include only St 37-2. 3. i. in which grade SS is specified for the secondary or temporary structural member with the bolt and rivet. Overview of Various Specifications for Hot-rolled Steel Shapes Due to their own production and construction situation in various countries.1. 43. Limit State Design (LRFD) The structural member or their component is so proportioned that its resistance when reduced by a resistance factor equals or exceeds the service load multiplied by overload factors.1.Rolled Hand Book for Design of Steel Structures 1-4 . i. However. 3.2. etc. for the most commonly used grades. or welded connections. DIN (Deutsches Institut fur Normung) In general. Plastic design is a special case of limit state design. grades SS and SM are commonly used for hot-rolled shapes. A36 (Carbon Steel) and A572 (High-Strength Low-Alloy Steel). ASTM ( American Society for Testing and Materials ) For the specifications of ASTM.E. St37-3 and St 52-2 steel. there are 16 specifications for structural steel approved for the use in building construction. All the grades of hot-rolled shape are suitable for welded fabrication. A brief discussion for some of the model standard specifications is presented in the following section.1. 3. and its weldability is not as good as that as SM 400. i. The reason is the larger effect of residual stress in the thicker plate. there is a little bit difference of yield strength for various thickness of steel plate i. SM490C. ISO (International Standard Organization) and EN (Europaische Norm) Both ISO and EN specifications have similar classification of steel grade. SN490B and SN490B. in British Standards (BS). which can be seen. The meaning of sub-grade for various countries is different.SN400A. the sub-grades indicate the required values of absorbed energy in Charpy test at the same test temperature 0oC.1. Material Specifications for Hot-Rolled Steel Shapes 3.5. SS 400. JIS G3106: Rolled Steels for Welded Structure (1992). 250 and 350 (which have the yield strength of 250 Mpa and 350 Mpa. the plate thickness of hot-rolled shape is not more than 40 mm. ships. only grades SM which cover from SM 400 (245 Mpa yield strength) to SM 570 (460 Mpa yield strength) are used.1.e. There are some differences in chemical composition and mechanical properties between two standards. 3. JIS. 3. in the below Table 1.1 for hot-rolled shape are suitable for welding connection. i. respectively). ASTM. SM520B. TIS.e. C. AS.e. For hot-rolled shape. 275 and 350 Mpa. bridges.e. the classification of structure steel of Thailand is quit similar to that of Japan. rolling stocks.2. except Group 1. 27 J. SM 400A. or C in the grade SM 400. The mechanical properties mainly include the items of yield and tensile strengths. however. i. and elongation.g.2. and there are three classes.1. however not all the Japanese grades are available in Thai standard. respectively) commonly used in steel buildings.e. containers and other constructions which required superiority in weldability.Steel for Welded Structure. In Japanese specification (JIS).e. SN400C. Fe 360. There are totally six groups of steel according to the different level of yield strength which is a governing material property in the design of steel member. the yield strength decreases as the plate becomes thicker. SM520C and SM570. Almost all of steel grades tabulated in Table 1. SM490YB. B. there are several sub-grades under each category of steel. notch toughness. B. 47 J. in which only one Japanese grade. JIS G3136: Rolled Steels for Building Structure (1994). In the design of steel structure member. which are N/A. in common case. 3.7. petroleum storage tanks. there are 5 grades of steel available. ISO and EN are shown in Table 1. for JIS. On the other hand. This standard specifies the hot-rolled steel products used for structure members for buildings. BS. i.1. TIS (Thai Industrial Standards) From the draft of TIS.6. In JIS G3136. Fe 450 and Fe 510 (whose yield strength ranges from 235. i. for the sub-grades A. respectively. Differences in Mechanical Properties The comparisons of mechanical properties of hot-rolled steel shape in the selected eight specifications. e. DIN. As shown in Table 1. AS (Australian Standards) There are only two grades of structural steel.1. This standard specifies the hot rolled steel product used for buildings. In some specifications. SM 490YA.1. the yield strength is the main material property.1 for all of the specifications. is for general purpose. the sub-grades A to F give the index of descending Charpy Hand Book for Design of Steel Structures 1-5 . SN400B. and the temperature at the time of testing. toughness and weldability. under the same absorbed energy of 27 J. Notch Toughness are almost same. but in JIS G3136. the requirements are varied depending on the type of sub-grades.3. 27 J. Sulfur (S) and Phosphorus (P) adversely affect the surface quality.test temperature for the same absorbed energy. 0 oC. and heat treatment of the steels. In JIS G3106 and JISG3136. as shown in Table 1. L15) indicate that the Charpy test temperature is 0 oC. except two cases. but 325 Mpa for SN490. the cold work. The content of adverse elements. On the other hand. the maximum content of P and S as seen in Table1. as can be seen clearly from Table 1. the sub-grades B. for the same absorbed energy. But 235 Mpa for SN400A ( when 16<t=<40 mm ) is 315 Mpa. +20 oC.3. i. Hand Book for Design of Steel Structures 1-6 . Si and Mn.1.1. it can be seen that yield strength are almost same. toughness and weldability. Chemical properties of various grades of steels are shown in Table 1. rolling processes. such as the rate of loading the specimen. e. Difference in Chemical Properties Structural steels are a mixture of iron and carbon with varying amounts of other elements. i. therefore it is generally considered undesirable elements. In ISO specification.e. but 27 J in G3136.1 For Australian Standards (AS).2.e. 0. as shown in Table 1. Silicon (Si) is the principal deoxidizer used in the manufacture of structural steels. As demonstrated in Table1. For elongations. increased amount of carbon cause a decrease in ductility. -15 oC. are the techniques of testing. such as P and S. phosphorus. tensile strength and yield strength of the steel. the absorbed energy is 47 J. Manganese(Mn) increases the hardness and strength of steels but to a lesser degree than does carbon and it can minimize the harmful effects of sulfur. C and D indicate various Charpy test temperatures. Tensile Test Mechanical properties depend primarily upon the chemical composition. i. as shown in Table 1. i. The requirements of the content of other elements are similar. Due to the ductile requirement for steel structures. the difference of required elongation among various specifications is small for the same steel class.3.0345 % ). especially for subgrade C. respectively.1. SM400A ( when t=< 16 mm) is 245 Mpa. It is noted that there is no similar grade to SS400 in other countries specifications. Other factors. as a strong tendency to segregate and decrease ductility. 3.3 This means there is no limitation for the content of C. e. the content of Sulfur (S) should be very low i.2. 27 J. sulfur and silicon. and as shown in Table 1.2. in G3106. except one case of sub-grade C. the requirements of the maximum properties. the chemical compositions for various specifications are compared in the same steel groups as classified in the comparison of mechanical properties.e.3.3 3. the sub-grades (L0. The required values of elongation for various specification range from 17% to 26 %. In JIS G3106. the conditions and geometry of the specimen.primarily manganese. i. or –20 oC. which may influence the mechanical properties. tensile strength are same. Differences in Test Procedures 3. Carbon (C) is the principle strengthening (hardening) element in steel where each addition increases the hardness. due to the various gauge length that adopted in two standards.008%.3.e. the requirements of adverse elements (P and S) for all grade are same ( 0. are most strictly controlled in Japanese specifications in comparison with other specifications.2. the materials used for hot-rolled shape should have certain values of elongation at an ultimate point. respectively. Therefore. most mechanical properties are taken from the tensile stress-strain diagram. and the dimensions of the coupon are almost similar among various specifications. For the Charpy notch test in all specifications selected in this study. which means the absorbed energy under specific range of temperature. The test results are used qualitatively in the selection of a steel for a specific application. i. As shown in Table1. i. ISO and EN prefer proportional gauge length.1.2. BS. there is no much difference in the specimen dimensions or the test instruments. 3. The procedures of the tensile test in various countries are quite similar. as can be seen in Table1.3. Hand Book for Design of Steel Structures 1-7 .The usual test coupon is a tensile specimen and for all practical purposes the behavior in compression is assumed to be similar to that in tension.1 the test result. in European countries and Australia. On the other hand. the Charpy notch test seems to be the one the most commonly used method. L o = 5 . 65 S o Where So is the sectional area of the coupon. AS.2. Impact Test Brittle behavior and cleavage-type fractures are the important properties of structural steel subjected to the impact load. DIN. e. It is noted that the later one seems to be more rational due to the change of specimen section. The test evaluates the notch toughness of the steel which is defined as the resistance to fracture in the presence of notch under impact loads. Among various types of impact test.e. The most obvious difference among the specifications is the selection of gauge length. Because the tensile test is easier to conduct. ASTM use both 200 mm and 50 mm for gauge length to indicate the elongation. is almost the same for all of the specifications. Absorbed 0 C Energy ( J ) - - - - 0 27 0 47 Thickness t ( mm ) Elongation Gauge Length ( mm ) Elongation % ( min. Yield Strength ( Mpa ) 245 235 215 Tensile Strength ( Mpa ) 400 – 510 Notch Toughness Test Temp.Table 1.) t ≤5 5 < t ≤ 16 16 < t ≤ 50 50 200 200 21 17 21 t ≤5 5 < t ≤ 16 16 < t ≤ 50 50 200 200 23 18 22 200 200 50 17 21 23 A Rolled steel for welded structure SM 400 B C t ≤ 16 16 < t ≤ 40 40 < t ≤ 75 245 135 215 215 400 – 510 75 < t ≤ 100 6 ≤ t ≤ 12 (2) 12 < t < 16 JIS G3136 Rolled steel for building structure SN 400 A 16 16 < t ≤ 40 40 < t ≤ 100 Hand Book for Design of Steel Structures 235 235 235 235 215 400 – 510 - - 16 ≤ t ≤ 16 16 < t ≤ 40 40 < t ≤ 100 1-8 .1 Comparison of Mechanical Property Group Classification Standard Description JIS G3101 (1) TIS ASTM BS DIN AS ISO EN JIS G3106 Rolled steel for general structure Designation Thickness t mm SS 400 16 < t ≤ 40 t ≤ 16 40 < t Strength Min. Table 1.1 Contd. Group Standar d Classification Description Designation Thickness t mm Strength Min. Yield Strength (Mpa) Tensile Strength (Mpa) Notch Toughness Test Absorbed Temp. Energy 0 C (J) Thickness t (mm) Elongtion Gauge Length (mm) Elongation % (min) 50 200 200 21 17 21 6 ≤ t ≤ 12 12 < t < 16 JIS G3136 SN 400 B 40 < t ≤ 100 Rolled steel for building structure (2) JIS G3136 16 16 < t ≤ 40 235 235 235 235 215 400 – 510 - 27 16 ≤ t ≤ 16 16 < t ≤ 40 40 < t ≤ 100 6 ≤ t ≤ 12 SN 400 C 12 < t < 16 16 16 < t ≤ 40 40 < t ≤ 100 16 ≤ t ≤ 16 235 235 215 400 – 510 - 27 16 < t ≤ 40 40 < t ≤ 100 50 200 200 21 17 21 245 235 215 215 400 – 510 0 27 t≤5 5 < t ≤ 16 16 < t ≤ 50 50 200 200 23 18 22 t ≤ 16 16 < t ≤ 40 TIS - SM400 40 < t ≤ 75 75 < t ≤ 100 Hand Book for Design of Steel Structures 1-9 Table 1.1 Contd. Group Classification Standard Descriptio n ASTM Structural carbon steel- BS 4360 Weldable structural steels DIN 17100 Designation Gr. 40DD St 37-2 Ust 37-2 RSt 37-2 Gr. 250 Structural steel L0 Notch Toughness Test Absorbed Temp. Energy 0 C (J) Thickness t (mm) Elongtion Gauge Length (mm) Elongation % (min) 200 50 20 21 250 min 400 – 500 - - - 250 245 240 225 340 – 500 -30 27 - 40 < t ≤ 63 63 < t ≤ 100 t ≤ 16 16 < t ≤ 40 20 27 16 < t ≤ 40 235 225 215 215 63 < t ≤ 80 t ≤ 12 12 < t ≤ 40 40 < t 260 250 230 Fe 360 B C HR unalloyed structural steel Hand Book for Design of Steel Structures t ≤ 16 16 < t ≤ 40 40 < t ≤ 63 t ≤ 40 Fe 360 140t ≤ 63 235 225 215 235 215 40 < t ≤ 63 340 – 470 410 min. L15 D EN 10025 16 < t ≤ 40 40 < t ≤ 63 St 37-3 A ISO 630 Tensile Strength (Mpa) t ≤ 16 (2) AS 1204 Strength Min. Yield Strength (Mpa) A36 Steel for general structural purpose Ordinary weldable structural steel Thickness t mm 360 - 460 360 340 -20 27 - - 0 27 -15 27 - - +20 27 0 27 -20 27 -20 27 200 o 22 25 o 26 25 24 o 22 o 25 o 26 25 5.65 S 5.65 S 63 < t ≤ 100 - 5.65 S - 5.65 S - 5.65 S 1-10 Table 1.1 Contd. Group Classification Standard Descriptio n JIS TIS ASTM BS 4360 Designation High strength low alloy steel Thickness t mm A572 Gr. 42 - Gr. 43DD Notch Toughness Test Absorbed Temp. Energy 0 C (J) Thickness t (mm) Elongtion Gauge Length (mm) Elongation % (min) 200 50 20 24 290 min 415 min - - - 16 < t ≤ 40 275 265 255 245 430 – 580 -30 27 - 40 < t ≤ 63 Steel for general structural purpose 40 < t ≤ 63 63 < t ≤ 80 200 5.65 S o 20 275 265 255 245 27 20 19 18 40 < t ≤ 63 63 < t ≤ 100 430 – 540 St 44-3 3 ≤ t ≤ 40 -20 27 5.65 S o 26 25 24 40 < t ≤ 63 63 < t ≤ 100 AS 1204 - ISO 630 Structural steel - A Fe 430 B C D Hand Book for Design of Steel Structures t ≤ 16 16 < t ≤ 40 40 < t ≤ 63 20 22 3 ≤ t ≤ 40 16 < t ≤ 40 St 44-2 DIN 17100 Tensile Strength (Mpa) t ≤ 16 Weldable structural steels 63 < t ≤ 100 t ≤ 16 (3) Strength Min. Yield Strength (Mpa) - - - - +20 27 0 27 -20 27 - - - 275 265 255 360 - 460 - 5.65 S o 25 1-11 Table 1.1 Contd. Group (3) Classification Standard Descriptio n EN 10025 HR unalloyed structural steel JIS G3106 Rolled steel for welded structure- Designation Fe 430 A SM490 B C B (4) JIS G3136 Rolled steel for welded structure- Thickness t mm 275 430 40 < t ≤ 63 255 410 t ≤ 16 325 16 < t < 40 315 40 < t ≤ 75 295 325 12 < t < 16 325 16 325 16 < t ≤ 40 325 Notch Toughness Test Absorbed Temp. Energy 0 C (J) -20 27 - - 0 0 27 47 - Thickness t (mm) t ≤ 40 490 - 610 0 27 t≤5 5 < t ≤ 16 16 < t ≤ 50 - Hand Book for Design of Steel Structures SM 490 5.65 S Elongation % (min) 22 o 21 50 22 200 17 200 22 50 22 16 < t < 40 200 17 40 < t ≤ 100 200 22 325 16 < t ≤ 40 325 295 t≤5 TIS Elongtion Gauge Length (mm) 140t ≤ 63 6 ≤ t ≤ 16 295 16 40 < t ≤ 100 490 - 610 295 75 < t ≤ 100 6 ≤ t ≤ 12 12 < t < 16 C Tensile Strength (Mpa) t ≤ 40 40 < t ≤ 100 6 ≤ t ≤ 12 SN490 Strength Min. Yield Strength (Mpa) t ≤ 16 325 16 < t ≤ 40 315 490 - 610 0 27 5 < t < 16 16 < t ≤ 50 50 22 200 17 200 22 1-12 610 - - 355 0 27 335 0 27 0 47 325 520 .1 Contd.Table 1.640 t ≤ 16 (5) Thickness t (mm) 365 355 345 min 490 .610 450 min 0 - 27 - Elongation % (min) - t≤5 50 19 5 < t < 16 200 15 16 < t ≤ 50 200 19 t≤5 50 19 5 < t < 16 200 15 16 < t ≤ 50 200 19 - 200 50 18 21 1-13 . Energy 0 C (J) TIS ASTM A572 High strength low alloy steel Hand Book for Design of Steel Structures SM520 A572 Gr. Yield Strength (Mpa) Tensile Strength (Mpa) Notch Toughness Test Absorbed Temp. Group (4) Classification Standard Descriptio n Designation ASTM - - BS - - DIN - - AS - - ISO - - EN - - JIS G 3106 Rolled steel for general structure- SM490 YA YB SM520 Thickness t mm B C t ≤ 16 16 < t ≤ 40 40 < t ≤ 75 63 < t ≤ 100 Strength Min. 50 16 < t ≤ 40 - Elongtion Gauge Length (mm) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 365 490. Energy 0 C (J) 325 40 < t ≤ 63 t ≤ 16 Tensile Strength (Mpa) 490 – 630 -20 27 40 < t ≤ 63 5.65 S 19 18 o 20 o 21 1-14 .65 S - 5.630 - 5.Table 1.1 Contd. 50E Thickness t mm t ≤ 16 355 16 < t ≤ 40 345 40 < t ≤ 63 340 63 < t ≤ 100 t ≤ 16 DIN 17100 Steel for general structural purpose 16 < t ≤ 40 St 52-3 (5) AS 1204 Weldable structural steels Gr.630 490 . Yield Strength (Mpa) 27 - Elongtion Gauge Length (mm) Elongatio n % (min) 18 200 5. 350 L0 L15 A ISO 630 Structural steel Fe 510 B C D Hand Book for Design of Steel Structures Strength Min. Group Classification Standard Descriptio n BS 4360 Designation Weldable structural steels Gr.65 S o 20 325 t ≤ 12 360 12 < t ≤ 40 340 40 < t 20 3 ≤ t ≤ 40 345 63 < t ≤ 80 40 < t ≤ 63 -30 Thickness t (mm) 355 335 16 < t ≤ 40 430 – 580 Notch Toughness Test Absorbed Temp.65 S o 63 < t ≤ 100 - - 0 27 330 -15 27 - - 355 345 335 +20 27 0 27 -20 27 490 . 610 0 27 Thickness t (mm) t ≤ 40 140t ≤ 63 Elongtion Gauge Length (mm) 5. 65 - Weldable structural steels t ≤ 16 450 BS 4360 Gr.720 0 27 420 t ≤ 16 460 16 < t ≤ 40 450 40 < t ≤ 75 430 63 < t ≤ 100 420 450 min ASTM A572 High strength low alloy steel A572 Gr.Table 1.1 Contd. Group (5) Classification Standard Descriptio n EN 10025 HR unalloyed structural steel JIS G 3106 Rolled steel for general structure- Designation Fe 510 Thickness t mm 355 510 40 < t ≤ 63 335 490 t ≤ 16 (6) TIS - 40 < t ≤ 75 63 < t ≤ 100 SM570 Tensile Strength (Mpa) t ≤ 40 16 < t ≤ 40 SM 570 Strength Min. Yield Strength (Mpa) Notch Toughness Test Absorbed Temp.65 S o Elongatio n % (min) 21 20 t≤5 50 19 5 < t < 16 50 26 16 < t ≤ 50 50 20 t≤5 50 19 5 < t < 16 50 26 16 < t ≤ 50 50 20 200 50 15 17 200 17 550 min - - - 550 – 700 0 27 - 5. 55C 16 < t ≤ 40 430 40 < t ≤ 63 415 490 . Energy 0 C (J) -20 27 460 450 430 570 .65 S o 19 DIN - - - - - - - - - - - AS - - - - - - - - - - - ISO - - - - - - - - - - - EN - - - - - - - - - - - Hand Book for Design of Steel Structures 1-15 . 025 0.50 0.20 0.03 355 50F 0.05 - - 0 Hollow shapes 0.03 1.04 0.30 1.045 355 345 - - 50D 0.04 0.04 0.50 260 245 240 225 5.04 0.65 S 340/500 Remarks o Shape section 25 -40 -50 Plates/Strip 0.04 - 255 245 0.20 0.04 0.20 50C 0.025 390 43EE Elongation (%) for gauge length -30 0.18 0.03 0.04 0.16 1.04 0.16 1.16 Hand Book for Design of Steel Structures 1-16 .045 - - -20 Hollow shapes 0.16 1.16 1.045 0.04 255 245 -40 255 245 -50 275 265 0.21 Charpy V-notch test Temp (0c) E (J) 63 < t ≤ 100 0.30 0.05 0.50 0. 50 1.Table 1.04 0.20 0. 50 40EE 43C Yield strength 430/580 -30 22 Shape section - 27 Plate / Hollow 0.04 355 345 - 50E 0. 50 490/640 0 21 Hollow shapes - -20 21 Hollow shapes 340 325 -40 20 Shape section 345 340 325 -50 20 Plate / Hollow 390 - - -60 20 Plates/Strip 0.2 Sub-grade of BS 4360: Weldable Structural Steels Chemical Composition Grade C max Si m ax Mn max P Max 40 DD 40E 43D 43DD 43E S max Tensile Strength (Mpa) t ≤ 16 16 < t ≤ 40 40 < t ≤ 63 0.50 0.5 0.04 355 345 50EE 0. 03 415 400 -50 Plate / Hollow 0.5 0 0.04 55EE 0.04 55F 0.5 1. Chemical Composition Grade C max Si ma x Mn max Yield strength P Max S max 0.22 55C 0.04 0.16 0 0.025 415 - -60 Plate / Hollow 0.60 450 430 550/700 0 19 Plate / shape 1.60 1.50 0 Hand Book for Design of Steel Structures 1-17 .65 S o Remarks 40 < t ≤ 63 63 < t ≤ 100 - - 0.6 0.2 Contd.025 Tensile Strength (Mpa) t ≤ 16 16 < t ≤ 40 Charpy V-notch test Temp (0c) E (J) Elongation (%) for gauge length 5.Table 1.22 0. 35 0.04 0.20 SM400C t ≤ 100 SN400A SM400B SN400B SN400C TIS - Remarks Max P - SM400A JIS G3106 Chemical Composition % Max Si Mn Max C - 2.008 0.20 0.035 0.22 0.015 0.05 Mn= Manganese P= Phosphorus S= Sulfur 1-18 .60 – 1.035 0.35 1.40 - 0.60 – 1.40 max 0.40 0.40 0.22 SM400 0.3 Comparison of Chemical Composition Group Classification Standard No JIS G3101 TIS ASTM BS (1) DIN AS ISO EN Designation SS400 (2) JIS G3136 ASTM Notations: C = Carbon Si= Silicon Hand Book for Design of Steel Structures - - Max S 0.030 0.050 0.20 0.40 0.40- 0.20 0.22 0.25 0.035 A36 0.035 6 < t ≤ 100 0.035 0.035 0.26 0.24 - - 0.020 0.23 0.Table 1.35 0.050 0.35 0.035 0.35 0.5 C 0.60 – 1.050 6 < t ≤ 50 50 < t ≤ 100 16 < t ≤ 50 50 < t ≤ 100 0.035 - t ≤ 50 50 < t ≤ 200 t ≤ 50 50 < t ≤ 200 0.18 0.050 0.60 – 1. 040 0.20 - - 0.20 - - 0.050 0.045 0.50 1.040 0.35 max 0.045 0.050 0.040 0.05 BS 4360 Gr 43 DD 0.050 Hand Book for Design of Steel Structures 1-19 .16 0.040 0.040 0.17 - - 0. Group Classification Standard No BS 4360 Max C Gr.050 0.040 - - - 0.045 Gr 250 (2) AS Gr.22 - - 0.17 - - 0.20 - - 0.04 0.16 0. 40DD 0.050 0.040 0.050 0.17 - - 0.5 max 0.20 - - 0.20 St 37-2 USt 37-2 DIN Chemical Composition % Max Si Mn Designation RSt 37-2 St 37-3 Remarks Max P Max S 1.050 0.25 0.050 0.50 0.4 Contd.050 0.40 - 0.20 - - 0. 250 LO Gr 250 L15 Fe 360 A Fe 360 B ISO 630 Fe 360 C Fe 360 D (3) EN 10025 Fe 360 JIS - TIS - ASTM A572 A 572 Gr 42 0.5 max 0.050 0.060 0.050 0.045 0.050 DIN 17100 St 44-2 0.Table 1.040 0.21 - 1. 008 0.035 Fe 430 0.045 0.020 0.6 max 0. Group Classification Standard No AS (3) ISO 630 EN 10025 Max C Fe 430 A 0.60 max 0.050 0.030 0.24 - Fe 430 B 0.18 ASTM BS DIN AS Hand Book for Design of Steel Structures 1-20 .55 1.050 - 0.040 0.050 0.060 0.015 6 < t ≤ 50 50 < t ≤ 100 16 < t ≤ 50 50 < t ≤ 100 0.20 - - 0.035 0.55 1.20 0.20 0.3 Contd.22 t ≤ 50 50 < t ≤ 200 t ≤ 50 50 < t ≤ 200 0.18 SM490C t ≤ 100 0.035 0.18 0.18 0.20 0.20 0.55 1.55 - 0.18 0.60 max 0.Table 1.60 max 0.55 1.045 Fe 430 D 0.18 0.55 1.60 max 0.035 SM490B SN490B (4) SN490C TIS Remarks Max P Fe 430 C SM490A JIS G3106 Chemical Composition % Max Si Mn Designation - SM 490 0.22 0.20 - - 0.045 0.035 0.22 - JIS G3136 Max S - 0.035 0.040 - - 0.035 0.60 max 0.035 SN490A 6 < t ≤ 100 0.55 1.045 0.035 0.035 0. 55 1.22 0.050 0. Group Classification Standard No (4) ISO Designation - EN - Max C Chemical Composition % Max Si Mn Remarks Max P Max S SM 490 YA SM 490 YB JIS G3106 0.20 0.6 max 0.23 - 1.6 max 0.040 0.55 1.045 0.035 SM 520C SM 520 (5) 0. 350 AS 1204 Gr.045 0.5 max 0.040 0. 50E 0.040 0.04 0.18 0.60 0.22 - - 0.55 1. 50 0.3 Contd.035 0.6 max 0.22 - - 0.040 Fe 510 B 0.350 L15 ISO 630 EN 10025 Notations: C = Carbon Fe 510 D 0. 350 LO Gr.Table 1.35 max 0.035 0.22 - - 0.22 0.6 max 0.040 Fe 510 0.05 BS 4360 Gr.20 0.040 0.50 1.035 0.22 - - 0.040 DIN 17100 St 52-3 0.50 1.035 0.045 Si= Silicon Hand Book for Design of Steel Structures Mn= Manganese P= Phosphorus S= Sulfur 1-21 .045 Gr.050 Fe 510 C 0.035 0.20 TIS SM520 ASTM A572 A572 Gr.040 0.55 1. 35 max. 0.18 ASTM A572 A 572 Gr. 0.55 TIS SM 570 0.035 0.Table 1.18 0.05 0. 0.26 - 1.3 Contd. Group Classification Standard No Chemical Composition % Max Si Mn Max C JIS G3106 Designation SM 570 0.6 max.22 0.04 0.6 max.035 0.035 0.60 max.040 - Mn= Manganese P= Phosphorus S= Sulfur 1-22 .60 1.035 0. 65 BS 4360 Gr. 0. 55C DIN - AS - ISO - EN - (6) Notations: C = Carbon Si= Silicon Hand Book for Design of Steel Structures Remarks Max P Max S 1.55 1. 035 0.60 – 1.40 - 0.60 – 1.035 0.030 0.23 0.050 6 < t ≤ 50 50 < t ≤ 100 16 < t ≤ 50 50 < t ≤ 100 0.20 0.035 0.035 SN400A 6 < t ≤ 100 0.22 0.40 max 0.22 0.20 SM400C t ≤ 100 0.04 0.35 0.20 0.18 0.050 - 2.24 - - 0.40 0.25 0.16 Remarks Max P - SM400A JIS G3106 Chemical Composition % Max Si Mn Max C SM400 A36 0.3 Contd.5 C 0.050 0.35 1.040 0.035 - t ≤ 50 50 < t ≤ 200 t ≤ 50 50 < t ≤ 200 0.35 0.40- 0.22 1-23 . Group Classification Standard No BS 4360 TIS ASTM BS (7) DIN AS ISO EN Designation Gr 40 DD (8) JIS G3136 ASTM Hand Book for Design of Steel Structures Max S 0.05 SM400B SN400B SN400C TIS 0.50 1.035 0.008 0.020 0.60 – 1.015 0.40 0.Table 1.40 0.20 0.035 0.60 – 1.5 max 0.35 0.35 0.26 0.035 0. Rayong Province. which is valuable for drawing and forming of different products as well as for general ductility in structural applications 17 Table2. The key to understanding the versatility of steel lies in its basic metallurgical behavior. Although steel can be made to a wide range of strengths. The capital investment is over 6. It also usually has a high capacity for accepting plastic deformation beyond the yield strength. Ltd. it generally behaves as an elastic material with a high(and relatively constant) value of the elastic modules up to the yield or proof strength. . piling. which is one of the basic construction materials for both public and private projects. Product Specifications The structural steel products range from sheet materials. Ltd. through optimized sections and plates.000 metric tons.. Such rapid growth is followed by an increase in demand of structural steel. Limited. In response to the increasing demand. The world’s leading equipment and technology are employed to ensure that SYS’s quality products conform to international standards and can compete with imported structural steel. and Sumitomo Corporation... Siam Yamato Steel (SYS) has its factory located in the Map Ta Phut Industrial Estate. with annual production capacity of 600. Siam Yamato Steel was established in 1992 as a joint venture between The Siam Cement Public Company Limited. Steel is an efficient material for structural purposes because of its good strength-to-weight ratio. Introduction Construction industry had been expanding at a remarkable rate for many years due to the high economy growth of Thailand. bridges. Siam Yamato Steel has been extensively used in high rise constructions. refinery plants etc. Mitsui & Co. Yamato Kogyo Co.. and corresponding specifications based on tensile strength and in some cases Charpy Impact test. Mitsiam International. to heavy forgings and castings of intricate shape. although the strength requirements may limit the product form. The versatility of steel for structural applications rests on the fact that it can be readily supplied at a relatively cheap price in a wide range of different product forms and with a useful range of material properties. factory buildings. Ltd. Steel can be supplied with strength levels from about 240 N/mm2 up to about 2000 N/mm2 for common structural applications. 2.000 million baht.Chapter 2 Siam Yamato Steel Sections 1.1 as shown below gives the products manufactured by Siam Yamato Steel Co. C JIS G3106 SM490 A.C Thickness (mm) 5 or under 5 to 16 Over 16 400-510 21 17 21 275 490-610 19 15 19 245 235 400-510 23 18 22 325 315 490-610 22 17 21 Hand Book for Design of Steel Structures 2-2 .B. Table 2.1. 50D St 52-3 490 490 (High yield point) - - St 37-2 RSt 372 - - Mechanical Properties Steel derives its mechanical properties from a combination of chemical composition. 43A St 33 490 - SS490 G3101 SS490 - Gr.2 Mechanical Properties of SYS Steel Products Yield point (N/mm2) Classifications Tensile strength 2 (N/mm ) Elongation.42 - Charpy impact test for low temperature - - - - Gr. % Thickness (mm) 16 or under Over 16 JIS G3101 SS400 245 235 JIS G3101 SS490 285 JIS G3106 SM400 A. 43B Gr.50 Gr. tests are carried out on samples representing each batch of steel and the results recorded on test certificate for mechanical properties which normally include the yield point. 43D - G3106 SM 490A - - Charpy impact test - SM 490 G3106 SM 490B. Classified by tensile strength Specifications Tensile strength class 2 (N/mm ) Special specification TIS JIS ASTM BS 4360 DIN 17100 400 - SS400 G3101 SS400 A36 Gr.C.1 SYS Steel and Corresponding Specifications 2. heat treatment and manufacturing process.B. tensile strength and elongation to failure. 43DD - - G3106 SM 490 YA A572 Gr. 50A St 50-2 400 - - G3106 SM400A SM 400 G 3106 SM 400B.C - Gr.Welded structure General structure Type of material Table 2. 50B - Charpy impact test Charpy impact test for low temperature SM 520 G3106 SM 490YB SM520 B. As laid down in the different specifications for manufacture of steel products. 50C Gr. 43C - Charpy impact test A572 Gr. - - Gr.C Gr. 0.55 1.20 0. Sizes and Properties of SYS Sections The section dimensions and their calculated properties have been expressed in appropriate units so as to avoid too small or too long digit numbers.035 JIS G3106 SM490 A 0.55 1.035 0.55 1.60 max.050 JIS G3106 SM400 A 0. molybdenum. chromium. 0.18 0. without any further verifications.20 0.60 max. nickel.035 0. 0. P Max.60-1.2. Hand Book for Design of Steel Structures 2-3 . it is one of the important criteria for the selection. A = The cross-section area of section. Si Mn Max. 0.40 0. Table2. C 0. the standard charpy test is also included. However. the addition of small amount of other elements can remarkably affect the type of properties of steel.035 JIS G3106 SM400 B 0.035 0.40 max.035 JIS G3106 SM490YA.035 JIS G3101 SS400. from "Siam Yamato Hot Rolled Shapes Product Specification Book". 2.35 1. 0. S - - - 0. % Max. 0. ductility.035 0.35 0. manganese. weldability heat and corrosion resistance.20 0.23 - 2. antimony. Ixx = The second moment of Inertia of section about XX (generally major) axis. Notations related to dimension of the section can be read directly from the figure shown in their respective tables.18 0.JIS G3106 SM490 YA.035 JIS G3106 SM490 B.035 JIS G3106 SM570 0.55 1. and sensitivity to heat treatment.18 0. YB 0. However the presence of non-metalic inclusions specially sulphur and phosphorous must be controlled carefully. Although steel is basically iron.60 max. Other impurities which may seriously affect the quality of steel are tin. A correct proportion of elements like carbon. the high level of which may reduce resistance to ductile fracture and possibility of cracking problems in welded joints.60 max.035 0. arsenic and some dissolved gases.YB 365 355 490-610 19 15 19 JIS G3106 SM520 B.55 1. C = carbon SI = silica Mn = Manganese P =Phosphorus S = Sulfur Table 2. A brief description of various symbols (notations) used for cross-section properties is given below.C 365 355 520-640 19 15 19 JIS G3106 SM570 460 450 570-720 19 19 26 If the fracture toughness is important.2 gives the detailed mechanical properties for Siam Yamato Steel products. The following Table 2. 0.3 gives the detailed chemical composition for Siam Yamato Steel products using the following notations.66 max.050 0.C 0. elements like vanadium and aluminium can be added in small quantities to improve grain refinement. fracture toughness.035 0. copper may improve the strength.035 0.20 0. Chemical Properties As the chemical composition of steel greatly affects the important structural properties of steel. 490 JIS G3106 SM520 B.035 3. All section related information has been reproduced.035 JIS G3106 SM400 C 0. including all radii and fillets.3 Chemical Composition of SYS Products Classifications Chemical Compositions.5xCmin. C Max.035 0. C shapes put in one table. rx = The radius of gyration of cross-section about x-axis.e. which further be sorted by any one of the properties. will be desirable for quick and an economic selection of the section. Software Implementation Steel designers frequently need to find the sections of specific requirements based on weight. H shapes in another and so on. width or height.Iyy = The second moment of inertia of section about YY (generally minor) axis. 2. To provide the designer. any easy and quick way to find a section or group of sections which satisfy certain specified criteria. Due to some architectural or connection restriction. The section properties listed on the following tables are grouped based on primary shape of the section i. Further. designer may need to find the section not exceeding certain width or height. Z xx = I xx y Where y = Distance to the extreme fibre from the centroidal YY axis. derived as ry = I xx A I yy A Zxx = The section modulus or elastic modulus of section defined as the moment of Inertia Ixx divided by the extreme fibre distance measured from centroidal YY axis calculated by the following simple formula. User can specify the range for important section properties like weight. in some cases. a sorted list of sections based on moment of inertia which is the main parameter to control the deflection. is the practical way of selection. SYS Designer Software provide special tool for searching. which. derived as rx = ry = The radius of gyration of cross-section about y-axis. sorting and printing those sections. 3. the shapes have been ordered by their nominal sizes like width and height instead of weight or any other properties. Some common and practical examples to illustrate the usefulness of this module are: 1. height or other properties for design. in most cases. Zyy = The section modulus or elastic modulus of section defined as the moment of Inertia Iyy divided by the extreme fibre distance measured from centroidal XX axis as calculated as Z yy = I yy x Where x = Distance to the extreme fibre from the centroidal XX axis 4. In the design of steel beams the designer frequently need to find the lightest section satisfying a certain minimum section modulus. Hand Book for Design of Steel Structures 2-4 . In the deflection checks. width. 4 SYS Section Designation Used in SYS Designer Software Sr. This market/stock availability criterion has also been included in the section selection module. Longer Leg Connected 9 Double Angles Unequal Legs. Shorter Leg Connected 10 Double C Open or Like H Shape CC CCI 11 Double C Close or Like Box CC CCB Hand Book for Design of Steel Structures 2-5 . The following table gives the section designation used in the software. No Actual Shape Primary Designation Complete Designation 1 H or WF or W H H 2 I I I 3 Channel C C 4 T Or TH T T 5 Equal Angle L EL 6 Unequal Angle L UL 7 Double Angles LL ELL LL ULLL LL ULLS Remark Equal Legs 8 Double Angles Unequal Legs. which puts an additional limit on the section selection.Certain SYS Sections of not so common usage are not readily available in the market. Table 2. Hand Book for Design of Steel Structures 2-6 . 68 249 44.8 Hand Book for Design of Steel Structures Y t1 r2 t2 r1 X X H B Y 2-7 .5 C 380x100x67.8 10 15.5 16 18 9 69.9 48.1 C 200x90x30.5 2.71 67.9 C 300x90x38.8 7410 360 11.1 6440 309 11.6 4180 294 9.52 429 45.5 2.3 2490 277 8.02 2.2 11 14.3 2.5 17 8.76 926 87.6 7.5 11 12 6 31.3 8 13.54 374 49.6 1950 168 7.5 14500 535 14.5 Sizes and Properties of Sections for Design for Channel Shapes Sectional Dimension (mm) Section Designation t1 t2 r1 Sectional Area (cm2) Wght kg/m r2 Moment Of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) Ix Iy ix iy Zx Zy C 200x80x24.33 24.Table 2.5 10.5 61.3 2.5 2.7 C 300x90x43.17 40.5 55.3 17600 655 14.58 334 44.5 C 250x90x40.54 494 54.88 2.56 2.1 C 300x90x48.5 51.2 C 250x90x34.3 13 20 24 12 85.48 525 56.32 195 29.78 763 70.1 9 13 14 7 48.2 4680 329 9.74 2.5 14 7 38.74 43.6 12 16 19 9.4 C 380x100x54.39 54.65 30.5 19 9.6 7870 379 11.07 34.6 9 13 14 7 44.57 38. 5 9 15 13 6.5 146.5 15200 702 14.16 50.97 4330 373 Hand Book for Design of Steel Structures Y r2 t2 t1 X X H r1 B Y 2-8 .3 9480 588 12.58 48.72 2170 231 I 600x190x133 13 25 25 12.5 176 130000 3540 24.3 3.2 22400 1180 14.7 I 200x150x50.79 38.1 3.73 72 24100 864 16.8 31700 1240 16.5 111.3 3.8 12.73 55.18 1580 165 I 450x175x91.5 70.1 3.5 25 27 13.5 97.5 22 23 11.05 217 27.5 I 350x150x87.1 87.9 I 250x125x55.3 3.47 65.3 8 13 12 6 61.5 91.8 91.5 122.4 3.2 3.11 2.43 446 100 I 250x125x38.34 3.3 3.5 74.07 1200 115 I 400x150x95.5 83.5 7310 538 10.5 10 19 21 10.3 2.5 64.07 870 93.26 1280 158 I 400x150x72 10 18 17 8.5 12 6 48.26 849 118 I 300x150x76.09 632 78.5 12.5 169.76 858 86 I 300x150x48.4 133 98400 2460 24.5 12700 886 12.7 11 20 19 9.2 12 24 25 12.32 978 143 I 350x150x58.63 414 53.8 14700 1080 12.3 7.4 I 300x150x65.2 3.7 39200 1510 18.5 19 9.81 3280 259 I 600x190x176 16 35 38 19 224.06 26 2170 138 8.2 2.5 116.88 76.5 10 18.3 5180 337 10.8 11.4 9 16 15 7.2 3.6 Sizes and Properties of Sections for Design for I Shapes Sectional Dimension (mm) Section Designation t1 t2 r1 Sectional Area (cm2) Wght kg/m r2 Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) Ix Iy ix iy Zx Zy I 200x100x26 7 10 10 5 33.6 1740 173 I 450x175x115 13 26 27 13.1 3.Table 2.1 115 48800 2020 18.1 95.58 58.4 4460 753 8. 79 324 47 H 250x175x44.4 3.5 8 13 16 84.8 6.2 383 134 4.77 893 189 H 300x300x84.79 285 41.7 H 125x125x23.7 7210 508 12.62 5.5 7.5 6.5 9 10 30.6 6 9 12 37.38 56.4 3.3 3.53 56.39 3.1 1020 151 6.83 5.5 8 11 27.09 919 304 H 300x150x32.6 4.7 6.8 6.1 H 175x175x40.14 31.7 Sizes and Properties of Sections for Design for H Shapes Sectional Dimension (mm) Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) Y B t 2 Section Designation Sectional Area (cm2) t2 r1 Ix Iy ix iy Zx Zy 6 8 10 21.2 7.8 6.8 8 12 18 72.2 12 12 13 71.18 502 113 H 250x250x64.35 4.8 32 6320 442 10.5 9930 3350 10.37 138 30.5 4.6 4050 294 10.17 2.75 219 75.2 14 14 16 104.9 4720 1600 8.01 30.78 36.02 472 160 H 200x200x56.4 13300 1900 12.2 X X r Y 2-9 .9 17.3 5.8 847 293 5.71 771 160 H 300x200x65.21 160 23 H 200x100x21.1 6 9 11 26.4 9 14 18 83.24 44.69 65.47 76.18 2.4 2.7 66.5 7 10 11 10.4 9 14 16 92.2 11500 3880 10.29 424 59.5 4.3 H 300x150x36.5 1640 563 6.6 2690 507 8.18 72.88 498 167 H 200x200x65.5 9 13 46.5 12 12 18 107.1 7 11 16 56.4 4.3 5.5 8 13 40.4 10800 3650 10.7 6530 2200 8.0 5.2 4.7 3540 255 10.24 2.7 H 300x200x56.4 8790 2940 10.18 18.1 H 250x125x29.7 82.1 6120 984 10.06 64.7 84.5 16900 5520 12.16 21.38 330 112 H 200x100x18.7 5 8 12 32.Table 2.5 11 12 51.36 65.53 49.4 11 11 16 82.2 1580 114 8.66 29.2 2880 984 7.31 23.22 184 26.68 25.6 6 9 13 39.29 481 67.84 21.5 7 11 23.7 10 16 13 83.4 2.98 720 233 H 250x250x66.29 801 269 H 250x250x72.9 8 12 13 63.3 1840 134 8.11 136 47 H 150x100x21.61 227 67.5 26.26 2.21 40.29 867 292 H 250x250x82.29 3.2 4980 1700 8.1 H 150x150x31.16 1150 365 Hand Book for Design of Steel Structures t1 H t1 H 100x100x17.8 H 200x150x30.13 628 218 H 250x125x25.6 H 200x200x49.8 11300 1600 12. 6 7 11 16 72.5 9 14 22 120.6 20000 1450 16.0 9 14 18 110.48 1010 145 H 400x200x66.7 21700 3650 14.16 56.51 1360 450 H 300x300x106.2 18500 3090 14.6 6 1280 292 H 350x350x106.0 15 15 18 134.88 641 91 H 350x175x49.4 232 92800 31000 17.21 1740 418 H 400x400x172 13 21 22 218.3 66.6 8 13 14 73.0 12 19 20 173.7 4.5 10.0 11 17 18 134.7 (Continued) Sizes and Properties of Sections for Design for H Shapes Sectional Dimension Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) ix iy Zx Zy Y B t 2 (mm) Section Designation Sectional Area (cm2) t2 r1 Ix Iy H 300x300x87.1 8.8 87 18800 6240 13 7.78 1940 646 H350x350x131.5 33700 6240 16.5 9 15 16 96.7 3.95 775 112 H 350x175x57.8 16100 1180 14.1 94.5 27500 2030 16.51 1270 417 H 300x300x94.2 28700 1580 18.0 8 13 16 84.5 79.01 909 134 248 H 350x250x69.5 5.0 10 16 20 146 115 33300 11200 15.8 94 20400 6750 13.0 19 19 20 198.0 13 13 20 135.12 66 23700 1740 16.2 7.7 9 14 20 101.6 7 11 14 63.54 1190 174 H 400x200x75.2 8.6 8.4 6 9 14 52.7 7.8 4.2 8 12 20 88.Table 2.43 2050 669 H 350x350x137.4 8.84 2300 776 H 350x350x156.57 1540 514 H 350x175x41.5 4.15 69.14 49.0 10 15 18 119.68 57.53 2450 809 H 400x200x56.68 41.02 4480 1530 H 450x200x66.8 106 21500 7100 12.7 172 66600 22400 17.92 1100 H 350x250x79.8 106 23400 7730 13.5 3.1 3330 1120 H400x400x232 18 28 22 295.1 7.2 8 12 18 84.6 13600 984 14.7 10.6 131 35300 11800 14.3 106 28200 9380 14.16 75.33 1290 159 Hand Book for Design of Steel Structures t1 H T1 X X r Y 2-10 .6 1360 202 H 400x300x94.8 4.0 16 16 20 166.7 8.26 1440 466 H 300x300x106.6 7.33 1670 534 H 350x350x115.4 11100 792 14.4 156 42800 14400 14.9 137 40300 13600 15.9 4. 0 9 14 18 96.3 79.0 13 20 28 211.5 128 71000 8110 20.53 4980 602 H 700x300x185.9 4620 7001 H 700x300x166.0 541 13 21 26 191.43 2230 254 H 500x300x114.0 11 17 22 134.33 1910 H 500x200x103.39 6410 662 H 800x300x210.3 76 33500 1870 18.0 14 26 28 267.4 106 46800 6690 18.5 94.3 103 56500 2580 20.4 191 254000 9930 32.8 6.4 1490 187 88.4 6.5 114 60400 6760 20.5 9 14 20 184.5 151 118000 9020 24.6 68700 1980 23.0 14 22 28 243.6 7.0 12 17 28 174.18 2550 541 H 450x300x145.6 4.0 10 15 24 135 H 450x300x124.7 4.76 H 450x200x88.9 4.63 3530 511 H 600x300x151.5 120 90400 2720 24.9 7.1 3390 640 H 600x200x94.3 4.0 11 15 26 145.5 41900 1840 20.8 7.3 145 66400 9660 19 7.9 10 17 18 113.3 6.6 6.62 7290 782 Hand Book for Design of Steel Structures t1 H t1 X X r Y 2-11 .0 11 H 500x300x128.0 14 23 28 222.2 89.05 2310 199 H 600x200x106.5 166 172000 9020 28.51 1770 230 H 450x300x106.5 4.4 150 83800 9660 20.85 5020 601 H 600x300x175.0 11 19 214 20 131.3 4.3 6.4 210 292000 11700 33 6.0 13 24 28 235.9 40400 2310 18.4 106 77600 2280 24 4.6 10 15 22 120.0 11 18 24 157.04 2160 448 124 56100 8110 18.3 6.0 13 21 24 H 500x200x79.6 10 16 20 185 114.24 2980 639 101.0 12 20 22 152.6 4.9 6.9 7.78 5760 722 H 800x300x191.4 175 137000 10600 24.31 3380 314 H 600x300x137.7 134 103000 3180 24.9 4.04 2910 H 500x300x150.12 2590 228 H 600x200x120.6 47800 2140 20.Table 2.5 185 201000 10800 29.5 137 103000 7670 24.7 (Continued) Sizes and Properties of Sections for Design for H Shapes Sectional Dimension (mm) Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) iy Zx Zy Y B t 2 Section Designation Sectional Area (cm2) t2 r1 Ix Iy ix H 450x200x76.27 1690 H 500x200x89.0 13 23 22 170.22 2980 271 H 600x200x134.0 12 20 28 192.82 2500 451 18 26 163. 88 32.4 83.41 5.09 59.29 39.29 5.2 1.73 T 100x200x24.99 6.52 3.02 22.1 14 14 16 52.8 7 10 11 20.95 8.16 11.11 6.8 3.1 1.8 2.75 10.2 364 1670 2.27 T 125x250x32.9 35 147 1.1 11.37 T 87.8 248 147 3.4 2.8 37.29 33.2 412 1820 2.79 25.3 6 9 13 19.91 T 125x125x12.79 21.2 2.7 3.9 56.21 2.39 T 125x250x33.09 36.0 5.1 589 1940 3.9 1.7 114 67.4 8 12 18 36.09 T 100x200x32.68 T 125x125x14.12 4.5 8 13 30.1 56.4 2.19 T 75x100x10.5 T 100x100x10.98 T 125x250x36.36 6.78 T 125x175x22.3 20.5 2.61 20.82 3.83 Hand Book for Design of Steel Structures B Y t1 X X Y 2-12 H .53 3.84 15.Table 2.9 6.71 48.63 2.98 45.8 Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension Sectional Wght Moment Radius Modulus (mm) Area kg/m of Inertia of Gyration of Section (cm4) (cm) (cm3) Section Designation (cm2) t1 t2 r1 Ix Iy ix iy Zx Zy Center of Gravity from Top t2 Cx= T 50x100x8.5 6 9 11 13.1 7 11 16 25.1 12 12 13 35.8 251 1100 2.4 6.41 T 150x200x28.8 29.6 1.2 445 1470 3.03 13.08 T 125x250x41.39 18.8 56.77 24.1 256 851 2.3 80.5 9 10 15.1 4.91 23.3 125 254 2.0 2.58 10.2 8 13 16 42.1 93.35 33.13 29.7 75.6 16.61 15.12 22.5 2.5x125x11.26 T 150x150x18.2 11 11 16 41.4 282 1.55 2.59 9.1 66.18 29.8 13.5 1.29 T 100x150x15.97 4.9 134 1.0 T 62.4 152 2.2 9 14 16 43.9 2.2 80.37 8.8 33.38 15.85 32.22 14.9 8 12 13 31.39 6.5 7 11 11.45 3.5x175x20.93 6.8 10 16 13 41.14 T 100x100x9.21 12.07 15.51 15.8 66.5 8 11 13.8 208 127 3.3 2.84 2.8 6 9 12 18.47 4.83 14.7 5.5 51.55 T 75x150x15.4 572 802 3.77 28.29 34.45 5.1 289 492 3.6 23.34 12.4 1.5 146 2.5 9 13 23.1 115 492 2.6 6 8 10 10.3 1.34 41.4 109 1.8 1.4 16 393 551 4.1 7.58 T 150x150x16.3 117 2.42 10.19 28.67 4.1 T 100x200x28.4 464 254 4.03 32.9 184 801 2.29 40 33.5 11 12 25.79 1.96 2.57 2.8 5 8 12 16.2 4. 65 8.29 4.21 95.4 7.66 T 300x200x47.98 53.09 13 13 20 67.71 8.1 1420 4690 4.3 5190 989 9.68 T 175x175x20.8 1020 1830 4.23 T 200x300x47.76 57.49 4.59 T 175x350x79.3 104 267 3.7 9 14 18 41.3 7 11 16 36.6 881 1540 4.8 3210 1070 7.43 131 335 3.67 T 175x350x65.08 3.47 5.9 2200 7220 4.2 94.12 44.82 178 225 4.8 815 492 5.66 7.4 16 16 20 83.3 1820 8000 4.1 9 14 22 60.3 56.4 1800 5920 4.95 59.5 209 3.2 3.91 26.6 86.76 39.34 20.71 14 31.57 24.08 3.8 7 11 T 175x250x34.43 190 128 5.92 T 250x300x64.88 50 45.23 47.9 124 455 3.3 10 15 22 60.5 11 19 20 65.1 11 15 26 72.21 10 16 20 73 57.85 6.05 47.54 88.7 679 396 5.0 8 13 16 42.76 4.2 12 19 20 86.06 33 1400 868 5.75 20 44.63 53.8 8 T 175x350x53.95 T 250x300x57.1 T 175x350x57.84 104 388 2.7 6 9 14 T 175x175x24.48 6.53 158 4.4 3.05 7.59 8.33 169 107 5.99 4.76 4.33 T 200x300x53.3 14 22 20 101 79.7 662 949 3.04 7.78 84.11 8.2 11 18 26 81.86 T 175x350x77.3 1190 723 4.19 77.90 T 250x200x39.4 2.00 73.65 51.08 28.2 3620 4060 6.27 150 92.0 124 3.96 T 250x200x51.5 4.1 146 3.Table 2.3 Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) Center of Gravity from Top Ix Ix Ix Iy Zx Zy Cx= 32.25 8.3 1230 5620 4.07 184 70 4.4 1730 3600 5.32 65.6 T 250x200x44.40 T 175x350x68.64 39.6 8 12 T 175x250x39.02 14 20 50.48 76.8 10 16 20 57.94 68.17 T 200x200x33.5 3670 1290 7.05 T 200x200x28.9 19 19 20 99.5 3.4 72.8 4.08 34.7 4.7 2840 922 7.48 4.28 108 240 3.76 64.2 1520 6790 4.4 10 16 22 67.1 3420 3380 6.79 Hand Book for Design of Steel Structures B Y t2 t1 X X Y 2-13 H .92 64.05 236 99.7 9 14 20 50.41 5.1 1530 3120 5.8 (Continued) Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension (mm) Section Designation Sectional Area (cm2) t1 t2 r1 T 150x200x32.77 55.7 323 2.18 8/. 0 13 23 22 85.5 12 17 28 87.24 75.8 12 20 22 76.9 339 350 6.8 6570 1360 9.33 67 7340 1590 9.12 262 114 7.44 6.6 6710 4510 8.39 T 300x300x75.79 T 300x300x68.35 6.33 Hand Book for Design of Steel Structures Ix Ix Ix Iy Zx Zy Cx= 52.3 14 23 28 111.63 280 256 6.27 4.79 B Y t2 t1 X X Y 2-14 H .08 T 300x300x87.5 6360 3830 8.8 (Continued) Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension (mm) Section Designation Sectional Area (cm2) Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3) Center of Gravity from Top t1 t2 r1 T 300x200x52.54 6.31 322 157 7.24 68.2 87.22 292 135 7.24 T 300x200x67.3 4.Table 2.6 12 20 28 96.8 5810 1140 9.28 4.8 11 17 22 67.21 T 300x200x59.84 59.85 288 301 6.3 7920 5290 8. 68 4 4 6.5 6 12.22 15.4 1.5 4 8.88 1.46 9.427 EL 30x30x1.42 0.14 7.96 1.55 8.21 1.9 2.302 3.4 29.91 1.55 19.3 1.47 2.28 1.77 11.527 5.5 4 9.85 1.2 1.661 0.91 1.7 15.755 2.727 6.Table 2.22 2.1 2.66 36.84 4.9 Sizes and Properties of Sections for Design for Equal Angles EL Sectional Dimension Sectional (mm) Area Wght kg/m Moment Radius Modulus of Inertia of Gyration of Section 2 4 (cm ) Section Designation t1 t2 r1 r2 EL 25x25x1.55 5 5 6.23 1.14 2.68 16 16 1.49 1.7 9.61 EL 60x60x4.692 3.5 3 4.46 Hand Book for Design of Steel Structures r2 (cm) 3) H Cy t1 t2 r1 B 2-15 Cx .06 4 EL 50x50x3.38 7.42 1.33 7.38 4 4 EL 50x50x3.99 1.41 1.29 EL 80x80x7.4 1.5 3 3.08 3.93 1.66 8 8 8.5 6 9.2 2.06 9.12 3 3 4 2 1.908 0.98 6.26 6.91 29.908 0.77 5 EL 50x50x4.18 EL 90x908.336 1.93 EL 75x75x6.42 2.53 3.41 6 6 6.1 2.327 7.2 14.23 1.5 3 5.9 81.8 1.17 6.5 EL 40x40x2.25 2.08 1.2 1.5 6.81 EL 65x65x7.76 1.47 8.88 EL 70x70x6.17 2.448 0.26 1.5 4 8.492 2.6 12.49 2.22 9.37 5 6.0 5 5 8.52 4.43 12.797 0.91 6 6 8.892 3.35 5.5 4 7.53 1.747 0.36 2 2 1.844 2 2.52 1.53 1.52 3.96 7.44 EL 60x60x3.7 2.85 3.69 9.1 2.44 1.43 (cm ) Center of Gravity (cm) (cm ) (From bot and Left) Ix Iy ix iy Zx Zy Cx Cy 1.46 2.719 1.37 1.94 7.95 5.91 7.1 46.59 93 93 1.6 2.367 5 25.4 64.85 6 6 8.74 4 4 EL 45x45x3.77 12.4 56.33 1.448 0.727 1.55 1.36 3 3 4 2 EL 40x40x1.5 3 3.42 5.74 6.3 25.99 5.1 37.46 2.81 1.61 1.5 1.21 1.0 12 12 8.83 3 3 4.6 1.96 9 9 8.84 1.25 12.59 7 7 10 5 12.7 2.09 1.46 1.94 1.42 EL 90x90x9.09 3 3.1 12.06 9.32 6 6 8.35 1.3 2.5 3.53 2.661 0.6 19.18 2.66 1.12 0.1 11.06 2.42 1.83 3.17 EL 75x75x13.24 1.76 14.4 2.761 7.5 1.6 12.802 3.127 6.844 0.91 1.66 EL 65x65x5.797 0.52 1.5 6 16.96 64.36 1.38 37.1 1.06 1.29 2.17 1.28 80.46 1.66 1.24 6.28 6 6 10 5 10.77 2.644 4.95 5 5 4.5 3 6.28 4 6.55 3.6 1.77 1.802 4.7 80.32 56.5 EL 45x45x2.06 EL 75x75x9.36 1.77 EL 65x65x5.8 36.36 2.98 1.38 6 6 8.3 8.5 3 4.5 4.36 1.5 5.66 3.7 2.719 0.85 46.747 0.5 3 4.56 13 81. 21 39.4 2.53 3.96 49.74 14.76 EL 150x150x27.6 128 9110 9110 7.04 242 242 5.7 6950 6950 7.35 5.38 91.52 4.40 4.85 EL 200x200x45.71 17 156 156 2.7 38.7 258 258 3.9 10 10 10 7 19 17.86 EL 250x250x93.24 EL 150x150x41.40 EL 175x175x31.93 61.5 29.7 2.14 6.86 5.63 388 388 7.0 13 10 10 7 21.5 2.6 888 888 4.08 3.75 73.0 35 24 35 18 162.73 4.82 EL 100x100x19.71 2.85 4.6 3420 3420 6.10 EL 250x250x128.38 5.Table 2.9 19 14 14 10 53.4 12 12 12 8.61 4.6 82.9 1090 1090 4.4 467 467 3.3 740 740 4.57 EL 90x90x17.7 8 12 12 5 18.96 3.6 25 17 17 12 93.8 4.5 36.7 25 24 25 12 119.71 1.62 10.8 568 568 3.4 24.9 175 175 3.68 2.52 103 103 4.38 41.94 EL 120x120x14.45 Hand Book for Design of Steel Structures H Cy t1 t2 r1 B 2-16 Cx .01 38.3 12 14 12 7 34.24 EL 130x130x17.14 EL 150x150x33.8 12 15 14 11 40.14 4.76 3.45 7.01 4.7 2820 2820 6.14 150 150 5.56 4.4 15 15 15 11 50.1 2.75 28.35 114 114 4.1 13 10 10 7 24.8 24.10 7.46 5.49 7.7 3.09 6.04 3.52 31.8 1170 1170 5.75 45.67 EL 200x200x73.71 19.77 27.9 49.7 129 129 3.94 2.7 17.4 1440 1440 5.04 24.73 EL 175x175x39.4 93.9 366 366 4.9 9 12 12 6 22.04 6.53 EL 130x130x23.64 EL 130x130x28.9 Sizes and Properties of Sections for Design for Equal Angles L Sectional Dimension (mm) Sectional Wght Area kg/m (cm2) Moment of Inertia (cm4) Radius of Gyration (cm) Modulus of Section (cm3)) Section Designation Center of Gravity r2 (cm) (From bot and Left) t1 t2 r1 r2 Ix Iy ix iy Zx Zy Cx Cy EL 90x90x13.3 10 10 10 7 17 13.74 17.5 3.57 2.63 7.09 197 197 5.1 31.1 220 220 3 3 31.24 4.64 3.71 3.08 17.46 EL 200x200x59.93 3.69 2.5 19.5 61.71 EL 100x100x17.74 33.7 7 10 10 5 13.71 29.49 519 519 7.56 82.6 15 14 14 10 42.76 23.82 2.31 19.3 2180 2180 6.8 15 12 12 8.69 EL100x100x10.3 125 125 1.8 2.3 15 17 15 12 57.7 20 17 17 12 76 59.67 5.9 3.6 4.24 3.8 91.68 24.1 68.5 29.5 3.1 4.61 68. 7 219 60.2 17.93 2.1 14.6 401 173 3.0 9 9 8.1 23.4 2.01 2.95 2.32 118 56.56 22.9 3.3 4.19 17 10 3.5 12 12 12 8.5 35.00 2.75 UL 125x75x19.1 4.5 16.04 46.1 10 10 10 7 20.1 2.1 4.2 37 5.32 7 7 10 5 11.52 48.11 2.53 Hand Book for Design of Steel Structures r2 (cm) H Cy t1 t2 r1 B 2-17 Cx .2 19 4.06 36.35 1.79 2.5 13 159 76.00 9.81 2.41 UL 150x100x27.9 10 10 10 7 19 14.1 376 101 3.04 UL 100x75x9.4 612 223 4.22 UL 125x90x20.94 2.75 2.5 28.5 25.9 4.Table 2.8 78.6 13 13 10 7 26.4 30.3 3.74 2.88 2.7 7 7 10 5 Ix Iy ix iy Zx Zy Cx Cy 11 109 68.76 2.4 12 12 12 8.30 UL 150x100x22.78 2.5 6 14.2 20.10 Sizes and Properties of Sections for Design for Unequal Angles UL Sectional Area (cm2) Sectional Dimension (mm) Section Designation Wght kg/m Moment of Inertia (cm4) Radius of Gyration (cm) Modulus Of Section (cm3)) Center of Gravity (From bot and Left) t1 t2 r1 r2 UL 90x75x11.59 37.83 16.1 3.7 15 15 12 8.3 24.62 10.25 27.8 3.1 17.7 3.3 5.4 485 133 4.3 13.71 2.83 63.5 4.07 2.26 20.87 UL 100x75x13.15 23.10 1.06 1.91 2.31 19.84 17.76 2.15 2.4 4.1 318 138 3.4 9 9 12 6 20.1 10.22 1.07 2.11 26.17 1.88 49.5 27.5 619 167 7.36 21.87 UL 125x90x16.0 10 10 10 7 UL 125x75x10.9 4.96 2.47 62.34 UL 150x90x16.64 UL 125x75x14.1 502 181 4.94 13.1 13 13 10 7 24.1 9 9 12 6 21.10 UL 150x100x17.99 UL 150x90x21.4 12.7 782 276 4.94 16.57 47.9 299 80.95 1. 5 13.950 104.30 T 200x200x33 15.50 -- -- -- -- T 97x150x15.32 -- -- -- -- Hand Book for Design of Steel Structures 2-18 .885 108.50 -- -- -- -- T 124x124x12.78 -- -- -- -- T 100x200x24.5 8.4 12.1 11.3 18.21 -- -- -- -- T 175x357x77.75 -- -- -- -- T 175x350x68.33 -- -- -- -- T 104x202x32.2 9.19 -- -- -- -- T 248x199x39.1 13.8 12.50 -- -- -- -- T 125x125x14.21 -- -- -- -- T 178x352x79.25 -- -- -- T 62.4 16.33 -- -- -- -- T 100x204x28.79 -- -- -- -- T 195x300x53.4 10.71 -- -- 0.6 14.11 Properties of Sections Limited by Width-Thickness Ratio Section Designation Stem b/t For Qa= 1 Fy = 2400 Ksc Fy = 3900 Ksc Factor Qs Cc ' Factor Qs Cc ' -- T 50x100x8.8 7.25 -- -- -- -- T 149x201x32.38 -- -- -- -- T193x299x47.09 -- -- -- -- T 198x199x28.7 19.1 8.1 14.00 -- -- -- -- T 172x348x57.63 -- -- -- -- T 253x201x51.7 12.48 T 250x200x44.00 -- -- -- -- T 170x250x39.8 6.91 -- -- -- -- T 168x249x34.54 -- -- -- -- T 125x250x36.50 -- -- -- T 87.966 103.8 13.3 8.5x125x11.95 -- -- -- -- T 99x99x9.1 8.89 -- -- -- -- T 122x175x22.8 15.93 -- -- -- -- T 149x149x16 18.09 -- -- -- -- T 124x249x33.94 -- -- -- -- T 74x100x10.7 17.14 -- -- -- -- T 100x100x10.22 -- -- -- --- T 75x150x15.9 9.917 106.4 12.3 10.8 15.9 8.1 13.75 -- -- -- -- T 172x354x65.22 -- -- 0.2 9.06 T 175x175x24.3 10.5x175x20.1 7.09 -- -- -- -- T 122x252x32.14 -- -- -- -- T 169x351x53.67 -- -- -- -- T 147x200x28.64 -- -- -- -- T 173x176x20.8 15.17 T 150x150x18.Table 2.2 11.63 -- -- 0.7 10.2 8.93 -- -- -- -- T 125x255x41.9 6.6 6.00 -- -- 0. 969 103.Table 2.2 13.07 -- -- -- T 244x300x64.8 17.65 -- -- 0.56 -- -- -- -- T 298x199x47.3 19.87 -- -- 0.11 Properties of Sections Limited by Width-Thickness Ratio Stem b/t Section Designation For Qa= 1 Fy = 2400 Ksc Fy = 3900 Ksc Factor Qs Cc ' Factor Qs Cc ' -- T 241x300x57.15 -- -- -- -- T 306x202x67 13.22 T 300x200x52.91 -- -- -- -- Hand Book for Design of Steel Structures 2-19 .82 T 294x300x75.851 110.8 15.30 -- -- -- -- T 291x300x68.6 14.12 -- -- 0.70 -- -- -- -- T 297x302x87.1 16.3 12.997 101.5 17.29 T 303x201x59. a member based on AISC/ASD is given by the smaller of the following two values for Pt. the member cross-sectional area at the connection is reduced and the strength of the member may also be reduced depending on the size and location of holes. Permissible tensile stress and detailed methods to determine net effective area can be referred to the relevant design codes. General Procedure A tension member can fail by reaching one of the limit states: yielding or fracture. As a result.5 Fu on gross area (3-1) on effective area (3-2) Tensile Strength of a Member: The tensile strength. Two important considerations in the design of tension members are the net effective area of cross section and permissible tensile stresses. the stress on the gross area must be limited to yield stress Fy. Whenever a tension member is to be fastened by means of bolts or rivets.6 × Fy × A g (3-3) Pt = 0.Chapter 3 Design of Tension Member 1.6 Fy Ft = 0. the tensile strength of a steel member is determined by using the following simple general procedures. 2. the designer need to design the member size and end connections together as they influence each other. corresponding to the above two values for permissible stresses of. Design of an axial tension member involves considerably simple analysis and design procedures compared to any other types of members. Introduction This chapter describes the general concepts for the design of steel tension members. To prevent yielding and accompanying excessive elongation. To prevent fracture. Procedures implemented in the development of SYS Designer software and design tables for tension members are also presented. the stress on the net area must not exceed the tensile strength Fu. With these two basic criteria. Permissible Stresses: (AISC/ASD) Ft = 0. Thus in most cases. Pt = 0.5 × Fu × Ae (3-4) Where Fy = Specified Yield Strength Fu = Specified Ultimate Strength Hand Book for Design of Steel Structures 3-1 . holes must be provided at the connection. Design Steps: 1) Compute Ag1 required based on yield criteria (Fy) from Eqn Error! Not a valid link. Shear lag occurs due to the partial connection of the cross section resulting into an unequal stress distribution in different cross section elements. is the connection of only one leg of an angle section to gusset plate. 3. Ag 2 = 5) Select section to satisfy higher of Ag1 and Ag2. 3. detailed methods to find net effective area in design calculations depends upon the code requirements. 6) Check for other end connection requirements.1. 2) Compute Ae required based on fracture criteria (Fu) from Eqn Error! Not a valid 3) Select appropriate reduction factor based on connection type and configuration. U = reduction coefficient/factor An = net area of cross section. Ae U 4) Compute Ag2 based on Ae from step 3. The procedures for calculations of Ae are explained in the following sections. Effective Net Area As mentioned in the previous section. where this phenomenon is quite serious. This reduction factor includes various factors affecting the strength of the joint and the important phenomenon known as shear lag. if Fy and Fu are taken in Ksc and areas on cm2.0) link.Aholes Ag = gross area of cross section Hand Book for Design of Steel Structures 3-2 . One very common example.Ae = Net effective area Ag = Gross area The above formulae can be used for any consistent set of units.1. for Metric system of units. calculation of the net effective area is based on actual net area multiplied by an appropriate reduction factor.(usually 0. the tensile strength will be in Kg. which account for efficiency of the connection. Effective Area: For bolted and riveted connections Ae = UAn (3-5) For Welded Connections Ae = UAg (3-6) Where.75 -1. For example. In AISC specifications. The area after deduction of area for holes from gross area = Ag . for structural tees cut form them. connected by the flanges and for bolted and riveted connections with at least three fasteners per line in the direction of the stress. For Bolted and Riveted Connections The reduction factor for bolted and riveted connections depends mainly on four parameters namely. U = 0.1. the cross section shape of the member. S or H Shapes not meeting the conditions specified above.1. 1) For W. M.1. − U = 1− x L − x = Dis tan ce Between Centroid of the connected Area and the shear plane L = Length of the connection L X X X X X Fig. M.9 2) For W.2. Parameters for the Calculation of Reduction Factor U 3. U = 1 Hand Book for Design of Steel Structures 3-3 .3. number of fasteners per line and the portion of cross section actually connected. S or H shapes with flange widths not less than two-thirds the depth and structural tees cut from them.2. 3. Figure Error! Not a valid link. Error! Not a valid link. AISC specifies the following simple rules for the approximate calculations of reduction factors for some common shapes.shows the definition of the parameters used for the calculations of U. depth to width ratio. shows reduction factors for some typical bolted connections.1. Reduction Factors The general equation for the calculation of reduction factors is given as below. and all other shapes including built-up sections and for bolted and riveted connections with at least three fasteners per line in the directions of stress. U = 1 Hand Book for Design of Steel Structures 3-4 .3) For all members with bolted or riveted connections with only two fasteners per line in the directions of stress.75 4) If all the elements of a member cross section are connected. U = 0. WT B f / d>2/3 Bar or Plate Ae=An WF B f / d>2/3 Ae=0.2.1.. 1.85A n Single or Double Angle Ae =0.2. M. connected by transverse welds alone 2. S. the reduction factor U is calculated by the general formula given above.75A n Fig.2.90A n WF B f / d<2/3 Ae=0. H or structural tees. AISC specify the two rules as given below and illustrated in Fig Error! Not a valid link.75 A n WF B f / d<2/3 Ae=0. For two special cases of connections with only longitudinal or only transverse welds. 3. For any W. For Welded Connections For welded connections with both transverse and longitudinal welds. Ae = area of connected element Hand Book for Design of Steel Structures 3-1 .9A n Single or Double Angle Ae =0.75 A n Ae=0.85 A n WF B f / d>2/3 Ae =0. Net Effective Area for Bolted or Riveted Connections 3. requiring more calculations for determination of critical section for fracture on the cross section of the member and the other connecting elements like gusset plates etc. An example is given here to demonstrate the general procedure for the design of tension members. 3. For plates and bars connected by longitudinal welds at their ends as in the following figure three values of U depending upon the relative length of length l of the weld and their spacing w U=1.0 for w =< l < 1.87 for 1.5w w w l Only Transverse Weld (a) l Only Logitudinal Weld (b) Fig. However the detailed calculations for design of connections has not been included. If the connection is to be designed for eccentric load. additional calculations for the connection are required.3. The important considerations in the welded joint are the arrangement of weld so as to coincide the resisting force with center of gravity of the member and the form of welding. In such case the design strength will be the minimum of the member strength calculated based on the most critical failure path on the member or on the connecting element. If the tension member is connected by a large number of rivets or bolts. the design becomes more complicated.3. They will be discussed briefly in the Chapter 7 ” Introduction to Design of Connections” Hand Book for Design of Steel Structures 3-2 .0 for l >= 2w U=0. Welded connections are much simpler in design. Design Examples Design of tension member needs more considerations on the design of connections than the in calculations for the tension strength of the member itself. Reduction Factors: Special Cases for Welded Connections 4.5 =< l < 2w U=1. 90A n Fig. Solution: Tensile strength = Ag × 0.6 × 2400 = 33.39 cm2 So.39 cm2 Actual capacity based on gross area = 23.8 Kg/m Ag = 20.07 cm2 T 150x150x16.5 Fu …. Ltd.6 Fy ….SYS Subject: Design of Member Siam Yamato Steel Co.71 cm2 The SYS T sections close to this requirement are T 75x150x15. Fu = 4000 Ksc (56.40 cm2 T 150x150x18.4 Kg/m Ag = 23. Bolt-Connected Design Code: Thailand Tension Designed by: BSS AISC/ASD (1991) Checked by: NA Example:3 1 Sheet No:1 / 2 Reference Chapter: 3 Problem: Design the lightest T-section whose net effective area after deduction for holes will be approximately 70% of the gross area. 3.000 = = 20.50 cm 2 0.5Fu 0.0 Kg/m Ag = 20.000 = = 14.6Fy 0.4 Kg/m Ag=23.(2) from (1) from (2) A g1 = Tensile Force 29.6 × 2400 Ae = Tensile Force 29. use T 150x150x18.(1) = Ae × 0.8 ksi) T-Section 29 Tons Ae=0.7 So higher of above two gross area Ag1 and Ag2 is the minimum required gross area.39 × 0. Ag= 20. Bolt Connected T-section Tension Member for Design Example Error! Not a valid link. Use SYS steel grade with properties: Fy = 2400 Ksc (34 ksi). Maximum tensile load = 29 Ton which does not include the wind load.50 = = 20.4.681 Kg Hand Book for Design of Steel Structures 3-3 .7 0.5 × 4000 Ag 2 = Ae 14.71 cm 2 0.13 cm 2 0. 5 × 4000 = 32. Subject: Design Member of Design Code: Thailand AISC/ASD (1991) Bolt-Connected Tension Designed by: BSS Checked by: NA Example:3 1 Sheet No:2 / 2 Reference Chapter: 3 Actual capacity based on net effective area = 23.746 Kg So safe capacity.4 Kg/m Hand Book for Design of Steel Structures 3-4 .SYS Siam Yamato Steel Co.39 × 0.75 Ton > 29 Ton (Section OK) Use T 150x150x18. the minimum of the above two actual capacities = 32. Ltd.7 × 0. (1) ….8 20 Tensile strength = Ag × 0.Bolt Connected T-section Tension Member for Design Example Error! Not a valid link.77 × 0. Subject: Design of Weld-Connected Tension Member Example:3 2 Design Code: Sheet No:1 / 2 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 3 Problem: Compute the tension capacity of single angle section L 150x150x27.14 cm from the outer face of the legs. 3. 20 cm Fig. Hand Book for Design of Steel Structures 3-5 . Solution: Computation of Design Strength: Reduction factor U = 1 − x ≤ 0.(2) The minimum of the above two values gives T = 50 Tons Check for Slenderness Ratio: Radius of gyration rx = ry = r = 4.8 ksi) x L150x150x27. Fu = 4000 Ksc (56.3 Kg/m x = 4.793 ≈ 0.6 Tons ….6 × 2400 = 50 Tons = Ae × 0.SYS Siam Yamato Steel Co.5 Fu = 0.5 × 4000 = 55.3 kg/m T c. Ltd.38 < 300 OK So the design tensile strength T = 50 Tons.16 = 240.00 / 4. U = 1− 4.g.8 × 34. For L 150x150x37. The length of the member = 10 m Use SYS steel grade with properties: Fy = 2400 Ksc (34 ksi).6 Fy = 34.16 cm Slenderness ratio = 10. 9 L Where x = distance from centroid of the connected area (cross section) to the shear plane L = length of the connection in the direction of the applied force.77 × 0.14 = 0.3 Kg/m connected by welds at the ends as the figure below.5. 5432 C 380x100 67.5295 14.37 H 350x250 69.88544 H 250x125 25.98 H 350x250 79.06 H 300x300 106 20.2 15.4 12.164 131 24.29 11.2 7.20204 19.0332 C 380x100 54.6 10.22 31.86 20.827 21. The tensile strengths are calculated based only on the following formula.824 16. which can be checked in detail later when the end connection requirements are finalized. The following tables will provide a quick and easy reference for the preliminary selection of the sections. Pt = 0.471 14.32712 H 125x125 23. Design Tables In many design situations.8 4.015 28.1 4.48 H 300x300 94 17.5 1.6 5.2 7.7 4.4 7.57012 24.22 31.436 13.285 5.6 9.7 12.61 10.8198 H 250x250 72.24112 H 150x150 31.902 7.017 10.33 H 300x150 32 6.7 7. The tensile strengths have been calculated for two different values of yield strengths Fy =2400 ksc and Fy = 4000 ksc.86602 H 350x350 H 200x200 56.99 38.8515 9.12 9.225 23.2018 C 300x90 43.16016 H 400x300 94.12 H 350x350 H 200x200 49.97 H 300x200 65.3 12.2 3.477 5.6 9.04 H 300x300 87 16.5 × Fu × Ae 3.649 8.09 H 350x175 49.5472 C 200x90 30.36 13.93692 C 250x90 40.97 28.5 16.424 22. the designer wants to find some section or sections that can approximately carry some tensile load without doing any calculation.42 H 350x350 H 200x100 21.9 9.052 17.5 14.81244 H 400x200 75.35 H 350x350 115 21.7 15.3 5.73802 H 350x350 156 29.37 H 300x300 84.309 H 250x250 66.8 8.2225 20.1 Tension Capacity (Ton) Based on Ag H 250x250 64.77476 H 150x100 21.4 13.50144 H 250x175 44.2 10.04 H 300x150 36.8 11.76 46.5 10.6271 11.24 H 300x300 106 20.3 4.6 6.857 16.4998 Section Wght ( Kg / m) Fy (2400 Ksc) Fy (4000 Ksc) H 250x250 82. Pt = 0.902 12.4 12.41 16.026 6.751 106 20.4 31.1 7.618 19.28 H 350x175 57.31 H 300x200 56.6 × Fy × A g However the designer must verify the strength using the formula based on the fracture criteria as given below and take the minimum one as the final design strength.12 H 350x175 41.9844 137 26.074 6.705 C 200x80 24.521 2.2 3.6 5.2 13.64712 H 400x200 66 12.5465 7.705 19.1034 H 400x300 107 20.9 34.62 25.6815 H 200x100 18.5535 19.68 11.6602 H 175x175 40.295 31.50624 C 300x90 38.68408 H 250x125 29.5.085 40.6926 H 200x150 30.70 7.155 25.6 4.1 8.5 18.4256 H 200x200 65.824 Hand Book for Design of Steel Structures 3-6 .58346 H 400x200 56.9272 C 300x90 48.80 9.5 12.7295 16.8 10.94652 C 250x90 34.5432 H 100x100 17.504 19.29 14. 259 H 500x300 150 28.7995 19.525 38.5085 5.3 5.9 14.87784 T 175x350 53.498 19.02 43.0517 T 200x300 53.08306 T 125x250 41.3 15.16 31.49688 T 175x350 68.16 50.8 11.2 13.436 22.596 11.514 22.1 10.412 8.4 12.568 13.075 28.25 31.3 10.9099 T 125x250 36.4 5.3621 H 400x400 168 32.7 7.825 34.6 18.5 13.61 36.8 7.805 51.7876 H 600x200 94.41416 H 450x300 124 23.46846 T 150x200 32.72714 H 450x200 76 14.7042 H 500x200 89.71 44.2 6.769 T 250x200 44.7112 T 250x200 51.3 9.309 9.1262 T 300x300 87.436 17.1 7.4635 10.7228 H 500x200 103 19.56 7.264 19.44272 T 200x200 33 6.8785 23.605 39.7242 H 500x300 114 21.2 12.84204 T 200x300 47.75312 T 175x175 20.645 43.914 17.9 16.0075 14.90732 T 250x200 39.95 17.31472 T 175x250 39.1758 T 250x300 64.614 11.851 12.645 19.4496 H 600x200 120 22.09382 H 450x200 66.52016 H 450x300 145 27.82542 T 175x350 57.84976 Hand Book for Design of Steel Structures 3-7 .612 10.252 9.086 20.3 16.5122 T 300x200 67 12.13 26.1236 T 300x200 47.6 17.8 4.0345 14.8316 T 300x300 75.4 3.1136 T 150x150 18.68 26.38738 T 175x250 34.875 35.31 69.1 9.1696 T 250x300 57.2 6.195 23.197 15.3525 9.36608 H 400x400 147 28.13184 H 400x400 232 44.5 9.64184 T 300x200 59.6 14.0815 15.2 12.5 15.1445 15.96722 H 450x300 106 20.47326 T 150x200 28.695 30.24756 T 150x150 16 4.8 8.34396 T 175x350 77.4 10.6 6.84016 H 450x200 88.995 26.775 41.7355 7.02584 H 400x400 172 32.8 10.047 H 500x300 128 24.21046 T 175x350 79.7 3.7 6.15 23.951 6.082 T 175x350 65.197 H 600x200 106 20.16356 T 175x175 24.59 T 300x300 68.0208 H 500x200 79.8475 15.1 10.041 20.9438 T 125x250 33.7262 T 300x200 52.685 H 600x200 134 25.634 T 200x200 28.4285 8.H 400x400 140 26. The second use is the code verification (check) of a particular selected SYS section against one or more input load cases. the section will be selected as the one that satisfies the design load. 4) Compare the design load with the tensile strength of the section.g. the net effective area will be equal to (25-3)*0. The user must be aware of that the reduction factor is applied to the gross section area instead of the net area to obtain the net effective area. a detailed design calculation report is generated which may be used directly as designers’ calculation sheet for the design approval. For compressive load this reduction factor is not used for any calculation.6. by specifying type. For example a section has a Ag= 25 cm2 . The gross area for any Siam Yamato Standard Steel section is obtained directly from the section database. As the design procedure for a tension member is quite simple. Hand Book for Design of Steel Structures 3-8 . the procedure adopted in the SYS Designer’s Software can be described below as steps instead of flow diagram. 1) Compute the net effective area based on the user specified net effective area reduction factor U and the gross area Ag. More detailed information for the various input parameters and their significance in the design can be obtained from the software Users Manual. For the section selected from database. If the section strength is more than the required. and ask the program to check whether the section or sections can fulfill the required strength.75 . For each case.75 = 16. The user can select a number of available SYS sections based on one or more selection criteria e.area reduced by two 20 mm bolts = 3 cm2 and code specified reduction factor due to shear lag effect U =0. 1) Compute the capacity of a section based on gross area and yield strength Fy 2) Compute the capacity of a section based on the effective net area and ultimate tensile strength Fu 3) Compute the design strength from the minimum of the above two capacities. Software Implementation One of the modules included in the SYS Designer software is the “Axial Member Designer” which carries out the design and verification of axial tension and compression members. otherwise section will not be selected. a number of load cases can be defined.5 cm2 So the use must enter a value of reduction factor = 16. The program performs internal calculation based on the specification requirements of AISC/ASD described in Chapter 2 and 3 of this manual.5/25 = 0.66 in this case. weight and /or depth range. Thus the program can be used for two purposes that a structural steel designer require in their routine work: The first is the selection of a list of available sections in SYS products catalogue full filling the user specified section selection criteria as well as the required design strength. Material and cross-sectional properties are a part of input data. H. Main topic for discussions will be on what are the factors that affect the compressive strength of a member. 4. Some design examples and aids to assist the designer will be given at the end of the chapter. in some cases. Important parameters influencing the strength of a column are listed below. Introduction Design of structural members subjected only to axial compressive force shall be discussed in this section. C.WT etc ) 5) Bending axis . This chapter will describe the fundamental concepts about axial compression members from a structural steel designer’s point of view. Structural members subjected to both axial compressive load as well as bending moment shall be discussed in the chapter 6 “Design of Columns”.1. the imperfections etc. 1) Grade of Steel • • Stress-strain relations Yield stress 2) Manufacturing method • • • • • Hot rolled shape Welded built-up shape Using flame-cut plates Using universal mill plates Cold-straightened shape • Rotorizing (continuous straightening) • Gag (point) straightening 3) Size of shape (cross section area of steel) 4) Cross section geometry (W. make the seemingly simple behavior member a complex one. how a compression member fails.2. how to compute the effective length and allowable load etc. The interaction between the response and characteristics of the material.. the method of fabrication. Unlike the tension member the holes in a compression member has little effect on the buckling strength of the member because as the strut compresses the axial load is transmitted by bearing on the shank of the bolt. Factors Influencing the Strength of Compression Member Strength and behavior of a compression member is influenced by a number of material. the cross section.Chapter 4 Design of Compression Member 4. member geometry and cross section properties. Axial compressive member means that structural member which is loaded with a load applied through the centroid of the member cross section for which the compressive stress on the section can be assumed uniform. 3. leading to direct yielding of the material. Before designing any kind of structural member. This failure is shown in Fig.6) Initial out-of-straightness • Maximum value • Distribution along column length 7) End support conditions • • • Without sway.1. He also showed that the column will remain straight until some critical load is reached. The failure is associated with the deflection due to bending or flexure about the axis corresponding to the smallest radius of gyration – that is the one corresponding the greatest slenderness ratio. the Euler’s buckling stress is higher than the yield stress of the material. pinned or otherwise Restrained ends. Overall flexural buckling of member As slenderness ratio increases the member stability becomes more significant than the direct compressive stresses on the cross sections.2. it is significantly important for the designer to understand the possible mode of failure of the member and the modes which will govern under particular situation and how to provide adequate safety against the most critical one.3. pinned or otherwise With sway. Excessive compressive stress When the element width-thickness ratio falls within certain critical limit to prevent the local buckling and the member is short and stocky (small slenderness ratio). 4. In such cases the member fails due to excessive compressive stress on the cross section of the members. 4.3. The critical load for such buckling in elastic range is given by the following formula. Euler’s Formula: Hand Book for Design of Steel Structures 4-2 . Modes of Failure of Compression member Euler was the first to recognize that columns could fail through bending or instability rather than yielding. at which time the member may remain straight or assume a half sine wave deflection shape. so this type of failure occurs only for slender columns.1. • • • • • Excessive compressive stress Overall flexural buckling of member Local buckling of cross section elements Torsional buckling Flexural-torsional buckling 4. (a). A steel compression member can fail due to one or a combination of the following failure modes depending upon various factors listed in the previous article: A brief description of each mode of failure will be presented in the subsequent section. with or without sway 8) Actual length of the member 4. Pcr = π 2 EI (4-1) ( KL) 2 Where L= Actual unsupported length of the member K = Effective length factor E = Modulus of elasticity I = Moment of inertia of the section about the axis of bending (buckling) 4. and those with no axis of symmetry. Local buckling of plate element: Pcr = Kπ 2 E  b 12(1 − µ )    t 2 (Units: for any consistent set of units) 2 (4-2) Where Pcr = Critical buckling load K = Effective length factor E = Modulus of elasticity µ = Poisson’s ratio t = Thickness of plate b = Width of plate 4. The following equation (4-2) gives the critical buckling load for local buckling of cross section plate elements.3. In the design calculations all failure cases applicable for a given section should be investigated and designed according to the specific requirements. 4. For concentric loads this failure mode can occur only with unsymmetrical cross sections. double-angle shapes and equal-leg single angles.4. both those with one-axis of symmetry.3.3. Hand Book for Design of Steel Structures 4-3 .3. the corresponding element will buckle locally at a stress lower than at which overall buckling or yielding of member occurs. such as unequal-leg single angles. Flexural-Torsional buckling In this failure the twisting of the member about the member longitudinal axis is accompanied by flexural buckling. 4.sectional elements.(b) shows the torsional buckling type of failure.5.. The Fig.1. Torsional Buckling This is the failure due to twisting which occurs only with symmetrical cross sections with very slender cross. Standard hot rolled shapes are generally not susceptible to torsional buckling but built-up sections with thin plate elements should be investigated for this type of failure. Local buckling of cross section elements If the ratio of width to thickness of cross section elements exceed certain critical limit. such as structural tees. This type of failure is governed by theory of local buckling of plate elements. General Procedure for Design of Compression Member 4.4. Design equation for the allowable stress in a compression member can be expressed in its most general form.1. Qa = Effective area correction factor to take into account the non-uniform post buckling stress distribution on various stiffened elements (mostly webs) of the compressed section (for unstiffened elements Qa =1.4. 4. General Concepts The most general procedure to cover all type of cross section shapes for the design of seemingly simple compression member involves considerations for two factors Qa and Qs in addition to the method used for commonly used shapes.P P (a) Flexural Buckling (b) Torsional Buckling P (c) Flexural-Torsional Buckling Fig.0 ) Hand Book for Design of Steel Structures 4-4 .1. Common Buckling Modes of Failure of a Compression Member 4. as: Fa = Qa × Qs × Fa ' (4-3) Where ′ Fa = Permissible stress as determined by flexural buckling criteria (based on basic equations without Qa ad Qs ) given by the equations (4-4) to (4-6) . g projecting flanges) of the cross section based on width-thickness ratio (for stiffened elements Qs =1.1 × 10 6 =π = 131. the above capacity reduction factors are generally equal to one in most of the cases. the first formula (4-4) gives the critical buckling slenderness ratio. 5) Assume or compute the Kx and Ky by using alignment chart or equations. Design Steps: 1) Assume a trial section by judgement and experience or by using design aids for the compression member given at the end of this chapter. effective length and the cross section properties. whose capacity may be limited by element width to thickness ratios. In the following three formulas. channels and angles. 4. Cc = π 2E Fy (4-4) For SYS (standard grade) C c = π Case 1: KL ≤ Cc r Fa ' = Case 2: KL ≥ Cc r Fa ' = 2E 2 × 2. 2) Assume Qa =1. these factors need to be considered to conform to the code requirements.0 ) Fa’ is calculated by the following formulae based on the overall cross-section properties and effective length of the member. L and r. However for some shapes such as T. A brief description of the various factors used in the general form of the axial member design equation (4-3) is presented in the following sections. L and r in cm ] For standard hot rolled shapes that are commonly used as axial compression members.2.Qs = Stress reduction factor to take into account the local buckling effect of unstiffened elements (e. Hand Book for Design of Steel Structures 4-5 . the second formula (4-5) gives the basic permissible stress for relatively short and medium length columns while the last equation (4-6) give that value for long columns.0 for first trial 3) Compute Qs based on the specification formula for the trial section shape.4. 6) Select correct formula from the two for Fa based on whether Cc is greater than Cact or not.42 Fy 2400  1  KL / r  2    Fy 1 −   2  C c   5 3 KL / r 1  KL / r   + −  3 8 Cc 8  C c  3 12π 2 E 23( KL / r ) 2 (4-5) (4-6) [ Units: Use any consistent set of units for Fy. It is important to note here that the capacity of long columns (case 2) is independent Fy and depends solely on the E. 4) Compute the critical slenderness ratio Cc. For Metric System: Fa and Fy in Ksc. Repeat the procedure until the desired accuracy is obtained. 8) Compute the capacity based on gross area and the Fa computed from step 7. However the limitations of this procedure is that it does not carry any checks for possible modes of failures by any torsion which is important for section with one axis of symmetry or no axis of symmetry.7) Revise the value for Qa by using new value for Fa. This flow diagram also forms the basis of internal calculations in SYS Designer software. If the new Qa computed is within an acceptable accuracy (tolerance) compared to previous value (that calculated from the previous step) accept Fa (Go to next step ) otherwise revise the Fa (Go to step 4). The design steps explained above has been presented in more concise form as flow diagram below. 9) If the section capacity is more than or equal to the required capacity accept the section otherwise try new section and repeat the whole calculation until suitable section is found. Hand Book for Design of Steel Structures 4-6 . Flow Diagram for the Design of Axial Compression Member (AISC/ASD) Hand Book for Design of Steel Structures 4-7 . 4. L Trial Cross Section Assume: Qa=1 Compute: Qs 2E Compute: Cc = C Compute: Yes C act act Q Q F a s y (KL/r)x = (KL/r)y > C max No c Compute Fa Formula ( 1 ) Below Compute Fa Formula ( 2 ) Below Revise: Qa New Qa New ~ Qa Compute: Capacity = Fa Ag No No Qa= Qa New Capacity > Load Y e s End Fig.2.Basic Data Load Data P Material Data E. Fy Member Data K. Unstiffened Element Stiffened Element Qs= 1 All (4) Elements Stiffened Qs = 1 Fig. Stress Reduction Factor Qs Commonly used hot-rolled shapes are so proportioned that their elements are thick enough to preclude local buckling yield stress. 4. Two different approaches have been adopted to take into account the elements with local buckling.3. Permissible critical stress (reduced Fy or usable Fy) FL of the weakest unstiffened element is then calculated by FL = Qs Fy. and design taking into account the post buckling strength of the plates which can be considerably larger than their corresponding buckling strength. it is important to understand the stiffened and unstiffened elements in a shape.5. Stiffened and Unstiffened Elements The AISC/ASD specified formulas in US units to determine the factor Qs for different shapes are as follows. The second approach is to calculate the effective width of elements stressed enough to buckle. The first approach is limiting the slenderness ratio b/t of element. The following figure shows the stiffened and unstiffened elements of H and box shapes. As the stress reduction factor Qs applies only to the unstiffened elements of a section. Plates supported on both unloaded edges are called stiffened elements while those supported on only one loaded edge are called unstiffened elements. totally avoiding the element buckling before member flexural buckling.Formula (1) Fa ' = Formula (2) Fa ' =  1  KL / r  2    Fy 1 −   2  C c   5 3 KL / r 1  KL / r   + −  3 8 Cc 8  C c  3 12π 2 E 23( KL / r ) 2 4. Notations and Units Fy = Specified yield strength of steel in ksi b = width of the element in inch Hand Book for Design of Steel Structures 4-8 . 00715 Fy t for F < t < F  y y   Qs =   b 176   20.500   for ≥ 2   Fy (b/t) t Fy   (4-7) For SYS Grade Fy = 2400 ksc or 34 ksi b b   1.t = thickness of the element in inch 9) For single angles 76 b 155  b  1.340 − 0.0421 t for 21.00437 Fy t for F < t < F  y y   Qs =   b 195 20.000 for ≥   Fy (b/t) 2 t F y   (4-9) For SYS Grade Fy = 2400 ksc or 34 ksi b b   1.415 − .7 for ≥ 26 .026 t for 12. 3 2 t   (b/t) 10) For angles or plates projecting form columns or other compression members and for projecting elements of compression flanges of beam and girders 95 b 195  b  1.3 Qs =   b   446.340 − 0.4 for ≥ 29 . 1 2 t   (b/t) 11) For stems of tees 127 b 176  b  1.0257 t for 16.9 < t < 26.1 Qs =   b   576. 9   (b/t) 2 t Hand Book for Design of Steel Structures 4-9 .415 − 0.908 − 0.9 Qs =   b   576.4 for ≥ 33 .908 − 0.6 < t < 29.000   for ≥ 2   Fy (b/t) t Fy   (4-8) For SYS Grade Fy = 2400 ksc or 34 ksi b b   1.00447 Fy t for F < t < F  y y   Qs =   b 155 15.1 < t < 33. 9  ≤b 1−  f  (b / t ) f  Hand Book for Design of Steel Structures (4-12) 4-10 .Fy So applying all the effect together the final capacity P becomes as P = FL (2b1t1 + b2 e t 2 ) (4-11) Fig. Channel.4. General definition: Qa = Effective area / Gross area (4-10) Example: Effective area factor for a channel section In this case of channel section. Method to compute the critical stress FL has been explained in the previous section. Qa = b1 t1 b2e 2 2b1t1 + b2 e t 2 2b1t1 + b2 t 2 b2 t2 b 2e 2 So if Qs is the reduction factor flanges then FL = Qs . 4. Effective Area Factor For C The critical stress FL of the weakest unstiffened element is computed as Qs Fy.g. H shapes) elements is taken to be the product of the effective area of the cross section which is the sum of the reduced effective area of the stiffened elements and actual unreduced areas of the unstiffened elements and the critical stress FL of the weakest unstiffened element (4-11). Effective Area Factor Qa When column is short enough not to fail by flexural buckling. So the compressive strength P of a member containing both stiffened and unstiffened (e. Specification formulas to compute the effective width of uniformly compressed stiffened elements of various shapes are given in AISC/ASD specifications which are reproduced here for easy reference.6. the top and bottom flanges are fully effective and do not need any reduction but the web depth should be reduced by some amount as shown in the figure. the effective width of the stiffened elements in the section may be less than the actual width due to the nonuniform stress distribution at various elements of the sections (Karman effect).4. Notations and Units Fy = Specified yield strength of steel in ksi b = width of the element in inch t = thickness of the element in inch For flanges of square and rectangular box sections of uniform thickness be = 326t  64. However the width of the unstiffened elements remain fully effective. rather than the effective area while for flexural members it is computed for the effective cross sections.1. K is dependent upon the restraint at the ends of the unsupported (unbraced ) length and the ability of the column to resist lateral movement. P P 2 P M A P P P 2 M=0 K=1 K L Braced Frame A Braced by shearwall t Section A-A Unbraced Frame Fig. 4. Braced (Non-sway) and Unbraced (Sway) Frames Side sway prevented (braced) frame is the one that receives other means of lateral support independent of its own stiffness such as special sway bracing.For other uniformly compressed stiffened elements be = 326t  57. K is a reflection of the length of curvature between the point of inflections. Another important criteria for determining K is the side sway condition. Figure .illustrates some typical cases of braced and unbraced frames. 4.5. shear wall parallel to the plane of displacement or attachment to a laterally stable structure. Hand Book for Design of Steel Structures 4-11 . 4. Effective Length Factor K K may be defined as a factor by which the actual length of a compression member is multiplied in order to determine its effective length.7.2  1− ≤b  f  (b / t ) f  (4-13) For axially loaded compression members f is obtained by dividing the load P by the actual cross-sectional area. For such cases K may be taken at less than or equal to unity. To determine the critical slenderness ratio of a compression member. Model Example Factor 1.7 + 0.85 + 0. Therefore the engineer is left with his own good structural judgment to determine K for a compression member in an unbraced frames.0 K = 0.0 1.12) For braced compression members. XX and YY axis using their respective values of Kx and Ky.0 Hand Book for Design of Steel Structures (4-14) 4-12 . A clear and simplified explanations as to what is meant by a rational method is not available in references.05 G min ≤ 1. 4.0 0.05(G A + GB ) ≤ 1. an upper bound to the effective length factor may be taken as the smaller of the following two expressions: K = 0. Typical K Factors for Columns in Various Structures ACI 318-95 Approach: The following simplified equations for computing the effective length factors for braced and unbraced members are suggested in the ACI 318-95 commentary (Article 10.6.For unbraced frames where side sway is not prevented a rational method is employed to determine K. The largest slenderness ratio will be used for the design. Considering the column as an individual segment (isolated member or standing alone or truss member) unrelated to the overall structural system.7 2. it is necessary to investigate the effective length with respect to both. and for an approximate value of K the standard alignment charts and tables provided in below an in appendix can be used.85 0.0 Fig. The last example is meant to explain the iterative and economic aspects of the design process. may need a number of trial calculations.9 (1 +Gm ) (4-17) Gm is the mean of the relative stiffness ratios at two ends. Design: The design (or selection) of an appropriate cross section for given load and end conditions. The first example will explain the simple procedure where the calculation steps for K factor are not required. that is the strength determination.where GA and GB are stiffness ratio values at the two ends (top an bottom) of the column and Gmin is the smaller of the two values. more emphasis has been given on the methods to calculate K factor for various cases. a structure steel designer has to perform are: Verification The determination of the strength of a member for a given geometric and crosssection properties and comparing (verifying) with actual design loads.8. the effective length factor may be taken as For Gm<2 K= 20 − Gm 1 + Gm 20 (4-16) For Gm ≥ 2 K = 0. the effective length factor may be taken as: K = 2.3G (4-18) Where G is the relative stiffness at the restrained end. For unbraced compression members hinged at one end. In the subsequent examples. If may be noted that a lighter steel section may sometimes provide higher compressive strength than a higher weight section under the same design conditions. Design Examples The examples presented in this section will illustrate design procedures for the design of some typical compression members.0 + 0. In the first procedure. Hand Book for Design of Steel Structures 4-13 . The designer has to consider various possibilities and select the most appropriate one. However. The example also describes the various alternatives for the same geometric and load values. G= ∑( EI / L) Columns ∑( EI / L) Beams [ Note : K α G (4-15) K Increase as G Increases] For unbraced compression members restrained at both ends. 4. Two common tasks. the calculation has to be performed only one time. design of a compression member fulfilling both functional and cost requirements. in the procedure to calculate K for sway and no sway is the selection of the different alignment chart or equations. another free) depending upon the end conditions.g. irrespective of the sway conditions.As described in the preceding sections. if the member is a compression element forming part of a frame. The typical K value may range from 0. However in all the design example the calculations for two factors Qs and Qa are not included. The only difference. whether the member to be designed is an isolated element(standing alone e. cross-section and the support conditions have been selected to cover various end conditions commonly encountered in practical design. that is. The frame dimensions. the frame of “Design Example 4. If the compression member is an isolated one.2 below. Hand Book for Design of Steel Structures 4-14 . For the illustration purpose. For this purpose. there may be two cases to choose at first. For framed members. On the other hand. after first three steps. the effective length can be readily obtained by referring to standard diagrams provided in the previous sections or in appendix. an electrical pole) or a part of a framed system (structure). the design of any type of compression member needs the determination of the effective length factor K.5 (both end fix) to 2.2” has been analyzed for both braced and un-braced conditions.0 (for one end fix. the first three steps in the calculation for K will be common as explained in Example 4. the determination of the effective length factor requires more calculation steps. For example if one end fixed and other free K = 2 etc. Ltd. Solution: The design of an isolated compression member does not need any calculations for K factor. 4. The value can be readily read from the standard values based on top and bottom end conditions . From equation (4-6) Take thickness = 10 mm The following table gives the detailed calculations for Fa and Pc for various trial diameters. Neglect the effect of lateral (wind) loads. Use SYS steel grade: Fy = 2400 Ksc (34 ksi) E = 2.42 2400 Fy Case 1: KL ≤ Cc r Fa = Case 2: KL ≥ Cc r Fa =  1  KL / r  2    Fy 1 −   2  C c   5 3 KL / r 1  KL / r   + −  3 8 Cc 8  C c  12π 2 E 23( KL / r ) 2 From equation Error! 3 Not a valid link. Select a hollow circular section of approximate diameter 20 -25 cm and wall thickness of 10 –12 mm.1 × 10 6 =π = 131.Electric Lamp Pole for Design Example Error! Not a valid link.1 Design Code: Sheet No:1 / 2 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 4 Problem: Design an outdoor stadium electrical pole of height 6 m which carries a lamp and attachment weight of 6 tons at the top and the bottom is rigidly fixed with some other huge structure. Cc = π 2E 2 × 2.7. Hand Book for Design of Steel Structures 4-15 .SYS Siam Yamato Steel Co. Subject: Design of Axial Compression Member Example:4.1E6 Ksc (2900 ksi) 6 m high 6 tons on top Fig. 78 98.69 3645 6.72 357 22 65. Hand Book for Design of Steel Structures 4-16 . • Member being an isolated member. • The slenderness ratio is more than 200.5 282 KL/r Reference Chapter: 4 Checked by: NA Wt Fa Ksc Capacity = Fa Ag Wt. Area Ixx r Cm Cm2 Cm4 cm 20 59.737 6.72 51.17 9. • The weight to capacity ratio is decreasing with increasing diameter as illustrated in the above table. Now it is up to the designer whether to provide 22 cm x 1 cm with capacity just enough for the requirement by accepting a very slender member or go for 25 cm x 1 cm with an additional capacity and weight which indirectly means the additional cost.08 -3 X10 Some important remarks: • For circular section Qa = 1 and Qs = 1 as it does not contain any well defined stiffened and unstiffened elements.70 6. Ltd.1 Design Code: Sheet No:2 / 2 Thailand Designed by: BSS AISC/ASD (1991) Dia.85 80.819 9. • The required capacity is satisfied by the minimum diameter of 22 cm.SYS Siam Yamato Steel Co.38 5438 8.95 59. which is generally the limiting value for compression members./Cap.74 4. Kg/m 46. Subject: Design of Axial Compression Member Example:4.17 129.511 7.43 323 25 75.97 2700 7. no calculations for K factor are required. 16 4.0 ksi). Trial section properties Section Ix (cm4) Ix (in4) Ax (cm2) Ax(in2) H 150x150 1640 39.2 Design Code: Sheet No:1 / 3 Thailand Designed by: BSS AISC/ASD (1991) Reference Chapter: 4 Checked by: NA Problem: Compute axial compressive strength of a SYS H 300×150×36. Ltd.94 H 200x100 1840 44. two segments for minor axis buckling are also not identical with respect to member actual length and end conditions. the bracing conditions for major and minor axis are different.21 27. The framing conditions for the member in major axis and minor axis are as shown below. Frame for Design Example Error! Not a valid link.30 46. Subject: Design of Axial Compression Member Example:4.0 H200X100 H300X150 L=4 m H150X150 The column is a part of a multi-story structure and is located on the exterior face.0 A H200X100 H300X150 5. So critical slenderness ratio shall be selected considering all the three cases and choosing the maximum. 10 In Major Axis In Minor Axis Plane Plane Braced Frame Fig.21 H 300x150 7210 17.78 7.25 As in this case.21 7. The frame is braced against side sway by shear walls. 4. L=4 m H150X150 L=3 C H200X100 L=3 L=3 B 3.8.SYS Siam Yamato Steel Co. Moreover.1 × 10 6 Ksc (29000 ksi) Fy = 2400 Ksc (34.7 section with the following data: E = 2. Hand Book for Design of Steel Structures 4-17 . Solution: 1.40 51.0 H300X150 H200X100 L=3 m H200X100 L=3 2. we need to consider both the axis separately. Kc = 0.4 = GA = 1840 I 2 ×   ∑ L  3 b ∑  L  Bottom end G B = 10 (Hinged Base) From the alignment chart for braced frame(From Appendix). Ltd. multiplied by ¾ ) Bottom end GB = 10 (Approximate value for hinged base) Using alignment chart for braced frame (From Appendix). Subject: Design of Compression Member Example:4.) 3.94 4. For segment (C) Top end I  1640   7210   +  4   2  c = 4.92 Hand Book for Design of Steel Structures 4-18 .2 Design Code: Sheet No:2 / 3 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 4 2.92 (Note: values of K obtained using ACI (1995) code equations may differ slightly with this one. For segment (B) Top end I  7210  3  7210    +  3 4  2  c = 4.SYS Siam Yamato Steel Co. will be reduced by 25% i. K B = 0.4 GA = 1840 I ∑  L  3 b ∑  L  (Note: The stiffness of the member with far end hinged. For segment (A) Top end I  7210  3  1640    +  5 4  4  c = = 2.4 GB = 1840 I 2 ×   ∑ L  3 b ∑  L  From the alignment chart for braced case. KA = 0.e.4 GA = = 1840 I 2 ×   ∑ L  3 b ∑  L  Bottom end I  7210  3  7210     + 3 4  2  c = = 4. 78 = 46.29 ry So.94 × 3 × 100 = = 85.2 Design Code: Sheet No:3 / 3 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 4 5.42  3 8 Cc 8  Cc  = 0.26 kips) (Note: Calculations for Qs and Qa are not included in the design as they are not essential for most standard hot rolled sections.92 3.71 3.26 kips) The design safe compressive load on the SYS H 300x150x36.5 ×     2  Cc    131. Critical KL/r The next step is to compute the most critical slenderness ratio KL / r for the three segments.) Hand Book for Design of Steel Structures 4-19 .71 6. maximum ( KL / r ) act = ( KL / r ) max = 85.92 × 5 × 100 = = 37.03 Ton (101.7 Kg/m = 46.42    = Fa = 3 3 5 3  85.1 × 10 6 =π = 131.41 Fy Fa = 0.92 × 2 × 100 = = 55.7     Fy 1 −  Fy 1 − 0.42 so.29 ry K C LC 0.42  8  131.SYS Siam Yamato Steel Co.41 x 2400 = 984 ksc.03 ton (101.7  1  85.0 12.41 x Fy = 0.4 rx K B L B 0.7  5 3 KL / r 1  KL / r  +   −   + −  3 8  131. Compression capacity Cc = π 2E 2 × 2. C c > KL / r Fy 2400 2  1  KL / r  2    85. Subject: Design of Compression Member Example:4. Ltd. K A L A 0. Compressive strength Pc = Fa × A = 984 × 46. E = 2.0.38 0.3 Design Code: Sheet No:1 / 2 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 4 Problem: Design (select) the lightest SYS H Section to carry safely. an axial compressive load of 40 Ton (66.25 in2) rx = 12.84 ft.27  +  −   3 8  131.42 8  131.03 > 40.68 ft.5×    × Fy   131.29 (Any consistent unit can be used here to compute KL/r.) So critical KL / r = 59.27   1− 0. L y = 3m.) K y = 0.4 cm (4.4 = 48. for Fy=2400 ksc.03 kips) As 56.7 (24. In this example the effective lengths of the member are given directly but if required the designer can refer to the previous examples for the procedure to compute K. Proceeding in the similar way. (19.0 kips) with the following data.20 x 46.38 Ton (124.78 cm2 (7.1E6 Ksc (29000 ksi) Fy = 2400 Ksc (34 ksi) Solution: Design of a compression member is a trail and error procedure.493 x Fy = 1183.79 ksi) Axial Capacity Pc = Fa × Ag = 1183.27  1  59. Cc =131. First Trial Section.20 ksc (16.42   3 3  59.3 in) K x Lx rx K y Ly ry 1 × 6 × 100 = = 12. (9.65 × 3 × 100 = 59. we have try to smaller section.88 in) ry = 3. L x = 6m. For a given member end conditions. two important parameters related to section which affect the capacity are the radius of gyrations and the gross cross section area.29 cm (1.42 As KL / r < C c Fa = 2  1  KL/r    Fy 1−   2  Cc     3 3  KL/r  1  KL/r  −   +  3 8  Cc  8  Cc  5 = 2  59.65.27 3.78 = 56. Subject: Design of Axial Compression Member Example:4.) K x = 1. SYS H 300x150x36. Ltd. the following table can be obtained. Hand Book for Design of Steel Structures 4-20 .27 From the previous example.7 lb/ft) Section properties from SYS steel section catalogue or chapter 2 of this manual: Ax = 46.42 5 = 0.SYS Siam Yamato Steel Co. 838 Max.3 Sheet No:2 / 2 Checked by: NA Reference Chapter: 4 Weight Capacity Weight Remark Ton Kips kg/m lb/ft (Normalized) H 250x125x29.27 30. H 300x150x36.6 43. Ltd. the designer should select the lightest section satisfying the load capacity.2 0.9 0.734 The table is presented to illustrate the fact that in some cases. So use: SYS H250 x 125 x 29. We should choose the section with the smallest weight to capacity ratio to make the design economic.34 40.16 29.6 42.650 Min.7 120.84 Ton (94.6 20.38 124. H 175x175x40.690 H 200x150x30.7 56.2 27.7 24.SYS Subject: Design Member Siam Yamato Steel Co.84 94. Axial Design Code: Thailand Section Name of Designed by: BSS AISC/ASD (1991) Axial Compressive Capacity Compression Example:4.6 19.03 36.6 kg/m Actual Capacity = 42.5 37.76 96.0 0.57 82.699 H 150x150x31. a much lighter section can carry more axial compressive load than a heavier section If other section criteria are not governing.7 0.248 kips) > 40 Ton (88 kips) Hand Book for Design of Steel Structures 4-21 .65 31.6 0.5 21.2 54. generally. As the compression capacity calculations are based on first critical buckling mode. It is very important to note here that all the listed capacities are calculated based on flexural or bend buckling mode of the member. Another important cross section parameter for design is the radius of gyration “r” of the cross-section. Another important application of these design tables provided here. That necessitates a preliminary selection (assumption) of the size of the member to be designed. the compressive strength can be increased considerably by providing lateral bracing at some intermediate points so as to reduce the effective length for minor axis buckling. However. In other words the following compression capacities are calculated based only on formulae Eqs nos 4-4 to 4-6. So unless the size of the member is known. Although some of the shapes are not used commonly as compression member. The effective length factor “K” for a compression member in a frame depends upon the bending stiffness of the member relative to the stiffness of other members that connect to the ends of the member. By keeping this practical design requirement in mind.4. especially when calculations are carried out by hand. even the final selection of member size may be based on the values in these tables. For such shapes the capacity values can be used as preliminary selection. they have also been included in design tables for the purpose of completeness. Design Tables The design of a typical steel compression member using specification equations is a trial-and -error procedure. However. No reduction or checks for other modes of failure are included in the capacities shown in the following tables though they are important for unsymmetrical shapes like T or L etc.e. where the effective length factor k can be assumed in advance. the slenderness ratio kL/r and other stress calculation can not be carried out. the design tables for compression member includes two common cases: Equal effective length on both major and minor axis and minor axis effective length half of major axis effective length i. the strength is governed by minor axis buckling strength. a set of sections of comparable compressive strength so the detailed design checks can be limited to only those shapes. the member is braced laterally at midpoint. In certain design situation like members of a truss. This may save the designer time. which depends upon the experience and the judgement of the designer.9. Standard hot-rolled sections are generally so proportioned that their bending strength in major axis is significantly higher than in minor axis. in their respective axes. It should be noted that the member lengths shown at he top of the tables are the effective lengths KxLx and KyLy. Hand Book for Design of Steel Structures 4-22 . Moreover the effect of slender stiffened and unstiffened cross sectional elements (Qa and Qs) are also not included as they are very few sections that require these factors. can be to provide the designer. “The tables for the design of compression members" given in this section may furnish a tool to assist the designer to make a preliminary selection that shall need minimum revision later for detailed design. [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ ]. 15 0.94 84.Table 4.09 67.94 27.37 10.16 34.38 0.77 7.27 60.72 18.12 C 250x90 34.97 2.74 2.62 64.33 2.87 41.55 0.07 18.20 16.95 26.03 46.72 2.85 3.47 6.82 1.72 1.96 58.04 23.82 27.97 46.92 23.76 42.92 C 75x40 6.56 30.52 76.14 C 150x75 18.50 64.07 1.6 31.40 1.18 2.2 51.05 13.02 2.79 23.27 6.39 14.25 54.60 46.79 3.1: Compression Capacity (Ton) For C Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax cm2 C 50x25 3.38 18.14 0.83 24.93 4.13 24.07 9.40 26.68 6.17 24.27 14.54 6.4 27.30 5.71 6.54 14.52 6.78 0.16 KLx=3 KLx=4 KLy=3 KLy=1.66 2.88 46.02 [Note: The availability of the sections can be checked from Chapter 2 – Tables for ‘Properties of SYS Steel Sections’].6 23.99 10.72 57.28 1.98 14.87 7.54 71.02 94.80 7.03 8.66 6.94 23.31 21.19 0.74 10.89 3.46 9.94 C 150x75 24 30.52 1.56 15.82 35.99 10.52 62.73 8.5 69.20 16.54 66.71 10.11 1.49 5.34 57.92 C 250x90 40.97 1.10 8.29 41.07 0.44 1.73 72.15 58.28 3.17 9.1 48.85 0.21 0.19 0.89 83.03 0.79 34.85 31.53 14.30 33.78 90.19 38.70 24.15 4.66 4.27 5.37 26.5 2.6 44.9 11.37 2.97 5.11 13.3 85.99 0.89 44.69 7.39 33.11 0.81 18.73 15.24 35.35 1.9 20.75 5.92 12.85 51.87 3.47 22.18 1.41 0.24 18.01 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.63 C 200x80 24.94 11.50 1.11 4.50 4.67 6.36 9.59 5.5 2.25 10.96 94.99 0.57 11.88 3.63 9.36 C 125x65 ry KLx=1 KLx=2 cm cm Kly=1 Kly=2 1.5 KLy=4 KLy=2 71.54 16.09 35.75 7.29 C 300x90 48.00 32.50 4.09 12.25 4.93 30.93 2.71 2.29 41.20 4.43 20.06 54.90 30.68 55.92 1.33 1.76 111.93 6.40 9.88 7.81 50.44 29.19 34.87 41.3 38.32 19.66 7.85 31.57 18.80 10.73 14.86 3.96 8.2 7.48 25.99 3.10 0.78 3.67 52.58 C 200x90 30.01 103.13 2.05 38.33 7.03 2.93 4.47 17.93 57.23 5.96 19.59 8.5 KLy=8 KLy=4 KLy=9 KLy=4.52 23.33 13.56 2.48 79.6 61.68 8.04 0.79 C 300x90 38.59 1.27 8.11 4.54 21.86 2.16 0.63 34.64 0.3 2.5 KLy=6 KLy=3 26.08 40.00 6.98 0.85 2.90 11.68 0.54 10.75 2.17 8.22 29.88 2.44 36.43 6.42 1.44 38.12 2.05 3.98 1.51 42.24 26.92 33.46 C 180x75 21.92 15.08 12.25 1.818 C 100x50 9.38 5.61 11.63 51.16 KLx=5 KLx=6 KLy=5 KLy=2.8 55.58 57.30 0.50 29.5 13.3 2.94 30.48 13.73 14.82 20.84 19.65 8.28 0.68 71.55 2.92 8.4 17.01 0.68 50.43 17.14 8.79 3.86 4.87 14. Hand Book for Design of Steel Structures 4-23 .92 3.64 0.20 C 380x100 67.79 0.69 65.37 21.5 2.32 39.27 47.56 44.73 76.71 rx 14.19 0.71 43.36 C 380x100 54.69 C 300x90 43.24 3.88 14.47 57.05 0.16 0.34 13.74 11.08 4. 8 122.20 11.37 5.37 92.53 122.15 48.1 18.77 58.90 36.19 97.63 43.55 15.29 6.18 2.82 241.26 101.98 291.68 162.64 70.06 30.68 6.64 51.06 8.18 85.08 56.28 2.73 10.95 77.06 7.5 74.3 48.21 58.92 206.64 6.28 6.41 105.6 157.70 24.24 3.19 31.69 145.72 197.49 57.76 3.32 115.2 3.10 84.84 152.90 48.60 I 180x100 23.05 41.10 113.68 30.57 2.70 68.26 147.70 70.90 76.67 34.3 61.81 93.5 83.60 11.07 35.71 0.56 20.14 1.92 11.10 33.21 7.7 19.89 60.82 3.38 9.55 129.36 193.86 95.89 15.4 24.47 15.28 45.22 64.60 149.35 15.65 6.68 24.72 23.53 24.46 12.92 51.1 20.85 0.69 15.49 138.54 5.15 13.79 I 450x175 91.36 9.51 1.68 77.47 276.73 17.14 37.31 47.36 152.71 15.95 99.44 1.59 119.64 118.89 39.2 111.87 3.72 56.86 56.54 15.60 31.45 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.88 13.34 25.07 121.55 39.37 20.05 56.61 50.63 63.21 4.11 I 300x150 76.38 80.97 304.82 1.2 46.60 3.45 25.3 3.2 3.63 34.35 5.38 42.90 45.43 1.26 126.68 15.09 70.00 3.40 19.3 2.4 3.58 47.5 KLy=8 KLy=4 KLy=9 KLy=4.94 30.36 48.31 21.89 141.86 129.45 2.46 39.9 16.79 81.37 14.19 63.82 56.49 8.77 7.87 82.85 27.03 32.07 98.94 35.48 29.16 24.29 17.7 116.36 83.98 74.3 3.08 260.14 15.59 63.31 I 250x125 38.88 58.93 200.68 2.91 I 150x125 36.45 KLy=7 KLy=3.3 3.57 145.39 77.75 33.34 178.13 2.82 0.73 9.70 22.99 0.73 2.70 82.34 3.16 104.13 6.96 7.10 44.35 130.49 28.87 106.81 4.51 24.79 15.59 62.32 130.63 78.87 178.83 76.25 80.97 I 400x150 95.92 3.41 10.73 16.43 16.5 24.70 62.60 2.01 97.47 12.58 200.6 30.09 28.2: Compression Capacity (Ton) For I Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 I 100x75 12.99 43.75 2.12 25.86 1.94 1.11 68.06 0.41 48.26 111.36 1.70 58.99 177.06 12.51 206.36 5.43 85.45 5.36 5.5 [Note: The availability of the sections can be checked from Chapter 2 – Table s for ‘Properties of SYS Steel Sections’].17 8.72 54.58 14.8 97.79 10.63 115.8 18.03 40.36 222.90 2.40 105.57 I 600x190 133 169.22 141.97 15.87 I 350x150 58.31 21.28 165.05 I 400x150 72 91.1 21.01 60.1 16.60 40.5 KLy=6 KLy=3 KLx=7 85.41 I 125x75 16.45 71.12 1.81 228.88 12.70 105.00 78.27 19.4 64.92 218.56 70.13 I 450x175 115 146.67 83.38 276.41 58.06 3.1 3.5 70.76 19.43 38.11 2.91 58.36 71.83 9.10 18.43 21.17 71.2 2.04 177.44 94.70 I 600x190 176 224.1 3.07 14.90 59.35 8.73 2.59 80.91 33.82 152. Hand Book for Design of Steel Structures 4-24 .90 I 300x150 65.16 I 250x125 55.3 3.60 20.61 95.47 44.20 4.78 106.2 3.09 81.69 15.22 22.45 177.59 70.81 107.94 I 150x75 17.83 6.07 I 200x150 50.24 8.88 46.51 31.18 162.62 25.10 95.22 123.30 119.72 24.15 6.Table 4.36 94.44 11.76 76.32 47.89 11.59 36.93 3.15 115.61 115.72 52.13 1.54 89.70 7.08 140.68 40.16 18.31 52.64 9.63 12.22 241.11 16.94 15.76 12.58 12.01 11.60 85.10 35.19 68.12 152.65 38.40 I 300x150 48.40 140.22 8.43 4.81 51.92 122.1 14.86 28.43 13.76 92.69 0.00 I 200x100 26 33.1 3.99 129.20 24.60 1.16 8.72 4.56 1.70 139.38 187.44 105.73 84.90 19.67 22.75 I 350x150 87.90 106.27 59.75 7.08 8.49 8.66 28. 60 20.95 1.06 28.85 3.87 102.68 15.15 8.21 22.6 39.81 52.27 27.35 54.63 2.38 9.8 30.5 84.80 0.22 87.19 25.27 28.00 73.99 20.27 101.95 4.59 65.63 17.44 41.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 **H 100x50 9.64 21.04 20.1 56.84 **H 175x90 18.13 115. Hand Book for Design of Steel Structures 4-25 .22 34.25 2.81 8.47 86.2 23.31 5.45 0.33 91.44 12.91 70.02 3.80 72.57 6.28 109.47 7.65 57.06 9.44 5.2 21.31 1.29 3.69 79.7 83.93 46.98 7.68 14.87 H 200x204 56.98 1.49 37.72 13.34 3.24 0.88 98.21 29.83 1.7 10.41 5.20 99.5 KLy=8 KLy=4 KLy=9 KLy=4.87 3.2 71.94 106.63 6.32 30.24 10.63 1.70 27.14 6.94 89.03 8.24 11.68 36.84 3.86 **H 125x60 13.73 24.71 57.99 12.47 62.87 35.46 57.17 48.9 4.83 15.04 73.21 7.29 40.Table 4.01 10.82 7.86 32.95 2.25 42.16 25.79 42.41 78.5 KLy=4 KLy=2 KLy=5 KLy=2.16 7.30 110.83 4.70 4.85 6.38 69.67 2.83 5.50 16.78 7.89 0.1 26.98 5.53 4.79 3.19 0.01 8.17 2.67 H 148x100 21.29 22.54 62.47 28.58 93.37 3.48 31.12 11.56 70.00 8.5 40.94 H 248x249 66.29 4.55 3.48 15.17 12.76 83.66 20.78 32.17 0.62 5.39 5.64 20.3 3.39 23.46 26.17 62.76 H 200x100 21.63 23.22 1.66 12.83 0.57 31.31 66.55 97.63 H 248x124 25.76 60.31 75.95 68.25 0.13 36.18 31.43 1.31 88.49 H 125x125 23.13 92.90 6.28 19.24 2.2 51.32 18.47 0.90 84.49 47.10 1.96 3.96 108.06 10.26 6.69 8.47 1.87 93.37 108.81 43.50 H 150x150 31.08 35.24 12.83 42.89 7.01 49.98 33.95 26.65 48.70 8.16 17.4 2.08 28.87 112.04 2.97 H 175x175 40.73 10.70 6.29 88.36 3.72 18.53 8.28 28.37 10.32 79.50 76.23 22.47 46.14 0.06 58.53 8.4 2.03 4.18 2.28 12.62 2.51 21.01 25.95 2.87 36.18 76.5 0.84 4.75 54.54 73.09 3.43 15.15 37.27 26.04 50.17 34.56 52.81 H 200x200 49.26 2.41 66.42 5.82 10.73 H 250x125 29.52 1.Currently not available].36 0.28 6.42 66.22 88.32 2.85 8.70 1.9 63.39 6.68 10.3 5.17 12.12 106.63 46.44 94.94 43.95 49.62 1.20 97.22 56.25 1.98 2.01 73.61 3.31 81.61 2.37 34.16 1.37 1.75 27.19 2.62 3.18 8.79 49.54 40.62 26.13 36.64 21.15 42.72 70.08 36.80 11.02 87.02 31.09 16.89 H 198x99 18.11 1.10 53.44 81.28 27.3 27.70 KLy=7 KLy=3.70 6.65 113.38 105.08 H 244x252 64.55 1.18 20.89 28.11 62.35 4.24 4.36 13.87 74.93 31.8 6.40 46.64 20.92 **H 150x75 14 17.66 10.73 14.72 18.03 16.56 46.11 40.18 28.56 47.45 62.31 18.91 97.57 12.29 1.89 83.66 18.53 12.83 105.56 [Note: The availability of the sections can be checked from Chapter 2 – Table s for ‘Properties of SYS Steel Sections’ **.80 H 208x202 65.48 5.53 16.67 16.21 4.15 6.43 9.54 8.92 64.29 1.39 39.29 21.79 15.35 22.08 101.81 110.13 7.7 32.08 31.28 18.16 8.4 4.27 50.23 12.99 40.16 8.98 11.97 9.2 16.66 59.65 3.5 4.27 45.05 8.15 22.6 37.89 100.24 4.24 92.3 11.47 81.15 83.81 11.4 82.76 H 100x100 17.3: Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.39 3.28 117.98 113.83 0.65 66.95 H 244x175 44.28 37.26 2.07 41.07 41.21 63.61 52.1 23.96 0.08 27.45 H 194x150 30.99 27.57 2.04 7.25 33.84 6.68 4. 88 H 350x175 49.75 140.17 188.69 154.09 145.57 77.31 153.00 173.53 170.09 139.4 92.76 162.80 147.6 4.98 208.70 174.95 85.80 247.00 159.91 33.33 124.28 96.20 118.17 110.93 196.4 52.66 204.3 14.28 125.16 150.53 33.52 101.96 93.38 39.45 113.76 42.37 94.73 115.12 184.07 40.04 172.91 169.0 7.20 149.5 KLy=6 KLy=3 KLx=7 83.78 101.43 86.76 92.76 197.60 136.78 248.97 125.97 141.8 6.8 12.36 134.34 67.25 113.5 7.53 93.57 182.8 13.66 168.16 7.19 46.7 10.27 58.2 H 350x357 156 198.26 177.15 261.53 14.68 65.8 13.47 124.16 78.67 96.42 H 346x174 41.91 83.38 H 340x250 79.65 116.76 67.2 7.46 183.69 115.09 124.7 46.56 96.60 178.10 87.62 144.32 115.04 212.37 105.94 145.71 134.36 73.61 181.65 51.60 56.94 208.88 20.88 45.5 KLy=8 KLy=4 KLy=9 KLy=4.84 244.35 192.21 92.77 149.35 137.23 173.69 129.21 H 298x149 32 408 3.29 64.68 95.86 184.61 135.07 158.7 54.75 109.41 109.04 164.92 134.22 15.29 37.72 33.28 46.32 229.87 138.96 65.57 129.6 14.09 164.58 22.14 68.52 278.13 130.20 134.78 12.5 4.30 28.9 15.56 71.05 169.43 192.87 20.75 H 338x351 106 135.17 218.26 98.06 [Note: The availability of the sections can be checked from Chapter 2 – Tables for ‘Properties of SYS Steel Sections’ **.70 149.17 H 300x150 36.60 34.37 116.25 234.36 232.52 156.33 125.92 143.21 60.2 104.84 77.76 137.58 113.04 379.71 129.85 120.70 151.35 109.11 30.65 H 298x299 87 110.91 162.09 176.42 H 294x200 56.77 157.46 104.24 125.01 47.44 199.78 207.33 112.12 184.25 39.44 106.85 218.35 3.11 28.21 72.83 H 300x300 94 119.51 120.93 99.44 142.95 74.74 46.07 173.71 39.97 112.97 177.55 119.64 50.9 1.37 88.44 194.38 12.13 99.50 155.30 46.8 13.05 81.94 56.79 18.56 25.41 49.16 H 304x301 106 134.76 205.8 72.54 142.18 137.51 167.16 201.28 KLy=3 KLy=1.5 3.29 122.28 61.55 91.13 115.31 213.83 168.01 183.7 12.97 270.5 107.83 12.58 219.17 89.30 108.63 54.06 96.88 115.71 86.87 164.88 182.28 235.81 61.53 45.02 123.15 67.93 91.14 16.6 7.00 140.36 12.30 62.05 183.4 14.23 220.09 H 344x354 131 166.35 H 300x305 106 134.79 50.71 110.30 163.87 185.98 133.75 20.5 5.10 12.74 219.17 138.52 138.27 78.23 140.6 63.68 62.48 8.22 105.44 119.29 94.81 161.84 168.13 272.Table 4.75 129.06 28.22 153.77 114.4 3.86 56.26 196.61 112.7 H 350x350 137 173.39 260.68 14.85 120.58 169.14 14.2 88.50 H 344x348 115 146 15.27 224.63 78.72 240.53 73.35 10.50 81.17 6.54 150.Currently not available].96 151.76 201.26 188.45 5.15 14.92 122.5 6.4 8.30 71.11 140.6 8.97 103. Hand Book for Design of Steel Structures 4-26 .18 10.63 99.56 162.29 12.66 146.90 129.95 155.62 254.20 125.94 151.17 226.48 H 298x201 65.58 9.11 KLy=7 KLy=3.70 99.15 155.44 129.39 H 250x255 82.62 22.30 133.46 25.5 KLy=4 KLy=2 KLy=5 KLy=2.50 145.88 205.33 190.87 81.41 172.82 108.48 H 294x302 84.76 237.56 50.65 58.58 202.03 224.27 234.15 174.14 49.17 108.5 73.76 159.4 83.09 106.58 116.57 85.38 100.83 56.06 239.35 267.3 (Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm Kly=1 H 250x250 72.09 24.03 10.59 187.66 56.69 183.29 128.6 6.19 118.03 64.10 228.37 179.97 106.35 140.0 7.76 153.5 14.57 188.36 105.58 125.71 8.26 73.10 77.1 8.66 8.60 229.7 101.51 49.90 128.74 H 336x249 69.76 85. 73 240.25 292.20 H 396x199 56.82 347.15 747.95 166.33 91.61 244.17 207.33 106.32 H 400x400 172 218.69 H 388x402 140 178.14 321.20 246.53 341.22 95.54 291.23 103.38 235.6 4.Table 4.2 10.57 673.03 240.16 174.93 136.80 58.77 95.60 161.57 242.27 234.96 39.7 17.09 73.55 115.21 70.40 H 456x201 88.5 H 446x302 145 184.50 181.33 164.88 28.58 634.30 249.20 196.30 101.7 9.19 183.89 48.42 294.44 182.77 328.65 302. Hand Book for Design of Steel Structures 4-27 .12 81.8 10.7 16.44 208.73 214.95 144.30 107.5 10.95 36.8 9.29 97.19 195.98 240.56 80.00 83.13 190.76 7.9 113.77 41.43 287.59 333.18 H 446x199 66.65 286.62 201.5 KLy=4 KLy=2 KLy=5 KLy=2.6 9.24 257.18 172.18 149.59 501.21 467.47 430.87 76.28 203.25 476.80 258.63 251.60 80.87 95.80 73.16 16.63 H 434x299 106 135 18.89 149.80 32.42 111.17 111.32 410.49 108.78 254.84 182.87 231.74 257.72 H 386x299 94.43 64.89 122.42 95.12 93.66 160.59 176.21 87.58 132.51 216.62 182.1 16.33 70.63 292.12 304.45 509.8 7.26 H 400x200 66 84.62 37.55 725.71 29.10 467.38 157.42 128.03 220.87 108.29 713.24 407.44 229.36 95.59 85.81 136.19 144.07 237.86 110.54 270.8 4.98 281.68 91.12 189.78 274.64 259.4 17.14 386.04 115.77 123.03 250.42 91.9 4.52 **H 458x417 415 528.00 58.37 102.22 50.50 89.99 15.61 30.86 64.12 253.05 662.60 280.21 332.06 121.78 178.3 10.31 372.98 116.41 185.29 222.01 94.61 111.8 17.32 186.72 245.15 161.20 267.52 275.97 206.5 KLy=6 KLy=3 KLy=7 KLy=3.61 493.25 H 414x405 232 295.02 79.76 189.02 24.08 174.67 149.15 211.5 96.63 701.3 18.78 218.64 33.13 233.28 H 394x398 147 186.40 457.97 110.16 247.27 735.00 572.01 170.08 128.55 139.11 79.48 98.68 449.53 153.82 335.53 134.49 126.9 7.90 164.24 417.4 16.80 66.33 389.16 127.70 25.73 53.45 320.54 23.99 381.60 82.5 H 354x176 57.8 4.65 95.33 115.97 236.03 381.69 110.3(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.78 485.20 94.32 236.20 161.55 195.24 189.08 268.72 164.81 206.26 18.28 216.14 106.66 366.50 66.84 363.12 76.19 222.01 292.32 126.17 227.5 16.15 121.15 168.82 101.06 H 440x300 124 157.3 18.89 201.71 350.30 211.09 45.89 20.31 149.12 16.73 105.06 263.71 122.34 220.89 312.26 91.33 245.6 7.37 93.62 22.29 659.4 18.74 353.17 298.28 258.02 105.21 H 400x408 197 250.85 247.78 262.66 33.3 19.69 181.39 60.31 183.Currently not available].88 140.54 H 394x405 168 214.83 403.71 483.01 143.28 144.40 172.82 301.35 307.99 228.36 42.15 446.38 100.04 158.81 87.21 168.48 81.9 4.0 H 450x200 76 96.3 120.70 344.76 18.11 110.95 106.7 18.16 16.66 25.57 89.96 91.09 127.04 188.74 4.12 308.87 30.68 14.55 120.16 155.68 121.36 282.90 260.95 228.62 68.8 73.71 296.48 **H 428x407 283 360.2 84.7 10.75 79.21 604.33 303.71 220.95 538.68 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.15 276.80 396.06 86.6 18.70 H 404x201 75.61 409.77 85.32 730.16 238.22 249.96 127.09 23.19 95.08 152.44 274.70 497.9 7.00 99.47 76.07 155.17 395.35 169.84 293.62 175.72 66.27 710.17 313.6 72.59 687.71 143.5 KLy=8 KLy=4 KLy=9 KLy=4.59 131.52 230.54 49.80 18.53 285.06 153.06 362.95 111.05 215.20 242.6 4.00 161.17 83.70 688.90 222.56 H 390x300 107 136 16. 97 57.11 211.5 24.41 411.67 KLy=7 KLy=3.5 6.12 244.15 156.82 44.28 259.8 7.85 130.24 458.63 149.19 344.94 244.55 257.6 4.55 128.66 331.28 314.5 24.80 116.62 107.57 25.15 263.27 H 700x300 185 235.99 110.07 1089.26 Hand Book for Design of Steel Structures 4-28 .84 170.89 H 800x300 210 267.78 31.17 97.7 4.7 1037.5 23.59 137.10 97.57 149.67 210.46 194.33 155.3 4.81 168.58 129.31 267.19 191.47 254.33 262.01 282.67 247.90 374.70 195.25 270.85 314.50 230.00 127.7 24.82 203.61 257.63 112.95 472.10 90.69 126.15 359.94 165.06 184.63 243.01 135.22 **H 912x302 286 364 37.54 274.4 6.61 372.77 172.50 51.70 968.15 172.07 356.41 281.75 144.96 188.71 282.73 143.22 138.17 376.37 232.56 168.18 347.43 282.19 163.44 181.01 238.5 KLy=8 KLy=4 KLy=9 KLy=4.99 189.10 214.72 327.86 109.22 128.0 6.76 202.04 212.61 213.5 29.61 120.72 358.83 177.00 365.5 1065.05 203.90 356.9 1073.34 221.89 177.4 32.58 236.10 40.09 278.23 336.62 411.10 267.75 **H 890x299 213 270.43 147.87 260.32 232.13 249.8 6.04 H 612x202 134 170.17 163.10 989.32 175.26 237.65 56.33 174.6 1059.85 167.92 193.46 273.36 265.42 165.39 199.39 127.85 214.71 190.18 152.97 323.65 229.74 251.44 208.82 294.01 426.41 205.46 244.57 1006.05 H 506x201 103 131.53 294.92 H 588x300 151 192.90 256.86 232.94 282.40 324.80 148.61 95.25 208.67 132.93 400.89 250.77 143.53 219.82 150.67 244.86 325.27 84.3 (Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation[Note: * = Not Available] Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.41 114.46 85.05 163.84 224.41 88.96 149.20 214.35 190.04 109.85 32.38 431.85 165.40 73.7 11.49 95.47 485.5 4.85 358.01 149.81 143.8 36.56 113.89 H 792x300 191 243.91 H 488x300 128 163.62 301.70 169.4 6.50 304.63 H 692x300 166 211.79 257.84 H 594x302 175 222.10 205.41 224.83 104.10 322.61 H 494x302 150 191.00 227.62 219.85 220.21 99.04 36.92 136.56 205.35 143.28 314.24 157.5 101.8 6.25 310.58 220.18 203.39 86.57 485.70 348.56 146.97 190.67 65.68 184.10 232.3 4.11 307.86 256.49 140.78 226.29 77.68 264.17 298.0 4.24 390.67 178.72 387.85 28.5 28.94 34.5 20.07 148.69 **H 900x300 243 309.45 257.98 118.17 156.73 337.07 228.91 H 500x200 89.37 933.59 297.35 34.90 298.68 158.70 314.70 387.32 47.84 66.22 147.20 292.78 265.41 147.24 304.90 310.9 4.53 257.04 166.62 109.40 458.09 212.4 891.39 338.55 228.07 96.57 199.4 20.08 52.29 359.65 422.43 109.51 127.3 6.98 194.15 165.73 288.07 147.60 157.22 127.2 6.11 497.1 19.80 281.4 33.22 207.81 126.37 288.64 297.43 179.61 368.06 126.50 197.36 847.00 1026.99 61.67 29.0 971.6 114.0 6.26 229.55 1008.65 253.9 35.6 120.26 138.47 120.25 351.77 328.45 337.97 199.33 173.89 126.26 426.15 169.62 160.4 24.13 194.59 141.66 43.64 148.04 228.90 442.59 314.3 20.70 281.85 268.39 290.12 182.68 237.95 296.49 H 600x200 106 134.45 123.48 41.68 219.61 409.33 1043.64 131.68 180.2 20.72 167.41 127.Table 4.69 323.5 24.85 188.67 176.82 112.5 KLy=4 KLy=2 KLy=5 KLy=2.66 199.70 336.7 6.77 H 596x199 94.51 196.82 76.35 27.15 41.09 244.5 20.52 **H 498x432 605 770.64 104.3 6.24 195.5 38.58 306.27 131.20 278.24 190.91 247.45 114.54 222.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 H 482x300 114 145.92 310.60 23.17 799.72 H 606x201 120 152.17 173.96 109.3 20.45 H 496x199 79.89 288.57 507.65 264.53 304.45 H 582x300 137 174.9 7.26 226.4 24.24 131.69 123.33 54. 66 11.52 16.97 2.34 24.47 1.55 6.83 1.51 7.14 3.53 3.19 T 100x100 10.31 7.63 6.19 7.78 15.61 7.40 1.85 1.66 6.66 0.33 9.68 29.19 27.91 3.83 3.01 2.64 5.66 29.66 T 75x150 15.57 2.74 1.57 2.15 T 122x175 22.63 2.31 41.91 1.30 41.17 13.79 24.44 1.38 2.77 22.48 9.73 4.34 0.41 10.51 9.22 17.14 5.74 2.72 22.28 3.05 4.67 1.26 0.66 0.61 21.39 4.9 15.03 1.07 7.51 T 149x149 16 20.66 T 122x252 32.32 9.60 5.61 2.19 13.24 T 125x255 41.96 0.35 7.25 1.26 6.85 5.4 4.85 2.25 2.38 18.65 T 124x249 33.9 2.36 6.19 1.27 1.29 7.37 9. Hand Book for Design of Steel Structures 4-29 .83 1.51 14.53 16.40 1.02 40.33 2.28 4.26 3.90 16.59 2.89 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.05 6.Currently not available].85 5.58 3.24 T 104x202 32.42 1.77 2.62 2.20 23.1 25.46 0.90 5.99 6.77 2.34 38.47 11.67 4.64 19.19 3.70 16.63 5.12 3.42 18.2 4.51 2.97 2.10 3.45 5.72 43.93 61.42 1.25 4.96 14.88 3.52 38.71 38.2 42.71 24.24 8.05 3.26 23.40 14.50 11.3 19.79 21.7 13.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.24 13.4 23.36 29.92 19.42 12.02 2.10 3.09 2.08 5.22 5.34 3.40 1.50 0.12 1.03 0.24 6.90 3.29 12.71 28.31 26.04 5.5 KLy=4 KLy=2 KLy=5 KLy=2.96 2.20 0.74 47.95 11.68 26.66 39.24 3.56 0.63 3.62 2.08 1.59 T 100x200 24.36 5.88 2.5 13.29 60.74 4.35 1.27 4.63 20.62 2.21 2.52 3.42 9.13 53.34 3.90 1.09 69.52 26.40 7.9 31.23 16.5x125 11.29 55.74 0.46 T 99x99 9.97 11.19 5.46 16.43 22.12 4.29 27.24 7.17 7.01 1.22 4.85 1.64 5.03 24.59 1.45 3.67 32.41 4.34 51.50 10.07 0.90 12.24 5.70 9.Table 4.17 10.19 7.86 3.74 0.24 8.45 T 97x150 15.5 0.10 4.15 7.35 T 100x204 28.98 14.62 2.62 4.61 26.61 25.08 0.45 0.02 4.83 0.78 19.88 46.37 16.38 32.6 10.21 14.29 5.01 2.66 3.90 1.17 16.04 8.29 18.8 16.61 11.04 4.41 5.10 16.39 32.63 4.65 5.69 37.79 11.00 6.46 1.56 14.31 9.19 T 124x124 12.41 2.04 13.25 5.57 3.1 11.82 3.66 7.98 54.04 3.58 2.70 12.43 7.28 4.1 35.2 46.07 1.81 52.76 4.89 3.66 8.28 5.07 1.61 4.32 3.33 7.45 3.62 T 125x250 36.44 1.85 1.13 1.1 28.65 T 125x125 14.96 2.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 T 50x100 8.8 41.85 T 87.81 5.36 6.93 6.56 0.86 11.50 7.79 8.26 37.43 18.72 1.83 0.67 4.33 3.36 4.83 4.39 3.35 10.84 2.86 8.35 2.16 1.8 18.03 3.29 2.08 1.60 7.11 17.26 0.00 1.43 15.95 1.63 19.15 5.85 4.75 24.29 31.64 6.84 10.74 3.00 0.70 1.12 2.2 41.51 8.66 0.77 51.99 1.21 2.20 T 62.32 2.65 8.40 10.15 13.34 0.1 52.88 11.64 26.11 39.42 29.29 19.28 5.04 10.14 13.53 28.29 11.85 1.5x175 20.08 5.46 KLy=7 KLy=3.45 T 75x100 10.29 5.40 23.17 20.85 0.64 7.73 9.18 37.28 2.01 4.41 16.95 21.64 8.00 T 150x150 18.71 48.41 7.32 11.68 16.84 0.35 2.35 2.34 16.5 KLy=8 KLy=4 KLy=9 KLy=4.47 1.42 2.8 20.29 3.51 7.97 16.36 3.98 10.88 7. 08 4.93 18.05 5.07 63.27 55.90 T 175x350 68.94 67.71 69.7 26.84 15.63 29.86 37.89 42.18 31.48 6 69.07 81.44 84.41 18.58 57.99 22.51 37.08 T 150x300 47.61 10.37 112.44 19.42 44.71 31.87 63.31 61.86 28.76 4.48 T 152x301 T 173x174 20.20 28.81 61.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.15 52.34 38.6 44.41 27.0 59.38 10.54 57.Currently not available].19 3.38 28.19 38.71 83.9 67.32 16.64 72.68 55.90 10.25 84.51 24.79 42.06 5.62 47.70 79.26 9.41 20.51 55.57 53.55 100.02 17.42 32.33 92.23 61.03 45.31 T 175x357 77.63 56.95 22.08 3.99 9.02 24.51 14.25 8.34 5.41 95.66 7.48 11.07 44.93 22.77 14.21 15.14 29.00 11.3 36.53 14.89 3.5 T 147x200 28.44 8.3 73 4.95 12.68 3.34 45.95 10.30 52.48 18.27 25.17 43.79 81.83 69.81 49.96 49.34 29.45 58.14 35.99 28.5 55.05 54.4 83.95 75.39 16.95 29.18 47.74 T 193x299 47.35 61.68 8.68 T 172x354 65.43 70.28 48.95 37.94 5.06 33.95 13.82 17.23 90.88 33.51 83.41 3.4 36.98 18.16 48.84 12.16 23.84 10.39 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.16 58.41 16.16 73.47 73.16 54.65 8.77 56.82 16.61 40.20 T 170x250 39.9 67.99 11.01 36.76 4.15 67.51 16.14 10.34 19.17 11.90 22.83 25.65 32.19 52.5 KLy=8 KLy=4 KLy=9 KLy=4.46 41.11 8.20 25.64 44.31 28.1 60.63 4.38 37.89 55.19 23.48 49.03 27.95 42.20 112.51 80.36 54.3 53.01 39.77 16.19 4.83 54.99 7.3 101 4.18 8.17 32.89 11.Table 4.31 19.91 81.68 69.49 11.08 9.51 18.94 4.22 T 200x200 33 42.08 31.95 52.41 29.39 12.14 T 150x305 52.79 17.01 66.98 13.92 19.36 T 168x249 34.11 6.1 67.63 85.06 24.16 57.92 25.70 77.62 31.51 18.94 51.86 77.04 8.65 7.83 3.12 7.44 24.57 5.11 18.87 22.35 28.25 T 149x201 32.32 4.39 19.08 5.64 56.81 29.62 39.40 75.03 95.90 T 149x299 43.19 25.19 T 198x199 28.39 40.22 25.78 99.80 36.55 114.93 13.78 36.23 23.40 3.39 67.25 35.21 106.9 99.17 14.20 95.05 37.68 15.49 66.39 55.32 11.49 9.32 24.23 17.77 12.79 83.49 69.45 45.78 24.33 108.96 43.26 10.45 11.01 13.92 60.64 T 175x175 24.01 15.45 31.79 49.94 79.35 29.25 65.33 14.87 32.87 65.98 27.82 22.44 100.35 25.54 19.7 41.23 15.58 49.59 8.79 10.92 44.79 95.18 13.05 7.48 28.14 21.40 95.98 14.42 20.54 24.09 23.65 19.41 64.51 74.28 36.87 63.25 46.18 7.91 95.51 24.88 35.39 4.05 52.8 31.93 24.35 23.71 49.35 35.87 70.03 37.35 29.98 T 178x352 79.18 9.23 47.76 4.13 24.97 4.04 34.45 43.27 35.5 KLy=4 KLy=2 KLy=5 KLy=2.34 21.95 22.34 42.01 18.84 19.62 23.71 8.20 37.20 11.04 7.43 114.79 14.93 31.31 73.05 14.11 T 172x348 57. Hand Book for Design of Steel Structures 4-30 .08 3.41 35.42 15.50 114.57 90.25 7.06 32.83 18.41 21.87 43.07 126.2 86.32 32.79 40.59 7.01 32.84 118.44 T147x302 42.9 137.19 18.04 20.36 44.26 91.63 44.30 35.22 30.40 67.17 35.53 11.87 46.79 38.01 11.62 126.69 49.81 40.29 47.95 T 169x351 53.8 50.47 5.70 8.79 29.16 63.29 6.21 82.68 10.5 KLy=6 KLy=3 KLy=7 KLy=3.53 51.35 17.98 18.99 4.17 49.53 136.79 13.40 77. 95 10.56 48.93 71.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.8 76.90 30.38 26.88 39.64 7.94 55.84 7.63 73.00 32.05 7.05 81.74 36.48 4.17 96.18 34.52 20.65 58.74 11.85 6.02 69.27 9.79 47.45 28.64 57.40 66.29 79.64 59.84 84.0 67.00 38.51 36.77 90.38 58.30 5.27 69.04 64.41 4.89 7.78 T 195x300 T 217x299 93.76 6.4 125.2 81.09 139.42 50.88 153.22 12.53 96.69 59.46 135.25 84.20 189.38 93.36 92.19 38.51 31.04 T 194x400 70.87 57.40 79.99 135.59 88.23 9.11 T 298x199 47.22 78.39 59.51 26.77 162.20 5.8 78.18 53.44 27.07 114.01 T 223x199 33.15 59.70 46.28 13.04 70.64 126.02 57.22 92.42 T 244x300 64.68 T 300x200 52.93 47.01 T 197x405 84.48 11.69 5.82 61.45 99.68 109.73 12.67 126.19 49.13 16.84 71.49 79.55 73.95 54.65 85.5 KLy=6 KLy=3 KLy=7 KLy=3.40 128.00 43.42 36.44 54.40 76.02 116.3 60.27 63.23 96.34 9.66 7.06 50.25 56.55 48.0 147.68 72.91 27.52 79.82 106.70 59.23 58.29 17.63 107.40 9.29 4.03 101.98 5.90 79.29 69.05 52.04 52.1 72.33 57.70 4.03 45.5 KLy=4 KLy=2 KLy=5 KLy=2.18 43.1 42.82 78.8 109.76 6.03 80.49 4.58 38.17 103.73 55.92 26.01 46.49 31.33 57.64 128.86 32.02 101.37 49.63 94.62 95.69 95.65 46.40 88.46 67.20 48.20 40.68 23.04 22.3 4.93 83.06 52.74 61.26 64.91 173.18 76.46 150.68 4.11 46.85 71.07 35.51 67.04 93.73 63.67 111.76 70.36 61.32 61.08 60.82 101.1 107.75 172.29 86.77 T 253x201 51.51 T 197x398 73.69 29.52 78.88 31.59 131.15 84.76 83.34 16.88 64.33 78.65 7.67 27.83 73.26 43.52 5.40 106.56 54.38 47.34 T 207x405 116.59 106.17 103.38 6.98 83.51 101.8 67.04 18.82 T 241x300 57.05 39.43 89.71 88.38 83.01 19.92 32.50 61.84 T 225x200 38.61 36.67 4.23 5.10 128.83 22.25 86.86 42.09 119.64 116.95 14.22 103.23 46.06 37.03 56.83 T 220x300 61.12 34.51 119.28 28.95 83.65 148.18 68.68 87.58 61.78 74.22 94.49 88.63 32.86 38.53 78.38 T 303x201 59.54 123.34 46.65 101.63 87.69 50.60 42.28 21.15 6.17 70.63 15.4 67.40 48.05 109.80 150.11 38.08 62.60 65.81 52.30 4.71 82.14 54.98 68.36 153.90 27.Table 4.37 79.88 131.7 50.50 55.44 36.83 95.28 4.12 7.38 80.98 95.51 85.06 58.37 65.78 29.46 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.94 73.64 50.76 60.20 203.28 80.09 14.68 41.84 10.93 73.06 76.28 71.81 74.76 10.58 71.61 41.70 79.86 68.39 68.5 65.12 T 248x199 39.23 88.99 119.64 61.03 139.3 93.86 T 200x400 85.05 76.08 39.51 63.05 83.0 89.0 48.05 23.15 70.93 52.38 111.70 70.51 54.50 45.68 80.10 150.33 77.62 17.32 43.85 39.60 22.08 52.58 63.36 173.00 61.90 22.69 106. Hand Book for Design of Steel Structures 4-31 .12 91.28 93.06 72.01 26.26 65.68 10.49 T 200x408 98.45 53.8 57.58 97.5 53.34 15.09 46.51 52.73 74.64 43.5 4.41 53.46 49.69 37.18 115.5 KLy=8 KLy=4 KLy=9 KLy=4.26 19.15 103.70 69.00 107.90 54.62 41.24 9.21 9.08 74.Currently not available].96 T 250x200 44.85 31.28 20.23 48.59 96.48 44.72 30. 30 105.9 155.60 99.47 70.5 95.02 150.24 8.17 131.43 110.97 123.63 132.53 123.2 8.46 T 297x302 87.31 144.6 96.54 6.7 11.15 T 400x300 105 133.51 90.13 139.34 95.17 98.39 128.31 88.85 134.75 74.1 6.53 147.11 74.7 12.66 T 294x300 75.31 116.65 89.18 63.84 98. Hand Book for Design of Steel Structures 4-32 .15 170.39 101.39 113.93 122.5 KLy=8 KLy=4 KLy=9 KLy=4.91 112.55 88.98 132.44 6.42 57.65 136.40 149.80 128.10 60.48 45.70 116.85 155.27 138.4 117.88 119.24 119.21 131.36 96.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.21 73.78 164.85 83.Currently not available].45 20.3 111.15 123.24 8.29 160.12 103.4 (Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 KLx=3 cm cm cm Kly=1 T 306x202 67.00 102.66 94.43 74.47 84.34 112.06 65.15 73.42 102.02 157.33 140.81 128.6 121.74 88.12 84.62 186.29 165.7 10.0 85.24 145.76 151.97 105.83 122.28 80.74 113.07 176.28 82.26 94.38 169.80 164.38 168.82 129.39 107.46 178.76 131.7 10.79 115.70 114.1 6.18 85.26 157.88 141.68 114.59 T 396x300 95.29 151.02 T 346x300 83 105.78 97.29 157.79 144.63 121.22 74.49 144.67 116.70 62.66 25.69 48.59 106.32 148.20 141.3 6.92 115.93 68.33 9.54 109.30 139.08 125.9 6.52 181.62 125.83 114.Table 4.40 101.15 T 350x300 92.05 81.96 141.28 104.06 T 291x300 68.99 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 KLy=3 KLy=1.45 107.75 152.35 6.34 33.86 114.51 81.48 161.02 158.82 132.30 145.27 4.06 138.05 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.41 109.38 95.5 87. 20 0.04 0.86 1.05 0.09 0.06 0.17 0.15 0.09 0.46 0.02 0.83 EL 40x40 2.78 0.04 0.10 0.16 0.95 3.03 0.02 0.27 1.46 0.53 1.01 0.45 EL 25x25 1.692 1.46 0.908 1.28 6.26 0.20 0.03 0.19 4.71 0.38 0.94 11.41 0.38 0.16 EL 60x60 3.60 0.76 0.68 4.26 0.01 0.98 1.23 1.84 0.27 0.34 0.47 Hand Book for Design of Steel Structures 4-33 .23 0.52 5.09 0.03 0.527 1.06 1.22 0.06 0.14 0.88 2.62 0.727 EL 30x30 2.26 0.72 0.28 0.18 0.05 0.22 1.77 4.21 0.07 0.51 0.25 2.27 0.14 0.12 0.Table 4.53 4.04 1.33 0.02 0.04 0.36 1.08 2.01 0.29 0.40 0.755 EL 40x40 3.10 0.2 1.41 0.07 0.5: Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 cm cm cm Kly=1 Kly=2 1.07 0.20 0.13 0.52 1.36 2.18 2.18 0.03 0.91 0.03 0.84 1.23 0.09 0.20 2.22 0.02 0.59 0.78 0.08 0.23 0.47 0.29 0.73 0.85 1.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.39 1.15 0.09 0.82 0.10 0.13 0.20 EL 60x60 4.14 2.84 7.08 0.08 0.06 0.03 0.78 0.97 8.35 0.71 0.60 0.09 0.15 0.09 2.53 0.46 1.90 1.38 1.91 7.26 0.15 0.5 6.26 EL 30x30 1.73 1.10 0.19 0.99 7.06 0.41 0.91 1.802 1.47 0.10 1.43 0.32 0.71 3.89 2.10 0.05 0.62 1.32 EL 65x65 5.05 1.38 3.36 1.84 1.02 0.03 0.51 0.15 0.04 1.367 1.81 1.85 1.2 3.48 EL 45x45 2.51 1.18 0.14 EL 50x50 4.892 1.02 0.06 0.19 0.66 9.02 0.52 0.09 0.42 0.63 1.20 0.36 1.36 1.06 0.36 3.53 1.77 2.96 1.18 7.44 0.81 0.59 0.20 0.38 3.47 EL 70x70 6.16 0.81 0.09 0.06 KLx=5 KLx=6 KLy=3 KLy=1.07 0.5 KLy=8 KLy=4 KLy=9 KLy=4.09 0.14 0.43 5.74 3.77 0.06 0.52 1.91 0.11 0.36 0.73 0.16 0.62 0.14 0.19 0.09 0.03 0.06 0.11 0.05 0.427 0.90 1.52 3.55 5.57 1.74 0.02 4.77 0.44 0.41 0.747 0.07 0.66 4.01 0.41 0.53 0.644 1.02 0.91 0.19 0.74 0.52 1.20 4.11 0.66 0.19 0.5 0.32 0.09 0.42 0.13 0.62 1.13 0.25 0.10 0.98 9.38 8.23 0.51 1.27 0.03 0.38 0.14 0.48 2.82 0.08 1.492 EL 45x45 3.82 0.35 0.10 0.26 0.12 EL 25x25 1.27 0.23 2.26 1.56 0.18 0.34 0.747 0.03 0.56 0.69 3.85 5.17 0.62 0.04 0.14 0.03 0.302 1.14 0.03 1.25 2.06 0.25 0.41 0.70 2.28 0.05 0.04 0.5 KLy=4 KLy=2 KLy=5 KLy=2.336 1.05 0.78 0.37 0.72 4.94 1.21 3.07 0.88 0.05 0.27 1.84 0.53 4.25 EL 65x65 5 6.55 0.40 2.11 0.52 0.908 0.127 2.40 1.15 0.32 0.761 1.802 1.38 EL 65x65 7.84 1.42 EL 40x40 2.26 4.17 1.03 0.25 1.78 EL 40x40 1.23 0.41 0.53 1.23 0.14 0.59 0.89 1.73 0.86 5.38 EL 50x50 2.14 0.19 1.13 0.36 4.81 2.02 0.52 4.27 0.72 0.14 10.02 0.26 0.99 1.47 0.12 EL 50x50 3.40 3.31 0.18 0.03 0.21 1.59 0.46 0.02 0.47 0.24 0.13 0.05 0.33 0.22 0.45 0.62 0.5 1.33 EL 50x50 3.08 0.08 0.32 0.41 3.45 1.32 0.26 0.70 2.16 0.52 0.02 0.18 0.04 0.36 0.26 2.66 0. 07 25.65 EL 130x130 23.72 EL 90x90 8.41 9.62 3.04 5.46 4.08 16.31 1.3 11.92 4.42 39.41 42.04 8.23 2.46 16.89 11.35 1.73 8.32 2.56 4.51 5.46 7.19 22.33 2.93 9.68 2.68 10.83 2.61 1.08 2.51 1.09 27.7 2.32 9.72 2.12 10.49 20.5 0.84 1.07 13.78 EL 120x120 14.71 3.33 2.42 6.25 5.85 20.327 2.39 10.51 54.96 1.63 24.30 EL 150x150 41.23 EL 100x100 17.70 3.68 18.69 3.99 3.51 20.51 7.53 13.57 2.88 EL 90x90 17 21.61 1.96 1.04 3.32 5.97 1. Hand Book for Design of Steel Structures 4-34 .62 2.67 10.28 10.24 11.41 35.31 3 3 32.30 22.55 17.75 52.34 5.32 1.96 3.05 12.01 1.73 5.97 0.77 2.18 1.21 5.36 2.64 1.88 4.85 21.68 7.99 25.32 1.90 1.35 1.87 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.80 42.02 5.01 2.13 9.68 5.59 1.96 40.85 39.18 39.80 8.03 1.28 17.25 3.64 EL 100x100 14.48 7.51 26.04 67.77 5.90 1.49 15.08 14.Table 4.23 4.67 32.66 2.75 60.79 45.13 4.53 8.35 9.33 3.54 15.52 32.7 13.22 2.02 29.96 12.33 3.03 0.76 2.70 2.41 16.51 2.24 16.5 KLy=8 KLy=4 KLy=9 KLy=4.52 73.10 24.15 18.25 23.38 4.74 4.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 EL 75x75 6.60 4.68 15.3 2.52 8.84 1.63 2.19 0.14 9.01 9.04 25.72 0.13 2.Currently not available].67 52.39 EL 150x150 33.1 24.35 13.77 4.59 12.89 9.76 15.01 30.35 7.12 5.76 3.80 13.04 6.93 5.28 11.43 4.04 32.03 15.3 2.83 3.62 21.93 49.7 3.21 39.87 22.92 17.4 29.75 3.74 0.26 6.42 32.43 10.53 11.39 5.98 1.5(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.85 34.34 36.30 11.93 EL 130x130 28.07 35.74 28.52 9.52 2.74 0.30 11.81 7.78 2.61 47.04 10.63 EL 100x100 19.61 8.68 14.38 2.91 0.67 43.71 25.88 5.81 9.85 28.54 19.71 2.22 EL 150x150 27.88 1.59 0.70 1.72 1.91 0.04 EL 80x80 7.9 20.74 4.727 2.34 9.07 20.02 3.08 1.98 EL 100x100 10.03 1.36 31.23 7.53 15.19 1.77 13.8 22.72 2.01 4.82 0.70 1.69 17.23 3.33 13.15 4.36 43.11 3.97 0.50 1.67 15.08 18.02 3.96 13.68 28.08 8.30 14.25 2.33 2.71 2.28 3.20 22.33 8.52 12.19 15.87 28.30 1.92 5.28 2.77 8.31 1.44 22.93 11.42 25.52 3.30 7.79 11.30 1.46 24.56 2.08 9.52 24.85 14.63 20.35 4.52 20.83 2.61 4.20 31.8 36.52 4.58 60.46 11.01 6.18 EL 90x90 13.50 1.71 5.28 EL 130x130 17.65 1.32 3.90 16.69 2.52 13.66 6.55 2.65 4.12 21.25 16.82 EL 75x75 13 16.42 18.22 2.28 3.38 1.43 5.57 3.74 34.87 13.21 3.63 3.56 58.11 2.60 3.62 2.33 1.83 2.33 1.3 34.6 42.59 EL 90x90 15.32 KLy=7 KLy=3.7 26.76 19.9 53.55 5.14 5.99 5.04 26.13 7.52 6.22 20.33 2.68 6.71 22.10 6.59 EL 75x75 9.64 7.35 4.10 4.85 8.39 7.66 1.26 4.62 12.9 22.15 3.55 2.69 2.46 10.63 2.03 EL 90x90 9.53 5.65 2.93 3.35 3.04 1.98 9.66 3.36 3.80 48.42 4.7 18.9 19 3.3 17 2.46 3.92 22.64 10.46 2.5 KLy=4 KLy=2 KLy=5 KLy=2.08 3.55 13.22 7.39 17.72 1.14 3.30 11.20 48.23 5.63 44.54 17.76 3.39 9.97 2. 75 6.63 7.39 47.84 96.91 52.65 184.03 EL 200x200 73.66 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.28 54.78 106.84 35.36 209.38 56.17 59.75 48.92 102.12 18.78 96.49 227.6 7.76 84.24 137.48 EL 250x250 93.5 EL 175x175 31.35 69.71 23.24 118.87 14.86 136.84 115.7 76 6.93 55.27 EL 200x200 45.34 161.72 48.38 5.47 89.48 43.5(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.17 154.75 219.03 55.40 154.68 40.27 18.71 31.76 71.25 36.95 45.6 93.3 57.19 170.69 66.87 18.92 114.4 50.4 7.63 167.18 86.49 94.28 60.Currently not available].69 102.37 43.63 100.19 114.87 18.43 71.25 45.69 71.36 197.47 EL 250x250 128.49 69.00 52.14 40.66 118.75 6.Table 4.17 145.62 47.97 115.64 38.91 EL 175x175 39.52 5.77 36.37 65.20 69.18 94.68 27.37 84.93 71.49 78.73 197.51 126.14 6.64 32.01 44.8 40.68 47.26 123.40 137.5 KLy=4 KLy=2 KLy=5 KLy=2.97 106.49 7.87 25.91 14.69 89.73 184.91 59.5 KLy=6 KLy=3 KLy=7 KLy=3.37 154.77 27.20 58.29 76. Hand Book for Design of Steel Structures 4-35 .17 66.19 154.82 86.39 54.01 38.86 145.72 44.5 KLy=8 KLy=4 KLy=9 KLy=4.94 58.21 5.09 105.7 119.14 80.82 78.04 130.95 52.61 32.0 162.04 6.51 136.35 5.09 6.12 23.62 35.94 47.65 170.68 EL 200x200 59.14 31.61 25.31 60.19 126.42 209. 09 1.10 1.41 5.96 11.94 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.94 14.30 6.43 4.5 3.79 2.10 2.13 7.74 2.05 14.93 9.87 15.88 6.97 2.5 27.66 7.94 7.16 3.65 31.03 2.81 2.62 4.51 13.32 11.94 2.Currently not available].5 KLy=8 KLy=4 KLy=9 KLy=4.16 22.91 2.87 5.88 UL 150x90 21.38 1.96 UL 150x90 16.91 23.96 27.93 2.53 2.63 3.56 21.81 13.16 23.74 UL 125x90 20.14 17.4 28.01 2.02 8.20 2.5 3.49 4.75 4.83 37.90 12.50 4.29 4.2 17.77 22.38 3.87 3.5 6.60 0.88 28.71 2.81 2.43 2.6(Continued): Compression Capacity (Ton) For UL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 cm cm cm Kly=1 Kly=2 UL 90x75 11 14.06 23.80 1.38 29.72 1.51 11.79 6.72 8.02 12.91 10.97 2.69 6.5 KLy=6 KLy=3 7.94 3.66 22.29 33.37 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.03 15.8 46.06 2.47 19.59 26.50 9.69 24.78 2.18 4.4 20.32 12.13 38.79 26.26 1.92 1.19 16.17 28.19 14.91 8.80 6.51 21.14 6.72 4.86 1.48 3.18 5.52 27.10 11.47 5.26 3.00 22.69 11.1 24.03 3.93 3.94 11.68 10.54 19.30 4.37 1.12 1.21 5.80 4.18 4.60 UL 100x75 9.11 2.11 17.70 3.84 4.69 9.15 20.27 4.1 21.69 2.97 29.91 8.71 24.63 6.77 18.03 9.48 18.23 2.33 2.78 20.77 3.26 1.85 1.73 15.81 16.10 24.27 2.36 11.17 16.Table 4.89 10.18 2.65 8.79 1.62 17.60 3.78 11.04 2.18 2.00 3.7 13.16 7.57 1.46 6.14 7.93 2.04 30.49 3.7 35.51 3.05 28.89 6.08 6.57 33.49 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.85 18.89 1.51 9.43 31.37 UL 150x100 22.42 24.29 UL 125x75 10.36 4.45 12.74 2.23 UL 125x75 19.74 27.80 14.75 UL 125x75 14.46 2.5 KLy=4 KLy=2 KLy=5 KLy=2.48 0.93 3.16 UL 150x100 27.75 0.76 2.52 0.90 19.47 1.71 10.90 0.69 15. Hand Book for Design of Steel Structures 4-36 .54 21.15 2.35 1.94 4.28 1.13 7.88 23.73 6.72 29.58 UL 125x90 16.04 1.31 3.35 4.66 40.34 7.66 13.69 6.21 5.56 4.69 13.9 19.1 20.42 2.42 6.25 4.43 18.18 14.6 26.96 2.51 9.57 0.71 17.90 25.35 8.79 10.51 4.47 35.52 1.12 UL 150x100 17.31 8.23 11.46 18.32 4.44 2.79 35.11 UL 100x75 13 16.77 2.98 2.03 3.98 3.81 10.58 3.57 2.45 5. 254 2.41 0.10 0.90 4.20 0.31 0.38 0.81 0.16 1.52 0.26 3.11 0.12 0.45 0.88 1.68 1.11 0.37 0.72 0.55 1.36 15.04 0.38 0.17 0.04 9.27 0.07 1.64 ELL 65x65 11.75 ELL 65x65 15.21 0.75 4.12 1.62 1.52 1.91 1.68 1.54 9.81 0.46 4.57 0.98 2.28 0.22 0.57 1.53 0.17 0.14 0.66 5.42 2.52 2.18 0.29 0.03 3.32 1.36 5.02 1.12 0.09 0.10 0.88 0.81 1.26 2.26 0.08 0.19 0.19 0.67 0.94 ELL 70x70 12.45 0.09 20.61 1.49 4.80 3.90 2.18 0.5 ELL 50x50 7.23 0.11 6.88 1.12 0.12 3.17 0.52 0.95 0.07 0.50 0.66 2.58 0.81 0.79 1.36 ELL 50x50 4.24 ELL 25x25 3.47 0.41 ELL 60x60 9.82 0.04 0.11 0.95 0.21 0.33 0.32 ELL 60x60 7.19 0.054 1.72 2.734 1.03 0.66 ELL 40x40 4.23 0.17 0.73 6.09 0.81 1.04 0.98 ELL 45x45 6.79 3.12 7.18 0.62 0.28 0.15 0.08 0.36 0.54 1.97 5.91 0.43 0.18 0.57 0.29 0.76 8.15 0.71 1.78 3.96 1.06 2.56 1.51 0.06 3.79 6.41 5.79 5.784 1.15 0.42 8.64 0.11 1.07 0.06 0.28 ELL 50x50 8.45 1.09 0.51 0.35 2.88 0.Table 4.26 0.23 ELL 25x25 2.81 6.65 0.10 0.19 1.75 0.82 0.75 1.88 2.72 11.84 15.27 0.18 0.18 0.63 3.73 3.05 0.5 KLy=8 KLy=4 KLy=9 KLy=4.99 23.78 4.19 8.47 0.36 0.54 0.07 0.25 1.03 0.32 0.04 0.25 0.65 14.17 2.39 6.05 4.45 1.65 0.32 2.85 2.32 19.95 17.72 0.42 1.86 11.94 0.49 0.36 1.7: Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 2.04 1.28 0.24 0.94 2.70 2.32 0.49 4.384 1.38 1.49 0.37 0.76 3.18 1.84 ELL 40x40 5.59 11.52 0.74 4.44 0.92 0.75 0.49 2.05 0.64 0.18 0.49 8.41 0.12 1.16 7.61 1.81 0.03 0.82 0.73 0.05 0.47 0.49 2.39 0.74 3.76 16.81 0.45 0.27 0.12 2.89 18.1 11.10 0.24 1.12 0.55 1.28 2.94 Hand Book for Design of Steel Structures 4-37 .94 0.19 1.85 1.20 0.23 1.49 1.44 1.29 0.52 ELL 50x50 6.35 1.51 1.454 ELL 30x30 4.57 0.08 2.29 0.288 1.05 0.11 7.82 0.31 0.24 1.854 0.66 3.70 0.42 4.56 1.91 0.5 KLy=4 KLy=2 KLy=5 KLy=2.20 1.06 2.672 1.49 2.56 ELL 40x40 3.99 2.27 0.64 0.11 2.48 6.54 13.07 0.17 1.92 0.14 0.06 1.82 15.64 0.04 9.12 0.05 0.27 0.29 0.75 0.45 0.36 0.43 1.92 1.42 8.05 0.17 2.73 1.522 1.29 12.63 0.04 0.03 2.36 0.33 0.604 1.53 KLy=3 KLy=1.06 0.37 0.54 0.20 0.02 0.04 8.02 0.30 1.09 6.29 0.07 0.81 0.11 0.20 1.16 0.07 0.52 ELL 30x30 2.08 8.39 0.07 2.25 0.02 0.45 0.23 0.72 3.27 0.53 0.70 0.604 1.02 1.17 0.84 0.14 0.50 ELL 65x65 10 12.20 0.06 1.36 9.45 0.52 0.52 2.05 0.84 0.20 2.9 7.37 0.54 2.08 1.32 0.25 10.78 2.14 3.06 0.62 1.78 3.22 0.24 0.03 0.86 ELL 40x40 7.37 7.41 0.84 2.02 0.58 0.984 1.67 0.54 4.32 0.03 0.63 0.60 4.15 1.15 0.5 KLy=6 KLy=3 KLx=7 KLy=7 KLy=3.07 1.14 9.604 1.38 4.20 0.03 0.49 0.41 0.91 ELL 45x45 5. 27 88.68 3.46 3.70 86.6 45.76 4.2 85.73 69.49 23.39 10.69 3.30 3.84 8.79 57.65 4.80 3.81 18.02 5.05 26.54 6.09 10.04 40.31 3.91 3.02 3.52 3.43 3.18 3.31 ELL 130x130 46.11 24.70 8.93 5.4 37.58 97.98 99.38 2.74 14.17 1.87 23.36 64.74 8.09 16.97 ELL 100x100 21.64 18.36 34.05 12.42 14.37 6.42 4.65 ELL 80x80 14.70 4.62 59.64 2.36 7.07 2.20 50.65 17.93 3.63 19.05 3.74 10.15 3.23 3.38 15.84 10.68 2.29 22.02 17.81 32.654 2.99 31.77 3.09 53.84 11.02 4.66 6.17 26.6 69.34 21.56 6.21 49.17 32.94 1.00 146.31 86.10 31.2 48.34 36.44 14.75 4.33 18.18 ELL 90x90 31.36 2.28 56.53 22.48 105.85 78.8 40.59 12.26 7.5 KLy=4 KLy=2 KLy=5 KLy=2.10 23.5 KLy=8 KLy=4 KLy=9 KLy=4.59 9.82 ELL 150x150 67.96 19.6 34 2.01 5.24 25.65 3.33 37.45 4.05 19.50 23.59 ELL 120x120 29.68 73.49 47.28 18.31 105.72 19.29 5.26 ELL 100x100 38.59 45.48 121.03 4.70 6.94 20.58 90.51 39.73 79.26 21.65 ELL 90x90 19.87 18.454 2.01 7.5 2.26 4.26 14.15 4.33 28.5 3.99 40.09 64.43 10.19 12.44 2.81 43.39 97.06 31.32 1.28 3.07 39.08 5.4 27.76 3.68 64.80 34.69 4.25 3.08 20.25 4.06 27.42 10.47 6.8 106.94 5.91 2.36 5.12 12.05 11.15 7.71 4.34 31.80 37.64 2.05 65.02 3.88 27.25 9.62 3.65 26.47 8.81 28.62 4.52 3.63 10.43 1.18 24.24 3.08 32.96 5.05 48.6 2.22 3.08 12.66 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.71 56.37 79.72 26.30 10.59 5.76 3.71 2.80 ELL 75x75 19.44 4.36 62.97 3.15 5.63 15.94 31.93 6.82 32.72 Hand Book for Design of Steel Structures 4-38 .22 4.26 49.44 ELL 150x150 54.52 57.6 73.23 43.41 11.08 4.76 4.38 11.30 7.39 2.44 44.60 2.58 84.64 1.31 41.97 11.43 78.43 17.05 41.37 13.97 7.08 7.28 ELL 100x100 29.92 26.17 40.54 10.04 53.32 5.42 5.58 28.61 6.63 4.74 18.20 55.17 17.36 31.5 KLy=6 KLy=3 17.28 14.58 ELL 150x150 83.78 9.26 5.30 6.80 84.25 5.52 7.16 121.10 70.99 2.02 108.44 2.48 4.50 32.32 28.4 3.64 1.07 135.62 27.19 8.87 11.31 37.66 5.80 50.76 14.82 19.57 23.71 41.61 95.65 61.63 7.58 22.52 69.63 5.87 ELL 130x130 57.97 51.71 5.93 8.08 11.08 34.76 117.76 ELL 90x90 34 43.8 59.94 15.85 65.29 8.85 8.23 2.07 31.37 1.68 4.45 ELL 100x100 35.02 4.38 7.99 14.56 ELL 130x130 35.10 44.99 2.10 50.78 11.82 1.81 23.08 2.93 5.82 45.84 20.20 17.66 7.80 70.32 18.02 25.22 6.88 44.53 14.7(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.92 25.1 2.24 20.75 ELL 75x75 13.42 2.56 6.24 11.8 45.46 ELL 75x75 26 33.85 12.48 4.07 1.44 31.60 2.01 10.80 20.26 40.12 18.79 44.48 1.08 2.50 34.82 35.65 ELL 90x90 16.56 5.56 6.64 3.38 5.62 3.17 2.31 13.52 10.23 52.48 1.72 27.64 2.31 9.8 38 3.39 5.25 7.70 62.84 8.62 16.50 22.Table 4.03 15.36 ELL 90x90 26.01 4.7 5.30 43.58 22.95 32.31 7.54 4.56 21.39 6.95 48.82 1.30 8.36 20.71 6.76 10.05 17.36 45.80 80.76 3.05 2.82 18.50 50.52 17.12 2.03 11.08 27.08 35. 06 86.92 117.37 178.99 156.09 9.42 87.02 273.42 5.87 143.65 308.96 86.59 152.30 237.55 192.43 55.65 37.68 322.04 9.74 130.37 7.55 213.36 132.7(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 cm cm cm Kly=1 ELL 175x175 63.34 46.91 178.97 77.48 ELL 175x175 78.52 143.37 173.83 229.55 63.39 395.83 108.30 274.83 205.27 308.37 63.36 119.33 260.68 231.5 6.75 29.71 273.Currently not available].71 71.31 334.10 237.71 ELL 200x200 147.62 51.66 156.86 455.62 37.96 ELL 250x250 187.86 110.6 115.27 340.40 132.99 138.43 80.20 77.5 6.27 200.58 90.37 188.34 308.75 138.39 369.12 51.34 36.65 274.62 ELL 200x200 90.34 291.95 105.71 291.02 252.5 KLy=4 KLy=2 KLy=5 KLy=2.74 160.60 120.43 ELL 200x200 119.20 65.38 229.6 81.64 120.29 71.93 231.43 95.49 11.93 213.65 29.40 143.63 11.51 247.62 36.43 138.95 90.Table 4.60 108.87 105.21 340.83 95.92 95.38 252.03 211.87 119.58 73.75 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 KLy=3 KLy=1. Hand Book for Design of Steel Structures 4-39 .10 ELL 250x250 256 325.86 143.14 8.43 117.66 173.64 55.8 7.49 438.67 395.4 152 6.67 418.98 105.42 97.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.06 110.04 5.91 7.99 188.73 192.57 111.36 7.37 205.97 87.37 80.4 238.81 418.12 65.52 169.55 46.74 308.64 73.73 169.2 187.21 369.2 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.5 97.29 95.8 100. . 49 9.35 23.04 ULLL 125x75 21.91 5.06 43.79 19.66 20.31 71.86 27.92 9.34 14.92 33.39 8.12 5.18 13.10 6.87 21.2 43.84 27.60 22.55 21.97 36.32 10.14 16.74 36.09 31.86 12.88 9.24 4.72 6.Table 4.46 26.44 12.97 15.05 59.94 20.05 50.77 2.10 9.80 8.83 20.23 53.37 9.03 8.2 41 3.20 ULLL 150x90 32.70 66.70 9.06 55.56 ULLL 125x90 32.88 37.22 12.74 28.94 22.03 14.97 3.65 3.90 35.20 10.74 4.73 56.96 3.46 21.10 6.4 27.32 ULLL 150x100 34.19 50.88 4.66 12.29 36.70 29.49 46.93 3.41 67.25 43.50 7.15 56.68 4.18 56.32 ULLL 150x100 55.12 4.2 52.62 3.05 21.68 5.13 77.90 10.8: Compression Capacity (Ton) For ULL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 ULLL 90x75 ULLL 100x75 22 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.76 ULLL 150x100 44.74 46.50 14.52 3.67 71.29 15.61 6.54 9.39 16.72 29.98 23.58 4.88 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.20 48.26 43.07 41.04 62.5 KLy=4 KLy=2 KLy=5 KLy=2.54 23.50 14.2 48.50 18.11 7.5 KLy=6 KLy=3 28.98 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.66 73.73 30.45 34.53 56.88 ULLL 100x75 26 33 3.72 24.58 25.19 46.68 66.54 32.51 56.71 32.98 59.57 18.16 8.96 30.16 88.48 6.81 27.75 4.10 9.86 16.68 7.37 20.94 16.46 13.40 45.85 38.90 43.54 12.76 3.01 2.73 15.78 81.53 4.46 78.81 3.8 41.23 48.13 17.39 54. Hand Book for Design of Steel Structures 4-41 .79 3.8 38 3.05 2.61 21.31 96.57 ULLL 125x75 29.91 3.10 44.5 4.Currently not available].17 16.60 ULLL 125x75 38.95 21.98 6.99 15.51 2.62 4.68 6.09 25.8 57.58 3.02 11.14 50.90 12.77 3.04 32.74 58.80 29.73 37.51 10.05 42.17 34.80 12.74 ULLL 150x90 43 54.74 30.21 3.86 10.11 52.23 36.38 16.81 9.57 5.53 21.76 55.94 71.42 18.04 4.12 64.81 30.10 13.33 15.40 14.91 14.76 4.23 34.71 4.00 3.55 12.10 11.34 9.00 44.73 37.44 27.72 4.34 49.91 14.23 46.51 3.74 23.74 39.67 40.30 15.15 3.77 19.03 34.56 63.53 30.09 ULLL 125x90 41.12 4.5 KLy=8 KLy=4 KLy=9 KLy=4.40 26.24 15.81 42.80 2.94 3.60 34.89 47.88 22.5 8.37 8.18 46.50 52.66 19.4 70.24 4.23 7.10 3.26 21.79 3.71 10.64 23.08 2.19 12.94 23.24 64.24 6.77 6. 53 22.02 13.62 2.74 2.24 2.60 8.55 13.57 6.36 7.76 11.88 22.05 4.32 5.25 4.36 10.84 37.38 ULLS 90x150 43.58 9.12 10.90 9.92 13.49 10.02 7.31 39.00 44.35 4.36 60.Currently not available].37 11.86 4.06 6.88 7.5 KLy=8 KLy=4 KLy=9 KLy=4.80 7.45 1.85 39.38 48.82 4.54 6.83 1.25 9.85 22.80 9.28 3.99 34.27 5.54 1.61 7.25 14.91 59.5 KLy=4 KLy=2 KLy=5 KLy=2.58 8.5 2.25 2.04 13.58 ULLS 75x100 18.2 41 2.45 1.78 5.40 ULLS 75x125 38.44 3.59 5.57 ULLS 90x125 32.42 17.06 18.35 29.19 2.34 5.64 29.74 22.76 9.28 4.8 57.15 4.98 30.82 5.25 3.62 4.55 9.35 3.25 35.55 31.98 17.39 1.43 92.8 41.80 ULLS 100x150 55.58 7.31 21.82 7.60 4.88 7.83 1.74 15.80 4.52 2.57 5.25 3.27 22.80 5.82 13.02 7.53 35.60 2.20 4.84 63.46 3.37 48.11 23.72 2.2 43.90 2.00 15.Table 4.35 18.90 5.9: Compression Capacity (Ton) For ULLS Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.55 7.02 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.90 3.69 ULLS 75x100 26 33 2.27 14.54 3.60 2.10 43.26 77.25 4.91 55. Hand Book for Design of Steel Structures 4-42 .32 8.12 17.61 7.94 2.62 8.02 25.45 3.55 17.73 1.57 4.4 27.40 4.60 ULLS 100x150 44.79 15.19 4.25 74.51 48.37 4.78 4.40 70.80 6.76 17.83 7.52 7.17 47.95 39.12 2.68 2.04 6.51 3.98 3.46 2.27 59.94 53.60 11.32 7.44 4.27 7.57 2.11 5.78 7.77 8.00 13.40 ULLS 90x150 32.6 23.39 6.94 1.91 10.05 30.27 4.66 4.42 17.11 13.91 14.05 2.54 1.50 13.45 2.59 5.50 21.26 2.61 5.25 ULLS 100x150 34.40 10.20 2.78 18.26 3.77 5.96 7.38 31.47 7.08 2.37 7.79 23.59 4.13 67.08 57.88 2.5 KLy=6 KLy=3 ULLS 75x90 22 28.90 7.30 14.40 2.80 5.98 ULLS 75x125 29.04 9.8 38 2.38 27.32 4.51 29.0 54.90 7.02 7.02 5.27 35.81 41.40 3.23 54.19 1.30 23.51 ULLS 90x125 41.61 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.38 3.49 18.88 8.30 44.42 9.77 39.77 31.24 35.79 37.94 1.61 5.78 2.79 11.2 52.27 ULLS 75x125 21.37 5.76 13.61 5.96 10.5 3.34 7.22 15.20 4.78 13.66 6.4 70.34 56.69 3.42 23.86 2.73 2.2 48.94 1. 42 4.5 KLy=6 KLy=3 1.31 1.64 8.76 34.74 3.13 84.82 4.45 125.48 4.18 69.30 93.78 CCI 150x75 37.48 56.42 14.69 92.71 6.60 40.70 CCI 180x75 42.71 89.53 125.42 9.26 21.66 26.5 KLy=8 KLy=4 KLy=9 KLy=4.32 30.65 83.58 39.80 100.86 6.98 74.82 36.28 10.68 15.47 214.30 109.33 23.41 25.92 24.24 18.07 21.53 159.71 7.55 55.58 63.59 83.Currently not available].34 7.42 16.54 90.88 56.42 74.05 1.80 150.26 0.30 51.42 63.48 11.98 76.84 1.31 61.41 46.92 95.54 113.40 63.20 107.97 CCI 380x100 CCI 380x100 34.67 48.78 20.83 68.03 127.85 119.20 1.90 42.17 1.54 0.52 141.52 82.41 CCI 300x90 97.15 109 138.72 rx ry KLx=1 KLx=2 cm cm cm Kly=1 Kly=2 9.63 4.31 72.50 161.19 176.78 14.69 19.60 15.60 39.94 27.10: Compression Capacity (Ton) For CCI Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 CCI 50x25 7.66 68.16 0.98 109.86 117.07 37.15 161.51 3.95 76.34 95.14 9.82 64.2 123.2 97.72 105.84 CCI 300x90 87.70 8.61 138.84 CCI 100x50 18.54 46.4 7.92 52.03 107.22 233.02 21.81 CCI 250x90 69.55 71.83 3.81 150.21 68.87 75.65 13.06 130.74 27.97 2.92 1.16 48.03 2.71 0.98 2.90 64.20 0. Hand Book for Design of Steel Structures 4-43 .89 48.07 214.46 0.50 37.56 3.28 47.61 27.91 45.09 80.51 118.88 93.4 102.14 48.68 10.69 125.93 21.42 0.92 15.07 6.66 76.5 KLy=4 KLy=2 KLy=5 KLy=2.09 58.82 44.90 224.76 143.83 12.54 100.85 24.92 89.88 31.59 62.76 15.55 99.61 124.76 79.86 3.79 9.47 83.60 66.86 55.73 61.66 62.53 3.83 144.6 111.69 78.65 136.33 4.05 95.38 3.23 9.31 16.67 130.34 0.66 31.66 17.04 188.18 5.62 87.23 32.87 117.74 53.3 8.43 1.34 CCI 200x80 49.64 3.96 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.06 73.76 11.78 CCI 250x90 80.81 180.75 28.18 127.37 189.63 36.2 62.09 69.27 8.88 21.6 171.28 3.80 96.84 28.8 4.89 40.67 10.84 3.58 66.84 1.69 125.69 2.08 17.82 15.33 20.00 53.91 CCI 75x40 13.74 105.91 12.98 22.97 45.60 109.57 58.38 0.89 CCI 150x75 48 61.12 73.80 111.22 61.70 7.00 38.42 107.16 3.78 CCI 125x65 26.91 30.46 4.06 130.52 15.12 3.79 11.76 2.06 2.37 101.07 38.90 2.2 88.96 22.85 134.22 26.58 30.78 136.02 12.54 53.41 171.13 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.70 202.85 1.88 4.03 3.23 132.8 54.40 85.03 4.42 9.2 47.69 80.53 37.69 16.14 11.99 21.34 9.15 70.53 89.72 23.27 24.80 167.04 49.5 0.42 6.93 37.8 11.98 151.29 16.81 47.77 21.07 52.66 7.25 151.62 35.32 117.15 117.27 CCI 200x90 60.89 3.31 117.23 33.66 1.79 161.54 27.6 77.84 171.84 17.Table 4.41 29.68 36.13 105.18 189.22 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.29 5.11 96.40 7.636 2.49 100.81 150.89 138.71 CCI 300x90 76. 07 5.25 167.78 89.67 CCB 300x90 76.68 3.59 95.83 CCB 380x100 109 138.91 78.18 77.69 190.22 111.41 158.11: Compression Capacity (Ton) For CCB Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation Effective KL (m) Section Name Wght Kg/m Ax 2 CCB 50x25 7.84 188.67 35.03 97.53 7.98 5.72 20.80 66.39 150.63 30.45 79.22 118.08 194.22 99.49 9.14 166.19 2.17 57.15 65.58 130.8 10.94 108.42 14.64 35.01 54.12 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.97 7.80 186.55 72.76 32.85 225.18 7.09 44. Hand Book for Design of Steel Structures 4-44 .36 105.21 89.44 124.54 135.83 11.13 8.66 113.79 3.05 96.22 4.61 199.47 211.40 130.Table 4.75 76.67 71.82 146.5 KLy=4 KLy=2 KLy=5 KLy=2.48 11.15 CCB 200x80 49.99 58.24 84.38 131.36 112.61 125.80 162.18 67.97 19.48 58.08 13.39 CCB 250x90 80.42 97.54 136.79 10.48 83.97 1.34 206.26 184.93 76.56 68.20 118.59 64.84 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.66 7.78 0.72 41.69 45.91 103.43 101.78 33.53 60.23 45.34 39.92 80.12 9.8 11.36 47.5 0.72 23.24 87.28 7.70 161.25 71.26 13.68 21.06 51.49 136.47 144.72 9.94 104.74 67.61 125.87 161.56 61.17 138.79 92.04 30.94 100.70 60.85 113.51 CCB 125x65 26.13 155.72 75.56 46.23 17.31 72.13 74.91 57.89 6.41 60.90 27.5 KLy=6 KLy=3 3.27 61.07 137.03 33.61 CCB 180x75 42.25 54.21 153.23 135.84 19.00 58.16 173.42 1.08 55.46 8.12 42.62 67.23 23.71 5.2 97.69 124.73 31.82 38.17 102.14 9.Currently not available].43 54.91 CCB 150x75 48 61.98 47.18 2.8 54.68 126.04 81.46 7.81 62.17 69.33 50.53 2.94 80.23 69.46 51.07 46.64 42.636 14.13 0.63 84.67 138.90 130.52 66.94 108.4 8.63 171.43 137.81 107.68 113.51 7.42 89.37 150.96 29.76 10.28 CCB 150x75 37.18 29.20 99.18 83.15 156.34 9.80 75.55 84.88 CCB 100x50 18.95 3.90 8.70 62.59 24.5 KLy=8 KLy=4 KLy=9 KLy=4.35 117.86 167.47 117.07 78.84 123.09 123.74 80.6 111.45 0.41 89.03 6.80 111.67 65.55 91.86 84.56 7.42 9.09 97.72 rx ry KLx=1 KLx=2 cm cm cm Kly=1 Kly=2 9.09 22.04 40.2 62.92 91.69 48.02 13.47 5.84 17.29 17.02 25.22 29.96 240.91 1.84 12.76 133.16 129.84 172.99 CCB 300x90 87.45 71.70 2.58 108.43 20.94 219.55 232.05 124.45 222.27 CCB 300x90 97.01 7.06 CCB 200x90 60.46 55.79 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.11 148.2 88.43 15.78 113.07 127.22 24.76 44.68 4.93 4.17 141.40 42.65 52.81 CCB 250x90 69.2 123.4 102.14 11.41 180.79 130.40 60.80 75.42 102.12 1.74 118.10 103.47 34.95 15.25 19.2 47.47 230.83 182.38 17.90 24.46 169.49 CCB 380x100 134.89 149.78 14.98 49.23 50.85 40.36 5.64 113.77 213.3 8.01 122.83 177.74 7.68 118.6 171.70 235.07 143.87 2.19 40.37 150.68 CCB 75x40 13.04 61.01 68.88 19.95 6.96 23.79 142.28 46.6 77.01 30.65 25.52 67.61 198. 37 26.2 7.11 1.4 17.71 6.10 8.56 44.27 14.3 2.16 KLx=5 KLx=6 KLy=5 KLy=2.25 54.47 57.93 4.55 2.27 5.50 64.10 0.64 0.30 33.92 1.08 12.59 1.40 1.53 14.2 51.Table 4.13 24.79 C 300x90 43.06 54.56 30.68 0.94 11.72 57.19 0.11 4.47 22.99 0.85 51.85 0.32 19.36 9.37 10.37 2.15 4.27 60.16 34.20 4.51 42.38 5.Currently not available].88 3.99 0.01 103.22 29.93 2.80 7.09 67.44 1.66 4.54 71.28 3.90 30.54 10.88 2.48 25.88 14.07 9.3 85.88 46.27 6.5 2.78 90.99 10.93 57.16 0.34 57.87 3.72 2.89 83.87 14.94 30.12: Compression Capacity (Ton) For C Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax cm2 C 50x25 3.20 C 380x100 67.82 1.85 31.28 0.71 rx 14.73 14.08 4.85 2.33 2.38 18.63 51.71 10.73 14.97 46.05 3.14 0.54 66.92 15.29 41.59 5.9 20.16 KLx=3 KLx=4 KLy=3 KLy=1.5 2.99 10.00 32.3 2.46 C 200x80 24.52 23.81 18.50 4.96 94.11 4.50 29.79 0.92 8.98 14.79 23.83 24.92 33.66 2.73 72.01 0.79 34.4 27.97 1.79 3.6 31.68 71.86 2.63 C 150x75 24 30.56 2.82 35.39 14.43 6.17 24.19 0.78 0.60 46.44 38.14 C 150x75 18.6 61.99 3.93 6.75 7.69 7.66 6.73 15.5 13.00 6.23 5.32 39.86 3.63 9.02 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.41 0.96 58.68 50.03 8.20 16.74 11.24 3.65 8.92 3.13 2.17 8.39 33.75 5.8 55.98 1.54 6.33 13.72 1.87 7.87 41.04 23.96 19.54 21.87 41.57 11.5 KLy=6 KLy=3 26.27 8.89 44.69 C 250x90 40.19 0.42 1.07 18.47 6.15 58.30 5.33 1.58 C 200x90 30.29 C 300x90 48.61 11.03 46.3 38.21 0.93 30.12 2.95 26.20 16.36 C 125x65 ry KLx=1 KLx=2 cm cm Kly=1 Kly=2 1.1 48.02 2.08 40.89 3.82 20.01 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.59 8.74 10.29 41.37 21.67 52.09 35.90 11.62 64.5 KLy=8 KLy=4 KLy=9 KLy=4.93 4.52 76.46 9.03 0.05 0.19 38.24 35.85 31.63 34.71 2.16 0.02 94.18 1.33 7.11 0.54 14.17 9.96 8.15 0.50 1.04 0.12 C 250x90 34.07 1.77 7.5 2.43 17.27 47.81 50.09 12.56 15.92 C 75x40 6.50 4.76 42.31 21.44 29.24 26.88 7.68 8.28 1.72 18.25 10.94 84.68 6.64 0.80 10.79 3.74 2.54 16.69 65.52 1.49 5.5 KLy=4 KLy=2 71.19 34.58 57.55 0.52 62.68 55.75 2.76 111.94 27.18 2.97 2.67 6.14 8.78 3.07 0.25 4.85 3.03 2.24 18.52 6.66 7.34 13.43 20.48 79.9 11.11 13.6 23.35 1.94 23.5 69.82 27. Hand Book for Design of Steel Structures 4-45 .05 38.98 0.36 C 380x100 54.40 26.25 1.818 C 100x50 9.73 76.48 13.92 23.71 43.57 18.84 19.38 0.92 C 300x90 38.6 44.94 C 180x75 21.30 0.05 13.73 8.86 4.92 12.44 36.47 17.97 5.70 24.40 9. 56 1.83 9.18 162.70 70.1 3.3 3.91 33.1 14.60 40.81 4.61 50.64 118.06 3.86 56.58 200.63 12.2 3.89 11.59 36.48 29.6 157.94 35.59 62.41 I 125x75 16.5 74.49 57.5 KLy=8 KLy=4 KLy=9 KLy=4.16 104.3 3.60 85.05 I 450x175 91.72 197.08 8.63 43.35 8.07 121.79 10.45 71.25 80.67 22.4 64.11 2.40 I 350x150 58.38 187.04 177.93 3.90 45.44 94.97 15.73 10.5 I 100x75 12.72 54.70 58.82 152.38 80.86 1.8 122.72 24.73 16.90 I 200x150 50.56 70.69 15.57 I 600x190 133 169.70 62.41 48.73 2.90 36.45 25.86 95.36 83.19 68.45 28.67 34.16 I 300x150 48.5 70.59 63.97 I 300x150 76.94 15.85 0.31 47.65 38.82 1.79 I 450x175 115 146.46 12.05 56.36 9.63 78.51 206.81 107.29 6.86 28.10 18.76 92.47 44.24 8.19 63.71 0.72 56.1 18.96 7.67 83.95 77.35 15.21 58.86 129.49 8.31 I 250x125 55.2 2.32 47.79 15.53 24.87 106.51 24.75 7.94 1.13 6.92 51.73 84.19 97.59 80.45 68.40 19.3 3.69 15.22 64.1 21.31 21.60 2.64 9.30 119.3 61.68 15.2 46.18 Hand Book for Design of Steel Structures 4-46 .75 33.01 60.51 31.21 7.3 3.64 6.92 218.81 93.43 38.60 3.16 8.34 25.01 97.2 3.55 15.07 I 150x125 36.43 85.90 76.00 3.09 81.09 28.08 56.41 105.10 113.88 46.68 77.75 2.00 I 200x100 26 33.15 48.22 8.43 4.45 2.99 0.07 98.16 18.59 119.31 21.34 3.13 I 400x150 95.34 178.43 13.06 30.90 19.45 5.43 21.60 31.15 13.68 40.2 3.65 6.84 152.77 58.26 111.36 5.18 2.36 71.47 276.36 5.66 28.60 I 250x125 38.81 51.37 20.03 40.40 105.92 206.27 59.76 76.72 52.49 8.88 58.28 165.90 48.17 71.36 94.70 22.83 6.10 33.62 25.19 31.89 15.08 260.69 145.6 30.73 9.44 1.61 115.5 KLy=4 KLy=2 KLy=5 KLy=2.87 82.61 95.7 116.82 56.70 85.70 105.82 241.69 0.8 18.11 68.43 16.45 177.14 15.70 I 600x190 176 224.9 16.2 111.37 5.60 149.20 11.60 20.89 39.12 1.22 123.99 129.5 24.99 43.91 I 180x100 23.72 23.36 152.11 I 400x150 72 91.98 291.21 4.55 129.72 4.15 115.38 276.07 14.09 70.41 58.56 20.58 47.22 141.55 39.37 14.10 44.Table 4.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.28 45.60 1.70 7.29 17.63 115.14 37.90 2.94 I 150x75 17.10 84.68 2.22 22.93 200.82 3.44 11.1 20.95 99.87 178.90 106.54 89.06 0.88 13.89 60.26 147.38 9.11 16.5 83.08 140.79 81.92 11.58 14.31 52.22 241.20 24.47 15.26 126.88 12.71 15.87 I 350x150 87.27 19.63 63.28 2.12 152.06 12.35 5.68 6.54 15.92 122.13 2.8 97.47 12.81 228.05 41.44 105.51 1.37 92.91 58.40 140.14 1.10 95.70 139.85 27.63 34.78 106.1 3.68 24.36 222.17 8.4 24.77 7.73 2.1 3.83 76.43 1.20 4.64 70.87 3.70 82.99 177.28 6.94 30.36 1.39 77.54 5.76 19.46 39.16 24.92 3.07 35.4 3.90 59.3 48.82 0.03 32.06 7.36 48.53 122.68 162.7 19.36 193.75 I 300x150 65.68 30.35 130.32 130.41 10.24 3.76 3.06 8.58 12.13 1.49 85.32 115.01 11.49 138.76 12.10 35.60 11.1 16.59 70.70 24.57 2.38 42.00 78.98 74.89 141.64 51.12 25.13: Compression Capacity (Ton) For I Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax rx ry KLx=1 KLx=2 cm2 cm cm Kly=1 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.57 145.15 6.3 2.97 304.73 17.26 101. 3 3.24 11.63 54.81 11.28 28.28 19.83 12.15 8.66 18.39 39.53 16.26 6.44 5.65 51.24 4.31 1.22 34.14 6.27 10.47 81.80 11.21 7.29 64.24 4.45 0.68 36.25 1.70 1.18 20.87 54.16 8.79 3.76 67.50 16.49 37.56 46.14: Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.76 60.39 5.28 6.36 13.16 7.15 6.21 22.96 0.57 12.81 43.35 22.16 25.29 22.70 4.03 4.07 10.11 1.79 49.11 40.25 33.02 87.16 8.99 12.14 0.70 27.39 31.36 0.89 H 150x150 31.90 6.87 81.24 12.34 3.1 56.83 H 175x175 40.73 14.67 2.92 64.4 4.76 H 125x60 13.54 8.5 KLy=4 KLy=2 KLy=5 KLy=2.23 22.81 H 125x125 23.43 1.73 24.17 12.69 79.31 75.78 H 248x124 25.08 27.18 31.08 36.68 39.85 6.11 62.91 33.56 45.60 34.29 1.61 3.79 18.97 H 198x99 18.01 25.84 4.64 20.38 69.45 H 346x174 41.65 48.63 1.79 15.98 5.17 34.13 62.55 1.26 2.29 3.47 28.31 66.21 60.08 H 350x175 49.03 64.19 25.58 9.27 26.53 8.36 3.72 70.65 3.93 31.67 H 200x100 21.92 7.14 68.86 H 175x90 18.64 21.8 30.4 52.31 18.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 H 100x50 9.47 46.4 2.10 1.26 2.5 0.88 71.94 56.25 113.51 49.37 34.6 39.46 26.08 36.68 10.60 56.21 29.72 18.81 52.99 20.15 22.97 9.84 6.39 23.02 3.46 57.95 4.68 4.06 28.83 56.75 54.22 15.45 5.47 7.5 40.83 15.13 41.18 8.14 14.04 20.63 2.22 1.05 8.44 12.65 66.54 40.95 85.89 83.66 56.18 2.21 72.83 0.52 1.07 27.61 52.35 54.6 37.70 KLy=7 KLy=3.51 21.39 3.45 113.08 28.60 20.00 8.56 52.63 6.03 16.27 27.13 7.45 62.48 15.29 4.19 46.18 28.66 10.61 2.37 36.65 57.9 4.48 31.04 379.27 41.95 2.15 37.29 12.78 12.89 0.95 26.32 18.83 4.16 1.04 2.6 63.15 67.43 15.29 21.2 21.83 42.24 0.17 12.17 0.04 7.95 1.62 26.30 62.25 42.89 7.30 28.27 58.76 H 148x100 21.82 10.28 18.78 32.73 10.06 28.48 H 200x200 49.83 1.88 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.33 14.91 H 194x150 30.86 32.54 70.57 77.68 14.62 5.89 28.87 3.84 H 298x149 32 408 3.58 22.16 17.17 48.09 3.68 15.95 2.56 6.42 66.62 2.18 76.01 8.70 8.5 4.46 25.23 12.71 8.29 37.83 0.44 70.53 12.29 1.10 12.55 3.66 12.36 73.48 5.70 6.53 45.99 40.75 36.24 10.04 73.37 1.10 77.63 6.25 2.17 33.14 16.04 50.81 8.71 57.98 33.94 43.58 202.37 3.09 16.42 5.94 H 250x125 29.17 2.66 20.32 2.67 16.19 0.Table 4.48 H 300x150 36.5 KLy=8 KLy=4 KLy=9 KLy=4.80 0.31 5.95 49.19 2.03 10.2 23.85 3.49 H 150x75 14 17.01 10.74 46.01 49.68 62.57 31.07 40.28 27.12 11.87 41.82 7.63 17.3 27.28 12.50 H 100x100 17.57 6.79 50.68 14.79 42.5 3.16 7.2 51.47 1.53 4.4 3.96 3.24 2.02 31.38 45.06 58.93 50.85 8.3 11.64 20.98 1.7 3.84 3.03 8.35 H 244x175 44.7 46.43 9.10 53.93 46.64 50.47 0. Hand Book for Design of Steel Structures 4-47 .87 20.29 40.98 11.9 63.72 13.06 9.7 32.62 22.1 26.38 9.88 20.25 0.21 4.62 3.62 1.2 16.72 18.1 23.98 2.4 2.87 74.70 6.41 5.Currently not available].32 30.63 23.76 42.98 7.63 46.59 65.49 47.57 2.9 1.11 28. Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5 H 200x204 56.2 71.53 8.35 4.88 98.33 91.76 83.58 93.54 73.94 89.17 62.90 84.27 50.41 78.87 35.80 72.99 27.41 66.64 21.66 59.80 H 396x199 56.6 72.16 16.6 4.48 98.68 91.22 81.87 95.21 70.80 91.22 58.06 86.77 41.48 81.87 30.47 76.54 23.33 70.80 18.43 64.65 H 294x200 56.8 72.38 12.5 4.70 99.28 92.28 83.53 96.01 73.21 92.28 61.37 88.11 47.91 83.53 33.63 78.56 25.75 73.21 20.34 67.48 H 354x176 57.8 73.68 14.8 4.00 99.96 91.02 79.72 95.80 66.26 91.02 50.59 85.64 33.75 79.72 24.80 73.26 18.99 66.26 15.00 58.72 H 244x252 64.4 82.06 10.3 5.98 113.96 108.27 101.28 109.87 93.12 106.15 83.87 102.01 73.55 97.47 62.13 92.56 47.22 87.28 37.31 81.63 H 298x201 65.4 83.36 12.6 4.77 114.44 106.56 96.71 110.76 85.09 106.56 71.78 101.86 56.67 96.71 39.93 91.11 30.57 85.09 24.16 78.65 H 208x202 65.7 83.69 8.83 5.13 115.37 108.20 99.30 110.22 88.83 105.50 76.89 100.21 63.44 94.40 46.29 88.08 35.44 81.27 28.00 73.95 H 400x200 66 84.12 16.8 4.55 115.14 106.62 95.95 111.17 83.33 106.62 68.82 101.54 49.77 95.95 36.57 89.88 28.00 83.33 22.12 76.32 H 446x199 66.2 84.3 18.5 4.33 115.02 105.86 94.36 110.76 80.73 105.86 64.98 100.39 45.20 94.36 33.21 87.80 25.42 80.73 20.09 73.12 H 248x249 66.5 84.7 10.8 6.28 117.87 112.38 105.65 113.91 97.81 110.31 88.94 106.32 79.08 101.95 68.20 97.22 56.24 92.15 42.47 86.73 H 336x249 69.2 88.15 14.5 5.92 122.37 116.17 108.55 119.46 99.65 116.17 89.56 112.53 78.30 108.55 65.84 104.25 49.72 99.65 39.29 94.75 H 250x250 72.4 92.18 10.8 6.29 128.29 122.32 115.02 123.97 106.51 120.06 96.88 115.71 86.17 110.95 74.36 105.81 61.38 100.28 46.37 94.39 H 404x201 75.5 96.16 16.9 4.59 131.71 122.11 110.09 127.23 95.89 122.11 79.56 116.38 60.97 110.09 42.66 103.25 32.66 95.89 25.81 87.99 H 450x200 76 96.76 18.6 4.40 132.15 121.87 108.96 127.37 93.68 121.87 76.04 115.73 53.49 108.96 39.30 101.61 30.09 93.68 23.77 85.16 H 496x199 79.5 101.3 20.3 4.26 138.06 126.82 112.67 132.83 95.89 126.82 76.47 120.08 52.63 112.67 38.67 104.60 29.61 95.89 23.39 86.52 H 340x250 79.7 101.5 14.6 6.00 140.98 133.97 125.35 137.69 115.30 133.97 103.90 129.85 91.20 125.35 77.14 120.50 58.73 115.30 46.41 109.76 H 250x255 82.2 104.7 10.5 6.09 145.52 138.44 129.75 140.44 119.61 135.82 108.13 130.68 95.33 125.05 81.20 118.96 65.61 112.41 49.37 105.42 H 294x302 84.5 107.7 12.5 7.16 150.62 144.76 137.66 146.57 129.44 142.85 120.17 138.75 109.92 134.26 98.69 129.43 86.47 124.26 73.19 118.76 H 298x299 87 110.8 13.0 7.50 155.20 149.54 142.70 151.20 134.80 147.58 125.92 143.58 116.09 139.22 105.36 134.53 93.71 129.50 81.09 124.17 H 456x201 88.9 113.3 18.9 4.52 155.01 143.42 128.89 149.61 111.71 143.42 91.93 120.62 37.17 111.71 29.37 102.15 Hand Book for Design of Steel Structures 136.50 66.08 128.89 48.55 4-48 Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 H 500x200 89.6 114.2 20.5 4.33 155.81 143.41 127.82 150.04 109.35 143.41 88.01 34.43 109.35 27.21 99.05 H 300x300 94 119.8 13.0 7.51 167.81 161.69 154.30 163.50 145.76 159.60 136.15 155.28 125.54 150.58 113.94 145.52 101.35 140.10 87.71 134.35 H 386x299 94.3 120.1 16.8 7.21 168.00 161.53 153.69 164.95 144.60 161.53 134.38 157.77 123.06 153.69 110.67 149.29 97.19 144.60 82.55 139.63 H 596x199 94.6 120.5 23.9 4.05 163.63 149.27 131.15 156.96 109.57 149.27 84.49 140.65 56.64 131.15 41.61 120.78 31.86 109.57 25.17 97.49 H 506x201 103 131.3 20.7 4.43 179.42 165.64 148.33 173.00 127.85 165.64 104.24 157.40 73.80 148.33 54.22 138.48 41.51 127.85 32.80 116.45 H 300x305 106 134.8 12.6 7.26 188.61 181.41 172.69 183.56 162.60 178.96 151.23 173.87 138.66 168.33 124.91 162.35 109.95 155.96 93.70 149.16 H 304x301 106 134.8 13.2 7.57 188.88 182.07 173.86 184.09 164.37 179.76 153.70 174.97 141.91 169.75 129.04 164.13 115.07 158.13 99.94 151.74 H 338x351 106 135.3 14.4 8.33 190.12 184.09 176.87 185.84 168.57 182.00 159.26 177.77 149.00 173.18 137.83 168.24 125.76 162.97 112.77 157.38 H 434x299 106 135 18.6 7.04 188.69 181.18 172.06 185.15 161.50 181.18 149.59 176.81 136.40 172.06 121.95 166.95 106.20 161.50 89.07 155.71 H 600x200 106 134.4 24.0 4.12 182.72 167.07 147.32 175.45 123.85 167.07 96.60 136.04 110.72 135.99 157.67 61.22 127.82 65.22 147.32 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5 44.98 47.92 118.94 36.69 123.85 28.99 H 390x300 107 136 16.9 7.28 190.31 183.08 174.32 186.90 164.19 183.08 152.78 178.88 140.16 174.32 126.35 169.42 111.33 164.19 95.04 158.64 H 482x300 114 145.5 20.4 6.82 203.13 194.68 184.39 199.15 172.46 194.68 158.99 189.75 144.06 184.39 127.67 178.62 109.77 172.46 85.94 165.91 172.25 H 344x348 115 146 15.1 8.76 205.44 199.35 192.09 201.05 183.76 197.15 174.43 192.87 164.17 188.22 153.01 183.23 140.97 177.90 128.04 H 606x201 120 152.5 24.3 4.22 207.71 190.56 168.97 199.73 143.35 190.56 113.68 180.29 156.66 H 440x300 124 157.4 18.9 7.18 220.15 211.62 201.28 H 488x300 128 163.5 20.8 7.04 H 344x354 131 166.6 14.6 8.42 H 612x202 134 170.7 24.6 H 350x350 137 173.9 15.2 H 582x300 137 174.5 H 388x402 140 178.5 43.77 143.35 34.58 129.04 216.12 189.30 211.62 175.81 206.66 160.89 201.28 144.55 195.49 126.76 189.30 107.44 182.74 228.53 219.44 208.41 224.24 195.62 219.44 181.20 214.15 165.25 208.41 147.76 202.22 128.70 195.62 107.96 188.61 234.17 226.85 218.10 228.94 208.03 224.26 196.74 219.12 184.31 213.53 170.78 207.52 156.16 201.11 140.44 194.30 4.32 232.85 214.24 190.84 224.19 163.10 214.24 131.05 203.10 51.17 163.10 40.43 147.63 8.84 244.76 237.60 229.06 239.58 219.27 234.98 208.32 229.93 196.27 224.46 183.17 218.58 169.04 212.31 153.88 205.66 24.3 6.63 243.37 232.85 220.01 238.41 205.10 232.85 188.26 226.70 169.58 220.01 149.04 212.81 126.56 205.10 97.51 196.92 16.6 9.56 251.72 245.07 237.20 246.99 228.20 242.78 218.16 238.17 207.13 233.19 195.17 227.84 182.29 222.15 168.51 216.13 Hand Book for Design of Steel Structures 77.81 168.97 90.97 190.84 57.17 66.83 177.50 4-49 Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight [Note: * = Not Available] Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 Cm cm cm Kly=1 H 388x402 140 178.5 16.6 9.56 251.72 245.07 237.20 246.99 228.20 242.78 218.16 238.17 207.13 233.19 195.17 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5 227.84 182.29 222.15 168.51 216.13 H 446x302 145 184.3 19.0 7.24 257.85 247.97 236.01 253.19 222.16 247.97 206.57 242.24 189.32 236.01 170.44 229.31 149.90 222.16 127.60 214.58 H 394x398 147 186.8 17.3 10.06 263.74 257.22 249.54 259.03 240.78 254.87 231.03 250.34 220.33 245.44 208.73 240.20 196.27 234.62 182.95 228.71 H 494x302 150 191.4 20.9 7.10 267.61 257.09 244.33 262.65 229.55 257.09 212.89 250.98 194.46 244.33 174.26 237.18 152.26 229.55 128.34 221.45 H 588x300 151 192.5 24.8 6.85 268.79 257.67 244.15 263.55 228.45 257.67 210.74 251.19 191.12 244.15 169.58 236.56 146.07 228.45 114.68 219.84 H 350x357 156 198.4 14.7 8.52 278.97 270.39 260.13 272.78 248.35 267.28 235.15 261.23 220.62 254.66 204.80 247.59 187.72 240.05 169.36 232.06 H 692x300 166 211.5 28.5 6.53 294.80 281.78 265.89 288.67 247.41 281.78 226.54 274.18 203.36 265.89 177.86 256.96 149.91 247.41 114.68 237.27 H 394x405 168 214.4 16.7 9.65 302.42 294.53 285.20 296.78 274.54 291.78 262.65 286.30 249.60 280.38 235.44 274.03 220.20 267.28 203.90 260.12 H 400x400 172 218.7 17.5 10.12 308.82 301.25 292.33 303.36 282.17 298.54 270.84 293.28 258.43 287.61 244.98 281.52 230.52 275.05 215.08 268.21 H 594x302 175 222.4 24.8 6.90 310.64 297.94 282.50 304.65 264.59 297.94 244.39 290.54 222.01 282.50 197.46 273.84 170.68 264.59 141.47 254.77 H 700x300 185 235.5 29.2 6.77 328.70 314.90 298.10 322.20 278.59 314.90 256.58 306.86 232.17 298.10 205.37 288.67 176.09 278.59 137.31 267.89 H 792x300 191 243.4 32.3 6.39 338.97 323.53 304.66 331.71 282.69 323.53 257.85 314.50 230.24 304.66 199.82 294.04 166.43 282.69 126.25 270.62 H 400x408 197 250.7 16.8 9.74 353.70 344.59 333.82 347.14 321.53 341.35 307.82 335.01 292.77 328.15 276.45 320.80 258.89 312.98 240.12 304.70 H 800x300 210 267.4 33.0 6.61 372.90 356.73 337.00 365.28 314.07 356.73 288.18 347.28 259.45 337.00 227.86 325.92 193.28 314.07 148.75 301.49 *H 890x299 213 270.9 35.7 6.17 376.72 358.70 336.61 368.25 310.85 358.70 281.70 348.13 249.23 336.61 213.40 324.17 173.92 310.85 130.95 296.69 H 414x405 232 295.4 17.7 10.24 417.24 407.17 395.32 410.03 381.83 403.66 366.80 396.71 350.33 389.21 332.48 381.17 313.31 372.63 292.84 363.59 *H 900x300 243 309.8 36.4 6.38 431.41 411.72 387.65 422.15 359.62 411.72 327.93 400.20 292.70 387.65 253.90 374.11 211.29 359.62 160.19 344.22 *H 428x407 283 360.7 18.2 10.45 509.70 497.71 483.63 501.21 467.61 493.68 449.78 485.47 430.25 476.61 409.10 467.14 386.40 457.06 362.15 446.41 *H 912x302 286 364 37.0 6.57 507.47 485.24 458.11 497.01 426.57 485.24 390.95 472.25 351.40 458.11 307.90 442.87 260.26 426.57 199.61 409.26 *H 458x417 415 528.6 18.8 10.70 747.32 730.27 710.27 735.59 687.55 725.05 662.29 713.58 634.63 701.21 604.70 688.00 572.57 673.95 538.29 659.12 *H 498x432 605 770.1 19.7 11.07 1089.5 1065.7 1037.9 1073.57 1006.4 1059.1 971.33 1043.37 933.00 1026.4 891.55 1008.36 847.10 989.17 799.70 968.91 Hand Book for Design of Steel Structures 4-50 Table 4.15: Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 T 50x100 8.6 10.95 1.21 2.47 11.27 4.13 1.83 1.83 1.03 1.03 0.66 0.66 0.46 0.46 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5 0.34 0.34 0.26 0.26 0.20 0.20 T 99x99 9.1 11.59 2.84 2.21 14.61 11.26 6.48 9.89 3.64 6.02 2.33 3.85 1.62 2.67 1.19 1.96 0.91 1.50 0.72 1.19 T 74x100 10.5 13.42 1.96 2.37 16.50 11.85 5.90 5.90 3.32 3.32 2.12 2.12 1.47 1.47 1.08 1.08 0.83 0.83 0.66 0.66 T 100x100 10.7 13.58 2.9 2.22 17.14 13.24 7.66 11.83 4.31 7.35 2.76 4.70 1.91 3.27 1.41 2.40 1.08 1.84 0.85 1.45 T 62.5x125 11.9 15.16 1.52 3.11 17.31 9.02 4.01 4.01 2.25 2.25 1.44 1.44 1.00 1.00 0.74 0.74 0.56 0.56 0.45 0.45 T 124x124 12.8 16.34 3.57 2.79 21.38 18.04 13.70 16.65 8.19 13.08 5.24 8.58 3.64 5.96 2.67 4.38 2.05 3.35 1.62 2.65 T 125x125 14.8 18.83 3.63 2.79 24.63 20.78 15.78 19.37 9.43 15.36 6.04 10.22 4.19 7.10 3.08 5.21 2.36 3.99 1.86 3.15 T 97x150 15.3 19.51 2.53 3.61 25.17 20.56 14.51 14.51 8.04 8.04 5.14 5.14 3.57 3.57 2.62 2.62 2.01 2.01 1.59 1.59 T 75x150 15.8 20.07 1.82 3.75 24.23 16.43 7.61 7.61 4.28 4.28 2.74 2.74 1.90 1.90 1.40 1.40 1.07 1.07 0.85 0.85 T 149x149 16 20.4 4.39 3.29 27.20 23.92 19.72 22.96 14.63 19.73 9.10 16.00 6.32 11.25 4.64 8.26 3.55 6.33 2.81 5.00 T 150x150 18.4 23.39 4.45 3.29 31.19 27.43 22.61 26.46 16.77 22.84 10.43 18.66 7.24 13.25 5.32 9.73 4.07 7.45 3.22 5.89 T 87.5x175 20.1 25.61 2.12 4.38 32.03 24.15 13.17 13.17 7.41 7.41 4.74 4.74 3.29 3.29 2.42 2.42 1.85 1.85 1.46 1.46 T 173x174 20.7 26.34 5.08 3.88 35.65 32.31 28.08 31.16 23.03 27.82 17.13 24.00 11.34 19.70 8.33 14.29 6.38 10.94 5.04 8.64 T 122x175 22.1 28.12 3.2 4.18 37.39 32.68 26.64 26.64 19.29 19.29 11.86 11.86 8.24 8.24 6.05 6.05 4.63 4.63 3.66 3.66 T 175x175 24.8 31.57 5.08 3.95 42.79 38.88 33.95 37.35 28.06 33.34 21.20 28.77 14.09 23.61 10.35 17.12 7.93 13.11 6.26 10.36 T 100x200 24.9 31.77 2.41 5.02 40.67 32.61 21.95 21.95 11.88 11.88 7.60 7.60 5.28 5.28 3.88 3.88 2.97 2.97 2.35 2.35 T 100x204 28.1 35.77 2.67 4.88 46.52 38.71 28.53 28.53 16.41 16.41 10.50 10.50 7.29 7.29 5.36 5.36 4.10 4.10 3.24 3.24 T 198x199 28.3 36.08 5.76 4.48 49.34 45.61 40.92 44.14 35.39 40.35 29.01 36.04 20.71 31.23 15.22 25.89 11.65 19.26 9.21 15.22 T 147x200 28.4 36.19 3.97 4.71 49.07 44.62 39.01 39.01 32.32 32.32 24.51 24.51 16.32 16.32 11.99 11.99 9.18 9.18 7.25 7.25 T 122x252 32.2 41.03 3.29 5.98 54.71 48.11 39.66 39.66 29.42 29.42 18.29 18.29 12.70 12.70 9.33 9.33 7.15 7.15 5.65 5.65 Hand Book for Design of Steel Structures 4-51 50 55.77 16.68 23.3 60.99 6.95 54.74 47.35 2.44 T 223x199 33.Currently not available].38 83.28 48.77 56.51 54.58 38.98 13.33 78.39 16.24 T 225x200 38.16 57.96 T 170x250 39.40 3.34 38.64 44.17 14.42 12.90 79.01 66.79 13.26 23.34 51.35 10.62 4.82 22.5 KLy=6 KLy=3 KLy=7 KLy=3.95 22.8 50.95 14.16 58.98 10.63 32.38 26.44 54.36 61.55 48.73 55.51 52.27 69.64 72.93 6.06 52.05 5.51 7.73 12.1 60.01 13.98 68.46 41.68 16.26 65.21 9.05 81.51 9.5 KLy=4 KLy=2 KLy=5 KLy=2.40 14.58 57.38 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.49 66.93 61.19 5.51 18.17 11.70 69.42 56.85 2.54 57.84 10.62 T 168x249 34.79 49.35 35.04 3.20 T 125x250 36.Table 4.74 36.81 61.29 17.20 40.91 27.00 38.81 74.28 5.38 6.98 18.63 73.90 54.51 14.08 62.06 24.87 63.5 65.60 22.64 59.81 49.83 3.19 25.04 7.68 8.81 40.86 32.87 57.39 T 298x199 47.16 73.48 28.01 15.28 36.49 11.7 50.36 6.85 4.50 45.16 63.82 16.51 24.08 T 250x200 44.95 T 104x202 32.51 18.56 54.8 57.52 20.2 42.48 11.31 26.35 61.40 23.68 41.76 4.69 37.8 41.19 7.87 22.79 47.43 70.67 27.66 6.69 49.48 4.34 16.06 5.09 2.72 43.19 18.52 78.34 24.28 20.86 68.58 49.09 14.79 40.47 5.74 23.96 49.13 53.60 65.45 58.81 52.87 70.09 46.63 5.41 21.64 7.64 7.08 74.16 54.34 3.65 7.79 8.3 53.18 53.04 4.19 T 200x200 33.15 84.63 44.08 9.40 10.02 17.23 48.84 12.38 47.43 89.51 36.35 25.77 51.74 61.17 16.17 70.26 19.28 4.45 5.28 13.16 48.68 4.95 83.79 10.12 7.07 35.42 32.00 61.17 43.14 10.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.17 10.90 12.08 4.63 6.40 48.70 77.36 44.63 29.22 30.34 42.36 54.03 63.08 60.68 10.29 55.92 60.0 42.42 15.41 18.37 65.14 T 193x299 47.50 61.5 55.52 26.53 51.27 55.44 8.54 24.97 11.90 30.17 49.49 4.67 4.5 4.95 12.90 10.51 T147x302 42.19 3.61 36.21 82.17 32.71 82.73 63.03 37.89 3.87 32.03 45.39 19.34 15.45 45.93 47.82 T 300x200 52.8 67.01 18.81 52.56 48.62 41.35 7.1 42.81 29.51 74.63 15.7 41.45 11.52 16.93 71.95 T 125x255 41.33 57.36 29.48 44.22 12.83 22.20 11.41 64.61 41.01 11.18 13.30 41.14 21.49 9.94 73.09 679.1 52.40 7.79 11.15 6.41 29.24 5.96 43.84 10.51 7.0 48.71 38.34 16.6 44.68 T 253x201 51.33 57.28 28.60 42.12 91.29 47.68 3.65 7.38 13.76 60.17 35.3 4.51 80.5 KLy=8 KLy=4 KLy=9 KLy=4.90 T 149x299 43.77 T 150x300 47.95 10. Hand Book for Design of Steel Structures 4-52 .99 4.98 14.71 24.86 42.78 36.66 8.29 4.84 28.62 47.14 29.0 59.29 60.51 63.48 6 69.48 18.41 16.80 36.72 30.54 19.55 73.01 19.64 56.41 20.06 32.38 37.41 53.13 16.74 11.57 53.73 74.77 12.76 4.59 7.97 16.04 34.23 9.04 18.05 T 124x249 33.94 51.78 24.51 26.78 74.39 12.64 5.2 46.90 16.31 41.42 44.5 T 149x201 32.68 29.02 24.68 87.42 9.85 5.37 49.40 66.45 T 248x199 39.99 7.63 56.33 77.04 64.20 48.42 20.26 37. 44 27.42 102.83 25.53 78.63 107.66 7.84 84.1 67.66 7.40 77.76 70.70 59.25 84.79 42.26 64.31 19.11 T 172x354 65.23 23.55 114.28 4.79 83.45 28.93 18.97 105.70 79.98 83.68 69.19 52.9 137.44 24.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.21 73.39 107.10 128.54 6.45 107.24 119.84 118.27 9.90 22.06 37.87 65.3 73 4.89 55.98 14.37 79.47 73.65 5.62 126.15 73.70 46.68 80.06 65.01 26.30 35.40 88.66 60.4 83.88 64.95 22.89 7.83 18.83 95.07 126.34 38.04 T 241x300 57.94 67.85 6.8 78.5 KLy=6 KLy=3 KLy=7 KLy=3.99 114.57 90.53 14.79 95.52 5.25 56.20 75.51 55.03 45.68 109.11 18.69 37.05 109.58 71.69 95.58 61.89 42.08 39.79 29.17 103.77 90.05 81.31 T 291x300 68.64 61.0 85.39 4.78 29.9 99.28 80.44 100.62 23.86 37.84 7.52 79.20 25.69 50.14 54.33 9.87 43.25 8.94 79.63 4.1 72.17 96.8 76.78 99.25 65.00 107.22 103.05 7.39 55.41 35.46 T 175x357 77.10 89.00 43.26 94.82 61.19 38.08 52.12 103.53 96.41 3.2 86.87 63.26 91.20 112.39 59.18 47.49 69.19 4.84 19.53 136.Table 4.68 T 303x201 59.69 29.82 101.35 6.71 88.31 116.23 47.18 31.85 71.98 18.51 90.23 T 197x398 73.12 T 244x300 64.66 25.92 25.95 52.19 T 194x400 95.88 31.51 83.84 71.06 50.76 83.63 61.34 112.62 17.0 89.92 26.94 55.05 54.29 69.23 61.18 63.31 73.70 79.04 70.3 101 4.93 22.25 35.33 92.48 45.24 9.34 29.41 27.86 77.04 52.40 75.78 T 169x351 53.44 84.59 96.Currently not available].6 96.4 67.11 T 195x300 53.70 70.54 109.9 67.41 95.25 86.45 43.68 72.39 113.11 38.82 78.06 72.35 23.30 52.27 25.51 37.98 T 178x352 79.71 8.92 32.05 T 152x301 52.01 T 294x300 75.03 95.22 78.69 5.27 63.32 81.51 31.94 4.51 81.90 27.05 7.00 32.65 8.45 20.92 19.50 114.46 T 220x300 61.2 81.41 109.99 22.76 6.70 T 175x350 68.67 116.93 31.99 28.5 T 150x305 52.18 68.85 134.42 36.9 67.95 29.23 17.88 39.49 88.17 103.36 92.83 54.33 108.3 93.68 55.05 83.11 46.38 95.91 81.15 52.39 67.21 106.23 96.09 119.05 76.90 T 306x202 67.11 74.71 83.90 22.58 97.48 11.69 59.31 88.84 15.53 11.24 8.34 95.28 93.15 67.37 112.23 88.64 43.44 19.75 74.63 85.98 5.48 T 217x299 53.55 100.58 T 172x348 57.28 21.45 31.08 125.02 69.69 48.18 43.63 87.15 70.51 94.24 8.12 34.25 46.11 8.59 88.40 67.84 98.39 128.07 70.87 46.39 68.44 36.47 84.19 23.22 94.31 61.83 69.79 81.5 KLy=8 KLy=4 KLy=9 KLy=4.27 4.40 79.59 8.35 29.95 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.05 37. Hand Book for Design of Steel Structures 4-53 .64 50.07 63.07 114.04 93.39 101.18 8.12 84.68 10.28 82.98 27.02 57.86 114.41 4.68 15.83 122.34 33.32 43.27 35.06 95.59 106.49 79.18 76.63 121.62 95.40 95.91 95.15 103.28 71.23 90.93 24.93 83.43 114.25 84.29 79.18 34.26 43.18 115.69 106.64 57.76 6.04 22.5 87.62 31.0 67.79 14.71 69.54 123.78 97.98 95.5 KLy=4 KLy=2 KLy=5 KLy=2.22 92.42 50.15 59.82 106.79 17.32 4.20 37.28 80.86 28.29 86.05 14.45 99. 66 94.80 128.49 31.70 4.29 151.62 186.7 11.Currently not available].82 132.47 70.20 189.88 141.19 38.34 9.99 119.30 5.85 39.29 157.97 123.02 T 350x300 92.9 6.3 6.59 T 396x300 95.36 96.51 67.30 4.6 121.67 111.80 164.10 150.42 57.0 147.05 39.03 80.21 131.46 150.64 116.02 158.15 T 197x405 84.30 105.83 73.5 KLy=6 KLy=3 KLx=7 93.06 138.Table 4.79 115.44 6.43 74.34 46.02 157.77 162.43 110.49 T 297x302 87.95 10.34 T 400x300 105 133.3 111.2 8.29 165.01 Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.81 128.91 173.36 173.64 126.38 111.65 85.67 126.7 10.4 125.02 116.59 131.86 T 200x400 85.23 46.20 203.55 88.03 101.17 98.98 132.92 115.1 6.46 178.17 131.15 170.53 123.29 160.80 150. Hand Book for Design of Steel Structures 4-54 .27 138.40 106.15 98.88 131.40 9.65 46.13 139.65 136.02 101.09 139.82 129.86 38.30 139.20 141.5 76.26 157.76 10.88 153.85 31.7 12.76 131.93 73.1 6.75 172.59 106.76 151.78 164.51 119.40 149.64 128.40 128.62 125.32 148.93 122.38 80.20 5.1 107.48 161.07 176.40 76.18 85.60 99.75 152.46 67.85 155.99 135.02 150.7 10.65 58.93 68.15 123.96 141.05 52.65 148.19 49.70 116.91 112.05 T 207x405 116.01 T 200x408 KLy=3 KLy=1.51 101.31 144.74 88.93 52.65 101.9 155.23 46.38 168.38 58.38 169.28 104.52 181.88 119.8 109.06 58.85 83.49 144.38 93.5 KLy=4 KLy=2 KLy=5 KLy=2.79 144.53 147.63 132.51 85.03 139.70 62.83 KLy=7 KLy=3.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 Kly=1 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm T 346x300 83 105.5 KLy=8 KLy=4 KLy=9 KLy=4.4 117.24 145.00 102.46 49.83 114.36 153.68 114.40 101.30 145.46 135.33 140.74 113.22 74.06 58. 21 3.53 EL 45x45 3.02 0.46 0.97 2.66 0.52 1.27 1.23 0.81 2.26 0.62 0.85 EL 50x50 3.24 0.08 0.14 0.09 0.12 1.95 3.78 EL 40x40 2.33 0.25 1.13 0.71 0.74 0.05 0.59 4.39 0.27 1.06 3.98 1.62 0.02 0.04 0.22 0.03 0.32 0.01 0.5 6.06 0.74 0.367 EL 25x25 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.03 1.53 1.62 1.70 2.18 0.59 0.27 0.03 0.26 0.06 0.14 0.04 0.12 0.05 0.16 EL 45x45 2.32 EL 65x65 5.38 0.25 1.36 1.26 0.47 0.56 0.03 0.36 3.53 0.74 3.41 3.85 1.77 2.727 0.16: Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 cm cm cm Kly=1 Kly=2 1.73 0.68 4.17 0.427 0.99 1.48 2.98 9.84 1.18 0.07 0.747 0.97 0.14 10.36 EL 40x40 3.04 0.45 1.09 0.02 0.91 0.127 2.78 0.18 0.83 2.07 0.28 0.86 1.20 0.47 0.32 0.82 0.5 KLy=4 KLy=2 KLy=5 KLy=2.747 0.06 0.06 1.26 0.29 0.19 4.14 0.492 1.692 EL 50x50 3.08 1.52 1.47 0.08 0.88 0.07 0.74 0.74 0.22 1.28 0.37 0.08 0.90 1.644 EL 60x60 4.20 0.26 0.46 0.02 0.18 7.02 0.16 0.55 2.06 0.53 1.11 0.15 0.19 0.14 0.52 0.908 0.22 0.18 0.43 5.18 2.23 0.77 4.02 0.33 2.04 0.96 1.23 0.42 0.03 0.14 0.07 0.84 7.36 0.46 0.32 0.10 0.755 1.25 0.14 0.908 1.13 0.23 0.02 4.01 0.13 0.09 0.22 4.03 0.86 5.09 0.19 0.52 0.802 EL 50x50 4.10 0.10 0.45 2.91 7.15 0.00 6.03 0.40 1.16 EL 25x25 1.90 1.01 0.41 0.07 0.97 0.38 0.46 0.527 1.10 0.09 0.53 0.90 1.62 0.04 0.70 2.47 EL 75x75 6.03 0.02 0.41 0.06 0.11 0.91 0.01 0.44 0.03 0.02 0.27 1.52 4.09 0.36 1.71 5.82 0.40 0.41 0.38 1.55 5.84 1.08 1.78 0.19 0.21 1.14 0.06 0.04 1.78 0.40 EL 30x30 2.76 0.19 0.17 1.03 0.38 8.59 0.51 0.97 1.41 0.15 0.63 0.13 0.52 0.06 0.892 1.55 5.38 1.32 1.26 1.72 0.2 3.5 0.71 3.08 0.66 0.09 0.04 0.41 0.89 2.05 0.25 EL 50x50 2.16 0.91 1.802 EL 65x65 5.12 0.40 2.18 0.5 KLy=8 KLy=4 KLy=9 KLy=4.18 0.20 0.89 1.62 1.57 1.71 0.60 0.14 0.06 0.05 0.27 0.46 1.59 Hand Book for Design of Steel Structures 4-55 .23 2.66 EL 40x40 2.25 0.34 0.23 0.52 3.38 0.44 0.53 1.43 0.10 0.41 1.27 0.14 2.14 0.16 0.09 0.17 0.20 0.36 0.3 2.10 0.21 EL 30x30 1.09 0.84 0.32 0.81 1.26 0.60 0.33 0.02 0.04 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.Table 4.29 0.13 0.26 2.38 EL 70x70 6.84 1.35 0.11 0.69 3.85 8.82 0.727 2.03 0.3 11.5 KLy=6 KLy=3 0.48 1.07 0.26 0.05 0.03 0.72 4.34 0.5 1.88 2.08 8.02 0.302 1.08 0.90 1.38 3.78 0.72 0.05 0.84 0.36 1.73 0.11 0.23 1.42 3.38 4.05 0.25 2.14 EL 40x40 1.31 0.32 0.15 0.62 0.85 5.81 1.03 0.81 0.19 EL 60x60 3.336 1.27 1.73 0.2 1.51 1.52 1.41 0.35 0.06 0.13 0.20 0.26 4.03 0.20 0.15 0.02 0.28 6.52 5.23 0.10 0.55 0.09 0.09 0.15 0.10 0.73 1.02 0.32 0.42 0.45 0.56 0.09 0.99 7.91 0.19 0.26 0. 46 10.81 7.64 EL 75x75 13 16.07 20.80 42.28 2.33 2.76 2.46 11.96 1.71 2.1 24.03 1.04 32.68 18.77 0.01 4.99 3.91 0.10 6.32 5.89 9.83 3.03 EL 90x90 9.59 1.77 4.66 1.32 9.69 2.36 2.97 8.46 2.82 EL 100x100 10.15 4.60 4.33 2.5 KLy=4 KLy=2 KLy=5 KLy=2.20 48.62 12.93 EL 150x150 27.22 7.70 3.98 9.63 20.87 14.65 1.85 39.91 EL 150x150 33.61 32.83 2.23 4.34 5.68 28.99 5.36 1.89 11.20 4.28 EL 100x100 14.33 1.32 3.72 48.55 2.64 38.72 2.7 13.42 25.64 7.87 25.22 2.0 21.51 54.41 16.33 1.13 7.35 4.25 23.70 1.30 1.61 1.93 9.46 4.Table 4.77 13.70 1.6 42.01 1.12 21.11 2.87 28.84 1.62 3.30 1.30 14.42 6.51 20.69 3.07 35.25 2.52 32.66 6.83 2.73 5.02 5.26 6.51 1.04 8.08 2.82 0.54 19.61 KLy=7 KLy=3.9 19 3.88 1.21 3.04 6.01 6.84 1.9 20.96 1.46 16.51 1.39 10.09 27.59 12.74 34.39 7.9 22.49 20.35 4.63 2.16(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.72 44.26 4.76 19.71 3.87 18.31 1.23 EL 90x90 15.61 8.08 9.25 3.35 1.59 0.93 5.57 2.76 3.30 11.56 4.52 6.88 5.04 3.94 1.85 34.04 25.25 16.19 0.02 3.65 4.51 2.7 26.28 3.41 42.76 15.39 17.28 17.39 5.96 40.56 2.80 13.71 22.12 10.52 24.08 1.77 5.61 25.3 34.85 28.03 15.65 2.59 EL 120x120 14.72 1.05 12.04 10.19 22.60 3.42 4.13 2.88 EL 90x90 17.19 1.92 4.08 3.33 13.52 20.35 1.47 0.67 15.74 4.68 14.5 1.31 3 3 32.64 10.18 39.28 10.80 48.14 9.53 5.52 5.04 5.54 17.88 4.01 44.49 15.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 EL 80x80 7.87 18.04 26.53 13.7 2.63 3.74 4.57 3.23 2.78 2.51 7.35 13.98 EL 100x100 17.34 36.23 5.72 1.68 2.68 10.90 16.15 3.38 2.65 EL 100x100 19.43 10.52 13.28 3.14 5.15 18.93 49.05 0.761 1.53 15.51 26.66 2.10 4.38 56.43 4.79 45.30 22.63 44.41 35.38 1.30 7.63 24.52 3.38 5.68 7.85 14.44 22.24 16.43 5.36 3.52 2.67 32.46 3.28 11.33 3.94 11.33 2.98 1.22 20.76 3.71 2.03 1.04 1.62 21.87 22.77 2.96 3.96 12.59 0.18 EL 75x75 9.20 2.79 11.21 39.21 5.00 52.63 EL 130x130 17.7 18.42 32.71 25.47 EL 90x90 8.327 2.5 KLy=8 KLy=4 KLy=9 KLy=4.72 2.35 9.81 9.12 5.64 1.07 13.03 0.30 11.39 9.19 15.3 17 2.01 30.41 9.50 1.02 3.77 8.7 3.75 3.08 16.08 18.52 9.32 1.52 8.18 1.24 11.67 10.40 29.73 8.53 8.30 11.33 8.36 2.01 9.23 7.96 13.13 9.46 7.13 4.91 14.69 17.10 24.34 9.74 28.75 48.64 32.48 7.52 12.72 EL 65x65 7.93 3.53 11.22 EL 175x175 31.32 2.56 58.39 EL 130x130 28.Currently not available].42 18.68 6.23 3.69 2.63 2.22 2.70 2.14 3.07 25.92 5.30 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.50 1.91 0.11 3.66 9.25 5.46 24.61 4.93 11.05 1.61 47.02 29.01 2.31 1.04 EL 90x90 13.3 2.85 20.66 3.62 2.33 2.68 5.62 2.08 14.8 36.8 40.77 0. Hand Book for Design of Steel Structures 4-56 .78 EL 130x130 23.83 2.80 8.8 22.51 5.53 4.01 38.99 25.68 15.42 39.33 3.54 15.72 0.35 7.85 21.35 3.51 1. 87 EL 200x200 45.6 7.29 76.84 115.19 154.92 114.14 80.69 66.55 17.20 69.91 59.68 47.35 5.24 118.87 13.09 105.48 43.20 31.78 106.09 6.58 60.75 6.31 60.5 EL 175x175 39.68 EL 200x200 59.76 71.51 136.49 7.93 71.37 43.03 EL 200x200 73.27 18.18 86. Hand Book for Design of Steel Structures 4-57 .9 53.39 47.25 45.69 71.14 6.16(Continued): Compression Capacity (Ton) For L Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.37 154.36 209.49 78.4 50.27 EL 150x150 41.40 154.52 4.5 KLy=8 KLy=4 KLy=9 KLy=4.82 86.04 67.95 52.12 18.19 114.68 40.17 154.84 96.19 170.67 43.97 115.65 170.94 47.Currently not available].71 23.43 71.78 96.14 40.75 60.20 58.47 89.35 69.69 89.49 69.6 93.21 5.77 27.52 73.14 31.18 94.71 31.36 197.5 KLy=4 KLy=2 KLy=5 KLy=2.49 94.66 118.75 52.26 123.24 137.67 52.37 84.19 126.51 126.36 31.12 23.38 4.77 36.37 65.62 35.86 145.7 119.5 KLy=6 KLy=3 KLy=7 KLy=3.63 167.66 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.73 197.04 6.86 136.39 54.92 102.40 137.49 227.48 EL 250x250 93.75 219.68 27.42 209.75 6.55 13.4 7.92 22.25 36.17 145.28 54.91 52.04 130.28 60.34 161.Table 4.17 66.62 47.17 59.84 35.76 84.3 57.94 58.63 7.93 55.97 106.03 55.36 43.47 EL 250x250 128.95 45.82 78.73 184.0 162.7 76 6.92 17.65 184.20 22.63 100.69 102. 87 3.13 38.60 0.58 26.03 2.16 23.51 4.5 KLy=4 KLy=2 KLy=5 KLy=2.05 UL 150x90 16.72 4.83 37.43 31.79 2.94 7.Currently not available].27 2.57 0.4 28.69 6.92 1.77 18.97 2.97 29.03 3.2 17.7 35.75 0.02 8.31 8.23 UL 125x90 16.81 10.87 15.5 3.1 20.26 1.10 2.81 13.1 21.87 5.72 29.93 2.51 9.94 4.81 2.78 3.56 21.16 3.04 1.45 5.57 2.89 6.91 8.93 3.51 9.96 2.68 10.15 2.18 14.85 1.11 2.30 4.18 4.37 6.76 2.32 12.06 2.94 14.14 17.94 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.25 4.73 11.29 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.19 16.47 19.11 17.79 1.43 2.63 6.97 2.46 18.48 0.88 28.78 3.52 1.96 28.66 40.08 6.14 7.21 5.21 5.00 3.09 1.02 12.04 2.80 14.10 11.5 27.60 7.90 12.57 1.98 2.06 23.49 4.03 2. Hand Book for Design of Steel Structures 4-58 .54 21.15 20.77 UL 125x90 20.53 2.03 9.77 3.49 3.8 46.47 1.69 13.13 7.46 2.74 27.79 3.47 5.50 6.9 19.37 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.48 3.43 4.26 3.17 16.27 4.96 11.18 20.89 10.41 5.85 18.65 8.19 14.16 UL 150x100 27.42 24.45 12.18 2.5 UL 125x75 14.36 11.91 8.86 1.69 24.71 10.75 3.66 7.38 1.88 UL 150x100 22.78 2.05 14.7 UL 90x75 11 UL 100x75 13 16.69 9.52 0.69 6.31 3.35 8.1 24.5 KLy=8 KLy=4 KLy=9 KLy=4.11 3.32 6.18 5.69 11.46 13.26 1.59 26.69 15.44 2.57 33.36 4.17: Compression Capacity (Ton) For UL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 cm cm cm Kly=1 Kly=2 11.81 22.72 1.5 KLy=6 KLy=3 UL 100x75 9.10 1.12 1.63 14.81 16.71 17.28 1.50 9.51 21.38 29.93 3.79 10.16 22.13 7.04 30.65 31.48 18.94 4.79 6.4 20.42 6.77 2.70 3.94 2.90 0.80 6.38 4.34 7.03 15.30 6.71 2.10 UL 150x90 21.93 9.29 4.62 4.79 35.29 33.Table 4.56 4.66 22.91 23.74 2.33 2.14 6.51 13.60 3.90 25.72 8.6 26.37 UL 125x75 19.17 28.75 4.51 UL 125x75 10.35 1.73 15.52 27.12 7.88 6.94 11.98 3.16 UL 150x100 17.42 2.23 11.20 2.66 13.90 19.62 17.93 2.47 35.96 27.18 2.51 3.54 19.01 2.84 4.58 3.5 1.91 2.71 24.49 24.80 1.43 18.69 2.89 1.23 2.80 4.00 22.74 11.91 10.88 23.35 4.74 2.32 4. 84 15.44 0.02 ELL 30x30 3.23 1.27 ELL 60x60 8.16 0.05 0.83 5.35 0.16 0.59 1.86 11.39 2.60 0.45 1.25 0.11 0.18 0.39 6.29 1.27 0.29 0.01 Hand Book for Design of Steel Structures KLy=3 KLy=1.54 9.29 1.57 0.38 0.24 0.03 0.18 0.01 7.61 0.82 0.35 0.75 0.63 0.62 0.64 0.62 0.59 1.53 1.39 4.49 2.28 2.41 0.28 0.28 1.05 0.13 0.50 ELL 65x65 10 12.62 0.82 0.10 0.63 0.08 1.94 3.34 1.79 3.25 0.88 0.29 10.54 0.40 1.64 1.36 2.64 0.42 1.60 1.41 0.02 ELL 25x25 2.21 0.45 0.63 0.79 5.10 1.75 ELL 65x65 12.58 0.95 0.55 9.16 1.41 0.04 0.94 2.21 0.96 0.27 0.12 0.02 0.5 KLy=6 KLy=3 KLx=7 KLy=7 KLy=3.58 2.84 2.61 0.604 1.50 0.34 0.30 0.40 4.42 0.66 5.82 0.03 0.22 0.60 4.82 0.18: Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 ELL 25x25 2.06 0.68 0.75 1.21 0.37 0.05 0.03 0.57 0.86 0.26 2.34 0.94 14.75 1.52 2.49 3.48 1.24 0.784 1.05 0.57 0.36 1.68 0.19 1.10 0.60 0.25 0.18 0.99 0.91 7.26 3.63 0.18 ELL 50x50 6.12 0.96 0.672 0.08 2.42 0.73 6.64 2.34 0.98 0.04 0.454 0.68 1.7 17.08 0.27 ELL 50x50 7.04 8.68 9.66 4.06 0.24 5.89 0.11 ELL 40x40 4.31 2.98 8.22 0.20 1.52 1.12 5.05 ELL 40x40 4.86 0.11 0.288 1.72 11.53 2.57 0.36 5.9 7.67 1.08 0.14 0.79 6.13 0.07 0.16 0.23 0.45 2.28 1.08 0.68 1.10 0.93 0.52 2.52 2.88 0.38 1.46 0.51 1.15 0.28 2.11 0.14 0.21 0.28 2.18 0.52 0.35 3.14 0.89 0.15 0.85 2.604 1.19 10.604 1.98 0.95 0.14 3.84 6.47 0.56 1.22 7.48 2.35 0.76 8.04 8.60 0.37 0.40 0.32 0.90 0.64 0.39 1.48 2.28 0.03 0.42 0.43 0.52 1.02 1.13 ELL 45x45 5.73 1.35 0.32 0.04 9.18 0.12 1.68 1.49 4.42 0.40 0.59 13.18 0.77 2.86 16.08 2.15 0.12 0.48 1.35 0.71 5.90 5.78 0.24 1.62 0.58 0.11 2.11 ELL 40x40 5.24 0.11 ELL 40x40 4.03 0.78 2.81 0.25 0.41 0.40 0.054 1.72 3.34 0.60 1.92 0.67 1.78 3.11 0.45 1.23 0.44 0.29 0.29 0.03 0.92 0.1 11.15 0.28 1.39 2.01 3.18 0.36 9.08 0.96 1.06 0.88 1.96 0.49 0.81 0.25 10.73 3.86 6.49 ELL 60x60 9.42 2.75 5.06 1.59 0.18 0.94 2.23 0.59 0.254 1.28 1.89 0.28 1.34 0.14 0.45 0.14 0.46 0.07 0.10 0.19 0.75 1.10 0.05 ELL 30x30 3.76 16.12 7.99 0.28 0.08 0.19 0.05 0.43 0.24 2.55 0.13 5.61 1.28 0.64 ELL 65x65 11.78 ELL 70x70 13.82 15.13 1.91 1.5 4-59 .21 0.92 1.01 1.02 0.54 4.41 5.454 2.24 0.23 0.21 3.46 3.984 1.81 0.08 0.384 1.15 1.24 0.854 0.54 13.28 ELL 50x50 7.05 0.81 0.54 0.41 0.18 ELL 45x45 6.99 2.48 6.40 2.89 18.28 3.06 0.Table 4.02 0.11 9.20 1.5 KLy=8 KLy=4 KLy=9 KLy=4.09 21.30 0.12 9.13 3.35 0.5 KLy=4 KLy=2 KLy=5 KLy=2.49 2.52 2.61 1.11 0.25 0.28 1.45 1.55 0.52 2.06 0.734 1.90 0.65 14.99 19.25 ELL 50x50 7.14 0.98 2. 76 92.38 6.58 ELL 100x100 31.06 2.71 7.99 27.67 15.07 12.97 60.66 ELL 150x150 57.31 24.55 4.34 3.33 36.33 8.00 8.24 2.82 40.46 66.50 8.17 26.43 9.58 29.6 45.09 7.86 7.64 18.71 4.36 4.63 40.03 11.87 11.56 21.50 53.52 2.27 97.15 13.91 26.27 73.47 2.21 5.07 24.32 8.55 46.06 7.29 13.91 24.21 7.68 1.09 64.38 1.12 3.20 61.65 65.88 25.58 4.22 11.30 10.07 2.63 19.61 5.15 ELL 90x90 29.51 92.35 17.21 3.19 2.8 40.68 36.19 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.6 73.90 26.33 1.03 4.4 27.21 10.08 61.04 53.17 35.67 5.70 7.97 32.00 116.48 73.48 27.59 12.6 34 2.72 26.08 4.82 33.1 2.50 12.39 27.34 3.43 ELL 100x100 29.08 2.07 1.29 23.34 4.99 2.39 22.34 6.5 KLy=4 KLy=2 KLy=5 KLy=2.99 25.40 15.06 4.37 6.59 11.75 22.36 3.75 4.68 4.2 85.48 15.11 11.02 4.35 47.18 24.94 102.42 49.64 ELL 90x90 26 33.77 3.32 69.92 25.58 34.75 30.6 3.94 11.76 3.67 4.72 19.54 3.48 25.38 2.15 10.87 ELL 130x130 54.59 1.37 17.91 34.97 46.08 46.59 22.56 74.56 5.95 ELL 130x130 46.72 6.03 10.56 7.01 5.40 66.08 1.93 4.46 48.8 59.09 21.30 7.99 37.46 3.98 94.45 16.70 93.71 5.55 61.89 13.44 26.6 81.52 33.42 3.22 ELL 120x120 35.63 20.16 36.69 18.99 3.75 ELL 100x100 34 43.92 22.04 4.36 49.4 37.4 3.19 1.8 38 3.79 5.93 36.66 46.63 8.72 4.44 16.48 61.97 5.65 26.61 6.8 45.84 6.61 74.76 110.02 6.51 80.88 32.19 22.09 6.522 2.28 36.18(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 KLy=3 KLy=1.38 2.17 40.46 24.2 48.02 4.28 48.09 4.76 17.35 11.16 27.31 14.27 84.08 3.54 5.94 6.23 3.51 9.37 5.90 15.92 3.09 52.25 ELL 75x75 15.92 11.82 KLy=7 KLy=3.09 5.84 11.61 61.5 KLy=6 KLy=3 ELL 75x75 14.59 17.10 3.86 36.42 69.92 16.59 1.33 11.75 8.48 3.03 5.92 3.68 28.62 57.70 19.11 2.09 53.91 40.Table 4.10 43.93 5.39 35.23 4.56 22.08 4.03 15.93 49.12 5.34 50.68 30.17 19.56 6.39 16.97 6.29 17.26 1.654 2.15 3.82 2.30 4.09 22.43 3.70 10.10 ELL 90x90 26.31 46.00 5.95 10.68 59.89 ELL 150x150 63.39 25.25 3.95 ELL 130x130 38.40 80.30 2.61 100.09 28.40 84.12 2.30 3.21 85.48 4.34 2.59 1.71 5.03 ELL 100x100 35.36 64.07 17.22 97.Currently not available].52 7.63 15.31 43.66 13.31 30.07 15.09 27.93 5.94 35.99 3.06 10.95 9.51 6.79 4.95 15.32 19.67 10.31 16.70 4.41 ELL 150x150 67.25 1.12 3.49 31.08 4.96 108.41 21.86 6.03 6.83 2.62 4.88 1.61 6.12 2.44 2.35 37.34 6.52 22.27 84.34 11.5 4.23 44.47 ELL 90x90 21.83 2.63 6.52 3.95 51.59 1.17 47.66 43.10 26.5 KLy=8 KLy=4 KLy=9 KLy=4.45 12.26 ELL 75x75 16.32 84.04 40.22 5.48 16.64 2.75 11.45 39.96 5.5 2.11 7.34 4.22 3.89 19.55 5.33 ELL 80x80 19.17 48.88 33.66 52.88 ELL 90x90 19.11 3.68 1.80 80.61 11.54 8. Hand Book for Design of Steel Structures 4-60 .34 13.83 14.07 30.40 10.01 4.17 25.99 2.86 24.07 21.68 73.95 7.08 2.43 17.31 11.34 8.32 55.83 10.89 17.6 69.56 13.38 4.91 21.32 6.82 43.59 9.26 25.76 25.26 39. 39 395.37 173.49 438.66 46.06 86.5 KLy=6 KLy=3 KLx=7 KLx=8 KLx=9 cm cm ELL 175x175 78.27 49.27 38.42 5.52 143.34 308.81 418.45 85.00 109.00 95.38 229.71 273.43 ELL 200x200 119.2 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.91 178.95 90.38 252.50 138.2 187.6 115.86 143.93 38.73 169.37 205.93 213.87 119.18(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 cm rx ry KLx=1 KLx=2 Kly=1 Kly=2 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.45 101.92 95.71 291.87 105.5 KLy=8 KLy=4 KLy=9 KLy=4.8 106.21 340.8 100.86 110.39 369.40 132.49 11.83 229.73 192.21 369.43 55.71 109.34 291.33 260.36 132.37 178.02 273.27 340.97 46.5 6.65 274.86 36.5 KLy=4 KLy=2 KLy=5 KLy=2.71 ELL 200x200 147.96 86.99 156.66 173.91 7.56 67.4 152 6.4 238.63 11.5 63.30 237.68 231.29 71.86 ELL 175x175 83.06 110.22 128.14 8.45 67.71 71.8 7.70 120.67 395.70 80.67 95.97 63.40 143.43 117.04 9. Hand Book for Design of Steel Structures 4-61 .22 115.96 ELL 250x250 187.83 205.10 237.29 95.92 117.Currently not available].55 192.45 85.70 115.70 KLy=7 KLy=3.57 138.76 5.02 252.37 188.Table 4.09 9.58 73.67 80.74 308.86 455.67 418.68 322.59 152.64 73.93 ELL 200x200 90.36 119.52 169.76 130.89 128.37 7.93 231.56 49.99 188.31 334.27 200.27 308.10 ELL 250x250 256 325.71 120.95 105.30 274.65 308.66 156.51 247.03 211.64 55.99 138.43 138.55 213.58 90.36 7.75 147.70 101.87 143.66 36.5 6.74 160. 73 8.48 ULLL 150x90 38.32 ULLL 150x90 41.87 21.44 ULLL 100x75 22 28.98 55.72 38.58 12.34 2.38 36.74 5.08 19.54 3.59 5.03 15.28 25.15 7.90 43.94 3.48 14.67 71.27 KLy=7 KLy=3.09 36.49 54.02 14.91 3.97 2.15 3.93 10.11 25.20 48.24 54.06 ULLL 125x90 32.32 19.31 71.15 4.92 33.66 46.37 20.51 65.63 18.19 19.61 14.32 18.44 28.66 12.71 10.25 47.21 67.81 27.73 10.5 3.81 3.4 70.19 17.57 5.94 23.46 26.43 13.92 15.73 11.74 2.50 12.32 ULLL 150x100 55.60 ULLL 125x75 32.24 3.85 38.69 4.86 11.98 18.74 4.86 24.46 8.20 5.12 35.73 63.74 58.67 40.45 7.18 5.08 14.4 27.97 2.93 3.44 13.72 46.71 11.8 41.04 62.05 26.76 56.99 28.22 10.98 74.15 7.12 7.45 34.66 20.29 60.44 3.44 12.30 25.98 16.31 3.09 25.96 20.12 4.69 4.88 3.11 49.25 53.71 4.25 37.15 11.08 3.62 4.55 38.98 43.05 59.49 37.79 3.84 27.Currently not available].92 44.14 9.83 29.31 96.75 ULLL 125x75 29.68 3.18: Compression Capacity (Ton) For ULLL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 cm rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 cm cm Kly=1 Kly=2 KLy=3 KLy=1.64 42.26 11.2 52.35 3.21 43.98 25.44 38. Hand Book for Design of Steel Structures 4-62 .97 11.47 18.17 16.88 37.05 50.62 4.99 37.33 6.65 9.09 49.Table 4.46 78.13 17.26 18.8 57.32 12.87 11.48 8.78 81.18 4.73 7.11 52.78 24.67 9.39 54.13 24.2 48.87 3.88 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.52 4.24 11.74 7.70 9.66 19.23 26.72 4.82 11.97 35.66 70.02 56.79 3.94 15.30 17.58 25.50 7.73 35.31 24.74 17.27 5.07 41.49 28.85 43.52 10.21 32.57 23.26 43.41 22.51 17.85 39.98 45.44 7.75 5.81 37.36 3.10 3.52 6.86 7.23 58.87 19.76 3.5 KLy=6 KLy=3 ULLL 90x75 18.5 4.26 ULLL 125x90 34.49 46.41 67.54 32.16 88.72 36.68 66.38 27.11 7.15 53.78 19.94 59.58 47.59 7.06 20.57 48.74 27.11 ULLL 150x100 43 54.2 41 3.91 14.99 28.99 ULLL 150x100 44.35 4.08 31.12 8.34 ULLL 100x75 21.93 18.48 8.01 2.13 77.87 2.11 33.2 43.64 23.44 ULLL 125x75 26 33 4.99 15.78 28.52 8.8 38 3.06 63.02 10.46 5.53 50.97 3.52 59.38 16.5 KLy=4 KLy=2 KLy=5 KLy=2.05 13.5 KLy=8 KLy=4 KLy=9 KLy=4.56 18.69 5.29 31. 5 KLy=4 KLy=2 KLy=5 KLy=2.38 3.23 32.48 46.74 15.88 7.74 2.29 3.03 6.46 14.60 2.40 5.74 3.06 8.5 2.17 9.06 5.24 2.Currently not available].08 2.5 KLy=8 KLy=4 KLy=9 KLy=4.70 2.23 6.35 29.86 1.96 10.15 18.5 13.88 2.99 41.46 1.52 11.80 7.97 4.60 8.05 6.38 48.87 61.20 4.82 8.51 54.81 35.58 7.49 4.06 18.2 48.62 3.30 7.42 6.77 ULLS 100x150 44.97 3.05 37.27 35.58 56.17 2.59 5.72 2.06 6.68 18.40 2.85 1.02 13.19 4.2 41 2.60 11.19: Compression Capacity (Ton) For ULLS Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 cm rx ry KLx=1 KLx=2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.2 43.54 3.8 57.97 9.35 1.96 7.97 19.47 7.15 4.08 2.11 5.40 67.63 20.77 5.53 9.16 5.27 59.02 7.5 KLy=6 KLy=3 2.05 2.72 12.62 4.19 18.4 70.74 ULLS 75x100 21.72 2.12 2.35 18.52 7.58 3.49 10.73 37.49 10.18 ULLS 75x90 18.36 50.42 1.52 2.66 4.13 ULLS 90x150 38.93 5.23 18.87 3.78 13.21 30.34 8.97 12.8 38 2.83 6.66 37.72 2.80 5.21 26.26 77.82 14.74 3.51 48.08 2.08 ULLS 100x150 43 54.85 8.65 16.95 ULLS 75x125 29.91 23.30 ULLS 75x100 22 28.49 18.58 9.28 26.58 3.4 27.38 33.14 33.79 15.38 5.74 2.91 59.62 2.41 4.66 3.05 4.04 13.93 4.43 92.16 4.94 14.66 62.08 71.33 3.61 11.83 8.17 54.85 1.93 4.40 10.24 44.25 ULLS 75x125 32.57 6.25 74.17 47.70 3.35 47.14 18.35 29.93 3.53 22.02 4.29 2.2 52.24 29.40 8.08 1.69 51.21 13.40 3.30 5.74 4.66 1.15 11.85 ULLS 90x125 32.17 6.53 7.65 1.33 5.14 35.88 12.04 9.64 34.03 4.60 2.63 13.49 19.53 35.63 4.97 35.8 41.34 5.19 3.74 2.87 4.61 8.18 7.73 20.86 35.02 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.88 19.75 16.35 2.68 12.74 6.68 2.84 63.Table 4.88 7.10 2.66 6.04 6. Hand Book for Design of Steel Structures 4-63 .19 47.58 2.41 7.94 8.49 6.34 7.74 2.10 1.23 8.23 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.74 2.88 8.42 9.75 9.73 ULLS 75x125 26 33 2.85 11.74 5.71 32.63 3.51 29.94 ULLS 90x125 34.08 3.52 18.83 7.80 ULLS 100x150 55.79 11.19 29.02 7.74 22.72 8.78 18.66 14.46 19.64 23.34 5.40 6.19 4.21 9.54 4.42 2.08 ULLS 90x150 41. 90 42.97 19.06 73.06 2.85 1.78 136.58 66.60 18.02 95.61 138.15 70.53 CCI 300x90 87.01 66.74 27.87 30.65 13.78 23.6 171.47 83.2 88.2 97.52 73.60 40.78 14.80 100.40 85.98 2.19 59.2 47.74 105.55 55.38 23.09 69.13 105.5 KLy=8 KLy=4 KLy=9 KLy=4.89 27.22 233.68 15.89 40.66 31.48 11.71 6.13 18.63 45.75 22.69 92.37 101.94 27.46 4.28 3.71 7.07 214.00 53.3 CCI 50x25 7.53 3.84 105.92 1.22 84.13 13.87 61.48 56.14 9.66 1.70 202.02 21.83 3.33 20.03 CCI 150x75 42.07 37.96 KLx=7 KLx=8 KLx=9 KLy=7 KLy=3.89 59.98 74.14 48.71 89.79 11.51 3.4 5.97 2.89 48.05 1.15 CCI 380x100 109 138.99 131.56 3.34 95.63 36.10 55.76 79.37 84.28 47.99 21.81 180.41 171.23 9.70 3.26 21.31 81.82 64.80 96.68 10.76 11.62 35.12 3.89 3.8 34.11 96.12 7.92 19.64 65.78 20.93 37.4 102.76 34.86 CCI 180x75 48 61.5 1.84 3.29 5.43 15.2 62.26 0.50 161.69 16.74 7.22 4.84 54.81 150.68 30.30 51.29 16.52 15.80 44.42 16.80 150.76 15.61 17.07 6.62 87.53 159.61 123.63 71.59 23.22 63.06 130.79 161.05 103.15 117.89 3.88 56.84 1.Table 4.41 CCI 300x90 97.84 56.46 0.81 150.49 119.90 64. Hand Book for Design of Steel Structures 4-64 .90 224.66 62.75 28.5 KLy=6 KLy=3 2.07 38.05 8.87 123.68 125.47 111.07 21.41 14.90 2.67 48.53 37.71 0.93 21.18 189.81 CCI 250x90 69.85 CCI 380x100 134.20: Compression Capacity (Ton) For CCI Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 cm cm cm Kly=1 Kly=2 9.84 28.92 95.88 93.91 30.18 127.03 127.91 7.27 24.64 8.64 3.13 84.31 8.33 4.84 1.83 42.48 4.03 0.41 46.72 CCI 75x40 CCI 100x50 KLx=3 KLx=4 KLx=5 KLx=6 KLy=3 KLy=1.52 141.86 6.04 188.18 69.22 103.84 17.91 CCI 150x75 37.80 167.42 14.65 85.8 54.47 214.66 76.42 107.19 176.Currently not available].18 CCI 200x80 49.25 151.42 4.76 2.69 74.91 12.87 115.38 0.45 125.86 55.67 10.03 107.27 8.6 77.14 9.37 189.98 76.04 49.74 3.20 0.72 105.66 CCI 200x90 60.08 17.95 76.65 136.24 18.97 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.05 95.33 CCI 125x65 26.55 71.69 125.42 63.16 3.34 11.89 131.55 72.36 39.84 1.54 0.81 47.86 14.09 58.20 40.636 2.53 34.41 77.69 2.32 117.33 47.5 KLy=4 KLy=2 KLy=5 KLy=2.31 71.78 CCI 250x90 76.06 130.54 27.20 10.42 74.34 0.83 42.76 143.31 1.42 6.41 29.51 118.03 10.6 111.73 61.34 7.65 83.68 36.03 4.99 29.32 30.89 94.54 113.30 93.70 8.12 44.98 151.2 123.83 144.41 25.02 65.67 137.82 36.59 83.98 22.96 22.82 4.80 111.27 8.78 3.28 10.13 119.8 11.72 23.71 CCI 300x90 80.88 4.22 26.15 161.42 9.84 171.78 4.17 1.20 1.16 0.00 38.25 27.92 15.79 85.49 105.42 0.10 52.85 119.59 62.20 107. 67 35.83 [Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **.72 41.00 58.72 9.97 1.39 72.4 102.80 84.14 9.66 113.68 3.42 9.71 24.18 77.79 142.03 33.15 CCB 200x90 60.55 232.13 8.16 53.72 23.97 19.80 186.41 114.21 153.68 126.42 102.90 129.68 113.01 105.02 13.62 76.28 7.03 6.42 97.61 199.8 11. Hand Book for Design of Steel Structures 4-65 .74 98.56 61.69 45.90 8.8 34.85 80.17 69.28 50.21 89.16 114.42 123.64 35.15 156.04 40.67 138.67 65.88 19.41 180.18 29.09 97.05 124.00 27.17 141.76 32.00 83.16 129.78 14.48 11.68 4.76 44.95 KLy=7 KLy=3.43 137.69 131.49 9.06 67.59 24.76 133.48 83.91 CCB 150x75 42.14 166.43 54.01 7.79 37.Table 4.70 235.37 62.82 146.2 97.07 5.88 5.22 111.91 103.56 7.34 134.44 124.25 19.09 22.83 182.38 123.33 84.95 6.85 225.90 50.72 CCB 75x40 CCB 100x50 CCB 125x65 KLy=3 KLy=1.64 113.81 80.08 55.91 1.23 69.79 0.74 123.70 61.08 106.07 CCB 300x90 80.40 42.82 21.20 94.43 74.98 5.63 75.22 44.06 58.24 84.26 13.42 89.86 65.43 20.23 63.5 KLy=8 KLy=4 KLy=9 KLy=4.78 89.94 108.36 5.41 158.96 23.68 2.43 70.91 54.18 83.83 99.86 167.17 138.62 26.79 CCB 300x90 97.18 13.65 25.89 149.85 40.47 CCB 50x25 7.37 150.98 49.49 CCB 380x100 134.13 57.45 0.636 14.2 62.10 116.04 30.2 47.04 138.12 3.47 211.39 150.89 6.53 2.69 190.20 118.29 67.77 213.92 91.27 144.54 135.84 19.46 8.61 198.75 76.55 72.09 44.64 42.5 3.6 171.25 66.94 219.72 20.51 7.59 91.76 108.79 10.71 60.34 206.98 47.47 230.25 76.29 17.34 11.38 17.04 81.04 61.65 52.16 173.08 57.57 CCB 180x75 48 61.6 77.11 148.86 84.58 0.95 15.81 107.19 9.17 57.96 240.25 167.84 172.87 161.93 33.84 17.12 26.78 48.95 43.47 5.94 100.4 7.8 54.70 2.81 62.59 95.42 1.47 CCB 380x100 109 138.02 25.07 78.49 136.Currently not available].90 27.53 7.48 58.08 125.18 137.3 8.42 14.31 72.63 171.75 143.01 30.80 130.46 7.36 112.55 CCB 250x90 69.13 155.24 87.32 67.66 7.43 101.13 0.47 117.22 118.82 38.12 1.72 75.83 177.09 CCB 250x90 76.20 99.35 71.84 12.74 7.41 112.23 45.5 KLy=4 KLy=2 KLy=5 KLy=2.38 53.56 46.14 9.37 150.18 67.25 64.35 124.79 3.51 13.22 29.70 161.80 162.18 51.70 60.93 76.67 130.22 4.15 68.43 15.36 105.98 80.93 18.97 7.76 10.87 2.08 194.78 33.21: Compression Capacity (Ton) For CCB Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight Effective KL (m) Section Name Wght Kg/m Ax 2 rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=8 KLx=9 cm cm cm Kly=1 Kly=2 9.18 46.2 88.78 4.92 135.5 KLy=6 KLy=3 KLx=7 2.70 62.19 40.26 184.84 188.20 107.45 222.23 CCB 300x90 87.49 CCB 200x80 49.03 97.39 88.22 CCB 150x75 37.61 125.76 120.2 123.22 10.63 30.55 91.23 17.46 169.6 111.18 8.83 11.83 118.99 58.68 21.20 70.50 130.07 46. The program computes the axial compression capacity of a member based on the user specified geometric and restraint conditions. Some major screen captures of the program related to design of compression member are shown below.10. In general Lx and Kx are related to buckling about the major axis i. This can be used for almost all practically possible end restraint conditions. ranging from a simple isolated member to any general member in a frame. based on ACI318-95 code recommended method. The module also includes the graphical built-in effective length factor K calculator which is linked very conveniently to the SYS section database. The flow diagram for the design of axial compression member on which this module has been based is shown in the “General Procedure “ section of this chapter. However the factors Qa and Qs are not incorporated into the program thought they are shown in the flow diagram because these factors are applicable for very few hot rolled sections and the effect is also not so significant. Moreover the program will check only the bend buckling or flexural buckling mode of failure of member which may be important for some shapes such as T or L.e. However they can very easily be checked in the detailed design report generated by the program. the moment of inertia of the section is higher than the other axis (which may be an exception for shapes such as T or L). Software Implementation The axial member design module of the SYSDesigner (SYS Steel Designer’s Software) has been developed based on the theory described in chapter 3 and 4 of this manual. The concept of ‘Design Segments’ and ‘Unified Code Ratio-R’ used in the program have been described in the ‘Technical Background ‘ chapter of the ‘SYSDesigner’s Software Users Manual’. independently for two principal axes of the section. User can specify different bracing and end conditions. Hand Book for Design of Steel Structures .4. Hand Book for Design of Steel Structures . Hand Book for Design of Steel Structures 4-68 . Hand Book for Design of Steel Structures 4-69 . Hand Book for Design of Steel Structures 4-70 . Hand Book for Design of Steel Structures 4-71 . Introduction Structural members that support transverse loads and are therefore subjected to flexure (bending) are called beams. lintel. I and Channels.1. The most common shapes that are used as beam are H.Chapter 5 Design of Beams 1. 5. trimmer etc. either elastically or inelasticlally . Elastic Analysis of Beam Where fb = Extreme fiber stress Sx = IX y max = Section modulus This is the basic equation used in the design of beam member by elastic methods. header. spandrel. either elastically or inelastically 4) Web local buckling . girder. either elastically or inelastically 3) Flange local buckling. 2. girt. beam stringer. purlin. rafter.1. The term used in this chapter include all the structural members whose design is primarily governed by uniaxial bending such as floor beam. General Procedure A beam can fail by any one of the following modes due to the flexural effects: 1) Development of full plastic moment 2) Lateral torsional buckling. Beams are more specifically described by various names depending upon their purpose or location in a structural system. the bending moment M can be expressed as: M = f b S x (5-1) y x M L Fig. joist. Assuming that the plane cross section normal to the length of the unbent beam are still plane after the beam is bent and referring to the Fig 5. The basic concept of bending behavior of beams can be studied by considering a originally straight beam subjected to transverse load causing a moment M. crippling. represent schematically the general design procedure for moment and also forms the basis for the development of the beam design module of SYS Steel Designers Software. The general design procedure must take into account the following important criteria. The first failure mode is associated with excessive stresses on the section so as to the form enough plastic hinges before failure while the rest three are related to stability of the beam. Lateral instability of a member can be controlled by providing enough lateral bracing to preclude the lateral displacement accompanied with twist while the cross section element stability can be achieved by limiting the ratio b/t of each element under compression or taking into account their post buckling strength. 1) Axis of bending ( Major or Minor ) 2) Spacing of lateral bracing ( longest unbraced length ) 3) Compactness of the section ( compact . side sway buckling etc The flow diagram shown in this chapter.noncompact or slender) 4) Shape of the section ( symmetrical or asymmetrical) 5) Moment variation along the unbraced segment 6) Shear.So the general procedure for the design of beam needs the consideration for all the above possible mode of failure. Hand Book for Design of Steel Structures 5-2 . deflection and effects due to concentrated loads like web yielding. square & rectag.2.60 F y Smajor Shape with slender elements ( special design ) MR > M max Yes End Fig. I & H.75 F Y Sminor Fy and No No 20.66 F y Smajor No 2t f ≤ 95 F y f   b f   MR=  0.79 − .Flow Diagram For the Design of Beam Basic Info Trial Unbraced Length 4 Trial Cross Section Bending about Major Axis Yes Box-type Section Yes No No 76b Lb < 2500 No Yes b Fy Yes b t f ≤ 190 F y 3 b 2t Lb ≤ 2 No 1 f Doubly sym.(a) Flow Diagram for Design of Beam Based on AISC/ASD (1991) Hand Book for Design of Steel Structures 5-3 . solid round. 5. shape f ≤ 52.002 Fy Fy Smajor 2t   f   No MR=0.000 Lb ≤ d   A Fy  f L b No f r t No ≤ 102000C b F y Yes 5 b Yes Yes MR=0.5 F y Yes MR=0. 60 F y S 4 No Special Design MR > M max Yes End 5 Yes L b r t ≤ No L b 510000C b F y r t 2 2 − F  Lb  3 y  rT  3 Fb = 1530x10 Cb 12x103 Lbd / Af Comp. rect.2(b) Flow Diagram for Design of Beam Based on AISC/ASD (1991) Hand Book for Design of Steel Structures 5-4 .appx. and ≤ 510000C b F y 170x103Cb 2  Lb    Fb =  rT  12x103 Lbd / Af max 2 2 − F  Lb  3 y  rT  Fb = 1530x103Cb Fb = 170x103Cb 2  Lb   r  T max Yes Yes MR=F b Smajor 4 No MR > M max Yes End Fig.2 b t ≤ 238 F y f MR=0. flange solid . 5. support from a laterally stable component or by specifically providing a bracing member.3. if they are not supported laterally by some bracing or floor construction. AISC/ASD uses the following equation obtained from numerical analysis for Cb Hand Book for Design of Steel Structures 5-5 . 5. It has been observed from laboratory test that the bracing member provides reliable lateral support if designed for 2 percent of the compressive force in the flange of the beam it braces. As a result . Lateral Torsional Buckling of Beam Most of the specification formula for flexural design are the simplified form of the general equations to compute critical end moments from lateral-torsional buckling analysis of an perfectly straight. they are relatively weak in resistance to torsion and to bending about the minor axis. they may become unstable under load. u u Fig. Mcr =Const. The following equation is the generalized form of the equation which can be used for any combination of end restraint and moments. This phenomenon of sidewise bending associated to torsion is called lateral-torsional buckling. Lateral Torsional Buckling The most economical beam shapes are the ones whose moment of inertia about the major principal axis is considerably larger than that about the minor principle axis. K = Effective length factor whose value depends upon the restraint condition at the ends. simply supported unbraced segment of a beam subjected to equal end moments.( Saint-Venant torsional stiffness + warping stiffness )0. Cb = Coefficient to take into account the variability of moment along the unbraced length. So.3.5 2 2  π M cr = C b  2  (KL ) 2 EI y GJ + π 4 (KL ) 4  EI y EC W  (5-2) (5-3)  Where M cr = Critical end moment at which a perfect beam just begins to bend out of plane. There are various ways to provide lateral support to a member like complete or compression flange embedment into floor slab. 50 0.05      2 (5-4) ≤ 2.50 1. or by buckling of the compression part of the web.5 0 0.3  1  M   2 C b = 1.00 Cb 1. The strength of a section for local buckling depends upon the width-to-thickness ratio and end stiffness condition. The cross-sectional integrity will be lost either by buckling of the compression flange called flange local buckling. However.4.00 -1 -0.3 where M1 is smaller of the two end moments M1 and M2 and the ratio M1/M2 is positive for reverse curvature and negative for single curvature bending. called web local buckling.5 1 1. 4. Local Buckling of Beam Elements and Section Compactness The maximum moment which a beam can support depends not only on the over all lateral buckling of the beam but also on the integrity of the cross-sectional elements. Variation of Cb (AISC/ASD) with Different End Moment Ratios However Limit State Design(AISC/LRFD) uses the more refined expression for Cb which takes into account the nonlinear variation of the moment along the unbraced segment.50 2. M1 M  2  M  + 0. Cb For Beams 2. The following figure shows the variation of Cb for various end moment ratios. commonly used hot-rolled beam shapes are usually large enough and have plate elements thick enough to preclude local buckling at stresses less than the yield stress.5 M1/M2 Ratio Fig.00 0. 5. The same equation can be used for various end support and loading conditions by using an appropriate value of K Fcr = Kπ 2 E ( t) 12(1 − µ 2 ) b 2 (5-5) Where Hand Book for Design of Steel Structures 5-6 . The following equation derived for the buckling strength of a simply supported rectangular plate subjected to in-plane uniform compression forms the basis for the classification of shapes into some standard types with respect to local buckling. The nonlinearity is accounted for by using the moment at every quarter points of the unbraced segment.75 − 1. K = A constant which depends upon how the edges are supported, upon the ratio of plate length to plate width and upon the nature of the loading. µ = Poisson’s ratio b = Length of loaded edge of plate (except that it is the smaller lateral dimension when the plate is subjected only to shearing force ) t = Plate thickness Simple Fixed K=4 Fixed Simple K = 5.4 Simple Simple Simple Fixed K=7 Fixed Simple Simple Simple Simple Simple Simple Values of K to be used in the above equation for common cases are shown below. In the figures below “simple” indicates the simply supported edge and “fixed” means that for fixed edge. Free K = 1.33 Fig. 5.5. Constant K for Plate Buckling In specifications, depending upon the slenderness ratio of cross section elements, a section may be termed as compact, non compact or slender elements as defined in the following paragraph. Compactness of the section is one of the important parameters to be considered in the design of beams. Compact Section Section which can develop a fully plastic moment Mp (= plastic section modulus Z x Fy) before local buckling of any of its compression elements. Thus for compact shapes the design strength for moment is governed by either the lateral torsional buckling or yielding depending upon the unbraced length of the compression flange. Most of the hot rolled shapes fall in this category. Design Aids Table 5.1 gives the details for compactness classification of all SYS shapes commonly used as beams. NonCompact Section Section that can develop a moment equal to or greater than My (= elastic section modulus S x Fy)but less than Mp , before local buckling of any of its cross section element occurs. Slender Section Shapes with elements slenderer than those designated by noncompact are categorized as slender section or shape with slender elements. Hand Book for Design of Steel Structures 5-7 5. Design for Moment As described in “General Procedure” section of this chapter, the factors that govern the design for flexure are : 5) Axis of bending 6) Spacing of lateral bracing 7) Section compactness 8) Section shape (symmetry ) 9) Moment variation along the unbraced segment 10) Maximum moment It is not always necessary to consider all the criteria to design a beam. A typical design involves the design of a symmetric I or channel compact section bending about major axis with adequate bracing. Some common design cases shall be explained in the following paragraphs for stepwise calculations based on AISC/ASD specifications. Case 1: Bending About Minor Axis Design Steps: 1) No need to check for the lateral bracing if loaded through shear center 2) Check the compactness of section. Allowable stress may vary from 0.75Fy to 0.6Fy for shapes commonly used as beams. Refer to relevant code or Appendix for the appropriate specification formulas. 3) Applicable shapes for normal design procedure are symmetrical I shapes, round and square bars, and solid rectangular bars bent about minor axis. Permissible stresses for minor axis bending is usually higher than the corresponding major axis bending. The reason for this is the stronger lateral resistance and higher shape factor of cross section for minor axis. Case 2: Bending About Major Axis Design Steps: 1) Compute the critical laterally unsupported length Lc. 2) If the actual laterally unsupported length or unbraced length Lb is less than the critical length Lc, it is not necessary to consider the lateral stability of the member. But it is necessary to examine the compactness of the section. Depending upon the compactness of the section the permissible stress vary from 0.66 Fy to 0.6 Fy according to AISC/ASD. The typical moment strength curves for commonly used shapes are shown in Fig.5.5. It is very clear from the figure that the moment strength reduces considerably as the unbraced length increases. 3) If the actual unbraced length Lb is more than the critical unbraced length, the design is governed by the design equations simplified from the lateral torsional buckling. To further illustrate the design procedure explained above, design examples have been presented later in this chapter. Hand Book for Design of Steel Structures 5-8 Typical Moment Strength Curves Moment (Kg-m) 35000.00 30000.00 H 300x305x106 Kg/m 25000.00 H 304x301x106 Kg/m 20000.00 H 346x174x41.4 Kg/m 15000.00 H 350x175x49.6 Kg/m 10000.00 H 354x176x57.8 Kg/m 5000.00 H 336x249x69.2 Kg/m 0.00 0 5 10 15 Unbraced Length (m) Fig. 5.6. Moment Strength Curves for H Shapes 6. Check for Shear Steel beams are rarely designed for shearing stress but it is usually calculated as a check after the beam has been designed for flexure. However it may govern the design of beams which support heavy concentrated loads near the reaction points and of very short span beams with heavy uniform load. In such cases the web of the beam may buckle at shearing stresses less than the shearing yield strength of the steel. The phenomenon of shear buckling of web on the basis of which the permissible shear stresses are specified, shall be discussed in the following paragraphs. h a Fig. 5.7. Shear in Beam Let us consider a flat plate acted upon by shear stresses distributed uniformly along the four boundaries as shown in Fig. . 5.1. . In this case, the shear stresses are equivalent to principal stresses of the same magnitude, one tension and another compression acting at 45 degree to the shear stresses as shown in the figure for an interior element of the beam web. The critical shear stress Fv ,cr at which buckling of a perfect plate begins is given by the following equation Hand Book for Design of Steel Structures 5-9 Fv ,cr = kπ 2 E ( t) 12(1 − µ 2 ) h (5-6) 2 This equation is similar to the equation already described in the section “Local buckling of plate elements and section compactness” in this chapter. The factor k depends upon the type of support on the edges. Two most common cases are 1) All four edges simply supported k = 4+ 5.34 k = 5.34 + 2) ( h ) < 1.0 (5-7) ( ) (5-8) for a (a / h )2 4.0 for a ≥ 1.0 h (a / h )2 All four edges clamped k = 5. 6 + 8.98 (a / h )2 k = 8.98 + ( h ) < 1. 0 for a ( ) 5.6 for a ≥ 1.0 h (a / h )2 (5-9) (5-10) Most of the formulae in the specifications for permissible shear stresses are based on the above equations though they may appear in different and, normally, in simplified forms in the codes. As an example the AISC/ASD uses the following form of equations for shear strength calculation. ( t ) ≤ 380F Fv = 0.4 Fy for h (5-11) y Fv = ( ) Cv Fv 380 ≤ 0.4 Fy for h > t 2.89 Fy (5-12) Where Cv is the ratio of the critical shear stress to the yield stress in shear. Cv = Cv = 45,000k if Cv < 0.8 2 Fy h t ( ) 190 (h t ) k if Cv > 0.8 Fy (5-13) (5-14) It is important to note that the stress Fv is defined as the average stress on the area equal to the overall depth d of the beam times the web thickness (area of the web). 7. Check for Web Yielding and Crippling When a beam carries a heavy concentrated load on the top flange or reaction from the support is large, significant direct compressive stresses in the vertical direction of the web are produced. The concentrated compressive stresses are dispersed gradually Hand Book for Design of Steel Structures 5-10 into larger area from the maximum at the point of application to zero at the opposite flange (bottom flange). When the load is transmitted through the thin web plate, the web plate is crippled at the section nearest to the load and of thickness t w . In hot rolled sections, this will be at the toe of the fillet, a distance k, as shown in figure below , from the outside face of the flange. Specifications generally assume the divergence 1 angle of 2 2 horizontal to 1 vertical. So the area nearest to the fillet bearing the load will be (2.5k + N )t w near the support (one side divergence) and (5k + N )t w at any intermediate locations(both sides divergence). Locally high Bearing Stresses at the Junction tw k N Fig. 5.8. Concentrated Load in Beam AISC/ASD uses the following equations to calculate the resistance capacity of a beam for web yielding and crippling: [Units: US system R in Kips; Fy and Fyw in ksi; tw, tf, N and d in inches] For support reaction (or load within d/2 distance from end): R = 0.66 FY t w ( N + 2.5k ) (5-15) 1. 5  F t   N  t  2 yw f R = 34t w 1 + 3  w       d  t f   t w   (5-16) Web yielding: R = 0.66 FY t w ( N + 5k ) (5-17) Web crippling: 1. 5    N  t w   Fywt f  R = 67.5t w 1 + 3    d  t f   t w   (5-18) Web yielding: Web crippling: For interior loads: 2 Where R = capacity (resistance) to concentrated load or reaction N = bearing length (length over which the load in acting) t w = web thickness k =distance from extreme fiber to toe of fillet (available in section properties tables) Fy = Yield strength of the steel Fyw = Yield strength of the web for hybrid beams (Different grades of steels for web and flange. For SYS hot rolled sections Fy = Fyw) Hand Book for Design of Steel Structures 5-11 In the average stress. An exact solution of this problem requires a stability analysis of the entire web with different load systems on two opposite edges(top and bottom).91P/d at the center.9 and 5.9. The average stress on the area is about 0.10 shows the variation of the stresses along the depth of the section. Web buckling due to concentrated loads is more complex to determine than that for uniform loads. Check for Side Sway Web Buckling Side sway web buckling is an overall buckling failure of a beam web. The web stability analysis of this case is very complex without many approximations. Fig. Figure 5. Let us consider a beam of rectangular cross section of unit thickness and depth ‘d’ supporting a concentrated load ‘P’. Various Forms of Beam Side Sway Web Buckling Due To Loads On Top Hand Book for Design of Steel Structures 5-12 . The stress at the mid depth varies from zero at each end of the length d to 0. Several cases of plate buckling have been described in the preceding sections ”Local buckljng of plate elements and section compactness” and “Check for shear”. The following equation gives the critical compression stress for the web of a beam for side sway web buckling.cr = 2π 2 E ( t) 12(1 − µ 2 ) b 2 (5-19) Where E =Modulus of elasticity of steel µ = Poisson’s’ ratio b = depth of the web t = thickness of the web Various forms of web buckling due to loads applied to the compression flange are shown in figures 5. It will be noted that at all the three levels. Fv . However for approximate analysis it is assumed that the critical vertical compression stress for the web of a beam supporting a uniformly distributed load is twice the critical stress for a plate uniformly compressed on two opposite edges for which analytical solutions are available. 5. the decrease in the compression with depth is the same as that for a uniformly distributed load.10. the stress is compressive over a length (along the span) approximately equal to the depth ‘d’.5P/d.8. 29 P d d/2 d/2 Fig.10.3 6800t w R= h 2 3     1 + 0.4 d c / t w    l /b    f     (5-20) if (d c / t w ) /(l / b f ) > 2.comp) at the point of load b f = flange width If the applied load or reaction is more than the capacity of the section for web yielding web crippling.91 d 0.4 h   l / b f     (5-21) if (d c / t w ) /(l / b f ) > 1.ten and Lb.46 P d P 0.P d 2. The stiffeners must be proportioned such that the applied load is carried directly as column. However. The weld connecting the web stiffeners (transverse or vertical) must be sized to transmit the force in the stiffener to the web. web stiffeners must be provided.7 : No limit where R = Resistance of the beam to side sway web buckling d c = web depth clear of fillets or corner radius (= h) t w = web thickness l = largest unbraced length along the either flange (max of Lb. local lateral bracing shall be provided at both the flanges at the point of application of the concentrated load.3 No limit Loaded flange not restrained against rotation and (d c / t w ) /(l / b f ) < 1. Loaded flange restrained against rotation and (d c / t w ) /(l / b f ) < 2.Stress Distribution Under The Concentrated Load on Rectangular Section of Unit Thickness (Similar for Beam Webs) In AISC/ASD specification the following formulas have been specified for the side sway web buckling.7 3 2 6800t w   d c / t w   R= 0. Hand Book for Design of Steel Structures 5-13 . for cases when the strength provided by the beam is not enough for side sway web buckling. 5. 3) Various checks for shear and concentrated load on beams. On the other hand. requires calculations significantly more than the former case. Common design cases in practice are the design or verification of H shapes for small to medium spans (typically 2 .6m) as floor or other beams and Channels as purlins. The problems have been solved in two different unit systems wherever logical to help the users to understand the solution. The ‘Beam Design’ module of the SYS designer’s software can also be used as a tool to carry out the calculations similar to the one presented in the following examples. They are intended to cover the following three major aspects of steel beam design. 1) Computing the capacity of a beam section for bending about any one or both principal axis.9. The simplest calculation is for the simply supported beams of only one segment with enough lateral bracing at compression flange and compact I or C sections. the design of a beam with long multiple segments with variation of moment along the segments and trial sections which needs to check for compactness. 2) Selecting appropriate SYS beam sections for given loading and support condition. Design Examples Design calculations for a steel beam may vary from that involving very few steps to few pages. Hand Book for Design of Steel Structures 5-14 . The examples presented in this section have been selected to illustrate design cases ranging from very simple ones to quite complicated ones. Major Axis Bending • Fb = 0.6 cm3 = 4.236 in Sx = 227 cm3 = 16.13 in4 The allowable bending stress for H shaped members of steels with Fy ≤ 65 ksi (4580 ksc).9 = 379.9 in4 Sy = 67.66 Fy for non compact section Check the compactness: b f = 5.14 Fy 34 As bf 2t f < 65 Fy Section is compact The section compactness can also be read directly from the design aid table provided at the end of this chapter.SYS Example: Subject: Design of Beam Siam Yamato Steel Co. supported against lateral buckling and bent about the major or minor axis are computed as follow.66 x 34 x 16.4 cm = 7. Ltd.23 kips-in = 31.6 lb/ft) bf = 15 cm = 5.0 ksi) Solution: Section properties for SYS H200x150 x 30.60 kips-ft Hand Book for Design of Steel Structures 5-15 .91 = 8.6 kg/m whose compression flange is supported against lateral bracing by the floor slab or by close spacing of lateral ties.6 kg/m (20. Fy = 2400 ksc (34. Mx = 0.354 f 65 65 = = 11.64 in tf = 9 mm = 0.91 in d = 19. 1.66 Fy for compact section • Fb = 0.6 Fy < Fb < 0.347 2t 2 × 0. Design Code: Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA 51 Sheet No:1 / 2 Reference Chapter: 5 Problem: Find the moment capacity for 1) major axis bending 2) minor axis bending of SYS H200x150x 30.354 in tw = 6 mm = 0. 77 ft-kips [Note: Lateral bracing is not required for members bent about the minor axis if the load is applied through the shear center of the section. Minor Axis Bending • Fb = 0. Design Code: Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA 51 Sheet No:2 / 2 Reference Chapter: 5 2.75 Fy for non compact section As the shape is compact My = 0.315 in-kips = 8.SYS Example: Subject: Design of Beam Siam Yamato Steel Co.13 = 105.5 Fy ≤ Fb < 0.] Hand Book for Design of Steel Structures 5-16 .75 x 34 x 4. Ltd.75 Fy for compact section • 0. viewing and printing of shapes which can be selected by various criteria e.6 x 2400 = 1440 Ksc S xx .] 2. width. is to use ‘Section properties’ in the SYS Designers software SYS Designer. sorted in some order (by A or Sxx or Weight). Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 52 Sheet No:1 / 2 Reference Chapter: 5 Problem: Design (select) the lightest SYS H section for the following floor beam carrying heavy UDL of 10 ton. max.6 kg/m 2310 94.g.6 Section [Note: Quick and an easy way to find the sections of certain type or types. depth etc. Neglect the shear check. Detailed Checks: Hand Book for Design of Steel Structures 5-17 . and further they can be sorted by any property.11. and min. UDL = 10 t/m 5m Fig.Simply Supported Floor Beam for Design Example Solution: M max = 10000 x5 2 = 31250 kg-m 8 V max = 10000 x 5 = 25000 kg 2 1.SYS Example: Subject: Design of Beam Siam Yamato Steel Co. Preliminary Section Selection For the first trial assuming Fb = 0. It provides complete tools for the selection. Ltd. The top flange of the beam shall be partly embedded into the slab.6 Fy = 0. weight. 5. The above table was prepared by searching the database by H shape and sorted by Sxx . req = 31250 x 100 = 2170 cm 3 1440 SYS H sections with Sxx very close to this requirements are: Sxx (cm3) Weight (Kg/m) H 344x348x115 kg/m 1940 115 H 434x299x106 kg/m 2160 106 H 506x201x103 kg/m 2230 103 H 350x350x137 kg/m 2300 137 H 596x199x94. 91 = 3421 3. Only check necessary to determine the moment capacity is the section compactness. The design procedure for fully braced beam is very simple and needs only few checks.6 kg/m giving. Ltd. Hand Book for Design of Steel Structures 5-18 .58 3532 2.2 Fb ksc Kg-m Type All shapes compact Moment Capacity 0. sometimes. This fact is point is important for economical design of the beams.96 H 344x348x115 kg/m 10.87 H 350x350x137 kg/m 9. Compactness Checks Section bf 65 95 Fy Fy 2t f H 596x199x94.6 Fy . Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 52 Sheet No:2 / 2 Reference Chapter: 5 It is given in the problem that the compression flange of the beam is fully restrained (braced) from lateral buckling.76 [Note: The compactness of any section can be read directly from design aids tables provided at the end of this chapter. 4.6 kg/m 6. However it is always safe if Fb = 0. Mr =3659 Kg-m > 3125 Kg-m. 3.09 1584 3072 3.66Fy Weight / Capacity X 10-2 3659 2. Efficient way to design for such fully braced beams is to sort the section first by Sxx and the by weight and pick the lightest section giving the required Sxx. So in this case it is not necessary to check for the lateral torsional buckling requirements.1 16.74 3643 3. 2. Depending upon the compactness the permissible stress Fb may vary from 0.29 H 434x299x106 kg/m 9. The moment capacity of the section does not vary in the same proportion of the weight.6 Fy is used without checking for compactness.] Important Points: 1. All the sections that are considered in this example are compact for flange local buckling. That means much lighter section.63 H 506x201x103 kg/m 5.21 11. may give higher moment capacity than heavier section. So use H 596x199x94.66 Fy to 0.SYS Example: Subject: Design of Beam Siam Yamato Steel Co. Checks For Lateral Bracing Critical lateral bracing Lc is given by the smaller of the following two formulae Lc = 76 b f Lc = Fy For US units Lc1 = Lc2 = 76 x5.0mm 0. Ltd. Trial Section Section properties for SYS H300x150x36. Assume Cb = 1. Lb > Lc Therefore. The procedure to design for the case when the lateral bracing is the governing condition is given below.35 inch3 2 Af 13.81 / 2.154 So critical unbraced length Lc = 8.256 inch Sx 481 cm3 29.40 ft 20.84 ft.81 inch tf 9.S. 34 x 11.000 F y xd / A f = 76.154 inch2 Ix 7210 cm4 173.89 in = 6.2 inch4 508 cm 2. the lateral bracing condition will govern the design.7 Section parameter Fy Metric Unit U.94 ft Actual unbraced length Lb = 9.28in = 8.0 [Case: maximum moment occurs at some point between the braced points or the most conservative capacity for any other cases] Solution: 1.9 cm 2.0 m (9. (3m) So.9 34 20.84 ft).7 kg/m (24.22 inch4 4 Iy 12.000 =107.5 mm 0. Unit 2400 ksc 34 ksi Bf 15 cm 5.SYS Example: Subject: Design of Beam Siam Yamato Steel Co.94 ft.7 lb/ft) of Fy = 2400 ksc (34 ksi) steel with compression flange braced at intervals of 3.91 inch D 30 cm 11. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 53 Sheet No:1 / 3 Reference Chapter: 5 Problem: Determine the moment capacity of SYS H 300x150x36.354 inch tw 6. Hand Book for Design of Steel Structures 5-19 . 7 Ksi So Fb based on lb criteria: Fb1 = 18. 3. 102. Ltd.55 x 34 = 18.168 in rT 1.7 Ksi rT 4.2 / 2 =1.77 ≤ For the value of 70.47 Lb calculate above.000 C b Fy ≤122.000 x 1 = =122.000 C b 510.55 × Fy      Fb1 = 0.SYS Example: Subject: Design of Beam Siam Yamato Steel Co.47 in Fy 34 So the case is 102.000 Cb 102.one based on Ld Lb and the other based on b criteria and the larger be rT Af taken for design. Permissible Stress Fb Based on Lb d/Af Ratio Hand Book for Design of Steel Structures 5-20 .168 510.168)2   F =  y  3 − 1530 ×10 3 ×1 Fy = 0.000 x 1 = = 54.6828 in 2.154 = Lb 9.77 in Fy 34 510. Permissible Stress Fb Based on Lb/rT Ratio rT ≈ Iy /2 Af 12. Fb is computed as: rT 2  L   Fy  b  2  rT  Fb1 =  − 3 1530 ×10 3 × C b       2 34 (70. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 53 Sheet No:2 / 3 Reference Chapter: 5 For H shapes and when Lb > Lc then permissible Fb must be computed using two formulas .000 C b L ≤ b ≤ Fy rT 54.8 ×12 = = 70.6828 So this value of Lb/rT shall be checked against the following specified limits based on Cb and Fy. 55 in-kips = 48 ft-kips (6.35 = 575.23 Fy The case is: Fb based on Fb2 = Lb d 20.64 ton-m) Hand Book for Design of Steel Structures 5-21 .000C b 12. Fb = 19. Final Permissible Stress Fb and Moment Capacity Fb1 = 19.000Cb = 588. Ltd.000 x 1 = = 18.84 × 12 × 11.64 ton-m) Safe design moment capacity = 48 ft-kips (6. Design Code: Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Sheet No:3 / 3 Reference Chapter: 5 Lb d 9.81 = = 647.000 Cb > Af Fy Lb d criteria is given by Af 12.61 ksi Fb2 = 18.61 x 29.SYS Example:5 3 Subject: Design of Beam Siam Yamato Steel Co.154 Af 20.41 Af 5.53 ksi So higher of the two values should be used for design.61 ksi (1380 ksc) Moment capacity = Fb x Sx = 19.53 ksi Lbd 647.41 2. 0 m M2=16. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 54 Sheet No:1 / 3 Reference Chapter: 5 Problem: Select the lightest SYS H section for a beam (or beam segment) subjected to the bending moment due to two point loads as shown in the diagram below. with Sx =72. 5. Ltd.68 2 8 = 2. moment due to self weight = = 1 ω l2 8 1 × 44.02 ton-m) M1=14. Check for Bracing Criteria Critical spacing of lateral bracing for the selected H 400x200x66 section is calculated as: Hand Book for Design of Steel Structures 5-22 .6 x 34.0 = 20.SYS Example: Subject: Design of Beam Siam Yamato Steel Co.25 lb/ft) Max.0 m Fig.4 = 72.05 in 3 From the Siam Yamato Steel Table’s select H 400x200x66 Kg/m (44. The compression flange is braced at 4.95 ton-m) M2 = 1480 kips-in (17. (14.4 lb/ft).14 in-kips (too small compared to the applied moment) Assuming Fb = 0.6 Fy = 0.4 ksi (1440 ksc) Sx required = M max Fb = 1470 20.0 m (13. Preliminary Section Selection Assume the self weight of the beam = 66 Kg/m (44.95 ton-m ( 1300 kips-in ) 1.6 in3(1190 cm3) 2.0 m 1. (Unit conversion: 1 kip-inch = 11.25 ×19.:Moment Diagram for Design Example Solution: 1.12.5 kg-m) Fy = 2400 ksc = 34 ksi M1 = 1300 kips-in.95 ton-m ( 1470 kips-in ) 4.12 ft) interval. L c 1 = rT Lc 2 = 102.62/2 (7.000 = = 173.000 20.591) So critical is the smaller of the above two critical length values: Lc = 8.000C b F y d/A f Before be able to use these two equations we need to compute Cb and rT 4. Ltd.6 Fy may be used is given by the larger of the following two lengths for Lc.6 m) This shows that the design condition is Lb > Lc where Lb = 10.33 in = 4.75 /(7.54 ft (2. 3 1470 1470     5.47 ft (4.60 m) 20.3  1   M2 2  ≤ 2.54 ft (2. Designed by: BSS AISC/ASD (1991) 76 b f Fy = 76 × 7.000 × 1.87 34 Checked by: NA 54 Sheet No:2 / 3 Reference Chapter: 5 = 102.71 in = 14.058 ≤ 2 . Permissible Stress Fb and Final Capacity So substituting rT and Cb into above equations for Lc Lc 1 = 1.SYS Design Code: Thailand Lc 1 = Lc 2 = Example: Subject: Design of Beam Siam Yamato Steel Co.87 × 0.57 in = 8.000 C b Fy 20.16 ft 3.058 Hand Book for Design of Steel Structures 34 = 56.05  1300  + 0 . Design for Lb>Lc The largest lateral bracing spacing Lc for which the allowable stress 0. (1.3 (Where M1< M2 )  [Units: Any consistent units for moments can be used] 2 Cb = 1 .512 )  M1 M  2 C b = 1.42 m) 5-23 .75 −1.4 m) Fy × d/Af 34 ×15.1479 102.05  = 1.87 × 0. 3  1300  = 1 .1479 in  M  + 0.69 ft. Computation for Cb and rT rT ≈ I y /2 Af = 10. 75 − 1 . 512 Checked by: NA 54 Sheet No:1 / 3 Reference Chapter: 5 = 159.04 m) Actual unbraced length Lb = 10. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Lc 2 = 20.22 in = 13.0 = 20.26 ft (4.26 ft (4.SYS Example: Subject: Design of Beam Siam Yamato Steel Co.4 Ksi Or Fb = 0.6 x 34.4 x 72.6 Fy = 0.87 × 0.058 34 ×15.) Hence use H 400 x 200 x 66 kg/m Hand Book for Design of Steel Structures 5-24 .04 m) Adopting higher of Lc1 and Lc2 final Lc = 13.000 × 1.09 m) So the final design case is: Lb <Lc and the permissible stress is given by Fb = 0.6 x 2400 = 1440 ksc Moment Capacity = Fb x Sx = 20.6 = 1481 in-kips > (1470 + 2.6 Fy = 0.16 ft (3.75 / 7. Ltd.14 due to self wt. 812 = = 42.433 in r = 14 mm = 0.:Concentrated Load on Beam Example Problem Solution: Section properties for H350x175x49.6 (33 lb/ft) bf = 17.276 in tf = 11 mm = 0.4 x 34 = 13.433 – 2 x 0.551 = 11.78 in tw = 7 mm = 0.8 in H 350 x 175 x 49. Ltd.78 – 2 x 0.89 in d = 35 cm = 13.6 kg/m 20' Fig.SYS Example: Subject: Beam Checks Siam Yamato Steel Co.13. Shear Capacity: h = d-2tf – 2 radius = 13. 5. h 380 ≤ tw Fy Fv = 0.8 t w 0.276 380 380 = = 65.551 in 1.169 34 Fy So.812 in h 11.4 Fy = 0.5 cm = 6. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 55 Sheet No:1 / 3 Reference Chapter: 5 Problem: Check the capacity of the beam shown in the figure below for • shear • web crippling • side sway web buckling 7.6 ksi Shear Capacity V = d x tw x Fv Hand Book for Design of Steel Structures 5-25 . 14 [1 + 0. Ltd.66 kips ( 35. Local Web Yielding Length of bearing N = 7.89 d c /t w 42.5  = 5.30 ton) 3.6 = 51 kips (24.8 = = 1.63 l /b f 26.984 in For the concentrated load which is not near by the support Web yielding capacity = 0.66 Fy x tw (N + 5k) R = 0.276 x 13.7 l /b f Hand Book for Design of Steel Structures 5-26 .SYS Example: Subject: Beam Checks Siam Yamato Steel Co.433  1.812 = = = 42. R = 67.124 For loaded flange not restrained and d c /t w < 1.9 ton) 4.276 in Distance from extreme fiber to toe of fillet k = tf + r = 0.276     80   0.303  ×  34x 0.8 + 5 * 0.276  )2 1 + 3  7.433 + 0.8 in Thickness of web tw = 0.5 (0. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 54 5 Sheet No:2 / 32 Reference Chapter: 5 = 13.984) R = 77. Web Crippling R = 67.12 kips (16. Side sway web buckling Assume the largest unbraced length along either flange l = 180 in and loaded flange not restrained against rotation.276 180 l = = 26.8   0. d c h 11.78 x 0.433 0.5    F yw × t f tw where: d = length between the vertical stiffeners Assume d = 80 in.54 ton) 2.5t 2 w   N  t 1 + 3    w  d  t f     1.124 b f 6.276 = 43.551 = 0.66 x 34 x 0.276 (7.1488 ] x 7.8 t w t w 0. SYS Example: Subject: Beam Checks Siam Yamato Steel Co. Ltd. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA 54 Sheet No:3 / 3 Reference Chapter: 5 The resistance to side sway web buckling is given by  R = 6800 t w 3  0.12 kips (16.96 kips (9.54 ton) Web yielding = 77.53 ton) = 5. Design (Checks) Summary Final Capacities For shear = 51 kips (24.30 ton) Web crippling = 43.53 ton) Hand Book for Design of Steel Structures 5-27 .9 ton) Side sway web buckling = 2096 kips (9.276 3  0.63 3    11.4 × 1.4  h   d c /t w   l /b f 3      6800 x 0.812 = 20.66 kips (35. Hand Book for Design of Steel Structures 5-28 . In some cases if the compression flange of the compact section beam has a continuous lateral support. Mr = Moment capacity of the section when Lb< Lu.6 Fy and 0.   65 = b f  2t f      2 Fy’’ = The theoretical maximum yield stress based on the depth-thickness ratio of web. Lu = Maximum unbraced length of the compression flange at which the allowable bending stress may be taken as 0. Design Aids It has been mentioned earlier in this chapter that the design of a beam primarily needs calculations for the determination of the critical unbraced lengths Lc and Lu and checking the section compactness.66 Fy for noncompact shapes. the moment strength can be obtained without any calculations to check the adequacy of the lateral bracing. Lb = Unbraced length of the compression flange. Notations: Lc = Maximum unbraced length of the compression flange at which the allowable bending stress may be taken as 0.e. fa = 0 (no axial load)   412  = d   t w  2 Fy’’’ = The theoretical maximum yield stress based on the depth-thickness ratio of web.10. beyond which a particular shape is not “compact” for any condition of combined bending and axial stresses based on web local buckling criteria and is given by the following formula.6 Fy. beyond which a particular shape is not “compact” based on flange local buckling criteria and is given by the following formula.1 Allowable Stress Design Selection (For Shapes Used as Beam) These tables are useful to check the critical unbraced length limits and to find the moment capacity when the lateral torsional buckling checks are not required or the unbraced length is less than that given by Lc. So the following three types of SYS beam design aids shall be provided to assist the structural steel designer in his regular design works. beyond which a particular shape is not “compact” based on web local buckling criteria and is given by the following formula. The table also gives the compactness of the sections for Fy = 2400 ksc (the most common standard grade of Siam Yamato steel) based on Fy’ criteria as explained below. It is only applicable for the cases of pure bending i. Fy’ = The theoretical maximum yield stress based on the width-thickness ratio of onehalf the unstiffened compression flange.66 Fy for compact shapes and between 0. Table 5. the capacity have been computed for the unbraced length of 1 m to 10 m which may be too large for small sections. To cover most practical cases. These are the tables produced by rearranging the Tables 5. no explanation are provided here. Some intermediate calculations can be avoided by directly reading the values from these tables.4.2 Properties of Sections for Beam Design These tables are meat to assist the designer in saving time and effort for the calculation of important parameters when the beam design is carried out by hand calculation. Only parameter required to pick the correct value of the moment capacity for a given shape is the unbraced length of the compression flange. These tables provide an easy way to find a particular section or sections that has the minimum weight for a given moment strength requirement. Table 5.4 in the increasing order of weight instead of designation as in Tables 5. The sections in these tables have been arranged in the increasing order of the width and depth in the similar way in the SYS product catalogues. The section corresponding to this first occurrence will be the lightest section (most economical section) for the requirement. they are presented in slightly different form to provide more easy and practical way of beam design. To pick a section that can carry certain required moment for a known unbraced length.3 Allowable Moment Capacity (Arranged According to Section Designations) The allowable moment tables give the capacity in ton-m for various shapes that are commonly used as beam. Hand Book for Design of Steel Structures 5-29 . Table 5. As the notations used are quite obvious and standard ones.  257  = d   t w  2 Table 5. until he gets the moment capacity equal to more than that required.4 Allowable Moment Capacity (Arranged According to Section Weight) Minimum weight criteria is one of the most important consideration in the design of steel structures. Although some of the parameters for compactness checks are repeated from the previous tables. the designer should move down along the column for that unbraced length. 0 C 200x90x30.91 3268.82 7560.17 2.0 H 298x299x87 Kg/m 1270.4 Kg/m 867.02 11534.4 Kg/m 893.00 4295 Comp 1.80 6926.00 2273 NonComp 3.2 Kg/m 330.00 3226 Comp 1.96 2.00 8846 Comp 1.30 2.87 11102.00 7635 Comp 1.2 Kg/m 76.3 Kg/m 249.00 5639 Comp 1.2 H 248x124x25.30 3.00 1909 NonComp 2.1 Allowable Stress Design Selection (For Shapes Used as Beam) Section Designation Sx cm3 Fy’ Ksc Fy’’ Ksc Fy’’’ Ksc Compactness for Fy=2400 ksc Lc m Lu m Mr (=0.00 11929 Comp 1.63 5.17 2.17 2.62 3.0 H 198x99x18.4 H 250x250x72.53 1101.30 2.30 1.5 Kg/m 219.00 2598 Comp 1.6 Kg/m 324.7 Kg/m 481.9 Kg/m 472.5 Kg/m 1150.0 H 200x100x21.8 Kg/m 136.1 Kg/m 429.30 3.25 5.6 C 300x90x43.2 Kg/m 160.7 Kg/m 628.30 12484.2 H 208x202x65.00 6222 Comp 1.8 H 200x204x56.28 4.68 10368.96 4.6 C 300x90x48.48 4104.12 3153.00 1231 NonComp 3.62 2.3 Kg/m 195.6 H 194x150x30.00 1940 NonComp 1.40 13233.94 7.2 Kg/m 498.39 1987.00 1081 NonComp 3.82 1958.63 2.43 4665.6FySx) ton-m C 200x90x30.00 2240 NonComp 1.0 H 248x249x66.17 3.6 Kg/m 525.6 Kg/m 227.91 2.00 1909 NonComp 2.66 7.90 18288.4 H 298x201x65.8 Kg/m 494.00 9426 Comp 1.25 16560.74 7113.50 4295 Comp 1.00 1909 NonComp 2.4 H 294x200x56.00 3596 Comp 3.71 6796.57 3585.6 H 125x125x23.8 H 200x200x49.71 9043.29 6.41 4752.6 H 298x149x32 Kg/m 424.07 5385.3 Kg/m 926.1 Kg/m 502.2 Kg/m 374.17 3.47 2.1 Kg/m 138.00 2749 Comp 1.00 2924 Comp 2.00 3609 Comp 1.2 Kg/m 919.2 5-30 .29 6177.6 C 250x90x40.29 1.0 H 250x125x29.6 H 175x175x40.00 6710 Comp 1.4 Kg/m 720.00 2465 Comp 1.0 C 380x100x54.85 6105.Table 5.6 H 244x175x44.5 Kg/m 763.26 5.10 13334.00 1546 NonComp 3.90 5.8 Kg/m 771.2 H 150x150x31.4 H 100x100x17.00 4128 Comp 2.4 H 148x100x21.91 2649.0 Hand Book for Design of Steel Structures 2392 NonComp 2.32 8.2 C 380x100x67.8 H 250x255x82.61 4.5 Kg/m 801.63 3.6 Kg/m 334.00 7741 Comp 1.00 6222 Comp 1.7 Kg/m 285.47 7228.48 10987.00 2191 NonComp 2.59 2808.6 H 300x150x36.28 3.96 2304.6 C 250x90x34.04 2.17 2.3 Kg/m 184.20 7171.8 H 244x252x64.00 1884 NonComp 3.6 C 300x90x38.75 4809.97 12859.00 H 294x302x84.00 1625 NonComp 1.00 1909 NonComp 1.61 3. 00 6710 Comp 1.6 H 298x149x32 Kg/m 424.00 2191 NonComp 2.53 1101.00 6222 Comp 1.6 Kg/m 525.62 3.00 8846 Comp 1.6 C 250x90x34.47 2.1 (Continued) Allowable Stress Design Selection (For Shapes Used as Beam) Section Designation Sx cm3 Fy’ Ksc Fy’’ Ksc Fy’’’ Ksc Compactness for Fy=2400 ksc Lc m Lu m Mr (=0.8 H 244x252x64.17 2.63 5.96 2304.00 1081 NonComp 3.29 1.28 3.96 4.4 H 294x200x56.3 Kg/m 249.00 1625 NonComp 1.5 Kg/m 763.97 12859.3 Kg/m 184.4 H 100x100x17.0 H 200x100x21.6 H 300x150x36.25 5.62 2.50 4295 Comp 1.3 Kg/m 195.61 3.1 Kg/m 502.0 Hand Book for Design of Steel Structures 2392 NonComp 2.4 Kg/m 720.9 Kg/m 472.91 2.04 2.00 9426 Comp 1.12 3153.2 C 380x100x67.4 H 250x250x72.2 Kg/m 498.59 2808.48 10987.32 8.4 Kg/m 893.5 Kg/m 1150.00 2924 Comp 2.17 3.61 4.5 Kg/m 801.00 5639 Comp 1.2 Kg/m 76.17 2.6 H 194x150x30.6 Kg/m 324.6 H 125x125x23.00 7635 Comp 1.63 2.00 6222 Comp 1.0 H 248x249x66.2 Kg/m 374.00 1909 NonComp 1.0 C 380x100x54.20 7171.2 H 208x202x65.82 1958.1 Kg/m 429.75 4809.91 2649.00 2465 Comp 1.85 6105.00 3609 Comp 1.6 C 250x90x40.17 2.0 C 200x90x30.2 H 150x150x31.25 16560.30 3.8 Kg/m 136.00 4295 Comp 1.6 C 300x90x48.29 6.00 2273 NonComp 3.71 9043.4 Kg/m 867.57 3585.2 Kg/m 160.0 H 250x125x29.2 5-31 .6 H 175x175x40.74 7113.00 2598 Comp 1.8 Kg/m 771.00 1909 NonComp 2.90 5.00 7741 Comp 1.00 1909 NonComp 2.8 H 200x200x49.5 Kg/m 219.00 1940 NonComp 1.10 13334.00 1884 NonComp 3.30 2.00 H 294x302x84.29 6177.7 Kg/m 481.1 Kg/m 138.91 3268.28 4.4 H 298x201x65.68 10368.00 11929 Comp 1.00 3596 Comp 3.00 4128 Comp 2.96 2.63 3.00 1909 NonComp 2.80 6926.94 7.6 Kg/m 227.8 Kg/m 494.41 4752.17 2.00 3226 Comp 1.6FySx) ton-m C 200x90x30.26 5.17 3.8 H 250x255x82.87 11102.6 Kg/m 334.2 H 248x124x25.0 H 198x99x18.00 1546 NonComp 3.66 7.07 5385.6 C 300x90x38.6 H 244x175x44.40 13233.00 1231 NonComp 3.39 1987.71 6796.00 2240 NonComp 1.Table 5.2 Kg/m 919.2 Kg/m 330.00 2749 Comp 1.30 1.47 7228.7 Kg/m 285.02 11534.7 Kg/m 628.43 4665.4 H 148x100x21.0 H 298x299x87 Kg/m 1270.48 4104.90 18288.8 H 200x204x56.3 Kg/m 926.82 7560.30 3.30 12484.30 2.6 C 300x90x43. 05 H244x252x64.28 5.627.19 436.82 -- -- 5.589 15.89 0.50 -- 18.09 7.33 -- 43.05 0.06 H200x200x49.64 H198x99x18.46 8.8 5.4 5.76 -- 22.6 4.793.306.3 2.75 -- 17.13 6.12 3.21 0.08 C250x90x34.31 5.094.09 -- 15.047.14 8.50 -- 18.33 5.63 H175x175x40.214.17 97.7 3.41 H248x249x66.48 169.29 3.203.29 7.38 -- -- 14.6 3.95 -- 20.00 -- 21.31 -- 17.00 47.529.5 3.75 -- -- 39.70 -- -- 42.85 -- -- 10.67 -- -- 68.56 -- 21.31 3.25 0.68 C300x90x48.45 -- -- 6.35 0.25 4.00 H298x201x65.3 3.00 -- -- 34.56 160.243.45 33.1 3.69 -- -- 11.29 75.75 -- 46.33 -- 29.15 45.11 6.06 -- -- 16.36 4.708.44 0.88 H200x100x21.6 3.633.48 0.40 -- -- 23.03 420.41 0.16 5.33 4.07 -- 40.06 6.86 -- -- 69.54 0.13 7.12 8.63 -- -- 6.919.444.68 0.8 3.49 17.51 604.66 50.83 13.40 -- -- 8.9 5.79 0.000.00 H200x204x56.72 0.28 3.17 0.53 11.25 -- 14.744.00 -- 17.57 -- -- 15.27 0.25 -- -- 27.12 H250x250x72.95 -- 31.333.33 -- 22.906.2 Properties of Section for Beam Design (For Shapes Used as Beam) Section Designation Radius rT Compact Section Criteria d / Af Bf / 2tf cm Fy' d / tw Ksc Fy'' Fy''’ Torsional Constant J Ksc Ksc cm4 Warping Constant Cw cm6 C200x80x24.2 5.33 -- 33.2 3.03 H248x124x25.28 H208x202x65.333.6 2.33 -- 16.40 H100x100x17.94 -- 16.088.11 3.11 11.76 C250x90x40.95 0.86 0.60 -- -- 83.8 3.97 345.30 0.33 H194x150x30.00 56.89 -- -- 4.679.5 4.2 4.953.29 C380x100x67.67 -- -- 35.4 6.33 H125x125x23.02 169.733.10 0.08 9.734 24.964.06 12.25 -- 33.76 0.35 146.26 0.18 -- 30.45 2.1 4.00 H150x150x31.11 7.67 -- -- 8.00 31.85 -- 17.08 8.661.60 0.38 136.2 6.226.2 2.2 2.46 0.30 H298x149x32 3.93 3.37 5.08 8.09 H148x100x21.50 -- 14.00 -- -- 64.88 0.27 -- -- 10.56 237.63 -- 13.Table 5.91 C300x90x43.22 8.72 -- -- 19.75 -- -- 54.4 6.22 6.40 0.246 27.3 3.09 11.776.47 39.57 0.08 Hand Book for Design of Steel Structures 5-32 .666.10 7.27 C300x90x38.601.25 H294x200x56.1 2.28 0.60 569.664.73 0.08 40.85 0.71 -- -- 26.33 -- -- 12.58 113.25 9.432 51.94 -- 38.83 0.269 20.7 5.00 -- -- 5.67 -- -- 12.63 514.46 -- -- 9.320.07 8.46 H250x255x82.18 -- -- 33.25 6.6 3.58 3.25 7.06 C200x90x30.61 0.33 H250x125x29.21 C380x100x54.5 6.37 H244x175x44.70 H300x150x36.60 0.07 9.65 67.7 3.640.44 -- -- 22. 16 H304x301x106 8.70 370.189.6 4.77 -- 41.595.00 2.06 300.72 1.38 2.00 -- -- 101.5 8.21 0.186 54.50 -- -- 51.83 H336x249x69.04 H350x175x49.190.25 0.85 3.3 Properties of Section for Beam Design (For Shapes Used as Beam) Section Designation Radius rT Compact Section Criteria d / Af Bf / 2tf cm Fy' d / tw Ksc Fy'' Fy''’ Torsional Constant J Ksc Ksc cm4 Warping Constant Cw cm6 H294x302x84.Table 5.00 -- -- 48.063.67 -- -- 16.71 0.610 30.25 1.94 H300x300x94 8.07 10.722.4 4.37 1.798 24.28 Hand Book for Design of Steel Structures 5-33 .458.95 1.765 39.38 1.59 0.68 2.384.04 871.906.00 H300x305x106 8.16 0.518.95 -- 46.54 H346x174x41.15 6.86 -- -- 31.750.09 0.07 10.00 -- -- 51.55 -- -- 148.58 H354x176x57.07 10.06 8.67 3.17 2.379.8 4.22 0.785.86 236.500.08 12.2 6.65 H298x299x87 8.00 -- -- 102.58 1.18 7.977 27.880 22.00 -- -- 81.960.55 0.11 10.62 0.22 9.880 18. 81 4092.8 Kg/m 10154.40 2525.31 6721.36 9306.46 3644.4 Allowable Moment Capacity (ton-m) SYS Section Unbraced Length 5m 6m 1m 2m 3m 4m 7m 8m 9m 10m C 200x90x30.25 878.55 1230.82 1572.41 5051.92 6132.59 1261.09 3958.20 2806.31 2148.18 4653.65 C 300x90x43.60 13397.37 H 194x150x30.77 9231.00 10237.48 8303.16 4599.77 8831.59 9579.3 Kg/m 19035.5 Kg/m 15684.54 3924.76 7449.00 650.Table 5.57 1215.12 4613.77 504.30 3066.62 C 300x90x38.81 695.43 C 380x100x67.56 4092.61 2706.20 2809.2 Kg/m 7688.26 1048.46 618.69 1718.88 H 200x204x56.59 1286.55 1429.60 H 175x175x40.06 3144.00 2107.93 8382.67 3401.87 7446.86 560.44 2864.86 6166.35 1347.60 17304.31 6166.99 630.12 3679.38 841.53 2455.34 3402.76 C 300x90x48.15 2148.86 5442.20 4151.36 9306.94 683.6 Kg/m 10792.99 6702.06 6705.58 1157.74 4242.95 Hand Book for Design of Steel Structures 5-34 .40 1909.51 2772.72 3023.13 5541.73 11735.48 8820.47 6698.61 3608.50 2429.08 2628.61 5729.61 8419.07 2299.18 4158.79 768.92 3532.35 2033.06 17304.50 615.55 4293.3 Kg/m 5118.52 1886.23 943.78 6241.6 Kg/m 6865.08 2079.56 2044.73 1179.2 Kg/m 3288.2 Kg/m 6721.70 4618.64 1938.09 2376.30 11735.99 1943.07 4296.30 12909.61 6600.3 Kg/m 4008.34 2408.08 10717.36 8377.15 720.18 2543.11 794.06 4211.60 2683.92 9236.65 9470.75 2721.09 1556.21 6314.99 1620.65 8820.72 2770.37 3319.83 H 100x100x17.56 3078.30 1025.39 14258.62 1651.02 6989.73 1009.59 1429.66 8931.50 4653.85 886.5 Kg/m 4501.76 2578.24 3577.94 498.11 6989.26 5358.27 2385.00 H 148x100x21.9 Kg/m 9470.85 C 380x100x54.33 4415.00 972.06 1663.67 5621.54 5954.15 H 150x150x31.41 C 200x90x30.36 9306.6 Kg/m 4554.70 2358.99 2976.82 395.08 7064.73 1396.56 4092.2 Kg/m 1572.36 9306.00 1080.62 8016.09 1275.87 2182.59 2880.29 H 208x202x65.38 439.11 5366.13 3326.54 11774.74 4659.44 7451.50 2541.36 3463.17 6927.56 3371.25 C 250x90x34.70 3887.8 Kg/m 2795.00 1388.05 1839.07 1848.73 11176.95 970.7 Kg/m 12909.13 2146.89 1685.53 4209.1 Kg/m 8818.80 3437.63 3821.23 3157.19 556.65 2541.39 7655.2 Kg/m 10237.69 H 125x125x23.70 3066.86 5887.92 H 200x200x49.72 C 250x90x40.37 H 198x99x18.1 Kg/m 2836.73 11735.00 1872.00 9306.3 Kg/m 3782.38 5046.84 H 200x100x21.01 9810. 59 19483.8 Kg/m 18685.93 30238.46 3050.6 Kg/m 15550.95 7415.45 26135.14 Hand Book for Design of Steel Structures 5-35 .95 29600.84 1127.79 6794.78 H 336x249x69.68 4908.1 Kg/m 10072.54 1068.19 22657.91 16473.7 Kg/m 1m 2m 3m 4m 5728.5 Allowable Moment Capacity (ton-m) SYS Section H 248x124x25.69 2199.84 2783.6 Kg/m 6660.36 26053.45 16687.24 8993.92 16958.4 Kg/m 18350.25 13029.67 11978.60 2410.78 17173.06 H 250x250x72.96 25414.01 1221.91 H 248x249x66.91 3788.03 H 346x174x41.92 16958.50 24584.80 16561.82 3868.00 H 304x301x106 Kg/m 30238.7 Kg/m 9819.04 14302.60 H 298x299x87 Kg/m 23586.59 21490.27 14379.75 10782.52 7923.78 17173.01 15181.46 1781.76 7306.74 5698.21 6054.85 4383.16 17173.95 29600.04 9101.66 14259.59 9381.06 H 300x305x106 Kg/m 29600.17 10387.42 H 298x201x65.86 21490.08 22886.88 7943.59 21490.05 23586.49 7824.02 9181.22 8988.76 4888.30 18792.26 5389.22 4676.16 18891.00 13269.46 19308.15 14720.35 1952.78 17173.58 9020.83 20847.4 Kg/m 14720.01 14968.56 H 300x150x36.39 H 294x200x56.36 25414.20 12754.32 14482.19 13342.11 21520.39 9993.78 17173.27 3984.08 23733.96 25228.28 3141.97 14429.4 Kg/m 16958.15 13454.05 23733.95 26909.38 11294.63 1426.30 4897.13 14893.72 13472.8 Kg/m 15470.67 H 298x149x32 Kg/m 8346.14 12168.60 16986.41 H 244x252x64.89 5934.95 26909.57 H 300x300x94 Kg/m 26053.95 26828.70 28778.86 23039.79 13956.08 23642.21 20387.98 13454.10 7581.59 10072.90 2536.28 14307.95 26909.92 16202.30 H 350x175x49.5 Kg/m 15181.28 1546.86 5325.63 2748.02 8261.16 18891.17 9273.4 Kg/m 12395.2 Kg/m 20847.99 19876.95 26909.48 9551.45 11242.32 15550.83 11286.98 12848.5 Kg/m 23039.99 7063.78 16032.2 Kg/m 18891.98 13454.06 15470.46 2019.31 15122.36 26053.88 24146.24 24141.24 18032.48 20232.45 3878.66 21464.10 7326.67 11439.35 3635.64 6084.75 Unbraced Length 5m 6m 3520.06 14408.83 20556.67 8837.86 23039.12 10042.66 14968.01 11521.93 30238.78 H 354x176x57.Table 5.45 18350.45 15586.03 15340.15 7577.93 5054.85 12414.11 9040.60 18685.84 12012.32 12778.25 17318.76 H 244x175x44.93 28778.82 H 294x302x84.70 28778.79 5987.86 H 250x255x82.03 22850.79 10607.39 4849.05 23586.08 11013.97 11978.34 6006.91 16659.60 7m 8m 9m 10m 1863.15 14720.59 21490.72 6186.01 15181.95 26909.03 16202.38 913.36 5919.52 13402.99 15601.84 7310.83 20847.70 27504.18 H 250x125x29. 23 H 344x348x115 Kg/m 35473.38 33526.20 36253.24 42140.38 25037.73 50362.58 24789.94 25414.18 42981.48 51397.19 32516.46 14656.96 23848.44 20022.91 44408.75 32516.91 14887.98 26310.20 35473.38 25037.46 H 394x398x147 Kg/m 51397.78 37929.24 42140.00 17735.31 38309.84 49739.03 56623.80 10111.86 83719.30 H 400x200x66 Kg/m 23877.37 17973.43 56623.00 17735.30 45784.31 Unbraced Length 5m 6m H 414x405x232 Kg/m 91924.43 62172.50 36384.19 37001.63 17507.50 33076.26 22238.85 31208.52 19591.86 H 446x199x66.31 37113.62 37001.04 H 344x354x131 Kg/m 42140.36 16138.48 51397.11 19258.93 11889.66 31042.82 31424.61 31942.91 42981.02 29484.73 50362.46 H 350x350x137 Kg/m 44408.38 23919.52 19591.15 15660.89 22202.54 22647.5 Kg/m 27946.84 49739.47 9973.69 21228.38 25037.69 19636.85 32901.96 24046.27 60480.84 49739.54 20311.20 35473.76 17290.31 38309.5 Kg/m 32314.89 23114.80 H 404x201x75.15 H 394x405x168 Kg/m 62172.70 12445.62 37930.48 51397.42 47092.76 27844.07 31208.04 25913.43 62172.7 Kg/m 25037.86 83719.91 83719.31 38309.30 45784.30 45784.98 10081.7 Kg/m 25037.94 27946.57 17615.31 38309.24 38309.19 37001.66 14393.86 83719.84 49739.5 Allowable Moment Capacity (ton-m) Hand Book for Design of Steel Structures 5-36 .36 34944.58 50043.69 29713.28 53259.03 H 400x400x172 Kg/m 63327.03 56623.9 Kg/m 36384.20 35473.82 33076.91 91924.09 20924.18 42981.96 25414.54 22647.30 H 390x300x107 Kg/m 37930.73 45784.53 27543.96 23848.23 25977.69 36195.09 22238.60 H 350x357x156 Kg/m 50362.62 Table 5.54 15276.21 63327.07 31208.03 56623.28 51778.42 43062.42 58448.21 63327.03 56623.04 24106.26 23877.19 35527.75 32314.75 27719.69 36253.98 18238.5 Allowable Moment Capacity (ton-m) SYS Section 1m 2m 3m 4m 7m 8m 9m 10m H 340x250x79.91 91924.86 83719.91 44408.48 8190.2 Kg/m 25913.20 33817.15 15660.6 Kg/m 19636.30 H 396x199x56.85 12059.43 62172.48 12379.43 62172.38 25037.91 44408.62 37930.69 21228.38 23919.85 32901.75 32314.28 53259.42 47092.07 30986.48 53259.97 H 340x250x79.Table 5.04 12313.69 18874.30 45784.21 62229.21 63327.42 47092.85 32901.91 91924.83 23908.18 41467.16 H 450x200x76 Kg/m 30628.43 31879.34 23794.99 H 388x4002x140 Kg/m 49739.91 29080.21 63327.73 50362.62 15019.50 H 456x201x88.27 62229.42 39796.24 42140.91 91924.04 22289.48 51397.27 62229.97 H 338x351x106 Kg/m 32901.76 30628.19 32391.33 27763.59 21214.85 25747.30 45784.84 47092.34 18823.35 H 386x299x94. 60 93063.19 70829.72 94969.52 55688.84 33347.93 40364.04 47653.00 34740.16 36400.98 41103.81 107639.22 H 700x300x185 Kg/m 117585.11 48303.93 100725.04 47653.35 69109.96 16698.59 93063.56 70433.10 83436.50 45119.63 38592.17 109089.89 19655.93 40041.70 51259.53 54380.58 38305.37 39262.52 63350.6 Kg/m 39262.44 23852.05 42825.45 46718.31 36784.06 47653.72 86336.77 35024.99 44040.84 54380.53 H 494x302x150 Kg/m 69109.84 Hand Book for Design of Steel Structures 5-37 .06 50113.31 63350.81 32225.05 31886.64 60527.09 41418.5 Kg/m 34740.53 114716.05 43168.04 27557.51 84337.11 41319.75 H 440x300x124 Kg/m 50113.36 38477.00 96289.23 36301.72 94969.58 56279.40 H 692x300x166 Kg/m 101662.04 H 506x201x103 Kg/m 45840.48 H 446x302x145 Kg/m 60750.19 32261.02 51152.6 Kg/m 47484.65 55688.04 45831.65 55688.53 24886.09 93811.93 100725.SYS Section 1m 2m 3m 4m Unbraced Length 5m 6m 7m 8m H 434x299x106 Kg/m 41418.54 48246.05 41673.52 61049.45 49130.03 27406.65 117585.29 H 482x300x114 Kg/m 49130.02 58625.81 75277.13 45134.35 69109.86 20524.60 53240.94 15921.94 H 606x201x120 Kg/m 61257.05 39693.34 119786.03 43635.65 55688.67 H 488x300x128 Kg/m 57187.30 76514.35 63350.99 60750.39 49938.97 20910.01 63163.52 17905.09 40364.36 41673.82 54949.60 101662.67 119786.53 52395.77 23938.61 54380.45 49130.03 62064.81 26179.06 35693.84 57187.78 H 582x300x137 Kg/m 70829.60 101662.66 20272.65 52736.81 105498.82 22105.24 41330.00 31581.81 36835.94 38902.37 35693.09 93811.32 88806.71 30768.34 131765.99 55688.42 29401.86 31649.76 65044.06 50113.36 45840.59 H 496x199x79.09 26897.86 43168.10 86336.59 92679.68 101182.52 61257.67 119592.65 53665.99 H 612x202x134 Kg/m 69480.00 H 792x300x191 Kg/m 131765.50 H 594x302x175 Kg/m 94969.37 25815.61 102712.53 54728.52 9m 10m 43760.47 73613.15 79611.67 46718.90 79273.06 33484.78 90822.81 107639.72 86493.01 47152.60 48400.59 29381.09 90651.99 60750.22 38232.09 41418.08 39934.49 45466.10 86336.19 65966.57 H 500x200x89.93 93811.82 31449.16 H 588x300x151 Kg/m 100725.52 H 596x199x94.19 70829.64 63163.76 65966.57 50373.02 48714.72 81781.65 117585.34 131765.84 57187.65 107639.83 95585.04 45913.11 58189.01 69480.28 51327.29 43961.47 H 600x200x106 Kg/m 53240.81 13526. 00 23267.34 18276.50 I 450x175x115 Kg/m 44606.96 22424.66 15865.00 47585.89 28551.61 7355.96 22265.66 14391.19 2845.66 15865.67 16287.34 18276.81 136231.96 23919.16 52768.90 8906.50 I 600x190x176 Kg/m 89008.39 67424.01 I 200x150x50.81 149854.86 7528.85 16033.36 128196.43 14786.Table 5.74 80916.05 Hand Book for Design of Steel Structures 5-38 .20 29526.96 23919.8 Kg/m 20103.10 15373.74 75382.32 115162.39 61294.41 18095.96 23919.81 40551.68 2982.85 12723.5 Kg/m 17452.89 9895.53 11810.12 13143.10 1988.96 23919.14 7686.20 29526.68 I 250x125x55.61 8334.78 4064.66 12335.81 149854.76 14476.61 I 250x125x38.51 2386.66 I 300x150x76.81 4516.32 9033.06 58631.53 26805.81 32516.86 35689.41 89008.20 29526.93 15865.81 40208.61 8334.83 40787.62 5884.3 Kg/m 8510.81 35767.10 16258.77 17812.16 5018.37 31723.90 16258.88 6149.14 4741.61 8334.5 Kg/m 17883.27 7736.64 133627.95 6538.99 12299.64 I 200x100x26 Kg/m 4460.85 I 300x150x48.80 24125.76 5690.62 14843.98 9958.39 122041.21 6452.19 10249.00 24800.19 29761.91 7m 8m 9m 10m 136231.83 21257.34 16898.5 Kg/m 17637.29 1491.81 40551.22 11828.62 16533.41 80916.85 16033.85 14937.89 57103.32 8785.71 10793.3 Kg/m 12991.39 11292.07 8334.46 22424.61 8334.07 16033.34 3161.2 Kg/m 26311.82 29526.21 8962.34 1704.44 8635.48 11810.20 27145.01 8334.99 44606.23 15865.74 80916.96 20680.61 7112.19 32516.31 12803.56 1193.00 I 450x175x91.5 Allowable Moment Capacity (ton-m) SYS Section 1m 2m 3m 4m Unbraced Length 5m 6m H 800x300x210 Kg/m 149854.99 6832.00 18276.89 61294.8 Kg/m 32478.7 Kg/m 35767.22 I 600x190x133 Kg/m 67424.36 16084.93 65960.75 5646.31 I 400x150x95.18 3976.23 16033.71 34464.14 20358.39 3556.34 18276.86 18600.64 136231.29 I 400x150x72 Kg/m 24667.98 18276.30 11132.70 4055.75 9594.96 23919.4 Kg/m 9168.59 I 350x150x87.99 40551.75 18096.74 80916.48 I 300x150x65.41 11202.89 14880.26 1325.61 7736.34 I 350x150x58.61 30156. web yielding. In addition to flexural strength calculation about both principal axis. The module can carry out all necessary design. Hand Book for Design of Steel Structures 5-39 . design and verification of the beam.11. crippling and side sway web buckling can also be carried out Built-in SYS section database facilitates the quick selection. Software Implementation The beam design module of the SYS Designers Software has been developed based on the flow diagram as described in “General Procedure“ section of this chapter. various standard beam checks like shear. investigation and checks according to AISC/ASD (1992) specifications. Chapter 6 Design of Columns 1. The rafter and column of a gable frame and top chord member of a truss with a purlin placed between the joints are the some common examples of such columns. The basic concepts for axial load are explained in Chapter 3 and 4 and for bending in chapter 5. This chapter describes the additional concepts and considerations specific to columns. we have discussed about the design of members subjected to only axial compression or flexure.1. 6. P Mx Top My Top My Bot Mx Bot P • Fig. with negligible errors.General Steel Column Structural members subjected to both significant compression and flexure are called beam-columns or columns in general. the effects due to bending are so small that they can be considered as secondary effects and can be neglected. While many structural members can be treated as either axially loaded members or beams with only flexural loading. Introduction In the previous two chapters. and checks the combined effect by using some interaction formulae. In many cases. many of them are subjected to some degree. Design of a column requires the determination of the stresses due to the axial loads and bending. of both bending and axial load. Important topics to be covered in this chapter are the magnification (amplification) of actual moment due to presence of axial Hand Book for Design of Steel Structures 6-1 . • Secondary moment due to the deflection within the length of the member ( P − δ effects ) Fig 6. • M max = MF x M 2 • (6-1) Where MF = moment magnification factor Mmax = maximum or magnified moment for design The analytical solution for the pin-ended column segment as shown in figure 6. the moments obtained from elastic first-order analysis are magnified to take into account the following two type of effects.3 is given by MF = (M1 / M 2 ) + 2(M1 / M 2 ) cos kl + 1 sin2 kl Hand Book for Design of Steel Structures • (6-2) 6-2 . An analytical expression for a column subjected to an axial load P and unequal end moments M 1 and M 2 is given as follows. 6.g.force and column design using interaction formulae. AISC/LRFD) require separate first-order elastic analysis for ‘lateral translation (LT)’ and ‘No lateral Translation (NT)’ cases and using different amplification factor for moment obtained from each analysis.2.1(a) • Secondary moment due to the effect of sway when the member is a part of a part of an unbraced frame ( P − ∆ effects ) Fig. ∆ δ (a) (b) • Fig. Moment Amplification For the design of columns.2(b). 2.Second Order Effects Some specifications (e. Design examples and flow diagrams that form the basis of internal calculation for SYS designer are also included at the end.6. sec(Kl / 2) (6-5) • Where • 1 Cm = • (6-6) Sec (kl / 2) where the above exact solution has been simplified with the following assumptions for practical design purposes.4(M1 / M 2 ) Finally the moment magnification factor takes the form as Cm P 1− Pe Where Eulers’ Load is given as • (6-8) • (7-9) MF = Pe = π 2EI (kL / r )2 Hand Book for Design of Steel Structures • (6-10) 6-3 . The MF can also be written as k= MF = Cm . sec( kl / 2) = 1 1− P Pe (6-7) • And • Cm = 0.3.6 − 0. 6.The location of the point of maximum moment can be calculated using the following equation. Single Curvature Bending tan( kx c ) = − (M1 / M 2 ) cos kl + 1 (M1 / M 2 ) sin kl (6-3) • Where • P • (6-4) EI And M1/M2 is positive for double curvature bending and negative for single curvature. M1 M2 xc M1 M2 Mmax • Fig. and for members in general frameworks.0 0. It can be noted in the equation 6-11 that the amplification factor is equal to one.6Fy Fbx Fby • • • (6-12) • (6-13) For axial tension and bending fby fa fbx + + ≤ 1. Column interaction equations include two types of second-order effect P − δ and P − ∆ which are explained in the previous article “Moment Amplification”. various factors to approximate the actual behavior are introduced. For the illustration purposes. So the major portion of the analysis/design of columns is devoted to the assessment of the procedure for calculations of the effective length and moment amplifications factors. derived considering the column as simply supported and subjected to axial load and equal external moment at two ends. Such equations are based on linear first-order elastic analysis and amplified to account for second-order effects. Use of this moment magnifier in the column design interaction equations are discussed in the subsequent article ”Column Interaction Equations” 3.Equation 6-9 forms the basis for the moment magnification factors used in various forms in different specifications. To generalize the equations such that they may be applied for members with other loading and boundary conditions. the interaction equations for AISC/ASD will be discussed in this article. such analysis are impractical for manual calculations and can only be carried out with advanced computing tools.0 Fa Fbx Fby fa ≥ 0.0 Fa Fbx 1 − fa Fbx Fby 1 − fa Fby • • And for fby fa f + bx + ≤ 1. • For axial compression and bending f For a < 0. Column Interaction Equations Column interaction equations are. This means for small axial load (fa/Fa<0. The factor Cm is incorporated to account for the unequal end moments and the Hand Book for Design of Steel Structures 6-4 .15 following two equations Fa fby Cmy fa f Cmx + bx + ≤ 1.15 Fa fby fa f + bx + ≤ 1.15) the secondary effects are less significant and can be neglected without any serious error. the term C 1− f mx F a bx (6-11) (6-14) • • (6-15) is the moment amplification factor.0 Ft Fbx Fby • • In the above column interaction equations. Although various codes to permit the use of more rational second-order inelastic analysis. basically. The details for sub parts can be referred to the general procedures described in last two chapters. In addition to this.restraint conditions as explained in the previous section. also forms the basis for the development of the column design module of the SYS Designers Software. This flow diagram. Detailed procedures for the calculations of various parameters of the above equations has been shown in the ‘General Procedure” section of this chapter for AISC/ASD specifications. 4. column design also needs computations of factors for moment magnification. (Flow diagrams for the design of columns are shown in the following pages) Hand Book for Design of Steel Structures 6-5 . General Procedure General procedure for the design of a column is the combination of corresponding general procedures for the design of an axial compression and flexural members. The following flow diagram describes schematically the stepwise design procedure for the design of a column. Flow Diagram for Column Design Basic Data Trial Cross Section Compute: Fa Compute: Fbx.6 F y Fbx Fby Zy 12π 2 E 23 ( kL / r ) 2x Yes 12π 2 E FEY ' = 23 ( kL / r ) 2y End Fig.15 No Compute: Cmx. Fby No Compute: fa.0 Fa Fbx Fby Compute: FEX'.fbx.4.0 0 . Flow diagram for a typical column design based on AISC/ASD specifications Hand Book for Design of Steel Structures 6-6 .FEY' P A M = x Zx fa = f bx f by = My FEX ' = f by C my f a f bx C mx + + < 1 . fby No Yes fa / Fa< 0. 6.0 Fby 1 − f a Fa Fbx 1 − f a ' ' FEX FEY Yes f by fa f + bx + ≤ 1.Cmy f a fbx fby + + < 1. Hand Book for Design of Steel Structures 6-7 . Flow diagram for the computation of coefficient Cm based on AISC/ASD specifications 5.5.Flow Diagram for Computation of C m Basic Date Transverse Load on t he member Yes Relative End Translation Yes No No End Rotationally Restrained Yes Yes Relative End Translation No No Cm=1 Cm = 0. 6.4M1/ M2 M1 < M2 Cm=0. Design Examples The example given in this section illustrates the complete design steps for a typical steel column subjected to moment and axial force at the ends.85 End Fig.6-0. 6.88 Normally.60 ft.7.6.7 20' ' 75' • Fig. 6.4 = 44 44' 4.General Column 7.Kips 20. ∑ (EI / L )c = G = 1 / 20 = 3.7 50x36 300x1 SYS H SYS H300x150x36.26 Kips 7.Design Actions Obtained from 2D Frame Analysis Solution: Determine of effective length factor K and Fa At top.64 Kips 29.68 ry Hand Book for Design of Steel Structures 6-8 .Kips V M Fig.SYS Example:6 1 Subject: Design of Beam Siam Yamato Steel Co.6 K x L x 1.64 Kips 2. G = 1 (fixed base ) Using Alignment chart for unbraced case Kx = 1. Ltd. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Sheet No:1 / 4 Checked by: NA Reference Chapter: 6 Problem: Check the adequacy of the column of the gable frame shown below 10@ 4.26 Kips • P 2.6 x 20 x12 = = 78.4 = 10@ .68 rx 4.94 ft. K y Ly ry = 1× Lx / 2 = 78. the column is braced laterally at mid height and K can be taken as 1 for that direction.9 1 / (2 x39 ) ∑ (EI / L )b At base. 1573 ≤ 2.60   29.3  29.75 Fy 34 Design Condition : Actual fa = So.26 = =1.001 ksi A 7.001 = = 0.05  1  + 0. Lc = 77.0744 Fa 13.03 in Fy 34 20. Maximum value of Lc for which Fb = 0. critical = 92.3  1  ≤ 2.20 in d Fy × Af smaller of the two. Actual unbraced length Lb = 10 ft.94  Cb = 1.44 Determination of Fb Maximum unbraced length = 10 ft.000 = 904.60  So use Cb = 1.66 Fy is given by the smaller of Lc1 = Lc2 = 76 bf 76 × 5.75 −1. So Lb > Lc Computation of Cb and rT : 2 M  M  Cb =1. Ltd.44 Ksi 3  KL   KL  5 3 r  1 r  −   +  3 8  Cc  8  C c          Kl < Cc r P 7.3   =1.05   + 0.3 M  2  M2  2  20.  1  KL / r  2    Fy 1 −   2  Cc   Fa = = 13.157 Hand Book for Design of Steel Structures 6-9 .75 −1.03 = 6.25 fa 1.3 r Cc = π 2E 2 × 29000 =π =129.SYS Example:6 1 Subject: Design of Beam Siam Yamato Steel Co.94   20.41 ft.91 = = 77. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Sheet No:2 / 4 Reference Chapter: 6 Kl So. 000 ×1.6 Fy is given by the higher of the following two equation.SYS Design Code: Thailand AISC/ASD (1991) Iy /2 rT ≈ Example:6 1 Subject: Design of Beam Siam Yamato Steel Co.5 (70.566 × Fy = 20.5 510.65 in 35.91× 0.58)  2  rT   × F = − Fb1 =  −   x Fy = 0.43 = 10.000 cb 20. Again Lb >= Lc 102.000 C b = Fy 510.157 = = 651. Ltd.000 Cb 12.000 ×1.000 cb 102.157   1530 ×10 cb      Ld Computing Fb based on Af L d 10 ×12 ×11.000 × C b Fy 2  L   F y    2 2 35.157 = 128.43 in d 11.000 Cb > Af Fy Fb2 = 12.81 Fy × 34 × Af 2.15 in Fy 34 20.81 = = 678 Af 2.157 = =120.58 in rT 1.354) Designed by: BSS Checked by: NA Sheet No:3 / 4 Reference Chapter: 6 = 1.157 = 57. 7 102.000 ×1.5 So.120 ksi  y 3 3 3  3 1530 ×10 ×1. L d 20.09 So Lc = 120.0 ft.83 Fy 35.70 Maximum spacing of lateral brace for the allowable stress 0.000 ×1.157 = = 20. Lc1 = rT Lc2 = 102.09 20.2 / 2 (5.000 ×1.000 C b = Fy 102. Af = 12.000 C b 20.7 = 100.157 = 1.92 in 35.000 ×1.000 C b L ≤ ≤ Fy rT So 510.5 L 10 ×126 = = 70.47 ksi L d / Af 678 Hand Book for Design of Steel Structures 6-10 . 60 ×12 = =12. and FEX ' is used only for the cases when fa fa > 0. fa f bx f by + + ≤1.85 Computation of FEX’ FEX ' = 12 π 2 E  KL  23   r  2 = 12 x π 2 × 29000 =17. But in this case = 0.47 ksi Actual Fb = Max.4 f b 12.59 Fb 20.0725 < 0.08 ksi Sx 29. moment 29.SYS Example:6 1 Subject: Design of Beam Siam Yamato Steel Co.3) Final check The above computed values of cm.47 Computation of Cm As the frame is not braced against lateral translation cm=0.0725 + 0.52 ksi 2 23(92. using the higher of the Fb1 and Fb2 : Fb = 20. Hand Book for Design of Steel Structures 6-11 . Ltd. Design Code: Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Sheet No:4 / 4 Reference Chapter: 6 So.08 = = 0.0 Hence the section H300 x 150 is OK for column of the Gable frame.0 Fa Fbx Fby 0.15 so the following simplified check shall Fa Fa apply.59 + 0 0.15 .66 < 1. 6. primarily in the following two different ways: Member Design : To find or select the most appropriate section available in SYS steel section database built in the program. Software Implementation The column design module of the software has been developed based on the flow diagram shown in “General Procedure” section of this chapter. Code Verification : To check an user specified member. for the designer specified member and loading conditions that confirm to AISC/ASD specification. loading and SYS section for AISC/ASD specification. reader is referred to the “SYS Steel Designers Software User’s Manual”. from design point of view. Hand Book for Design of Steel Structures 6-12 . For the complete information regarding the software. As the design of a column is more complicated than any other steel members. The SYS steel designer’s software has been developed to assist the structural steel designer. external joint. portal frame members and adjacent trusses. Hand Book for Design of Steel Structures . It has been found from experience that conventional fabrication and erection techniques can satisfy the relevant performance criteria. 2) If a large number of trusses are to be made. Introduction The design of connections can be approached from a number of directions: The type of fasteners such as bolts. It is beyond the scope of this manual to cover comprehensively the detail of the connections from all criteria. welded joints are usually more economical than bolted joints. practicability and cost.. The common truss connections though analyzed as pin joints do not reflect the idealization of pinned joints. welds and special devices like cable sockets. the type of structures such as buildings. equipment and techniques. rivets. and also the type of loading like static and dynamic etc. The purpose of this chapter is to introduce some of the underlying common concerns and objectives to the design of most common type of connections with practical examples.Chapter 7 Introduction to Connection Design 1. The following connections shall be covered briefly followed by some examples on some typical type of connections. • • • • Truss Connections Portal Frame Connections Building Frame Connections Column Bases 2. site splice and bracing connection. It is very expensive to make a truss with truly pinned joint that requires special plant. Truss connections The connections used in a truss or lattice girder can be internal joint. Internal joints are needed to join the individual members together to form a complete truss while external joint are required to connect the truss as a whole to the structural element which supports the truss. The following are some useful guidelines on the selection of joint type to give the most economic solution. ductility. The cost of connections is a major item in the total cost of steel structures. bridges. Welded joints are aesthetically better and maintenance cost also less than with bolted joints. predictability. stiffness. very large trusses are assembled as component parts first and then site spliced to form the complete unit. transmission towers etc. Bracing connections are required to fix the diagonal members between building columns. 1) In general shop joints should be welded and site joints bolted. Irrespective of the type and classification of the design of any connection are interrelated criteria of strength. To facilitate the transportation. to avoid any eccentricity.2. The small eccentricity between the centroidal axis and the bolt gauge line is ignored. and shear and bearing where appropriate. One common method to minimize the size of the gusset plate is nesting the member as shown in Fig 7.1 The moment arising from eccentricity is distributed between the members meeting at the joint and the connections in proportion to their stiffnesses.1. Gusset Plates The thickness of the gusset plate should be equal to or slightly larger than the thickest part to be connected and its size large enough to accommodate the required fasteners. However the concentricity requirement may need for large gusset plates. 2. Design Considerations The main point in the design of fasteners and the gusset plate if provided. If this can not be achieved the connection must be designed to resist the moment due to eccentricity.1 Truss Connections 2.2. This can be achieved readily with parallel chord lattice girders. Ordinary bolts are designed for single or double shear and bearing whereas pre-loaded bolts are designed for slip resistance. the bolt centerlines coincide at a point. otherwise the eccentricity in the plane of the joint should be taken into account. 7. the bolts are designed for direct load.2. Fig. the small eccentricities and secondary stresses are ignored in conventional analysis and design. 4) Standard joints should be used with as much repetition of member shapes and sizes. In the bracing connections that connect the diagonal to the other building frame element.2. 3) Gusset plates can be eliminated for directly welded connections.2. Common design practice is to check the plate as a beam section in axial Hand Book for Design of Steel Structures 7-2 . Bolted Joints If the centroidal axis of the connected parts meet at a point.1. 2. end preparation and fabrication operation as possible. is designed for tension and shear and should be arranged as far as possible. The selection depends upon the type of member for example hollow sections do not need gusset plate where as double angle members generally require gusseted joints. for a truss joint is discussed briefly as follows. Joint Behavior Members framing into a joint should be so arranged that either their centroidal axes or in case of bolted connections. As the trued behavior of a joint is complicated. 2 (a).2. Eaves Connections Eaves connections are further divided into two types: 3. Portal Frame Connections The portal frames that will be discussed in this section are single-story pitched roof portal frame.1. pitched roof portal frame connections may be divided into the following three types. 7. In the connection with cover plate. Eaves Connections Ridge Connections Base Connections 3. from this it passes through the connecting bolts into the column flange.2 Unhanched Eaves Connections(a) Hand Book for Design of Steel Structures 7-3 . The vertical shear in the rafter web passes through the web welds into the end plate. Depending upon the location and performance requirements. (b). bending and shear or alternatively to check the direct stress in the plate at the end of each member assuming an dispersance angle of 30 degree on either side of the member. ©.load. The compressive force in the bottom flange of the rafter passes into the web stiffener plate and through the connecting weld into the column web. (a) Extended End Plate (b) Cover Plate and Extended End Plate (c) Force Diagram Fig. the tensile force in the rafter top flange passes to cover plate and then to column web. the force on the flange of the rafter is transmitted to the web of the column and the force in rafter web into the column flanges. 3. Similarly. • Unhanuched Eaves Connections • Haunched Eaves Connections Unhaunched Eaves Connections: Commonly used type unhaunched fully rigid eaves connections and their force transfer diagrams are shown in Fig 7. The end plate must also be checked for local buckling near the tension flange.7. (d) Flush End Plate and Extended Plate (e) Force Diagram Fig.3 Unhaunched Eaves Connections (b) In the case of connection with diagonal end plates Fig.(d) With Diagonal End Plates (e) Force Diagram Fig. The bolts are designed to transmit the bending moment at the eaves and the axial and shear forces that act perpendicular and parallel to the plane of the end plates. 7.©.2. the welds are designed to transmit the flange forces and web forces into the end -plates.4 Haunched Eaves Connections Hand Book for Design of Steel Structures 7-4 . This element is designed to take compressive forces as struts. 7. it is aesthetically preferable bottom stiffener plates can be controlled by adjusting the spacing between the plate. 7. i.7.3.3 (a) the tensile force in the top flange of the rafter is passed through the bolt group near the rafter top flange. . Although the connection with top cover plate may need more fabrication cost.7. However in case of three-pin portal frame. In the connection without top cover plate Fig. The compressive force in the bottom flange of the haunch passes into the compression stiffeners on the column and through their to connecting welds into the column web.4 WF Cutting WF Cutting or Plate (a) Long Haunches (b) Short Haunches PC M Q Q F M F PT (c) Force Diagram (d) Pinned Apex Connections Fig. The vertical shear force in the rafter and haunch webs is transferred subsequently from web welds to end plate. The fasteners can be divided by taking equal division of load in all or by assuming that it is taken only by the group of bolts near the haunch compression flange without any shear force in bolts near rafter tension flange.3. end plate to connecting bolts and finally to column flange. Haunched Eaves Connections: Fig 7.3 shows some fully rigid haunched eaves connections and methods to resolve the forces in the connected parts. Some of the usual type of apex connections and their load transfer diagram are shown in Fig. 3. 7. The concentrated load at the transfer point at column flange is distributed into column web by top stiffener plate.(a) provides better tension load transfer mechanism than others. The shear stress on the portion of the column web between top and Some of the advantages and disadvantages of the connections are: Connection with extended end plate Fig.3.e the distance hp.5 Ridge Connections Hand Book for Design of Steel Structures 7-5 . the ridge or apex is designed as pinned connection allowing fairly free rotation. Alternatively diagonal web stiffener plate can be provided.4. Ridge Connections The fully rigid ridge connections can be analyzed and designed in a similar way to eaves connections. 1) Beam-to-beam connections 2) Beam-to-column connections 3) Column splices 4) Column bases 5) Bracing Connections Each type shall be explained briefly in the following sections.5 (d). 7. Building Frame Connections Multi-story frame connections may conveniently be classified into the following five types.7. tees or welded plates as shown in Fig. The connection between the flange or web of one beam to web of the main beam can be made with the use of angles. AISC Manual) give connection details for standard type of framed connections.g. So beam reaction is the only force be considered in the design.6 (a-b) Beam-to-beam Connections (c) Hand Book for Design of Steel Structures (d) 7-6 .1. The size of these connecting elements depends upon the space available and the number of fasteners to be accommodated. Beam-to-beam connections Fig. x x (a) (b) Fig.5.5.5 shows different beam-to-beam connections.3. Various standard design manual (e. 7. 3. The conventional design procedure for beam-to-beam connections assumes that they are simple connections and offer no resistance to rotation of the end of the beam in the vertical plane . and called accordingly as teeframed shear connection or single-plate shear connection. Fig.7 .6 (c-d) Beam-to-beam Connections x x x (e) x (f) Fig.7.6 (g-h) Beam-to-beam connections 3. Hand Book for Design of Steel Structures 7-7 .6 (e-f) Beam-to-beam Connections (h) (g) Fig. Beam-to-Column Connections Beam-to-column connections can be further classified based on: 1) Type of fastener • fully welded • fully bolted • shop welded / site bolted 2) Rigidity of joint • rigid joints • semi-rigid (partial ) joints • simple joints Another way of classifications based on rigidity of joint is • Erection stiff • Fully rigid Typical beam –to-column connections are shown in Fig 7. 7.2.5. 7.6 and Fig 7. (a) Fully Bolted Erection Stiff (a) Fully Bolted Erection Stiff (c) Fully Bolted Fully Rigid Fig.7. • Fasteners for erection stiff or simple beam-to-column connections are designed for the shear force only. Hand Book for Design of Steel Structures 7-8 .7 (d-f) Beam-to-column connections It is the beyond the scope of this manual to describe the detailed analysis and design procedures for all the connection shown in the figures. However some of the general considerations for the design of various components of the beam-to-column connections shall be pointed here. 7.7 (a-c) Beam-to-column Connections (d) Fully Bolted Erection Stiff (e) Fully Bolted Erection Stiff ( Stiffened ) (f) Fully Welded Erection Stiff Fig. However.8 (d-e) Beam-to-column connections 3. being of more practical significance. shall be introduced here. 7. steel and concrete interaction. The interaction with soil poses one more complication if very accurate analysis and design is required.(a) Fully Rigid Site Bolted Shop Welded (b) Fully Rigid Site Bolted Shop Welded (c) Fully Rigid Site Bolted Shop Welded Fig. Column Bases Column bases are special type of connections. Although semi-rigid connections are now being recognized.1.5.3. 3. They are more complicated than other type of connections because of two different materials i.3. The Hand Book for Design of Steel Structures 7-9 .e. Pinned Connections Typical pinned column base connections are shown in the Fig.7. two primary type of connections namely pinned and fixed connections. the theoretical rotation small and when the length of the plate in the direction of shear is limited to 300 mm.8 (a-c) Beam-to-column Fully Rigid Connections (d) Erection Stiff Site Bolted Shop Welded (e) Erection Stiff Site Bolted Shop Welded Fig.7.7.These connections can be considered as hinge if the axial force in column. such an analysis and design is beyond the scope of this manual.5. size of the end plate must be such that the bearing pressure on the concrete is within allowable limits and the thickness must be such as to allow for rotation to occur i. P V Fig.10 Pinned Column Bases -Type2 Hand Book for Design of Steel Structures 7-10 . 7.3. 7. less rigid. However in the other solution with secondary base plate.e. as the secondary plate is already fixed to the concrete it is difficult to adjust position of the column.2. Single base plate with shear connector provides more flexibility in vertical and horizontal alignment of the column during erection. Column with welded end plate and intermediate plate The rotation capacity of the column with only one welded plate may be less to assume Fig.9 Pinned Column Bases -Type1 3. The anchor bolts must therefore be placed very carefully.5. 8 also shows the pinned and vertical forks connections that are practically possible to resemble an ideal hinge connection. which usually need for stiffening of the base plate and column wall and more fasteners.7. must be as stiff as practically possible to prevent any rotation. Fig. Suitability of a particular type depends upon a number of design factors. The better solution for such cases can be to add an intermediate plate welded under the end plate to improve the rotation capacity. 3.8.and Fig 7.10 show the various different fixed column bases with I-shaped and tubular columns.5. The axial force is transferred from column to intermediate plate to base plate and finally to the concrete.as pinned connection for large column with heavy loading. ideally.9.3.3. To prevent the web buckling the column web may be stiffened as shown in Fig 7.7. Some common practical type of fixed connections is described briefly in this article. Fig. The pin is designed only for single or double shear as the case may be. more attention must be paid to the stress concentration at various points in the connection such as at the intersection of fork plates and column wall.1. Fig. Fixed Connections Fixed connection as the term suggests. and between pin and fork plates. Connections with bolts on only two sides of the column are commonly used for uniaxial moment with axial forces while those connections with fasteners all around the column are used for columns subjected to biaxial bending. Design assumptions and procedures for some common type moment resisting column bases are given in the examples later in this chapter.7.(a) Fixed column bases Hand Book for Design of Steel Structures 7-11 . In addition to the size of the base plate to distribute the load on concrete safely. 10 (c-d) Fixed column bases Hand Book for Design of Steel Structures 7-12 .7.Fig.7.10 (b) Fixed column bases • Fig. (Note :The gusset plate must also be checked for gross area.5 kips Number of bolts required = 100/18.295 in) = 69.8 kips So the minimum of the shearing and bearing will be the design capacity of the bolt = 18.315 So use 5/16 inch thick gusset plate. Ltd.(35.4 = 0. Allowable bolt shearing stress = 21 ksi Allowable shear per bolt in double shear = 2 x 21 x .6 x 3/4 = 0.6 ( Smallest) to a single gusset plate as shown in Figure below.5 = 5.6 ksi Allowable bearing on two channels of thickness (7.5 ksi) Solution: First Trial Size of bolt: ¾ in.44 =18.2 Fu = 1.5mm/25.5 kips Allowable bolt bearing stress =1.4 Use 6 bolts Use gusset plate length = 6 in to accommodate 6 of bolts in two lines Thickness of Gusset plate thickness required = t = 100 6 x 69. Subject: Design of Tension Connection Example:7 Design Code: Sheet No:1 / 1 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA 1 Reference Chapter: 7 Problem: Design a bearing type connection to connect two channels SYS 200x80x 24.2 x 58 = 69.295 x 3/4 = 30.6 x 2 x 0. net area and block shear) Hand Book for Design of Steel Structures 7-13 . Assume: Design tensile load = 45.5 ton (100 kips) A325 bolts with threads not excluded from shear plane Standard holes Fy = 2500 Ksc.SYS Siam Yamato Steel Co. 7 from properties table k = t f + r = 8+13 mm = 21 mm t w = 6. 7.7 beam to SYS H400x200x66 column.0 cm So use N = 4 cm Find Required Thickness of Bearing Seat As channel sections are not available . 11 Unstiffened Beam Seat Solution: Find Required Bearing Length N For H300x150x36. Ltd. we get N = 4.SYS Siam Yamato Steel Co.5k ) 10.65 ( N + 2.5 ksi) Cleaarance 1/2" R / Fc t N k Critical Section for Bending Fig.at present 1998).5) 2 = 15000 kg-cm = 150 kg-m Hand Book for Design of Steel Structures 7-14 . The reaction is assumed to act at the center of the bearing length.000( + 2 − 2. Subject: Design of Unstiffened Beam Seat Example:7 2 Design Code: Sheet No:1 / 1 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 Problem: Design a unstiffened beam seat to transfer a design load of 10 ton (22 kips ) from a SYS H300x150x36.66 FY t w ( N + 2.000 = 0. beam & column Fy = 2500 Ksc( 35.5 x 2. in Siam Yamato Steel Products Let us assume that the k distance for the beam seat angle will be = 25 mm To allow for setback and underrun in the length of the beam use total clearance of 20 mm.5 mm Using : R = 0. Largest length of the seat that can be accommodated in the SYS H400x200 = 200 mm So b = 200 mm M = R( N 2 + Clearance − k) 4 M = 10. Assume A325 bolts .66 x 2500 x 0.1) Solving for N. Standard holes . SYS Siam Yamato Steel Co.44kips (8. Ltd.5   4  6.5 x9 R = 34 x(6.5  Fyw t f   t w Use US units.2 kips (6 ton) Number of bolt required n = 10 ton 6 ton = 1.5  30  9    N.5 / 25.44 = 13.66 Fy =0.4) 2 1 + 3    6.66 x 2500 =1650 Ksc b 6M 6 x15000 = =16.5   35.66 So use 2 no ¾ in bolts The selected angle seat should be checked for the following • • • • Size enough to accommodate these bolts Thickness not less than t Assumed and actual value of k Bolts excluded from shear plane or not Hand Book for Design of Steel Structures 7-15 . Subject: Design of Unstiffened Beam Seat Example:7 2 Design Code: Sheet No:2 / 2 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 F = 0. but non dimensional terms can be in any consistent units 6M 6x15000 = = 16.5 mm Fb b 1650x20 1.5 mm F b 1650 x 20 b t= Check for Web Crippling   N  t 2 R = 34t w 1 + 3  w  d  t f  t=    1.G = 19. resistance for shearing R = 30x 0.837 ton) which is less than the applied reaction 10 ton so another section for beam or larger seat to increase N should be selected so that R >10 ton Assuming the threads are excluded from the shear plane the allowable shear stress Fv = 30 ksi (2113 ksc) For ¾ inch bolt. 12 Welded Bracket Connection Solution: 1.93 cm = 5.SYS Siam Yamato Steel Co.5k ) [concentrated load within d distance from beam end] 12.9 cm 0. 7.5   N cm  0. Find Required Bearing Length N Web Yielding Criteria: For H300x150x36.9 cm  12x2. Assume beam reaction = 12 ton (26.5 ksi x 0.45 + 1.93 cm So use N =larger of k and 5. Ltd. we get N = 11.2 kips = 34x(6.5 x 2.4 in)2 1 + 3    35.5/25.2 =12.5 mm Using R = 0. Subject: Design of Welded Bracket Example:7 3 Design Code: Sheet No:1 / 2 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 Problem: Design the welded bracket connection as shown in the figure below.7 from properties table k = t f + r =8+13 mm=21 mm and t w =6.93 cm Web Crippling Criteria: R = 34t w 2   N  t 1 + 3  w  d  t f     1.1 ) Solving for N.4 kips) Assume: E70 weld 5 H 350x175 5 8 H 300x150 X 20 Y Fig.000 = 0.5  Fyw t f   t w [Use US units for dimensional parameters and any consistent units for non dimensional parameters]    1.65 cm Solving for N.66 x 2500 x 0. total bearing length of the seat = 11.45 cm Providing for clearance.65 cm Hand Book for Design of Steel Structures 7-16 . we get N = 5.66 FY t w ( N + 2.45 cm From the above two criteria the required minimum N = 11.65 ( N + 2.65 cm     30 cm  0. Subject: Design of Welded Bracket Example:7 3 Design Code: Sheet No:2 / 2 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 7 Use 13 cm.2) =63600 kg-cm = 636 kg-m Try vertical leg = 20 cm and Horizontal leg = 5 cm y= 2x20x2x5 2x20 + 2x5 = 8 cm   8 3 + (20 − 8) 3 I x = 2 + 2x8 2  = 1749 cm 3 3   qz = My Ix qz = 63600x8 = 290. Moment at the critical section = 12.000 x (13-13/5-1.9 kg/cm 1749 qz = R 6000 = = 120 kg/cm total length 50 2 2 q = q y + q z = 120 2 + 290.9 2 = 314. Hand Book for Design of Steel Structures 7-17 .67 kg/cm So use E70 fillet weld with q = 314.67 or more .SYS Siam Yamato Steel Co. Ltd. 5 x 16. Hand Book for Design of Steel Structures 7-18 . Q = 0.9 x 7/8 x 0.551 = 33.375 = 25.6 Single shear = 30 Ab 18 23.18 ton) and beam moment = 55 ft-kips (7.70 = 38.57 x d Bearing on column flange = 69.75 + 8.512 = 31.375 kips Total Tension = T = P+Q =16. Use Steel: A36 and A325 bolts Design beam shear = 18 kips (8.6 ton-m) Fig.51 = 69.72 Assume Q/P= 0.6 beam to SYS H300x150x36. Computing Bolt Strengths Strength for For dia 7/8 in For dia 1 in Tension = 44 Ab 26.512 69.9 x 1 x 0.9 x 7/8 x 0. Ltd.57 x d Connection Between Tee and Beam Force on bolts = M / d = 55 x 12 / 9.72 So use 4 No -7/8 in bolts.125 kips Try 4No-7/8 in bolts.6 x 0.SYS Siam Yamato Steel Co.84 = 67 kips No of 7/8 in bolt required = 67 / 18 = 3.6 x 0.31 = 35.63 69.5.6 Bearing on beam flange 69. 7.9 x 1 x 0. Connection Between Tee and Column Force on bolts P =67 / 4 = 16.75 kips / bolt No of 7/8 in bolt required = 67 / 18 = 3.551 69.4 34.13 Beam-to-column T-stub Connection Solution: 1.75 = 8. Subject: Beam-to-column T-stub Connection Example:7 4 Design Code: Sheet No:1 / 2 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 7 Problem: Design the T-stub moment connection for SYS H250x125x29.7 column as shown in the figure below. 75x 7 + 21x4.25 kips/bolt Shear stress fv = 2.55 kips at bolt line Moment M2 = Q ( a + b )-T b = 6.65 ksi shear force 18 = = 25.75 ksi Ft = 44 2 − 2.75 Q =0.5 in Horizontal spacing of bolts = column flange width – 2 x edge distance = 5.75 = 6.25 / 0.75 2 = 43.9-2x1.03 ( 1.125) Hand Book for Design of Steel Structures OK OK 7-19 .88x 8 − 18x4. tw =0.65 x 0.36 x 16.6 = 26.SYS Siam Yamato Steel Co.03 kips T= P+Q = 22. Subject: Beam-to-column T-stub Connection Example:7 4 Design Code: Sheet No:2 / 2 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 T-stub Try some T section with tf = 1 in .15f v f= 2 = 44 2 − 2.708 OK Shear Direct shear stress = shear force / no of bolts = 18/8 = 2.36 2 P 70ad 2 + 21wt 2 70x1.25x12 8 Q P = 16.88 in ( ) ( ) 2 2 7 100bd 2 − 18wt 2 100x1.6 in and bf = 8 in Vertical spacing of bolts g = 4.5 ) / 2 = 1.708 Total strength = 43.75 = 10.88 ) – 25.125 x 1.19 > T (25.15x3.78 < 26. Ltd.25x1 = = = 0.6 = 3.34 kips at web S= f= wt 2 6 = 4.9 in half the width of the Tee w = 6/2 = 3 in a = (8 – 4.6 )/2 –1/16 = 1.5 = 2.03 x 1.88 = 25.4 (bolt strength in tension) OK Bending in Flange Moment M1 = Q a = 6.4 ksi < 27ksi S 0.4 ksi < 27ksi S 0.75 + 1.75 in < 2 tf b = (4.5-0.25x12 6 = 0.708 inch 3 shear force 18 = = 25. = 7.56 kips/ inch Length of the weld required = 162.707 x 3/8 = 5.81 = 162.25 = 7.7 beam to SYS H400x200x66 column as shown in the figure below.23 inch OK Bottom Flange Plate 1 To facilitate the welding the bottom flange is chosen about 1 2 inch wider than the beam flange. inch.SYS Siam Yamato Steel Co.6Fy Available flange width of the column = 7.526 sq. Plate width = 5.5 sq.5 inch for welding space Maximum available width = 7. inch Use 3 8 inch x 15 inch weld on each side of the plate.87-1. Hand Book for Design of Steel Structures 7-20 .57 kips Area of plate required A s = T =162. Total = 6+2 x 12 = 30 > 29. Top Flange Plate Tension force on the flange T = Moment / Depth = 160 x 12 / 11.2 ton) Beam moment = 160 ft-kips (22. Subject: Beam-to-column Moment Connection Example:7 5 Design Code: Sheet No:1 / 3 Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Reference Chapter: 7 Problem: Design the moment resistant connection for SYS H300x150x36.23 inch Provide 6 inch along end and 12 inch on each side.57 / (0.87 in Providing 1.12 ton-m) Fig.5 inch x 1 inch = 7. Assume • • • • • Slip critical connection Steel yield strength = 35.5 ksi (2500 ksc) A325 bolts and E70 electrodes Design beam shear = 40 kips (18. Ltd.6 x 36 ) = 7. inch For 3/8 inch bolt q = 21 x 0. 7.57 / 5.37 inch So use 1.25 x 6 in.14 Beam-to-column Moment Connection 1.5 =6.56 = 29.91+1.16 So use 7.5 sq. 0. flange = 0.5 1 + 5 x (0. thickness of col.75+ 5 x 1.512 R = 67. n = Shear force / bolt strength = 40/10. Subject: Beam-to-column Moment Connection Example:7 5 Design Code: Sheet No:2 / 3 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 Shear Plate Bolts strength: single shear strength: So for Bearing = 1.5 x 12 = 0.2 x 58 x 1 7 x 4 8 3 8 inch bolt strength in single shear = 17 x 0.512) = 1.09 x 7. Column-Flange Stiffener at Top Flange Min.4 inch Use 10-in weld on each side.39 < 162.SYS Siam Yamato Steel Co.92 3 Use 4 .6 = 10.78 = 14.5 x(0.69 x 1. Column-flange stiffener at bottom flange Check for web crippling:   N  t 2 R = 67.2 kips (Assuming plate thickness = 1 4 ) No of bolts required .465 sq.512 in.5   1  0.596 = 55.57 kips tw ≥ Af tbf + 5kc = Stiffeners required 7.2 = 3. Length of shear plate = ( n-1 ) x spacing + 2 x edge distance 1 = 3x3+2x1 2 =12 inch Thickness of plate required t = So use shear force Fv L = 40 0.315 ) Stiffeners required Area of stiffener required As =7.75  0.5        Fyw t f tw 1. Stiffeners f required. inch Hand Book for Design of Steel Structures 7-21 .2 kips =15.234 inch 1 inch x 5 inch (So assumed plate thickness OK) 4 Length required for 3 16 inch weld L = shear force weld strength/inch = 40 2.512    = 6.5 = 1.4 x 7.315  15.315) 2 1 + 3    0.315 (0. Ltd.4 A = 0.63 + 0.4 x 35.12 inch.5 – 0.10 > 0.> tw ( .315   35.142) = 5.8 inch bolts.5t w 1 + 3  w   d  t f  1.5 x0. 5x13. Subject: Beam-to-column Moment Connection Example:7 6 Design Code: Sheet No:3 / 3 Thailand Designed by: BSS AISC/ASD (1991) Checked by: NA Reference Chapter: 7 Area for each stiffener = 5.315 = Ft Cosθ 0.4x35. inch Area for one plate = 5.57 − 0.1 inch x 3 inch stiffeners both on top and bottom.4 x35.57 (15.315 Actual shear stress = 38.5xCos(33.5) As = Total V − Fv dc t w 162.75 − 2x0.SYS Siam Yamato Steel Co.512 − 2x.1inch x 3 inch plates.465 / 2 =2. So use two .32 ksi > (0.77 /2 = 2. Column-Web shear fv = V dc t w = 162. Ltd.46x0.6x35.68) = 5. inch Use two .7325 sq inch.885 sq.63)x0. one on each side.77 sq. Hand Book for Design of Steel Structures 7-22 . 75 x 40 = 15. Flange Splice Plates AISC requires considering the tension due to lateral loads acting in conjunction with 75 percent of the dead-load stress and no live load.39 inch Net area of plate.SYS Example:7 6 Subject: Column Splice Siam Yamato Steel Co. use plate width = 5. Ltd.44 = 9.42 kips Total tension = 15.42 kips Gross area of plate.5x56.5Fu 0.0 kips Axial load on each flange due to moment = Moment depth = 20x 12 7. inch 0.5-2x7/8) = 0. Axial load on each flange due to 75 % of dead load = 0.5 = 0.18 ton) -- -- LL 70 (31.8 ksi (4000 ksc) E70 (bolt threads not excluded from the shear plane) Design loads: Load Case Axial Moment (kips) Shear (ft-kips) (kips) DL 40 (18.63 /(5.81 ton) -- -- WL 3 (1.17 /5.5 inch Thickness of plate based on gross area requirement = 2.91 inch.36 ton) 20 (2.42 = 46.5 ksi (2500 ksc) = 56.42 = = 1.434 inch So use ½ inch x 5.76 ton-m) 4 (1. Design Code: Thailand Designed by: BSS AISC/ASD (1991) Sheet No:1 / 2 Checked by: NA Reference Chapter: 7 Problem: Design a column splice between two columns of sizes SYS H150x150x31.42 = = 2.5 x 0. Material properties: Steel yield strength Ultimate strength A325 bolts and electrodes = 35.17 sq.5 0.6 with the following data.82 ton) Solution 1. A n = Tension 46.63 sq.24 kips Hand Book for Design of Steel Structures 7-23 .0 + 31.6F y Flange width available = 5.5 and SYS H200x150x30.8 Assume 2 no ¾ bolts Thickness of plate based on net area requirement = 1. Ag = Tension 46.5 inch plate Fasteners Try ¾ inch bolts Strength in single shear = 21 x 0.64 = 31. inch 0.6x35. 42 / (0.2 x 56.315 x ¾ = 16.SYS Example:7 7 Subject: Column Splice Siam Yamato Steel Co.8 x 0.707x3/16) = 16. Weld for Shop Connection Length of 3 16 E70 weld required = 46.98 inch Hand Book for Design of Steel Structures Use 1 inch. Design Code: Thailand AISC/ASD (1991) Designed by: BSS Checked by: NA Sheet No:1 / 2 Reference Chapter: 7 Strength in bearing = 1.76 Use 4 ¾ inch bolts.24) = 3.87) / 2 = 0. Ltd.67 inch Use 17 inch of 3 16 inch weld.42 / (4/3 x 9.3x70x.10 kips No of bolts required = 46.84-5. Fill plate thickness = (7. 7-24 . Blackwell Scientific Publications.2nd Ed.. 5th Dd.. Glambos... Basic Steel Design. Plum. Morris. Steel Designer’s Manual. 1989 14. B. AISC. 1993 4. Elsevier Applied Science. Japanese Standards Association.J. 3rd Ed. AISC.N. Design of Steel Structures. J.References 1.. J. J. Johnson. 1993 8.. AISC. R. L. Gaylord. 1992 12. 1992 6. The International Technical Information Institute. Gaylord. Design of Steel Structure. Detailing for Steel Construction. Load and Resistance Factor Design. Constructional Steel Design An International Guide. Harding....T. M. 4th Ed. Structural Design of Steelwork to BS 5950. March 1985 2. 1988 9.. C... D. Scalzi. Manual of Steel Construction. L. 2nd Ed.. E & FN SPON. Proceedings of Japan-Thai Civil Engineering Conference. W. A. Martin. Thomas. 1994 18.B. Handbook of Comparative World Steel Standards. Australian Institute of Steel Construction 13. Nishino Fumio. J. Structural Steelwork Design to BS 5950. B. Manual of Steel Construction. Bresler. T. Stallmeyer. Steel Buildings Analysis and Design. Critical Comments on the Recent Trends of Design Code Change to Load Factor Design. Design of Structural Elements.. John Wiley & Sons.. Dowling. 1994 JIS Handbook Ferrous Materials & Metallurgy.. 1984 16.b. A. Lin. J..J. Sato Naohiko. Prentice-Hall.F. Jr... JIS. 1986 3. D. H. E. Y. 1994 11. R. Allowable Stress Design. John Wiley & Sons.. Hsegawa Akio. H. Limit States Design of Structural Steelwork. P. 1992 5.. 1993 15. Nethercot. 1992 7. 3rd Ed.. Chanakya. J. S.E. Engineering for Steel Construction. Bangkok. A. 2nd Ed. E. Purkiss. Edward Arnold. 1992 10. A Source Book on Connection. AISC. Longman Scientific & Technical. 1990 Hand Book for Design of Steel Structures 8-1 . I. Design of Structural Connection.. Lin. 4th Ed. McGraw-Hill. Chapman and Hall. 1983 17.... Dillon...V. 9th Ed. Engineering for Steel Construction. The Steel Construction Institute. T.. Crawley. R. Hogan. 91a. Standard Specification for Steel Sheet Piling • A 529/A 529 M-92. Standard Specification for Normalized High-Strength Low-Alloy Structural Steel • A 656/A 656 M-89. Columbium. Vanadium Steel of Structural Quality with Improved Notch Toughness • A 370. Standard Specification for Steel. ASTM Standards • A 6/A 6M-92. Standard Specification for High-Strength. Standard Specification for High-Strength Low-Alloy Structural Steel • A 283/A 283M-92. 1973 (in Japanese) 20. Carbon. Standard Specification for Structural Steel • A 242/A 242M . [100 mm] Thick • A 633/A 633 M-92. AIJ. Standard Specification for General Requirements for Rolled Steel Plates. 1991 Ed. Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi [345 Mpa] Minimum Yield Point to 4 in. Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality • A 570/A 570 M-92. Uniform Building Code. Hot-Rolled. Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates • A 284/A 284 M-90. Structural Quality • A 588/A 588 M-91a. Standard Test Methods and Definitions for Mechanical Testing of Steel Products • E23-94a. Standard Specification for Quenched-and-Tempered Carbon-Steel.19. Standard Specification for Low and Intermediate Tensile Strength CarbonSilicon Steel Plates for Machine Parts and General Construction • A 328/A 328 M-90. Shapes. High-Strength LowAlloy Plate with Improved Formability • A 678/A 678 M-92. Sheet Pilling. Architectural Institute of Japan. Sheet an Strip. Manganese. Design Standard for Steel Structures. Standard Specification for Structural Steel for Bridges • A 808/A 808 M-91. Standard Test Method for Fire Test of Building Construction and Materials Hand Book for Design of Steel Structures 8-2 . 21. Low Alloy Carbon.Hotrolled Structural Steel and High-Strength Low-Alloy Steel Plates for Structural Applications • A 709/A 709 M-92. and Bars for Structural Use • A 36/A 36M. Standard Specification for Hot-rolled Structural Steel. General Rules for Inspection of Steel • JIS G 0301. Mass and Permissible Variations of Hot rolled Steel Sections • JIS G 3194. 1980. Steels for General Structural Purposes • DIN 50145. 1991. Dimensions. Sheets and Strips • JIS Z 2201. Testing of Metallic Materials. DIN Standards • DIN 17100. Structural Steel Section Part1.Tensile Test • DIN 50115. Notched Bar Impact Testing of Metallic Materials Hand Book for Design of Steel Structures 8-3 . Dimensions. 1975. Specifications for Hot-rolled Sections • BS 476: Fire Test on Building Materials and Structures • BS 4360: 1990. Method of Tensile Test for Metallic Materials 23. Fabrications and Erections: Hot rolled sections • Part 3: Design in Composite Construction • Part 4: Code of Practice for Fire Resistant Design 24. Test Pieces for Impact Test for Metallic Materials • JIS Z 2241. Test Pieces for Tensile Test for Metallic Materials • JIS Z 2202. JIS Standards • JIS G 0303. Rolled Steel for Welded Structures • JIS G 3192. BS Standards • BS4: Part 1: 1980. Rolled Steel for General Structures • JIS G 3106. Mass and Permissible Variations of Hot rolled Steel Plates.22. British Standard Specifications for Weldable Structural Steels • BS 5950: Part 1: 1990. British Standard Structural Use of Steelwork in Building • Part 1: Code of Practice for Design in Simple and Continuous Construction: Hot rolled Sections • Part 2: Specifications for Materials. 1982. Charpy Impact Test for Steel • TIS 1227-1994. Hot-Rolled Structural Steel Shapes Hand Book for Design of Steel Structures 8-4 . Structural Steels Ordinary Weldable Grades • AS 3679-1990. EN Standards • EN 10025–1. Steel Structures 26. Steel and Steel Products – General Technical Delivery Requirements • ISO 630 – 1980. Structural Steels 27. – 1982. 1991. Steel – Charpy Impact Test (U-Notch) • ISO 148-1983. ISO Standards • ISO 83-1976. Hot Rolled Unalloyed Structural Steel Products – Technical Delivery Conditions • EN 10045-1. Tensile Test of Steel and Iron • TIS 244 NO.25. 8. TIS Standards • TIS 224 No. Steel – Charpy Impact Test (V-Notch) • ISO 404-1992. AS Standards • AS 1204–1980. Charpy Impact Test on Metallic Materials 28. 1991. Hot-rolled Structural Steel Bars and Sections • AS 4100-1990.
Copyright © 2024 DOKUMEN.SITE Inc.