Terence Tao Interview Transcript

March 24, 2018 | Author: tansoei | Category: Conjecture, Physics & Mathematics, Mathematics, Artificial Intelligence, Technology


Comments



Description

 /u/NovaNation21            9/9/14  Interview with Terence Tao  Professor of Mathematics at University of California ­ Los Angeles       Q: There are a lot of topics in olympiad math that a regular school curriculum will never cover.  A high school curriculum is lucky to end with calculus. As a professor do you think topics like  number theory, combinatorics, and complex algebra/geometry should be taught in higher­level  high school classes or just reserved for the students independently for these olympiads?     A: The standard high school curriculum traditionally has been focused towards physics and engineering.  So calculus, differential equations, and linear algebra have always been the most emphasized, and for  good reason—these are very important.  There is now a trend over the rise of computer science and  also the life sciences, which have become more mathematical. Schools are slowly transitioning to  emphasize things like combinatorics, probability, and statistics.  These things are getting more important.  Number theory less so because it has fewer applications͢—cryptography  is the only really big practical  application of the subject.  So mainstream math education is focused on different topics. Most students  who take math classes aren’t going to be mathematicians. They’re going to be engineers,  statisticians—in many ways that’s the more important mission of math education. So it’s sort of  complementary.     Math education has changed over the years.  In the 19 th  century, they taught spherical trigonometry  because one of the biggest applications of mathematics was navigating the ocean. This is no longer so  relevant. So it’s great that we have these competitions and that we keep some classical mathematics like  Euclidean geometry and elementary number theory. In mathematical research, it’s good to know these  things. You will learn them eventually, especially if you take a class in it.  At some point you can just  learn it yourself and go and read a book on it. It’s really easy now with the Internet, it’s amazing now.  People ask me how I know so many areas of mathematics.  Mostly you just know a little bit and then    you look up the rest. It’s so much easier now than when I was a graduate student. I mean you need a  certain amount of base mathematics so that you can learn everything else quickly.  But once you have  the foundation, it’s fairly quick.  So it’s great that we have the competitions. I think they complement the  main math education, but I don’t think they need to replace it.    Q: What would you tell an aspiring or current mathematics major about the kind of jobs  available besides teaching?     A: Most people with Bachelor’s of Math don’t go into academics so much. You would get a PhD for  that. There’s many things you can do with a math degree: actuarial science, finance, computer graphics,  and anything quantitative really. You can work in a lab.  If you aren’t afraid of equations or abstract  thinking, it’s easy to pick up any kind of STEM subject. You can go into electrical engineering and  there’s always scary equations like Maxwell’s Equations and so forth. But if you have the basic math  training you can pick this up. You can move very easily into Stats—I mean Stats is huge. You can do  insurance and all kinds of medical things. It’s a very flexible major.  Most people with math degrees are  not called mathematicians, they might be analysts.  If you want to be an engineer, obviously your best  route is to take engineering classes. If you don’t have mathematical background, the classes you take  will help you train to analyze existing systems and build things that haven’t been built before. If you want  to design something really new, at some point you’ll have to model what you’re doing, which might be  different from previous models, and you have to do some mathematics somewhere.    Q: Do you find more fulfillment in teaching or researching?     A: They are complementary.  You only really learn something when you can teach it to someone else. If  you have to do something like abstract geometry, you have to be able to do basic geometry really  quickly. After you’ve taught calculus a few times you can look at differential equations and say “oh, it  should look like this”, which would have taken like half an hour as a student but now takes a few  minutes. You need that speed in order to tackle the harder problems, so it is complementary.       Q: What do you enjoy most about math?     A: When you finally figure out something that’s bothered you. If there’s something that looks like you  should be able to answer and you can’t answer it immediately, it just sort of bugs you. And when you  figure out the trick that resolves it, then a light bulb goes off. So that’s very satisfying, when you finally  get what’s going on, as well as when you explain it to someone else and you see the light bulb go on in  their head.    Q: What is your favorite number or mathematical constant?     A: The funny thing about mathematics is that you don’t work with regular numbers so much. I never see  a 37, I see ‘n’ –a lot of what I do involves a big number n that goes to infinity. Never any specific  number.     Q: Do you have any other interests besides math?     A: I used to have more. When you work and you have family, it’s tough. When I was younger I used to  watch a lot anime and play computer games and so forth, but I have no time for these things anymore.     Q: Are you interested in seeing your two kids become mathematicians? Are you going to  push them at all in that direction?    A: Whatever they have the passion for. My son is 11 and he has some talent for math, but he doesn’t  really have a passion for it. What he really likes is acting, theatre and video editing actually—which is  maybe what he’ll become, I don’t know.      Q: What about prime numbers interests you so much?       A: Number theory is one of the things you can actually appreciate. I saw these through high school and  competitions, so I knew about all these numbers and conjecture theories very early, at 8 or 9.  I’ve  always wanted to make progress in this area. It’s not the most applied area of mathematics. If you  prove the twin­prime conjecture today, it won’t have that much effect in technology tomorrow. Well, it  depends what is proved and how. In many ways, it’s the methods of proof that are more important.  [Conjectures] are just sort of benchmarks to keep score.     Q: Is there a result that you consider the most beautiful?     A: I don’t think much in those terms. The funny thing is anything you prove yourself, you think “oh, that  was a lot easier than I thought.” You know, once you actually see it, you realize it wasn’t that hard after  all.    Q: How did you learn to teach and what is your teaching philosophy?      A: Sink or swim basically. When I was a graduate student, I didn’t teach, I was a grader. I assisted one  or two classes. When I first came to UCLA that was my first class.  I had a mentor teaching another  session for the class—they do that for the first class. He showed me what kinds of homework,  midterms, and syllabi he used. When you start out, you’re given a syllabus and a textbook and basically  told to use the textbook—it’s not actually that difficult.      There were a couple things I had to learn. I remember the first exam I gave out I put a lot of effort into  designing very cute questions where the answer to the first question would be useful in the second  question, and so forth. I didn’t realize this would be a nightmare to grade. When each question has a  single answer, you’re either right or wrong.  You don’t want questions where someone makes a mistake  in the first step but everything else is correct, so you have to check. So it took me a while to figure out  what are good questions and that sort of thing. You should make clear at the beginning what your  policies are for homework. If you’re vague you always get kids that say, “I didn’t realize this midterm  was worth this much. Can you reconsider it?”      Q: What can teachers do to make kids like math—not just computational math but the ideas  of math like problem solving and exploration?     A: It depends on the teacher’s style. Some teachers are really entertaining.  You know, they tell jokes.  Not everyone can do that. Some can make really elaborate presentations and experiments. Some are  good at finding really relevant videos and things on the Internet. Sometimes making a class more  enjoyable or entertaining is not the same as making it more educational. I remember once when I taught  calculus, one of the sections was quadric surfaces, like ellipsoids, paraboloids and so forth. So there’s  this thing called a hyperbolic paraboloid, and I wanted to demonstrate this. It turns out that a Pringle has  the shape of a hyperbolic paraboloid. So I brought in a pack of Pringles to class and said, “this is a  hyperbolic paraboloid, this is what it looks like. I ate the Pringle as I was writing equations on the  board. Well many years later, I ran into someone on the street who said, “Oh, I know you. I took one  of your classes. I forget what it was, but there was a Pringle.” So I thought, “you didn’t remember any  of the math, but you remember the Pringle.” So it didn’t really work.    Q: What do you hope to accomplish through your research? Do you have any specific goals?     A: No really short­term objectives. There's always questions which I’d love to solve (Riemann  Hypothesis, Navier Stokes, whatever). But usually these things are so out of reach. We understand the  tools that we have pretty well. We know that without an extra or original idea you can’t really answer  them. We don’t focus directly on these long­shot goals. A lot of the focus is incremental. A lot of  mathematicians liken mathematical research to climbing a cliff. You’re at a certain point on the cliff, and  your first goal is to get one foot higher, and you just keep doing that. Every time you solve a problem,  naturally other problems appear. What was extremely difficult now just looks moderately difficult. You  use all of your notes and get a sense of what is a promising direction—basically anytime there’s a  phenomenon which looks interesting and you can’t explain it, but looks like you should be able to  analyze it. That’s what you want to study.      Q: What do you feel are the 2 or 3 most important open problems are in mathematics?     A: Depends whether you weight them by how easy they are to solve. I mean if you solved P=NP, it  could have huge applications, but it’s so difficult to narrow down. It’s hard to measure the importance.     Q: Which of the millennium problems do you think we are furthest from solving? In 2007 you  mentioned in a talk at UCLA that you expect a solution to P vs. NP to come last, with the  Riemann hypothesis just before it. Do you hold that same view today?     A: I would say so. These I think are decades before we can solve them for sure.    Q: What about Navier­Stokes?    A: So there I think we have a chance. That one I think we are closest to proving or disproving. One  direction [within the problem] might be solvable. A lot of conjectures are like this.  Take the Goldbach  conjecture: every even number is the sum of two primes. If it’s false, it could be disproven because if it  turns out that some humongous number is not the sum of two primes after you check all the possibilities,  then you’ve disproven the Goldbach conjecture. But no one believes that. In principle it could be easy  to disprove. But probably not. So maybe there’s chance with Navier­Stokes, but it’s a longshot.     Q: You have three IMO appearances, and you won one of each medal, so you have Olympiad  experience.  Do you notice anything different between how math contests are now compared  to how they were in the late 80s when you participated in them?     A: I’m not involved in them anymore, but they look much more professional. It was really an amateur  thing. I mean people would train for maybe 2 weeks. Now there are some countries who have been  training for years and are very systematic where you study 50 years’ worth of problems. It’s become  much more like a professional sport. It’s like youth baseball; it starts off amateur and eventually some of  the professionals take over, which makes it different. In some ways it’s less fun, in some ways it’s    better. One nice thing though is that many other competitions have sprung up. When I was a kid it was  basically just the Olympiads and things that fit into the Olympiads. Now there’s these other activities too  if you don’t want to be so competitive. There’s other things like Math Circles and other online websites  where you can discuss problems in friendly ways. So it’s more diverse.     Q: At IMO, why do you think that China, Russia, Japan, and the Koreas always seem to win  the unofficial team competition and win the most medals as a team, often with perfect scores?  Do you think this says anything about English­speaking cultures like Australia, the US, and  the UK and their emphasis on math education?     A: I think it's a cultural emphasis.  Asian countries often place a larger premium on international  recognition on any sphere. In America, this is less important as America is a global leader in so many  areas, it doesn’t matter as much to them.  In many of these countries, they’re actually trying to make  them less competitive. There are many students who have over­trained. They go and get three gold  medals, but they sacrifice their regular education, spending years doing nothing but working on these  problems.  They finish the Olympiad and they’re burnt out. They’re not properly trained, even to do a  math degree or they’ll be sick of maths by then if that’s what they’ve been doing. There’s a balance.  You can get a little obsessed with the medal tallies. After a while it’s sort of pointless to optimize. It’s  sort of like the SATs. Getting a 600 or something is pretty good. When you obsess about getting that  perfect score, you start skipping on your social activities and do nothing but squeeze those last few  points, when it doesn’t really matter in the long run. There’s a great observation called Goodhart’s Law  that basically says any metric becomes useless once you start using it for control purposes. So the SAT,  for example, is a good general test of academic aptitude. But since it’s used so much for admission to  college, kids are trained and coached. They spend lots of time and effort, specifically to improve their  SAT score at the expense of a well­rounded education, to the point where [the SAT] may not be such a  good guide to general academic excellence, even though it used to be before students started optimizing.       Q: Do you feel like just anyone with enough hard work and dedication can reach the level of  mathematics that you have, or do you think it requires a certain mental disposition that you're  born with in order to do the type of maths done at the IMO or in graduate studies?     A: It depends on what your goal is. If your goal is to be good, as opposed to obsessed with getting a  perfect score or being at the absolute top, or just doing decently. If you have the enthusiasm, you also  have to spend a lot of time. I think one of the things you have to do is you have to play with the subject.  When I was a kid, I just loved doing math on my own, I would try to solve equations—it was a hobby.  I would try to find the sum of the first n­cubes by myself. It’s not a very serious level of mathematics,  but it’s only by tinkering with a subject that you really get good at it. Same as anything, like building  things. You need a certain baseline intelligence and be able to think and write, but I think it is mostly  actually your enthusiasm and your time put in given the opportunity.     Q: What has been your opinion on the Polymath projects that you've been involved in, and do  you think similar kinds of semi­massively collaborative mathematics has a future?     A: I think we’ll see more of them. For a long time they’re going to be a niche. There are certain types of  problems that they are very well suited for: problems which are very modular, that can be split up into  different pieces that a set of people can work on. You need a good leader who can organize everything.  There needs to be some clear measure of progress by members of your group. It has to be accessible  enough and interesting enough to get people involved. There’s a critical mass, though. There are some  projects where only about 3 people get involved and it gets converted into normal, traditional  collaboration. There are projects where you expect the answer to come from a lot of little ideas rather  than a few really big ideas. But I don’t think we’ll ever solve the Riemann hypothesis by this sort of  crowdsourcing thing, like “let’s get 1000 people together, throw ideas around and see what sticks.”  That’s not how these problems are going to be solved.    Q: What is your opinion on strong AI?       A: The funny thing about AI is that it’s a moving target. In the seventies, someone might ask “what are  the goals of AI?” And you might say, “Oh, we want a computer who can beat a chess master, or who  can understand actual language speech, or who can search a whole database very quickly.” We do all  that now, like face recognition. All these things that we thought were AI, we can do them. But once you  do them, you don’t think of them as AI. It has this connotation of some mysterious magical component  to it, but when you actually solve one of these problems, you don’t solve it using magic, you solve it  using clever mathematics. It’s no longer magical. It becomes science, and then you don’t think of it as  AI anymore. It’s amazing how you can speak into your phone and ask for the nearest Thai restaurant,  and it will find it. This would have been called AI, but we don’t think about it like that anymore. So I  think, almost by definition, we will never have AI because we’ll never achieve the goals of AI or cease  to be caught up with it.     Q: Would you consider doing an AMA on reddit?     A: (He’s familiar with reddit and will look into it. Fingers crossed!) 
Copyright © 2025 DOKUMEN.SITE Inc.