Technologie de Construction

March 26, 2018 | Author: AbbesTunisie | Category: Clutch, Brake, Bending, Mechanics, Materials


Comments



Description

1******************************************************************************************************************** REPUBLIQUE TUNISIENNE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE LA TECHNOLOGIE DIRECTION GENERALE DES ETUDES TECHNOLOGIQUES INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE GAFSA DEPARTEMENT DE GENIE MECANIQUE ******************************************************************************************************************** SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION: TRANSMISSION DE PUISSANCE Niveau: CFM3 Elaboré par : RABEH Abbès Février 2008 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 2 SOMMAIRE ETUDE MECANIQUE DES ARBRES 03 LES ACCOUPLEMENTS PERMANENTS 11 LES EMBRAYAGES 20 LES FREINS 30 LES ROUES DE FRICTIONS 36 LES ENGRENAGES 38 POULIES-COURROIE 46 ROUES ET CHAINE 52 LES REDUCTEURS 57 LES BOITES DE VITESSES 62 LES VARIATEURS 69 SYSTEME VIS ECROU 75 CALCUL DE RESSORT 81 BIBLIOGRAPHIE 85 ANNEXE 86 PROGRAMME 86 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 3 ETUDE MECANIQUE DES ARBRES I- FONCTION : Les charges appliquées aux arbres, leur fréquence de rotation, entraînent des contraintes, des déformations et des vibrations qu’il faut limiter pour un bon fonctionnement et une durée de vie plus longue des systèmes mécaniques. Le calcul de prédétermination de l’arbre peut être : - à partir d’un calcul classique de R.D.M. à la résistance, à la déformation. - à partir d’un calcul à la fatigue. - A partir d’un calcul aux vibrations. Les arbres servent à transmettre un couple entre les éléments et systèmes de transmission tels que : accouplements, embrayages, courroies, chaînes, engrenages, boite de vitesses, réducteurs, … Ils servent également de support d’organes mécaniques ou d’axes d’articulation. II- MODELISATION DES LIAISONS PIVOTS ENTRE ARBRE ET BATI. 1- Une seule zone de contact assure le guidage. C’est le cas de contact direct entre arbre et alésage, paliers lisses et les roulements rapprochés. - Modélisation. - Torseur associé. 2- Deux zones de contact assurent le guidage. (deux éléments de liaisons) 2.1- Rotule en (A) et linéaire annulaire en (B) - Modélisation. - Torseurs associés 2.2- Demi rotule en A et en B. - Modélisation. - Torseurs associés. 2.3- Appui plan en A + Linéaire annulaire en B. - Modélisation. - Torseurs associés. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 4 III- CONTRAINTES DANS UN ARBRE. L’état des contraintes en un point quelconque M d’un solide est représenté par un tenseur qui s’exprime dans une base orthonormée ( ) z y x , , par : ( ( ( ¸ ( ¸ = z zy zx yz y yx xz xy x o t t t o t t t o o Ce tenseur est symétrique : yx xy t t = ; zx xz t t = ; zy yz t t = Si les contraintes sont constantes au cours du temps, elles sont dites Statiques mais si elles sont variables au cours du temps, elles sont dites dynamiques. Dans le cas des arbres : (section circulaire) En un point d’une section droite circulaire de l’arbre l’état des contraintes dans la base ( ) z y x , , est ( ( ( ¸ ( ¸ = 0 0 0 0 xz xy xz xy x t t t t o o avec fx nx x o o o + = nx o : Contrainte due à l’effort Normal fx o : Contrainte normale due au Moment de flexion xy t et xz t : Contraintes tangentielles dues au moment de torsion et à l’effort tranchant. IV- RELATION ENTRE CONTRAINTES ET EFFORTS INTERIEURS : Le torseur des efforts intérieurs est : S N = nx ζ avec N : effort normal s : aire de la section droite z Mfy fx IGZ = o Mfy : moment fléchissant suivant y I Gz : moment quadratique de la section droite par rapport à l’axe (G, z) Z : distance du centre au point considéré { } { } y Mf + x Mt z T + x N η G G = i SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 5 r Mt xy IG = t Mt : moment de torsion I G : moment quadratique polaire de la section droite par rapport à G r : distance du centre au point considéré I . GY ) z ( b ) z ( A . T xz= t T : effort tranchant suivant z A(z) : moment statique de la surface s(z) b(z) : largeur de la surface s(z) I Gy : moment quadratique de la section droite par rapport à l’axe (G, y) V- CONTRAINTE EQUIVALENTE DANS L’ARBRE : * Matériaux fragiles : Critère de Rankine La défaillance du matériau se produit lorsque la plus grande des contraintes principales atteint une valeur limite fixée. + x + . 2 1 = η 4 ζ ζ ζ 2 2 x eq avec fx nx x o + o = o t t t + = xz 2 xy 2 2 * Matériaux ductiles : Critère de Trésca Pour les aciers doux et les alliages légers, la défaillance du matériau se produit lorsque le cisaillement maximal atteint une valeur limite fixée. t o o + = 4 2 x 2 eq * Critère de Von Mises : Pour l’ensemble des matériaux métalliques. La défaillance du matériau se produit lorsque l’énergie de variation de forme atteint une valeur limite fixée. t o o + = 3 2 x 2 eq VI- COMPORTEMENT DU MATERIAU ET COEFFICIENT DE SECURITE. Une limite est un état ou le comportement du matériau change. Pour le calcul des arbres on utilise les états limites de la traction. (Voir courbe contrainte – déformation) Le coefficient de sécurité S est toujours défini suivant la limite utilisée et est choisi en fonction de l’étude réalisée par le concepteur (mais toujours>0) Le coefficient de sécurité traduit l’incertitude liée à la détermination des efforts appliqués et à la théorie utilisée pour le calcul de σeq. Ce coefficient est fonction des conséquences d’une rupture éventuelle : - Danger pour la vie humaine. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 6 - Dégradation partielle ou totale du mécanisme. VII- VALEUR MAXIMALE DES CONTRAINTES. - Pas de concentration de contrainte. Dans ce cas σ Maxi = σ eq ≤ σ mad = R/S suivant la limite choisie. - Avec concentration de contrainte: Dans le cas ou l’arbre présente des discontinuités de forme (entaille, épaulement, rainure, trou, défaut métallurgique…), autour de ces zones les contraintes réelles sont plus importantes et ce phénomène est appelé concentration de contrainte. Le coefficient de concentration de contrainte est défini par le rapport Kt = σr/ σ σ contrainte nominale σr contrainte réelle Ce coefficient est noté : Ktt : pour une sollicitation de traction Ktf : pour une sollicitation de flexion Kto : pour une sollicitation de torsion Exemple : pour un arbre entaillé par une gorge ; σ Maxi = Kt σ eq ≤ σ mad = R/S suivant la limite choisie. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 7 Valeur de Kto en torsion pure Valeur de Ktf en flexion pure Valeur de Ktt en traction pure SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 9 APPLICATION : TOURET A MEULER Le touret à meuler représenté par le schéma ci-dessous est entraîné par un moteur de 2500w tournant à 3000tr/mn. L’entraînement se fait par deux courroies trapézoïdales pour lesquelles les lois de frottement permettent d’écrire la relation T=16t entre les tensions. La poulie motrice a même diamètre d=69mm que la poulie réceptrice et est disposée conformément au schéma ci-dessous. L’effort de meulage, applique en J, admet une composante axiale x X  . avec X=357N, une composante radiale y Y  . avec Y=100N et composante tangentielle z Z  . ÷ . 1- Etablir un schéma faisant apparaître l’ensemble des efforts agissant sur l’arbre. 2- Ecrire les équations d’équilibre de l’arbre (2). 3- Déterminer les efforts exercés par les courroies sur la poulie réceptrice. 4- En déduire l’effort tangentiel Z et les réactions aux paliers A et B. 5- Vérifier que les roulements 35BC03 en A et 30BC03 en B peuvent fonctionner pendant 20000 heures. 6- Représenter les diagrammes, de l’effort normal, tranchant, du moment fléchissant et du moment de torsion de l’arbre (2), en déduire la section la plus sollicitée. 7- Vérifier la résistance de l’arbre ave le critère de Von Mises si σ maxad =300Mpa (pas de concentration de contraintes). J Z Y C B A O Z X SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 10 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 11 Les accouplements permanents 1- Fonction : Leurs fonction principale est de permettre l’accouplement de deux arbres avec ou sans contraintes géométriques dans leurs positions initiales respectives on distinguera ; Les accouplements rigides : - Manchon à douilles - Manchon à coquilles - Manchon à plateaux Les accouplements mobiles : - Les accouplements positifs - Manchon de dilatation - Joint d’Oldham - Joint de Cardan Les accouplements élastiques (Élasticité torsionnelle) 2- Les accouplements rigides : un alignement parfait des deux arbres est indispensable car l’accouplement rigide assure un encastrement entre les arbres les rendant ainsi coaxiaux 2-1- Manchon à douille fig. 1-(a. b. c.) a-Douille collée ou soudée : (indémontable) la colle ou la soudure doit être calculée ou cisaillement la condition de résistance est ƵsƵ max ad Ƶ s Ƶ max ad Ƶ = S T avec T= D C 2 Collage : S= π. D. a Soudage : S = π . D. b (Rigidité torsionnelle) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 12 ==> DS C 2 s Ƶ max ad ==> Exemple : Colle Ƶ max ad = 20 MPa D = a= 50 b=3 Soudure Ƶ max ad = 150 MPa Comparer C colle et C soudure Collage : S= π. D. a Cc = 3.92 10 3 N. m Soudage : S = π . D. b Cs = 1.76 10 3 N. m b- Douille encastrée par obstacle : ( clavettes , goupilles) Clavette et goupille doivent être calculées au cisaillement Condition de résistance : Ƶ s Ƶ max ad . et Ƶ = S T avec C=T. 2 D DS C 2 s Ƶ max ad ==> C s 1/2 Ƶ max ad D.S avec : S = L.a (clavette) S= 2.S’ = 2 4 π d 2 = 2 π d 2 (goupille) Remarque : la clavette peut être calculée au matage. (pression de contact ) P = ad . P ≤ T max L S S L = b’. L C- Douille encastrée par un ajustement serré (ØH7p6) Le couple transmissible est fonction du serrage de la douille. Hypothèse : douille mince e<<D ( déformation diamétrale élastique ) et pression uniforme ( déformation des arbres négligeable) Clavettes Cs Ƶ max ad 2 S . D Goupilles SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 13 On a : C = T 2 D et T=N.f et N= p.S = P t D.a ==> Et a . e . 2 a . D . p = S F = E . D D Δ = E . ε = ζ ==> P= D² D Δ 2.e.E. ==> Exemple : e=5 Ø50H7p6 ==> C = ? a = 50 f = 0.2 E = 2.10 5 MPa C = 1319 N. m 2-2- Manchon à coquilles (fig. 2a,2b) Le couple transmissible est fonction du serrage sur les coquilles, pour un serrage par boulons (fig2b) et pour des grandes vitesses de rotation il est nécessaire d’équilibrer l’accouplement. 2-3- Manchon a plateaux (fig. 3) Utilisé pour les transmissions des couples importants - Clavettes ou cannelures doivent être calculés au cisaillement et matage - Les boulons doivent être calculés au cisaillement. (boulons ajustés)  C 1= T 1 n De . 2 et ad . max η ≤ T S b 1 (boulons)  C 2 ad = 2/3 f N 1 Rmoy . N . f = n . _ _ r R r R 2 2 3 3  C = T 2 d et ad . max η ≤ Sc T  (clavettes) 3- Les accouplements mobiles : Ces accouplements permettent un légers déplacement de la position relative des arbres - Un désalignement axial - Un désalignement radial - Un désalignement angulaire Avec une rigidité torsionnelle, l’accouplement est dit positif et avec une élasticité torsionnelle, l’accouplement est dit élastique. 3-1- Accouplement avec chaîne a deux rangées de maillons ( fig. 4) eE pD D 2 ² = A C = 1/2 D 2 . a . p . π . f C=1/2 f t p a D² C = D eafEA t C = C 1 + C 2 ad SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 14 tgθ 2 = cosα tgθ 1 Il est utilisé pour les transmissions de couples importants et il permet un désaccouplement rapide par l’enlèvement d’un maillon de la chaîne ( attache rapide). Cet accouplement doit être choisi sur catalogue. ( faibles ==> α Δ , a Δ , r Δ ) 3-2- Accouplement de dilatation : (fig.5) Cet accouplement peut être utilisé pour des arbres Longs et peut être alors un accouplement compensateur de dilatation ( a A important) 3-3- Joint D’OLDHAM (Figures 6-a, b et c) c’est un joint homocinétique utilisé pour compenser un désalignement radial, r A de quelques millimètres. 3-4- joint de cardan (fig. 7-a,b,c et d ) Utilisé pour des désalignements angulaires importants ( o A ) et des désalignements radiaux importants par l’association de deux joints (double joint de cardan) - réduise l’angle o (angle de brisure o max = 40°) pour améliorer la tenu à la fatigue de la transmission. - réduire l’inertie par la choix d’un arbre creux et court Remarque : - Un joint de cardan simple n’est pas homocinétique car - Un joint de cardan double montage en Z et montage en W est homocinétique si α = α’ (fig7b et 7c) 3-5- Les accouplements élastiques Ces accouplements permettent l’amortissement des couples pour les accélérations et décélérations angulaires grâce à leur élasticité torsionnelle. 3-5-1 Manchon a broches (fig. 8) (Selon les modèles l’élément élastique est comprimé) ° ± = A ± = A ± = A 5 . 1 4 3 . 0 o mm a mm r 3-5-2- Manchon segor souplex (fig.9) L’élément élastique est comprimé avec ° 1 ± α Δ mm 1 ± = a Δ mm 9 . 0 ± = r Δ (selon les modèles) 3-5-3 Manchon COMELOR (fig. 10) Les éléments élastique sont des cylindres en caoutchouc sollicités en cisaillement ( r A , o A , a A selon les modèles) 3-5-4- Manchon RAFFARD à bracelet caoutchouc (cuir) (fig.11) Les éléments élastiques sont tendus et on a ( r A , o A , a A selon les modèles) 3-5-5- Manchon à Courroie sans fin (fig.12) L’élément élastique est une courroie sans fin en cuir ( r A , o A , a A selon les modèles) 3-5-6- Manchon PERIFLEX (fig. 13) l’élément élastique est un bondage torique sollicité en torsion avec ° ± = A ± = A ± = A 2 6 5 o mm a mm r SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 15 3-5-7 Manchon FLECTOR (fig. 14) L’élément élastique est un disque en caoutchouc sollicité en compression avec ° 5 ± = α Δ 3-5-8- Manchon JUBOFLEX (fig.15) L’élément élastique est une couronne hexagonale de section circulaire analogue à un FLECTOR. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 16 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 17 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 18 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 19 Applications : EXERCICE1 : 1- Expliquer la différence entre un accouplement rigide et un autre mobile. 2- Pour un joint d’OLDHAM : a- Quel est le type de cet accouplement. b- Est – il Homocinétique et pourquoi. 3- Définir l’accouplement élastique. EXERCICE2 : a Dans le cas d’un Manchon à douilles avec un ajustement serré Ф40H6p6. On donne la largeur de contact arbre-douille a=60 et l’épaisseur de la douille e=3 . ES EI Ф40H6 16 0 Ф40p6 42 26 1- Quels sont les inconvénients de cet accouplement. 2- Calculer le couple Cmax que peut transmettre ce Manchon si le module d’YOUNG E=2 10 5 N/mm 2 et si le coefficient de frottement est f=0.2. 3- Calculer ce couple Cmax si on remplace l’ajustement serré par un cordon de soudure de largeur b=3 et de Ƶ max ad =150MPa (voir schéma ci-dessus) EXERCICE3 : L’accouplement entre un moteur et un récepteur est un manchon à plateaux, cet accouplement transmet une puissance de 20kw avec N = 100 tr/mn. 4 boulons Hr, M5 , placés sur un diamètre de 150mm, de Ƶ max ad =80 N/mm² Les arbres sont cannelés à flancs parallèles 8x52x58, surface de contact entre les plateaux caractérisée par : dp =100 Pmax ad = 20 MPa Dp = 200 Plateaux Ƶ max ad =80 N/mm² Cannelures f = 0.08 B=10 L=100 1°) Déterminer le couple transmis par l’accouplement. 2°) Vérifier la résistance au cisaillement des boulons et conclure. 3°) Calculer Cad mini entre les plateaux pour transmettre cette puissance et conclure sur le glissement entre les plateaux. 4°) Vérifier les cannelures au cisaillement et matage et conclure. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 20 LES EMBRAYAGES 1-INTRODUCTION : Un embrayage est un accouplement temporaire. Impérativement, les arbres sont parfaitement alignés pour éviter l’usure prématurée du mécanisme. Ils sont : - à obstacles - à griffes - à dents - à friction - à disques - à cônes - à segments - automatiques - centrifuge - à billes - à poudre - à masselottes - coupleur - limiteur de couple - roue libre A l’exception des embrayages automatiques, tous les autres embrayages peuvent être à commande mécanique, électromagnétique, pneumatique ou hydraulique. 2-EMBRAYAGE A GRIFFES ET A DENTS : L’avantage de ces embrayages est leur conception simple et la transmission de mouvement sans glissement relatif des deux arbres. L’inconvénient de ces embrayages est l’impossibilité d’embrayer en marche des arbres. Les griffes et les dents peuvent être carrés, triangulaires, trapézoïdales et doivent être vérifiés au cisaillement et à la pression de contact. 3-EMBRAYAGE A FRICTION : L’embrayage est progressif et les surfaces de friction sont planes, coniques ou cylindriques. Pour la phase d’embrayage on distingue : a- Approche des surfaces. b- Vitesses identiques ou embrayé SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 21 w t a b c d Pour la phase du débrayage on distingue : c- séparation des surfaces d- débrayé wm=wmo et wr=wro Les matériaux sont en fonction de: -la pression maximale admissible -la température maximale admissible -le coefficient de frottement. Exemple : Matériaux Cond de fonct f Pm ad daN/cm 2 T°c Amiante pressée sur acier à sec 0.3 2 à 3 150 à 200 Acier sur acier trempé Lubrifié 0.08 6 à 8 250 4-EMBRAYAGE AUTOMATIQUE : L’embrayage ou le débrayage est assuré sans commande extérieure. La commande automatique est due à : -la variation de la vitesse de rotation. (Centrifuge, coupleur) -la variation du couple récepteur. (Limiteur de couple, coupleur) -la variation du sens de rotation. (Roue libre) 5-INSTALLATION GENERALE D’UN EMBRAYAGE. Cm Cr Embrayage Moteur Recepteur Cm wm Cr wr Im Ir Z Y X Cad Ecrivons les moments dynamiques des deux arbres moteur et récepteur /oy. on néglige le frottement dans les paliers. dt dw I Mt = ¿ SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 22 *Pour l’arbre moteur : Embrayage X Cm wm Im Moteur Cm Z Cad Y Cr dt dwm Im Cad Cm = ÷ *Pour l’arbre récepteur : Embrayage X Cad Z Cad Ir Cr wr Cr Recepteur Y dt dwr Ir Cr Cad = ÷ en position débrayée wm ≠ wr → il y a glissement wg=wm-wr wmo dt Im Cad Cm wm t 0 + ÷ = } wro dt Ir Cr Cad wr t 0 + ÷ = } wgo dt ) Ir Cr Cad Im Cad Cm ( wg t 0 + ÷ ÷ ÷ = } wgo=wmo-wro en position embrayée wm=wr=w (fréquence de synchronisme) w= wmo dt Im Cad Cm wm T 0 + ÷ = } = wro dt Ir Cr Cad wr T 0 + ÷ = } et dt dw ) Ir (Im Cr Cm + = ÷ SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 23 7-CALCUL DU COUPLE D’EMBRAYAGE : 7-1-EMBRAYAGE A DISQUES : Hypothèses : -pression de contact entre les disques est supposée uniforme. Démontrer que : ( ) ( ) r R r R 2 2 3 3 fN 3 2 Cemb ÷ ÷ = Remarque : Pour n surfaces frottantes multiplier Cemb par n. Pour m disques intérieurs n=2m . 7-2-EMBRAYAGE A CONE : Hypothèses : -pression de contact entre les cônes est supposée uniforme. - α > υ pour éviter le coincement entre les cônes. Démontrer que : ( ) ( ) r R r R 2 2 3 3 . sin . N . f 3 2 Cemb ÷ o ÷ = SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 24 b R u 7-3-EMBRAYAGE A SEGMENTS (non articulés) : Hypothèses : -pression radiale de contact supposée uniforme. -l’effort d’inertie sur les segments est négligé. -poids du segment négligé. Démontrer que : ( ) 2 sin . 2 . N . f . R Cemb u u = Remarque : Pour n segments multiplier Cemb par n. Si on utilise de l’amiante pressée, elle doit être fixée sur les segments pour évacuer la chaleur produite vers l’extérieur. Limiter la vitesse de rotation. 8-EMBRAYAGE AUTOMATIQUE : 8-1-EMBRAYAGE CENTIFUGE A SEGMENT ARTICULE : SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 25 Moteur Recepteur Ressort dents FR/M o ¢ Hypothèses : -pression radiale de contact supposée uniforme. -poids du segment négligé. Démontrer que : R . f r sin . f . R . r . a . . m . 2 Cemb 2 + o = e 8-2-LIMITEUR DE COUPLE A DENTS : Hypothèses : -pression de contact supposée uniforme entre les dentures. Remarque : | t o ÷ = 2 / β: demi angle au sommet de la denture On démontre que 8-3-ROUE LIBRE : Hypothèses : -l’effort d’inertie sur la bille négligé. -poids de la bille négligé. - action du ressort négligée Démontrer que : a R a r 2 R f + ÷ ÷  Remarque : Les billes (ou les rouleaux) doivent être vérifiées à la pression de contact (théorie de Hertz) ) ( . . ¢ o+ = tg Rmoy T Cemb SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 26 9- Exemples de réalisation : SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 27 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 28 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 29 10- APPLICATION : EMBRAYAGE CENTRIFUGE A BILLES Le dessin d’ensemble (document 1) représente un embrayage centrifuge à billes, sur le même dessin est représenté le système dans ses deux positions extrêmes : embrayé et débrayé. DONNEES : Cm1=180Nm, N1=1200tr/mn : respectivement le couple et la vitesse de rotation de (1) au cours de l’embrayage. n=16, M=0.035Kg : respectivement le nombre de billes (5) et la masse d’une bille. I1, I2 : les moments d’inertie équivalents des chaînes cinématiques respectivement coté moteur et coté récepteur. A7/2 : composante axiale de l’action de (7) sur (2). f=0.15 : le coefficient de frottement entre (2) et (7), tous les autres frottements sont négligés. dd =240 : Diamètre de référence de la poulie (2). R=60, R1=70, R2=80, α=10°, β, ε : rayons et angles définis sur le document1. TRAVAIL DEMANDE : A- ANALYSE DE FONCTIONNE MENT. A1- Faire le schéma cinématique du mécanisme. A2- Expliquer le fonctionnement de l’embrayage. A3- Justifier l’emploi des anneaux élastiques (20). A4- Quelle est l’utilité de (12) dans le système. A5- Proposer un ajustement convenable pour la liaison de (7)avec(3). B- ETUDE DE L’EMBRAYAGE. B1- Ecrire les équations des moments dynamiques relativement au coté moteur et récepteur de l’embrayage. B2- Déterminer l’effort axial (A7/2) nécessaire pour l’embrayage. B3- Déterminer la valeur de l’effort d’inertie sur une bille. B4- Ecrire les équations d’équilibre d’une bille en position d’embrayage, faire un schéma montrant les actions exercées sur la bille. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 30 Les Freins 1- Fonction : Transformer l’énergie mécanique en énergie calorifique afin d’arrêter ou de ralentir le mouvement d’un mécanisme. 2- Installation générale d’un frein: dt dwf If = Cf Rf . Tf dt dwj Ij = TjRj Cmj avec Kj Rj Rf wf wj = =  Tj = dt dwj Rj Ij Rj Cmj ÷ Et Tf = dt dwf . Rf If + Rf Cf avec Tj = Tf  Cmj dt dwf If + Cf = dt dwj Rj Rf Ij Rj Rf Kj . dt dwf = dt dwj et Kj = Rj Rf  Cmj Kj – Ij Kj² dt dwf =cf+If dt dwf  Cmj Kj – cf = dt dwf ( If+Ij Kj²) 3- Equation de mouvement. } 0 ) ( w t w dw = dt Cf Cm t j ) ( 0 1 ÷ }  w(t) – w0 = dt Cf Cm t j ) ( 0 1 ÷ } Cmj Wj Ij Rj If Rf Cf Cm J ==> Cm-Cf = J. dt dwf to Wo Wf t W t SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 31 4- Durée de freinage . cf Cm dw w j dt t ÷ = } } 0 0 0 => t0 = J cf Cm dw 0 w 0 ∫ hypothèse : Cm = 0  t 0 = J 0 1 w Cf et w(t) = - ) 0 .( t t j Cf ÷ w(t)= - 0 w + t . 0 t 0 w 5- Différent types de frein a- Frein à disque à couronne. Cf = 2/3 N.f n . ² r _ ² R _ R r 3 3 ( voir embrayage à disque ) b- Frein à disque à patins. (Plaquettes) On suppose une pression uniforme entre patins et disque. dCf = ρ dt = ρ f.dN = ρ f p. ds = ρ f.p ρ d ρ dθ Cf = p.f . θ . ² r _ ² R _ R r 3 3 ²) ² ( . 2 2 . ²) ² ( r R N r R N P u u t t = = Cf = 2/3 .N.f ² r _ ² R _ R r 3 3 Pour n surfaces => Cf est multiplié par n (généralement n = 2) avantage : refroidissement rapide et entretien facile. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 32 b c Fp/t f a F S e n s 1 S e n s 2 c- Frein à sabot sur tambour. Le point d’articulation doit être choisi (sens 1) tel que b/c ≠ υ, si non interférence entre le sabot et le tambour. Remède : Sabot articulé Hypothèse : pression de contact uniforme. Statique : Sens 1 : Cf1 = Fp/t . Sin υ .R F t/P (b-f.c) cos υ – a F = 0 => F t/P = a.F/ (b – c.f).cos υ Sens 2 : Cf1 ≠ Cf2 => Frein irréversible. Remarque :  Sens 1 : Si c b → f ==> Cf1 → · ==> Blocage brutal (coincement)  Pour l’équilibrage du tambour on doit utiliser deux sabots. Cf2 = f c b Rf F a . . . + Cf1 = f . c - b f . R . F . a SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 33 t T F a b R S e n s 1 d- Frein Exponentiel à bande : ( à sangle ) Hypothèse : e << R (Voir poulie courroie plate ) Sens 1 : Cf1 = (T-t).R Equilibre du levier : a F = b .T Cf1 = (T-T.e -f θ ).R = e b R F a ÷ 1 .( . . -f θ ) Sens 2 : Cf2 = (T-t).R Equilibre du levier : a . F = b . t  Cf2 = (t.e f θ -t) . R = b R F a . . (e f θ -1) Cf1 ≠ Cf2 : ==> Frein irréversible Solution : T = t e f θ SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 34 6- Exemples de réalisation. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 35 7- Application. Le document ci-dessous, représente un Frein multidisque à commande hydraulique (Source Warner et Tourco). Le Frein agit sur l’arbre moteur en l’absence de couple moteur par un couple de freinage supposé constant (Cf=100Nm ) pour une phase de freinage de (T=10 s), la vitesse angulaire initiale de l’arbre moteur est de (wo=100rd/s). On donne : Le rayon moyen de contact entre les disques du frein est Rmoy=100mm ; Le coefficient de frottement entre les disques lubrifiés est f=0.05. Pour toute autre donnée voir dessin du Frein sur le document ci-dessus. TRAVAIL DEMANDE : I- ANALYSE DU MECANISME. 1- Expliquer le fonctionnement du Frein. 2- Justifier l’emploi de plusieurs disques pour ce Frein II- ETUDE DU FREIN DANS LA PHASE DE FREINAGE. 1- Représenter la variation de la vitesse angulaire du Frein en fonction du temps wf(t) et en déduire son expression en fonction de (wo, T et t). 2- A partir de l’équation du moment dynamique de l’arbre du Frein, exprimer Cf en fonction de( I f , wo et T), en déduire la valeur de l’inertie I f de l’arbre du Frein. 3- Calculer l’effort presseur exercé par les ressorts (5) permettant le freinage du système. 4- Démontrer que l’énergie dissipée par frottement est Wf(J)= 1/2 Cf woT puis calculer sa valeur. 5- Expliquer l’influence de la durée de freinage et du nombre de freinage sur l’échauffement du frein, faire un schéma. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 36 Les Roues de Friction 1- Fonction. Transmettre par adhérence, un mouvement de rotation entre un arbre d’entré et un arbre de sortie. 2- Conditions d’entraînement. Pour que l’entraînement naturel des roues soit réalisé, il faut : - un coefficient de frottement important entre les deux roues. - des forces pressantes créant l’adhérence. 3- Rapport des vitesses. Il y a toujours glissement ( de 2°/°à 5°/°), si se glissement est négligé on a : N2 / N1 = D1 / D2 4- Pression de contact. La transmission par roues de friction présente un certains nombre de qualité tel que : - entraînement sans chocs ; - fonctionnement silencieux ; - établissement facile ; - possibilité d’un grand rapport de vitesses ; - sécurité de la transmission due à l’entraînement par adhérence ; Mais aussi des inconvénients tel que : - efforts importants sur les paliers ; - pression importante au contact ; D’ou la vérification des surfaces frotantes à la pression de contact et limitation des puissances à transmettre. TABLEAU RECAPITULATIF DE LA THEORIE DE HERTZ SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 37 5- Exemples de réalisation. Galet conique et plateau. Galet cylindrique et plateau. Roues à rainures multiples. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 38 mad ζ . k T 34 . 2 ≥ m Les engrenages 1-Fonction. Transmettre sans glissement, un mouvement de rotation continu entre deux arbres rapprochés avec pour contrainte principale l’homocinétie. 2- Engrenages cylindriques à denture droite. 2-1- Définition d’une denture. a- Pas : C’est la longueur de l’arc mesuré entre deux point analogue de deux dents consécutives sur le cercle primitif. Soit L, la longueur de la circonférence primitive et Z le nombre de dents d’une roue. On a : L = π.d = Z.p ce qui conduit à p= π.d/Z b- Module : C’est la constante normalisée m définie par m = d/Z Une denture se définit complètement à partir de ce module d’ont la valeur approximative résulte d’un calcul de résistance des matériaux. On modélise la denture par une poutre comme le montre la figure suivante : Avec : - hauteur de la dent h = 2.25 m - largeur de la dent b = k.m (k constante à définir) - épaisseur de la dent e = p/2 = π.m/2 Démontrer que : On choisi le module normalisé immédiatement supérieur.(voir tableau suivant) k Surface Vitesse w Effort De 4 à 6 Non taillé Faible Faible De 8 à 10 Taillé Non rectifié Moyenne Moyen De 10à 16 Taillé rectifié grande grand SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 39 2-2- Caractéristiques : SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 40 3- Engrenages cylindriques à denture hélicoïdale. 3-1- Avantages et inconvénients. Comparés au engrenages à denture droite, ces engrenages ont les avantages suivants : - régularité de la transmission du fait qu’il y a au moins deux dents en prise ; - moins d’usure et niveau sonore plus bas ; - possibilité de transmettre le mouvement entre deux axes orthogonaux (non concourants) L’inconvénient essentiel est la composante axiale de l’effort de contact qui impose le choix de roulement spécifique ou l’utilisation de roues dentées en chevron. 3-2- Caractéristiques. L’axe des dents est incliné d’un angle β par rapport à l’axe principal du cylindre primitif, ainsi on définit : - un profil réel contenu dans le plan Pr, perpendiculaire à l’axe des dents ; - un profil apparent contenu dans le plan Pa, perpendiculaire à l’axe du cylindre primitif. On parlera alors de caractéristiques dans le plan réel (indice r) et des caractéristiques dans le plan apparent (indice a), voir tableau page suivante. Axes des roues non parallèles, non concourants SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 41 β cos T = ' T mad ζ . k ' T 34 . 2 ≥ mr Le module réel mr, calculé comme précédemment, mais en tenant compte de l’angle β pour évaluer la composante T’ (agissant perpendiculairement au profil) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 42 ω . dm P 2 = T mad ζ . k T 34 . 2 ≥ Mm Mm ). rm δ sin 2 b + rm ( = M 4- Engrenages coniques à denture droite. La roue et le pignon d’un engrenage conique sont établis l’un pour l’autre, c’est à dire, qu’ils doivent avoir le même module et les sommets des cônes primitifs confondus. - Caractéristiques. Le module, calculé comme précédemment par une condition de résistance en flexion de la dent, est un module moyen. Le module normalisé est tel que : r M = rm Mm avec δ sin 2 b + rm = r D’ou SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 43 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 44 6- Efforts transmis aux paliers par les engrenages. -Roue à denture droite. Pour une roue à denture droite l’angle d’inclinaison de l’hélice β est nul. Le torseur d’action de la roue 1 sur la roue 2 en P et relativement à R(x,y,z) s’écrit : = { } { } P P 0 0 0 R 0 T = ) 2 / 1 ( η { } { } P P 0 0 0 α tan T 0 T = ) 2 / 1 ( η SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 45 -Roue à denture hélicoïdale. Pour une roue à denture hélicoïdale l’angle d’inclinaison de l’hélice β est non nul. Le torseur d’action de la roue 1 sur la roue 2 en P et relativement à R(x,y,z) s’écrit : = -Roue conique à denture droite. Pour une roue conique à denture droite, P est supposé situé sur le cercle moyen. Le torseur d’action de la roue 1 sur la roue 2 en P et relativement à R(x,y,z) s’écrit : = { } { } P P 0 0 0 R A T = ) 2 / 1 ( η { } { } P P 0 0 0 β cos α tan T β tan T T = ) 2 / 1 ( η { } { } P P 0 0 0 R A T = ) 2 / 1 ( η { } { } P P 0 0 0 1 δ cos α tan T 1 δ sin . α tan T T = ) 2 / 1 ( η SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 46 Transmission de mouvement par poulie - courroie 1- Introduction La transmission continue de puissance entre deux arbres animés de mouvements de rotations en rapport constant peut être assurée par courroies Les avantages de la transmission par courroies sont : - Entraxe élevé ; - Amortissement des chocs , souplesse d’utilisation ; - Silence de fonctionnement - Bon rendement - Montage et entretien simples ; - Grande durée de vie - Economie, … 2- Etude Géométrique et cinématique. 2-1- Disposition des poulies. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 47 2-2- Rapport de réduction. Si on suppose que la transmission de mouvement se fait sans glissement le rapport des vitesses de rotation est données par la relation suivante . 2 1 1 2 1 2 R R N N W W = = 2-3- Longueur de courroie. La longueur théorique d’une courroie est la somme des segment A1A2 , B1B2 et des arcs A1B1 , A2B2. A1A2 =B1B2 = E cos | A1B1 = R1( | t 2 ÷ ) avec sin | = E R R 1 2÷ B2A2 = R2 ( | t 2 + ) Soit une longueur : Ou encore , en remarquant que α - π = β 2 2 α - π = β  3- Etude Dynamique. 3-1- Puissance théorique et rendement. Au cours du mouvement de rotation, supposé uniforme, la puissance développée par le moteur est : P1 = C1 w1 - Puissance développée par la récepteur est : P2 = C2.w2 - La rendement de la transmission est : r= 1 1 2 2 1 2 w C w C P P = 3-2- Etude dynamique des deux poulies. Hypothèse et- données. - La fréquence de rotation de chaque poulie est uniforme. - La tension des brins tendu (B1, B2) et on a (A1, A2) sont respectivement T et t. - La courroie adhère parfaitement avec les poulies (rendement égal à 1) - Le couple moteur C1 est connu. C1= (T-t) R1 et C2= ( T-t ) R2 L = 2 E cosβ + π( R1+R2) + 2β (R2-R1) L=2E sin ) 2 1 ( 2 2 2 R R R ÷ + + o t o SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 48 2 1 2 1 R R C C = Cette étude montre que la donnée du couple moteur et des rayons des deux poulies permet de calculer le couple à exercer par le récepteur mais ne permet pas la détermination des tensions T et t. 3-3-Etude dynamique d’un élément de courroie. ( courroie trapézoïdale ). Appliquons le P.F.D à une portion de courroie en contact avec la poulie motrice . Hypothèses et notations : - Masse linéique de la courroie m L . - Fréquence de rotation de la poulie : N1 , constante : ( w1 vitesse angulaire) - Frottement poulie – courroie : f - Action de la poulie sur le tronçon de courroie : dF. P.F.D appliqué sur le tronçon de courroie isolé . ) / ( . ) ( 1 ) ( 1 Ro M d d dm F T T ¸ u u u ÷ ÷ ÷ ÷ = + + + avec dm = m L R 1 d θ ; masse du tronçon de courroie . SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 49 [ ] θ d 1 1 . = δ sin dN 2 _ 2 θ d ) θ ( 1 T w R m 2 2 L Projection sur x : [ ] ( ) θ d 1 - = δ sin dN 2 + 2 θ d sin θ d + θ ( 1 T - ) θ ( 1 T - w R m 2 2 L avec sin(dθ/2)=dθ/2 et dT1 dθ/2=0 et cos(dθ/2)=1 [ ] θ d 1 1 . = δ sin dN 2 + 2 θ d 1 dT - ) θ ( 1 T 2 - w R m 2 2 L (1) Projection sur y : [ ] ( ) 0 = dT 2 _ 2 θ d cos θ d + θ ( 1 T + ) θ ( 1 T - [ ] 0 = fdN 2 _ 1 dT + ) θ ( 1 T + ) θ ( 1 T - (2) ((2)/(1) => θ d δ sin f = 1 1 _ d w R m T T 2 2 L 1 1 => u o u d f d w R m T T L T t . . sin 1 1 _ . 0 2 2 1 1 } } = => Pour la polie (1) motrice : Θ = α => Si l’inertie est négligeable => Pour la poulie (2) réceptrice : Θ = 2π- o => Si l’inertie est négligeable => dT1-2fdN=0 e v m v m θ δ sin f 2 L 2 L = 1 _ t 1 _ T e v m v m θ δ sin f 2 L 2 L = 1 _ t 1 _ T e θ δ sin f = t T e v m v m ) α _ π 2 ( δ sin f 2 L 2 L = 2 _ t 2 _ T e θ δ sin f = t T SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 50 A1 A1 F F f To To La variation de la tension dans la courroie 4- Tension de pose. La tension de pose T 0 est celle régnant dans toute la courroie en absence de couple sur les poulies motrice et réceptrice, elle est généralement réglée au moment de la pose de la courroie par un système mécanique. T+t = 2T 0 4-1 – Condition de non glissement. Pour éviter le glissement de la corroie sur les poulies, on démontre que la tension de pose T 0 est : T 0 = v m e e L f f R C 1 2 sin sin ) 1 ( ) 1 ( 1 2 1 + ÷ + o o o o 4-2- Réglage de la tension. Le réglage de la tension T 0 s’effectue par la mesure de la flèche f du brin rectiligne sous un effort donné F normal à ce brin et appliqué en son milieu. Avec : Cos | | cos 2 1 2 1 E A A E A A = => = et F - 2To sin| = 0 (1) | faible ==> sin| =tg | = β cos E f 2 = 2 A 1 A f 2 = 2 / 2 A 1 A f => f 4 β cos . E . F = T O f est la flèche en (mm) ; elle est choisie généralement 1% de A1A2 (1%de E cos β) B1 A1 A2 B2 B1 t T SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 51 0 4 T F E f = . .cos| 5- Application. Soit la transmission par poulies courroie trapézoïdale sur la figure suivante: 1- Citer les avantages de la transmission par courroie. 2- Exprimer · en fonction de |, la longueur du brin LJ en fonction de | et de l‘entraxe E et en déduire l’expression de la longueur L du courroie en fonction de | puis en fonction de ·. 3- Sur un même graphique, représenter la variation de la tension dans la courroie (K,L,J,I) ^ l’arrêt et en mouvement. 4- Démontrer que la tension de pose de la courroie est : Avec F et f sont respectivement la charge et la flèche appliquées sur le brin de courroie. Expliquer comment s’effectue le réglage de cette tension. 5- Donner la relation entre T et t, tensions des brins tendu et mou de la poulie réceptrice, si on suppose négligeable l’inertie de la courroie trapézoïdale. 6- Que peut-on dire de la pression de contact entre poulies et courroie. | o Sens de Rotation SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 52 Transmission de mouvement par roue et chaîne. 1- Introduction. Une chaîne peut être comparée à une roue dentée à denture intérieure engrenant avec deux pignons. La liaison est par obstacle, elle peut transmettre des efforts importants, constants ou variables et même avec choc. 2- Avantages et inconvénients. La transmission par chaîne a certains avantages : - Transmission de puissance importante. - Synchronisation du mouvement moteur et récepteur. - Possibilité d’avoir plusieurs sorties à partir d’un seul organe moteur. - Peut fonctionner dans des conditions sévères (température, choc, ..). - Variation d’entraxe et coût modéré. - Bon rendement. Pour les inconvénients on peut distinguer : - Niveau sonore élevé comparé aux engrenages à denture hélicoïdale. - Lubrification et mise sous carter indispensable pour une meilleure longévité. - Existence de vibration. 3- Rapport de transmission. Pour avoir une transmission homocinétique, il faut augmenter le nombre de dents sur le plus petit des pignons. On définit les paramètres suivants : P : le pas de la chaîne Z : le nombre de dents du pignon d: le diamètre primitif du pignon Z π 2 = α => Z π sin p = d Pour un grand nombre de dents ; Z π = Z π sin => 4- Effets spécifiques. La condition de fonctionnement d’une transmission par chaîne est l’égalité du pas mesuré sur la chaîne et du pas sur les pignons. Effet vibratoire. Un phénomène de vibration longitudinale est du à la masse des éléments mis en mouvement. Il faut le réduire par l’augmentation du nombre de dents des pignons. Effet de choc. Un choc se produit chaque fois qu’une articulation de la chaîne vienne en contact avec le pignon. Bien que l’augmentation du nombre de dents des pignons réduit ce Ø d p r = N2 / N1 = d2 / d1 = Z2 / Z1 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 53 phénomène, une dégradation des surfaces de contact et un fatigue des éléments de la transmission conditionne le choix des matériaux et le traitement à envisager. Effet caténaire (du au poids de la chaîne). Chaque brin, tendu et mou, de la chaîne induit une tension supplémentaire due au poids propre de celui-ci .Cette tension est fonction de la masse du brin, de la longueur du brin et de la flèche au milieu du brin. Effet centrifuge. L’effort centrifuge ( Fc ) qui tend à écarter la portion de la chaîne en contact avec le pignon (portion AB) est : Fcx = 2mV 2 avec : m masse linéique de la chaîne et V vitesse linéaire de la chaîne. Cet effet centrifuge entraîne une tension supplémentaire dans les brins qui peut être évaluée par : Tce =mV 2 5- Tension dans la chaîne. La tension globale dans la chaîne est la résultante d’une tension principale provenant de la puissance à transmettre (Tp) et des effets caténaire et centrifuge vus précédemment. Tca = M g L / 8f SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 54 2 N 2 d π P 60 = ouTp 1 N 1 d π P 60 = Tp Et Tg = Tp +Tca + Tce pour le brin tendu Tg = Tca’ + Tce pour le brin mou 6- Longueur de la chaîne. La logueur de la chaîne est fonction de son pas et du nnombre entier des maillons qui la composent. Longueur théorique de la chaîne L : [ ] 2 Z π sin α 2 + π + 1 Z π sin α 2 _ π . 2 P + α cos . E . 2 = L Longueur en nombre de maillons de la chaîne Lm : Lm = L /P ===> [ ] 2 Z π sin α 2 + π + 1 Z π sin α 2 _ π . 2 1 + P α cos . E . 2 = L V 2 m + f . 8 L . g . M + 1 N . 1 d π P 60 = ) tendu . brin ( Tg V 2 m + ' f . 8 ' L . g '. M = ) mou . brin ( Tg SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 55 7- Exemples. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 56 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 57 Les réducteurs (multiplicateurs) 1- Fonction. Le réducteur est un appareil, installé dans les chaînes cinématiques, afin de réduire la vitesse de sortie et ainsi augmenter le couple disponible pour vaincre le couple récepteur. 2- Réducteur à roues dentées. On distingue le réducteur élémentaire à roues cylindriques, le réducteur élémentaire à roues conique, le réducteur à train de roues cylindriques et le réducteur à train de roues cylindriques et coniques. - Rapport de transmission, Rapport de réduction. Rapport de transmission Rapport de réduction - Couple de sortie. Le rendement global ( ηg ) est le produit des rendements élémentaires du réducteur. s rouesmenée des Z des oduit Pr menantes roues des Z des oduit Pr = entrée sortie = r N N r global η entrée = sortie C C r 1 = sortie entrée = k N N SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 58 3- Réducteur à roue et vis sans fin. La vis a un ou plusieurs filets transmet le mouvement à une roue cylindrique à dentures hélicoïdales. Ce réducteur permet un grand rapport de réduction et il peut être irréversible, il est alors utilisé dans certains appareil de levage. - Rapport de transmission, Rapport de réduction. n : nombre de filets de la vis et Z : nombre de dents de la roue. - Couple de sortie. Le rendement ( η) est pour le cas du réducteur : Β et υ étant respectivement l’angle de l’hélice de la roue et l’angle de frottement au contact roue et vis sans fin. - Remarque. - Pour les réducteurs ou tous les arbres sont parallèles, on peut comparer les signes des vecteurs vitesses angulaires de l’entrée et de la sortie en analysant le terme (-1) n , ou n est le nombre d’engrènement extérieur des roues du réducteur. - Pour les autres cas de réducteurs, on peut comparer les signes des vecteurs vitesses angulaires de l’entrée et de la sortie en analysant tous les engrènements des roues du réducteur. n Z = k et Z n = r r η entrée = sortie C C ) θ + β tan( β tan = η SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 59 4- Réducteur à train épicycloïdal. Ce réducteur permet un rapport de réduction important avec un encombrement réduit. Ce réducteur se compose de planétaires (1,2), de satellites (3) et de porte satellites (4). - Train épicycloïdal plan. C’est un train épicycloïdal, tel que tous ses axes soient parallèles entre eux. - Train épicycloïdal sphérique. C’est un train épicycloïdal, tel que certains de ses axes soient perpendiculaires avec les autres. - Raison basique d’un train épicycloïdal rb. Train plan Train sphérique - Formule de Willis d’un train épicycloïdal rb. - Formule de Ravignaux d’un train épicycloïdal plan rb. Elle découle de la formule de Willis. - Distribution des puissances et des couples. Si on néglige les pertes ( η=1) ; La loi de conservation de l’énergie ==> On obtient en utilisant la formule de Ravignaux : ==> s rouesmenée des Z des oduit Pr menantes roues des Z des oduit Pr = rb ) 1 ¬ ( n rb = ) satellite porte ( W ¬ ) planétaire premier ( W ) satellite porte ( W ¬ ) planétaire dernier ( W s rouesmenée des Z des oduit Pr menantes roues des Z des oduit Pr ± = rb rb Wpp – Wdp + (1-rb) Wps =0 ___ ___ ___ Ppp +Pdp +Pps =0 ___ ___ ___ Cpp / rb = Cdp / -1 =Cps / (1-rb) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 60 5- Exemples de réalisation. Réducteur à roues cylindriques et coniques. Réducteur à roue et vis sans fin. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 61 Réducteur pour boîtier différentiel de camion ( source Z.F) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 62 Les boites de vitesses On a vu, au chapitre précédent, que la réduction de vitesse est associée à une augmentation du couple en sortie d’un réducteur, donc pour une transmission ou le couple côté récepteur est variable nécessite une variation du couple côté moteur et satisfaire la condition : Couple côté moteur ≥ Couple côté récepteur Un réducteur n’est autre qu’une boite de vitesse à un seul rapport de transmission. 1- Fonction. Une boite de vitesse est un appareil destiné à faire varier la vitesse (en rapport constant) pour assurer la transmission entre un moteur et un récepteur . 2- Boites de vitesses manuelles. Le changement de vitesse est obtenu par changement manuel d’engrènement des roues de la boite. Le changement manuel de vitesse, doit s’effectuer à l’arrêt cas des boites des machines outils conventionnelles, ou en marche cas des boites d’automobiles. 2-1- Boite à clavette coulissante. Le changement de vitesse s’effectue par déplacement de la clavette coulissante. Les engrènements sont toujours établis. Le point mort est obtenu lorsque la clavette coulissante est sous les bagues (5) ou (7). 2-2- Boite à pignons baladeurs. La manœuvre de changement de vitesse est réalisée par deux fourchettes actionnant les pignons baladeurs (2,3). Le pignon baladeur(3) peut occuper trois positions, au milieu c’est le point mort, à gauche c’est la première vitesse, à droite c’est la marche arrière. Le pignon baladeur (2 ) peut occuper trois positions, au milieu c’est le point mort, à droite c’est la deuxième vitesse, à gauche c’est la troisième vitesse. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 63 2-3- Boite à baladeurs à griffes (crabot). Les engrènements sont toujours établis, la manœuvre de changement de vitesse est assurée par la commande en translation du crabot (2). La liaison en rotation du crabot avec les pignons (3) ou (1) permet le passage de la première ou la deuxième vitesse. 3- Commande de changement de vitesse. Le changement de rapport résulte de la translation à l’intérieur de la boite, d’un pignon baladeur, d’un crabot ou d’un élément de synchronisateur. Cette translation est commandée de l’extérieur par un levier de manœuvre qui doit associer à chacune de ses positions indexées, un unique rapport de vitesse. 3-1- Synchronisation. Pour que le changement manuel de vitesse s’effectue en marche (cas des boites d’automobiles), un synchroniseur d’ont la fonction est d’égaliser la vitesse de deux arbres avant d’établir leur liaison par crabotage est indispensable. - Sans dispositif de synchronisation - Avec dispositif de synchronisation SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 64 Le crabotage s’effectue en deux temps. Premier temps : (2) se déplace en translation vers (1), il entraîne (12) par l’intermédiaire de la bille, les surfaces coniques entrent en contact, il y aura entraînement par adhérence et (12) tournera à la même vitesse que (1). Deuxième temps : (2) poursuit sa translation, la bille s’efface est le crabotage s’effectue alors en marche. 3-2- translation du baladeur, crabot ou d’un élément de synchronisateur. La translation est réalisée par une fourchette qui s’engage dans une gorge de l’élément concerné. La fourchette est solidaire d’un axe cylindrique (coulisseau) qui doit occuper une position axiale réalisée par un levier de manœuvre. 3-3- Liaison levier – coulisseau. De type ponctuelle réalisée par le contact de l’extrémité sphérique du levier de manœuvre avec la gorge usinée dans le coulisseau. La liaison du levier avec le bâti est généralement une rotule (sphérique). SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 65 3-4- Verrouillage. La boite de vitesse peut comporter plusieurs coulisseaux, un coulisseau pour chaque rapport si l’élément agit unilatéralement, un coulisseau pour deux rapport si l’élément agit bilatéralement. Un dispositif de verrouillage est indispensable pour éviter qu’une combinaison quelconque puisse s’engager alors qu’une autre est déjà en prise. 3-5- Marche arrière et sa sécurité (inversion du sens de marche). Pour les boites de vitesses automobiles, le rapport de marche arrière est obtenu par l’engrènement d’un pignon intermédiaire entre deux roues non en prise. Le rapport de marche arrière ne doit jamais être sélectionné alors que le véhicule ou la machine est en marche pour éviter la détérioration de la boite des vitesses, pour cela un dispositif de sécurité est souvent utilisé.(voir schéma) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 66 4- Exemples de réalisation. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 67 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 68 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 69 Les variateurs de vitesse mécaniques 1- Fonction. Un variateur de vitesse permet, grace à une commande extérieure, de faire varier la rapport de la transmission. Ainsi pour une vitesse angulaire d’entrée constante, la vitesse angulaire de sortie, peut varier de façon continue pour une plage déterminée. 2- Variateurs mécaniques. La variation de vitesse est obtenue par une commande extérieure qui agit sur un dispositif de réglage par une translation ou une rotation selon la technologie du variateur. 2-1- Variateur mécanique à élément transmetteur déformable. L’élément transmetteur déformable peut être une courroie trapézoïdale ou une chaîne. Le rapport de transmission peut être positif ou négatif selon le sens de rotation des arbres d’entrée et de sortie si les arbres sont à axes parallèles. 2-1-1-Variateur à entraxe fixe. La commande est une translation de flasques des poulies. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 /r2 . SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 70 2-1-2-Variateur à entraxe variable. La commande est une translation de l’axe d’une poulie. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 /r2 avec par exemple r1=une constante k. 2-2- Variateur mécanique à élément rigide. Ce variateur est de construction plus simple dans un encombrement réduit. La transmission sans glissement entre des éléments rigides impose une pression de contact importante et un dispositif de précharge s’impose. Le rapport de transmission peut être positif ou négatif selon le sens de rotation des arbres d’entrée et de sortie si les arbres sont à axes parallèles. 2-2-1- Variateur à anneau métallique. La commande est une translation de flasques sur deux poulies. L’élément rigide est un anneau métallique. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 /r2 . 2-2-2- Variateur à galet cylindrique et roues de SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 71 friction coniques. La commande est une translation de l’axe du galet cylindrique. L’élément rigide est un galet cylindrique. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 /r2 . 2-2-3- Variateur à galets et plateaux. La commande est une translation de l’axe d’un ou deux galets cylindriques. L’élément rigide est un ou deux galets cylindriques. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 /r2 . Les axes de l’entrée et de la sortie sont perpendiculaires pour un seul galet cylindrique ou parallèles pour deux galets cylindriques. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 72 2-2-4- Variateur à galets sphériques. La commande est une rotation de l’axe des galets sphériques. Les éléments rigides sont deux galets sphériques. Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 / r2 . Les axes de l’entrée et de la sortie sont parallèles. 2-2-5- Variateur à galets sphériques et roues coniques. La commande est une rotation de l’axe des galets sphériques. Les éléments rigides sont deux galets sphériques . Si on néglige le glissement, le rapport de transmission est alors : r = W2 / W1 = r1 / r2 . Les axes de l’entrée et de la sortie sont parallèles. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 73 3-Exemples de réalisation de variateur mécanique. Variateur à galets et plateaux. (FU) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 74 Variateur mécanique à élément transmetteur déformable. (Colombes - Texrope) Variateur à anneau métallique.(HN) SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 75 Système Vis-Ecrou 1- Définition : La liaison hélicoïdale entre une vis et un écrou permet un mouvement relatif composé ; - d’une rotation autour d’un axe fixe - d’une translation rectiligne parallèle à cet axe et proportionnelle à la rotation. 2- Paramétrage : Vis (1) : rotation d’axe y (en radian rd) Ecrou (2) : translation d’axe y (en mètre m) Support fixe (0) . P : Pas du filetage 3- Equilibre du système vis-écrou. 3-1- Frottement négligé . - Vis élément moteur . θ= w m .t - Ecrou : élément récepteur . Y= V.t T π . 2 P . θ = Y w m SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 76 Frottement négligé ==> Pm = Pr ==> C m .w m = A.V avec t Y = V et t θ = ωm et π . 2 P . θ = Y ==> wm A.V = Cm ==> t θ Pas t . Π 2 θ . A = Cm ==> π 2 A.Pas = Cm moy D Π Pas = tgi ; : i angle de l’hélic de filetage 2 2 moy d = D = D : diamètre moyen de la vis et de l’écrou .(guide p 11) ===> A : action de l’écrou sur la vis en Newton (N) moy D : diamètre moyen en mètre (m) m C : Couple transmis par le système Vis- Ecrou en N.m . 3-2- Frottement non négligé. a- La vis progresse contre la charge axiale (A) . α , P : angle et Pas apparents du filetage . β , P’ : angle et Pas réels du filetage. tgi 2 D A = C moy m P C m w m D m o y ί P' H ί / 2 H a i dNcosί /2 dT dN SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 77 Hypothèses : - Pression uniforme au niveau des filets. - Angle de l’hélice constant au diamètre moyen : i = cte Cherchons la composante axiale de l’écrou sur la vis. Projection / y : i cos cos dN ¬ = V E A ∫ S 2 β } + s i dTsin et dN f dT . = ¬ } + ÷ = s dN i f i V E A ) sin cos 2 cos ( | ¬ N i f i V E A ) sin cos 2 cos ( + ÷ = | Cherchons le moment de l’écrou sur la vis . C Rmoy i sin 2 B cos dN + Rmoy . i cos dT = V E ∫ ∫ s s ==> ) i sin 2 β cos + i cos f ( RmoyN = V E C C E/V = R moy A E/V i f Cosi i i f sin 2 cos sin 2 cos cos + ÷ + | | On devise par cos 2 | cosi et on pose f ’ = 2 | Cos f Avec ¢ tg f = ; f ’ = tg φ’ ¬ C E/V = - moy V E R A ¬ C E/V = - moy V E R A ¢ ¢ ' ÷ ' + tgitg tg tgi 1 avec : ) ( b a tg  = tgb tga ± 1 tgb tga  ¬ C E/V = - moy V E R A ) ( ¢ ' + i tg En module : C : couple transmis par le système Vis - Ecrou. (en N.m) A : Effort axial transmis par le système Vis - Ecrou . (en N) i i f cos sin 2 cos + | ÷ 1 i i f cos sin 2 cos | C = ) ' ( . . ¢ + i tg Rmoy A SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 78 2 2 2 2 d D Rmoy = = : Rayon moyen de contact Vis - Ecrou .(en m) i : angle de l’hélice du filetage. (en degré °) 2 cos | ¢ f Artg = ' : f coefficient de frottement entre Vis et écrou 2 2 o | tg Cosi tg · = o : angle du filet ( filtrage ISO ; M :o =60°) b- La vis progresse dans le même sens que la charge axiale (A). On démontre de la même façon que : 3- Pression de contact entre les filets de la vis et de l’écrou. On suppose la pression de contact entre les filets de la vis et de l'écrou uniforme. Avec : ) sin cos cos ( 2 i f i N v E A + · ÷ = | et ∫ ∫ ds p = dN = N S ==> N= Pmoy.S S : surface de contact Vis – Ecrou n . e moy R Π 2 = S e : contact vis - écrou ; 2 cos 1 o H e= n : nb. de pas utiles ( en prise) ; pas h n= ;h largeur de l’écrou ¬ S i f Cosi A S N moy V E P · + ÷ = = sin 2 cos | ). _ ( ¢ ' = i tg AR C moy P P ad S Cosi Cos A moy · s · = max 2 | pas h Cos H moy D S · H = 2 1 o SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 79 4- Contraintes. La vis sollicitée principalement en traction est modélisée par une tige pleine de diamètre équivalent d éq = d noyau supportant : Un effort normal= A Un moment de torsion = C o o o ad · s Z + = max ² 3 ² max avec 2 3 . 4 d A H = o et 3 3 d . Π C . 16 = η s Re R ζ = pe = ad . max 5- Déformation. Traction ou compression, d’après la loi de Hook. E . L L Δ = E . ε = ζ avec v L o = A E L v δ d Π A 4 = ζ = 2 n ¬ E d AL v n . 4 2 H = o Torsion: ¸ t G = on a r L G o t= = r I Mt . Avec I L G Mt . o = ¬ GI LMt = o Avec : o angle de torsion en radiant Et Pas Π 2 α = t δ I . G . Π 2 Pas . Mt . L δ = tv SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 80 6-Flambage De La Vis. Une vis longue par rapport à son diamètre , soumise à une charge de compression doit être vérifiée au Flambage . P A cr s ; charge critique de flambage avec A a EI cr P > H = ² . ² 0 µ avec I 0 = ; 64 2 3 d H E : module d’Young en N/mm 2 a : longueur de Vis soumise à la compression µ : coefficient qui est fonction de la liaison de la vis avec son support . 7- Réversibilité du système vie-écrou. - Vis moteur progressant contre la charge axiale . ) ' ( ¢ + = i tg AR C m m P P E S = q = W C V A m m V E V E / . / Π 2 P ω = t P Π 2 α = T / Y = V / E V <1 - Vis récepteur progressant dans le même sens que la charge. P P E S = q = V A C V E V E m m / / . . e = tgi i tg ) ( ¢ ' ÷ < 1 ) ' ( ¢ q + = i tg tgi Système réversible ¢ ¢ ' H < < ' ÷ 2 i SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 81 f = 8F G u 3 4 D d q Pas D d i Lo CALCUL DE RESSORT 1- FORMULES RELATIVES AU CALCUL DES RESSORTS. Le calcul est relatif à : - Un ressort hélicoïdal. - Un ressort à fil rond. - Un ressort travaillant sous l’effet de deux forces directement opposées . a-Hypothèses. - 5 ≤ D/d ≤ 10 - Choisir le pas P tel que la pente de l’hélice doit être inférieure à 1/8 tg i = P/πD < 1/8 - Considérer que la force exercée sur le ressort est centrée. - Considérer que les surfaces d’appui sont perpendiculaires à l’axe du ressort. - Les spires ne doivent pas être jointives sous la charge maximale. Garder 0.1d entre chaque spire. b-Formules utilisées. L’étude de la RDM des ressorts a donné les relations suivantes. Contrainte maximale de cisaillement F : Charge appliquée sur le ressort en N D : Diamètre moyen du ressort en mm d : Diamètre de fil du ressort en mm Flèche du ressort F : Charge appliquée sur le ressort en N D : Diamètre moyen du ressort en mm G : Module d’élasticité transversal ou module de COULOMB EN N/mm² ηu: Nombre de spires utiles SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 82 c-Détermination du ressort. On a deux formules mettant en relations 7 inconnus : τmax, F, D, d, f, G, ηu et déterminer le ressort c’est connaître ses caractéristiques D, d, ηu et lo. et G sont des caractéristiques du matériau, Exemple : Pour l’Acier τ =400N/mm² et G=80000N/mm². F généralement donné ou calculé. Il reste les 4 inconnus D, d, f et ηu. d-Conclusion. Il nous reste deux équations avec 4 inconnus et par conséquent il faut se fixer deux valeurs et déterminer les deux autres par un calcul d’approche successive à partir des deux relations, tout en vérifiant les hypothèses précédentes. 2- METHODE PRATIQUE. Dresser le tableau suivant. d D D/d Fmax/sp Pas Pente tgi nu Lo réelle Lsous charge 5<<10 8FD3/ Gd4 1.1d+ fm/s Pas/ πD FT/ fm/s Nu.Pa s+1.5d (Pas-f/s) nu+1.5d (Lo- 1.5d)/ Pas SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 83 Pas D d i Lo Pas D d i Lo 3- MATERIAUX POUR RESSORTS ET CONTRAINTE MAXI ADMISSIBLE. En général pour les Aciers G = 8000 daN/mm². Les valeurs de ζmax admissible en daN/mm² sont données dans le tableau suivant. CONDITIONS D’UTILISATION MATIERE DIAMETRE DU FIL EN MM < à 2 2.1 à 4.5 4.7 à 8 8.5 à 13 >à 13 -Service léger -Alternances lentes -Pas de conditions de sécurité XC65 XC80 70 63 56 50 45 45S8 55S6 80 70 63 56 50 -Service moyen -Alternances assez rapides (500/mn) -Sécurité de fonctionnement désirée mais non impérative XC60 XC80 56 50 45 40 36 45S8 55S6 63 56 50 45 40 60SC7 45SCD6 70 63 56 50 45 -Service dur -Grande fréquence (ressort de soupape) -Sécurité de fonctionnement nécessaire 45S8 55S6 56 50 45 40 36 60SC7 45SCD6 63 56 50 45 40 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 84 4- APPLICATIONS: EXERCICE 1 : L’effort presseur sur les disques d’un embrayage à friction plane est obtenu par 12 ressorts hélicoïdaux. Cet effort presseur Nt=5470N permet une déformation des ressorts (flèche) de 15mm. Les ressorts sont de caractéristiques mécaniques identiques avec : ζmax ad =70daN /mm² et G=8000daN/mm². Déterminer les caractéristiques D, d et Lo. EXERCICE 2 : Un frein à disques est actionné par 32 ressorts, chaque ressort est guidé par un tube cylindrique de diamètre intérieur 35.5mm. L’effort de freinage est Nt=35040N et la course de freinage est de 50mm. Les caractéristiques mécaniques sont : ζmax ad =70daN/mm² et G=80000N/mm². 1)- Représenter sur un même graphique les conditions à respecter pour D et d et déterminer dmini et dmaxi. 2)- Faire un choix sur les caractéristiques dimensionnelles, justifier votre choix. EXERCICE 3 : Un vérin hydraulique à simple effet de course maximale C=100mm, le ressort utilisé est de rigidité k=10N/mm ζmax ad =50daN/mm² et G=8000daN/mm². Le ressort est guidé par la tige du vérin de diamètre 20mm. Déterminer les caractéristiques du ressort. SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 85 BIBLIOGRAPHIE AUBLIN M. , BONCOPAIN R., CRON D., Systèmes mécaniques, théorie et dimensionnement, 2 e édition, DUNOD,1992. ESNAULT F., Construction mécanique, Transmission de puissance, T1 Principes, DUNOD, 1994. ESNAULT F., Construction mécanique, Transmission de puissance, T2 Applications, DUNOD, 1994. ESNAULT F., Construction mécanique, Transmission de puissance, T3 Transmission de puissance par liens flexibles, DUNOD, 1994. RICORDEAU A., CORBET C., Dossier de technologie de construction, CASTEILLA , 1999. LENORMAND G., MIGNEE R., TINEL J., Construction mécanique, éléments de technologie, T3, FOUCHER, 1969. QUATREMER R., TROTIGNON J.P..,Précis de construction mécanique, T1 dessin conception et normalisation, 13 e édition, AFNOR NATHAN,1985. UNION DES PROFESSEURS DES SCIENCES ET TECHNIQUES INDUSTRIELLES, Aide mémoire de dessin de construction, BREAL, 1995. A. CHEVALIER, Guide de dessinateur industriel, Edition Hachette technique,2000. LENORMAND ET TINEL, Technologie de construction T1 à T4, Edition Foucher QUATREMER – TROTIGNON – DEJANS – LE HU, Construction mécanique T1 et T2, Edition Nathan AUBLIN-BONCOMPAIN-BOULATON-CARON, Systèmes techniques, Edition Dunod FRANCIS E., Technologie de construction T1 à T4, Edition Dunod SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 86 ANNEXE PROGRAMME _ ECUE-1 : Technologie de construction (3h) Le cours et TD de technologie de construction doivent être développés à partir de mécanismes réels. Transmission de puissance. - Transmission de puissance par accouplements (6h) : accouplements rigides, accouplements élastiques, les joints. Les embrayages, les freins et les limiteurs de couple (couple d’adhérence, effort presseur et surfaces frottantes). - Transmission de puissance par liens flexibles (6h) : Système poulie et courroies. (Dimensionnement des courroies : section, nombre des courroies, longueurs, effort transmissible…). Roues et chaînes. (Principe et démarche de calcul, Efforts appliqués). - Transmission de puissance par Engrenages (6h) : Différents types d’engrenages, Caractéristiques géométriques, Efforts sur les dentures, Trains d’engrenages simples (réducteur, multiplicateur, rapport de transmission…), Lubrification des engrenages. - Système de transformation de mouvement (4.5h) : Excentriques (entraxe, course…) Cames (profil, diagrammes des espaces, diagrammes des vitesses…). Bielle - manivelle (loi entrée –sortie, puissance transmise,…). Systèmes vis écrou (Liaison hélicoïdale parfaite, réversibilité, type de filetages utilisé …). Analyse des systèmes mécaniques. - Théorie des mécanismes. (9h) : graphe des liaisons, liaisons en parallèles, liaisons en série, liaison équivalente, chaîne continue ouverte, chaîne continue fermée, chaîne complexe (nombre cyclomatique), mobilité et hyperstatisme d’un mécanisme réel, Système isostatique, système hyperstatique. - Calcul des arbres (7,5h) : Vérification d’un arbre aux sollicitations statiques et dynamiques, aux déformations et dimensionnement,… - Calcul des éléments d’assemblage (3h): clavettes, cannelures, goupilles, rivets, soudure,... - Calcul des ressorts (3h): nombre de spires, longueurs, diamètre de fil,… SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 87 SUPPORT DE COURS DE TECHNOLOGIE DE CONSTRUCTION RABEH Abbès _____________________________________________________________________________________________________ 88
Copyright © 2024 DOKUMEN.SITE Inc.