D E S I G N Roof Type Roof-to-Shell Joint Type Fabrication Purpose Density of Contents Specific Gravity of Contents Specific Gravityof Contents (For Appendix A Only) Material Material Group Minimum Yield Strength Minimum Tensile Strength Modulus of Elasticity Maximum Design Temperature Minimum Design Temperature Allowable Product Design Stress at Design Temperature Allowable Hydrostatic Test Stress at Design Temperature Internal Pressure External Pressure Smallest of the allowable tensile stresses (Roof, Shell, Ring) High Liquid Level Bottom Shell Roof Structure Anchor Bolts Nozzles, etc. Roof Slope Roof Angle Outside Dia. Inside Dia. Nominal Dia. ( Inside Dia. + Shell Thk. ) Total Height Cone Roof Dish Radius Dome Roof Dish Radius Developed Area Roof Height - Above Shell Fluid Hold Down Weight Yield Strength - Structural Parts Density DL ROOF Plates Stiffeners Purlins Plateform Insulation Others ∑ D A T A 1 2 1 Recycle AA Tank Dc G G' 3 1040 kg/m R E F E R E N C E Appendix J applicable. 1.04 1.04 7 Group IV CS Appendix S not applicable. FYmin FTmin E Tmax Tmin Sd St Pi Pe f H1 CA CA CA CA CA CA 2 θ Do Di Dn H RCone RDome A' : 240 MPa 450 MPa 195000 MPa o 150.0 C Table 3-2 Appendix M applicable. N/A C 160 MPa 180 MPa 2 5.00 kN/m ( kPa ) o API 650, Sec. 3, Cl. 3.6.2.1 ~ Table 3-2 API 650, Sec. 3, Cl. 3.6.2.2 ~ Table 3-2 Appendix F applicable. Appendix V applicable. 0.60 kN/m ( kPa ) 400 kN/m ( kPa ) 6.3 m 3.0 mm 3.0 mm 3.0 mm 3.0 mm 3.0 mm 3.0 mm 10 14.0 Deg. 4.512 m 4.500 m 4.506 m 6.30 m 2.32 m 3.60 m 2 16.43 m 2 2 OK [ 9.46 deg. <= Theta <= 37 deg. ] Check for Diameter in case of Appendix J 1 1 0.56 T J-1 ≤ 0.375 0.56 m 1022.252 kN FYstructure Den. Corroded 6.33 0.00 0.00 250 MPa 3 7850 kg/m Uncorroded 10.13 kN 0.00 kN 0.00 kN 0.00 kN 0.00 kN 15.00 kN Cone Frustum Dome pDL/2 p(D+d)L/2 pdh Based on 8 mm Roof Plate Thk. 6.33 0.39 25.13 kN 1.53 kN/m ( kPa ) 2 SHELL Top Angle Course(s) Wind Girders Ladder Insulation Others ∑ 0.49 20.60 0.00 1.01 kN 41.21 kN 0.00 kN 0.00 kN 0.00 kN 0.00 kN 21.10 1.28 42.22 kN 2 2.57 kN/m ( kPa ) ALL 27.43 1.67 Superimposed Snow Load External Pressuer Basic Wind Speed Lr S Pe V COMB1 ROOF COMB2 COMB3 COMB4 Pr Ps W W1 W2 W3 DL + Lr + 0.4 x Pe DL + 0.4 x Lr + Pe DL + S + 0.4 x Pe DL + 0.4 x S + Pe Max(COMB1:COMB4) App. R App. R App. R App. R App.V App. V App. V Table 3-21a Table 3-21a Table 3-21a 67.34 kN 4.10 kN/m ( kPa ) 2 1.5 kN/m ( kPa ) 2 0 kN/m ( kPa ) 2 0.60 kN/m ( kPa ) 2 138 kph 3.27 kN/m ( kPa ) 2 2.73 kN/m ( kPa ) 2 1.77 kN/m ( kPa ) 2 2.13 kN/m ( kPa ) 2 3.27 kN/m ( kPa ) 1.01 kN/m ( kPa ) 0.77 kN/m ( kPa ) 36.10 kN 42.43 kN 57.22 kN 2 2 2 1.01 ≤ 1.11 [Condition not satisfied stiffeners not required.] M A T E R I A L PART ROOF SHELL BOTTOM STIFF. ANCHOR FYmin 240 240 240 250 250 Factor 1.00 1.00 1.00 1.00 1.00 FYmin' 240 240 240 250 250 FTmin 450 450 450 400 400 P R O P E R T I E S Factor 1.00 1.00 1.00 1.00 1.00 Ftmin' 450 450 450 400 400 E 195000 195000 195000 195000 205000 Factor 1.00 1.00 1.00 1.00 1.00 E' 195000 195000 195000 195000 205000 J O I N T E F F I C I E N C Y Normal 1.00 1.00 0.70 0.85 0.70 Factor 1.00 1.00 1.00 1.00 1.00 Modified 1.00 1.00 0.70 0.85 0.70 Desc. Btm Plate Comp. Ring Roof Plate Shell Plate Stiff. Splice Notation JEb JEc 2 2 3 JEr JEs JEst A P P L I C A B L E A E F J M R S V A P P E N D I C E S 1 Optional Design Basis for Small Tanks 1 Seismic Design of Storage Tanks 1 Design of Tanks for Small Internal Pressures 2 Shop-Assembled Storage Tanks 1 Requirements for Tanks Operating at Elevated Temperatures 1 Load Combinations 2 Austenitic Stainless Steel Storage Tanks 1 Design of Storage Tanks for External Pressure S H E L L Course # Width m 3.6.1.2 1 2 3 4 5 6 7 8 9 10 11 12 1.950 1.950 0.450 1.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.300 ts1 (mm) = 0.51 0.51 0.51 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.81 4.86 2.91 2.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Press. Head m HL1' m td mm 3.6.3.2 3.93 3.65 3.37 3.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 tt mm 3.6.3.2 0.80 0.56 0.32 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Max( td,t t ) mm 3.6.3.2 3.93 3.65 3.37 3.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 tsmin mm 3.6.1.1 5 5 5 5 0 0 0 0 0 0 0 0 D E S I G N tsmin mm A.4.1 4.47 4.03 3.59 3.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 tsmin mm J.3.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 tsmin mm V.8.1.3 2.89 2.89 2.89 2.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6 6 6 6 0 0 0 0 0 0 0 0 49.83 34.90 19.98 16.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.96 16.78 9.60 7.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 *tused mm Sdmax MPa Stmax MPa W tr m 3.9.7.2 & V.8.1.4 1.950 1.950 0.450 1.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.300 6 S H E L L W E I G H T S U M M A R Y Course # Width 3.6.1.2 m Shell Wt. (Uncorroded) kN kg Thk. - CA mm Shell Wt. (Corroded) kN kg 1 2 3 4 5 6 7 8 9 10 11 12 1.950 1.950 0.450 1.950 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.300 12.75 12.75 2.94 12.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.21 1300.16 1300.16 300.04 1300.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4200.51 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.38 6.38 1.47 6.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.60 650.08 650.08 150.02 650.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2100.26 A N N U L A R B O T T O M P L A T E D E S I G N Use Annular Plate? 1 Lap welded bottom plates may be used in lieu of butt-welded annular bottom plates. (Group IV, IVA, V, or VI Only) W min mm 3.5.2 600 W Calc. mm 3.5.2 840 840 Use mm tabp-min mm [3.5.3] T3-1 6 tabp-min mm J.3.2.1 3.0 CA mm tabp-req'd mm 3.4.2 9.0 10 50 50 Use mm Lap mm Projection mm B O T T O M P L A T E D E S I G N tbmin mm 3.4.1 6 tbmin mm J.3.2.1 6 CA mm tb-req'd mm 3.4.1 Use mm Projection mm 3.4.2 3.0 9.0 10 50 R O O F P L A T E D E S I G N tmax Cone Dome 12.5 - tmin 4.73 - tApp v 4.83 - tselec'd + CA 7.83 - tfurn'd 8 0 W E I G H T Bottom Plt. Wt. kN 8.16 5.71 kgs 831.34 581.94 Annular Plt. Wt. kN 4.65 3.26 kgs 474.28 331.99 Shell Plt. Wt. kN 41.21 20.60 kgs 4200.51 2100.26 S U M M A R Y Inter. Wind Girder(s) kN kgs Roof Weight kN 10.5 6.5 kg 1066.5 666.6 Total Weight kN 65.49 36.60 kg 6675.6 3064.7 Top Wind Girder kN 1.01 0.50 kgs 102.95 50.47 T O P W I N D G I R D E R D E S I G N Hz. Leg Vt. Leg Thk a-t b-t NA Dist. NA Dist. Area MOI Section Modulus mm 3 9919 4755 Weight Surafce Area m 2/m 0.33 0.31 ANGLE Uncorroded Corroded 49 3 mm 80 77 mm 80 77 mm 6 3 mm 74 74.0 mm 74 74 mm 57.78 56.63 mm 22.22 20.37 mm 2 924 453 mm 4 573091 269278 Kg/m 7.26 3.56 Zmin cm3 3.97 Zfurn'd cm3 4.75 R O O F - T O - S H E L L tb mm d th - CA mm 5 tc/ts mm 3.0 Rc mm 2250 R2 m 9300.52 W h/Comp. mm 64.69 J O I N T Wc mm 49.30 D E S I G N Areq'd min mm 2 288.66 Areq'd F- 2 mm 2 340.55 [ C H A P T E R 3 Aroof mm 2 323.47 Aattach't mm 2 453.00 ] Ashell mm 2 0.00 Afurn'd mm 2 776.47 OK Detail Status 67 69.1 a Client Info 1.83 Max.7.8.18 83.95 V mph 117 117 I 1 1 G 0.91 Ns Nos. 0.18 83. 10 Use N Nos.86 1914.86 817.Intermediate Wind Girder is not required.67 69. -1 Ls m #DIV/0! N 2 N < 100 OK 2 N Nos.86 817.00675 Elastic Buckling Criteria Satisfied.00 453.85 0. As Htr < H1 --.506 V kph 138 H1 m 29.09 Use Ns Nos.75 Afurn'd mm 2 1479.67 69.2 Corroded Thk.00 453. 18.57 163.00 453.75 [ ( HTS / D ) ( FYmin / E )0. Verification of Unstiffened Shell ( As per Appendix V ) ( D / tsmin )0.05 ( HTS Ps ) 0.00 0.02 696.00675 V. 2 Nmax Nos. tsmin ≥ ( 73.71 2.3 Actual Thk.57 Xshell mm 69.00 Ashell mm 2 209.1 Corroded Thk.92 Ns + 1 Nos.47 1.00 191.86 817. Ps ≤ E / ( 45609 ( HTS / D ) ( D / tsmin )0.0396 ≥ 0.5 ] ≥ 0.00 453. 0.88 905.00 0.49 .9.4 6 ≥ 2. -0.1.00 696.0 3.1.2 mm 2 83.67 Areq'd V.95 0.86 817.57 163.86 817.57 163.01 HTS m 6.02 209.88 1270.04 1.R O O F .T O .47 Vacuum kPa 0.67 69.30 Hsafe m 6.18 83.89 V.57 163.02 209.75 1600.6 )/(E) 0.7.4 D 0.modified m 24.0 3.04 0. Minimum shell thickness required for a specified external pressure satisfied.60 Total kPa 1.18 83.61 Status a b c d e f g h i k 10 10 10 OK OK OK OK OK OK OK OK OK OK I N T E R M E D I A T E W I N D G I R D E R D E S I G N Ref Kz - Kzt 1 1 Kd 0.30 Zreq'd cm 3 Zfurn'd cm 3 N/A N/A Note: Minimum size of angle for use alone or as a component in a built stiffening ring shall be 64 x 64 x and the minimum nominal thickness of plate shall be 6 mm.88 1479.00 906.86 1270.85 q psf 29 29 kPa 1.77 3114. Ps kPa 1.88 1479.86 1270.67 69.18 83.S H E L L & B O T T O M .0 3.86 817.30 Nmin Nos.57 163.02 209.86 817.18 83. 1.67 69.88 2146. 4.18 83.86 J O I N T D E S I G N Detail tb mm th mm 5 5 5 5 5 5 5 5 5 5 tc/ts mm 3.57 163.S H E L L [ A P P E N D I X V ] Aroof mm 2 817.0 3.18 83.02 0.24 0.0 3.11 V.8.0 3.02 209. Height of Unstiffened Shell & transformed shell height ts1 mm 3.0 3.00 1120.0 10 Xcone/dome mm 163.17 Htr m 6.0 3.1.07 Ratio 3.67 69.57 163.57 163.00 453.2.8.18 83.00 D m 4.01 ≤ 1.57 163.5 ) Design external pressure for an unstiffened tank shell satisfied.T O .86 817.67 69.26 H1 . 5 Nos.67 69.18 Astiff mm 2 453. 16 1.11 -0.25 Moment kN .54 Ireq'd cm 4 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Ireq'd cm 4 1.25 MPi kN . 8 W kN -4.54 2 x wshell mm 98.43 18.54 98.43 18.89 0.6 29.43 18.52 FDL kN 27.5 kN .19 8 0.39 1.54 98.61 Ashell cont.61 295.28 4.94 8.43 Zreq'd cm 3 3.00 O V E R T U R N I N G S T A B I L I T Y WIND MOMENT BWS kph Pressure kPa 0.27 Force kN 12.56 2 x wshell mm 98.67 Unanchored tanks conditions not satisfied .76 Proj.07 1.m 512.m 42.43 Zfurn'd cm3 29.61 295.25 XDL m 2.m 204.47 4.16 Ifurn'd cm 4 11 11 11 11 11 11 Ifurn'd cm 4 11 11 Ashell cont.6Mw + MPi kN .60 0. 1 ] Do E S Pe ρ tbtm (min) tfurn'd tfurn'd .16 Mw kN .0 0.70 144 20885 0.14 .Anchorage is required.20 6 0.61 Areq'd mm 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Areq'd mm 2 8.14 FF kN 227.Intermediate Stiffener Ring Design t 6 10 STIFF tshell mm Q N/m #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Vl N/m 1586.4MPi ( MDL + MF ) / 2 kN .6 Zfurn'd cm 3 29.m 42.56 1586.24 3 0.6 29.24 -1288.64 0.25 XF m 2.CA tCalc tfurn'd 4512 177.45 0.6 29.m 179.19 0.6 29.6 1 2 3 4 5 6 7 8 9 10 6 6 6 6 6 6 0 0 0 0 tshell mm TOP BOTT 6 6 S T R E N G T H O F S T I F F E N E R A T T A C H M E N T W E L D vs Vs1 Vs2 Ww wmin V A C U U M C O N D I T I O N [ ASME Sec VIII.96 Arm m 3.m 40.6 29.09 -0.54 98.CA Pbtm kPa [Psi] 0.73 0.03 tsn tsn .94 Afurn'd mm 2 755 755 755 755 755 755 Afurn'd mm 2 755 755 Astiff req'd mm 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Astiff req'd mm 2 -741.24 -0. Area m2 28.724 N Nos.61 295.43 18.m 61.17 Sum kN .m 114.88 0.73 d m 4.6 29.43 18.73 MDL kN .34 XPi m 2.73 138 FPi kN 79.31 5.m 286.97 18.54 98.47 Astiff furn'd mm 2 459 459 459 459 459 459 Astiff furn'd mm 2 459 459 Zreq'd cm3 18.3842 0.12 2.06 PResultant kPa [Psi] -0. mm 2 295.40 kN .38 tB kN 5.m 42. mm 2 295.73 Astiff min mm 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Astiff min mm 2 4.m 40.54 98.61 295.57 2.54 98.15 MF kN .61 295.11 0.80 MDL / 1. Div.61 295. D E S I G N T E N S I O N L O A D P E R A N C H O R Mw kN .77 Mw + 0.09 7850 0.15 2. 08 D ] + [ ( 4 Mw ) / D ] .08 D ] .00 in.08 kips 11.8 mm 200 mm 50 mm 100 mm 310 mm 16 mm 8 mm 6 mm kips kips kips 16.31 42735 31519.40 -2027.236 in.W 1 [ ( Pt .63 in.11 0.8 th ) 4.Shell Psi 20000 25000 34809 25000 25000 25000 25000 tb = U / N lbs 944.WIND kN 12.39 2010. kPa [in.00 20.14 9537.06 0.426 1.07 8 UPLIFT LOAD CASES FORMULAE U lbs Fall .FRIC.08 D ] -W 3 [ ( 4 Mw ) / D ] .00 36097.08 D2 ] . OK OK OK OK OK OK OK OK 4512 mm 4912 mm 138 kph 85. Tank Outside Dia.53 0.97 in.19 DESIGN PRESSURE TEST PRESSURE FAILURE PRESSURE WIND LOAD SEISMIC LOAD DESIGN PRESSURE + WIND DESIGN PRESSURE + SEISMIC [ ( P .267 F . P Top-Plate Width ( along shell ) Top-Plate Length ( radial direction ) Top-Plate Thickness Anchor-bolt Diameter Anchor-bolt Eccentricity Distance from Outside of Top-Plate to edge of hole Distance between Vertical Plates Chair Height Vertical-Plate Thickness Bottom or Base Plate Thickness Shell or Column Thickness a b cused d eused fused gused hused jused m t kN kN kN kN 300 mm 200 mm 16 mm 50. U P L I F T D m [ ft ] L O A D S P Pt kPa [in.87 in.86 42.63 48.81 15067.5 Pf .00 0.68 64.01 0. kN 14.60 1504.5 x Actual bolt Load Do BCD BWS 2 Pd Pall.83 42426.10 0.10 16084.FRIC.req'd mm 2 40.25 25. 3.81 12036.WIND --. 0.94 in.56 0.896 0.454 0.08 D2 ] + [ ( 4 Ms ) / D ] .00 0. ( BCD ) Basic Wind Speed Earthquake (Y = Yes. anchorage is not required against sliding. 7.18 253.87 in.th ) 4.8 th ) 4. Area m 2 F . 0.39 in2 Abolt .W 1 [ ( P .31 in.20 in.40 57215.W 2 [ ( 1. 2. Bolt Circle Dia.W 2 [ ( P .Tank is stable. 7.09 6.60 1883.8 th ) 4.00 126.56 28.S L I D I N G R E S I S T A N C E BWS kph 138 Pressure kPa 0.Anchor Psi 15000 20000 36000 28800 28800 20000 28800 Fall .W 1 2 2 2 7556.83 5. of water ] SI US 4. ] Mw N-m [ ft-lbs ] Ms N-m [ ft-lbs ] W1 N [ lbs ] W2 N [ lbs ] W3 N [ lbs ] Bolts Nos.W 2 [ ( 4 Ms ) / D ] .78 8 0.08 0.630 in.81 in.00 -1009.760 Proj.98 8114. Pact. 0. of water ] Units th mm [ in.WIND kN 13.86 F .75 mph .40 5.47 0. 1. N = No) Design Load Maximum Allowable Anchor-Bolt Load 1.07 A N C H O R C H A I R D E S I G N Anchor Chair Design NOT Adequate.963 ∑ F .62 12862.12 0 0.86 37635 27758.00 2.8 th ) 4. 12. 0. of water ] C A S E S Pf kPa [in. > F .506 14. 177. 16.81 in. 1. the allowable load therefore is 2.20 in.96 ksi 25.1 12.100 OK NOT OK Anchor-bolt Diameter Anchor-bolt Eccentricity d eused emin Distance from Outside of Top-Plate to edge of hole fused fmin Distance between Vertical Plates gused gmin Chair Height hused hmax hmin Vertical-Plate Thickness jused jmin Vertical-Plate Width ( average width for tapered plates ) Column Length Bottom or Base Plate Thickness Load Least Radius of Gyration Nominal Shell Radius Stress at Point Stress at Point Shell or Column Thickness Cone Angle ( measured from axis of cone ) Reduction for Factor Check to limit slenderness upto 86.2 1. of weld length For an allowable stress of 13.00 mm 50. 42. deg. 4.92 in.847 3. of weld size. 3.13 in.94 in.444 kips / lin in.520 kips / lin in.5 16. 7. 0. 3.97 in. 2.236 in.27 kips.E . Gusset Plate .630 in.A N C H O R C H A I R D E S I G N ( A I S I .6 ksi on a fillet weld. 1.6 in. 12.684 kips / lin in. 0. - 11.31 in. V O L U M E C A L C U L A T I O N S II. 0.00 in.Shell Weld Top Plate 1 1 8.00 in.17 mm 16.7 14.236 in. 0.00 ksi 0.70 mm 125 mm mm 8 mm kN mm 2256 mm kPa kPa 6 mm deg.8 mm 200 mm 60 mm 50 mm 29 mm 100 76 mm 310 mm 900 mm 152. the allowable load per lin in.4 24.63 in.3 4.62 kips per lin in.361 in.43 in. of weld length 0. 2.6 Weld Size Vertical Load Horizontal Load Total Load on Weld k L m P r R Sinduced Sallowable t θ Z jK wmin WV WH W 6 mm 0.2 1. in.0 67. 0.4 mm 16 mm 12.24 in. 6.75 KN KN KN KN KN KN/m . 35. of weld length 0.347 kips 5.50 in.8 41. For weld size of 0.385 kips NOT OK NOT OK P R O B L E M S T A T I S T I C S LIVE LOAD TRANSFERRED TO FOUNDATION Live Load on roof Area of Roof Total Live Load Circumference of Tank Live Load transferred to Foundation Lr Ar WL C wL 1.87 in.1 . is 9.344 in.74 KN/m 2 m2 KN m KN/m DEAD LOAD TRANSFERRED TO FOUNDATION Self Weight of Roof Self Weight of Bottom Plate Self Weight of Shell Self Weight of shell & Attachmnets Total Dead Load acting on shell Dead Load Transferred to Foundation Wr Wb Ws Wa WD wD 25.00 in. 0. 0.08 kips in. 7. P A R T V I I ) Top-Plate Width ( along shell ) Top-Plate Length ( radial direction ) Top-Plate Thickness a b cmin cused 300 mm 200 mm 9.87 in. C E N T R E O F G R A V I T Y EMPTY CONDITION Base Plate Thickness Height of Shell Height of Roof a1 = h1 / 2 a2 = h2 / 2 +h1 a3 = h3 / 3 + h1 + h2 Weight of Bottom Plate Weight of Shell Weight of Roof Total Empty Weight of Tank C.O.6 3.7 KN KN/m KN-m SUMMARY OF FOUNDATION LOADING DATA Dead load. shell.G.610 m 0.70 m 0. 0.36 m 6.1 66.11 m 113837 Kg 3.G.O.1 1022.0040 m 3. roof & ext. a5 a4 WL w4 6.74 69.544 m FULL OF WATER CONDITION Weight of Water Weight of Shell + Weight of Water Weight of Tank (Full of Water) C.73 KN/m KN/m KN/m 2 KN/m KN KN/m KN-m 2 Consider 15-20 % variation in weight while designing the foundation.66 13.57 3.01 42.67 kg 7.G.O. structure loads Live Load Uniform load.0 42.G. hydrotest load Base shear due to wind Reaction due to wind Moment due to wind load DL LL Wo Wh Fw Rw Mw 4.7 KN KN KN KN/m 2 KN/m 2 WIND LOAD TRANSFERRED TO FOUNDATION Base Shear due to wind load Reaction due to wind load Moment due to wind load Fw Rw Mw 13.30 m 3. operating condition Uniform load.13 66. in Full of Water Condition W6 WF C.16 m 104762 kg 109954 kg 329.G.9 69. 100197 kg 105719 kg 109272 kg 3.75 1.O.OPERATING & HYDROSTATIC TEST LOADS Self Weight of Tank Weight of Fluid in Tank at Operating Conditions Weight of Water in Tank at Hydrotest Conditions Uniform Load Operating Condition Uniform Load Hydrotest Condition W Wf Ww Wo Wh 80.008 m 6.3 982.O.O.191 m . in Empty Condition h1 h2 h3 a1 a2 a3 w1 w2 w3 WE C.388 m FULL OF WATER CONDITION Design Liquid Level a4 = (Liquid Level / 2) + h1 Weight of Liquid Weight of Liquid + Contributing Weight of Shell Weight of Shell Without Liquid Height of Remaining Shell Center From Base Operating Weight C.G in Operating Condition WO C.91 m 1583 kg 5522 kg 1970 kg 9075 kg 3. 25 Acc.4 S T R U C T U R A L ImpulsIve Ci 6.72 1.6Fv/T 0. Fa 1.112 0 0 Fa Fv Q 1 1.89 ConvectIve E Mpa 195000 S P E C T R A L A C C E L E R A T I O N Spectral I 1.40 Ss %g 0.4 Tc seconds 2.40 0.5SP S1 = 1.51 P E R I O D PerIod p kg / m 3 1040 & O F V I B R A T I O N S (SloshIng) Ti seconds 1.21 Ts seconds 7.80 Ks 0.4 0.112 SP %g 0 SDS %g 0.4 H m 6.67 TC < TL Ac = KSD1 ( I / Tc ) ( I / Rwc ) Ac = 2.112 0 0 2.S E I S M I C D E S I G N [A P P E N D I X E] Aspact Ratio Inverse Aspact Ratio Seismic Use Group Importance Factor Site Class Anchorage Condition Vertical Acceleration MCE Ground Motion Definitions D/H H/D SUG I SC 2 0. Parameter S1 %g 1.30 Parameter Rwi 4 0.63421 .6 Fv 2.67 0.25 1 2 1 So = 0.5Fa S1 = 0.6 2.760 SP Ss S1 So SP SDS 0 0.25 Fa 1.50 TL seconds 4 Rwc 2 Q 0.4Ss Ss = 2.30 tu mm 6 Natural D m 4.112 SD1 %g 0 SP %g 0 K 1.28 So %g 0.6 P A R A M E T E R ImpulsIve So %g 0.40 1.5 I 1.28 1.25SP Ss = 1.09 0.09 Ai 0.09338 Q Ai ConvectIve Spectral Acc.21 T seconds 1.5 Q Fa So ( Ts / Tc ) ( I / Rwc ) Ac Ac N/A 0.58 PerIod Tc seconds 2. 0860 Wc N 269710 Xcs m 6.12 Ms N-m 795890 18950.21 Xi m 2.73 Ws N 89100 Xs m 3.299 0.04183424 to the desIgn overturnIng Wss N/m 3908 moment Wr N 18953 at the base Wt N/m 5247 of shell Wa N/m 27250 Ge 1.0934 E F F E C T I V E Effective D m 4.0 S N 0 Av %g 0.51 ImpulsIve H m 6.30 W E I G H T Weight D/H & WP N 1639640 O F P R O D U C T Convective Wc N 269710 Weight EffectIve Wi N 1383984 0.5 Q Fa So ( ( Ts TL / Tc ) ( I / Rwc ) 2 Ac Ac N/A 1.00 A N C H O R A G E ResIstance ta mm 7.04183424 O V E R T U R N I N G RIngwall Ai 0.2384 Ac 0.08596 < Ai 0.15 Wr N 18950 M O M E N T Moment Xr m 0.0860 PerIod Vi N 140776 Vc N 23184 V N 142673 WP N 1639640 Ai %g 0.85 Ws N 89100.08596 Wc N 269709.023 0.09338 Wi N 1383984.0934 Wi N 1383984.TC > TL Ac = KSD1 ( TL / Tc2 ) ( I / Rwc ) Ac = 2. Weff lateral acceleration coefficient Effective Weight contributing to seismic response A ( %g ) Weff D E S I G N ImpulsIve Ws N 89100 Wr N 18950 Wf N 15530 Natural Wi N 1383984 PerIod Wc N 269710 & L O A D S ConvectIve (SloshIng) Ac %g 0.72 V E R T I C A L S E I S M I C E F F E C T S SDS Av %g Wi N 1383984 Wc N 269710 Weff N 1410020 Fv N 58987 0.61 J Mrw N-m 402509 Ws N 55322 Wrs N/m 1339 27250 ≤ 37 Tank is self Anchored.2384 Ac 0.21 Xis m 5.14864 Ac 0.0934 Satisfied SEISMIC DESIGN FACTORS DESIGN FORCES Equivalent lateral seismic design force F = A .15 Slab Ai 0. .85 Mrw N-m 402509 Moment Wr N Xr m 0.748 Xc m 5.00 Xs m 3. 506 m 3. Stress = 10.785.39 120 Fc = 83 ts / D Fc = 83 ts / ( ( 2.78 Allowable longitudinal shell membrane compression stress.30 m 4.4 Av ) + ( 1.190 MPa J < 0. G H D2 / t2 14.4 Av ) + ( 1.3 Shell Compression in Self-Anchored Tanks Max. mm. J > 0.2 d ) The req'd annular plate thickness does not exceed the thickness of the btm shell course. Btm Plt.17 MPa G H D2 / t2 ≥ 44 G H D2 / t2 < 44 G H < 0. c ) The shell compression satisfies E. the anchorage ratio.61 10.5 Fty Fc = 55. Shell Comp.3 ) ) .506 m 3. Stress = 10.7. ts . J < 0.190 MPa Allowable Longitudinal Membrane Compression Stress in Tank Shell G H D ts 1.wa ) ( 1 / ( 1000 ts ) ) 2 wt Av Mrw D ts wa J σc 5247 N/m 0.6.2.] Tank Self Anchored? a ) The resisting force is adequate for tank stability ( i. σc σc = ( ( ( wt (1 + 0.CA tb 3.273 Mrw / D ) ) ( 1 / ( 1000 ts ) ) Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift.] [Not Satisfied.19 MPa Long.5 SQRT ( G H ) ) Satisfied .26 MPa Fc = 8.e.54 ) b ) The maximum width of annulus for determining the resisting force is 3. [Satisfied] L = 158 mm [Not Satisfied] [Not Satisfied] See API 650 Sec.4 Av ) + wa ) / ( 0.785 J > 0. ta > tb ) with the following restrictions: less Corrosion Allowance Actual Thk.00 mm 7.A N N U L A R ResIstance to the P L A T E R E Q U I R E M E N T S moment at the base of shell desIgn overturnIng Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness of the general tank floor plate ( i.5% of the tank diameter.785.00 mm 10.04 6. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift.785. Shell Comp.506 m 3. e ) Piping flexibility requirements are satisfied.17 MPa 28.18667 J2. σ c σc = ( wt ( 1 + 0. E.5 D ) + 7.04183424 %g 402509 N-m 4.0418 %g 402509 N-m 4.00 mm Thickness of the shell ring under consideration.78 MPa Shell Compression in Mechanically-Anchored Tanks Max.607 -0.e. J < 0.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) ) wt Av Mrw D ts σc 5247 N/m 0.00 mm 27250 N/m 0. MPa.785 Long. Fc 8. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift. σ c σc = ( wt ( 1 + 0.00 mm a b [Not Satisfied.. J > 1. . . . 0860 0.51 4.30 1.48 Ai G D H ( ( Y / H ) .13 N/mm 5.333 Ni = 8.75 D ) ) .0934 1.Y ) / D 3.DYNAMIC LIQUID HOOP FORCES When D / H is greater than or equal to 1.5 ( Y / H ) Ai G Ni 4.5 ( Y / ( 0.51 6.0934 1.68 ( H / D ) COSH 4 COSH 5 Ac G Nc Use Nc = 0.85 Ac G D2 COSH ( 3.75 D Ni = 5.04 6.5507 6.000 0.866 ( D / H ) TANH 4 Y Y/H 0.00 #DIV/0! When purchaser specifies that vertical acceleration need not be considered (i.41 N/mm 5.00 0.13 Use Ni = 5.04 4.70 1 2&3 6.00 0.13 N/mm Ai G Ni 1.75 D ))2 ) D Y Y/D Ai G Ni D/H 4. 2 & 3 4.333 and Y is greater than or equal to 0.72 Use '2 & 3' 6.6194 0.68 H / D ) D H Y 3.89 0.333 and Y is less than 0.866 D / H ) D H D/H 0.0.68 ( H .0.70 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0. When vertical acceleration not specified σT = σh ± σs = ( Nh ± SQRT ( Ni2 + Nc2 ) ) / t σh σs Nh Ni Nc t σT When vertical acceleration specified σT = σh ± σs = ( Nh ± ( SQRT ( Ni2 + Nc2 + ( Ac Nh )2 ) ) ) / t σh σs Nh Ni Nc Av t σT .75 D Ni = 2. Av = 0).97 Y When D / H is less than 1.13 0.e.5 ( Y / H )2 ) TANH ( 0. The dynamic hoop tensile stress shall be directly combined with the product hydrostatic design stress in determining the total stress.44 When D / H is less than 1.6 Ai G D D 2 0.500 0.72 0.51 0.30 0. the combined hoop stress shall be defined by Equation E-22.22 Ai G D2 ( ( Y / ( 0.04 N/mm N/mm For Convective Nc = 1.Y ) / D ) / COSH (3.04 5.0934 1.68 ( H .00 6. . . . . . . . APPENDIX E - SEISMIC DESIGN OF STORAGE TANKS Specific Gravity Tank Dia. Tank Height Aspact Ratio Inverse Aspact Ratio Bottom Plt. Thk. First Shell Course Thk. Minimum specified yield strength of shell course Height from bottom of the shell to CG G D H D/H H/D tbtm tsn FYmin Xs 1.04 4.506 m 6.30 m 0.72 1.40 7.00 mm 3.00 mm 240.00 MPa 3.15 m 0.167 m II 1.25 D Height from top of shell to the roof and roof appurtenances Xr CG Seismic Use Group Importance Factor Site Class Anchorage Condition Vertical Acceleration MCE Ground Motion Definitions SP Ss S1 So Fa Fv SP SDS 1.6 2.4 So = 0.4Ss Ss = 2.5SP S1 = 1.25SP Ss = 1.5Fa S1 = 0.6Fv/T SUG I SC Mechanically Anchored Consider 0 0.28 1.4 0.112 0.112 0 0 2.4 0.760 Structural Period of Vibration Impulsive Natural Period Ci = 6.4 - H= tu = D= p= E= Ti = Convective (Sloshing) Period 6.30 m 6 mm 4.51 m 3 1040 kg/m 195000 Mpa 1.80 seconds Tc = 1.8 Ks sqrt ( D ) Ks = 0.578 / ( sqrt ( ( 3.68 H ) / D ) ) Tc = Ks = 2.21 seconds 0.58 Design Spectral Response Acceleration T 1.89 Impulsive spectral acceleration parameter, Ai Probabilistic or Mapped Design Method (Approach 1) So = N/A SP = SDS = 2.5 Q Fa So ( E-4 ) N/A SDS = I= Fa = Rwi = Q= 0.112 %g 0 %g 0.45 %g 1.25 1.6 41.00 - Ai = SDS ( I / Rwi ) Ai = 2.5 Q Fa So ( I / Rwi ) 0.14 0.14 For Site Class A, B, C and D Ai ≥ 0.007 Satisfied For Site Class E and F Ai ≥ 0.5 S1 ( I / Rwi ) N/A N/A For Site Class E and F Ai ≥ 0.875 SP ( I / Rwi ) N/A N/A Ai 0.14000 Concevtice spectral acceleration parameter, Ac Probabilistic or Mapped Design Method (Approach 1) S1 = Ss = So = SP So = SD1 = SP = K= I= Fa = Fv = Tc = Ts = TL = Rwc = Q= TC < TL 0.14 %g 0.28 %g 0.112 %g 0 %g 0 %g 1.5 1.25 1.6 2.4 2.21 seconds 0.75 seconds 4 seconds 21.00 - Ac = KSD1 ( I / Tc ) ( I / Rwc ) Ac = 2.5 Q Fa So ( Ts / Tc ) ( I / Rwc ) Ac Ac N/A 0.09508 TC > TL Ac = KSD1 ( TL / Tc2 ) ( I / Rwc ) Ac = 2.5 Q Fa So ( ( Ts TL / Tc ) ( I / Rwc ) 2 Ac Ac N/A 0.17221 Ac 0.08596 < Ai SEISMIC DESIGN FACTORS DESIGN FORCES Equivalent lateral seismic design force F = A . Weff lateral acceleration coefficient Effective Weight contributing to seismic response A ( %g ) Weff DESIGN LOADS Ws Wr Wf Wi Wc WP 89100 N 18950 N 15530 N 1383984 N 269710 N 1639640 N Ai Ac 0.1400 %g 0.0860 %g Vi = Ai ( Ws + Wr + Wf + Wi ) Vc = Ac Wc V = SQRT ( Vi2 + Vc2 ) Vi Vc V 211059 N 23184 N 212329 N EFFECTIVE WEIGHT OF PRODUCT EFFECTIVE IMPULSIVE WT. D 4.51 m H D/H WP 6.72 1639640 N When D / H greater than or equal to 1.866 D / H ) / (0.30 m 0.72 1.0.67 H ) / D ) WP Wc 269710 N Use Wc = CENTER OF ACTION FOR EFFECTIVE LATERAL FORCES CENTRE OF ACTION OF RINGWALL OVERTURNING MOMENT D H D/H H/D 4.866 D / H ) ) Wp Wi 1457810 N When D / H less than 1.23 ( D / H ) tanh ( ( 3.218 ( D / H ) ) WP Wi 1383984 N Use Wi = EFFECTIVE CONVECTIVE WT.72 1639640 N For Convective 0.51 m 6.51 m 6.30 m 0.30 m 0.40 - .333 ( tanh ( 0. D H D/H WP 4.333 ( 1 . 67 ( H / D ) ( 3.5 .0 + 1.866 ( D / H ) TANH 4 Xis 4.72 0.51 m 6.0 ) ) H D H D/H 0.866 D / H ) ) -1.333 Xi = ( 0.0 .6 ( D / H ) ) H D H D/H 0.85 Use Xc = CENTRE OF ACTION OF SLAB OVERTURNING MOMENT D H D/H 4.333 ( ( ( 0.67 H / D ) SINH ( 3.55 2.3 1.51 6.1 31.0.67 H / D ) -1 ) / ( ( 3.76 When D / H less than 1. Use Xi = For Convective Xc = ( 1.( COSH ( (3.72 - When D / H greater than or equal to 1.67 ( H / D ) .094 ( D / H ) ) H Xi 2.When D / H greater than or equal to 1. When D / H less than 1.62 0.6 5.375 ( 1.1 4.333 Xis = 0.5 + 0.6 ( D / H ) Xis .1 84.73 m Applicable in this case.866 D / H ) / TANH ( 0.375 H Xi 1.30 m 0.67 H /D ) ) H H/D 3.1 ) COSH 4 SINH 3 Xc 6.30 0.333 Xi = 0.4 5.333 Xis = ( 0.69 m Not Applicable in this case. 60 Use Xcs = VERTICAL SEISMIC EFFECTS SDS = Av = Fv = ± Av Weff Wi = Wc = Weff = Fv = 0.0.67 ( H / D ) ) ) ) H D H H/D 3.00 0.75 D ) ) .937 ) / ( 3.67 ( H / D ) .04 7.000 When D / H is less than 1.06272 %g 1383984 N 269710 N 1410020 N 88436 N DYNAMIC LIQUID HOOP FORCES When D / H is greater than or equal to 1.67 H / D ) -1.19 12.866 ( D / H ) TANH 4 Y Y/H 4.72 0.51 6.5 ( Y / H )2 ) TANH ( 0.1.51 6.85 Use Xis = For Convective Xcs = ( 1.40 5.43 5.75 D ))2 ) D Y Y/D Ai G Ni 4.( COSH ( ( 3.67 ( H / D ) SINH ( 3.333 and Y is less than 0.4.30 1.30 0.48 Ai G D H ( ( Y / H ) .5507 6.46 .51 6.13 3.937 COSH 5 SINH 3 4.6194 0.0 .333 Ni = 8.67 ( H / D ) 3.30 0.72 0.51 4.89 0.448 0.22 84.866 D / H ) D H D/H 0.22 Ai G D2 ( ( Y / ( 0.1400 1.30 1.75 D Ni = 5.0.5 ( Y / ( 0. 1400 1.Y ) / D ) / COSH (3.69 For Convective Nc = 1.333 and Y is greater than or equal to 0.6 Ai G D2 D Ai G Ni 4.68 ( H .51 6.85 Ac G D2 COSH ( 3.15 1.68 ( H .33 5.68 ( H / D ) COSH 4 COSH 5 4. The dynamic hoop tensile stress shall be directly combined with the product hydrostatic design stress in determining the total stress.0538 85.e.70 -0.Y ) / D 3.04 7. the combined hoop stress shall be defined by Equation E-22.801 When purchaser specifies that vertical acceleration need not be considered (i.When D / H is less than 1.68 H / D ) D H Y 3. Av = 0).30 6.51 0.75 D Ni = 2. When vertical acceleration not specified σT = σh ± σs = ( Nh ± SQRT ( Ni2 + Nc2 ) ) / t σh σs Nh Ni Nc When vertical acceleration specified σT = σh ± σs = ( Nh ± ( SQRT ( Ni2 + Nc2 + ( Ac Nh )2 ) ) ) / t σh σs Nh Ni Nc OVERTURNING MOMENT Mrw = SQRT ( ( Ai ( Wi Xi + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xc ) )2 . 15 18950.1400 1383984.0860 269710 6.00 0.167 0.RINGWALL MOMENT Ai Wi Xi Ws Xs Wr Xr Ac Wc Xc 0.167 0.08596 269709.15 18950 0.00 3.208 2.208 6.1 Mrw 604837 N-m SLAB MOMENT Ms = SQRT ( ( Ai ( Wi Xis + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xcs ) ) Ai Wi Xis Ws Xs Wr Xr Ac Wc Xcs 0.66 89100.48 Ms 1338620 N-m Anchorage [Resistance to the design overturning (ringwall) moment at the base of the shell] .7481 6.83 89100 3.14 1383984. .4 Av ) )+ W a ) 2 7.28 H D Ge 27134 ≤ 37 Wa Ge J 0..0.00 mm 0N 0.014 - Wss Wr W t = ( ( W s / PI() D ) + W rs ) Wrs Wt Wa = 99 ta SQRT ( Fy H Ge ) ≤ 1. Anchor chair with anchor boldts) ta S Av Anchorage Ratio.e.00 mm . tb 3. Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness of the general tank floor plate ( i.00 mm 7.92 Annular Plate Requirements Tank is self Anchored.Resistance is contributed by: For unanchored tanks Weight of the tank shell Weight of roof reaction on shell Weight of a portion of the tank contents adacent to the shell For anchored tanks Mechanical anchorage devices (i.e. Btm Plt.CA Actual Thk. J Mrw Ws J = Mrw / ( D ( W t ( 1 . ta > tb ) with the following restrictions: ts .06272 %g 604837 N-m 55322 N 3908 N/m 18953 N 1339 N/m 5247 N/m 27134 N/m 1. wa ) ( 1 / ( 1000 ts ) ) wt Av Mrw D ts wa J σc 5247 N/m 0.506 m 3.785.18667 J2. Shell Compression in Self-Anchored Tanks Max.4 Av ) + ( 1.785 .785. σc σc = ( ( ( wt (1 + 0. J < 0.5% of the tank diameter.2 d ) The req'd annular plate thickness does not exceed the thickness of the btm shell course. c ) The shell compression satisfies E. J > 1.960 MPa Shell Compression in Mechanically-Anchored Tanks Max.92 14.] Tank Self Anchored? a ) The resisting force is adequate for tank stability ( i.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) ) Max.607 -0.3 ) ) .54 ) b ) The maximum width of annulus for determining the resisting force is 3. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift. e ) Piping flexibility requirements are satisfied.a b [Not Satisfied. J < 0.2.e.] [Not Satisfied. the anchorage ratio. J > 0.4 Av ) + wa ) / ( 0. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift. σ c σc = ( wt ( 1 + 0.6. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift.00 mm 27134 N/m 0.06272 %g 604837 N-m 4. 30 4.00 Corroded G H D2 / t2 14.506 3.506 m 3.4 Av ) + ( 1.04 6.σc = ( wt ( 1 + 0.17 MPa .00 mm 14.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) ) wt Av Mrw D ts σc 5247 N/m 0.06272 %g 604837 N-m 4.78 Fc 8.433 MPa Allowable Longitudinal Membrane Compression Stress in Tank Shell G H D ts 1. seconds.5 A B C D E F T= Site Class Hard rock Rock Very dense soil Stiff soil Soil N/A Natural period of vibration of the tank and contents. Site Class unless the authority having jurisdiction determines that Site Class E or F should apply at the site. Corroded Corroded Seismic Use Group I II III Not assigned to SUG II and III Hazardous substance. public exposure. the tank shall be assigned to SUG I Importance Factor SUG I II III I 1 1. If it is not specified. life and health of public. hazardous substance Note: Seismic Use Group (SUG) for the tank shall be specified by the purchaser. direct service to major facilities Post earthquake recovery.25 1.Self Anchored Mechanically Anchored Consider Do not consider Where the site properties are not known in sufficient detail to determine the site class. Ci = Coefficient for determining impulsive period of tank system . Force reduction factor for the impulsive mode using allowable stress design methods.H= tu = D= p= E= Ti = Maximum design product level. seconds So = SP = SDS = I= Fa = Rwi = Q= Mapped.2 seconds period ). 5-percent-damped. maximum considered earthquake. spectral response acceleration pa Design level peak ground acceleration parameter for sites not addressed by ASCE methods. MPa Natural period of vibration for impulsive mode of behavior. seconds Tc = Natural period of vibration for convective (sloshing) mode of behavior. Scaling factor from the MCE to the design level spectral acceleration. 5-percent-damped. spectral response acceleration parameter at short periods ( T = 0 Importance factor coefficient based on seismic use group. Q = 2 / 3 for ASCE 7 and Q . m Mass density of fluid. Acceleration-based site coefficient ( at 0. mm Nominal tank diameter. kg/m3 Elastic Modulus of tank material. The design. m Equivalent uniform thickness of tank shell. Importance factor coefficient based on seismic use group. Ss ) Regional-dependent transition period for longer period ground motion. Natural period of the covective (sloshing) mode of behavior of the liquid. 5-percent-damped. 5-percent-damped. seconds. Table E . ( Fv . spectral response acceleration parameter at a period of one s Mapped. For ASCE 7 Map Force reduction coefficient for the convective mode using allowable stress design methods. spectral response acceleration parameter at a period of one s The design. seconds. Q = 2 / 3 for ASCE 7 and Q 0.S1 = Ss = So = SD1 = SP = K= I= Fa = Fv = Tc = Ts = TL = Rwc = Q= Mapped.2 seconds period ). MCE. Scaling factor from the MCE to the design level spectral acceleration. 5-percent-damped. S1 ) / ( Fa . spectral response acceleration parameter at one second based o Coefficient to adjust the spectral acceleration from 5% to 0. 5-percent-damped. MCE. Acceleration-based site coefficient ( at 0. spectral response acceleration parameter at short periods ( T Mapped.5% damping = 1.1 Velocity-based site coefficient ( at 1.1400 Satisfied .5 UOS.0 seconds period ). MCE. any permanent attachments and 10% Weight of the tank floor. N. knuckles. Effective impulsive weight of the liquid. N. N. Total weight of fixed tank roof including framing. N. Ai Ac Impulsive design response spectrum acceleration coefficient. Design base shear due to the convective component of the effective sloshing wieght. %g. Total weight of the tank contents based on the design specific gravity of the product. Total design base shear.Ws Wr Wf Wi Wc WP Total weight of tank shell and appurtenances. Vi Vc V Design base shear due to impulsive component from effective weight of tank and contents. . Effective convective (sloshing) portion of the liquid weight. N. N. N. Convective design response spectrum acceleration coefficient %g. N. 1383984 N 269710 N . 10 m .83 m 6.2. 500 0. (positive down).70 .6.0 seconds period ). Effective weight contributing to seismic response.48 m Av = Wi = Wc = Vertical earthquake acceleration coefficient.5 Q Fa So Y = Distance from liquid surface to analysis point.66 m Xcs 6. Av = 0. m.72 Use '2 & 3' Y 6. Ni = Impulsive hoop membrane force in tank wall.1400 1. Velocity-based site coefficient ( at 1.65 D/H 0.04 9.12 6. N/mm.14 SDS SDS = 2. 0.5 ( Y / H ) Ai G Ni 0. %g. Product hydrostatice membrane force.04 he combined hoop y combined with the 2 i + Nc 2 ) ) / t t σT σh σs σT Nh Ni Nc t Av Product hydrostatic hoop stress in the shell. MPa. 2 & 3 9.1 2&3 1. N/mm. N/mm.04 N/mm N/mm Ac G Nc 0. Ni2 + Nc2 + ( Ac Nh )2 ) ) ) / t Av t σT Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xc ) )2 ) . Thickness of the shell ring under consideration. Hoop stress in the shell due to impulsive and convective force of the Total combined hoop stress in te shell.69 N/mm 7. N/mm. MPa.61 N/mm 7. %g.0860 1. Convective hoop membrane force in tank wall. Impulsive hoop membrane force in tank wall.69 N/mm Use Ni = Use Nc = 7. Vertical earthquake acceleration coefficient.69 0. mm.04 0. s Xs + Wr Xr ) )2 + ( Ac ( Wc Xcs ) )2 ) . but the tak is stable for the design load providing the shell compre J >1. Ringwall moment . N/m. %g. N/mm. The tank is self 0. including 10% of the specified snow load. Modify the ann the thickness of the general .Portion of the total overturning moment that acts at the base of the tank shell p Total weight of tank shell and appurtenances. any permanent attachments and 10% Roof load acting on the shell. N. N/m. from the inside of Design snow load.ta S Av Mrw Ws Wss Wr Wrs Wt Wa Ge Thickness of the bottom plate under the shell extending at least the distance.54 Tank is not stable and cannot be self-anchored for the design load. knuckles. Tank and roof weight acting at base of shell.0 . (Shell + Btm Plt + Curb Angle + Rings ) Total weight of tank shell and appurtenances per unit length of shell circumference.785 No calculated uplift under the design seismic overturning moment.785 < J < 1.4 Av ) J < 0. Total weight of fixed tank roof including framing.54 Tank is uplifting. Vertical earthquake acceleration coefficient. N. L. Resisting force of tank contents per unit length of shell circumference that may be used to resist t Effective specific gravity including vertical seismic effects = G ( 1.0. σc J < 0. Shell Comp. E. σc ulated uplift.a ) The thickness. σ c . used to calculate wa in Equ E-23 shall not exceed the first shell course thick b ) Nor shall the thickness.785. J > 0. shall be equal to or greater than L: [Satisfied] L = 158 mm [Not Satisfiend] [Not Satisfied] See API 650 Sec.3 ulated uplift. ta.43 MPa Long. Shell Comp. Stress = 14. Ls. ta > thicker annular plate inside the tank wall.e. ta.785.7. used in Equ E-23 exceed the actual thickness of the plate under th c ) when the bottom plate under the shell is thicker than the remainder of the tank bottom (i.785 J > 0.785 Long. Stress = 14.96 MPa here is no calculated uplift. J < 0.785. J < 0. 17 MPaFc = 83 ts / ( ( 2. corroded Allowable longitudinal shell membrane compression stress.3878 120 Satisfied .Thickness of the shell ring under consideration.26 MPa Fc = 83 ts / D Fc = 8. G H D2 / t2 ≥ 44 G H D2 / t2 < 44 G H < 0. MPa.5 D ) + 7.5 SQRT ( G H ) ) 28. mm.5 Fty Fc = 55. hazardous substance the purchaser.determine the site class. ery dense soil . service to major facilities ublic. Site Class D shall be assumed Class E or F should apply at the site. Q = 2 / 3 for ASCE 7 and Q = 1 UOS. %g. . spectral response acceleration parameter at a period of one second. eleration. seconds ed.behavior. e stress design methods.2 seconds ) based on ASCE 7 methods. on parameter at short periods ( T = 0. ot addressed by ASCE methods. %g. % damping = 1. of the liquid. ration parameter at a period of one second. d motion. %g. on parameter at one second based on ASCE 7 methods. For ASCE 7 Mapped value and for Outside USA 4. %g.ration parameter at a period of one second. %g.2 seconds ). seconds. Q = 2 / 3 for ASCE 7 and Q = 1 UOS. ration parameter at short periods ( T = 0. eleration. seconds. %g. owable stress design methods.5 UOS. . N. c gravity of the product. N.ny permanent attachments and 10% of the roof design snow load. effective sloshing wieght. . ve weight of tank and contents. N. N. . . DS = 2.5 Q Fa So . mm. rce in tank wall. N/mm. e force. e in tank wall. impulsive and convective force of the stored liquid. MPa. MPa. n coefficient.s in the shell. er consideration. te shell. N/mm. . %g. N/mm. MPa. . N/m. mference that may be used to resist the shell overturning moment. mm. L. N-m.035D is not controlling or add mechanical anchorage. esign load providing the shell compression requirements are satisfied. N. hat acts at the base of the tank shell perimeter.4 Av ) overturning moment. d for the design load. ny permanent attachments and 10% of the roof design snow load. less CA. N/m. m Plt + Curb Angle + Rings ) of shell circumference.0. N/mm. Modify the annular plate if L < 0.0 . snow load.ast the distance. . from the inside of the shell. Tank is self anchored. The tank is self anchored. G ( 1. projection of the supplied al to or greater than L: . ta > tb) the min.not exceed the first shell course thickness. actual thickness of the plate under the shell less the CA for tank bottom. ts. less the shell CA. emainder of the tank bottom (i.e. RT ( G H ) ) . . . . P.3 F.6 Scope This appendix applies to the storage of nonrefrigerated liquids.1 F.1. limited by uplift at the base of the shell.1. mm .4 F.4. kPa Total weight of the shell and any framing (but not roof plates) supported by the she Tank diameter. mm 2 Angle between the roof and a horizontal plane at the roof-to-shell junction.4. as illustrated in Figure F-2.5 F.2) P = ( 1. m Nominal roof thickness. expressed as a decimal quantity Tank diameter.F. for a tank that has been constructed or that has had its design details est may be calculated from the following equation (subjected to the limitations of Pmax in F.1.1.4.2 Figure F-1 provided to aid in the determination of the applicability of various sections of this appen F.1.4 F.1.1 Maximum Design Pressure and Test Procedure The design pressure.2 Venting (Deleted) F.08th P A θ tan θ D th Internal design pressure.7.1.4. mm F.1 ) ( A ) ( tan θ ) / D2 + 0. roof and framing supported b the Internal Pressure exceed 18 kPa gauge covered in F. degrees Slope of the roof. shall not exceed the value from the following equation unlesss further limited by F.2 F.3 Pmax DLS D th Maximum design pressure.1 F.3 Roof Details F. kPa Area resisting the compressive force. Tank nameplate shall indicate whether the tank has been designed in accordance with F. m Nominal roof thickness.2 The maximum design pressure. When net uplift does not exceed the nominal weight of the shell. 1 ( tanθ ) ) A D Pi th V Total required compression area at the roof-to-shell junction.m F. In order to provide a safe mar operating pressure and the calculated failure pressure.4. kPa Roof Thickness. N . or another suitable material.4. km / h F.6 for the roof-to-shell junction.6 Calculate Failure Pressure ( Frangible Roofs ) a b c . mm 2 Tank diameter Design internal pressure.08th + 0.72 ( V / 120 )2 ) ) / ( 1.2 For self-supporting roofs. Tank vents shall be tested durin F. the compression area shall not be less than the cross-sectional area ca F.4Pi .4 When the entire tank is completed.5.8 Pf F.1 ( tanθ ) ) A = ( D2 ( 0.1 A = ( D2 ( Pi . mm Design wind speed ( 3-second gust ).08th ) ) / ( 1. linseed oil. a suggested further limitation on the maxim tanks with a weak rof-to-shell attachment (frangible joint) is: Pmax < 0. and all welded joints above the liquid level by means of a soap film.0.5.M Wind moment.5 Required Compression Area at the Roof-to-Shell Junction F. the design presure perm approaches the failure pressure of F. it shall be filled with water to the top angle or the design liquid internal air pressure shall be applied to the enclosed space above the water level and held for 15 shall then be reduced to one-half the design pressure.0.3 As top angle size and roof slope decrease and tank diameter increases. 1 Shell Design Modification F.0.7.) 720 (283/4) 820 (323/4) 970 (383/4) Bolt Circle Diameter 656 (261/4) Db mm (in.7.) 756 (301/4) Cover Plate Diameter 906 (361/4) Dc mm (in.4 Anchorage Column 1 Column 2 Column 3 Manhole Diameter Bolt Circle Diameter Cover Plate Diameter mm (in.2 Compression Area F.) 1056 (421/4) 1120 (443/4) .047th F.7.) Dc mm (in.7.3 Roof Design F.6P .) Db mm (in.7 Anchored Tanks with Design Pressures up to 18 kPa Gauge F.d e f g h Pf = 1. Minimum Yield Strength Type MPa FY min 304 304L 316 316L 317 317L 205 170 205 170 205 205 Minimum Tensile Strength MPa FT min 515 485 515 485 515 515 40 155 145 155 145 155 155 Allowable Stress fpr Maximum Design Tempe Not Exceeding (Sd). MPa Temperature Range 90 155 132 155 131 155 155 2 Temp 120 th 0.39 10 Rc R2 9800.27 947 Wc .17 248924 tc Wh 37. 610.00 279 .55 14 11.24 15500 0. 5 5 .5 35 x 35 x 3 35 x 35 x 3.Leg 1 L1 mm 20 x 20 x 2 20 x 20 x 2.3 3 4 5 6 3 4 4.2 4 5 3.5 45 x 45 x 5 20 20 20 25 25 25 30 30 30 30 30 35 35 35 35 35 35 37 40 40 40 40 45 4 4.7 3 4 5 2.5 2.5 3 3.5 3 2.5 5 Thk t mm 2 2.7 30 x 30 x 3 30 x 30 x 4 30 x 30 x 5 35 x 35 x 2.5 35 x 35 x 4 35 x 35 x 5 37 x 37 x 3.5 30 x 30 x 2.5 25 x 25 x 3 25 x 25 x 4 30 x 30 x 2.2 35 x 35 x 3.5 20 x 20 x 3 25 x 25 x 2.5 3 4 2.3 40 x 40 x 3 40 x 40 x 4 40 x 40 x 5 40 x 40 x 6 45 x 45 x 3 45 x 45 x 4 45 x 45 x 4.5 5 Leg 2 L2 mm 20 20 20 25 25 25 30 30 30 30 30 35 35 35 35 35 35 37 40 40 40 40 45 4 4.2 3. 5 60 x 60 x 6 60 x 60 x 8 60 x 60 x 10 70 x 70 x 5 70 x 70 x 5.5 90 x 90 x 9 100 x 100 x 6.5 7 9 5.5 50 x 50 x 5 50 x 50 x 6 50 x 50 x 7 50 x 50 x 8 60 x 60 x 4 60 x 60 x 4.5 5 6 7 8 4 4.5 70 x 70 x 6 70 x 70 x 6.5 80 x 80 x 6 80 x 80 x 7 80 x 80 x 7.5 80 x 80 x 8 80 x 80 x 10 90 x 90 x 6.5 7 8 8.5 90 x 90 x 7 90 x 90 x 8 90 x 90 x 8.5 6 7 7.5 70 x 70 x 7 70 x 70 x 9 80 x 80 x 5.5 6 8 10 5 5.45 x 45 x 6 50 x 50 x 3 50 x 50 x 4 50 x 50 x 4.5 5 5.5 60 x 60 x 5 60 x 60 x 5.5 9 6.5 8 10 6.5 6 6.5 6 50 50 50 50 50 50 50 60 60 60 60 60 60 60 70 70 70 70 70 70 80 80 80 80 80 80 90 90 90 90 90 100 6 50 50 50 50 50 50 50 60 60 60 60 60 60 60 70 70 70 70 70 70 80 80 80 80 80 80 90 90 90 90 90 100 6 3 4 4.5 . 5 150 x 150 x 14 150 x 150 x 15 150 x 150 x 18 180 x 180 x 18 200 x 200 x 16 200 x 200 x 18 200 x 200 x 20 200 x 200 x 24 200 x 200 x 25 200 x 200 x 26 100 100 100 100 100 120 120 120 120 120 120 150 150 150 150 150 150 180 200 200 200 200 200 200 100 100 100 100 100 120 120 120 120 120 120 150 150 150 150 150 150 180 200 200 200 200 200 200 7 8 9 10 12 8 10 11 12 14 15 10 12 12.100 x 100 x 7 100 x 100 x 8 100 x 100 x 9 100 x 100 x 10 100 x 100 x 12 120 x 120 x 8 120 x 120 x 10 120 x 120 x 11 120 x 120 x 12 120 x 120 x 14 120 x 120 x 15 150 x 150 x 10 150 x 150 x 12 150 x 150 x 12.5 14 15 18 18 16 18 20 24 25 26 . degrees 14 degrees 0.506 m 5 mm of the shell.2) 10. N .83 N 4.4. of roof plates Wt.249 4.hell. d or that has had its design details established he limitations of Pmax in F. Internal Pressure Pressure Force Wt. mm 2 at the roof-to-shell junction.506 m 5.00 mm not roof plates) supported by the shell and roof. shall not exceed the value calculated -0.89 kPa 2 776.6. roof and attached framing signed in accordance with F.2 bility of various sections of this appendix.66 kPa 14769. of shell.47 mm rated in Figure F-2.1.2 through F. roof and framing supported b the shell or roof F. 42734. and the design above the water level and held for 15 minutes. the design presure permitted by F. The air pressure ll welded joints above the liquid level shall be checked for leaks erial.10.6 .4.81 N-m r increases.2 nction.4. 2 340.506 mm 5.10. Tank vents shall be tested during or after this test. In order to provide a safe margin between the maximum ggested further limitation on the maximum design pressure for -1.1 and F.94 mm o-shell junction.5 and 3.00 kPa 5 mm 138 km / h 14 Degrees Corroded less than the cross-sectional area calculated in 3.55 mm 2 188.03 kPa r to the top angle or the design liquid level. mm 2 4. -1.29 kPa . owable Stress fpr Maximum Design Temperature Not Exceeding (Sd).21 234330.Allowable Stress for Tank Shells ˚C t L 59. MPa Temperature Range 150 140 119 145 117 145 145 200 128 109 133 107 133 133 260 121 101 123 99 123 123 Hydrostatic Test Stress (St) MPa Ambient 186 155 186 155 186 186 Table S-2 --.11 2467 A 363.80 947 3.84 1520 Wh + L + ts 97.74 95 ts . 9618 .37 260883.2534 Wt.74 95 Sum 41.933539 Wt.46 404.3./m 2047.16 26552. 199446. 7 30L3 30L4 30L4 35L2.3 40L3 40L4 40L5 40L6 45L3 45L4 45L4.5 35L3 35L3.5 45L5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! .5 35L4 35L5 37L3.5 20L3 25L2.2 35L3.5 30L2.20L2 20L2.5 25lL3 25L4 30L2. 5 60L6 60L8 60L10 70L5 70L5.5 70L7 70L9 80L5.5 90L9 10L6.5 70L6 70L6.45L6 50L3 50L4 50L4.5 60L5 60L5.5 80L6 80L7 80L7.5 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! .5 80L8 80L10 90L6.5 90L7 90L8 90L8.5 50L5 50L6 50L7 50L8 60L4 60L4. 5 150L14 150L15 150L18 180L18 200L16 200L18 200L20 200L24 200L25 200L26 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! #REF! .100L7 100L8 100L9 100L10 100L12 120L8 120L10 120L11 120L12 120L14 120L15 150L10 150L12 150L12. 7.54 kN 36.52 kN 6. roof and attached framing? Yes Provide anchors and conform to F.11 kN Does tank have internal pressure? - Yes Does internal pressure exceed weight of roof plates? - Yes Does internal pressure exceed the weight of the shell.Pi = PForce = W roof plates = and attached framing W Total = 5. - Does internal pressure exceed 18 kPa? No Use API 620 .00 kPa 79. . Frangible Roof Conditions a. All members in the region of the roof-to shell junction.25 m (50 ft) diameter or greater. e. g.). including insulation rings considered as contributing to the crosssectional area (A). The roof support members shall not be attached to the roof plate. The roof is attached to the top angle with a single continuours fillet weld that does not exceed 5 mm (3/16 in.9. The top angle may be smaller than that required by 3.5.1.A roof is considered frangible if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event of excessive internal pressure. d. The roof-to-top angle compression ring limited to details a .e.e in Figure F-2. b. f. The tank shall be 15. The cross sectional area (A) of the roof to-shell junction is less than the limit shown below: A = W / ( 1390 tan Theta ) . The slope of the roof at the top angle attachment does not exceed 2 in 12. h. c. ble Stress for Tank Shells . . . . . 6. Anchors for pressure not required.5.1 through F. Do not exceed Pmax.Basic Design Basic Design Basic Design plus Appendix F. API 650 with Appendix F or API 620 shall be used . Limit roof/shell compression area per F. . shell joint joint in the event of he top angle he top angle let weld that ers shall not be mpression ring maller than that n of the roof-toulation rings to the cross- a (A) of the roof- .