Substructure_Final_.pdf

May 28, 2018 | Author: Sushmit Sharma | Category: Geotechnical Engineering, Friction, Bending, Stress (Mechanics), Column


Comments



Description

2.0 Design of Substructure 2.1 Design of Abutment Section of Abutment 0.25 0.2 1.0 A6 A7 0.5 A5 0.0 0.0 A3 3.00 5.30 Y 0.6294 x A1 3.438 A4 0.1706 A2 0.1 0.18 1 0.5 2.3 0.3 1.00 288.3 Deck Level 284 HFL 280.32 MSL A 1.20 1.70 A8 0.20 279.52 SBL T This prelimanry section is defined by considering hydrological analysis and geotechnical recommendation 277.82 FBL SBL = Stem Bottom Level FBL = Footing Bottom Level MSL = Maximum Scour Level (fck) (fe) Sst = Ssc = Scbc = Scc = m= 20 500 240 205 6.67 5 11 0.32 0.89 0.95 Material Properties Concrete grade Steel grade Allowable stress of steel in tension and shear Allowable stress of steel in direct compression Allowable compressive stress in concrete in flexure Allowable comp. stress in concrete in direct compression Modular ratio (m) Neutral axis factor The resisting moment coefficient k j R N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² IRC:21-2000, 303.2.1, Table 9,10 Levels High Flood Level Maximum Scour level for abutment Total depth of longitudinal Girder including Slab Provided Clear free board Level of Deck Surface Thickness of abutment cap Top level of Footing (SBL) Thickness of Footing/Cap Bottem level of Footing/Cap (FBL) Thickness of Bearing Hence the total height of abutment H= 284 280.32 2.3 2.00 288.30 1.00 279.52 1.70 277.82 0.18 8.78 m m m m m m m m m m m Substructure Kamala Khola_Bridge Project As per IRC : 6-2000, 217.1 for Equivqlent live load Surcharge Equivalent Height of Abutment Length of Abutment Span Length H eq= L= 1.2 9.98 7.2 36.95 m m m m Approach Slab Diamensions Thickness of approach slab Length of Approach Slab Width of Approach Slab Ballast Wall Width of Ballast wall Length of Ballast wall Wing Wall Thickness of wing wall 0.2 m 3.00 m 7.2 m 0.3 m 7.2 m 0.4 m γ ω_conc αΗ αν α φ δ 16 kN/m³ 24 kN/m³ 0.120 0.060 Degree Angle between the wall and earth Angle of internal friction of soil Angle of friction between soil and wall 0 30 16 Soil Data & Seismic Data Unit weight of backfill soil Unit weight of concrete Horizontal seismic coefficient Vertical seismic coefficient Analysis and Design of Abutment Stem Area and C.G Calculation with respect to bottom of stem point A Area (m ) CG-X CG-Y Weight (KN) Symbol A1 2.63 0.15 4.39 455.16 A2 1.00 0.80 5.80 172.80 A3 5.830 0.78 2.65 1007.42 A4 0.53 1.27 1.77 91.58 A5 0.00 0.00 7.78 0.00 A6 0.00 0.00 8.28 0.00 A7 0.13 -0.13 8.33 21.60 Total 10.12 1748.56 C.G from A 0.6294 3.438 Position of C.G From Superstructure Load Point 0.1706 2 Substructure Kamala Khola_Bridge Project Forces on the Abutment Total Dead Load from superstructure Total Critical Live load including impact 2222.4 KN 1302.9 KN Earth Pressure force (Including live load surcharge) Total Static earth pressure = 0.5* γ * Heq² * tan²(45° - φ/2)*L = Which act at a distance from abutment base (0.42*Heq) [IRC:6-2000, 217.1] 411.89685 KN 4.1916 m 8.64 4.48 10.08 9.8572075 44.659345 -223.2967 0.000009 36950 400 300 50 30 3 1.2 m² m m² m² m³ kN Effect of buyoncy [IRC:6-2000, 216.4 (a)] Area of stem at top = Depth of submerged part of abutment = Area of stem at base = Area of stem at HFL = Volume of submerged part of abutment = Taking 1/2 of the volume, Net upward force due to buyoncy = Frictional force due to resistance of bearings (temperature effect) Coefficient of thermal expansion of concrete (C) = Length of main girders (L) Width of girder (a) Assume width of elastomeric bearing (parallel to span) (b) Assume thickness of elastomeric bearing (T) Differential temperature in celcius (dt) Number of main girders = Assume Shear modulus of elastomer (G) (range 0.6 to 1.2) Elongation of the girder (D) = C*L*dt Plan area of the bearing (A) = Longitudinal force transmitted to the pier F = G*A*D / T = Total force from all bearings Lateral force due to frictional resistance of bearings, mm mm mm mm degree N/mm² 9.9765 mm 120000 mm² 28.73232 kN per bearing 86.20 kN 86.20 kN (From S. Sir) Breaking Force:( As Per IRC:6-2000, 214.2) Braking force = 20% of the weight of the design vehicle (Class A) And this force acts along the bridge at 1.2m above the road level Total weight of the IRC Class A vehicle = Therefore braking force length = 9.98 m from base 543.29 kN 54.329 kN Seismic Forces on Abutment [IRC : Seismic Forces Due to back fill and Approach Slab are also considered. Horizontal seismic forces: Superstructure: Abutment: Backfill soil mass: This forces will act at 0.5 Heq 266.69 209.83 49.43 4.99 kN kN kN m Vertical seismic forces: Superstructure: Abutment: 133.34 kN 104.91 kN Substructure Kamala Khola_Bridge Project 63 411.92 521.800 -0.10 Increment factor for allowable stresses* 6.16 43.20 552.84 2222.63 266.40 1302.43 1008.84 IRC:6-2000.5 1777.47 4531.52 2222.91 0. 202.90 54.5 2222.19 9.10 4.38 246.34 104. Seismic 1 0.5 1 -223.44 4.33 86.3 combination I Superstructure dead load Live load Abutment Soil mass Tractive/Braking force Frictional force Total combination VI Non seismic forces Superstructure dead load Live load Abutment Soil mass Tractive/Braking force Frictional force Additional seismic forces Superstructure Abutment Soil mass Total Superstructure dead load Live load Abutment Soil mass Tractive/Braking force Frictional force Buyoncy Total combination VI-a Non seismic forces Superstructure dead load Live load Abutment Soil mass Tractive/Braking force Frictional force Buyoncy Additional seismic forces Superstructure Abutment Soil mass Total Maximum Loads 1 1 1 4637.56 Dry case.90 27.98 6.5 1 1 0.57 1726.40 651. (kN.92 1042.47 1 1777.80 -0.30 20.Loads and Moment Calculation The transverce forces and moments are not calculated since it will not be critical due to high moment of inertia.10 271.20 543.44 4.36 5273.30 20.15 -1100.10 4.69 209.48 3.80 0.04 4531.99 1834.80 -0.87 1748.30 -1100.80 -0.98 6.51 542.40 1.20 4.3 133.40 651. (m) (kN) 202.48 3.m) force (kN) (m) IRC:6-2000.63 411.5 1777.83 49. Non-seismic 1 1 1 1 1 1 5273.42 Increment factor for allowable stresses* 0.10 271.80 0.5 0.30 133.04 Dry case.51 271.63 411.57 1726.19 9.19 9.82 655.91 0.80 0.51 542.47 1 1777.30 -1100.56 552. Non-seismic Increment factor for allowable stresses* Substructure Kamala Khola_Bridge Project .82 655.99 1834.40 1.15 -1100.47 6204.42 Increment factor for allowable stresses* 0. Load Horizon Vertical Coefficient Moment Vertical Horizontal Lever arm.30 5050.80 -0.10 1008.54 Flooded case.98 6.92 1042.57 1726.80 -0.51 271.34 104.33 86.38 246.44 1748.30 2222.80 0.63 411.10 6.52 combination I-a Flooded case.40 1302. Particular tal force Lever arm.56 0.64 6204.43 1008.87 1748.30 4.57 1726.64 6204.90 27.16 43.90 54.92 521. Seismic 1 0.83 49.20 543.44 1748.5 0.629 266.5 1 1 0.47 1 1 1 4860.56 Increment factor for allowable stresses* 0.66 1 1 1 1 1 1 1 -223.19 9.69 209.98 6. 25 0.3 0.055 N/mm² 0. Table 12B] 552422. Overall Thickness of Stem at base Length of the abutment Gross cross sectional area of the stem percentage of longitudinal tensile reinforcement the percentage of longitudinal compressive reifnrocement Percentage of steel to be provided as per IRC:21-2000.1.2.E+12 Section modulus Z = 2.139.428. 306.E+09 Radius of gyration SQRT(I/Z*L) k= 385 Height of the abutment (upto abutment cap) 6300 Effective length (height) factor (IRC:21-2000.4 Scbc_cal = 2.50 0.46 0.2.1 Design of abutment stem Section Abutment Stem will be designed as compression member with uniaxial moment.90 0.75 Effective height of the abutment 11025 Ratio of Effective length : Radius of gyration = 28.36 36288 10043712 65 1335 mm² % % % % OK mm² mm² mm mm mm4 mm³ mm mm mm Moment of inertia I = 1.258 N/mm² OK Substructure Kamala Khola_Bridge Project .2 Total percentage of longitudinal reinforcement = Then the initial total area of reinforcement Net area of concrete Let the effective cover (referring to the CG of bars) Hence the effective depth D= L= Ag = 1400 mm 7200 mm 10080000 pst psc Asc = Ac = cover (d')= d_eff = 0. stress.11 0.1.61 Hence it is treated as a Short Column The direct comp. Table 13) = 1.12 2.2. 306. Stress Non-Seismic Case Seismic Case [Scc_cal/Scc] + [Scbc_cal/Scbc] Scc_cal = 0. stress in bending Scbc_cal = M/Z N/mm² Interaction Condition to be satisfied: [Scc_cal/Scc] + [Scbc_cal/Scbc] = <1 Comp.367 AS3+AS4 mm² mm² mm² % OK 11088 (AS3+AS4) Total area of provided tensile reinforcement = Total area of provided compressive reinforcement = Total provided area of longitudinal steel = Check For Shear Critical shear force at the base Effective area of the section Shear Stress Permissible Shear Stress [IRC:21-2000.4 Reinforcement Calculation Reinforcement Tensile reinforcement (AS1+AS2) Compressive Reinforcement Area (mm2) Bar dia (mm) Condition <1 Satisfied <1 Satisfied Provided Nos 49 49 25200 Nos 32 32 25 23 Ast = Asc = Spacing (mm) c/c 150 AS1+AS2 150 25736 11290 37026 0. Scc_cal = P/(Ac+1.81 N 10080000 mm² 0.5*m*Asc) N/mm² The comp. 25*(Scc_cal + Scbc_cal) Section is Non seismic condition: 1.49 6124.10 0.9 18144 9129056.51 176.03 Soil mass 1 Total 3890.72 6.92 521.612 <1 OK > 0.Scc_cal) < 0.m) Horizon Vertical Vertical Horizontal Lever arm. force (kN) (m) (kN) (m) Live load Abutment Soil mass Tractive/Braking force Frictional force Additional seismic forces Superstructure 1 133.632 N/mm² Stress in tension reinforcement: Ss = m*Scb*(D-d'-x)/x = 34.800 133.50 N/mm² < 240 OK Stress in compression reinforcement: Ssc = 1.03 120.04 199.5*m*Asc) = The comp.23 N/mm² < 205 OK Substructure Kamala Khola_Bridge Project 3.985 Section is Cracked As The Section is cracked Reinforcement and section should be checked for cracked condition Critical Neutral axis x 449.34 Abutment 1 50.5 1 1 0.16 43.78 N/mm² < 205 OK Curtailment of Bar Assume the amount of reinforcement to be curtailed And curtailment will be at Thickness of stem at point of curtailment Effective depth of stem Amount of longitudinal Reinforcement Asc = Net area of concrete Ac = Area of tensile reinforcement = Area of provided compressive reinforcement = Forces and Moment at curtailment Particular Non seismic forces Superstructure dead load 3.77 0.34 mm The resultant Stress Scb 2.31 1107.80 2.30 0.84 Cracked As The Section is cracked Reinforcement and section should be checked for cracked condition Critical Neutral axis x 607.69 N/mm² < 240 OK Stress in compression reinforcement: Ssc = 1.12 2191.5m*Scb*(x-d')/x = 38.638 N/mm² Stress in tension reinforcement: Ss = m*Scb*(D-d'-x)/x = 44.48 2.5 2222.03 48.6 50 % m from the base of stem mm mm mm² mm² Ast = 12868 mm² Asc = 5645 mm² 4 I= 1.Scc_cal) 0.413 N/mm² 3.36 2.Scc_cal) < 0.25*(Scc_cal + Scbc_cal) 1 0.23 27.37 131.65 Cracked Seismic condition: 2.5m*Scb*(x-d')/x = 37.80 0.25*(Scc_cal + Scbc_cal) Case (Scbc_cal . Scc_cal = P/(Ac+1.629 50.34 0.53 N/mm² 0.50 1267.5 0. stress in bending Scbc_cal = M/Z = So.80 0.60 805.68 504.Check For Cracked or Uncracked Section For uncracked section (Scbc_cal .2 2.736E+09 mm³ Moment (kN. tal force Lever arm.40 651.98 The direct comp.044E+12 mm Z= 1.44 833.15 502. stress.18 mm The resultant Stress Scb 2.44 0.72 1777.114 .62 0.98 3.9 1202. [Scc_cal/Scc] + [Scbc_cal/Scbc] = The condition of tensile stress at the extreme fibre of concrete: (Scbc_cal . 1 mm² 17 330 12 mm mm² nos mm c/c (AS5) Distribution Bar calculation Let the percentage of distribution bars be Hence.Check for shear Critical shear.964 5645.6 mm² 12867.199 mm² mm² mm² % Shear stress developed. tau= 0.204 N/mm² OK Bar dia (mm) Nos Spacing (mm) c/c calculated/provided 32 16 480 300 AS1 25 12 650 300 AS3 mm Hence provide at sapcing of 300 mm 10 % of the total longitudinal reinforcement 3702.6026 113.1213 N/mm² Permissible shear stress with longitudinal reinforcement = Reinforcement Tensile reinforcement Compressive Reinforcement Maximum allowded spacing is Area (mm2) 12868 5645 300 0. area of distribution bars = Let's use bars of 12 mm Unit area = Total number of distribution bars on each face of the stem = Spacing @ Provided spacing 300 mm and bar dia is No of Bar 17 on each face of stem Substructure Kamala Khola_Bridge Project .0493 18144 0. V = Effective area. A = Tensile reinforcement area = Compression reinforcement area = Hence total reinforcement area = Percentage of steel provided = 1107175 N 9129056. 2 Design of Abutment Cap Calculation of Vertical Load Superstructure Dead Load 2222. Reinforcement Bar dia (mm) Reinforcement along length of cap 16 Stirrups around the cap 12 And Provide 2 layers of 10 mm bar mesh of length L: Breadth : Nos 20 36 550 mm 450 mm Spacing (mm) c/c provided 200 200 AC3 Level AC1 AC2 Substructure Kamala Khola_Bridge Project .9 Total Load 3525. Providing nominal reinforcement.5 + bc So.716 N/mm² Ok As depth is safe for punching no additional reinforcement is required.1.716 N/mm² where Po is perimeter of affected Area = 2 (2D+L+B) Po So.16*sqrt(fck)) Allowable punching Stress = Where ks is minimum of 1 and 0. Punching Stress Developed τau_developed = 5400 mm 0.75 0.Summary of reinforcement of abutment stem Section AS5 AS1 Ø 32 @ 300 c/c Ø 12 @ 300 c/c AS1+AS2 Ø 32 @ 150 c/c AS5 Ø 12 @ 300 c/c AS3 Ø 25 @ 300 c/c AS3+AS4 Ø 25 @ 150 c/c Above curtailment Below curtailment AS3 AS1 Ø 32 @ 300 c/c AS5 Ø 12 @ 300 c/c AS1+AS2 Ø 32 @ 150 c/c AS3+AS4 Ø 25 @ 150 c/c Ø 25 @ 300 c/c Height of curtailmnet 2.3 Total Load per Girder 1175.1 No of Longitidunal Girder 3 Depth of Abutment Cap D= 1000 Check For Punching Stress: Bearing Size provided L= 400 B= 300 τau_p = ks(0.4 Live Load Including Impact 1302. ks = tau_p = Total Punching Stress Developed τau_developed = V/Po*D Allowable punching Stress KN KN KN KN mm mm mm and bc = B/L 1 0.2176 N/mm² < 0. (height of ballast wall+1.5* g Ka_dyn*H² *L) = Horizontal component of this force = This force acts at 0.32 kN.09 mm² >300 Level AB1 AB3 AB2 mm Required area of tensile steel (M/Z*Sst) = So.m 17. Z = Scbc*deff/((Sst/m)+Scbc) deff-xc/3 234.1.2(eq live load surcharge)) 2.75 m 119.33 kN.γs.42H from backwall base of Total Seismic earth pressure Including live load surcharge is given by (0.Summary of reinforcement of abutment Cap Section Ø10mm 2 layers of bar mesh AC3 Ø 12 @ 200 mmc/c AC2 Ø 16 @ 200 mmc/c AC1 Ø 12 @ 200 mmc/c AC2 Ø 16 @ 200 mmc/c AC1 Ø10mm 2 layers of bar mesh AC3 2.m 49.8848 kN.tan2(45°-φ/2)*L= which acts at a distance 0.47 m 28.3 Design of Back Wall/DirtWall Total Horizontal force due to earth pressure including live load surcharge is given by 0.91 KN 1. available effective depth = Critical neutral axis.10 kN 300 mm 12 mm respectively 212 mm 49.46 mm 8794. No of main bar 12 @ spaicng 650 mm c/c Provided Reinforcement Nos Reinforcement Dia of Bar Spacing (mm) c/c provided 300 25 Main Bar (Back Face) 32 Distribution Bar (Horizontal bar at 300 9 12 each face) Compression Bar (Front Face) 25 300 25 Substructure Kamala Khola_Bridge Project .5*H. hence lever arm = Self weight of backwall these act at a distance from backwall toe of Moment due to earth pressure about abutment base Moment due to seismic forces Moment due self weight Total Moment about backwall toe Total Base Shear Providing 40 mm cover and total thickness of ballast wall is & dia of main bar & Distribution bar are 32 mm & So.62 mm 195.5.54 kNm 263.m 412.15 m 345.2 kN 0.19 kN 1. xc = Lever arm . 00 4.75 T Area and C.39 Substructure Kamala Khola_Bridge Project .00 0.0 A3 3.16 1.09 455.25 0.3 1 0.00 3.63 A2 0.88 3.78 10.40 2.76 A1 A4 3.53 2.83 3.2 1.40 7.5 2.35 1007.18 1 0.2 3.63 4.20 1.70 A8 0.70 0.1.0 0.25 1.48 A 1.00 6.50 172.30 Y 0.15 9.80 5.3 Design of Abutment Foundation 0.42 0.00 0.1 8.G Calculation with respect to Foundation at point T Symbol A1 A2 A3 A4 A5 A6 A7 A8 Total Area (m2) CG-X CG-Y Weight (KN) 2.98 0.58 3.5 A5 0.85 2173.0 A6 A7 0.3 0.28 x 2.35 7.13 4.28 10.00 4.15 9.40 4.Summary of reinforcement of Back Wall 250 Ø 20 AB7 300 Ø 32 @ 300 mmc/c AB1 Ø 12 @ 300 mmc/c AB3 250 Ø 10 AB5 Ø 25 @ 300 mmc/c AB2 250 Ø 10 AB6 Ø 16 AB8 Ø 16 AB4 2.03 21.48 0.60 12.82 22.58 0.70 3922.47 91.00 5. 40 651.74 2020.5 2222.53 2.63 3.59 38567.68 Increment factor for allowable stresses* 3.44 3922.60 411.m) Substructure Kamala Khola_Bridge Project .56 3344.35 3.35 3.5 1 1 1 0. 216.76 5.58 86.23 103.00 4.42 Increment factor for allowable stresses* 3. Load Stabilizing Horizon Vertical Coefficient Vertical Horizontal Lever arm.76 370.66 100.23 6.762 m Position of C.00 344.28 3.35 3.35 8. force (kN) (m) IRC:6-2000.68 24.40 3922.76 2020.35 3.58 634.68 2222.70 3.38 Horizontal lever arm m 3.87 2222.39 3287.m) 202.91 1 7445.69 470.70 3.22 -1453 kN at 44.79 411.87 3922.5 7445.58 Vertical lever arm m 8. Seismic 1 0.G From Superstructure Load Point Position of superstructure load point From toe= Height of Abutment (H) Height of Abutment Including Footing (H') Length of Abutment (L) Offsets of the base slab provided from the edge of abutment stem Over all Length of Footing (L') Horizontal Nonseismic Forces Forces due to breaking force Horizontal forces due to reisitence of bearing Earth pressure (0.48 7.90 kN 1302.90 4.10 8.3 combination I Superstructure dead load Live load Abutment Soil mass/earth pressure Approach Slab Tractive/Braking force Frictional force Total combination VI Non seismic forces Superstructure dead load Live load Abutment Soil mass/earth pressure Approach Slab Tractive/Braking force Dry case.18 2.35 3. Particular Moment tal force Lever arm.58 43.60 Overturning Moment (kN.20 0.63 3.63 3.66 689.65 3.90 4.42H Vertical Nonseismic Forces Live Load Dead Load from superstructure Dead load of Abutment and Footing Vertical Load of Soil Mass Vertical Load of Approach Slab Horizontal seismic forces: Superstructure Abutment and footing Soil mass Approach Slab 0.68 8.C.232 103.24 10.35 3.78 10.05 4364.63 14224.f/2)*L) at 0.91 8.63 m Buyoncy (IRC:6-2000.5* g * H² * tan²(45° .30 12162.34 197.39 1.40 8.G from T 3.05 2182. (kN) (m) (kN.47 12.20 411.39 3287.33 552.63 2.70 3.35 3.20 54.64 Vertical lever arm m 11.31 14224.34 235.69 394.58 Dry case.4 (a) Upward pressure due to buyoncy = Volume of Submerged part of Stem Volume of Footing Loads and Moment Calculation The transverce forces and moments are not calculated since it will not be critical due to high moment of inertia.44 Vertical seismic forces: Superstructure Abutment and footing Soil mass Approach Slab kN 133.00 11.329 86.63 2.68 kN 266.30 12162.91 Horizontal lever arm m 3.40 1302.232 103. Non-seismic 1 1 1 1 1 1 1 10838.39 3287.00 m m m m m m both side m kN 54. 16 266.44 1626.51 1299.626 2.39 158.2 33298.58 Flooded case.3.3 Check for Stability and Bearing Pressure Factors of safety (IRC:78-2000.34 235.70 3.76 5.5 1 1 1 1 133.63 3.20 54.00 11.47 12. Non-seismic 411.35 3.49 37829.76 5.5 480 kN/m² 8.3.44 8.2 266.350 3.85 2067.34 197.63 2.76 370.06 2181.47 12.23 103.69 470.90 86.19 combination I-a Flooded case.56 -5269.18 2.35 3.68 12162.38 2628.5 0.05 4364.15 0.58 634.08 1 7445.4) (f) = Maximum Allowable Bearing Pressure (q) = Total Length of footing (B) = B/6 = For Seismic 1.232 103.33 552.31 2565.69 394.15 12162.69 470.20 1.01 129.63 14224.51 1299.650 27.5 1 1 1 0.10 27.14 8029.69 394.00 11.14 8360.39 3287.46 498.23 6.68 -5269.5 Against deep seated failure 1.5 1 1 1 1 1 -1452.40 651.63 3.58 3.24 10.05 2182.21 2153.34 197.76 370.68 3.74 Increment factor for allowable stresses* 3.35 3.87 3922.31 14224.64 2020.68 8.85 2067.35 3.28 2181.35 3.25 1.01 129.90 43.91 8.68 3.5 1. Seismic 1 0.99 133.70 3.42 4.39 3287.00 m 1.40 1302.525 2. 202.66 172.22 9306.70 853.66 2020.30 317.63 3.44 Increment factor for allowable stresses* 11.4) For Non Seismic Against overturning 2 Against sliding 1.23 6.44 1626.58 Increment factor for allowable stresses* IRC:6-2000.25 Frictional coefficient (IRC:78-2000.24 10. 706.33 Substructure Kamala Khola_Bridge Project .60 689.38 446.63 38608.Frictional force Additional seismic forces Superstructure Abutment Soil mass Approach Slab Total Superstructure dead load Live load Abutment Soil mass Approach Slab Tractive/Braking force Frictional force Buyoncy Total combination VI-a Non seismic forces Superstructure dead load Live load Abutment Soil mass Approach Slab Tractive/Braking force Frictional force Buyoncy Additional seismic forces Superstructure Abutment Soil mass Approach Slab Total 0.60 3344.5 7445.99 9385.63 2222.34 235.16 4.03 145.18 2. 706.02 16.91 8.65 2222.44 3922.53 2.30 411.22 10753.29 3.06 1 1 1 1 1 1 1 1 -1452. 3 Seismic cases Case VI Case VI-a 3683.25 H A B 2.01 418.m) Overturning Moment (kN.53 208.1 57.58 74.28602 203.09245 1045.74 3. σmin = Upward pressure (shear) at B.81 1.36 1344. I) Flooded (comb.(MS-MO)/V < B/6 Max net pressure = (V/B)*(1+6e/B) < q Min net pressure = (V/B)*(1.29 2.31 1.27 1026. σt = Upward pressure (shear) at A.20 3.19 0. I-a) Seismic case Dry (comb.Summary of Loads per meter Particular/Load cases Vertical force Horizontal (kN) force (kN) Stabilizing Moment (kN.2 1354.5 > than allowableOk 0.6e/B) > 0 Calculated value Allowable Remark Flooded Dry 11.75 0.15 4.65 235.77 148.808 2. e=(B/2)-X Maximum pressure at Toe.73 223.06 57. X = M/V Eccentricity.33 480 0 > than allowableOk > than allowableOk <than allowableOk < than allowableOk > than allowableOk Design of Footing Calculation of moments and shear forces at the footing due to base pressure 7.05 Substructure Kamala Khola_Bridge Project .8 538.52 3.28 4728.13 1163.64 4826.7 9. VI) Flooded (comb VI-a) Check 1354.76 135.(MS-MO)/V < B/6 Max net pressure = (V/B)*(1+6e/B) < q Min net pressure = (V/B)*(1.26 0.86 0.61 3822.02 1003.30551 1163.48 157.71 326.6e/B) > 0 Seismic case Stability against overturning (MS/MO) Stability against sliding (f*V/H) Eccentricity e1 = B/2 .1326 203.3 67.81 8. σmax = Minimum pressure at Heel.78 477.82 169. σh = Moment at B due to upward pressure Moment at A due to upward pressure Moment and forces due to Soil and Abutment At Point B Non seismic cases Case I Case I-a 4402. V = Distance of CG of forces.48 442.83 3744.30 9. M = (MS-MO) Critical downward load.26 326.5 1.83 1232.75 T σmin σH σT σmax Moment and shear forces due to base pressure Description Effective moment.19792 69.81 264.72 193.92 4162.955 2 > than allowableOk 9.41 135.29 1.65 3.25 3.33 <than allowableOk 264.052851 1344.8221 69.25 1.09245 418.56 1082.30551 4820.49 1.7 0 > than allowableOk 4.64 Non seismic case Stability against overturning (MS/MO) Stability against sliding (f*V/H) Eccentricity e1 = B/2 .5 1.94 819.m) Non Seismic case Dry (comb.71 223.41 294.82 1173.31 67.53 9.6 480 < than allowableOk 74.3 4.052851 1173.40 4.71 165.75 0.6 235. 93 597.16 561. A Net Bending moment at toe.75 89.13 957.27 mm 1700 mm 70 mm 1630 mm Ok 2 1873.12 163.31 -675.532 970.825 589.7 80.23 0.88 -14.2 mm 1700 mm 70 mm 1630 mm Ok 2 2988.49 131. effective actual depth deff Area of Reinforcement required Ast [M/Z*deff*Sst] = Provided Reinforcement Reinforcement Tensile Reinforcement (Bottom) Compression Reinforcement (Top) Dia of Bar 32 Non seismic cases Case I Case I-a 112.5 154.28 122.7193 969.55 69.90 1077.5 -418.2 -23.2 904.62 1077.7 112.8 mm Spacing (mm) c/c provided 120 200 Nos Per meter Total 9 Level 67.8 655. B Critical Forces and Moments Critical Moment at Toe Side Critical Mement at Heel Side Critical Shear Forces at Toe Side Critical Shear Forces at Heel Side Design of Toe Slab Neutral Axis Factor Xc [m*Scbc/m*Scbc+Sst] = Lever Arm Z [1-Xc/3] = Moment of Resistance Factor R [Scbc/2*Z*Xc] = Minimum Effective depth requireq deff_min [sqrt(M/R*b] = Provided Over all Depth Cover provided (Top and Cover) So.56 7.85 kN-m per meter kN-m per meter kN per meter kN per meter 0.39 -433.82 89.00 AF3 7238.73 132.83 -433.922 0.56 569.99 -431.Self weight of Toe Slab Negative force (Lift) due to buyoncy Seismic Loads At Point A Self weight of Heel Slab Negative force (Lift) due to buyoncy Downward force due to soil Seismic Loads Description Moment and forces due to Soil and Abutment Downward force at B Downward force at A Downward Moment at B Downward Moment at A Resultant forces at Toe and Heel Net Bending moment at heel.4 951. B Net Shear Force at heel.40 81.2 mm² > Ast required OK 2454.6 -425.99 -675.4 mm² Design of Heel Slab Neutral Axis Factor Xc [m*Scbc/(m*Scbc+Sst)] = Lever Arm Z [1-Xc/3] = Moment of Resistance Factor R [Scbc/2*Z*Xc] = Minimum Effective depth requireq deff_min [sqrt(M/R*b] = Provided Over all Depth Cover provided (Top and Cover) So.00 AF1 25 Ast Provided (Bottom) Ast Provided (Top) 5 41. A Net Shear Force at toe.5 mm Substructure Kamala Khola_Bridge Project .922 0.375 6.391 925.7193 1224.625 456.83 95.42 -448.23 0.6 -27.55 -470.39 912. effective actual depth deff Area of Reinforcement required Ast [M/Z*deff*Sst] = 0.2 88.96 Seismic cases Case VI Case VI-a 118. 00 AF4 25 Ast Provided (Bottom) Ast Provided (Top) 4021.570 0.255 N/mm² 0. 304.70 Top Face Bar Bottom Face Bar 804.0528 0.00 AF2 27.253 !!! YES OK Summary of reinforcement of Abutment Footing Ø 0 @ 0c/c Shear bars bothway AF7 Ø 25 @ 300 mm c/c AF4 Ø 25 @ 200 mm c/c AF3 Ø 16 @ 250 mm c/c AF5 Ø 16 @ 250 mm c/c AF5 Ø 16 @ 130 mm c/c AF6 Ø 32 @ 200 mm c/c AF2 Ø 16 @ 250 mm c/c AF6 Ø 32 @ 120 mm c/c AF1 Ø 16 @ 130 mm c/c AF6 Substructure Kamala Khola_Bridge Project .5 mm² 16 mm Distribution Bars: Provide 20 % of Longitudinal Bars as distribution bars of dia Reinforcement Area of steel required Spacing (mm) c/c provided Nos 250 130 250 250 12 22 17 17 Toe Side 490.87 Top Face Bar Bottom Face Bar 1447.7.322 NO Heel 0.65 Heel Side 392.Provided Reinforcement Reinforcement Tensile Reinforcement (Bottom) Compression Reinforcement (Top) Dia of Bar 32 Spacing (mm) c/c provided 200 300 Nos Per meter Total 5 4 Level 41.25 (IRC:21-2000.352 % 0.3) Check For Shear Maximum Shear stress developed (V/b*deff) Total longitudinal reinforcement provided (%) Allowable shear stress without shear reinforcement Additional Shear Reinforcement is required Level AF5 AF6 AF5 AF6 Toe 0.1.2 mm² > Ast required OK 1963. 20 285.40 283.95 N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² 275.42 284 1.00 BPL 6.2. 303.72 284 m 278.2 Design of Pier Cap & Stem Section of Pier A B C 1.33 6.60 HFL 2.40 m Substructure Kamala Khola_Bridge Project .32 0.52 1. Table 9.05 TPL 1.1.500 3.80 10.00 SBL = Stem Bottom Level FBL = Footing Bottom Level MSL = Maximum Scour Level (fck) (fe) Sst = Ssc = Scbc = Scc = m= 25 500 240 205 8.30 MSL 278.80 1.2 m 288.10 Levels High Flood Level Maximum Scour level for Pier Level of Deck Surface Thickness of Pier cap (overall Thickness) 7.3 m 2.2.10 8.25 10 0.82 2. stress in concrete in direct compression Modular ratio (m) Neutral axis factor k j The resisting moment coefficient R IRC:21-2000.22 SBL 277.90 2.89 0.500 2.0 Design of Substructure 2.80 FBL 7.00 This prelimanry section is defined by considering hydrological analysis and geotechnical recommendation Material Properties Concrete grade Steel grade Allowable stress of steel in tension and shear Allowable stress of steel in direct compression Allowable compressive stress in concrete in flexure Allowable comp. 50 764.75 207.498 364.24 1529.120 0.00 693.212 729.10 m m m m m 16 kN/m³ 24 kN/m³ 0.74 285.96 1255.82 277.52 1.258 mm 150.80 275.32 mm 2400 40 32 2344 mm mm mm mm Ok C 2.72 0.26 0.91 1.54 Kn-m Kn-m Kn-m Kn-m Kn-m 0.19 417.84 Due to dead load of the cap itself = Due to dead load from superstructure = Due to live load excluding impact = Due to Impact load = Hence Total Moment Neutral Axis Factor Xc [m*Scbc/(m*Scbc+Sst)] = Lever Arm Z [1-Xc/3] = Moment of Resistance Factor R [Scbc*Z*Xc] = Assuming b=1 m Minimum Effective depth requireq d eff_min [sqrt(M/R*b] = Provided Over all Depth Cover provided (Top and Cover) Diameter of bar So.4478 401.5m Below Max Scour Depth) H= γ ω_conc αΗ αν α φ δ Design of Pier Cap A -2.00 mm c/c.18 10.060 Degree 0 32 16 B 0. so nos of bars are 4398 mm 2 2 20 14 AP2 246.50 764.94 1682.61 364.00 mm c/c.2239 3093. so nos of bars are 16085 mm2 OK AP1 220. effective actual depth deff Distance of the bearing center from the face of stem = Cap Can be designed as cantilever Area of Reinforcement required Ast [M/Z*deff*Sst] = Provide 32 mm bars at spacing Provided area of tensile reinforcement = Reinforcement at the bottom (compression side) Provide 20 mm bars at spacing Provided area of tensile reinforcement = Check for Shear Shear force at the critical section Due to dead load of the cap itself = Due to dead load from superstructure = Due to live load excluding impact = Due to Impact load = 1100 mm 6016.1332 802.Top level of pier cap (TPL) Top level of Footing (SBL) Thickness of Footing/Cap Bottem level of Footing/Cap (FBL) Thickness of Bearing Hence the total height of Pier Soil Data & Seismic Data Unit weight of backfill soil Unit weight of concrete Horizontal seismic coefficient Vertical seismic coefficient Angle between the wall and earth Angle of internal friction of soil Angle of friction between soil and wall Forces on the Pier at Point Distance from center Total Dead Load from superstructure (kN) Total Critical Live load including impact (kN) Moment at the edge of the stem shaft ( 2.749 kN kN kN kN Substructure Kamala Khola_Bridge Project .61 321. 306 N/mm² Shear resisted by the longitudinal steel and concrete section = tc * B * d_eff = 1515200 N Shear force to be resisted by shear reinforcement Vus = 1223307 N Providing 4 legs of 16 mm Ø bars The shear steel area Asv = 804. i.50 kN Due to Impact load = 364.000100982 N/mm² 0. tau_p = ks(0. at 1.75 kN Total V= 2738.727273 mm 0. Total punching stress developed = tau_punch = V/Lo*D Where Lo = perimeter around the critical plane = 2*(2D+L+B) = Hence. pt = Allowable shear stress (IRC:21-2000.8 < 8882.10 m from the face of the stem Total Depth of beam at the bearing = 1705 mm Effective Depth of beam at the bearing= 1649 mm Shear forces: Due to dead load of the cap itself = 115. tau = V/(B*D) Allowable shear stress for the section (IRC:21-2000.51 kN Shear Stress developed.233 < 0.75 hence.1% of gross sectional area of the beam 7032 mm² For each side = 3516 mm² each side Providing 16 mm bars 200 mm c/c. Table 12B) = V= 1 tau_p = 0.90 Section ok for shear Percentage of longitudinal steel (tension+compression).8 OK Substructure Kamala Khola_Bridge Project .398569306 N/mm² 1. Table 12B) = 0.9 Section ok for shear 0. pt = 0.291 % tc = 0.699 kN 0. tau = V/(B*D) 0.25 mm² Spacing of bars Sst * Asv *d_eff / Vus = 200 mm c/c AP3 Skin reinforcement @ 0. Table 12A) = 1.e.55 m from the stem face= 2118 mm Allowable punching pressure.5+bc = bc = B/L = 0.05 kN Due to dead load from superstructure = 1529.25 mm² Spacing of bars Sst * Asv *d_eff / Vus = 365 mm c/c Check for shear at bearings Check shear at a distance 1.54 N/mm² Allowable shear stress for the section (IRC:21-2000. hence. tau_punch = Which is Total Shear force Shear Stress developed.2869.414 % Allowable shear stress (IRC:21-2000.21 kN Due to live load excluding impact = 729. Table 12A) = Percentage of longitudinal steel (tension+compression).399 Shear reinforcement is required Shear resisted by the longitudinal steel and concrete section = tc * B * d_eff = 1639942 N Shear force to be resisted by shear reinforcement Vus = 1229757 N Providing 4 legs of 16 mm Ø bars The shear steel area Asv = 804. ks = the minimum of 1 and 0. 12 nos each side Provided area at each side = 2413 mm² each side AP4 Check for punching shear Average depth of section at bearing.16*sqrt(fck)) Where. 61 Live load (kN) 1.29 Therefore braking force length = 108.097 A B Distance from center -2.54 321.81 4444.5 0 2.48 39. 214.2) Braking force = 20% of the weight of the design vehicle (Class A) Height of deck surface from the pier cap= 2.19 764.Summary of reinforcement of Pier Cap Ø 16 @ 200 mm c/c AP4 Ø 32 @ 150 mm c/c AP1 Ø 16 @ 200 mm c/c AP3 Ø 32 @ 150 mm c/c AP1 Ø 16 @ 200 mm c/c AP4 Ø 20 @ 220 mm c/c AP2 Ø 20 @ 220 mm c/c AP2 Design of Pier Stem Length of stem column (between the surfaces of the restrains) Diameter of column D Effective length of column (IRC:21-2000. impact) CG of Load wrt center. m 0.658 Moment Due to Breaking Force 399.1) [ effective length factor 1.01 m² m m³ kN Effect of buyoncy [IRC:6-2000.8614 2222.4 (a)] Area of stem at top = Depth of submerged part of Pier = Volume of submerged part of pier = Net upward force due to buyoncy = Substructure Kamala Khola_Bridge Project .000 -0. impact) C (excl.48 And this force acts along the bridge at 1.61 693. 306.40 2222.2 ] Forces on the Pier at Point from superstructure Impact factor L= Le = 8300 mm 2800 mm 9960 mm Total Load Total Load (absolute) (incl. 216.68 m kN kN kN-m 6.84 Analysis and Design of pier Stem Dead Load Dead Load From Superstructure Dead Load due to pier cap Dead Load of Pier Stem Total Dead Load Breaking Force:( As Per IRC:6-2000.13 1219.90 -399.8 kN 798.34 kN 871.2.105 364.2m above the road level Total weight of the IRC Class A vehicle = 543.75 417.40 1104.158 6.91 kN 6115 kN m 3.5 Dead Load (kN) 1 764. 30 715.66 1.95 Total 733.18 308. (IRC:6-2000.90 4.2 Frictional force due to resistance of bearings (temperature effect) Coefficient of thermal expansion of concrete (C) = Length of main girders (L) Width of girder (a) Assume width of elastomeric bearing (parallel to span) (b) Assume thickness of elastomeric bearing (T) Differential temperature in celcius (dt) Number of main girders = Assume Shear modulus of elastomer (G) (range 0.81 Vertical seismic forces: Superstructure: 266. 213.43 kN per bearing kN kN m from base of stem kN-m (From S.90 Pier stem 52. Horizontal seismic forces: Forces (kN) Lever Arm (m) Superstructure: 533.2).34 19.Live Load Live Load Excluding Impact = which will act at eccentricity ('CG of Load wrt center) Critical moment due to live load eccentricity 2208.6 to 1.20 86. And this force acts along the bridge at Moment due to temperature effect mm mm mm mm degree N/mm² 9.31 Total 366.000009 36950 400 300 50 30 3 1.3).63 2.08 m m kN kN-m Moment (kN-m) 4427.03 680.26 kN -0.69 Pier cap 47.86 Substructure Kamala Khola_Bridge Project . 213.097 m -214.90 82.10 1.213.10 Pier stem 104.65 5415.80 7.2) Elongation of the girder (D) = C*L*dt Plan area of the bearing (A) = Longitudinal force transmitted to the pier F = G*A*D / T = Total force from all bearings Lateral force due to frictional resistance of bearings.73232 86.485 18.5KV² (IRC:6-2000.20 8. K = Pressure intensity =0.2) = Hence force due to water current = Moment due to water current Seismic Forces on Seismic Forces Due to back fill and Approach Slab are also considered. Sqrt(2)*V.525 kN-m 0. Sir) Force due to water current Exposed height to water current perimeter Area exposed Maximum mean velocity m/sec Maximum velocity.5 2.12 0.9765 mm 120000 mm² 28.30 Pier cap 95. V = Shape factor for circular end (IRC:6-2000.38 8. 23 752.01 715.26 Tractive/Braking force 0.33 Frictional force 0.43 8431.30 -132.33 199.53 -214.71 6131.08 Total 8032.53 1.6 mm² Let Provide main reinforcement 1.96 194.85 0.71 6131.08 Seismic forces 1 366.66 399.60 7640.81 733.90 82.10 Buyoncy 1 -399.m Moment.Loads and Moment Calculation Moment Vertical Horizontal load along Horizontal Moment along traffic (Y-Y) across traffic load.5 1104.13 -107.86 Frictional force 1 86.66 399.45 combination VI-a Flooded case.41 831. Non-seismic Increment factor for allowable stresses* 1 6115.90 1115.90 733.10 357.05 1 2208.53 Tractive/Braking force 1 108.86 733.30 5390.86 Total 7241. P = 8431.5 0. Provided Number of Bar 92 (AP5) Spacing between the bars providing in two layers = 87 mm Cover provided 100 mm Grade of Concrete and Steel same as in Pier Cap Let provided diameter of transverse reinforcement 12 mm the diameter up to the line of reinforcement Dc 2560 mm Substructure Kamala Khola_Bridge Project .5 Total Dead load 1 6115.81 5973.81 5415.25921 mm² Let Provide 32 mm dia bars.5 54.85 18.97 831.26 1 108.97 194.23 752.5 43.51 5308.43 Water Current 1 18.3 Sectional area of stem = (Ag) 6157521.90 82.08 kN.90 733. P traffic(Y-Y) load across (X-X) traffic (XX) combination I Total Dead load Live load Tractive/Braking force Frictional force Total combination VI Non seismic forces Total Dead load Live load Tractive/Braking force Frictional force Seismic forces Total Dry case.23 combination I-a Flooded case.72 366.40 831.93 43. Seismic Increment factor for allowable stresses* 1 0.81 5415.39 kN Horizontal Load.86 1 86.86 5415.97 kN 1121.2 % of Sectional area Total Area of reinforcement 73890.20 715.68 Maximum Loads 8431.68 Resultant Critical forces: Vertical Load. H = 8164.26 -214.05 Live load 0.20 715.43 Buyoncy 1 -399.5 -107.05 1104.33 1 -214.30 Dry case. 202.05 Live load 1 2208.66 108. Non-seismic Increment factor for allowable stresses* 1 Total Dead load 1 6115.81 733.5 0.01 Water Current 1 18.13 54. M = Increment factor for allowable stresses* IRC:6-2000.00 1115.30 5390.33 54.66 108.5 1 6115. Seismic Increment factor for allowable stresses* 1.26 54.86 5415. 9 mm² 3.57 <1 Satisfied Check the section for shear Resultant critical horizontal force: Shear stress developed. No shear reinforcement required. Provide 12 mm circular rings @ 1121392 0.208 N/mm² 0.8 mm² 7119401. Provide nominal.182 1.432 120 mm c/c N N/mm² % N/mm² Satisfied 2600 (AP6) Diameter of ring (mm) Summary of reinforcement of Pier Stem Ø 32 @ 87 mm c/c (AP5) Ø 32 @ 87 mm c/c (AP5) Ø 12 @ 120 mm c/c (AP6) Ø 12 @ 120 mm c/c (AP6) Ø 12 @ 120 mm c/c (AP6) Ø 12 @ 120 mm c/c (AP6) Substructure Kamala Khola_Bridge Project .202 0. tau = Percentage of longitudinal steel (as provided)= Allowable shear stress tc = Hence.184 N/mm² 3.79018 mm² 6083530.So Area of Steel Provided (As) So Area of Concrete (Ac) Check for Section capacity of Stem Equivalent area of Section Ae = Ac+(1.5627E+12 mm 4 3 2544789202 mm 1.5m-1)*As= Equivalent moment of inertia of section Ie = (PI*D^4/64) + (m-1)*As*Dc² / 8 Ze = 2*Ie/D = Scc = P/Ae = Scb = M/Ze = (Scc/Sacc + Scb/Sacb) = 73990. 1.60 HFL 2.80 FBL 7.22 m 288.72 284 m 278.2 285.00 This prelimanry section is defined by considering hydrological analysis and geotechnical recommendation Material Properties Concrete grade Steel grade Allowable stress of steel in tension and shear Allowable stress of steel in direct compression Allowable compressive stress in concrete in flexure Allowable comp.80 1.00 BPL 6.82 2.3 m Substructure Kamala Khola_Bridge Project .89 0.3 Design of Pier Foundation Section of Pier A B C 1.0 Design of Substructure 2. 303.2.80 10. stress in concrete in direct compression Modular ratio (m) Neutral axis factor k j The resisting moment coefficient R IRC:21-2000.52 1.90 2.00 SBL = Stem Bottom Level FBL = Footing Bottom Level MSL = Maximum Scour Level (fck) (fe) Sst = Ssc = Scbc = Scc = m= 20 500 240 205 6.10 Levels High Flood Level Maximum Scour level for Pier Level of Deck Surface 7.10 8.95 N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² 275.30 MSL 278.42 284 1.40 283. Table 9.05 TPL 1.32 0.22 SBL 277.500 3.2.500 2.67 5 10 0. 2m above the road level Total weight of the IRC Class A vehicle = Therefore braking force length = Moment Due to Breaking Force 4445 kN 798.26 kN -0.01 kN 2208.4 (a)] Volume of submerged part of pier = Net upward force due to buyoncy = Live Load Live Load Excluding Impact = which will act at eccentricity ('CG of Load wrt center) Critical moment due to live load eccentricity Frictional force due to resistance of bearings (temperature effect) Coefficient of thermal expansion of concrete (C) = Length of main girders (L) .000009 36950 mm Substructure Kamala Khola_Bridge Project Effect of buyoncy [IRC:6-2000.40 1104.Thickness of Pier cap (overall Thickness) Top level of pier cap (TPL) Top level of Footing (SBL) Thickness of Footing/Cap Bottem level of Footing/Cap (FBL) Thickness of Bearing Hence the total height of Pier Soil Data & Seismic Data Unit weight of backfill soil Unit weight of concrete Horizontal seismic coefficient Vertical seismic coefficient ( 2m Below Max Scour Depth) H= γ ω_conc αΗ αν 2.120 0.2 ] Forces on the Pier at Point from superstructure Impact factor L= Le = Distance from center Dead Load (kN) 1 Live load (kN) 1.61 321.82 277.2) Braking force = 20% of the weight of the design vehicle (Class A) Height of deck surface from the pier cap= And this force acts along the bridge at 1.61 364.8 275. 214. impact) CG of Load wrt center.54 2.13 1219.19 417.2. m 0.1) [ effective length factor 1.50 764.658 kN 399.72 0.29 kN 108.50 764.18 10.84 2222.52 1.68 m 543.80 kN 8232 kN 2.525 kN-m 0.097 m -214.4 285.48 m 3.000 -0.75 B 0.097 Angle between the wall and earth α Angle of internal friction of soil φ Angle of friction between soil and wall δ Length of stem column (between the surfaces of the restrains) Diameter of column D Effective length of column (IRC:21-2000.40 2222.105 Forces at bottom of Footing Dead Load Dead Load From Superstructure Dead Load due to pier cap Dead Load of Pier Stem Dead load of footing A -2.00 693.861 kN-m 84.00 m³ -840. impact) C (excl.060 Degree 0 32 16 8300 mm 2800 mm 9960 mm Total Load Total Load (absolute) (incl.81 Total Dead Load Breaking Force:( As Per IRC:6-2000.34 kN 871. 306.91 kN 2116.10 m m m m m m 16 kN/m³ 24 kN/m³ 0. 216. And this force acts along the bridge at Moment due to temperature effect 400 300 50 30 3 1.20 86.6 to 1.2 mm mm mm degree N/mm² 9.99 228.16 134. Horizontal seismic forces: Forces (kN) Lever Arm (m) Superstructure: 533.2).91 5. Sir) Force due to water current Exposed height to water current perimeter Area exposed Maximum mean velocity m/sec Maximum velocity.82 Vertical seismic forces: Superstructure: 266.5KV² (IRC:6-2000.55 24.2) Elongation of the girder (D) = C*L*dt Plan area of the bearing (A) = Longitudinal force transmitted to the pier F = G*A*D / T = Total force from all bearings Lateral force due to frictional resistance of bearings. K = Pressure intensity =0.2) = Hence force due to water current = Moment due to water current Seismic Forces on Seismic Forces Due to back fill and Approach Slab are also considered.10 Pier cap 95.01 m m kN kN-m Moment (kN-m) 5387. V = Shape factor for square end (IRC:6-2000.Width of girder (a) Assume width of elastomeric bearing (parallel to span) (b) Assume thickness of elastomeric bearing (T) Differential temperature in celcius (dt) Number of main girders = Assume Shear modulus of elastomer (G) (range 0.62 496.10 870.31 Footing 127.213.40 1. 213.12 0.63 4.485 24.90 Pier stem 52. Sqrt(2)*V.01 Total 493.66 1.90 Total 987.02 0.69 Pier cap 47.20 10.75 Footing 254.9765 mm 120000 mm² 28.59 kN per bearing kN kN m from base kN-m (From S.38 10.61 6965.10 852. (IRC:6-2000.3).73232 86. 213.33 Substructure Kamala Khola_Bridge Project .90 Pier stem 104.5 2.80 8. 10 Buyoncy 1 -840. 706.82 987.86 1 86.13 -107.33 199.92 6992.01 Total 9708.26 -214.5 1104.85 0.55 6858.26 1 108.5 43. Non-seismic Increment factor for allowable stresses* 1 Total Dead load 1 8231.13 54.45 Dry case.85 Live load 1 2208.66 399.29 493.33 Frictional force 0.25 Frictional coefficient (IRC:78-2000.33 6965.4) (f) = 0.20 870.66 108.22 1085.01 Seismic forces 1 493.5 Maximum Allowable Bearing Pressure (q) = 480 kN/m² σ max = (P/A) + (M/Z) Substructure Kamala Khola_Bridge Project .16 134.85 24.01 870.76 194.22 1085.52 Seismic cases Dry.53 1.82 7600.07 Check for Stability and Bearing Pressure Factors of safety (IRC:78-2000.85 24.66 399.5 1.5 54. Comb I 10548.26 Tractive/Braking force 0. 706.76 194.3.5 1 8231. Comb I-a 9708.5 0.85 1104.85 0.01 Water Current 1 24.20 870.33 1 -214. Comb VI-a 9044.00 1270.3.4) For Non Seismic For Seismic Against sliding 1.77 194.98 7835.85 Live load 0.25 987.53 -214.59 Water Current 1 24.21 1085.16 1270.52 combination VI-a Flooded case.25 1011.45 -80. Comb VI 9884.07 Flooded.16 1270.85 1 2208.33 Total 9044.33 54.26 54.53 Tractive/Braking force 1 108.33 9884.Loads and Moment Calculation Moment Vertical Horizontal load along Horizont Moment along traffic (Y-Y) across traffic load.86 Frictional force 1 86.25 1011.07 Summary of Load Non-seismic cases Dry.93 43.45 -214.82 6965.16 134. Seismic Increment factor for allowable stresses* 1 0.10 435.5 0.33 6965.55 6858.07 combination I-a Flooded case.82 6965.92 6992.45 -80.25 987.66 108.59 10548.5 -107.5 Total Dead load 1 8231.91 987.00 1270.59 Buyoncy 1 -840.82 987.53 Flooded.91 987. P traffic(Y-Y) al load (X-X) across traffic (XX) combination I Total Dead load Live load Tractive/Braking force Frictional force Total combination VI Non seismic forces Total Dead load Live load Tractive/Braking force Frictional force Seismic forces Total Dry case.82 7600. Non-seismic Increment factor for allowable stresses* 1 8231. Seismic Increment factor for allowable stresses* 1.21 1085.98 7835.77 194. 76 47.96 ok 5.53 196.73 321.68 62. no tension in soil allowed) P= Total vertical load on base M= Moment at the base Z= Section modulus of the footing base = bh² / 6 A= Area of base f= Frictional coefficient (IRC:78-2000.27 455.27 ok ok ok ok Design of Pier Foundation footing section Clear cover 35 mm Along Traffic Diameter of main bars: Y-Y : X-X: Across Traffic 25 mm 32 mm 2. (P/A) .36 334.03 199.17 m³ Area of Base A= 49 m2 Stability against sliding: f*(P/H) > factor of safety H= Horizontal force at the base Along Traffic Condotion combination I combination II combination III combination IV Across Traffic σ max = σ min = 237.55 ok 4.(M/Z) σ max = Maximum base pressure (should not exceed the allowable bearing capacity) σ min = Minimum base pressure (should be > 0.σ min = where.50 195.91 68.10 1752.17 ok f*(P/H) NA 200.10 558.47 ok Condotion combination I combination II combination III combination IV σ min = 211.80 2.4) Section modulus Along the traffic Zyy = 57.06 175.1 2.17 m³ Across the traffic Zxx = 57.1 2.06 σ max = σ min = σB= σC= 321.55 81.87 Substructure Kamala Khola_Bridge Project .00 ok 4.65 ok ok ok ok σ max = 193.5 σ min 1800 1708 A B C D σ max A B C D σ max = σ min = σB= σC= 334.80 2.19 310.50 220.3. 706.07 ok 24.67 321.1 2.67 47.75 62.91 ok 4.89 ok ok ok ok 219.50 ok ok ok ok f*(P/H) 27.68 306. 26 kN.m 883. d_eff = 1752.m 788.00061 mm Provided effective d.217 0.26 kN. d (min) = 964.m 624. Mr=B*Xc*(Scbc/2) * Z Assuming B = 1 m. Ast=M/(Z*d_eff*Sst) Y-Y (along the traffic) 1601. of slab Resultant moment = 719.86 kN 0.04 mm 1708 mm ok ok X-X (across the traffic) 2073.97 kN Due to self wt.m Shear force at C: Due to soil pressure 676.72 kN Resultant Shear = 586.5 mm Area of steel required.055 mm² 924.25 kN Neutral Axis Factor Xc [m*Scbc/(m*Scbc+Sst)] = Lever Arm Z [1-Xc/3] = Moment of Resistance Factor R [Scbc/2*Z*Xc] = Moment of Resistance. Mr = Along Traffic Equating Mr = M.672 Mr = 672. of slab 90.65 kN.86 kN.58 kN 90.Moment at C: Due to soil pressure Due to self wt.928 0.13 d² Across Traffic 1083.m 95.53131 mm² Substructure Kamala Khola_Bridge Project .72 kN 833.39 kN.61 kN.m 95. 74466 300 24 N per meter mm mm c/c (PF1) 32 mm (PF2) 200 mm c/c 5 nos per meter 36 32 mm (PF4) 300 mm c/c 4 nos per meter 24 7238.8647 mm² 0.00 Substructure Kamala Khola_Bridge Project .2520893 % 0.234 N/mm² 0.42378393 % 0. Required 477686.280 N/mm² 0. Vus = Diameter nos/legs Spacing Adopt Total nos (PF5) Ø 25 @ 300c/c PF3 Ø 32 @ 300c/c PF4 Ø 25 @ 300c/c PF3 Ø 12 @ 300c/c Shear bars bothway PF5 Ø 25 @ 200c/c PF1 Ø 32 @ 200c/c PF2 7.Provide Tensile steel Diameter Spacing Number Total Diameter Spacing Number 25 mm 200 mm c/c 5 nos per meter 36 25 300 mm c/c 4 nos per meter 24 4417.1 12 2 296. Required 176355.335 N/mm² Additional shear reinf.488 N/mm² Additional shear reinf.22947 mm² 0.119 12 2 300 300 mm c/c 24 Compression bars: (PF3) Check for shear Total area of longitudinal bars Percentage of longitudinal bars Allowable shear stress Shear stress developed Shear reinforcement Residual shear stress. 673 3607.853 516.330 7214.660 Substructure Kamala Khola_Bridge Project .177 1170 935 2x50 12 36 4.070 1.188 420.118 840.83 3.888 137. 2 layers 10 6 16 0.31 0.753 AC2 600 AC3 500 Pitch 75 mm bothways.313 845.483 450 AS4 5130 450 25 24 5.295 32 24 5.578 223.617 59.830 6.313 1235.853 754.837 AS2 5130 450 450 AS3 6930 25 25 7.042 7070 AS5 7070 Total No of Stem 2 Total Weight 700 700 12 17 16.58 3.Bar Bending Schedule of Abutment Cap Label Shape Dia Nos Length Unit Weight (Kg)/m Weight(Kg) AC1 7070 16 20 7.58 6.235 Total No of Cap 2 Total Weight Bar Bending Schedule of Abutment Stem Label Shape Dia Nos Unit Length Weight (Kg)/m Weight(Kg) 450 AS1 450 6930 32 25 7.940 0.888 255. 12 7.64 0.15 6.617 21.403 7070 AB3 250 250 12 9 14.476 1538.578 77.12 2.313 812.82 1.640 AB6 75 250 75 10 27 0.843 250 AB2 4550 25 25 4.559 AB5 75 500 75 10 54 0.888 116.659 AB7 AB8 7120 7120 20 16 Total 1 2 7.Bar Bending Schedule of Abutment Back Wall Label Shape Dia Nos Unit Length Weight (Kg)/m Weight(Kg) 250 AB1 4900 32 25 5.8 3.65 0.118 3076.978 220 500 700 300 AB4 100 16 27 1.853 462.578 17.4 0.466 1.559 22.617 6.235 No of Back Wall 2 Total Weight Substructure Kamala Khola_Bridge Project . 313 2694.067 14354.907 AF3 850 5170 850 25 40 6.739 AF5 850 7860 850 16 29 9.000 0.56 1.472 AF2 850 5170 850 32 40 6.903 AF4 850 4670 850 25 27 6.467 100 AF7 1560 0 100 Total 0 1.56 1.000 No of Foundation 2 Total Weight 7177.578 588.578 437.313 1734.870 6.370 6.870 3.853 662.853 1058.Bar Bending Schedule of Abutment Foundation Label Shape Dia Nos Unit Length Weight (Kg)/m Weight(Kg) AF1 850 4670 850 32 67 6.134 Substructure Kamala Khola_Bridge Project .578 AF6 850 7860 850 16 39 9.76 0.370 3. 3752112 Total No of Cap 1 Total Weight 2105.02 2.313 5285. 2 layers 10 12 16 0.Bar Bending Schedule per Pier Bar Bending Schedule of Pier Cap Label Shape Dia Nos Length Unit Weight (Kg)/m Weight(Kg) AP1 400 6520 400 32 20 7.522 AP4 6520 16 12 6.560 2105.671 5840.899 2920 AP3 4 Legs Average H= 1120 16 2320 33 12.274 AP2 400 2800 2210 400 20 14 8.532 AP6 D= 2626 12 74 8.52 1.72 1.578 662.100 6.671 Substructure Kamala Khola_Bridge Project .578 123.560 Bar Bending Schedule of Pier Stem Label Shape Dia Nos Length Unit Weight (Kg)/m Weight(Kg) AP5 400 8700 32 92 9.888 555.466 276.138 Total No of Stem 1 Total Weight 5840.313 924.489 600 AP5 500 Pitch 75 mm bothways.32 6.450 0.61653756 118. 738 100 Total No of Foundation 1 Total Weight 6399.31334 1347.89 3.0152 100 PF5 1710 12 576 1.5228 PF3 1000 6890 1000 25 24 8.89 1233.85336 822.31334 2020.89 6.Bar Bending Schedule of Pier Foundation Label Shape Dia Nos Length Unit Weight (Kg)/m 3.658 Substructure Kamala Khola_Bridge Project .85336 Weight(Kg) PF1 1000 6890 1000 25 36 8.2293 PF2 1000 6890 1000 32 36 8.88781 976.91 0.658 6399.1528 PF4 1000 6890 1000 32 24 8.89 6.
Copyright © 2024 DOKUMEN.SITE Inc.