Spectrolith Mineralogy Identification

March 26, 2018 | Author: RioPrawira | Category: Gamma Ray, Chemical Substances, Chemistry, Physical Sciences, Science


Comments



Description

ADVANCED OPEN HOLE COURSEA NEW APPROACH : IDENTIFYING CLAY WITH SPECTROSCOPY OLEH : L. U. WIHARDJO * UNTUK KALANGAN SENDIRI, DALAM MISI PENGAJARAN TOPIK PENGAJARAN  Traditional Petrophysical Analysis….the issues  SpectroLith processing…..what is it ?  4 examples from Australia (Observations)  Conclusions Traditional Petrophysical Analysis  Mineralogy. Mineralogy controls Matrix Density => Porosity RHOM b) Clay Volume => Bound water Volume Porosity (effective) and Resitivity(BFV) ? => => Soil 2. 76 2. 74 2. 72 2. 7 2. 68 30 28 26 24 22 20 2. 66  matrix  ρb   matrix   fluid Porosity (PU) a) Clay Volume and Issues . Radioactive minerals  Clay in reservoir : GRclean Clay above reservoir: GRclay Vclay  GRlog  GRclean GRclay  GRclean . Gamma Ray  Feldspars .GR 1. Elsevier .Gamma Ray in log interpretation Book: “Well Logging for Earth Scientists” by Darwin Ellis. Clay Volume and Issues – Density Neutron 2. Other Neutron absorbers (Cl.B.. …Its bound water Eg: Kaolinite: Al4Si4O10(OH)8  Gas.) . Neutron – Density Neutron is sensitive to Clay minerals….Gd. Density-Neutron Xplot DPHI=18 pu NPHI=10 pu . Response of Neutron in Gas SPWLA 99 . Summary of Traditional Analysis Issues  Matrix Density influenced by:  MINERALOGY => Porosity effected  Clay Volume can be influenced by  Feldspars . Soil effected . Light Hydrocarbon ( Neutron ) => Vclay. GRclay (GR)  Gas. radioactive minerals (GR)  Choice of GRclean. Effective Porosity. Question for another measurement. method  Get mineralogy directly  from a logging tool  from a processing => SpectroLith . .TOPIK PENGAJARAN  Traditional Petrophysical Analysis…. what is it ?  3 Examples from Australia ( Observations )  Conclusions .the issues  SpectroLITH processing…. S.. (FAST logging speed. Gd. Ti. LONG tool )  Neutron induced capture spectroscopy (ECS. SHORT Tool) => Emulated Aluminum ( Using SpectroLith ) Energy [MeV] . Th and K (SGR=4Th(ppm) + 8U(ppm)+ 16K(%)) 4 MeV neutron interacts with fomation: Inelastic Interaction (multiple gamma-rays) Slowing down of neutron through multiple scattering Neutron Capture (multiple gamma-rays) Gamma-Ray Spectrum  Geochemical Logging Tool ( GLT )  Aluminum (Kaolinite:Al4Si4O10(OH)8 SLOW logging speed. RST)  Si.Evolution of Gamma-Ray Measurements  Total natural gamma ray  GR  Natural gamma spectroscopy (NGT & HNGS)  U. Ca. H. Fe. Cl.. . Fe.U(ppm)1-5.5)O20(OH)4 Th(ppm)10-25.Al)8O20](OH)4(H2O)n Glauconite Cholorite (K.U(ppm)2-5 Th(ppm)3-5.Al.Mg)4[Si7-7.5-7Al1-1.Al)8O20](OH)16 155-210 2. Al0.U(ppm)1-21 45-356 2.3 (Mg.53 Th(ppm)6-44. Fe2+.25 80-130 2.6.4-1.77 .K(%)0-0.Fe)4[(Si.Al)12[(Si.Aluminum in Clay ROCK Chemical Formula Traces GR Rhob PHI-CNL CEC API g/cc (lime. PU) meq/100g Quartz SiO2 - 2. K 130-235 2.65 -2 Calcite CaCO3 - 2.42 37 3-50 Illite K1-1.Ca)1.87 1 Kaolinite Al4Si4O10(OH)8 K%:0-1.56 0-50 2.5Al4(Si6.O20](OH)4 Th(ppm)3-10.2-2(Fe3+.71 0 Dolomite CLAYS CaCO3 MgCO3 - 2.5.Mg.12 30 10-40 44 80-150 38 10-40 52 10-40 Montmorillonite (Ca0.Na)0.7(Al.Na. Si.H.S.Si.Mg Nucleus Excited Nucleus Cl.Gd.O.Neutron Induced Gamma-Rays (Capture) Inelastic Scattering Fast Neutron Gamma Ray g Nucleus Neutron Capture Excited Nucleus Gamma Ray Slow Neutron g C.Fe.S .Ca.Ca.Fe.Ti. What Do We Measure ? 4 MeV neutron interacts with fomation: Inelastic Interaction (multiple gamma-rays) Slowing down of neutron through multiple scattering Neutron Capture (multiple gamma-rays) Gamma-Ray Spectrum Energy [MeV] . Cl. Carbonate. Siderite. Pyrite. Ca. Anhydrite.. Herron et. QFM.SpectroLith Processing Flow Acquisition Gamma-Ray Spectra Spectral Stripping Elemental Yields Oxides Closure SpectroLith Dry Weight Elements Si. Fe. Ti. . S.. Gd. Coal Ref: SPWLA 1996: Quantitative Lithology: An application for open and cased hole spectroscopy .al. Dry Weight Lithologies Clay. An Example of Schlumberger tool : ECS and RST ECS: Elemental Capture Spectroscopy RST:Reservoir Saturation Tool Cartridge 1-11/16" OD 2-1/2” OD Cartridge 5" OD Far GSO Detector 1800 fph AmBe Source Near GSO Detector BGO Detector Minitron Cartridge under 200 fph . Clay Versus GR and Aluminum 100 Well 5 Clay wt% Clay versus GR Well 6 Well 8 50 0 100 200 0 100 200 0 Gamma Ray Gamma Ray 100 200 0 Gamma Ray 100 200 Gamma Ray 100 Well 5 Clay wt% Clay versus Aluminum Well 7 Well 6 Well 7 Well 8 50 0 10 20 Aluminum wt% 0 10 20 Aluminum wt% 0 10 20 Aluminum wt% 0 10 20 Aluminum wt% Ref: SPWLA 1996: Quantitative Lithology: An application for open and cased hole spectroscopy . . Herron et.al. .Heart of SpectroLith : Aluminum Emulator Aluminum wt% 20 10 0 0 50 100-SiO2 100 0 50 100 0 50 100 100-SiO2-CaCO3-MgCO3-1.99Fe 100-SiO2-CaCO3-MgCO3 Ref: SPWLA 1996: Quantitative Lithology: An application for open and cased hole spectroscopy . Herron et.al. 6 2.SpectroLith : Matrix Density 3  General algorithms found  f ( Si.8 3 Matrix Density.8 2. Fe. S) Estimated Well 1 Well 2 2. Herron et. mineral 2.6 2. mineral Ref: SPWLA 2000: Application of Nuclear Spectroscopy Logs to the derivation of Formation Matrix Density .6 2. .al. Ca.8 3 Matrix Density. the issues  SpectroLITH processing….what is it ?  3 Examples ( Observations )  Conclusions .TOPIK PENGAJARAN  Traditional Petrophysical Analysis….. 300ft/h) .Example-1 • 8-1/2” OH • Descend thru Drillpipe • Gas in Borehole • Well shut-in • OBJECTIVE: Sand. Coal Zones ? Gas Zones ? RST-A • Sigma mode (900ft/h) • C/O mode (100. Dry Weights . Example-2 • XXX field • OH 8-1/2” • WBM in borehole  PEx-ECS . 1800 ft/h OBJECTIVE: • Clay content . Example-2 • Comparison of RHGA • From Complex Analysis (ELAN) • From SpectroLith . Example-3 • Double Casing (7”. C/O mode (100ft/h) OBJECTIVE: • Oil-Water contact NOW ? • Decision to perforate other zones .oil above top perfs. •Well shut-in RST-A Sigma mode (900ft/h).4-1/2”_ • Water in borehole. RHOB RT MSFL GR NPHI Evaluation using OH SpectroLith SpectroLith Results . .“Fast easy alternate way”: Using Spectroscopy Logs Open Hole logs ECS GR Density Resistivity Neutron Porosity * Short / Long Term DECISIONS Clay Volume Lithology Matrix Properties Elemental Capture Spectroscopy + RW. and Triple-Combo Logging . HC-Vis Porosity Saturation Permeability Producibility Ref: APPEA 2002: Applications of SpectroLith *Mineralogy from Neutron Capture Spectroscopy Tools for SPE 77631: Real-Time Petrophysical Analysis *in Ref: Siliciclastics From the Integration of Spectroscopy Formation Evaluation: Zachariah John et.al. CEC. Herron et.al. .Workflow & Typical Product Lithology Porosity Permeability Saturation Reservoir Summation Producibility APPEA 2004: GR Spectroscopy and porosity-resistivity logs combine for fast and accurate formation * Ref: evaluation from the wellsite Zachariah John et.al. maN  ma  f Nma  Nf ma  2.99WFe ) ma  b Nma  n maD  .049WSi  0.497WCa  1.193WS N ma  0.675WS m * 2 200000  Permeability k   (1   ) 2 (  ma ) 2 (6WCla  0. CEC: Cation Exchange Capacity based on CECA Productivity 100 2 Swi    (100 2  k  BFV 1.889WSi  1.620  0.993WFe  1.al.257WFe  0. k   (a ) b (   BFV BFV )c Relative Permeability User inputs required: Reservoir Summation 2.Simple Equations in the “alternate method” Lithology Porosity Wclay  1. Hydrocarbon Viscosity for relative Permeability * Ref: SPE 77631: Real-Time Petrophysical Analysis in Siliciclastics From the Integration of Spectroscopy and Triple-Combo Logging .91(1  2.139WSi  2.408  0. Herron et.1WPyr ) 2 Saturation Waxman Smit’s Equation .014WCa  0. FSAL: formation water salinity based on FSALA 3.22WQFM  2WCar  0.2274WCa  1. . al.  Cores present Results:  Clay Content  From GR : 45%  From ECS: 20% APPEA 2004: GR Spectroscopy and * Ref: porosity-resistivity logs combine for fast and accurate formation evaluation from the wellsite Zachariah John et. Clay content from Point count .Example  Triple combo(PEx) + ECS  Fast petrophysical evaluation for decision reqd. clay vol comparison  TR-7 QC track      APPEA 2004: GR Spectroscopy and porosity-resistivity logs * Ref: combine for fast and accurate formation evaluation from the wellsite Zachariah John et. Sw  TR-6 Mineralogy.Example: Results Petrophysical Results TR-1: Net. Pay TR-2 Lithology track TR-3 Produccibility TR-4 Permeability comparison  TR-5 Porosity.al. . what is it ?  Examples in Australia ( Observations )  Conclusions ..TOPIK PENGAJARAN  Traditional Petrophysical Analysis….the issues  SpectroLITH processing…. Conclusions  SpectroLith results can be derived from .RST* (Reservoir Saturation Tool)  SpectroLith gives useful outputs for immediate interpretation use: Clay.ECS* ( Elemental Capture Sonde) . radioactive formations… and for Interpretation * Schlumberger tool brand for spectroscopy . gas in formation or feldspathic. Carbonate. Anhydrite. Siderite. QFM. Pyrite. Coal…  Offers alternative methodology for identifying clay & mineralogy with gas in borehole.
Copyright © 2024 DOKUMEN.SITE Inc.