Single Box Culvert Structural Design 1.5m x 1.5m

March 21, 2018 | Author: AYED | Category: Structural Load, Concrete, Road Surface, Soil, Structural Engineering


Comments



Description

Kumpulan Jurutera PerundingPROJECT : SG2/SG3 JOB NO : DESIGNED BY : DATE : SAID 10-Sep-15 STRUCTURAL DESIGN OF BOX CULVERTS ( HB HIGHWAY LOAD ) CULVERT NO. : 1.00m x 1.00m INPUT DATA DIMENSIONS OF R.C BOX Internal width = Internal height = Wall thickness = Slab thickness = Effective width = Effective height = 1000 1000 230 230 1230 1230 mm mm mm mm mm mm A D B C ASSUMPTIONS Thickness of pavement = 90 mm Unit weight of soil = Unit weight of concrete = Unit weight of pavement = Soil cover = 20 24 24 0 Wearing = Binder = 40 mm 50 mm kN/m kN/m3 kN/m3 mm 3 :: LOADING HB wheel load = 62.5 kN/wheel Max.coefficient of lateral earth pressure = Min.coefficient of lateral earth pressure = NORMALLY USE 25 UNIT HB = 45*2.5=62.5KN/WHEEL 0.6 0.2 PARTIAL FACTOR OF SAFETY (BASED ON BS5400:PART 2) Dead load (concrete) = Superimposed dead load = HB Highway load = Earth pressure = ULS for concrete = 1.15 1.75 1.30 1.50 1.15 MATERIAL PROPERTIES fcu = fy = 30 N/mm2 460 N/mm2 :: 284938628.xls 1 BOX CULVERT ANALYSIS UNFACTORED LOAD Self weight of top slab = Weight of walls = Weight of pavement = Weight of soil cover = HB Highway load = 5.52 7.56 2.16 0.00 85.61 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 *Note: Dispersion of wheel load is taken as 2:1 in soil (BS5400 :pt 2) For depth of fill 6.0m > depth > 1.8m , consider 2 axles only L= B= (A) 1.89 m (longitudinal dispersion) 3.09 m (transverse dispersion) ANALYSIS OF BOX CASE 1 : For max.BM and shear on wall & max. hogging BM at corners, consider max. lateral earth pressure acting on the wall in empty condition. P1 ------> ! A where P1, P2 = earth pressure ! ! ! P2 ------> ! B P1 = 22.93 kN/m2 P2 = 48.39 kN/m2 Top slab pressure = 139.64 kN/m2 Base pressure = 149.64 kN/m2 :: Loading is symmetrical about the vertical centreline of the box. -FEM(AD) = FM(AD) = FEM(AB) = -FEM(BA) = FM(AB) = FEM(BC) = FM(BC) = 17.61 26.41 4.17 4.82 6.74 18.87 28.30 kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m Moment distribution (case 1): distribution factor , DF(AD) = DF(BC) = DF(AB) = DF(DC) = Joints DF FEM 0.33 0.67 I(slab) = I(wall) = 1013916667 mm4 1013916667 mm4 A B AB BA BC 0.67 0.67 0.33 4.2 -4.8 18.9 9.0 -9.4 -4.7 -4.7 4.5 1.6 3.1 -3.0 -1.5 -1.5 1.6 0.5 1.0 -1.0 -0.5 -0.5 0.5 0.2 0.3 -0.3 -0.2 --------------------------------------------------------------------------------------------10.9 10.9 -12.0 12.0 -------------------------------------------------------------------------------------------AD 0.33 -17.6 4.5 :: (B) CASE 2 : For max.sagging moment in the top & bottom slab, consider min.lateral earth pressure acting on the box. P1 = 7.64 kN/m2 P2 = 16.13 kN/m2 FEM(AB) = FM(AB) = -FEM(BA) = Moment distribution (case 2): Joints AD DF 0.33 FEM -17.6 5.4 1.39 kNm/m 2.25 kNm/m 1.61 kNm/m A AB 0.67 1.4 10.8 -5.8 1.9 3.8 -1.8 0.6 1.2 -0.6 0.2 0.4 ---------------------------------------9.5 9.5 --------------------------------------- 284938628.xls B BA 0.67 -1.6 -11.5 5.4 -3.6 1.9 -1.3 0.6 -0.4 BC 0.33 18.9 -5.8 -10.5 10.5 -1.8 -0.6 -0.2 2 Z= 174.156 166.65 > As(req)= 165 mm2/m 0.011860174 < No comp.90 Sagging moment at top slab = 16.15% (i) Slab As (min) = (ii) Wall As (min) = 0.00 Hogging moment at top corners = 10.44 38.005123193 < No comp. Z= 172.75 kN/m Shear in wall : Effective depth.90 kNm/m 10.3 Steel at Bottom Slab : K= 0.3 Hogging REINFORCEMENT PROVISION (A) SUPPORT STEEL (I) TOP SLAB use Y As (req) = As (prov) = (II) BOTTOM SLAB use Y As (req) = As (prov) = 0.018649174 < No comp.32 > As(req)= 256 mm2/m 0.71 kNm/m -4.156 165.83 kNm/m 17.01199689 < No comp.steel required. for Slab.xls 3 .156 165.156 K= 0.steel required. Z= 171.DESIGN MOMENT ENVELOPE Hogging moment at bottom corners = 12.12 > As(req)= 269 mm2/m Steel in Wall : K= 0.steel required.013216776 < No comp.for Wall.3 (ii) wall :: Sagging Sagging 166.156 165.42 > As(req)= 180 mm2/m 0.01962779 < No comp. Z= 170.steel required. d = 174 mm Shear V = 22.steel required.71 SHEAR cover to rebar = size of rebar = 50 mm 12 mm dia.94 kNm/m 16.steel required.25 261 mm2/m 263 mm2/m 12 spacing 261 mm2/m 377 mm2/m 300 c/c 12 spacing 261 mm2/m 377 mm2/m 300 c/c 10 spacing 263 mm2/m 314 mm2/m 250 c/c (III) WALL use Y As (req) = As (prov) = 284938628.92 Steel at Bottom Corners : K= 0.66 > As(req)= 164 mm2/m 0.156 K= 0.94 Sagging moment at bottom slab = 17.83 Hogging moment of wall = 4. d = 175 mm Shear V = REINFORCEMENT DESIGN Hogging (i) Slab R1" = P3' = P3" = 5. 10 mm dia.steel required.25 Steel at Top Corners : K= 0.25 Steel at Top Slab : K= 0. Z= 172.00 > As(req)= 71 mm2/m Minimum Steel Ratio Required For Tension & Distribution Steel = 0.76 12. Z= 171. Shear in base slab : Effective depth.41 > As(req)= 181 mm2/m 0.18 kN/m 6.00 kNm/m 12.013066158 < No comp. Critical shear section is at distance 2*d from the face of support.3 (ii) wall Hogging (i) Slab 166. Z= 170.156 165. 03 0.18 0.75 0.47 kN N/mm2 % N/mm2 * Shear is OK.22 0.13 0.50 kN N/mm2 % N/mm2 * Shear is OK.xls 4 .(B) MIDSPAN STEEL (I) TOP SLAB use Y As (req) = As (prov) = 12 spacing 261 mm2/m 377 mm2/m 300 c/c 12 spacing 269 mm2/m 377 mm2/m 300 c/c 10 spacing 263 mm2/m 314 mm2/m 250 c/c :: (II) BOTTOM SLAB use Y As (req) = As (prov) = (III) WALL use Y As (req) = As (prov) = SHEAR CHECK (i) Base Shear = Shear stress v = ps = vc = 22. 5. (ii) Wall Shear = Shear stress v = ps = vc = 284938628.18 0. 10 MATERIAL PROPERTIES fcu = fy = 30 N/mm2 460 N/mm2 :: 284938628.6 0.xls 5 . : 1500m x 1500 with soil cover INPUT DATA DIMENSIONS OF R.50 1.30 1.C BOX Internal width = Internal height = Wall thickness = Slab thickness = Effective width = Effective height = 1500 1500 230 300 1730 1800 mm mm mm mm mm mm A D B C ASSUMPTIONS Thickness of pavement = 110 mm Unit weight of soil = Unit weight of concrete = Unit weight of pavement = Soil cover = 20 24 24 1000 kN/m3 kN/m3 kN/m3 mm :: LOADING HB wheel load = 62.2 PARTIAL FACTOR OF SAFETY (BASED ON BS5400:PART 2) Dead load (concrete) = Superimposed dead load = HB Highway load = Earth pressure = ULS for concrete = 1.5KN/WHEEL 0.15 1.coefficient of lateral earth pressure = NORMALLY USE 25 UNIT HB = 45*2.5=112.5 kN/wheel Max.coefficient of lateral earth pressure = Min.75 1.Kumpulan Jurutera Perunding PROJECT : PJE JOB NO : DESIGNED BY : DATE : ILLAHI 10-Sep-15 STRUCTURAL DESIGN OF BOX CULVERTS ( HB HIGHWAY LOAD ) CULVERT NO. 1 1.76 37.1 -0.4 -4.1 -0.46 5.6 -0.4 -20.2 -0.0 2.5 4.6 12.3 -2.4 -5.5 20.54 0.46 A I(slab) = I(wall) = 2250000000 1013916667 B AD 0.7 2.6 -12.62 27.BOX CULVERT ANALYSIS UNFACTORED LOAD Self weight of top slab = Weight of walls = Weight of pavement = Weight of soil cover = HB Highway load = 7.14 kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m Moment distribution (case 1): distribution factor .3 1.2 --------------------------------------- BA 0.11 m (transverse dispersion) ANALYSIS OF BOX CASE 1 : For max.15 kNm/m 8.33 kN/m2 P2 = 26.91 m (longitudinal dispersion) 4.1 0.3 0.3 0.1 ---------------------------------------18.2 18.98 kN/m2 P2 = 78.62 kN/m2 Top slab pressure = 99.21 kN/m2 FEM(AB) = FM(AB) = -FEM(BA) = Moment distribution (case 2): Joints AD DF 0.9 --------------------------------------- 284938628.38 24.5 0.8 5.3 0.2 1.0m > depth > 1. P1 = 14.2 -0.6 0.54 27.8 10. lateral earth pressure acting on the wall in empty condition.5 5.0 4.1 BC 0.46 -5.7 2.81 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 *Note: Dispersion of wheel load is taken as 2:1 in soil (BS5400 :pt 2) For depth of fill 6.0 0. -FEM(AD) = FM(AD) = FEM(AB) = -FEM(BA) = FM(AB) = FEM(BC) = FM(BC) = 24.2 -0.6 -2.2 -1.1 0.5 -0.79 kNm/m A AB 0.45 17.3 -1.9 10.1 0.96 kN/m2 :: Loading is symmetrical about the vertical centreline of the box. P1 ------> ! A where P1.21 kNm/m 5.20 8.1 ---------------------------------------10.27 kN/m2 Base pressure = 109.54 27. consider 2 axles only L= B= (A) 2.xls B BA 0.1 -5.5 0.2 -0.4 -11.54 FEM -24.1 0.8 -10.3 -0.4 -0.2 9.8m .1 BC 0.54 -24.6 -2.BM and shear on wall & max.14 15.1 6 .5 -0.42 41.45 2. consider max.5 -1.0 AB 0.lateral earth pressure acting on the box. P2 = earth pressure ! ! ! P2 ------> ! B P1 = 42.46 -17. hogging BM at corners.64 20. consider min.sagging moment in the top & bottom slab.46 15. DF(AD) = DF(BC) = DF(AB) = DF(DC) = Joints DF FEM 0.00 41.1 :: (B) CASE 2 : For max. 156 231.51 > As(req)= 310 mm2/m 0.09 kN/m 16.010182947 < No comp.45 23. Z= 172.DESIGN MOMENT ENVELOPE Hogging moment at bottom corners = 20. Shear in base slab : Effective depth. Z= 239.8 Steel at Bottom Slab : K= 0. 12 mm dia.26 kNm/m 5.steel required.8 (ii) wall :: Sagging Sagging 165.for Wall.005795542 < No comp.015955668 < No comp. for Slab.steel required.3 366 mm2/m 261 mm2/m 12 spacing 366 mm2/m 377 mm2/m 300 c/c 12 spacing 366 mm2/m 377 mm2/m 300 c/c 12 spacing 310 mm2/m 377 mm2/m 300 c/c (III) WALL use Y As (req) = As (prov) = 284938628.steel required.29 Sagging moment at bottom slab = 28.84 > As(req)= 221 mm2/m 0.steel required.26 SHEAR cover to rebar = size of rebar = 50 mm 12 mm dia.3 Steel at Top Slab : K= 0.156 K= 0.steel required.xls 7 .156 K= 0.87 > As(req)= 80 mm2/m Minimum Steel Ratio Required For Tension & Distribution Steel = 0. Z= 240.156 231.022605192 < No comp. Z= 170. d = 174 mm Shear V = REINFORCEMENT DESIGN Hogging (i) Slab R1" = P3' = P3" = 27.steel required.29 kNm/m 26. Z= 169.156 165.156 231.steel required.50 kNm/m 28. Critical shear section is at distance 2*d from the face of support.04 > As(req)= 275 mm2/m 0.53 Hogging moment at top corners = 18. d = 244 mm Shear V = 28.020024176 < No comp.156 231.19 kNm/m 18.50 Sagging moment of wall = 5. Z= 241.3 Steel at Top Corners : K= 0.59 > As(req)= 307 mm2/m Steel in Wall : K= 0.15% (i) Slab As (min) = (ii) Wall As (min) = 0.011495478 < No comp.21 > As(req)= 196 mm2/m 0.94 > As(req)= 283 mm2/m 0.014717983 < No comp.8 Sagging REINFORCEMENT PROVISION (A) SUPPORT STEEL (I) TOP SLAB use Y As (req) = As (prov) = (II) BOTTOM SLAB use Y As (req) = As (prov) = 0.19 Sagging moment at top slab = 26.15 Steel at Bottom Corners : K= 0.46 69.8 (ii) wall Hogging (i) Slab 165. Z= 239.81 kN/m Shear in wall : Effective depth.53 kNm/m 20. 09 0.xls 8 . 27.15 0.16 0.12 0.41 kN N/mm2 % N/mm2 * Shear is OK.81 0.(B) MIDSPAN STEEL (I) TOP SLAB use Y As (req) = As (prov) = 12 spacing 366 mm2/m 377 mm2/m 300 c/c 12 spacing 366 mm2/m 377 mm2/m 300 c/c 12 spacing 261 mm2/m 377 mm2/m 300 c/c :: (II) BOTTOM SLAB use Y As (req) = As (prov) = (III) WALL use Y As (req) = As (prov) = SHEAR CHECK (i) Base Shear = Shear stress v = ps = vc = 28.22 0.50 kN N/mm2 % N/mm2 * Shear is OK. (ii) Wall Shear = Shear stress v = ps = vc = 284938628. xls 9 .5KN/WHEEL 284938628.5=112.= 45*2. xls 10 .mm4 mm4 284938628. 284938628.xls 11 . xls 12 .284938628. 5=62.6 0.50 1.5 kN/wheel Max.30 1.10 MATERIAL PROPERTIES fcu = fy = 30 N/mm2 460 N/mm2 :: 284938628.500m with soil cover INPUT DATA DIMENSIONS OF R.75 1.coefficient of lateral earth pressure = NORMALLY USE 25 UNIT HB = 45*2.5KN/WHEEL 0. : 1.coefficient of lateral earth pressure = Min.xls 13 .2 PARTIAL FACTOR OF SAFETY (BASED ON BS5400:PART 2) Dead load (concrete) = Superimposed dead load = HB Highway load = Earth pressure = ULS for concrete = 1.C BOX Internal width = Internal height = Wall thickness = Slab thickness = Effective width = Effective height = 3500 1950 250 350 3750 2300 mm mm mm mm mm mm A D B C ASSUMPTIONS Thickness of pavement = 110 mm Unit weight of soil = Unit weight of concrete = Unit weight of pavement = Soil cover = 20 24 24 1000 kN/m3 kN/m3 kN/m3 mm :: LOADING HB wheel load = 62.15 1.950m x 3.Kumpulan Jurutera Perunding PROJECT : PJE JOB NO : DESIGNED BY : DATE : ILLAHI 10-Sep-15 STRUCTURAL DESIGN OF BOX CULVERTS ( HB HIGHWAY LOAD ) CULVERT NO. 80 126.0 3.2 55.54 -10.54 -31.2 BC 0. -FEM(AD) = FM(AD) = FEM(AB) = -FEM(BA) = FM(AB) = FEM(BC) = FM(BC) = 118.91 m (longitudinal dispersion) 4.46 126.47 kN/m2 P2 = 89.0m > depth > 1.9 1.01 kN/m2 Top slab pressure = 100.1 49. consider min.8 --------------------------------------- BA 0.17 27.46 126.1 59. lateral earth pressure acting on the wall in empty condition.2 -0.4 17.5 AB 0.0 ---------------------------------------60.11 m (transverse dispersion) ANALYSIS OF BOX CASE 1 : For max.40 kNm/m A AB 0.0 11.0 BC 0.54 27.2 29.46 -118.7 -67.7 -13.79 190.6 -16.40 5.18 kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m Moment distribution (case 1): distribution factor .3 -3.2 49.1 41.8 -11.49 kN/m2 P2 = 29.6 14.5 -3.2 -1.11 177.67 kN/m2 FEM(AB) = FM(AB) = -FEM(BA) = Moment distribution (case 2): Joints AD DF 0.64 20.21 43.4 7.07 kNm/m 14.BOX CULVERT ANALYSIS UNFACTORED LOAD Self weight of top slab = Weight of walls = Weight of pavement = Weight of soil cover = HB Highway load = 8.8 60.6 -4.4 -2.4 -26.79 kN/m2 Base pressure = 108.BM and shear on wall & max.54 9.54 A I(slab) = I(wall) = 3572916667 1302083333 B AD 0.sagging moment in the top & bottom slab.3 ---------------------------------------49. consider 2 axles only L= B= (A) 2.2 -13.7 2.7 4.46 0.1 49.85 2.46 FEM -118.8 -43.00 41.xls B BA 0.9 14.8 -53.0 -3.60 kNm/m 10.9 0.1 3.19 kN/m2 :: Loading is symmetrical about the vertical centreline of the box.0 14 . P1 = 14.8m . hogging BM at corners.3 1.8 67.1 -6.1 --------------------------------------- 284938628.2 -31.6 -1.1 1.9 -1. P2 = earth pressure ! ! ! P2 ------> ! B P1 = 43.7 3.20 31.8 1.9 24.8 9. P1 ------> ! A where P1.1 8.4 -63.8 :: (B) CASE 2 : For max.2 -8.81 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 *Note: Dispersion of wheel load is taken as 2:1 in soil (BS5400 :pt 2) For depth of fill 6.2 -55.lateral earth pressure acting on the box. consider max. DF(AD) = DF(BC) = DF(AB) = DF(DC) = Joints DF FEM 0.2 -51.8 -1. 48 78.72 kN/m Shear in wall : Effective depth.156 184.steel required.steel required.156 K= 0. d = 294 mm Shear V = 125.DESIGN MOMENT ENVELOPE Hogging moment at bottom corners = 67.3 (ii) wall :: Sagging Sagging 184.3 Steel at Bottom Slab : K= 0.20 > As(req)= 606 mm2/m 0.026138499 < No comp.78 kNm/m 67.86 26.07 kNm/m 128.049387571 < No comp.47 SHEAR cover to rebar = size of rebar = 50 mm 12 mm dia.156 279.3 (ii) wall Hogging (i) Slab 184.77 kNm/m 60. Z= 285.47 kNm/m -20.steel required.053824019 < No comp.steel required. Shear in base slab : Effective depth. Z= 276.156 279.87 < As(req)= 1156 mm2/m 0.07 Sagging moment at bottom slab = 135.052070637 < No comp. Z= 180.xls 15 .156 279.3 Hogging REINFORCEMENT PROVISION (A) SUPPORT STEEL (I) TOP SLAB use Y As (req) = As (prov) = (II) BOTTOM SLAB use Y As (req) = As (prov) = 0.61 < As(req)= 836 mm2/m 0.for Wall. Z= 275. Critical shear section is at distance 2*d from the face of support.87 < As(req)= 1223 mm2/m Steel in Wall : K= 0.15% (i) Slab As (min) = (ii) Wall As (min) = 0. Z= 190. d = 194 mm Shear V = REINFORCEMENT DESIGN Hogging (i) Slab R1" = P3' = P3" = 44.steel required.156 279.steel required.steel required.3 441 mm2/m 291 mm2/m 12 spacing 544 mm2/m 565 mm2/m 200 c/c 12 spacing 606 mm2/m 646 mm2/m 175 c/c 12 spacing 941 mm2/m 1131 mm2/m 100 c/c (III) WALL use Y As (req) = As (prov) = 284938628.13 > As(req)= 544 mm2/m 0.90 kN/m 22.02 kNm/m 135.01 > As(req)= 278 mm2/m Minimum Steel Ratio Required For Tension & Distribution Steel = 0.3 Steel at Top Slab : K= 0.156 K= 0.02 Hogging moment of wall = 20.29 Steel at Bottom Corners : K= 0.77 Hogging moment at top corners = Sagging moment at top slab = 128.018131083 < No comp. Z= 286.060030484 < No comp. Z= 181.023436077 < No comp.78 60.3 Steel at Top Corners : K= 0. for Slab. 12 mm dia.06 < As(req)= 941 mm2/m 0. (ii) Wall Shear = Shear stress v = ps = vc = 284938628.44 kN N/mm2 % N/mm2 * Shear is OK.67 kN N/mm2 % N/mm2 * Shear is OK.58 0.43 0.22 0.90 0.xls 16 .(B) MIDSPAN STEEL (I) TOP SLAB use Y As (req) = As (prov) = 16 spacing 1156 mm2/m 1340 mm2/m 150 c/c 16 spacing 1223 mm2/m 1340 mm2/m 150 c/c 12 spacing 291 mm2/m 377 mm2/m 300 c/c :: (II) BOTTOM SLAB use Y As (req) = As (prov) = (III) WALL use Y As (req) = As (prov) = SHEAR CHECK (i) Base Shear = Shear stress v = ps = vc = 125.72 0. 44.23 0. xls 17 .= 45*2.5KN/WHEEL 284938628.5=62. xls 18 .mm4 mm4 284938628. 284938628.xls 19 . 284938628.xls 20 . xls 21 . : 1.50 1.C BOX Internal width = Internal height = Wall thickness = Slab thickness = Effective width = Effective height = 3500 1950 250 350 3750 2300 mm mm mm mm mm mm A D B C ASSUMPTIONS Thickness of pavement = 110 mm Unit weight of soil = Unit weight of concrete = Unit weight of pavement = Soil cover = 20 24 24 0 kN/m3 kN/m3 kN/m3 mm :: LOADING HB wheel load = 62.coefficient of lateral earth pressure = NORMALLY USE 25 UNIT HB = 45*2.75 1.Kumpulan Jurutera Perunding PROJECT : PJE JOB NO : DESIGNED BY : DATE : ILLAHI 10-Sep-15 STRUCTURAL DESIGN OF BOX CULVERTS ( HB HIGHWAY LOAD ) CULVERT NO.5KN/WHEEL 0.2 PARTIAL FACTOR OF SAFETY (BASED ON BS5400:PART 2) Dead load (concrete) = Superimposed dead load = HB Highway load = Earth pressure = ULS for concrete = 1.15 1.10 MATERIAL PROPERTIES fcu = fy = 30 N/mm2 460 N/mm2 :: 284938628.5 kN/wheel Max.coefficient of lateral earth pressure = Min.6 0.5=112.500m INPUT DATA DIMENSIONS OF R.950m x 3.30 1. 5 -10.4 4.49 kNm/m A AB 0.64 0. consider min. P1 = 7.1 21.xls B BA 0.8 62.54 A I(slab) = I(wall) = 3572916667 1302083333 B AD 0.4 -68.5 18. DF(AD) = DF(BC) = DF(AB) = DF(DC) = Joints DF FEM 0. P1 ------> ! A where P1.4 22 .7 ---------------------------------------62.24 kNm/m 7.2 6.3 :: (B) CASE 2 : For max.4 -1.4 AB 0.0m > depth > 1.5 1.6 ---------------------------------------70.11 m (transverse dispersion) ANALYSIS OF BOX CASE 1 : For max.1 -1.91 m (longitudinal dispersion) 3.8 10.40 5.16 kNm/m 10. consider max.46 168.3 1.17 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 *Note: Dispersion of wheel load is taken as 2:1 in soil (BS5400 :pt 2) For depth of fill 6.9 -17.20 18.7 -5.1 6.0 -5.85 2.5 BC 0.54 6.67 kN/m2 P2 = 69.1 -73.1 -66.46 168.00 84.4 3.46 239.5 -79.20 kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m Moment distribution (case 1): distribution factor .8 --------------------------------------- 284938628.8 2.54 18.6 -77.BM and shear on wall & max.54 -7.46 FEM -159.21 kN/m2 Top slab pressure = 136.2 1.9 -19.9 77.46 -159.08 kN/m2 Base pressure = 143.3 5.6 -2.5 76.5 64.7 5.8 -6.6 11.9 --------------------------------------- BA 0.8 -1.6 -39.48 30.9 23.9 1.sagging moment in the top & bottom slab.8m .14 252. consider 2 axles only L= B= (A) 1.5 70.6 19.9 70.BOX CULVERT ANALYSIS UNFACTORED LOAD Self weight of top slab = Weight of walls = Weight of pavement = Weight of soil cover = HB Highway load = 8.89 kN/m2 P2 = 23.54 -22.7 BC 0. hogging BM at corners.5 -4.07 kN/m2 FEM(AB) = FM(AB) = -FEM(BA) = Moment distribution (case 2): Joints AD DF 0.lateral earth pressure acting on the box.71 168.3 -20.46 0.5 -87.1 38.2 83.3 -43.6 -22.9 68.1 -3. -FEM(AD) = FM(AD) = FEM(AB) = -FEM(BA) = FM(AB) = FEM(BC) = FM(BC) = 159.48 kN/m2 :: Loading is symmetrical about the vertical centreline of the box.47 22.2 41. lateral earth pressure acting on the wall in empty condition.7 -11. P2 = earth pressure ! ! ! P2 ------> ! B P1 = 23.9 -1. Z= 179.156 279.DESIGN MOMENT ENVELOPE Hogging moment at bottom corners = 77.35 kNm/m 176. Critical shear section is at distance 2*d from the face of support.156 279.3 441 mm2/m 291 mm2/m 12 spacing 634 mm2/m 754 mm2/m 150 c/c 16 spacing 697 mm2/m 2010 mm2/m 100 c/c 12 spacing 1095 mm2/m 1131 mm2/m 100 c/c (III) WALL use Y As (req) = As (prov) = 284938628.15% (i) Slab As (min) = (ii) Wall As (min) = 0.steel required. Z= 283.156 279.67 SHEAR cover to rebar = size of rebar = 50 mm 12 mm dia.030036503 < No comp.steel required.84 > As(req)= 697 mm2/m 0.027334081 < No comp.steel required.28 kN/m 14.69 Steel at Bottom Corners : K= 0.79 < As(req)= 1633 mm2/m 0.72 kN/m Shear in wall : Effective depth.steel required.31 Hogging moment of wall = 43.038679304 < No comp.35 Sagging moment at bottom slab = 183.31 kNm/m 183.for Wall.89 59. Z= 185.steel required.67 kNm/m -43.89 70.070692677 < No comp.3 Hogging REINFORCEMENT PROVISION (A) SUPPORT STEEL (I) TOP SLAB use Y As (req) = As (prov) = (II) BOTTOM SLAB use Y As (req) = As (prov) = 0.88 Hogging moment at top corners = Sagging moment at top slab = 176.156 184.3 Steel at Bottom Slab : K= 0. d = 194 mm Shear V = REINFORCEMENT DESIGN Hogging (i) Slab R1" = P3' = P3" = 32. Shear in base slab : Effective depth.068009612 < No comp. Z= 268.27 > As(req)= 592 mm2/m Minimum Steel Ratio Required For Tension & Distribution Steel = 0.xls 23 .36 < As(req)= 987 mm2/m 0. d = 294 mm Shear V = 166.156 K= 0.88 kNm/m 70.77 < As(req)= 1095 mm2/m 0. 12 mm dia.89 kNm/m 77.78 > As(req)= 634 mm2/m 0.steel required.74 < As(req)= 1704 mm2/m Steel in Wall : K= 0.156 K= 0. Z= 284.3 (ii) wall :: Sagging Sagging 184.3 (ii) wall Hogging (i) Slab 184.062776294 < No comp.steel required.06 19.3 Steel at Top Slab : K= 0.3 Steel at Top Corners : K= 0.06898276 < No comp. for Slab. Z= 177. Z= 269.156 279. xls 24 .57 0. 32.72 0.28 0.67 kN N/mm2 % N/mm2 * Shear is OK.68 0. (ii) Wall Shear = Shear stress v = ps = vc = 284938628.58 0.(B) MIDSPAN STEEL (I) TOP SLAB use Y As (req) = As (prov) = 16 spacing 1633 mm2/m 2010 mm2/m 100 c/c 16 spacing 1704 mm2/m 2010 mm2/m 100 c/c 12 spacing 592 . 1131 mm2/m 100 c/c :: (II) BOTTOM SLAB use Y As (req) = As (prov) = (III) WALL use Y As (req) = As (prov) = SHEAR CHECK (i) Base Shear = Shear stress v = ps = vc = 166.64 kN N/mm2 % N/mm2 * Shear is OK.17 0. xls 25 .5=112.= 45*2.5KN/WHEEL 284938628. mm4 mm4 284938628.xls 26 . xls 27 .284938628. 284938628.xls 28 .
Copyright © 2024 DOKUMEN.SITE Inc.