Signals & systems (Solved Problems)



Comments



Description

Solved Problems1. signals and systems Express the signals shown in Fig. 1 in terms of unit step functions. Fig. 1 Answer x(t )  u (t  1)  2u (t )  u (t  1)  u (t  2)  u (t  3) 2. Consider the system shown in Fig. 2. Determine whether it is (a) memoryless, ( b )causal, ( c ) linear, ( d ) time-invariant, or ( e ) stable. Fig. 2   (a) From Fig. 2 we have y (t )  T x (t )  x (t ) cos c (t ) ; Since the value of the output y ( t ) depends on only the present values of the input x( t ), the system is memoryless. (b) E.g . t  5, y (5)  x(5) cos c (5) ; Since the output y ( t ) does not depend on the future values of the input x(t), the system is causal. (c) Let x(t )  1 x(t )   2 x(t ). Then y (t )  1x1(t )   2 x 2(t )cos c t  1x1 (t ) cos ct   2 x2 (t ) cos c t  1 y1 (t )   2 y2 (t ) Thus, the system is linear. (d) Let But y1 (t ) x1 (t )  x (t  t0 ) . Then y1 (t )  T x(t  t0 )  x(t  t0 ) cos c (t ) be the output produced by the shifted input y (t  t0 )  x(t  t0 ) cos c (t  t0 )  y1 (t ) . Hence, the system is not time-invariant. Sopapun Suwansawang Solved Problems (e) Since cos c t  1. 3. we have signals and systems y (t )  x(t ) cos c t  x(t ) Thus. where x(t )  u (t )  u (t (a) by an analytical technique.  3) and h(t )  u (t )  u (t  2) Sopapun Suwansawang . Evaluate y (t )  x(t )  h(t ). if the input x(t) is bounded. then the output y(t) is also bounded and the system is BIB0 stable. and (b) by a graphical method. x( )h(t   ) for different values of t are sketched in figure below. For the other intervals. Functions h( ). x( ) and h(t   ) overlap. We see that x( ) and h(t   ) do not overlap for t  0 and t  5.Solved Problems signals and systems (b) by a graphical method. computing the area under the rectangular pluses for these intervals. Thus. x( ) and h(t   ). we obtain Sopapun Suwansawang . and hence y (t )  0 for t  0 and t  5 . Solved Problems signals and systems Sopapun Suwansawang . we get d 2 y (t ) dt 2 Or d 2 y (t ) dt 2  a1  a1 dy(t )  a2 y (t )  x(t ) dt dy(t )  a2 y (t )  x(t ) dt 5. Determine and sketch the output y[n] of this system to the input x[n]. (1). Write a differential equation that relates the output y(t) and the input x( t ). The impulse response h[n] of a discrete-time LTI system.(1) w(t ) is the input to the second integrator. we have w(t ))  dy(t ) dt -------------. h[n]   [n]   [n  1]   [n  2]   [n  3]   [n  4]   [n  5] . (b) without using the convolution technique. (2) into Eq. x[n]   [n  2]   [n  4] x[n]  h[n]  x[n]   [n]   [n  1]   [n  2]   [n  3]   [n  4]   [n  5]  x[n]  x[n  1]  x[n  2]  x[n  3]  x[n  4]  x[n  5] Sopapun Suwansawang .(2) Substituting Eq. The continuous-time system consists of two integrators and two scalar multipliers. (a).Solved Problems signals and systems 4. e(t )  Since dw(t )  a1w(t )  a2 y(t )  x(t ) dt -------------. Solved Problems signals and systems y[n]   [n  2]   [n  4]   [n  3]   [n  5]   [n  4]   [n  6]   [n  5]   [n  7]   [n  6]   [n  8]   [n  7]   [n  9]   [n  2]   [n  3]  2 [n  6]  2 [n  7]   [n  8]   [n  9] y[n]  0. Write a difference equation that relates the output y[n] and the input x[n].0.1 6.0.2. Consider the discrete-time system.1.1.0. Sopapun Suwansawang .1.2. (3) w[n  1]  y[n]  x[n] 2 1 1 ---------------.(4) 1 1 ---------------.(2) y[n]  2w[n]  w[n  1] Solving Eqs.(1) and (2) for w[n] and w[n  1] in term of x[n] and y[n] 1 ---------------.(1) w[n]  x[n]  w[n  1] 2 ---------------. we obtain 2 y[n]  y[n  1]  4 x[n]  2 x[n  1] Sopapun Suwansawang . equating Eq.(5) w[n  1]  y[n  1]  x[n  1] 4 2 Thus. Write the input-output equation for the system. w[n] w[n  1] 1 ---------------.(4) w[n]  y[n]  x[n] 4 2 Changing n to (n  1) in Eq. we have 1 1 1 y[n]  x[n]  y[n  1]  x[n  1] 2 4 2 Multiplying both sides of the above equation by 4 2 y[n]  4 x[n]  y[n  1]  2 x[n  1] and rearranging terms.(5).Solved Problems signals and systems 7.(4) and Eq.
Copyright © 2025 DOKUMEN.SITE Inc.