Probabilidad Distr Prob

March 27, 2018 | Author: juan_camilo6180 | Category: Random Variable, Probability, Poisson Distribution, Probability Distribution, Sampling (Statistics)


Comments



Description

PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDADP. Reyes / Sept. 2007 PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD Elaboró: Héctor Hernández Primitivo Reyes Aguilar Septiembre de 2007 Mail: primitivo_reyes@yahoo.com Tel. 58 83 41 67 / Cel. 044 55 52 17 49 12 Página 1 de 37 PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD CONTENIDO 1. Introducción 2. Técnicas de conteo 3. Teorema de Bayes 4. Distribuciones de probabilidad 5. Distribuciones de probabilidad discretas 6. Distribuciones de probabilidad continuas Página 2 de 37 P. Reyes / Sept. 2007 PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Reyes / Sept. 2007 PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD 1. INTRODUCCIÓN La probabilidad se refiere al estudio de la aleatoriedad y la incertidumbre en cuaqlquier situación donde podría ocurrir uno de varios resultados posibles. En algunos casos se utiliza de manera informal como por ejemplo: hay un 50% de probabilidad de que llueva. DEFINICIONES  Probabilidad: es la posibilidad numérica de ocurra un evento. Se mide con valores comprendidos entre 0 y 1, entre mayor sea la probabilidad, más se acercará a uno.  Experimento: es toda acción bien definida que conlleva a un resultado único bien definido como el lanzamiento de un dado. Es el proceso que produce un evento.  Espacio muestral: es el conjunto de todos los resultados posibles de un experimento. Para un dado es SS = (1,2,3,4,5,6)  Evento: es cualquier colección de resultados contenidos en el espacio muestral. Es simple si sólo tiene un resultado y compuesto si tiene varios resultados. Definición Clásica de Probabilidad. Modelo de frecuencia relativa La probabilidad de un evento (E), puede ser calculada mediante la relación de el número de respuestas en favor de E, y el numero total de resultados posibles en un experimento. P E   # Favorable E # Total resultados Ejemplo 1: La probabilidad de que salga 2 al lanzar un dado es: 1  .16 6 Ejemplo 2: La probabilidad de lanzar una moneda y que caiga cara es: Ejemplo 3: La probabilidad de sacar 1,2,3,4,5, o 6 al lanzar un dado es: 1 1 1 1 1 1      1 6 6 6 6 6 6 Página 3 de 37 1  .5 2 la unión de A y B  A  B contiene todos los elementos de el evento A o B o ambos.3 Página 4 de 37 .3. P(A) = .7  P(A)=. Relaciones entre eventos Existen tres tipos de relaciones para encontrar la probabilidad de un evento: complementarios.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD  P.  Intersección de A y B Si A y B son eventos en un espacio muestral S. Probabilidad Compuesta Es la probabilidad compuesta por dos eventos simples relacionados entre sí. Eventos complementarios: El complemento de un evento A son todos los elementos en un espacio muestral (S) que no se encuentran en A. la probabilidad de tener un día despejado será 1-P(A) = . Reyes / Sept.  Unión de A y B Si A y B son eventos en un espacio muestral (S). la intersección de A y B  A  B está compuesta por todos los elementos que se encuentran en A y B. 1. conjunto de todos los “n” elementos relacionados = # Total de resultados posibles.7 P A  . 2007 La probabilidad de un evento está comprendida siempre entre 0 y 1. El complemento de A es: A  1  P  A Ejemplo 4: En el evento A (día nublado). condicionales y mutuamente excluyentes. La suma de las probabilidades de todos los eventos posibles (E) en un espacio muestral S = 1  Un espacio muestral (S): Es el conjunto Universal. En la composición existen dos posibilidades: Unión  o Intersección  . Las razones de queja en productos se muestran a continuación: RAZÓN DE LA QUEJA Falla eléctrica Falla mecánica Falla apariencia Total En garantía 18% 13% 32% 63% Fuera de 12% 22% 3% 37% 30% 35% 35% 100% garantía Total Si A es el evento de que la queja es por apariencia y que B representa que la queja ocurrió en el periodo de garantía. Se puede calcular P(Z | B) = P(A y B) / P(B) P(A | B) = 0. si B  0 PB  Ejemplo 5: Si el evento A (lluvia) y B(nublado) = 0.3. Reyes / Sept.3 P(A/B)=.51 Si C es el evento fuera de garantía y D falla mecánica: Página 5 de 37 .2 y el evento B (nublado) = 0. 2007 2.32 / 0. Probabilidad condicional: Para que se lleve a cabo un evento A se debe haber realizado el evento B. La probabilidad condicional de un evento A dado que ha ocurrido el evento B es: P A B   P A  B  .67 B Ejemplo 6.2  0. cual es la probabilidad de que llueva en un día nublado? Nota: no puede llover si no hay nubes P A B   P A  B  = PB  A 0.67 0.63 = 0.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. ya que al ser conjuntos mutuamente excluyentes la intersección no existe. Eventos mutuamente excluyentes.22 / 0. 3. Ejemplo 7. Al lanzar un dado: a) cual es la probabilidad de que salga 2 o 3? B) Calcule P A  B ? a) P A  B  1 1 1    .35 = 0. Página 6 de 37 .33 6 6 3 b) P A  B = 0. Reyes / Sept.628  Se dice que dos eventos A y B son independientes si: P(A/B) = P(A) o P(B/A) = P(B). De otra manera los eventos son dependientes. es imposible que salga 2 y 3 al mismo tiempo. Un ejemplo de evento independiente es: ¿Cuál es la probabilidad de que llueva en lunes? El ejemplo de evento dependiente es el ejemplo 5. La probabilidad de la ocurrencia de uno no está afectada por la ocurrencia del otro. Cuando un evento A no contiene elementos en común con un evento B. A B Eventos mutuamente excluyentes.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. se dice que estos son mutuamente excluyentes. 2007 P(C|D) = P(C y D) / P(D) = 0. 98  98   98  P A  B  P A  PB =     .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Reyes / Sept. 2007 Ley aditiva:  Cuando dos eventos no son mutuamente excluyentes: P A  B  P A  PB  P A  B  Cuando los eventos son mutuamente excluyentes: P A  B  P A  PB Ley multiplicativa:  Si los eventos A y B son dependientes: P A  B  P A  PB A  Si los eventos A y B son independientes: P A  B  P A  PB Ejemplo 8: Se selecciona una muestra aleatoria n = 2 de un lote de 100 unidades.98 . a) Al ser eventos independientes el primero del segundo: A P(A) =. calcule la probabilidad de que ambos artículos estén en buen estado. B: El segundo artículo está en buen estado. A: El primer artículo está en buen estado. b) si la muestra se toma sin reemplazo. se sabe que 98 de los 100 artículos están en buen estado.9604  100   100  Página 7 de 37 B P(B) =. a) calcule la probabilidad de que ambos artículos estén en buen estado. La muestra se selecciona de manera tal que el primer artículo se observa y se regresa antes de seleccionar el segundo artículo (con reemplazo). a) ¿Qué resultados contiene un evento A donde funcionan exactamente dos de los tres componentes? b) ¿Qué resultados están contenidos en el evento B en el que por lo menos funcionan dos los componentes? c) ¿Qué resultados están contenidos en el evento C donde funciona el sistema? Página 8 de 37 . B P(B/A)=.98 EJERCICIOS: 1.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Tres componentes forman un sistema. trabaja si por lo menos uno de ellos funciona. se tiene que haber cumplido antes el evento A. Reyes / Sept. Para que trabaje el sistema debe trabajar el componente 1 y el subsistema 2-3. 2007 b) Si la muestra se toma “sin reemplazo” de modo que el primer artículo no se regresa antes de seleccionar el segundo entonces:  98   97  P A  B  P A  PB A =       .97 A P(A) =.9602  100   99  Se observa que los eventos son dependientes ya que para que para obtener el evento B. Como los componentes del subsistema 2-3 están conectados en paralelo. A y C.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. A o C. B o C y B y C. Reyes / Sept. Algunos se relacionan con condiciones inseguras y otros a condiciones de trabajo. 2 1 3 2. como se muestra a continuación: Página 9 de 37 . En una planta los trabajadores trabajan 3 turnos. 2007 d) Listar los resultados de C’. En los últimos años ocurrieron 200 accidentes. Una empresa construye tres plantas eléctricas en tres lugares diferentes. en términos de A1. Página 10 de 37 . ¿Cuál es la probabilidad de que se detenga a) En ambos semáforos? b) En el primero pero no en el segundo? c) Exactamente en un semáforo? 4.4. La ruta que usa un automovilista tiene dos semáforos. 2007 Condiciones Condiciones de Total inseguras trabajo Diurno 10% 35% 45% Vespertino 8% 20% 28% Nocturno 5% 22% 27% Total 23% 77% 100% Si se elige al azar uno de los 200 informes de accidentes de un archivo y se determina el turno y tipo de accidente: a) ¿Cuáles son los eventos simples? b) ¿Cuál es la probabilidad de que el accidente seleccionado se atribuya a condiciones inseguras? c) ¿Cuál es la probabilidad de que no haya ocurrido en el turno diurno? 3.5 y la probabilidad de que pare por lo menos en uno es de 0. intersección y complemento para describir cada uno de los siguientes eventos.6. Utilizar las notaciones de unión.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD Turno P. Se Ai el evento en el que se termina la planta i en la fecha del contrato. La probabilidad de que pare en el primero es de 0. mostrar en diagramas de Venn. a) Por lo menos una planta se termina en la fecha del contrato. A2 y A3. Reyes / Sept. la probabilidad de que pare en el segundo es de 0. Reyes / Sept. 2007 b) Todas las plantas se terminan en la fecha del contrato c) Sólo se termina la planta del sitio 1 en la fecha del contrato d) Exactamente se termina una planta en la fecha del contrato e) Se termina ya sea la planta del lugar 1 o las otras dos en la fecha del contrato. Página 11 de 37 .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. cada primera oportunidad contó con tres posibilidades. y si empezó en bicicleta.. PRINCIPIO DE CONTEO: Si un evento puede hacerse de a1 maneras diferentes. carro o trasatlántico.. puede hacerse un segundo evento (independiente del primero) de a 2 modos diferentes y luego un tercer evento de a3 maneras también diferentes. carro o trasatlántico. bc. también podrá tomar avión. y una vez llegada a B. pc. Utilizando literales (las iniciales) el viajero tuvo las siguientes oportunidades: pa. y así sucesivamente. si empezó a pie podrá tomar avión. TÉCNICAS DE CONTEO Supóngase que una persona tiene dos modos de ir de una ciudad A a otra ciudad B. ¿De cuántos modos podrá realizar el viaje de A a C pasando por B? a pie CIUDAD A en avión CIUDAD B en bicicleta en carro CIUDAD C en trasatlántico Evidentemente. Que son 6. ba. Reyes / Sept. Se tiene: 2 oportunidades X 3 posibilidades = 6 posibilidades. en el orden indicado es de: a1  a2  a3 . pt. entonces el número de maneras diferentes en que los eventos se pueden realizar .an Ejemplo 9: ¿De cuantos modos podrá vestirse un joven que tiene 3 camisas diferentes. y cuando se ha hecho. 4 pantalones y dos pares de calzado? Página 12 de 37 . tiene tres maneras de llegar a otra ciudad C.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P.. bt. 2007 2. oi. oip. o de todos los elementos de un conjunto. PERMUTACIONES: Una permutación es un arreglo ordenado de una parte de los elementos. ip.  En la mayoría de los casos resulta muy complicado hacer las permutaciones manualmente por lo cual utilizamos la siguiente fórmula: Prn  n! n  r  ! donde: n = número total de elementos del conjunto P = Permutaciones r = número de elementos que se toman a la vez. ! = factorial. pi. poi : son seis permutaciones posibles. Nota: 0! = 1 Ejemplo 12: ¿Se toman 3 números de lotería de un total de 50. Ejemplo 10: Dado el conjunto de las letras o. Ejemplo 11: ¿Y tomando dos letras solamente cada vez? Solución: op. po: son seis permutaciones. io. ipo.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. escribir todas las permutaciones empleando las tres letras cada vez. i. Reyes / Sept.600 50  3 ! 47 ! Página 13 de 37 . de cuantas formas se pueden tomar los números? P350  50 ! 50 !   (50  49  48)  117 . p. 2007 Solución: Primer evento (camisas) a1 = 3 Segundo evento ( pantalones) a2 = 4 Tercer evento (zapatos) a3 = 2 a1  a2  a3  3  4  2  24 modos diferentes. iop. pio. Solución: opi. Para determinar el número de combinaciones posibles utilizamos: Crn  n! n  r  ! r ! Ejemplo 13: Un entrenador de basket ball tiene 9 jugadores igualmente hábiles. 2007 COMBINACIONES: Es el número de subconjuntos de r elementos que se puede formar de un conjunto de n elementos. a) P(4 ases) =  4 C4  48 C1   52 C5  b) P (4 ases y 1 rey) = = 1 54145  4 C4  4 C1   52 c) P (3 dieces y 2 jotas) = C5 1 649740  4 C3  4 C2   52 C5 1 108290 Página 14 de 37 . Hallar la probabilidad de extraer (a) 4 ases. (b) 4 ases y un rey (c) 3 dieces y dos jotas. ¿cuántas quintetas podrá formar? C59  9!  126 4 ! 5 ! Ejemplo 14: Se extraen 5 cartas de una baraja de 52 cartas. sin importar el orden de los elementos. Reyes / Sept.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. 80m de altura.40 P (Z/A) = .80m ¿Cual es la probabilidad de que sea mujer? Z > 1.80 m HOMBRE A = Hombre < 1. cuando no tenemos datos inmediatos del mismo mediante la información que tenemos de otros eventos.60 MUJER .80 B = Mujer > 1.99 . Asimismo 40% de los estudiantes son mujeres. Cuando existen dos eventos posibles A y B.20 P (Z/B) = . Si se selecciona un estudiante al azar y se observa que mide más de 1.01 =Z P (B) = . 2007 3.80.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P.80 P (A) = .20 . la probabilidad de que ocurra Z se describe mediante el “teorema de probabilidad total” el cual es: P(Z )  P A PZ APB PZ B Mediante el teorema anterior se deduce el teorema de Bayes: P A Z   P A  PZ A P A  PZ APB   PZ B  Ejemplo 8: En cierta universidad 20% de los hombres y 1% de las mujeres miden más de 1. Página 15 de 37 . TEOREMA DE BAYES Mediante el teorema de Bayes podemos calcular la probabilidad de que ocurra un determinado evento.01 Para encontrar la probabilidad de que sea mujer dado que mide más de 1. Reyes / Sept.80 . 6 x . Y la probabilidad de que por lo menos no se abra una de ellas. Se seleccionan 6 para hacerles entrevistas exhaustivas.032 = 3. Una planta emplea 20 trabajadores en el turno diurno.01) = .95.80 es . a) ¿Cuántas selecciones dan como resultado seis trabajadores del turno diurno? b) ¿Cuál es la probabilidad de que los 6 trabajadores sean seleccionados del mismo turno? c) ¿Cuál es la probabilidad de que por lo menos dos turnos diferentes estén representados en la selección? d) ¿Cuál es la probabilidad de que por lo menos uno de los turnos no esté representado en la muestra de trabajadores? 2.032 Podemos visualizar P(B/Z) en el siguiente diagrama: Por lo tanto la probabilidad de que sea mujer dado que mide más de 1. Una caldera tiene 5 válvulas de alivio idénticas.80 P(A/Z) P(B/Z) = .4 x . calcular la probabilidad de que por lo menos se abra una de ellas.20 +. Página 16 de 37 .4 x . La probabilidad de que que en algún momento se abra una de ellas es de 0.032.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Reyes / Sept. 2007 Utilizando el teorema de Bayes: P B Z   PB   PZ B  P A PZ APB  PZ B  Hombre Mujer P(B/Z) = (. Z > . Suponer que cada uno tiene la misma probabilidad de ser seleccionado de una urna de nombres.2 % EJERCICIOS: 1.01)/ (. Si su operación es independiente. 15 en el segundo y 10 en la noche. 10 y de que falle la bomba más nueva es de 0. 2007 3. Dos bombas conectadas en paralelo fallan en determinado día. el sistema funciona solo si tambiñen trabajan los componentes 3 y 4. La probabilidad de que solo falle la bomba más vieja es de 0. ¿Cuál es la probabilidad de que fallen ambas bombas al mismo tiempo? 4.05. Si los componentes son independientes y la probabilidad de que cada componente funcione es de 0. calcular la probabilidad de que funcione el sistema. sin que haya dependencia mutua. Los componentes 1 y 2 en paralelo hacen que el subsistema funcione con uno uno solo.9. 1 1 3 4 Página 17 de 37 . Reyes / Sept.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Un sistema de componentes conectados como se muestra en la figura. PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. 2007 4.5) y  y Página 18 de 37 . Suma (P(y)) = 1 y P(Y=y) 0 1/4 1 1/2 2 1/4 Su fórmula es la siguiente: 3  P( y )  P(Y  y )   (. DISTRIBUCIONES DE PROBABILIDAD Variable aleatoria: Para un determinado espacio muestral SS una variable aleatoria (VA) es cualquier regla que relaciona un número con cada resultado en SS.5)3 y (. Variable aleatoria discreta: Es una variable aleatoria cuyos posibles valores son enteros. 0 <= P(y) <= 1 2. Variable aleatoria de Bernoulli: Es cualquier variable aleatoria con valores 0 y 1. Distribución de probabilidad o función de masa de probabilidad: Establece en una tabla. Debe cumplir con las reglas siguientes: 1. fórmula o gráfica como se distribuye la probabilidad P(y) asociada a los posibles valores de la variable aleatoria y. Variable aleatoria continua: Es una variable aleatoria cuyos valores posibles son los reales. Reyes / Sept. Varianza de una distribución de probabilidad discreta Sea Y una variable aleatoria discreta con distribución de probabilidades P(X=x).3 0. denotada como E(X).3 1. 2007 Función de distribución acumulativa para Y=#de caras Valor esperado: 0.2 0 0. DISTRIBUCIONES DISCRETAS DISTRIBUCIÓN UNIFORME Página 19 de 37 .3 -0.8 1y 1. Reyes / Sept. la varianza de Y es:  X 2  E[( X   X ) 2 ]   ( x   X ) 2 P( X  x) x 5.9 F(x) Función de distribución acumulativa: 0.7 0.5 FX ( x)  P( X  x) 0. Entonces . es  X  E ( X )   xf X ( x)  xP( X  x) x x La media es el centro de la masa del rango de los valores de X.8 2 Con propiedades: 0  F ( x)  1 Limx F ( x)  1 Limx F ( x)  0 Valor esperado de una distribución de probabilidad discreta La media o valor esperado de una variable aleatoria discreta X .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. 11 prob (n  1) X  2 2 n 1  X2  12 0.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. cada uno con igual probabilidad. El muestreo se hace sin reemplazo P(x.15 0.D) es la probabilidad de exactamente x éxitos en una muestra de n elementos tomados de una población de tamaño N que contiene D éxitos. f ( x )  P( X  x )  1 n Con n = 10 se tiene: Su media y varianza son las siguientes: 0.05 0 2 4 6 8 1e+001 x DISTRIBUCIÓN HIPERGEOMÉTRICA Se aplica cuando la muestra (n) es una proporción relativamente grande en relación con la población (n > 0. Reyes / Sept.n.N. La función de densidad de distribución hipergeométrica: P ( x) C xD CnNxD CnN Cxn  n! x!(n  x)! Con La media y la varianza de la distribución hipergeométrica son: Página 20 de 37 .1N).09 0. 2007 La variable aleatoria toma un numero finito de n valores.07 0.13 0. 2007  nD  D  N  n   2   1     N  N  N  1  nD N Ejemplo: De un grupo de 20 productos.0183 = 1. ¿Cuál es la probabilidad de que 10 productos seleccionados contengan 5 productos buenos? Los productos defectivos son 5 en el lote. D = 5. ¿Cuál es la probabilidad de que se acepte el lote? b) Cuál es la probabilidad de aceptar el lote si contiene 3 defectuosos.83%  5!  15!     5!0!  5!10!  P(5)    0. N = 20. Página 21 de 37 . n = Tamaño de muestra. (N-D) = 15. D. x = 5 P(x=5) = 0. x = éxitos en la muestra. Se compran 10 transformadores y se toma una muestra de 4. 10 se seleccionan al azar para prueba. n.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD  P. Si se encuentra uno o más defectuosos se rechaza el lote de 10. Reyes / Sept. n = 10. D. EJERCICIO: 1.  En Fx Estadísticas seleccionar  =distr. D= éxitos en la población.0183 20! 10!10! USO DE EXCEL: N = Tamaño de Población. n y en Input constant introducir x. a) Si el lote tiene un defectuoso. N) USO DE MINITAB:  Calc > Probability distributions > Hypergeometric  Probability (densidad) o Cumulative probability (acumulada)  N.hipergeom(x. Donde la probabilidad de éxito se denota por p Suponga se realizan n experimentos Bernoulli independientes...PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. P(X>=5) = 1. 2007 DISTRIBUCIÓN BINOMAL Ensayo Bernoulli. La binomial es una aproximación de la hipergeométrica La distribución normal se paroxima a la binomial cuando np > 5 La variable aleatoria x tiene una distribución binomial como sigue: n f ( x)  P( X  x)    p x (1  p) n  x  x x  0.9568 = 0. Obtener la probabilidad para P(x<=4). Éxito o fracaso.1) = 1 – 0. Es un experimento aleatorio que solo tiene dos resultados.. n Con media y varianza: E ( X )   X  np V ( X )   X2  np(1  p) Ejemplo: Un equipo requiere a lo más 10% de servicios en garantía.0...1.2. El muestreo binomial es con reemplazamiento.20.1. X toma valores 0.P(X<=4) =1 . Para comprobarlo se compran 20 de estos equipos y se someten a pruebas aceleradas de uso para simular el uso durante el periodo de garantía. Es apropiada cuando la proporción defectiva es mayor o igual a 0.distr.binom(4. Página 22 de 37 . Suponga que la variable X de interés es el numero de éxitos.n La distribución binomial se utiliza para modelar datos discretos y se aplica para poblaciones grandes (N>50) y muestras pequeñas (n<0... Rechazar la afirmación de que falla menos del 10% si se encuentra que X>=5..0432 lo cual es bajo. Reyes / Sept.1.1N).1. p. n. p = probabilidad de éxito. 2007 USO DE EXCEL: x = éxitos en la muestra.binom(x.  En Fx Estadísticas seleccionar  =distr. Reyes / Sept. Página 23 de 37 . n = tamaño de muestra.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. 0 o 1 dependiendo si es puntual o acumulada) USO DE MINITAB:  Calc > Probability distributions > Binomial  Probability (densidad) o Cumulative probability (acumulada)  n = number of trials. p = probability of success y en Input constant introducir x. Suponga que solo 25% de los automovilistas se detienen por completo en un alto con luz roja intermitente cuando no está visible otro automóvil. que debería pensarse sobre el valor verdadero de P? 2. Un panel solar tiene una vida útil de 5 años con una probabilidad de 0. a) ¿Cuál es la probabilidad de que exactamente 18 tengan su vida útil de 5 años? b) ¿Cuál es la probabilidad de que cuando mucho 10 tengan esa vida útil? c) ¿Si solo 10 paneles tienen una vida útil de 5 años. 2007 EJERCICIOS: 1. ¿Cuál es la probabilidad de que exactamente sean reemplazados 2 en periodo de garantía?. Reyes / Sept. 3.95. 20% de los teléfonos se reparan cuando todavía está vigente la garantía. ¿Cuál es la probabilidad de que de 20 automovilistas seleccionados al azar se detengan: a) A lo sumo 6 se detengan por completo b) Exactamente 6 se detengan por completo? c) Al menos 6 se detengan por completo? d) Cuántos de los siguientes 20 automovilistas se espera que se detengan por completo? 4. Si se muestrean 20 plantas ¿Cuál es la probabilidad de que estén fuera de la ley: a) Menos que una planta? b) Menos de dos plantas c) Exactamente 3 d) Más de una Página 24 de 37 .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. De todas las plantas sólo el 5% descargan residuos por sobre la norma. Si una empresa compra 10 de estos teléfonos. De estos el 60% se reparan mientras que el 40% se reemplazan. Se toman 20 páneles solares y se registró la vida útil. 5.2 5  X 0  x 0 4  Su media y varianza son las siguientes: Página 25 de 37 . El experimento continua hasta completar r ensayos. Su función de distribución es:  x  r  1 r  p (1  p) x nb( x.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Reyes / Sept. 2.5. p = 0.0. Es decir si S=(de acuerdo en participar). el número de éxitos es fijo y el número de ensayos aleatorio. ….164 P( X  10)   nb( x.2 la probabilidad de que las personas quieran participar. ya que en contraste con la distribución binomial. se tiene: 14  nb(10. X se llama variable aleatoria binomial negativa.0.2 5 0. 3.034 4  La probabilidad de que a lo sumo ocurran 10 fracasos (F) se les pregunte a lo sumo a 10 personas es: 10 10  x  4  0. Cada ensayo produce un éxito o un fracaso. ¿Cuál es la probabilidad de que se les deba preguntar a 15 personas antes de encontrar a 5 que estén de acuerdo en participar?. 1. r = 5. 2007 DISTRIBUCIÓN BINOMIAL NEGATIVA Se basa en los mismos principios de la distribución binomial.810  0. Ejemplo: Se quieren reclutar 5 personas para participar en un nuevo programa.8 x  0. r ..2 y x = 10. 2.02)  0. 1. El experimento consiste de una secuencia de ensayos independientes. Si p = 0. La variable de interés es X = número de fracasos que preceden al r-ésimo éxito. p)  r 1  con X = 0.2)   0. La probabilidad de éxito es constante de un ensayo a otro. ¿Cuál es la probabilidad de que ocurran X=10 fracasos antes del r=quinto éxito?. P(éxito en el ensayo i) = p 4. 0.5. a) ¿Cuál es la probabilidad de que el primer fusible defectuoso sea uno de los primeros 5 probados? Página 26 de 37 . Se prueban secuecialmente hasta que se observa el primero con falla.2^5*0.0343941 Ejemplo: Un fabricante utiliza fusibles en un sistema eléctrico comprados en lotes grandes.0. 10) 0.8^10 = 0.5.2) y SUMA (X=0 hasta 10) =NEGBINOMDIST(X. 2007 r (1  p ) p r (1  p ) V ( x) p2 E ( x) USO DE EXCEL: =NEGBINOMDIST(10.2) Otra forma: Sea y el número de intentos hasta que el r-ésimo éxito es observado. Asumiendo que el lote contiene 10% de fusibles defectivos. Reyes / Sept.  y  1  r y r  p q p ( y )   y  r r  p rq 2  2 p P = probabilidad de éxito en un solo intento Q = 1-p Y = Número de intentos hasta que se obtienen los r éxitos P(15) = combinat(14.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. 9/(0.41.1 = 10 Varianza = q/p^2 = 0.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P.1 q= 0.. 2007 P= 0. Reyes / Sept. b) Encontrar la media.1)*(0.9 P(y) = p*(q^y-1) = (. Media = 1/p = 1/0. varianza y desviación estándar para y el número de fusibles probados hasta que el primer fusible con falla es observado.1^2) = 90 Sigma = 9.49 Página 27 de 37 .9^y-1) Para y = 1 hasta 5: P(y<=5) = p(1) + p(2) +………+ p(5) = 0. 001. La distribución de probabilidad de Poisson proporciona buenas aproximaciones cuando np <= 5. Página 28 de 37 .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. f ( x)  e  x x! x  0. Se aproxima a la binomial cuando p es igual o menor a 0. Una Variable aleatoria X tiene distribución Poisson si toma probabilidades con.. 2007 DISTRIBUCIÓN DE POISSON La distribución de Poisson se utiliza para modelar datos discretos como aproximación a la Binomial dada la dificultad que existía de encontrar tablas Binomiales adecuadas cuando n es grande y p pequeña.001)4 (0.6. Suponga que una compañía de seguros asegura las vidas de 5000 hombres de 42 años de edad. entonces la probabilidad de que la empresa pague exactamente 4 indeminizaciones y= 4 en un cierto año es: P( y  4)  p(4)  5000! (0. no así con Excel.1.1. Con media y varianza:   np     np Ejemplo 1. y el tamaño de muestra es grande (n > 16) por tanto np > 1.. Si los estudios actuariales muestran que la probabilidad de que un hombre muera en cierto año es 0.999)4996 4!*4996! El valor de esta expresión no aparece en tablas y su cálculo era difícil. Reyes / Sept.. Número de llegadas a una estación de servicio durante un minuto dado. Página 29 de 37 .05 = 1. constituye un buen modelo para experimentos donde Y representa el número de veces que ha ocurrido un evento en una unidad dada de tiempo o de espacio. teniendo: P( y  4)  4 e   4!  5 4 e 5  0. La distribución de Poisson además de ser útil como aproximación de las probabilidades Binomiales. conociendo el prom.1745 4! Ejemplo 2. conociendo el promedio por día.95)18  0./min. Por ejemplo: Número de llamadas recibidas en un conmutador durante un día. Reyes / Sept. se toma la tasa media de sucesos = np = (5000)*(0. Una planta tiene 20 máquinas. conociendo el promedio por día. si la probabilidad de que falla una en cierto día es 0.001)= 5. Sólo se requiere que los eventos sean independientes.0 P( y  2)  12 e1  0. Número de reclamaciones contra una empresa de seguros por semana. Número de ventas hechas por un agente de ventas en un día.05. np = 20 *0. conociendo el prom. 2007 Aproximando con la distribución de Poisson.05)2 (0.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P.184 2! Si se calcula con la distribución Binomial se tiene: P( y  2)  p(2)  20! (0. Encuentre la probabilidad de que durante un día determinado fallen dos máquinas. Sem.188 2!*18! La aproximación es mejor conforme se aproxima a np = 5. np.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD USO DE EXCEL: x = éxitos en la muestra.  En Fx Estadísticas seleccionar  =Poisson(x. Página 30 de 37 P. np = media. 0 o 1 dependiendo si es puntual o acumulada) USO DE MINITAB:  Calc > Probability distributions > Poisson  Probability (densidad) o Cumulative probability (acumulada)  n*p = mean y en Input constant introducir x. 2007 . Reyes / Sept. De que estén ocupadas es mayor al 50%? 3. 5 minutos? c) ¿Cuál es la probabilidad de no llamadas en los sig. Reyes / Sept. ¿Cuál es la probabilidad de que las siguientes 500 unidades presenten X=3 defectos? 6. En una universidad las llamadas entran cada 2 minutos a) ¿Cuál es la cantidad esperada de llamadas en una hora? b) ¿Cuál es la probabilidad de 3 llamadas en los sig. ¿Cuál es la probabilidad de contengan las 5 mejores unidades? 8.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. ¿Qué sucede en este caso?. De 9 empleados diurnos sólo 6 están calificados para hacer su trabajo. si se seleccionan aleatoriamente 5 de los 9 empleados. Se compran 150 partes y si la probabilidad de que 3 o más partes sean defectuosas excede al 50%. ¿Cuál es la prob. Se tienen 8 recepcionistas. De un grupo de 20 productos. no se hace la compra. 5 minutos? d) ¿cuál es la prob. 26 con MMX. de recibir 10 llamadas en los sig. 4. Un proceso de manufactura produce 1. si 3 clientes llaman ¿la prob. Cuál es la probabilidad de que: a) Los 5 estén calificados b) 4 esten calificados c) Por lo menos 3 estén calificados Página 31 de 37 . 2007 EJERCICIOS: 1. 15 minutos? 5. Si se seleccionan 10 al azar. estan ocupadas en promedio el 30% del tiempo. 7. se toman 10 al azar.2 defectos por cada 100 unidades producidas. si se seleccionan 20 al azar para una encuesta: Usando la distribución binomial y la distribución de Poisson a) ¿Cuál es la probabilidad de que dos choferes sean mujeres ? b) ¿Cuál es la probabilidad de que al menos cuatro sean mujeres? 2. El 20% de los choferes son mujeres. Un proveedor de partes de bicicleta tiene 3% de defectos. De que 3 tengan la tecnología MMX?. 40 trabajadores tienen nuevas computadoras. Integral desde menos infinito a más infinito de f(y) d(y) = F(  ) = 1 f(y) F(yo) yo y Función de distribución acumulativa Entre las distribuciones continuas más comunes se encuentran la distribución normal y la distribución exponencial. f(y) >= 0 2. 2007 6. Página 32 de 37 . Si F(y) es la función de distribución acumulada para una variable aleatoria continua entonces su función de densidad f(y) para y es: f(y) = dF(y) / dy Sus propiedades son que: 1.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. DISTRIBUCIONES CONTINUAS DE PROBABILIDAD Se diferencian de las distribuciones de probabilidad discretas en que su función de distribcuón acumulativa (F(yo)) para una variable aleatoria y es igual a la probabilidad F(yo) = P(y<=y0). Reyes / Sept. La función de densidad de probabilidad exponencial es: Para x >= 0 f ( x) 1  e  x   e x Donde Lambda es la tasa de falla y theta es la media. con un solo parámetro. La función de densidad de la distribución exponencial El modelo exponencial. entonces el recíproco de x. 2007 DISTRIBUCIÓN EXPONENCIAL Se usa para modelar artículos con una tasa de falla constante y está relacionada con la distribución de Poisson. es el más simple de todos los modelos de distribución del tiempo de vida.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Las ecuaciones clave para la exponencial se muestran: Página 33 de 37 . Si una variable aleatoria x se distribuye exponencialmente. Reyes / Sept. y = 1/x sigue una distribución de Poisson y viceversa. Su función de distribución acumulada es la siguiente: P( X  x)  1  e  t Cuando X = 0 la distribución de Poisson se convierte en el segundo término de la distribución exponencial.000 TASA DE FALLA : h (t )   Si el número de ocurrencias tiene Distribución de Poisson. MEDIA = 1. Reyes / Sept. Probabilidad de que el tiempo entre la ocurrencia de dos eventos cualquiera sea <= t F(x) t Aquí se desea saber de que no transcurra más de cierto tiempo entre dos llegadas.0030 0.0015  0.003.0025 ln 2 VARIANZA : t f(t) MEDIA : m  P. 2007 = 0. el lapso entre ocurrencias tiene distribución exponencial. sabiendo que se tiene una tasa de llegadas .PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD CDF : F (t )  1  e  t CONFIABILIDAD : R(t )  e  PDF : f (t )  e t MEDIANA : Función de Densidad de Probabilidad Exponencial 0.0010 0.001. MEDIA = 500 = 0.0035 1  0.000 Tiempo 1.000 0.002. Ejemplo: El tiempo de respuesta de un departamento es de 5 minutos promedio y se distribuye exponencialmente.0000 0 500 1. MEDIA = 333 0.693  1 2 0.500 2. La probabilidad de que el tiempo de respuesta a lo sumo de 10 minutos se determina como sigue: Página 34 de 37 .0005 0.0020  = 0. Exponential with mean = 5 x P( X <= x ) 10 0. Los sistemas complejos con muchos componentes y múltiples modos de falla tendrán tiempos de falla que tiendan a la distribución exponencial Desde una perspectiva de confiabilidad.233 USO DE EXCEL: Lamda = 1/ media. la tasa de falla es constante.2*10) = 0.. i.exp(10.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Página 35 de 37 . 1/5) = 0.1) = distr.864665 La Distribución Exponencial es usada como el modelo. lamda. 1/5) = 1.865 La probabilidad entre el tiempo de respuesta de 5 y 10 minutos es: P(5<=X<=10) = F(10.865 USO DE MINITAB:  Calc > Probability distributions > Exponential  Probability (densidad) o Cumulative probability (acumulada)  Indicar Threshold = 0 y en Scale indicar la media 5  En Input constant indicar la X del tiempo.0.2. Reyes / Sept.exp(-0.exp(x. 2007 P(X<=10) = F(10.e.  En Fx Estadísticas seleccionar  =distr. es la distribución más conservadora para predicción.1) = 0. para la parte de vida útil de la curva de la bañera.1/5) – F(5. 1*15  0. muy aplicada a la Confiabilidad. Reyes / Sept. es modelada con La Distribución exponencial.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P.777 Página 36 de 37 . o sea:  1 MTBF Ejemplo: El MTBF de un foco es de 10 semanas.de.1*15  0.223 y la probabilidad de que falle dentro de las 15 semanas es: P(15)  1  e0. por tanto = 0.1 fallas/semana y la probabilidad de que el foco no falle o continúe en operación hasta las 15 semanas es: R(15)  e0. que es la probabilidad de que un equipo o componente sobreviva sin falla hasta un periodo t bajo condiciones normales de operación: R(t) = Confiabilidad de un sistema o componente R(t )  e  t Donde  es la tasa media de falla y su inverso es el tiempo medio entre fallas (MTBF).  cons tan te Fallas infantiles Fallas aleatorias Senectud Fallas por desgaste La zona de tasa de fallas constantes. falla. 2007 Las fallas ocurren en los sistemas con una distribución denominada Curva de la Bañera: Fallas diseño   tasa. Un generador eléctrico tiene una vida promedio de 10 días.000 y 30. Sea X el tiempo entre dos solicitudes de servicio sucesivas a un departamento. 2007 EJERCICIOS: 1. Reyes / Sept. si X tiene una distribución exponencial con media = 10.PROBABILIDAD Y DISTRIBUCIONES DE PROBABILIDAD P. Las falla de los ventiladores de un equipo tiene un tiempo promedio de 25. b) La desviación estándar de esas llegadas c) P(X<=15) d) P(8<=X<=14) 2.000 horas? c) Entre 20.000 horas? 3. ¿cuál es la probabilidad de que a) Un ventilador seleccionado al azar dure por lo menos 20.125 exp(-0. El tiempo entre fallas de un componente de equipo es importante para proveer de equipos de respaldo. calcular: a) El tiempo esperado entre dos solicitudes sucesivas. El tiempo hasta una falla está modelado por la distribución exponencial: f(x) = 0.000 horas? b) A lo sumo 30. a) ¿Cuál es la probabilidad de que falle dentro de los siguientes 14 días? b) ¿Cuál es la probabilidad de que opere por más de 20 días? Página 37 de 37 . Un fabricante de equipos electrónicos ofrece un año de garantía.125*x) a) ¿Qué porcentaje de los equipos fallarán dentro del periodo de garantía? b) El costo de fabricación del equipo es de $500 y la ganancia es de $250 ¿Cuál es el efecto de la garantía por reemplazo sobre la ganancia? 4.000 Horas. Si el equipo falla en ese periodo por cualquier razón se reemplaza.
Copyright © 2025 DOKUMEN.SITE Inc.