PHY103_Lec_6

March 19, 2018 | Author: Shreya | Category: Electrostatics, Classical Electromagnetism, Electric Field, Mass, Mathematics


Comments



Description

Semester II, 2015-16Department of Physics, IIT Kanpur PHY103A: Lecture # 6 (Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.) Anand Kumar Jha 1 Summary of Lecture # 5: โ€ข Gaussโ€™s Law from Coulombโ€™s Law: ๐›๐› โ‹… ๐„๐„ = โ€ข Curl of the electric field : ๐›๐› ร— ๐„๐„ = 0 โ€ข Electric Potential: ๐„๐„ = โˆ’๐›๐›V ๐œŒ๐œŒ ๐œ–๐œ–0 ๐’ƒ๐’ƒ V ๐›๐› โˆ’ V(๐š๐š) = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐ซ๐ซ V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’‚๐’‚ โˆž โ€ข Electric Potential due to a localized charge distribution ๐‘ž๐‘ž 1 V ๐ซ๐ซ = 4๐œ‹๐œ‹๐œ–๐œ–0 r Point charge 1 ๐‘‘๐‘‘๐‘‘๐‘‘ V(๐ซ๐ซ) = ๏ฟฝ 4๐œ‹๐œ‹๐œ–๐œ–0 r Charge distribution 2 Charge distribution in terms of electric potential: Gaussโ€™s Law ๐›๐› โ‹… ๐„๐„ = ๐œŒ๐œŒ ๐œ–๐œ–0 But ๐›๐› ร— ๐„๐„ = 0 โ‡’ ๐„๐„ = โˆ’๐›๐›V Therefore, ๐›๐› โ‹… ๐„๐„ = ๐›๐› โ‹… โˆ’๐›๐›V = โˆ’๐›๐› โ‹… ๐›๐›V = โˆ’๐›ป๐›ป 2 V = ๐›ป๐›ป2 V ๐œŒ๐œŒ =โˆ’ ๐œ–๐œ–0 Poissonโ€™s Equation ๐œŒ๐œŒ ๐œ–๐œ–0 In the region of space where there is no charge, ๐œŒ๐œŒ=0 ๐›ป๐›ป2 V = 0 Laplaceโ€™s Equation 3 Summary: ๐œŒ๐œŒ V ๐„๐„= โˆ’๐›๐›V ๐ซ๐ซ V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ โˆž Electrostatics ๐„๐„ 4 Work and Energy in Electrostatics There is a charge ๐‘„๐‘„ in an electrostatic field ๐„๐„. How much work needs to be done in order to move the charge from point ๐’‚๐’‚ to ๐’ƒ๐’ƒ? ๐’ƒ๐’ƒ ๐’ƒ๐’ƒ ๐‘Š๐‘Š= ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = โˆ’๐‘„๐‘„ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = Q V ๐›๐› โˆ’ V(๐š๐š) ๐’‚๐’‚ ๐’‚๐’‚ โ€ข ๐…๐… = โˆ’๐‘„๐‘„๐„๐„ is the force one has to exert in order to counteract the electrostatic force ๐…๐… = ๐‘„๐‘„๐„๐„. โ€ข Work done to move a unit charge from point ๐’‚๐’‚ to ๐’ƒ๐’ƒ is the potential difference between points ๐’‚๐’‚ and ๐’ƒ๐’ƒ โ€ข Work is independent of the path. Take V(๐š๐š)=V(โˆž)=0 If Q = 1, ๐‘Š๐‘Š= QV ๐ซ๐ซ ๐‘Š๐‘Š= V ๐ซ๐ซ and V ๐›๐› = V ๐ซ๐ซ โ€ข Work done to create a system of unit charge (to bring a unit charge from โˆž to ๐ซ๐ซ is the electric potential. โ€ข Thus, electric potential is the potential energy per unit charge 5 Work required to assemble ๐’๐’ point charges: The work required to create a system of a point charge ๐‘„๐‘„ is: ๐‘Š๐‘Š = QV ๐ซ๐ซ . Work required to bring in the charge ๐‘ž๐‘ž1 from โˆž to ๐ซ๐ซ๐Ÿ๐Ÿ ๐‘Š๐‘Š1 = ๐‘ž๐‘ž1 V0 = ๐‘ž๐‘ž1 ร— 0 = 0 Work required to bring in the charge ๐‘ž๐‘ž2 from โˆž to ๐ซ๐ซ๐Ÿ๐Ÿ 1 ๐‘ž๐‘ž1 ๐‘Š๐‘Š2 = ๐‘ž๐‘ž2 V1 = ๐‘ž๐‘ž2 4๐œ‹๐œ‹๐œ–๐œ– r12 1 ๐‘ž๐‘ž1 0 Work required to bring in the charge ๐‘ž๐‘ž3 from โˆž to ๐ซ๐ซ๐Ÿ‘๐Ÿ‘ ๐‘ž๐‘ž ๐‘Š๐‘Š3 = ๐‘ž๐‘ž3 V2 = ๐‘ž๐‘ž3 4๐œ‹๐œ‹๐œ–๐œ– 2 + r13 r23 ๐‘Š๐‘Š= ๐‘Š๐‘Š1 + ๐‘Š๐‘Š2 + ๐‘Š๐‘Š3 = 1 ๐‘ž๐‘ž1 ๐‘ž๐‘ž2 4๐œ‹๐œ‹๐œ–๐œ–0 r12 0 Total work required to bring in the first three charges: ๐‘ž๐‘ž ๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž + r1 3 + r2 3 13 23 Total work required to bring in the first four charges: 1 ๐‘Š๐‘Š= 4๐œ‹๐œ‹๐œ–๐œ– 0 ๐‘ž๐‘ž1 ๐‘ž๐‘ž2 r12 ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž + r1 3 + r2 3 + r1 4 + r2 4 + r3 4 13 23 14 24 34 6 Work required to assemble ๐’๐’ point charges: Total work required to bring in the first four charges: ๐‘Š๐‘Š = 1 ๐‘ž๐‘ž1 ๐‘ž๐‘ž2 4๐œ‹๐œ‹๐œ–๐œ–0 r12 ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž ๐‘ž๐‘ž๐‘ž๐‘ž + r1 3 + r2 3 + r1 4 + r2 4 + r3 4 13 23 14 24 34 Total work required to bring in ๐‘›๐‘› point charges, with charge ๐‘ž๐‘ž1 , ๐‘ž๐‘ž2 , ๐‘ž๐‘ž3 โ‹ฏ ๐‘ž๐‘ž๐‘›๐‘› , respectively. : ๐‘›๐‘› ๐‘›๐‘› ๐‘ž๐‘ž๐‘–๐‘–๐‘ž๐‘ž๐‘—๐‘— 1 ๐‘Š๐‘Š = ๏ฟฝ๏ฟฝ r๐‘–๐‘–๐‘–๐‘– 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘–๐‘–=1 ๐‘—๐‘—>๐‘–๐‘– ๐‘›๐‘› ๐‘›๐‘› ๐‘ž๐‘ž๐‘–๐‘–๐‘ž๐‘ž๐‘—๐‘— 1 1 = ร— ๏ฟฝ๏ฟฝ r๐‘–๐‘–๐‘–๐‘– 2 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘–๐‘–=1 ๐‘—๐‘—=1 ๐‘—๐‘—โ‰ ๐‘–๐‘– ๐‘›๐‘› ๐‘›๐‘› ๐‘–๐‘–=1 ๐‘—๐‘—=1 ๐‘—๐‘—โ‰ ๐‘–๐‘– ๐‘ž๐‘ž๐‘—๐‘— 1 1 = ร— ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ๏ฟฝ r๐‘–๐‘–๐‘–๐‘– 2 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘›๐‘› 1 W = ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) 2 ๐‘–๐‘–=1 โ€ข This is the total worked required to assemble ๐‘›๐‘› point charges โ€ข The potential ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) is the potential at ๐ซ๐ซ๐ข๐ข due to all charges, except the charge at ๐ซ๐ซ๐ข๐ข . 7 The Work required to assemble (or the energy of ) a continuous charge Distribution: ๐‘›๐‘› 1 W = ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) 2 ๐‘–๐‘–=1 โ€ข This is the total worked required to assemble ๐‘›๐‘› point charges โ€ข The potential ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) is the potential at ๐ซ๐ซ๐ข๐ข due to all the other charges, except the charge at ๐ซ๐ซ๐ข๐ข . What would be the required work if it is continuous distribution of charge ? Wellโ€ฆ ๐‘›๐‘› 1 W = ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ๐‘‰๐‘‰ ๐ซ๐ซ๐ข๐ข 2 ๐‘–๐‘–=1 1 โ†’ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ 1 โ†’ ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ Is this correct? Not really ! The potential ๐‘‰๐‘‰(๐ซ๐ซ) inside the integral is the potential at point ๐ซ๐ซ. However, the potential ๐‘‰๐‘‰ ๐ซ๐ซ๐ข๐ข inside the summation in the potential at ๐ซ๐ซ๐ข๐ข due to all the charges except the charge at ๐ซ๐ซ๐ข๐ข . Because of this difference in the definition of the potentials, the integral formula turns out to be different. 8 The Work required to assemble (or the energy of ) a continuous charge Distribution: ๐œ–๐œ–0 1 = ๏ฟฝ (๐›๐› โ‹… ๐„๐„) ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ W = ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ W=โˆ’ ๐œ–๐œ–0 ๐œ–๐œ–0 ๏ฟฝ ๐„๐„ โ‹… ๐›๐›๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ + ๏ฟฝ ๐›๐› โ‹… ๐‘‰๐‘‰๐„๐„๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ Using ๐œŒ๐œŒ = ๐œ–๐œ–0 (๐›๐› โ‹… ๐„๐„) ๐œ–๐œ–0 ๐œ–๐œ–0 W = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐›๐›๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ + ๏ฟฝ ๐‘‰๐‘‰๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ 2 ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐œ–๐œ–0 ๐œ–๐œ–0 2 W = ๏ฟฝ ๐ธ๐ธ ๐‘‘๐‘‘๐‘‘๐‘‘ + ๏ฟฝ ๐‘‰๐‘‰๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ 2 ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐œ–๐œ–0 W= ๏ฟฝ ๐ธ๐ธ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  Using the product rule ๐›๐› โ‹… ๐‘“๐‘“๐€๐€ = ๐‘“๐‘“ ๐›๐› โ‹… ๐€๐€ + ๐€๐€ โ‹… (๐›๐›๐‘“๐‘“) Using the divergence theorem โˆซ๐‘‰๐‘‰๐‘œ๐‘œ๐‘œ๐‘œ ๐›๐› โ‹… ๐€๐€ ๐‘‘๐‘‘๐‘‘๐‘‘ = โˆฎ๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐€๐€ โ‹… ๐‘‘๐‘‘๐š๐š Using -๐›๐›๐‘‰๐‘‰ = ๐„๐„ When the volume we are integrating over is very large, the contribution due to the surface integral is negligibly small. 9 The Energy of a Continuous Charge Distribution: W= 1 ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ ๐œ–๐œ–0 W= ๏ฟฝ ๐ธ๐ธ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  So, what is the energy of a point charge using the above formula? 1 ๐‘ž๐‘ž Electric field of a point charge is ๐„๐„ = rฬ‚ 2 4๐œ‹๐œ‹๐œ–๐œ–0 r The energy of a point charge is therefore, 2 ๐‘ž๐‘ž2 1 1 ๐‘ž๐‘ž 2 2 ๐œ–๐œ–0 ๏ฟฝ ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ W= ๏ฟฝ ๐‘Ÿ๐‘Ÿ sin๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ = 2 2 8๐œ‹๐œ‹๐œ–๐œ–0 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘Ÿ๐‘Ÿ r 2 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘›๐‘› = โˆž ?? due to incorrect conversion 1 1 W = ๏ฟฝ ๐‘ž๐‘ž ๐‘‰๐‘‰ ๐ซ๐ซ โ†’ ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ of the sum into an integral ๐‘–๐‘– ๐ข๐ข 2 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ This is the total work done to assemble a set of point charges. This does not include the self energy of assembling a point charge. ๐‘–๐‘–=1 This is the total energy of a charge distribution including the self energy of assembling the charge distribution. Assembling a point charge requires infinite energy. This is why this expression gives 10 infinity for the energy of a point charge. The Electrostatic Energy (Summary): The work required to create a system of a point charge ๐‘„๐‘„ is: ๐‘Š๐‘Š = QV ๐ซ๐ซ Total work required to put together ๐‘›๐‘› point charges is: ๐‘Š๐‘Š = ๐‘›๐‘› 1 ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) 2 ๐‘–๐‘–=1 ๐‘‰๐‘‰(๐ซ๐ซ๐ข๐ข ) is the potential at ๐ซ๐ซ๐ข๐ข due to all charges, except the charge at ๐ซ๐ซ๐ข๐ข. 1 The Energy of a Continuous Charge Distribution: W = ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ ๐œ–๐œ–0 = ๏ฟฝ ๐ธ๐ธ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  Note # 1: The total work required to assemble a continuous charge distribution = the total energy of a continuous charge distribution Note # 2: The self energy of assembling a point charge is infinite. Therefore, the total energy of a point charge is infinite. 11 Where is the electrostatic energy stored ? The Energy of a Continuous Charge Distribution: 1 W = ๏ฟฝ ๐œŒ๐œŒ ๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰๐‘‰ 2 ๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ ๐œ–๐œ–0 = ๏ฟฝ ๐ธ๐ธ 2 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐‘Ž๐‘Ž๐‘™๐‘™๐‘™๐‘™ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  โ€ข The first expression has a volume integral of ๐œŒ๐œŒ ๐‘‰๐‘‰ over the localized charge distributions whereas the second one has the volume integral of ๐ธ๐ธ 2 over all space. So, where is the electrostatic energy stored? Within the charge distribution or over all space? โ€ข Just as both the integrals are mathematically correct, both the interpretations are also correct. The electrostatic energy can be interpreted as stored locally within the charge distribution or globally over all space. โ€ข Again, at this point, as regarding fields, we know how to calculate different physical quantities but we donโ€™t really know what exactly the field is. 12
Copyright ยฉ 2025 DOKUMEN.SITE Inc.