Nokia LTE Layering Strategy PA 1.4 Draft



Comments



Description

LTE LAYERINGL2300, L2100, L1800, L900 NOKIA TEAM 1 CONTENT  LTE Layering & Load Balancing Principle  LTE Layering Methodology ⁻ Spectrum Bandwidth ⁻ Layer Coverage ⁻ UE Capability ⁻ Service Bearer Segregation  LTE Layering Parameter Setting ⁻ Idle Mode ⁻ Connected Mode 2 13/03/2018 © Nokia 2014 Commercially Confidential CONTENT  LTE Layering & Load Balancing Principle  LTE Layering Methodology ⁻ Spectrum Bandwidth ⁻ Layer Coverage ⁻ UE Capability ⁻ Service Bearer Segregation  LTE Layering Parameter Setting ⁻ Idle Mode ⁻ Connected Mode 3 13/03/2018 © Nokia 2014 Commercially Confidential Layering & Load Balancing Guide Principle • The underlying principle in layering is to keep it simple and tractable • Layering is basically implemented via very small number of design parameters: • Absolute priorities • “Hard exit threshold” = minimum level to camp in a cell • “Soft exit threshold” = level to exit the layer if another lower priority layer is available • “Entry threshold” = level to enter a higher priority layer • All LTE radio RNW parameters are aligned to these three design values!! 4 13/03/2018 © Nokia 2014 Commercially Confidential Layering & Load Balancing Guide Principle • The target priority is to roughly balance average User throughput between layers this will compensate imbalance on PRB utilization, Connected User • Factors to consider  Balancing end user experience on layers  Layer carrier frequency and bandwidths  Layer coverage footprints  Site density per layer  UE ecosystem distribution at Networks  Simplicity and uniformity across the network 5 13/03/2018 © Nokia 2014 Commercially Confidential CONTENT  LTE Layering & Load Balancing Principle  LTE Layering Methodology ⁻ Spectrum Bandwidth ⁻ Layer Coverage ⁻ UE Capability ⁻ Service Bearer Segregation  LTE Layering Parameter Setting ⁻ Idle Mode ⁻ Connected Mode 6 13/03/2018 © Nokia 2014 Commercially Confidential SPECTRUM & COVERAGE FOR LAYERING APPROACH • L2300 suitable for capacity densification with less coverage thus it should define as highest layer to grab traffic aggressively L2300_20 (7) -5 dB • Existing L1800 has higher capacity and wider coverage thus it should define as capacity layer and 2nd highest L2300_10 (5) -5 dB priority • L2100 has limited bandwidth and limited coverage, it should define as less priority than L1800 to maintain end L1800_15 (6) user experience. 2 dB • L900 has wider coverage but it only has 5 MHz bandwidth with limited capacity, thus it should define as L2100_5 (4) last priority. 9 dB L900_5 (3) Layer Access Mode Band Bandwidth Pmax (watt) Pmax (dBm) PRS power (dBm) FSL ( f ) Rx Delta (dB) L2300 TDD 2300 20 20 43.0 12.22 67.2 -55.02 -5.14 L2300 TDD 2300 10 10 40.0 12.22 67.2 -55.02 -5.14 L2100 FDD 2100 5 20 43.0 18.24 66.4 -48.21 1.67 L1800 FDD 1800 15 30 44.8 15.23 65.1 -49.88 0 L900 FDD 900 5 20 43.0 18.24 59.1 -40.85 9.03 Note : assume same point distance for FSL calculation. 7 13/03/2018 © Nokia 2014 Commercially Confidential Geo Location for Layering Verification • Geo – Location can verify implemented Layering strategy by analyzing the distribution of UE among layers within eNode B. • As sample beside, Most of UE camp on L1800 (EARFCN 1875) compare to L2100 (EARFCN 126) this might caused by UE capability • 96% UE has RSRP > -100 dBm where this indicate overlay coverage to L2100 as potential target area for load balancing. Probability balancing at L2100 can take over ~16% from total good sample ( > -100dBm) based on coverage approach. • L1800 is still dominance taking over Potential the traffic and possible to be more MRBTSID EARFCN Layer Sample GT_-100dbm % Ave_Dist_GT_-100dbm Balancing offloaded to L2100 based on coverage 126 L2100 7057 6828 96.75% 15.76% 563.6 approach 248631 1875 L1800 36274 32051 88.36% 73.97% 902.59 • Should Not available or less sample at Total 43331 38879 L2100 need to check whether any layering parameters set is properly define or less UE ecosystem at this area, 8 13/03/2018 © Nokia 2014 Commercially Confidential UE CAPABILITY ANALYSIS DEVICE DISTRIBUTION 1800000 TIMING ADVANCE DISTRIBUTION < 500 m, BALI - URBAN AREA 1600000 1400000 1200000 1000000 24% 800000 TA1 : x<50% 46% TA2 :70>x>=50% 600000 TA3: 80%>x>=70% 400000 TA4 : x>80% 19% 200000 0 BALNUS KALIMANTAN PUMA SULAWESI 11% SUPPORT_3G_900 SUPPORT_3G_2100 SUPPORT_4G_900 SUPPORT_4G_1800 SUPPORT_4G_2100 SUPPORT_4G_FDD_2300 SUPPORT_4G_TDD_2300 #LTE_TERMINALL • Setting L2300 as highest priority still reasonable refers to UE capability information, where around ~ 75% UE are TDD 2300 capable in the network, it indicates potential UE which can be offloaded from L1800 to L2300 for capacity densification when L2300 set as highest priority . This information should be combine with coverage point of view. For Example : Urban area ( Denpasar City and Badung) in Bali case, around 46% of cell has TA < 500 m with number of sample > 80%, these cells are potential to be offloaded to L2300 as red site solution and layering to L2300 will perform effectively • L2100 and L900 capable UE is also quite mature where more less 75% UE in the network capable FDD L900 and more than 85% L2100. This ecosystem will support on layering performance. 9 13/03/2018 © Nokia 2014 Commercially Confidential SERVICE BEARER BASED APPROACH • Service bearer differentiation can be applied for GBR and Non GBR layer. • Specific layer is prioritized handling GBR Non GBR L2300_20 (7) service, in the other hand other layers are specify for Non GBR traffic in order to Non GBR L2300_10 (5) maintain non GBR cell throughput services • L900 with wider coverage and limited 5 Non GBR L1800_15 (6) MHz bandwidth is more priority handling GBR service • L2100 can be the 2nd GBR service handler Non GBR L2100_5 (4) 2nd GBR If there is no colo L900. • L1800 & L2300 are focused handling non GBR traffic capacity Non GBR L900_5 (3) 1st GBR • This differentiation is using Service Base Hand Over features. LTE1127 Service based mobility trigger 10 13/03/2018 © Nokia 2014 Commercially Confidential CONTENT  LTE Layering & Load Balancing Principle  LTE Layering Methodology ⁻ Spectrum Bandwidth ⁻ Layer Coverage ⁻ UE Capability ⁻ Service Bearer Segregation  LTE Layering Parameter Setting ⁻ Idle Mode ⁻ Connected Mode 11 13/03/2018 © Nokia 2014 Commercially Confidential Layering Parameter Setting 1 IDLE MODE LAYERING STRATEGY 2 CONNECTED MODE LAYERING STRATEGY 12 13/03/2018 © Nokia 2014 Commercially Confidential RADIO NETWORK LAYER L2300_20 (7) TDD - L2300 20 MHz reserved highest priority in Layering for capacity issue. FDD - L1800 15 TDD - L2300 10 MHz set as 2nd priority layering L1800_15 (6) TDD - L2300 10 MHz reserved 3rd priority in layering FDD - L2100 5 MHz has 4rd priority in layering since it has limited capacity L2300_10 (5) FDD - L900 5 MHz has 5rd priority in layering Load balancing among layers using Idle Mode Load Balancing, Connected load L2100_5 (4) balancing subject to trial L900_5 (3) U2100 F1 is prioritized layer for PS redirection or PS Handover U2100 F2 is prioritized for CSFB U2100 (2) U900 is less priority layer for CSFB and redirection. All layer activate reselection from and to LTE, Smart LTE layering is enable at cell with LTE overlay coverage U900 (1) GSM is will handle voice traffic and encourage for traffic migration to LTE or UTRAN GSM (0) 13 13/03/2018 © Nokia 2014 Commercially Confidential IDLE MODE STRATEGY Qrxlevmin = -124 dBm Cell Priority Setting: L1800 (6) > L2100 (4) > L900 (3) Applied for all LTE Layer L2300_20/10 L2300_20/10 L2300_20/10 L2300 <-116 dBm L2300 >-110 dBm L1800> -110 dBm Reselection Intra Frequency L1800_15 Start measure = -62 dBm all layer L1800_15 L1800_15 L1800 >-110 dBm L1800 >-110 dBm L1800 <-116 dBm L2100> -110 dBm Reselection Inter Frequency Start measure = -104 dBm L900 & L2100 L2100_5 L2100_5 L2100_5 L1800 <-116 dBm L900 > -110 dBm L2100 <-116 dBm L2100_10 >-100 dBm CSFB L900 > -110 dBm CSFB L900 L900 L900 L900 CSFB CSFB L21/L900 <-116 dBm CSFB U21/900 > -101 dBm CSFB SLL SLL SLL U2100 U2100 U2100 U2100 U2100 U2100 SLL SLL SLL RAT_1 f_1U900 U900 U900 14 13/03/2018 © Nokia 2014 Commercially Confidential IDLE MODE LOAD BALANCING MO Parameter Name FDD L1800_15MHz FDD L2100_5MHz FDD L900_5MHz FDD L2300_20 MHz FDD L2300_10MHz L2300_20/10 LNBTS actIdleLB 1 1 1 1 1 LNBTS actSelMobPrf 0 0 0 0 0 -100 dBm LNBTS actMeasBasedIMLB 1 1 1 1 1 LNBTS reportTimerIMLBA4 3000 3000 3000 3000 3000 L1800_15 LNCEL idleLBPercentageOfUes 40 70 70 40 40 LNCEL idleLBCapThresh 30 70 70 30 30 LNCEL idleLBCelResWeight 100 30 30 40 70 LNCEL targetLoadGbrDl 75 60 60 50 50 L2100_5 LNCEL targetLoadnonGbrDl 85 70 70 75 75 LNCEL targetLoadPdcch 75 60 60 50 50 -95 dBm LNCEL t320 20 10 10 20 20 L900_5 • L2300 _20 MHz has highest priority on layering to densify high traffic area and offloading L1800 red site thus it should aggressively grab traffic. Its MLB trigger to exit layer should less aggressive. • L1800_15 MHz has 2nd highest selection priority at SIB Broadcast and it has better capacity, the IMLB trigger should set less aggressively to make UE 2nd prefer camp on L1800 and give better user experience at L1800 instead of L2100 and L900 with limited 5MHz capacity. • Target carrier for load balancing should has RSRP > -95 dBm RSRP for FDD 2100 & L900, > -100 dBm RSRP and -12 dB RSRQ for FDD 1800 and L2300 to avoid ping pong and UE camp to worst carrier • FDD 1800 & L2300 Load balancing will be trigered if Composite Available Capacity (CAC) is less than 30%, while FDD 2100 & FDD 900 will triger if CAC < 70% which means a more aggressive • idleLBCapThresh & idleLBPercentageOfUes are adjustable to obtain expected balancing figure and end user experience trade off. 15 13/03/2018 © Nokia 2014 Commercially Confidential IDLE MODE LOAD BALANCING idleLBEutCelResWeight L2300_20 & 10 L2300_20 & 10 idleLBEutCelResPrio minDeltaRsrpIMLB minDeltaRsrqIMLB qRxLevMinInterF 100 enableA4IMLB interPresAntP eutCelResPrio minRsrpIMLB minRsrqIMLB interFrqThrH interTResEut qQualMinR9 interFrqThrL dlCarFrqEut pMaxInterF measBdw L1800_15 L1800_15 mrbtsId qOffFrq lnBtsId irfimId L2300_20 L2300_20 1 L2300_10 1 6 SOURCE 2300_20 Mhz 5 40 14 14 1 1 3 3 3 -95 -12 24 15 -20 -124 30 L2300_20 L2300_20 2 L1800 1 5 6 100 14 14 1 1 4 3 3 -100 -12 24 15 -20 -124 L2100_5 L2100_5 L2300_20 L2300_20 3 L2100 1 4 4 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 L2300_20 L2300_20 4 L900 1 3 3 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 L2300_10 L2300_10 1 L2300_20 1 6 SOURCE 2300_10 Mhz 6 70 14 14 1 1 3 3 3 -95 -12 24 15 -20 -124 30 L2300_10 L2300_10 2 L1800 1 5 5 100 14 14 1 1 4 3 3 -100 -12 24 15 -20 -124 L900_5 L900_5 L2300_10 L2300_10 3 L2100 1 4 4 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 L2300_10 L2300_10 4 L900 1 3 3 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 SOURCE L1800 L1800 L1800 1 L2300_20 1 6 6 70 14 14 1 1 3 3 3 -95 -12 24 15 -20 -124 L1800 L1800 2 L2300_10 1 5 5 40 14 14 1 1 4 3 3 -95 -12 24 15 -20 -124 • Target carrier weighting are set with L1800 has L1800 L1800 3 L2100 1 4 4 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 L1800 L1800 4 L900 1 3 3 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 highest weighting for better end user experience. SOURCE 2100 • L900 and L2100 has less weighting as target carrier for L2100 L2100 1 L2300_20 1 5 5 70 14 14 1 1 3 3 3 -95 -12 24 15 -20 -124 reselection due to less capacity (5 MHz) L2100 L2100 2 L2300_10 1 4 4 40 14 14 1 1 4 3 3 -95 -12 24 15 -20 -124 L2100 L2100 3 L1800 1 6 6 100 14 14 1 1 2 3 3 -100 -12 24 15 -20 -124 • Weighting is adjustable to obtain expected balancing L2100 L2100 4 L900 1 3 3 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 figure SOURCE L900 L900 L900 1 L2300_20 1 5 5 70 14 14 1 1 3 3 3 -95 -12 24 15 -20 -124 • Load balancing figure is also subject to UE band L900 L900 2 L2300_10 1 4 4 40 14 14 1 1 4 3 3 -95 -12 24 15 -20 -124 capability in the network L900 L900 3 L1800 1 6 6 100 14 14 1 1 2 3 3 -100 -12 24 15 -20 -124 L900 L900 4 L2100 1 3 3 30 14 14 1 1 2 3 3 -95 -12 24 15 -20 -124 16 13/03/2018 © Nokia 2014 Commercially Confidential LAYERING STRATEGY 1 IDLE MODE LAYERING STRATEGY 2 CONNECTED MODE LAYERING STRATEGY 17 13/03/2018 © Nokia 2014 Commercially Confidential CONNECTED MODE STRATEGY Intra Freq measurement start = -50 dBm L2300_20/10 L2300_20/10 L2300_20/10 A3 = 5dB/A5 Event A3 Event A3 = 3 dB/A5 Event Inter Freq measurement start : L2300_20 MHz = -108 dBm L1800_15 L1800_15 L2300_10 MHz = -105 dBm L1800 = -108 dBm A3 = 3dB/A5 Event A3 = 5 dB/A5 Event L2100 = -105 dBm A3 Event L900 = -105 dBm L2100_5 L2100_5 A3 = 3dB/A5 Event A3 = 5dB/A5 Event A3 = 5 dB/A5 Event L900 L900 L900 L900 Redirection < -116 dBm PS HO < -115 dBm Redirection < -116 dBm Redirection < -116 dBm PS HO < -115 dBm PS HO < -115 dBm U2100 U2100 U2100 U2100 U2100 U2100 RAT_1 f_1 U900 U900 U900 18 13/03/2018 © Nokia 2014 Commercially Confidential CONNECTED MODE STRATEGY L1800 & L2300 hysA3OffsetRsrpI Handover Measurement Triggers hysThreshold3Int measQuantInterF a5ReportIntervalI a3OffsetRsrpInte a5TimeToTriggerI a3ReportInterval threshold3aInter threshold3InterF a3TimeToTrigger measurementBa eutraCarrierInfo offsetFreqInter interPresAntP RsrpInterFreq RsrpInterFreq threshold1 = 75 = -65 dBm threshold2a = 36 = -104 dBm nterFreq nterFreq nterFreq ndwidth lnHoIfId mrbtsId lnBtsId erFreq rFreq threshold2InterFreq = 32 = -108dBm Freq req req SOURCE 2300_20 Mhz threshold2Wcdma = 28 = -112 dBm L2300_20 L2300_20 1 8 2 8 1 8 L2300_10 0 0 0 0 5 15 32 36 threshold4 = 24 = -116 dBm L2300_20 L2300_20 2 6 2 8 1 8 L1800 0 0 1 0 5 15 32 35 L2300_20 L2300_20 3 10 2 8 1 8 L2100 0 0 1 0 5 15 30 35 L2300_20 L2300_20 4 10 2 8 1 8 L900 0 0 1 0 5 15 30 35 L900 & L2100 SOURCE 2300_10 Mhz L2300_10 L2300_10 1 6 2 8 1 8 L2300_20 0 0 0 0 5 15 32 35 Handover Measurement Triggers L2300_10 L2300_10 2 6 2 8 1 8 L1800 0 0 1 0 5 15 32 35 L2300_10 L2300_10 3 10 2 8 1 8 L2100 0 0 1 0 5 15 30 35 threshold1 = 75 = -65 dBm L2300_10 L2300_10 4 10 2 8 1 8 L900 0 0 1 0 5 15 30 35 threshold2a = 40 = -100 dBm SOURCE L1800 threshold2InterFreq = 36 = -104dBm L1800 L1800 1 10 2 8 1 8 L2300_20 0 0 0 0 5 15 30 35 threshold2Wcdma = 24 = -112 dBm L1800 L1800 2 10 2 8 1 8 L2300_10 0 0 1 0 5 15 30 35 threshold4 = 24 = -116 dBm L1800 L1800 3 10 2 8 1 8 L2100 0 0 1 0 5 15 30 35 L1800 L1800 4 10 2 8 1 8 L900 0 0 1 0 5 15 30 35 SOURCE 2100 L2100 L2100 1 6 2 8 1 8 L2300_20 0 0 0 0 5 15 34 38 L2100 L2100 2 6 2 8 1 8 L2300_10 0 0 1 0 5 15 34 38 L2100 L2100 3 6 2 8 1 8 L1800 0 0 1 0 5 15 34 38 L2100 L2100 4 10 2 8 1 8 L900 0 0 1 0 5 15 30 35 SOURCE 900 L900 L900 1 6 2 8 1 8 L2300_20 0 0 0 0 5 15 34 38 L900 L900 2 6 2 8 1 8 L2300_10 0 0 1 0 5 15 34 38 L900 L900 3 6 2 8 1 8 L1800 0 0 1 0 5 15 34 38 L900 L900 4 10 2 8 1 8 2100 0 0 1 0 5 15 30 35 19 13/03/2018 © Nokia 2014 Commercially Confidential IRAT Handover & Redirection Strategy L23/L21/L18/L9 L23/L21/L18/L9 L23/L21/L18/L9 Connected Mode : L23/L21/L18/L9 • CS services by CSFB with Redirection • IRAT PS Handover and PS CSFB with Redirection redirection are PS HO Redirection LTE < -116dBm LTE < -115 dBm implemented for 3G > -105 dBm connected mode mobility to UTRAN • Smart LTE Layering used for redirection from 3G to LTE • SRVCC might be applied U2100 U2100 U2100 U2100 when VoLTE is implemented in Network U900 U900 RAT_1 f_1 20 13/03/2018 © Nokia 2014 Commercially Confidential CSFB & REDIRECTION TO 3G CSFB via redirection Activation LNBTS actCSFBRedir= 1 = enabled PS Redirection trigger: Redirection Trigger L23/L21/L18/L9 L23/L21/L18/L9 LNCEL -116 dBm threshold4 = 24 = -116 dBm a2TimeToTriggerRedirect = 5 = 128ms Redirection Redirection to 3G CSFB priority priority REDRT Priority setting: SLL U21 F1 > U21 F2 > U9 F3 for CSFB 3G > -104 dBm PS Redirection Priority setting: U21 F2 > U21 F1 > U9 F3 for PS Redirect U21 F2 > U21 F1 > U9 F3 Redrtid 0 1 2 U2100 F1/F2/F3 U2100 F1/F2/F3 CSFB Priority setting: redirFreqUtra U900 U2100 U2100 U21 F1 > U21 F2 > U9 F3 csfallBPrio 4 1 2 emerCallPrio 4 1 2 redirectPrio 4 3 2 U900 U900 All U21 layers should have same priority and higher than U9 Note : 1 is highest priority 21 13/03/2018 © Nokia 2014 Commercially Confidential Handover Activation IRAT PS HO TO 3G LNBTS actHOtoWcdma= 1 = true actCsfbPsHoToUtra= 1 = true Handover Measurement Triggers L23/L21/L18/L9 L23/L21/L18/L9 IRAT 3G Measurement trigger: -112 dBm LNCEL threshold2a = 36 = -104 dBm threshold2Wcdma = 28 = -112 dBm Serving cell RSRP < -115 dBm IRAT HO to 3G Triggers CSFB priority 3G Nbrcell: LNHOW SLL EcNo> -14 dBm reportIntervalUtra= 2 = 480 ms Or 3G > -104 dBm RSCP > -105 dBm PS Handover b2Threshold1Utra = 25 = -115 dBm U2100 F1/F2/F3 U2100 F1/F2/F3 b2Threshold2UtraEcn0 = 24 = -12 dB b2Threshold2UtraRscp = 10 = -105 dBm b2TimeToTriggerUtraMeas = 9 = 480 ms Neighbours U900 U900 LNADJW Create by ANR to UTRAN 22 13/03/2018 © Nokia 2014 Commercially Confidential SRVCC Activation SRVCC TO 3G (OPTIONAL) LNBTS actSrvccToWcdma = 1 = true actServBasedMobThr= 1 = true SRVCC 3G Measurement trigger L1800/L2300 : -110 dBm L900/L2100 : -104 dBm SRVCC Measurement Triggers. L23/L21/L18/L9 L23/L21/L18/L9 LNCEL (L1800,L2300) threshold2aQci1 = 34= -106 dBm threshold2WcdmaQci1 = 30 = -110 dBm Serving cell LNCEL (L900,L2100) CSFB priority RSRP < -112 dBm threshold2aQci1 = 34= -102 dBm 3G Nbrcell: threshold2WcdmaQci1 = 30 = -104 dBm SLL EcNo> -12 dBm 3G > -104 dBm Or SRVCC Threshold ( L1800, L2300) RSCP > -100 dBm b2Threshold1UtraQci1 = 25 = -112 dBm b2Threshold2UtraEcnoQci1 = 24 = -12 dB U2100 F1/F2/F3 U2100 F1/F2/F3 b2Threshold2UtraRscpQci1 = 10 = -100 dBm b2TimeToTriggerUtraMeas = 9 = 480 ms SRVCC Threshold ( L2100, L900) b2Threshold1UtraQci1 = 25 = -106 dBm U900 U900 b2Threshold2UtraEcnoQci1 = 24 = -12 dB b2Threshold2UtraRscpQci1 = 10 = -100 dBm b2TimeToTriggerUtraMeas = 9 = 480 ms L900 & L2100 set to early trigger due to throughput performance Neighbours LNADJW Create by ANR to UTRAN 23 13/03/2018 © Nokia 2014 Commercially Confidential VoLTE Layering ( OPTIONAL) • VoLTE layering is LTE1127 Service based mobility trigger to specify VoLTE Layers • The objective of this scenario is to maintain Non GBR user Non GBR L2300_20 (7) throughput when VoLTE is introduced to existing networks • High number of VoIP UEs in the cell degrades total cell Non GBR L2300_10 (5) throughput and limits throughput for other services due to lower priority resources for non-GBR traffic are limited Non GBR L1800_15 (6) actInterFreqServiceBasedHo = 1 freqLayListServiceBasedHo ( create at Non GBR L2100_5 (4) 2nd GBR MOPR & MODPR) = EARFCN L900 & L2100 Non GBR L900_5 (3) 1st GBR 24 13/03/2018 © Nokia 2014 Commercially Confidential 25 AdjLQrxlevminEUTRA: -124 dBm (-62) RSRP : 13/03/2018 AdjLThreshigh: 16 dB (8) -108 dBm Cell Selection qrxlevmin: -124 dBm (-124) threshSrvLow: 8 dB (8) qQualMinUtra: -18 dB (-18) Abs Priority qRxLevMinUtra: -101 dBm (-101) (2) RSRP : Cell Selection QqualMin : -18 (-18) EcNo: -18 dB -116 dBm RSCP: -101 dBm © Nokia 2014 Threshold4: -116 dBm (24) hysThreshold4 : 0 dB (0) QrxlevMin : -115 dBm (-58) Idle Mode QRxlevMin : -124 dBm (-124) UE Context Re-direction (Blind) CSFB via Re-direction (Blind) Abs Priority L1800 (6) > L2100 (4) > L900 (3) Commercially Confidential AdjLQrxlevminEUTRA: -124 dBm (-62) RSRP : AdjLThreshigh: 16 dB (8) -108 dBm Cell Selection Cell PCH/URA PCH ECM IDLE SmartLTELayeringEnabled: (4) or (8) T1: RRC state change Cell_DCH to CCH Re-direction (Blind) Cell FACH SmartLTELayeringEnabled: (4) or (8) T2: HSDPA/HSPA to DCH/DCH CTS T3: CS RAB release SmartLTELayeringRSCP: -95 dBm Re-direction (Blind) SmartLTELayeringEnabled: (8) T4: Periodic trigger AdjLMinRSRPLevel -108 dBm (-54) AdjLMinRSRQLevel: -12dB (-24) Re-direction (Meas) RSRQ: -12dB RSRP -108 dBm LTEHandoverEnabled: Disabled (0) Cell DCH UTRAN – LTE Layering Guideline (U21/U9 – L18/L21/L9) PS HO threshold2Wcdma: -112 dBm (28) hysThreshold2Wcdma: 0 dB (0) b2Threshold1Utra: -115 dBm (25) : -115 dBm b2Threshold2UtraEcn0: -12 dB (24) RSRP : -116 dBm EcNo: -12 dB b2Threshold2UtraRscp: -105 dBm (10) RSCP: -105 dBm B2 Reporting RSRP PS HO Meas RSRP -112 dBm ECM CONNECTED b1ThresholdCSFBUtraRscp: -105 dBm (10) b1ThresholdCSFBUtraEcn0: -12 dB (24) CSFB via PSHO EcNo: -12 dB RSCP: -105 dBm Intra LTE Neighboring Strategy • All LTE cells create neighbor toward intra frequency and L2300_20 & 10 L2300_20 & 10 inter frequency for all carrier • ANR to Intra/inter frequency L1800_15 L1800_15 LTE feature is appled for neighbor creation. L2100_5 L2100_5 L900_5 L900_5 26 13/03/2018 © Nokia 2014 Commercially Confidential UTRAN - LTE Neighboring Strategy • All LTE cells create neighbor toward all UTRAN carrier (U2100 L2300_20 & 10 F1, U2100 F2 and U900) on LNADJW and LNRELW. Create maximum 32 Neighbor each UTRAN carrier. • create HO identifier for each UTRAN Carrier (U2100 F1, L1800_15 U2100 F2 and U900) on LNHOW • ANR to UTRAN feature recommend to be apply for neighbor creation. L2100_5 L900_5 U900_F3 U2100_F2 • All UTRAN cells create neighbor toward all LTE carrier (L2300, L1800 L2100 & L900) on ADJL and ADJE. Create maximum 32 U2100_F1 Neighbor each LTE carrier • create HO identifier for each LTE Carrier (L2300, L1800 L2100 & L900) on HOPL 27 13/03/2018 © Nokia 2014 Commercially Confidential BACK UP 28 13/03/2018 © Nokia 2014 Commercially Confidential Average User Throughput Analysis AVG USER THROUGHPUT VS AVG DL PRB UTILISATION AVG USER THROUGHPUT VS AVG DL PRB UTILISATION TDD 20 MHZ TDD 10 MHz 45000 10000 40000 9000 35000 8000 30000 7000 25000 6000 5000 20000 4000 15000 3000 10000 2000 5000 1000 0 0 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30 30-32 32-34 34-36 36-38 38-40 40-42 42-44 Total Log. (Total) Total Log. (Total) 29 13/03/2018 © Nokia 2014 Commercially Confidential Layering strategy and load balancing Layer absolute priorities and entry/exit level thresholds (end state) LTE entry trigger: TD-LTE2300 20M (prio7) Camping thresholds: RSRP > -110dBm RSRP min > -118dBm LTE exit trigger: LTE1800 15M (prio6) RSCP min > -115dBm RSRP < -116dBm Ec/N0 min > -18dB TD-LTE2300 10M (prio5) rxLevAccessMin > -105dBm (G18) LTE2100 10M (prio5) rxLevAccessMin > -102dBm (G9) LTE850 10M (prio4) LTE700 15M (prio7) UMTS2100 3x5M (prio3) UMTS entry trigger: UMTS900 1x5M (prio2) RSCP > -107dBm Ec/N0 > -16dB GSM1800 (prio1) GSM900 (prio0) 30 13/03/2018 © Nokia 2014 Commercially Confidential Layering strategy and load balancing NOKIA-proposed layering UE tput fairly well balanced, L18 worst • Initial step prios L7-> L18- >L21->L85 • Second step prios L18-> L7- >L21->L85 (A) A • Exit/entry: -116/-112dBm for all layers • L18<->L7 prio swap results in L18 becoming most congested layer • Layer avg UE tputs still about balanced!! • This will change if/when L7/L18 densified 31 13/03/2018 © Nokia 2014 Commercially Confidential 32
Copyright © 2024 DOKUMEN.SITE Inc.