NIST LeadfreeSolder v4 2



Comments



Description

Database for Solder Properties with Emphasis on New Lead-free SoldersNational Institute of Standards and Technology & Colorado School of Mines Properties of Lead-Free Solders Release 4.0 Dr. Thomas Siewert National Institute of Standards and Technology Dr. Stephen Liu Colorado School of Mines Dr. David R. Smith National Institute of Standards and Technology Mr. Juan Carlos Madeni Colorado School of Mines Colorado, February 11, 2002 Properties of Lead-Free Solders Disclaimer: In the following database, companies and products are sometimes mentioned, but solely to identify materials and sources of data. Such identification neither constitutes nor implies endorsement by NIST of the companies or of the products. Other commercial materials or suppliers may be found as useful as those identified here. Note: Alloy compositions are given in the form “Sn-2.5Ag-0.8Cu-0.5Sb,” which means: 2.5 % Ag, 0.8 % Cu, and 0.5 % Sb (percent by mass), with the leading element (in this case, Sn) making up the balance to 100 %. Abbreviations for metallic elements appearing in this database: Ag: silver Cu: copper Pt: platinum Al: aluminum In: indium Sb: antimony Au: gold Mo: molybdenum Sn: tin Bi: bismuth Ni: nickel Cd: cadmium Pb: lead Cr: chromium Pd: palladium Sn-Ag-Cu: Refers to compositions near the eutectic Table of Contents: 1. Mechanical Properties: creep, ductility, activation energy, elastic modulus, elongation, strain rate, stress relaxation, tensile strength, yield strength Table 1.1. Strength and Ductility of Low-Lead Alloys Compared with Alloy Sn-37Pb (NCMS Alloy A1), Ranked by Yield Strength (15 Alloys) and by Total Elongation (19 Alloys) Table 1.2. Tensile Properties of Lead-Free Solders (two parts) Table 1.3. Elastic Properties of Sn-37Pb (eutectic) and Sn-3.5Ag Table 1.4. Elastic Properties of Sn-2.5Ag-0.8Cu-0.5Sb (Castin™) and Sn-37Pb Eutectic-A Table 1.5. Elastic Properties of Sn-2.5Ag-0.8Cu-0.5Sb (Castin™) and Sn-37Pb Eutectic-B Table 1.6. Parameters for Strain Rate: Norton Equation, dε/dt = A·σn·exp(-Q/(RT)); Dorn Equation, dε/dt = A·(σn/T)·exp(-Q/(RT)); Stress-relaxation Rate, dσ/dt = A·(σ-σt)n ·exp(Q/(RT)); and Strain-Rate Sensitivity, σ = C·(dε/dt)m; for Two Lead-Free Solder Alloys, Sn-3.5Ag and Sn-9Zn. W: tungsten Zn: zinc Table 1.7. Steady-State Creep Properties and Associated Mechanisms for Three Lead-Free Solders and Sn-37Pb Eutectic Table 1.8. Stress Exponents and Activation Energies for Dorn Equation for Tin and Four Lead-Free Solder Alloys Table 1.9. Activation Energy versus Strain Rate for Two Lead-Free Eutectic Solders (Sn3.5Ag and Sn-9Zn) Table 1.10. Elastic Properties of Metallic Elements Used In Electronic Packaging Table 1.11. Material Properties of a Via-in-Pad Chip-Scale Package Printed Circuit Board (PCB) Assembly Table 1.12. Elastic Properties and Thermal Expansion Coefficient of Electronic-Packaging Materials and Lead Solder Alloys Table 1.13. Lead-Free Solder Alloys: Tensile and Shear Strengths Table 1.14. Lead-Containing Solder Alloys: Tensile and Shear Strengths Table 1.15. Shear Strengths of Three Lead-Free Solders and Tin-Lead Eutectic (by Ringand-Plug Test) Table 1.16. Mechanical Properties of Tin, Tin-Lead, and Four Lead-Free Solder Alloys (by Ring-and-Plug Tests) Table 1.17. Shear Strengths, Solidus and Liquidus Temperatures, and Wetting Angles of Experimental Sn-Ag-Cu Solder Alloys Table 1.18. Physical and Mechanical Properties of Lead-Free Alloys and Sn-37Pb (eutectic) Table 1.19. Pure Copper, Tin and Nickel, and Their Intermetallics: Room-Temperature Physical and Thermal Properties Table 1.20. Effects of Transition Metals on Vickers Hardness and Ultimate Tensile Strength of Sn-4.7Ag-1.7Cu Solder Alloys Table 1.21.1. SnAgCu Dynamic Elastic Constant Table 1.21.2. SnAgCu Dynamic Elastic Constant (cont.) Table 1.22.1. SnAgCu Elastic Properties vs. Temperature Table 1.22.2. SnAgCu Elastic Properties vs. Temperature (cont.) 7Cu Figure 1. Thermal and Electrical Properties of Castin™ (Sn-2. Solidus.8Cu.) Table 1.2. Some Properties of Materials Commonly Used In Electronics – A .6.Table 1.2.2Ag-0.5. Sample Aged #1 Table 1.22. Sample As-cast #1 Table 1. SnAgCu .23.3.1.22. Temperature (cont.2. Sn-Ag-Bi. Creep data at 75oC for Sn-Ag-Cu. Sample Aged #2 Table 1.2. Some Physical Properties of Materials Used as Electronic Packaging Conductors Table 2.4.Coefficient of Thermal Expansion Data. Thermophysical Properties of Metallic Elements Used In Electronic Packaging Table 2. Liquidus.2.25. SnAgCu . Temperature (cont. Melting Temperatures of Lead-Free Solders (two parts) 2. Thermal Properties 2. Sn3.2.Coefficient of Thermal Expansion Data. Temperature (cont. Sn-Bi.3. Thickness (μm) of Intermetallics in Solder Alloys Aged at 150 ºC Table 2. Sample As-cast #2 Table 1.2.) Table 1.5Ag-0.) Table 1.5.24. and Sn-0.Coefficient of Thermal Expansion Data. and Melting-Point Temperatures Table 2.1.8Ag-20.2.5Sb) Table 2.22.1. Temperature (cont. Physical and Mechanical Properties of Sn-2. SnAgCu Elastic Properties vs.Coefficient of Thermal Expansion Data. SnAgCu .27. SnAgCu .) Table 1. SnAgCu Elastic Properties vs.6.2. Sn-Ag. Liquidus and Reflow Temperatures of Candidate Lead-Free Solder Alloys for Replacing Eutectic Tin-Lead Solder Table 2.4.8Cu-0.26. Thermal Properties: Miscellaneous Table 2. and Sn-Pb solder alloys 2.0In and Sn-37Pb Eutectic Solders Table 2.1. Mechanical Properties of Three Selected Pb-free Alloys: Sn-3.1. SnAgCu Elastic Properties vs.22. SnAgCu Elastic Properties vs.1.5Ag. and With 1% Addition of Ternary Elements Table 2.16. Melting Properties. Lead-Free Solder Alloys: Solidus and Liquidus Temperatures. Wetting Times and Forces (at 300 ºC): Lead-Free Solder Alloys. Wetting Properties of Sn-2. Wettability and Hardness of Lead-Free Solders Table 2. and Sn-Zn Alloys on Copper: Eutectic.19. Wetting Properties of Pure Tin.17. Some Properties of Materials Commonly Used In Electronics – B Table 2.23. Densities and Costs of Popular Solder Metals and Alloys – A Table 2.7. Onset of Melting Temperatures for Five Sn-Ag-Cu Lead-Free Solder Alloys Table 2.2.18. Wetting Times (at 250 ºC) of Lead-free Solder Alloys Table 2.12.14.2.2. Electrical Resistivity and Temperature Coefficient of Resistance (TCR) of Pure Metallic Elements Used in Electronic Packaging Table 2. Resistivity.2.11. Coefficient of Thermal Expansion.2. and With 1% Addition of Ternary Elements Table 2.2.9. Wetting Contact Angles on Copper of Sn-Bi Alloys: Eutectic. Cost of Lead-Free Solder Alloys Relative to That of Sn-37Pb Eutectic A. and Electrical Resistivity Table 2. Surface Tension.2.2.2. Solder Alloys for Plated-Through Holes .Table 2.8.2.2. and Eutectic Tin-Lead Table 2.13.22.2. Sn-Bi. Wetting Contact Angles of Sn-Ag.2. Fluid Properties of Some Molten Lead-Free Solders Table 2.10.21.20.2. Densities and Costs of Popular Solder Metals and Alloys – B Table 2.0In and Sn-37Pb Eutectic Solders Table 2.15. Solidus and Liquidus Temperatures and Wetting Angles of Some Lead-Free Alloys on Copper Table 2. Four Lead-Free Tin Alloys and Three LeadTin Alloys Table 2.2.8Ag-20.2.2. Solidus Temperatures and Wetting Contact Angles of Selected Lead-Free Solder Alloys with Use of RMA (GF-1235) Flux Table 2. properties. chemical. surface tension. antimony.3. liquidus. Young’s modulus.174 f/s2 = 9. zinc Useful Conversion Factors Standard Acceleration of Gravity. Reference Books 5. metallic. conductivity. physical. platinum.036127 lbm/in3 = 62. PCB. palladium. tin. chromium.2. electrical. material. molybdenum. intermetallic. lead. copper. viscosity. bismuth. Candidate Alloys for Replacing Lead-Alloy Solders Table 3. resistivity. melting. solders. expansion. wetting. packaging. electronic. References to Tabular Data 5. g: g = 32. elongation.1.1. lead-free. eutectic. modulus. printed circuit board.80665 m/s2 (not to be confused with “gram”.3. elements. 4. solidus.252 kcal (kilocalories) . tensile. Designation and Composition of Lead-Free Solders. Miscellaneous A. nickel.056 J = 252 cal = 0.1. atomic weight. strength. coefficient. Useful References 5. temperature.187 J (joule) 1 Btu = 1055. Poisson ratio. silver. costs. tungsten. bibliography. indium. gold. Castin. aluminum. mechanical. composition.428 lbm/ft3 Energy: 1 cal = 4. Major Considerations for Replacement Lead-Free Solders Table 4. Useful URLs Key words: alloys. ductility. thermal.2. hardness. thermophysical. Criteria for Down-Selection of Lead-Free Alloys Table 3. 5. Chemical Compositions of 79 Lead-Free Solder Alloys Down-Selected for Preliminary Testing by the National Center for Manufacturing Sciences (NCMS). g) Electrical Conductivity: 1 S (siemens) = 1 Ω–1 (reciprocal ohm) Density: 1 g/cm3 = 0. replacement. elastic. creep. temperature intervals: Fahrenheit temperature F = 1.8 ºF (1 Fahrenheit degree = temperature interval) Thermal Conductivity: 1 W/(m·K) = 0. where C is Celsius temperature Kelvin temperature K = C + 273.0254 m (exact) 1 f t = 30.89476 MPa Specific Heat (Capacity): 1 cal/(g·K) = 1 Btu/(lbm ·F) = 4.8·C + 32.Force: 1 lbf = 4.3048 m (exact) Mass: 1 lbm = 0.15 1 K (1 kelvin) = 1 ºC (1 Celsius degree) = 1. We hope to greatly extend the work beyond this present state into a larger and more useful one. but is a planned next step.4482 N (newton) 1 kgf = 9.89476 kPa 1 kps = 6. – the authors . However these next steps await further funding. Your patience is appreciated.76 Pa = 6.20463 lbm Pressure (or Tensile stress): 1 Pa (pascal) = 1 N/m2 1 psi = 6894.45359 kg. and to begin some evaluation of uncertainties. 1kg = 2.187 J/(kg ·K) Temperature.54 cm = 0. no systematic mining of resources from journals that publish articles on relevant properties of lead-free solders has yet been done by us.5778 Btu/(ft·hr ·˚F) Explanatory Note: This version (11 February 2002) represents our present collection of information on properties of lead-free solders.48 cm = 0.80665 N 1 dyne = 10–5 N Length: 1 in = 2. We are just now beginning to have enough properties data to begin consolidating duplicate data. to better organize the tables into a more useful order. Also. 5Bi-1.5Ag-19.5Bi-3Zn Sn-37Pb Sn-57Bi-2Sb Sn-58Bi Sn-3Ag-55.8Bi-9.426 3.8In 14.370 F15 Sn-57Bi 77 F11 Sn-2. elongation.5In Sn-37Pb Sn-0.6Ag-0. tensile strength. Mechanical Properties: creep.1. strain rate.720 3. 1998 .5Sb Sn-3Ag-55Bi-2Sb Sn-55Bi-2Cu Sn-2.256 1.5Ag-4Cu Sn-5Sb Sn-75Pb Sn-2. activation energy.560 B6 Sn-56Bi-2In 116 F1 Sn-2Ag-7.5Sb Sn-2Ag-9. Strength and Ductility of Low-Lead Alloys Compared with Alloy Sn-37Pb (NCMS Alloy Code A1).440 D5 Sn-57Bi-1Sb 60 F7 Sn-31. elastic modulus.616 3. ductility.8In Sn-3Ag-54Bi-2Cu-2Sb Sn-10Bi-20In Sn-2Ag-46Bi-4Cu 53 53 53 48 47 46 45 44 41 9 7 4 4 3 Source: Technical Reports for the Lead Free Solder Project: Properties Reports: "Room Temperature Tensile Properties of Lead-Free Solder Alloys.055 4. yield strength Table 1.5Sb Sn-3.1.8Bi-9.8Cu-0.8Cu-0.6Ag-0.724 3.8Sb Sn-0. Ranked by Yield Strength (15 Alloys) and by Total Elongation (19 Alloys) Yield Total Alloy Alloy Alloy Alloy Strength Elongation Code Composition Code Composition (psi) (%) C5 Sn-2Ag-9.311 3.5Cu 12.5Bi-0.126 B1 A8 F7 A1 D4 A6 D7 D8 F13 F2 C5 D10 E9 B5 Sn-50Bi Sn-75Pb Sn-31. National Center for Manufacturing Sciences (NCMS).5Bi-3Zn 10.5Bi 12." Lead Free Solder Project CDROM.070 D2 Sn-57Bi-2In 72 D10 Sn-3Ag-54Bi-2Cu-2Sb 11.5Ag Sn-97Pb 5.500 B2 Sn-52Bi 57 D9 F8 A1 F10 F3 A5 A8 F2 A4 A3 Sn-3Ag-54Bi-2In-2Sb Sn-3.2Ag-2Cu-0.950 3. stress relaxation.5Ag-1.758 3. 9 34.8In Sn-57Bi-2In Sn-2Ag-57Bi Sn-57Bi-2Sb Sn-57Bi-1Sb Sn-2Ag-56Bi1.006 8.380 8.5Ag-2Bi1. Tensile Properties of Lead-Free Solders (A.2 67.2.110 8.276 7.055 11.119 7.4 50.0 26.766 GPa 15.273 2. Blank cells: no values reported) Chemical Composition % by Mass A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B5 B6 C1 C2 C3 C4 C5 D2 D3 D4 D5 D6 D7 D8 D9 D10 Sn-37Pb Sn-2Ag-36Pb Sn-97Pb Sn-3.361 14.7 61.029 Sn-5Sb Sn-58Bi Sn-3.8 67.0 44.0 19.117 9.235 0.521 8.031 0.7 43.4 Relative Strength Elongation Coefficient (%) UniTotal (psi) MPa form 3 1 27 3 3 3 48 31 38 24 22 46 15 53 4.5Sb Sn-3Ag55.7 35.442 6.7 68.177 9.7 57.545 3.4 65.2 44.8 22.9 MPa 30.8 60.946 9.6 47.944 9.5Sb-1Cd Sn-75Pb Sn-50Bi Sn-52Bi Sn-2Ag-46Bi4Cu Sn-56Bi-2In Sn-2Ag-1.390 9.460 1.2 43.6 100.256 3.1 62.1 29.5Sb Sn-3Ag-1Bi1Cu-1.026 0.5 25.904 2.487 8.1 47.793 6.414 9.5 11.9 MPa 27.1 28.223 3.3 56.9 78.1 52.7 49.806 7.1 61.263 6.8 27.3 48.720 7.586 8.5Sb Sn-3Ag-55Bi2Sb Sn-3Ag-54Bi2In-2Sb Sn-3Ag-54Bi2Cu-2Sb 8.807 11.383 3.8 57.8 44.280 61.560 7.6 80.3 84.4 58.950 6.070 8.8Bi9.865 7.753 3.0 23.440 Tensile Strength (psi) 4.829 33.C.984 5.5Ag0.287 1.3 7.9 49.033 0.7 67.640 12.126 3.256 15.834 10.0 63.917 7.C.8 106.6 16.070 8.5Ag A.011 0.6 64.226 4.2 % offset) (psi) 3.6 49.2 71.6 57.3 48.720 Yield Strength (0.5 59.873 5.6 66.Table 1. Elastic Modulus (ksi) 2.5Sb Sn-2Ag-9.7 53 57 3 116 25 22 21 21 7 72 31 47 60 27 45 44 13 4 .5Bi-1.: Alloy Code (NCMS).4 26.304 9.8 Hardening Exponent 0.063 8.665 8.285 9.436 10.4 58.489 6.934 4.9 69.224 6.2 60.429 6.965 8.0 58.7 18.617 2.5Sb29Pb Sn-3Ag-4Cu Sn-2.426 8.379 9. 6Zn Sn-20In-2.2 64.049 17.) (A.3 0.8 56.8 65.5Ag19.070 9.8Sb Sn-2.7 41.381 11.5Sb Sn-0.212 7.655 9.5Cu Sn-2.0 47.160 -7.7 45.758 12.130 9.4 65.4 55.349 MPa 39.478 12. Blank cells: no values reported) A.985 8.918 5.5 55.749 4.8Zn Sn-31.1 77.4 37.773 4.972 8.095 10.540 8.5Cu3Sb Sn-2Bi-8In Sn-10Bi-20In Sn-9Zn Sn-2Ag-7.C.5Ag-4Cu Sn-8.033 5.2Ag-2Cu0.564 9.4 60.440 3.795 122.450 10.9 62.124 7.970 6.4 Relative Elongation (%) UniTotal form 25 32 36 6 30 26 28 25 4 27 12 2 9 27 14 31 53 26 19 27 17 39 41 19 77 38 5 16 Strength Coefficient (psi) MPa Hardening Exponent 8.6 35.536 31.343 7.7 52.5In Sn-2Ag-0.5Ag-2Bi Sn-2Bi-1.712 Tensile Strength (psi) 6.987 8.724 6.616 8.946 61.7 69.5Sb Sn-0.6Ag0.930 7.7 44.2 64.287 8.463 6.C. 1998 .1 72.6 46.3 34. National Center for Manufacturing Sciences (NCMS).938 7.592 7.5 50.7 0.9 83.4 31.2 52.2% Yield Strength (psi) 5.899 7.370 3.312 6.1 92.041 4.495 8.5Bi-3Zn Sn-3.708 13.5 58.0 71.684 6.8 53.7Bi0.8 25.: Alloy Code (NCMS).8 29." Lead Free Solder Project CDROM.6 49.8Cu-0.5 29.359 6.5Bi0.8Bi Elastic Modulus (ksi) GPa 0.3 Mpa 42.8 92.5Ag-1.3Cu-1In Sn-3.5 54.3 22.4Ag-4.7 37. E1 E2 E3 E4 E5 E6 E7 E9 E10 F1 F2 F3 F4 F5 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 Chemical Composition % by Mass Sn-3Ag-2Sb Sn-3Ag-2Cu2Sb Sn-3Ag-2Bi2Sb Sn-3Ag-2Bi Sn-2.8 63.478 9.749 6.8In-7.5Bi7.Tensile Properties of Lead-Free Solders (cont.6 46.985 10.7 25.7 25.210 4.500 4.153 Source: Technical Reports for the Lead Free Solder Project: Properties Reports: "Room Temperature Tensile Properties of Lead-Free Solder Alloys.350 7.1 47.230 3.4 -51.5Bi Sn-3Ag-41Bi Sn-55Bi-2Cu Sn-48Bi-2Cu Sn-57Bi Sn-56.6 85.0 61.445 5.7 0.323 13.0 62.0 57.311 3. 16 (GPa) 4.16 7.5 5.Table 1.86 33. MPa 28.N.44 10.17 49.54 58. Subramanian. “The Status of Lead-Free Solder Alloys. Fine. Las Vegas.5 50. NV .A Tensile Properties (1 ksi = 6. “Athermal and Thermally Activated Plastic Flow in Low Melting Temperature Solders at Small Stresses.08 Karl Seelig and David Suraski.00 Sn-37Pb (ksi) (MPa) 4870 33.” Proc.28 (ksi) (MPa) 3990 27.92 52.85 8.52 31. Elastic Properties of Sn-37Pb (eutectic) and Sn-3. pp.87 Compressive Properties Elastic Modulus Yield Strength Stress (25 °/u) Rockwell Hardness (15 W scale hardness) *Ultimate Tensile Strength (ksi) (MPa) 4260 29. 2000).88 18. 47-48 (March 2000) § Rodney J.51 (GPa) 4.5Ag Property Sn-37Pb Sn-3. Elastic Properties of Sn-2.895 MPa) Castin™ Young’s Modulus Yield Strength UTS* Elongation (%) (ksi) (MPa) 7420 51.5Sb (Castin™) and Sn-37Pb Eutectic . % 35 – 176 35 Shear Strength.4 32.3.33 29. Sigelko and K. “Overview of lead-free solders. 189 (1998) Table 1. McCabe and Morris E.1 § § Young’s Modulus .” Scripta Materialia 39(2). 50th IEEE 2000 Electronic Components and Technology Conference (May 21-24.37 (GPa) 4.8Cu-0.5Ag-0. ºC 183 221 UTS* MPa 31 – 46 55 Elongation.5Ag Sn-5Sb Melting Point.. GPa 35 56§ 58§ *Ultimate Tensile Strength Jeff D.” Adv.73 39.92 33. & Proc.2 4. Mat.38 30.58 (GPa) 4.4. 2000).84 (MPa) 11.58 (GPa) 28. Elastic Properties of Sn-2.8 38. but accompanying textual description suggests that the measured specimens of these alloys may have been first soaked at 125 °C before the properties listed in this table were measured.2% strain) 10.8Cu-0.56 50.2 (16 W scale hardness) *Ultimate Tensile Strength Note: It is not stated explicitly. Las Vegas.2 (ksi) 16600 4.5.66 Compressive Properties Young’s Modulus Yield Strength (0. “The Status of Lead-Free Solder Alloys. 50th IEEE 2000 Electronic Components and Technology Conference (May 21-24. This may explain the differences in measured properties between this table and the previous one (A) comparing Castin™ with Sn-37Pb.88 68.53 (MPa) 75.5Sb (Castin™) and Sn-37Pb Eutectic – B Tensile Properties (1 ksi = 6.7 43.65 (GPa) 27.03 5.45 (GPa) 33.4 .” Proc.07 69. Karl Seelig and David Suraski.08 (GPa) 31.4 9.1 Stress (25 ° strain) Rockwell Hardness 13.07 5.5Ag-0.91 (MPa) 39.5 12.3 Sn-37Pb (ksi) 5740 4. NV (ksi) 10890 4.895 MPa) Castin™ Young’s Modulus Yield Strength UTS* Elongation (%) (ksi) 4300 4.00 (MPa) 29.Table 1.1 40. 2* 64* *E. Fine. and Dorn Equation.G. S. A and C are constants. Parameters for Strain Rate (Norton Equation. Chin.1 102. σt is a threshold stress for stress relaxation. J.5 -3 Dorn -3 Stress Relaxation Creep 1. σ = C·(dε/dt)m.1 5.6 19.62·10 12 108. B.080 9. T is absolute temperature. Stress Relaxation.0217 5. “Creep. σ is stress (MPa).3 82.1 99. 599 (1992) H. Electronic Materials.5Ag A n Q m σt A n Q m σt n Q Norton Tensile 6. Electronic Mater.9 0.36·10 11.2 8220 8.2 106. 783 (1997) .7 65. Stress-relaxation Rate. dε/dt is strain rate (s–1).50·10 11.2 6 33. Stang.6. Hare and R. and Strain-rate Sensitivity. R is the universal gas constant. for Two Lead-Free Solder Alloys. Keer and M. Q is an activation energy (kJ/mol).5Ag and Sn-9Zn.8 0.9 0.0 4.Table 1.” J. and m is the strain-rate sensitivity. J. dε/dt = A·(σn/T)·exp(-Q/(RT))).083 Sn-9Zn 9.83 12 111. n is the stress exponent. Alloy Sn-3.7 68. Mavoori. 21.124 Sn-37Pb 6. Moran.27 8.3 79. dε/dt = A·σn·exp(-Q/RT). Here ε is strain.3 -3 Temperature (ºK) 25 80 Creep 1. and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders.5 Tensile 5. L. Sn-3. t is the time variable. 26(7).122 3 0.5 0. Vaynman. dσ/dt = A·(σ-σt)n ·exp(-Q/(RT)).W. 9 87 9.91 7.8Sb Sn-2Sb-2In Region 1 Activation Stress Energy.031 0. Res. Q Exponent. kT the product of Boltzmann’s constant and absolute temperature. short4. “The Creep Properties of Precipitation-Strengthened Tin-Based Alloys.8 71 5. Pao.229×10-12 0. n a stress exponent. p.50 5.6Sb Sn-5Sb Sn-7.3 Rodney J. see previous table.2 49 9.] Alloy Deformation Mechanism B* (MPa-n·s-1) ΔH n (eV) (40 ºC) n (140 ºC) Sn-4Cu-0. ΔH an activation energy. R.8.7 85 11.49 5. S.36 8. McCabe and Morris E. n (kJ/mol) Region 3 Activation Stress Energy. 323.25 5. 128 (MRS.062 8.4 115 5. n (kJ/mol) Region 2 Activation Stress Energy.” JOM. Jih.7. p.205 0.” Mat.25 5. τ the shear stress.9 96 9. Q Exponent. Symp. Soc. “An Experimental and Modeling Study of Thermal Cyclic Behavior of Sn-Cu and Sn-Pb Solder Joints. 1994) [Here the steady-state creep behavior was assumed to be described by (Norton’s Law. Badgley.36 range Cu clustering Dislocation 3. Govila and E. dγcrp/dt=B*τn exp(-ΔH/(kT)). with dγcrp/dt as the rate of shear creep strain.0 103 5.85 8.04423 0. and B* a material constant. Q Exponent.-H. Steady-state Creep Properties and Associated Mechanisms for Three Leadfree Solders and Sn-37Pb Eutectic Athermal. 33 (June 2000) .25 Sn-36Pb-2Ag glide / climb Dislocation 0. “Parameters for Strain Rate”).5Ag Table 1. Proc.25 Sn-37Pb glide / climb Y.6 68 0. Fine.9 52 6.37 Sn-2Cu-0.8Sb-0. Vol.Table 1. n (kJ/mol) 66 8.2Ag glide / climb Dislocation 0. Stress Exponents and Activation Energies for Dorn Equation for Tin and Four Lead-Free Solder Alloys Alloy Sn Sn-2. Semyon Vaynman.5Ag and Sn-9Zn) Strain Rate (s-1) 10 10–3 10–4 10–5 –2 Activation Energy (J/mol) Sn-3.56 9.” Mat.5Ag 8. Activation Energy versus Strain Rate for Two Lead-Free Eutectic Solders (Sn-3. Vol. 390. 161 (MRS. Jason Chin. Soc. Mavoori. Proc. p.3 12. Symp. Res.5 12.97 7.70 Sn-9Zn 12. Leon M. 1995) . Keer and Morris E.9.6 H. “Mechanical Behavior of Eutectic Sn-Ag and Sn-Zn Solders.1 12. Brian Moran. Fine.90 9.Table 1. 5 (0..Table 1.8 Tensile Strength (MPa) 47. sintered sheet Wrought. E (Elastic) (GPa) 68. 1957) [Note: original units were in dyn/cm2.7 74.2 % offset) D. ed.10 Pb strip *(0. Gray. heated 5 hr at 350 C Pure.2 340 9. aged Pressed. American Institute of Physics Handbook. 2-61 ff.5 46.8 Tungsten 340 135 Zinc Hot-rolled 134-160 <0. Elastic Properties of Metallic Elements Used In Electronic Packaging Metal Aluminum 99.4 340 210 147 71 – 78 41 – 45 G (Shear) (GPa) 26.99 Silver Tin Tin-5Ag Condition Annealed Rod. pp.997 Gold 99.0 Platinum 99. cast Sheet. 10 dyn/cm2 = 1 N/m2 = 1 Pa] . colddrawn Cast Rolled.996 Antimony Copper 99. aged at room temp.9 77.4 31.8 127.10.5 %) 690 482 120-130 138 21. New York.7 24. annealed Annealed Strained 5 %.99 Lead 99.4 11 351 124 Yield Strength* (MPa) 12.90 Molybdenum Nickel >99.E. (McGraw-Hill. 1995).8 3 35 15 J. C.11. Lin. Cheng.33 0. Material Properties of a Via-in-Pad Chip-Scale Package Printed Circuit Board Assembly Material FR-4 epoxy-glass PCB substrate Copper VIP (via-in-pad) Sn-37Pb (eutectic) solder Underfill Silicon chip Solder mask *AL *Si3Ni4 Micro-via filler Bismaleimide Triazene (BT) Young’s Modulus.” Proceedings: NEPCON West Conference (February 28 – March 2.35 0. R. “Thermal-Fatigue Life of Solder Bumped Flip Chip on Micro Via-In-Pad (VIP) Low Cost Substrates” *J. D.8 19 22. Chang. Lee. “Fracture Mechanics Analysis of Low Cost Solder Bumped Flip Chip Assemblies with Imperfect Underfills.39 Thermal Exp. t is Celsius temp.[FOLLOWING TABLE STILL NEEDS A COMPLETE DOCUMENTATION OF SOURCE]: Table 1.28 0.-W.9 69 314 7 26 Poisson’s Ratio (ν ) 0.H.3 0. D. T.J. Tseng.3 0. E (GPa) 22 76 E=32.35 0.33 0. Lau and S.-Y.5 17 21 30 2.35 0.) 6 131 6. Chen. Ricky Lee.0-0.4 0. Anaheim. T. CA . Lau.088·t (0 ≤ t ≤ 100. Coefficient (10-6/K) 18. 13.22 1.3 33.9 100 4.0 Pb-10Sn -55 13.4 0.2 0.31 7.26 Sn-3. Canada . (GPa) Poisson’s Ratio (ν ) Thermal Exp.9 (substrate) 22 303 0.8 22 9.62 127 162 0. 1995).22 2.3 33.4 24. 2 Hillyard Street.” Proceedings: NEPCON West Conference (February 28 – March 2. Coefficient (10-6/K) -70 38.3 33.23 Polyimide PWB -55 to 14.21 3.0 77 8.0 FP4526 25 9.7 Silicon chip -73 162 0.H.4 28.0 125 Hysol -73 9.37 0.3 33.1 0.4 30. Elastic Properties and Thermal Expansion Coefficient of ElectronicPackaging Materials and Lead Solder Alloys Material Sn-37Pb (eutectic) solder Temp.7 0.23 0. (ºC) Young’s Modulus.78 0.5 100 303 0.0 Tim Wong and A.34 7.16 13. Hamilton.0 102 7.4 27.Table 1.12.72 0.21 4.82 0.3 33.21 6.5Ag 430 430 8900 4600 Sn-5Ag 430 473 10100 8400 Sn-3Cu 441 635 6420 NA Sn-5Sb 450 464 5900 6200 Solder Data Sheet. Ontario.91 0.5 0.0 140 19.78 0. Matsunaga.4 24.51 0. Welco Castings.45 7.0 Underfill 52 9.22 3.5 Alumina -55 303 0. Lead-free Solder Alloys: Tensile and Shear Strengths Lead-free Solder Alloy Sn (pure) Temperature (ºF) Solidus 450 Liquidus 450 Tensile Strength (psi) 1800 Shear Strength (psi) 2560 Density (g/cm3) 7.40 27 162 0. CA Table 1.36 7.3 33. Anaheim. “Ceramic Ball Grid Array Solder Joint Thermal Fatigue Life Enhancement.0 127 5.4 24.0 20 30. Welco Castings. Lead-containing Solder Alloys: Tensile and Shear Strengths Solder (Lead) Alloy Pb (pure) Pb-1Sn-1.6 9.13 10. Hamilton.7 10.5Ag Pb-5Sn Pb-10Sn Pb-15Sn Pb-20Sn Pb-25Sn Pb-30Sn Pb-35Sn Pb-38Sn Pb-40Sn Pb-45Sn Pb-50Sn Pb-60Sn Pb-62Sn Pb-63Sn (eutectic) Temperature (ºF) Solidus 621 518 514 437 362 362 362 362 362 362 362 362 362 362 362 Liquidus 621 596 576 553 533 514 490 475 465 460 440 420 375 363 362 Tensile Strength (psi) 1780 3600 4190 4400 4700 5770 6140 6230 6285 6320 6400 6450 6400 6700 6700 5900 Shear Strength (psi) 1800 3000 3780 4470 4740 5310 5500 5590 5640 5680 5780 5870 5700 6060 6060 Density (g/cm3) 11.34 11.42 Pb-95Sn Sn-36Pb-4Ag 350 378 8500 7000 8.5 10.13 8.3 9.8 9.91 8.Table 1. Canada .67 8.14.94 10.88 Solder Data Sheet. 2 Hillyard Street.50 8.34 9. Ontario.81 9. 28 Sn-3.16. Publ. “The Search for Lead-Free Solders.65 Sn-37Pb (eutectic) 367 + 24 1632 + 107 7970 + 530 54.91 + 2.5 21. 729 .800 + 1700 81.7 Sn-3.0 23.2 International Tin Research Institute.0 3. Vianco.1 16.0 5.65 Sn-3. Surface Mount International Conference (Sept.7 21.7 9.0Au Cynthia L. Shear Strengths of Three Lead-Free Solders and Tin-Lead Eutectic (by Ring-and-Plug Test) (area = 0.6 10.9 Fatigue Strength in 1000 cycles (MPa) Temperature Room 100 ºC 13. Jerome A.5Ag Sn-5Sb Sn-58Bi Sn-40Pb at 1mm/min (MPa) Temperature Room 100 ºC 22.3 48.5 38.046 in2) (lbs) (N) (psi) (MPa) 269 + 11 1197 + 49 5840 + 240 40.9 8.3 28.33Ag-4.83Bi 560 + 15 2491 + 67 12. 1992) San Jose.5 1.36 + 11. Paul T. S19-2-1 Solder Load Stress Table 1.6 3.3 0. Mechanical Properties of Tin.170 + 330 83.2 14.Table 1.15Ag-5. and Four Lead-Free Solder Alloys (by Ring-and-Plug Tests) Shear Strength Alloy Sn (pure) Sn-1Cu Sn-3. Hampshire.6 3.0 14.0 7.5 21.9 14. 656.0Bi-5.5 11.15.4 2. through: William B.6 19.2 7.2 10. No. Tin-Lead. Rejent.27 + 1.” IPC/SMTA Electronics Assembly Expo (1998).1 16.5Ag 540 + 80 2402 + 356 11. “Effect of Interface Microstructure on the Mechanical Properties of Pb-Free Hybrid Microcircuit Solder Joints.3 18.5 20. CA.0 15.95 + 3.9 34.2 39. p.6 Stress to Rupture in 1000 hr (MPa) Temperature Room 100 ºC 8.” Proc. p. Hernandez.8 2. 0 57.9 217 217/218.7Cu Sn-3.5 21.45Co (Cross-head speed: 0.59Ag-0. Foley.4 36.5 º/s *B: Cooling rate=10 º/s *C: “Refined” test.” (October 25-28.4 53. James C.5 50.0 65.68Ag-1.00Cu (gap thickness: 152.17.5 217/219. MN # Iver E. by ring-and-plug method # Iver E.1 C* # D 27 32 23 B* 20. Foley.1 65.4) 56.68Ag-1.60Ag-1.9 23. Cook and Joel Harringa. “Development of Eutectic and Near-Eutectic Tin-Silver-Copper Solder Alloys for Lead-Free Joining Applications. Bruce A.5 56.30Co Sn-3.4 65.8 65. 1999).1 217 21 18 24 44 Sn-40Pb 37.9 Test temperature 22 ºC 170 ºC A* 20. Tamara E.7 +3. (solderability and microstructure) Measurements A. Bloomer.6 22.8 67. Shear Strengths.30Co Sn-4.0 54.” IPCWorks ’99: An International Summit on Lead-Free Electronics Assemblies. Bruce A.1 mm/min.3 (59.7Cu Sn-3.9 217/218.Table 1.69Cu-0.3 217/218.58Ag-0. Terpstra.4 μm) Sn-3. B and C by Asymmetric Four-Point Bend [AFPB] method # D: Values from technical literature (two different sources).1 24.8Ag-0.5 10. 575 .4 22. “Development of Eutectic and Near-Eutectic Tin-Silver-Copper Solder Alloys for Lead-Free Electronic Assemblies.” p.30Ni Sn-3.1 217/218.5 63.0 +2. Robert L.59Ag-0.2 29.99Cu-0.99Cu-0.5 183/188 17 *A: Cooling rate in soldering (test) butt joints=1. Solidus and Liquidus Temperatures. Bloomer.8Ag-0.99Cu-0. gap thickness: 76.5 26 4.5Ag Sn-0.1 28.2 Sn-4. and Wetting Angles of Experimental Sn-Ag-Cu Solder Alloys Shear Strength (MPa) Alloy Sn-3. Anderson.9 -54. Terpstra.2 70.2 μm) Tsol/Tliq (ºC) 221 227 217/217.15Co Sn-3.69Cu-0.8 + 2.2 27 25. Minneapolis.8 64.8 17. Tamara E. Cook and Joel Harringa.4 + 4.70Ag-1.2 + 6.5Sb 47.7 Wetting Angle (deg) 33 B* 61.70Cu Sn-4. Anderson.2 --- 21.5 56. Robert L.8 58. James C.7Cu-0. 1 mm/min Creep Strength.004 s–1 Stress to Rupture Joint Shear Strength. HB Tensile Strength (20 ºC). CA. 1998). N/mm2 at 0. μΩ·cm Brinell Hardness.7Cu (“Alloy 99C”*) 7.5 217 13 13 15 Sn-0.7 13* 13. N/mm2 at Strain Rate: 0.7Cu Sn-3.0 1.3 15 58 Sn-3.0 3.1 23 14 .5 17 40 13* 48* 48 4300* 1460* 27 17 27 17 20 ºC 13. g/cm3 Melting Point (ºC) Electrical Conductivity.4 183 11.10 N/mm2 20 ºC 100 ºC Sn-3.0 5* 5. N/mm2 at 0. Surface Mount International (San Jose. 705-709 # 100 %IACS = 58.5 N/mm2 +/.Table 1.7Cu@ 7.3 227-240* 13* Sn-37Pb (eutectic) 8.5Ag 7.6 2.1 mm/min +/. “Global Update on Lead-free Solders. %IACS# Electrical Resistivity.0 @ Proprietary (patented) alloy (“Ecosol TSC”) of Multicore Solders *Peter Biocca. pp. Physical and Mechanical Properties of Lead-free Alloys and Sn-37Pb (eutectic) Property Density.8Ag0.18.5Ag0.3 100 ºC 5.00 MS/m 23 20* 16 21* 8.” Proc.9 14.5 221 14 12. 4 0.3 45.56 50.24 326 19. Pure Copper.98 0. Lau.3 1.9 1. and J.7 D. New York. Frear.H.5 34.145 286 16.905 0.9 108. Morgan. S.5 19.8 0.1 100 11. Tin and Nickel.. 1994) .R. H.9 117 Sn 7. The Mechanics of Solder Alloy Interconnects.439 12. p. 60 (Van Nostrand Reinhold.9 213 Cu6Sn5 8.S.N.1 0.21 Cu3Sn 8.3 41 Ni 8.65 133. and Their Intermetallics: Room-Temperature Physical and Thermal Properties Property Density Young’s Modulus Shear Modulus Toughness Vickers Hardness Electrical Resistivity Thermal Conductivity Thermal Diffusivity Specific Heat Thermal Expansion (g/cm ) (GPa) (GPa) (MPa·m-1/2) (kg/mm2) (μΩ·cm) (W/(m·K)) (cm2/s) (J/(kg·K)) (10–6/K) 3 Cu 8. Burchett.7 3.28 85.41 Ni3Sn4 8.6 0.227 23 15 7.0 1.7 343 8.93 70.3 42.083 272 13.Table 1.5 0. eds.0 30 1.67 0.385 17.4 378 17.2 365 28.19. UTS VHN: VHN Dev. Özer Ünal. Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM 3) (The Minerals. 1998) .55 15.14 0. Bloomer and James C.70 0. UTS (MPa) 54.95 16.5Co Sn-4.” Proc.255 0.7Cu Sn-4. Anderson. “Effects of Transition Metal Alloying on Microstructural Stability and Mechanical Properties of Tin-Silver-Copper Solder Alloys.69Ag1.236 0.05 0.7Ag-1.233 Est. Foley.7Ag-1. Tamara E.90 12.69Cu-0.35 0. Metals and Materials Society.35 0.5 0.Table 1. Std.68Ag1. VHN Dev.14 0.69Cu-0. Effects of Transition Metals on Vickers Hardness and UTS of Sn-4.6 53 15.20.236 0.42 76 70 61.69Cu-0.3Ni Sn-3.07 0.45 15.20 13.35 0.7Cu Solder Alloys As Drawn Annealed Std.59Ag1.49 64 58 53 Alloy Sn-3.69Ag1.21 0.3Fe Sn-4.3Ni VHN: Vickers Hardness Number UTS: Ultimate Tensile Strength Designation eutectic eutectic eutectic+Fe Eutectic+Co eutectic+Ni lean eutectic+Ni Ratio. (MPa) UTS 13.25 17.255 52 44 0.35 0.25 10.55 Iver E.35 0. 13.00Cu-0.75 13.5Ag Sn-4.25 6.46 0. 87 46.29 47.98 Aged #1 Young's Modulus (GPa) 56.43 54.874 x 104 -7.810 x 105 9.21 -6.59 57.59 40. SnAgCu Dynamic Elastic Constant (cont.21.83 44.) Material As-cast #1 Parameter Young’s Modulus Shear Modulus Bulk Modulus Poisson’s ratio Young’s Modulus Shear Modulus Bulk Modulus Poisson’s ratio Young’s Modulus Shear Modulus Bulk Modulus Poisson’s ratio Quadratic Function Coefficients (a + bT + cT2) a b c -2 54.1.358 x 10 -2.75 42. Test Temperature (°C) -50 -25 0 25 50 75 100 125 150 175 200 As-cast #1 Young's Modulus (GPa) 57.503 x 10-5 -4.73 42.42 38.59 57.077 x 105 -2.Table 1.23 36 Vianco P.05 42.635 x 10-2 -5.24 56.83 44.88 46.885 x 105 -1. Sandia National Laboratories.86 48.722 x 10-4 -7.3 55..62 50.258 x 102 1. Sandia National Laboratories. 2001 Table 1.637 x 102 -3.2.44 As-cast #2 Young's Modulus (GPa) 56.3392 52.961 x 105 -1.39 0.075 x 105 -2.461 x 10-3 -1.84 44.912 x 108 As-cast #2 Aged #1 Vianco P. T.21 35.110 x 102 -1.3465 -2.19 0.3467 52.97 49.879 x 109 -3.57 45.31 0.22 52.61 40.44 38.79 54.77 19. 2001 .21.606 x 102 -3.65 52.703 x 105 1. T..86 48.096 x 107 -3.26 40. SnAgCu Dynamic Elastic Constant.66 52.79 50.110 x 102 -9.223 x 10-5 4.685 x 10-5 20.46 54.76 19.957 x 104 -6.213 x 103 1.79 50. SnAgCu Elastic Properties vs.3.54 25.63 Max.645 31.01505 0.47 9.8 Test Temperature (°C) -25 25 75 125 160 Vianco P.0071 0. T.5 4021.05 Min.25 3309.0056 Min.13 16.22. 2001 Table 1.4 4837. 2001 .6 2836.00845 0. Sandia National Laboratories. T. Sandia National Laboratories.. Elastic Modulus As-cast (MPa) 2863. Yield Strain As-cast 0.8 2217. Elastic Modulus As-cast (MPa) 5093 5759 4889.2.51 30.22. Yield Strain As-cast 0. SnAgCu Elastic Properties vs.011 0. 2001 Table 1.975 13.78 33.75 4455.0045 0.3 Max.3 5357.) Test Temperature (°C) -25 25 75 125 160 Mean Yield Strain As-Cast 0.00565 0.45 13. T. Temperature Mean Yield Stress As-Cast (MPa) 41.0068 0. SnAgCu Elastic Properties vs.75 Test Temperature (°C) -25 25 75 125 160 Vianco P.0191 0.635 10..835 20.7 4400.Table 1. Temperature (cont. Yield Stress As-cast (MPa) 41.0065 Vianco P.1. Yield Stress As-cast (MPa) 41.0053 0.19 Min.0047 Max.. Temperature (cont.8 10.008 0.5 13.) Mean Elastic Modulus As-Cast (MPa) 3978.0062 0.22. Sandia National Laboratories.5 3837.6 4956.0089 0. SnAgCu Elastic Properties vs. Yield Stress Aged (MPa) 36.00615 0.15 11.91 Test Temperature (°C) -25 25 75 125 160 Vianco P.4 4257 3930.7 Max. Yield Strain Aged 0.64 17.7 Vianco P.0165 0.8 3336.) Min. Temperature (cont. Sandia National Laboratories.5.) Mean Yield Stress Aged (MPa) 38.04 13.2 4611.0067 0.59 11.4.22.71 10.21 16. 2001 Table 1..77 21.3 3663. Yield Stress Aged (MPa) 40. 2001 Table 1.Table 1.95 4312.00715 0. 2001 .55 4004.0191 0.9 3828.35 Min.79 Max. Elastic Modulus Aged (MPa) 3415. T. SnAgCu Elastic Properties vs.) Test Temperature (°C) -25 25 75 125 160 Mean Yield Strain Aged 0.00555 0.925 17.0049 Max. Elastic Modulus Aged (MPa) 3576 4796.22..655 21.6 2742.0057 0.22.6.0054 0..0058 0.005 12.0065 0.0178 0.0061 Vianco P. T. Sandia National Laboratories.0055 Min.54 22. Sandia National Laboratories.7 3752.7 Test Temperature (°C) -25 25 75 125 160 Mean Elastic Modulus Aged (MPa) 3495. Temperature (cont.0076 0. Yield Strain Aged 0. T.97 10. SnAgCu Elastic Properties vs.4 2715. Temperature (cont. . Parameter ΔL/ΔT CTE = ΔL/Lo x ΔT -50°C to -25°C -25°C to 0°C 0°C to 25°C 25°C to 50°C 50°C to 75°C 75°C to 100°C 100°C to 125°C 125°C to 150°C 150°C to 175°C 175°C to 200°C 1.71E-05 1.20E-05 2.28E-05 1.59E-05 2.69E-05 2.46E-05 1. Sandia National Laboratories. Sample: As-cast #1.25.95E-05 1.42E-05 1.73E-05 2.53E-05 2.44E-05 1.24E-05 1.35E-05 2.22E-05 1. SnAgCu . Parameter ΔL/ΔT CTE = ΔL/Lo x ΔT -50°C to -25°C -25°C to 0°C 0°C to 25°C 25°C to 50°C 50°C to 75°C 75°C to 100°C 100°C to 125°C 125°C to 150°C 150°C to 175°C 175°C to 200°C 1.61E-05 2.71E-05 2.Coefficient of Thermal Expansion Data.62E-05 1.55E-05 2. Sandia National Laboratories..72E-05 1.15E-05 1.63E-05 2.34E-05 1.94E-05 1.59E-05 2.30E-05 1. SnAgCu .38E-05 1.98E-05 2.Table 1.07E-05 1.35E-05 Vianco P.70E-05 2. Sandia National Laboratories.27E-05 1.. 2001 .37E-05 1.64E-05 2. Parameter ΔL/ΔT CTE = ΔL/Lo x ΔT -50°C to -25°C -25°C to 0°C 0°C to 25°C 25°C to 50°C 50°C to 75°C 75°C to 100°C 100°C to 125°C 125°C to 150°C 150°C to 175°C 175°C to 200°C 9.92E-05 1.62E-05 2.37E-05 1.32E-05 1..22E-05 1.42E-05 1.16E-05 1. Sample: Aged #1.Coefficient of Thermal Expansion Data.37E-05 1. 2001 Table 1. SnAgCu .70E-05 1. Parameter ΔL/ΔT CTE = ΔL/Lo x ΔT -50°C to -25°C -25°C to 0°C 0°C to 25°C 25°C to 50°C 50°C to 75°C 75°C to 100°C 100°C to 125°C 125°C to 150°C 150°C to 175°C 175°C to 200°C 1. 2001 Table 1.57E-05 2.17E-05 1.36E-05 1.20E-05 Vianco P.68E-05 2.24.16E-05 1..25E-06 1.Coefficient of Thermal Expansion Data.00E-05 1.71E-05 1.43E-05 1.45E-05 1.30E-05 1.33E-05 1. T.12E-05 1. Sample: Aged #2.58E-05 2.32E-05 2. SnAgCu . T.16E-05 2.26E-05 2.62E-05 2.58E-05 1. Sample: As-cast #2.01E-05 1. Sandia National Laboratories.32E-05 2.31E-05 1. T.17E-05 Vianco P.68E-05 2.30E-05 1.74E-05 2.61E-05 1.66E-05 1.71E-05 2.Coefficient of Thermal Expansion Data. 2001 Table 1.23.30E-05 1.70E-05 2.72E-05 2.41E-05 Vianco P.69E-05 2.57E-05 2.33E-05 2.71E-05 2.26. T. Madeni.1 26.5Ag Sn-3.5 2.Table 1. Liu.5Ag Sn-3.4 5.8Cu.0 4.7Cu 63Sn-37Pb# * Process Q Q Q Q AC Q Q Q Q AC Q Q Q Q AC - YS (MPa) 26 32 25 28 20 30 20 23 24 19 15 15 16 15 16 27.0 5.6 Uniform Elongation (%) 4.1 6.0 3.5Ag Sn-0.3 5.2 12. "Casting of Lead-Free Solder Specimens with Various Solidification Rates".4 9.1 26. .2Ag-0.7Cu Sn-0.7Cu Sn-0.6 20.2Ag-0. AC: air cooled Source: J.2Ag-0.6 20.2 48 Q: water quenched.9 4.7 8.7Cu Sample Sn-3.8Cu Sn-3.8Cu Sn-3.8 41.1 3 Total Elongation (%) 24.2.4 6.7 22. and Sn-0. Mechanical Properties of Three Selected Pb-free Alloys: Sn-3. # Data for the eutectic 63Sn-37Pb extracted from Table 1.for comparison.5Ag.8Cu Average Sn-3.5Ag Average Sn-3.2Ag-0.2 UTS (MPa) 31 34 30 32 30 31 25 28 28 28 20 20 18 19 22 30.9 27.2 20. ASM.5 21.9 4.3 20.2 1.8Cu Sn-3. and T.2Ag-0.7Cu Average Sn-0.9 15.1 16. Indianapolis 2001. S.27. Sn3.2 2.International Conference. Siewert.2 22. 1. "Development of Lead (Pb) and Halogen Free Peripheral Leaded and PBGA Components to Meet MSL3 260C Peak Reflow". 2001 . T. Sn-Bi. Work presented by the research team from Motorola at EGG. Geoff Swan. Creep properties at 75oC for Sn-Ag-Cu.Chong. Sn-Ag. Thomas Koschmieder and Kennon Simmons. Sn-Ag-Bi.S. and Sn-Pb solder alloys. Alan Woosley.Figure 1. Linda Matsushita. Solidus. 2.7Cu Sn-4.5Cu Sn-4. SAF-ALLOY .8Cu-0. 2000) Anaheim. may require licensing or royalty agreements before use. 28 .0Ag-0.2.8Sb* Sn-2. NEPCON West 2000 Conf.2Ag-1.1.5Bi* Sn-3Bi-8Zn Liquidus Temp.7Cu Sn-3.0Ag-0.5Bi* Sn-3Ag-3Bi* Sn-3Ag-5Bi* Sn-3. (ºC) 221 227 220** 218 218 210** 220** 244** 285** 225 216** 218** 216** 215** 217** 240** 215** Reflow Temp. (ºC) 240 – 250 245 – 255 238 – 248 238 – 248 238 – 248 238 – 248 238 – 248 237 – 247 246 .5Ag-0. Lee. “No-Lead Solder for CSP: The Impact of Higher Temperature SMT Assembly Processing. Metallurgy Division of Materials Science and Engineering Laboratory.0Cu* Sn-4. Liquidus.” Proc.5Ag Sn-0.1Cu-3Bi* Sn-3. Thermal Properties: Solidus.5Cu Sn-3. % Kester.2Ag-2Cu-0.1.5Cu* Sn-3.5Ag-3Bi* Sn-58Bi Sn-3.7Cu* Sn-5Sb Sn-0.7Ag-1.5Sb* Sn-2Ag-7.) # N.” Chip Scale Review. Liquidus and Reflow Temperatures of Candidate Lead-Free Solder Alloys for Replacing Eutectic Tin-Lead Solder Alloy Composition Sn-2Ag Sn-3. (Feb.256 233 – 243 220 – 230 233 – 243 230 – 240 225 – 235 230 – 240 230 – 240 230 – 240 Melting Range# (ºC) 221-226 221 227 217-218 217-210 217-219 217-220 217-220 232-240 226-228% 200-216 138 189-199 V.2Ag-0.Mar.0Ag-1. “Lead-Free Chip-Scale Soldering of Packages. Liquidus and Melting Temperatures Table 2. ** For more information see: Phase Diagrams & Computational Thermodynamics.8Ag-0.-C.5Ag-0.4Ag-4.1. NIST. March-April 2000 *Patented compositions.5Ag-3In-0.8Bi* Sn-3. CA (Source: Indium Corp. and Melting-point Temperatures 2.75Cu* Sn-3. Solberg. high dross Very wide and high melting range.p.1.5Cu Sn-3.5Ag Sn-2Ag Sn-2. Anaheim. Engelhard’s lead-free plumbing solder High melting range.2.5Ag-3Bi Sn-2Ag-3Bi-0.7Cu Sn-3.1Ag% Sn-52In Melting Temperature Range (ºC) 233 (m. Kester Solder Co.7Ag-1. Melting Temperatures of Lead-Free Solders Alloy Sn-25Ag-10Sb Sn-0.8Ag-20In Sn-5Sb* Sn-58Bi Sn-9Zn Sn-0. CA .8Sb Sn-2.2Ag-0.” Proceedings: NEPCON WEST 2000 (February 27 – March 2.5Ag-5Bi-0.4Ag-4.-C. 2000).75Cu Sn-3.2Ag-2Cu-0.: 220 ºC)% Lowest melt.5Ag-0.7Cu Sn-4Ag-0. pt.1Ge% Sn-57Bi-0. Lee and W.75Cu% Sn-3.) 227@ 221@ 221 – 226 175 – 186 232 – 240 138@ 199* 217 – 350 217 – 219 217 – 218 217 – 220 217 – 225 217 – 220 217 – 244 192 – 197 287 – 218 217 – 225 190 – 216 201 – 205 208 – 217 205 – 217 198 – 213 202 – 217 138 – 140 118* Comments# High strength. “Soldering Technology for Area Array Packages. patented by Motorola (“Alloy J”) Excellent strength and wetting Good high-temperature shear strength Well established history.5Cu-0.: expensive *Eutectic N.5Sb (Castin) Sn-2Ag-7.7Cu Sn-8Zn-3Bi Sn-0.8Cu-0.p.5Bi Sn-3.7Cu% Sn-2Ag-4Bi-0.8Ag-0.8Bi Sn-3. Casey.Table 2.5Cu Sn-4Ag-1Cu Sn-4.’s Aquabond (205 – 210)% (m.5Ag-4Cu Sn-2Ag-0. Inexpensive Corrosion. 2.0.82 +/.5 0.5 3 4 Cu6Sn5 2 2.5 2. CA *Ning-Cheng Lee. P.5 2.” SMI97. Lee.2.-C. NV .25 0.5Ag Cu3Sn 0. 1995). “Lead-Free Soldering of Chip-Scale Packages.25 2. 648 Table 2.” Proc.75 1. p.18 mm2/s 218. “A Primer on Lead-Free Solder.0 1. Slattery.5 Sn-4Ag-.T.5Cu Cu3Sn 0.8Cu-0.5 Cu6Sn5 2 3.26 W/(m.5 2. “Lead Free Solders in Electronics. Artaki. Thickness (μm) of Intermetallics in Solder Alloys Aged at 150 ºC Alloy: Intermetallics: Time (h) 0 48 96 264 480 984 Sn-3.5 3 4. J.5Ag-0.5 0. Thermal and Electrical Properties of Castin™ (Sn-2. p.25 0. 2000).K) 57. Sovinsky. I.0 1.2. Anaheim. 50th IEEE 2000 Electronic Components and Technology Conference (May 21-24.m 8.” Proceedings: NEPCON West Conference (February 28 – March 2.2.K) 1. J. “The Status of Lead-Free Solder Alloys.R.5Sb) Melting Point Thermal Diffusivity Specific Heat Thermal Conductivity Electrical Resistivity Electrical Conductivity 215 – 217 °C 35.” Chip Scale Review (March-April 2000) # 2.N. Vianco.21×10-7 ohm.5 (nonuniform morphology) Angela Grusd.75 1.99 J/(kg.A.25 MS/m Karl Seelig and David Suraski. “A Drop-In Lead-Free Solder Replacement. 42 (March-April 2000) % Rao Mahidhara.1.5 2. Las Vegas. Thermal Properties: Miscellaneous Table 2.” Chip Scale Review. 2. except where otherwise noted) Density 3 (g/cm ) Electrical Resistivity -6 (10 ohm. Slattery. Artaki. Anaheim.Sn-37Pb 20.170 53. 1995).0In (eutectic) 7. Lee. P.9 25 3900 35 3450 0.146 50.8Ag.36 0.5 28 6800 47 4800 0.8Ag-20.” Proceedings: NEPCON West Conference (February 28 – March 2.0In and Sn-37Pb Eutectic Property (measured at 20 °C. J.25 0.K)) (30 °C) Thermal Expansion -6 -1 (10 .T. Sovinsky.-C.40 5600 8. “A Drop-In Lead-Free Solder Replacement.40 4500 N. CA . Physical and Mechanical Properties of Sn-2. Vianco.3.R.A. I. J.Table 2.m) Thermal Conductivity (W/(m.K ) Tensile Strength (psi) Tensile Elongation (%) Shear Strength (psi) Poisson’s Ratio Young’s Modulus (kpsi) Alloys Sn-2. 5 7. p. SMI Conf.9 3415 419. σ (dyn/ (°C) cm) 520 383 376 750 635 300 # 340 431 170 500 923 550% 526 510 785 761 995 232% 300 500 510 640 5.5 5.8 10.5 271.” Proc. Ohio.9 22.4 327.8 10. 405 . Lange.2.5 1500 1450 1145 1350 Electrical Resistivity (μohm.2 6.2 5. Rymaszewski. 401* 297 82. 100 (Handbook Publishers. p. .Mar.cm) 4.” Proc.0* 146 92.8 231.0 1900 1083 1063 156.3 2625 1455 1552 1774 960. 2000) Anaheim. Hwang.A.0 63 Cu-W(20%Cu) 1083 2.2 197 Microelectronics Packaging Handbook. 28 .6 Thermal Expansion Coeff.0 11 17 150 130 Au-20Sn 280 16 15. Tummala and E. “Wetting Characteristics of Lead Free Solders for High Volume Surface Mount Application. 429* 73.R.0* 4. “Overview of Lead-Free Solders for Electronics & Microelectronics.0 10.0* 13.0* 200 Surface Tension. 91* 70 71 418.4 7. NY) # N. 1956) % M. Handbook of Chemistry. (Van Nostrand Reinhold.0 248 Cu-Mo(20%Cu) 1083 2.K)) 240 24. NEPCON West 2000 Conf. (Feb.2 16.8 9. 2. Sandusky. 1989.2 32.8 11. (10-6/°C) 23.4* 8.5 Thermal Conductivity (W/(m.0 11.9 57 Sn-37Pb 183 470% 280% Pb-5Sn 310 19 29. eds.1* 5.1 630.0 18. R.3 20 1.S.3 14.7 2.0* 8.0* 66 393.4.0 12.J.6 1.5 46 50 20 30 1.6 14. CA *J. Abtew. Some Physical Properties of Materials Used as Electronic Packaging Conductors Metal Aluminum Antimony Bismuth Chromium Copper Gold Indium Lead Molybdenum Nickel Palladium Platinum Silver Tin Tungsten Zinc Invar Kovar Silver-palladium Gold-platinum Melting Point (°C) 660.Table 2. 5. London. 26. Thermophysical Properties of Metallic Elements Used In Electronic Packaging Metal Aluminum At. 4.51# 169.66 5.5 *961. coef. 425§ Tin 118.9 3.6 1.5# 66.0# 11.04 *419. 2.58 1.5§ 11.1 13.55 238.7.08 209.82 7. Heat capacity Fusion (25°C) (kg-cal/ g. 1983) J/ (10-6 K-1) (kg.37 80.. 1957) § E. Ht. 7. 23. ed.4.21 442. 19.0 11.14. 1983) # D. 9. 10.4§ Silver 107.828# 6.8 *271.: 0-100°C) (Butterworths.75 125.E. 6th ed.76 *630.54 8.4 29. 5.69 8.97 135.8 4.K)) # 238. 23.8. 2.22 6. Wt.3 33.62.684 Antimony 121.61 244.119.24 76.1 21.03 . 397§ # Gold 196. American Institute of Physics Handbook.9.99 383. *1554 4. 16-2 (Butterworths.9.9.90.42 12. # # Nickel 58.8§ 9.63 6.2 *2623 6.5.87 10. 73. 174§ # # Zinc 65. Sandusky. 8. 39.62. cond. pp.75 4. Handbook of Chemistry pp. Lange.46 2.47# 417.93 2. 4-40 (ht.71 7.4§ 115.8 10.K) 5.7 33. cap.595 5. p. 100-107 (pp. 8.1 23.97 1.2§ Tungsten 184..9 4.83 19.78 6.94 10.8 35.3§ 2.2 # Platinum 195. 2. 11. Brandes.0 # Molybdenum 95. 5. E.9 1.98 Density (20°C) (g/cm3) Melt.7 11. 6th ed. cond..2 11. 6. 4-78 (th.5§ # Palladium 106.44 311. 14-1 (th.3 *1064.8 *1455 4.34 *327.8 6.1 20.30 222.41 129.11 5.5§ # Indium 114.) (McGrawHill.77.6. Smithells Metals Reference Book.1# 24.5 14. 1.2..83 69.2 2.2.42 5.5§ N.A.3 18.092 236.45 *1769 5. 5-204 (resistivity).44 2.14 138.A.48. 2-17 (density).0§ # Lead 207.03 6. London. Smithells Metals Reference Book.Table 2.12 6.35 136.702 *660.31 *231.atom) 2.39 7.3 247.63 0.K) 902. 854-861) (Handbook Publishers.. 73. p. (20°C) Electrical Resistivity (20°C) (10-6 Ω.08 21.5.1 122.).69 416. Ohio.2 6.6 (0°C) Copper 63. 24.4 3. 1956) *Thermometric fixed point. 5.2 8. Point (°C) Lat.8§ (25° C) Bismuth 208.2 6.4.8 6.315.0 127.cm) Thermal conductivity (W/(m.4 39. New York.92 *1084..85 385.69 6. 119. 5.2 16.3 *3387 8. Brandes.A.70 6.50 1.996 7.58 449.5 5..6 12. 88.98 9.3 *156.9 10.21 75. 9§ Chromium 51..817 Thermal Exp.6 (g-cal/ g-at.0 8.97 19. Gray.2 91.1 1860§ 3. 9 Poisson’s Ratio (ν) 0. Mod. Tenhover. M.2 2.9 10.23 0.A.5 4. Soc. 20-24 (July 1993) *M. Res.” JOM.17 11. (W/(m. “Converting to Lead-Free Solders: An Automotive Industry Perspective.51 2.K.6* Polyimides 45 8 4.9 2. 1994) (“plated [thin foil] copper”) # S.3 3. Vol. 128 (MRS.03# 8. p.” Mat. T>Tg) x. Res.9 (FR4. 104 (MRS.9# 17.0 5.27 0. Brown and C.0* z: 400* z: 0.0 Thermal Elastic Cond. 323. Lukco.A.6 28 1.M.7 z: 7.7 2.2 5.9 3.y: 7.8 3.31 0.2 x. Vol.5* 1.3 3. T<Tg) CTE (10-6/°C) 22. D.6 (CTE: Coefficient of thermal expansion) % In plane Walter L.2 1.B.0# 4.K)) (GPa) 237 398 140 167% 17 -36 2300 150 21 250 275 69 124 125# 117* 324 -138 412 23. “Models for the Thermomechanical Behavior of Metal/Ceramic Laminates. Symp.6. Proc.3 16. Soc.4 8. Symp. Hollen. Some Properties of Materials Commonly Used In Electronics .25 12 / 70 17. 323. Winterbottom.-Y.2. L. Korhonen. Li.y: 15. Viswanathan and D.Table 2. 1994) .2# 6.A Metal Aluminum Copper Molybdenum Cu/ Invar/Cu Kovar Silicon Carbide Solder (95/5) Diamond Silicon Alumina Aluminum Nitride Beryllia Epoxy / Glass (FR4.” Mat.D. “Mechanical Properties of Plated Copper.y: 20* x.5 785 190 110# 306 375# 327 320# 345 Density (g/cm3) 2. Proc.y:17.5 16.0* z: 80-90* 1.2 8. Spearing.3* 5.7 8. D.7 7. 3. p.8* x. 3 3. 1993) .8 411. 6: Welding.19 5.2.3 23.3 5. “Brazeability and Solderability of Engineering Materials.3 5. Brazing and Soldering (ASM International.70 8.96 8.0 0.5 17.54 10. Xu. Pt.Table 2. Indacochea and R.E. Brandi.8 8. Density (g/cm3) 3. Some Properties of Materials Commonly Used In Electronics – B Melt.” ASM Handbook. Vol.0 13. J.D.7.25 3.275 110 >300 2400 >1750 660 1083 1453 2617 3410 3.22 19.56 CTE (10-6/°C) 5.5 350 304 69 180 199 324. Material Alumina (Al2O3) Beryllia (BeO) Silica (SiO2) (vitreous) Zirconia (ZrO2) / (Yttria: Y2O3) AlN Si3N4 Al Cu Ni Mo W (°C) 2050 2530 1710 2960 Young’s Modulus E (GPa) 380 311 69 138 Tensile Strength (MPa) 620 172 .01 2.9 10. 270 >400 50 -195 660 458-690 550-620 S.1 4.4 – 9. S. Liu.19 2.985 3. .A.8 4.Table 2.35 6.2. 16-2 (Butterworths.5 10.45 TCR (10–3 K-1) 4.2 4. Electrical Resistivity and Temperature Coefficient (TCR) of Pure Metallic Elements Used in Electronic Packaging Metal Aluminum Antimony Bismuth Chromium Copper Gold Indium Lead Molybdenum Nickel Palladium Platinum Silver Tin Tungsten Zinc Temp.0 5.01 8.8.6 115 12.2 10.2 4.1 4.58 2. 1983) .8 4.cm) 2.47 10. 6th ed.61 37.9 1. (K) 293 293 293 300 293 293 293 293 300 293 300 300 300 293 300 293 Resistivity (ohm.6 4. Smithells Metals Reference Book.1 4. Brandes.4 1.2 5.2 E. London.6 5.2 3.3 6.0 4.1 5.3 5.9 4.3 4. p.3 5.0 19. Table 2.2.9. Wetting Properties of Sn-2.8Ag-20.0In and Sn-37Pb Eutectic Solders Sn-2.8Ag-20.0In* Fluxes A B C D Geometric Mean Wetting Time (seconds) 200 ºC 10.60 1.53 5.08 5.73 4.66 240 ºC 4.60 0.42 2.40 2.09 1.76 Wetting Force (mN/mm) 200 ºC 0.70 0.72 0.72 0.67 0.70 240 ºC 0.71 0.56 0.64 0.67 0.64 Sn-37Pb A 2.87 1.48 0.73 0.72 B 1.03 0.50 0.71 0.61 C 1.65 1.00 0.75 0.72 D 2.50 1.44 0.73 0.73 Geometric Mean 1.87 1.02 0.73 0.69 N.-C. Lee, J.A. Slattery, J.R. Sovinsky, I. Artaki, P.T. Vianco, “A Drop-In Lead-Free Solder Replacement,” Proceedings: NEPCON West Conference (February 28 – March 2, 1995), Anaheim, CA *J.A. Slattery and C.E.T. White, U.S. Patent 5,256,370 (Oct. 26, 1993) Table 2.2.10. Wetting Times and Forces (at 300 ºC): Lead-Free Solder Alloys, and Eutectic Tin-Lead Alloy Sn-3.5Ag Sn-5Sb Sn-2.8Ag-20In Mean + σ (s) 0.0 + 0.0 0.11 + 0.08 0.0 + 0.0 T0 Mean + σ (s) 1.23 + 0.01 0.74 + 0.07 1.28 + 0.04 T2/3 Force (2 s) Mean + σ (μN/mm) 549 + 42 403 + 14 250 + 24 Mean + σ (μN/mm) 579 + 47 413 + 15 290 + 31 Forcemax Sn-37Pb 0.0 + 0.0 1.00 + 0.06 470 + 24 485 + 19 M.A. Kwoka and D.M. Foster, “Lead Finish Comparison of Lead-Free Solders versus Eutectic Solder,” Proc. Surface Mount International Conference (1994), p. 433 Table 2.2.11. Wetting Times (seconds; at 250 ºC) of Lead-free Solder Alloys Alloy Sn-40Pb Sn-3.6Ag Sn-3.6Ag-0.7Cu Sn-0.7Cu % Pure Rosin Tb T2/3 0.6 0.9 0.6 1.0 1.0 1.4 1.0 1.4 Actiec 5 Flux Tb T2/3 0.4 0.6 0.5 0.7 0.5 0.8 0.7 1.0 Rao Mahidhara, “A Primer on Lead-Free Solder,” Chip Scale Review (March-April 2000) Table 2.2.12. Onset of Melting Temperatures for Five Sn-Ag-Cu Lead-Free Solder Alloys Alloy Spec. No. Temperature, Onset of Melting (ºC) This Work Other (Ref.) Sn-3.6Ag-1.5Cu 1 217.0 225 (1) Sn-4.7Ag-1.7Cu 2a 216.7 Sn-4.7Ag-1.7Cu 2b 216.8 Sn-4.1Ag-0.9Cu 3 216.5 Ave. onset temp., 216.8 specimens 1-3 Reference Samples: Sn-3.8Ag-2.3Cu -217.4 (3) Sn-3.5Ag-0.0Cu 4 220.8 221 (2) Sn (pure) 5 231.2 231.97 (2) Chad M. Miller, Iver E. Anderson and Jack F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu,” J. Electronic Matls. 23(7) 595-601 (1994) (1) E.Gebhardt and G. Petzow, Z. Metallkde. 50, 597 (1950) (2) T.B. Massalski, Binary Phase Diagrams, 2nd ed. (Amer. Soc. Metals, 1990) (3) Miller, Anderson and Smith, Note added in proof, J. Electronic Matls. 23(7) 601 (1994) Table 2.2.13. Solidus Temperatures and Wetting Contact Angles of Selected LeadFree Solder Alloys with Use of RMA (GF-1235) Flux Alloy Sn-4.7Ag-1.7Cu Sn-3.33Ag-4.83Bi Sn-5Ag-2Bi Sn-8Ag-3Sb Sn-4.5Ag-6Bi-5.4Sb-4In Sn-4.4Ag-6Bi-5.3Sb-6In Sn-37Pb (control) Solidus (ºC) 217 (eutectic) 212 214.5 224 214 217 Contact Angle (degrees) 32 n.a. 30 39 36 34 183 16 (eutectic) Iver E. Anderson, “Tin-Silver-Copper: A Lead-Free Solder for Capacitor Interconnects,” p. 16, Proc. 16th Capacitor and Resistor Technology Symposium (CARTS 96), 11-15 March, 1996; “Investigation of Multi-component Lead-free Solders.Table 2. G. S. Fine. Elect.8Cu Sn-10Bi-0. 23(8). 232 230 Exptl.8Cu-1Zn Sn-10Bi-5Sb Sn-10Bi-5Sb-1Zn Sn-45Bi-3Sb Sn-45Bi-3Sb-1Zn Sn-37Pb (eutectic) Solidus (ºC) Calc. Vaynman.E. 197) 250 ºC 38 41 35 48 77 86 32 33 39 50 98 295 ºC 41 46 67 70 340 ºC 43 42 39 36 62 52 42 27 48 29 37 27 14 190 191 178 186 147 217 215 185 193 145 195 200 218 228 168 217 215 217 232 178 38 42 46 M.14. 222 230 Liquidus (ºC) Calc.8Cu-6Zn Sn-2Ag-0.” J. 232 230 Wetting Angle (deg) (with Kester Flux No. 222 229 Exptl. Loomans. Solidus and Liquidus Temperatures and Wetting Angles of Some Leadfree Alloys on Copper (Note opposing effects on wetting angle of increasing temperature for alloys with or without zinc) Alloy Sn-1Ag-1Sb Sn-1Ag-1Sb-1Zn Sn-4Ag-7Sb Sn-4Ag-7Sb-1Zn Sn-2Ag-0. 741 (1994) .Ghosh and M.8Cu-8Zn Sn-10Bi-0. Matls.E.2. 8 7.0 Sn-5In 219.0 11.3 210.6 211.5 226.1 8.5 226.7 98.0 97.8 167.9 28.7 196.1 218. 99 99.6 12. 97 97.9 217.0 31.5 210.0 11.9 222.3 214.0 211.5Ag 221.3 226.7 235. 91 12.9 Tex is the extrapolated onset melting temperature by differential scanning calorimetry (DSC) Tp is the peak melting temperature by DSC Tob is the observed onset melting temperature *Method of Van der Pauw S.9 220.2 10.4 240.0 234. 96 --29.5 8. San Diego CA .2 21..6 164.5 230. 95 96.0 7. 99 98.” 49th Electronic Components Technology Conf.1 96. 97 96. 97 33. 98 97. 96 17.4 193.4 18.1 221.2 165. Melting Properties. (1999).6 32.2 --10.5 10.7 97.6 Sn-10Bi 209.6 17.7 184.9 40.8 244.8 205.3 99.4 201.6 34.9 Sn-5Bi 219.7 158.8 10.4 4.3 25.K.7 10.2 Sn-3Ag -5Bi Sn-3Ag-10Bi Sn-3Ag-3In Sn-3Ag-5Sb Sn-3Ag-1Zn Sn-3Ag-3Zn Sn-5Bi-5In Sn-5Sb-3In Sn-1Cu-5Bi Sn-1Cu-5Bi-5In Sn-1.5 --- Sn (pure) 11. 97 98.4 228.1 98.4 211.9 224.2.0 191.7 216.0 206.7 225.7 223.5 220. 96 98.5 14.0 215.Table 2.7 211.5 207.HardAlloy (ºC) (ºC) (ºC) Resistivity* bility ness (μΩ-cm) Ratio (VHN) Sn-3.0 212.8 177.2 209.8 195.8 19.1 214.1 195. 97 25. 98 --99.5 218.0 17.15. June 1-4. 95 17. 95 98.9 11. 97 20.9 --21.9 28. “Pb-Free Solder Alloys for Flip Chip Applications.1 222.7 204.5Cu-2Bi-3Sb Sn-3Ag-2Cu -2Sb Sn-3Ag-3Cu -2Bi Sn-3Ag-5Bi-5In 214. Kang et al.3 216.9 231. 95 98.8 Sn-5Sb 236.7 218.6 8.1 9. Wettability and Hardness of Lead-Free Solders Tex Tp Tob Electrical Wetta. Resistivity.0 95.5 Sn-37Pb (eutectic) 17.9 31. Sn-Bi. 197 165 ºC 200 ºC 250 ºC 38 36 35 35 28 31 20 % Rosin in Isopropyl Alcohol 165 ºC 200 ºC 250 ºC 45 44 39 35 38 42 40 43 40 56 38 50 32 39 30 43 42 -58 53 10 14 9 7 20 18 15 17 12 12 15 12 27 35 36 40 31 58 28 44 38 35 35 54 59 63 M.9Zn-1In SnCl2. Elect.Table 2. G.5Ag-1Sb Sn-3.16. 23(8).2.E.5Ag-1In Sn-3. Matls.5Ag-1Bi Sn-3.E. S. Fine. 741 (1994) .5Ag Sn-3. and With 1% Addition of Ternary Elements Solder Alloy Sn-3. Saturated Solution 165 ºC 200 ºC Kester Rosin Flux No. “Investigation of Multi-component Lead-free Solders.” J.5Ag-1Cu Sn-3.9Zn Sn-8. Wetting Contact Angles of Sn-Ag. Loomans.5Ag-5Bi Sn-58Bi Sn-58Bi-1Ag Sn-58Bi-1Cu Sn-58Bi-1In Sn-58Bi-1Sb Sn-58Bi-1Zn Sn-8. and Sn-Zn Alloys on Copper: Eutectic. Vaynman.Ghosh and M. Elect. Loomans.” J. Vaynman. 197 165 ºC 27 35 36 40 31 58 200 ºC 28 44 38 35 35 54 20 % Rosin in Isopropyl Alcohol (IPA) 165 ºC 40 43 40 56 38 50 200 ºC 32 39 30 43 42 -- 20 % Rosin in IPA + 1% SnCl2 165 ºC 43 93 46 200 ºC 35 45 31 M.17. Saturated Solution 165 ºC 10 14 9 7 20 18 200 ºC 15 17 12 12 15 12 Kester Flux No.Table 2. 741 (1994) .E. “Investigation of Multi-component Lead-free Solders.E. Fine.2.Ghosh and M. S. 23(8). Wetting Contact Angles on Copper of Sn-Bi Alloys: Eutectic. and With Addition of Ternary Elements Solder Alloy Sn-58Bi Sn-58Bi-1Ag Sn-58Bi-1Cu Sn-58Bi-1In Sn-58Bi-1Sb Sn-58Bi-1Zn SnCl2. Matls. G. 06 1. “The Wetting and Mechanical Properties of Lead-Free Capillary Plumbing Solders.” ATB Metallurgie XXV.87 2.83 (0.) (s) 0. Four Lead-Free Tin Alloys and Three Lead-Tin Alloys Solder Alloy Sn (pure) Sn-1Cu Sn-3Cu Sn-3.00 0.5Ag Sn-5Sb Sn-40Pb Sn-50Pb Sn-60Pb Temp. Mean (std.90 0.6 0.2.08) (0.60 0.dev.7 0.9 0.14) 0.8 0.2 2.E. Warwick. Wetting Force.5 0. 43-50 (1985) .45 (0.7 0.6 1. No.Table 2.5 2. Wetting Properties of Pure Tin.09) 0. 1. mean (std.) (mg) 607 ( 84) 565 648 533 393 ( 82) ( 61) (109) (117) Wetting Rate mean (std.10) 0.dev.11) (0.) (mV/s) 138 ( 43) 120 365 124 97 ( 43) (122) ( 30) ( 24) NormalIzed (Sn = 1) 1.60 0.5 1.5 0.18.68 (0.12) (0.72 Area of Spread (cm2) Power Fluxite flow Flux 0.37 (0.19 0.12) Max.5 0.55 -2.55 (0.09) 602 (114) 523 (115) 623 ( 68) 146 ( 43) 191 (119) 100 ( 17) M.38 0. (ºC) 282 300 365 260 280 234 265 285 Wetting Time.55 0.64 0.dev.70 1.5 0. 2. and Electrical Resistivity Alloy Sn (pure) Sn-37Pb Sn-3.9In) Judith Glazer.5 +5 Surface Tension (at Tliq + 50 ºC) (mN/mm) Air Nitrogen 417 431 464 493 461 Intermetallic Phases Electrical Resistivity (μΩ-cm) 11. Cu6Sn5 Cu6Sn5 10 – 15 10 – 15 10 – 15 138 1.5 14.Table 2.5Ag Sn-4Cu-0.7Cu Sn-58Bi Sn-52In § Sn-9Zn Tsol* Tliq (ºC) 232 183 221 216 227 (ºC) CTE (20 ºC) (x 10 /ºC) 2. “Microstructure and Mechanical Properties of Pb-free Solder Alloys for Low-Cost Electronic Assembly: A Review.5Ag Sn-0. Electronic Materials 23(8).5 319 349 30 – 35 120 2.6 2. 693 (1994) .0 10 – 15 199 518 487 10 – 15 *Where no liquidus temperature is given. Coefficient of Thermal Expansion. (For pure tin the melting point is given. definite fusion temperature.5 222 491 Ag3Sn Ag3Sn.19. the alloy is eutectic and has a single. Surface Tension.” J.) § (Eutectic: Sn-50. Lead-Free Solder Alloys: Solidus and Liquidus Temperatures. T.8Cu0.8Ag-20In Sn-3. Jackson. 178 (primary peak) 212 217 Contact angle (deg) 43 44 31 44 Wetting rate (dyne/ sec) 350 650 2420 4280 Surface tension (dyne/ cm) 300 390 420 510 183 17 2030 380 I. peak). Ray and P.M. CA. Finley. A.W.8Bi Sn-2.5Ag-4. “Wave Soldering with Pb-Free Solders. Vianco. p. D.20.Table 2.5Ag-0. Surface Mount International (San Jose. 495. August 27-31.2. U.5Sb Sn-37Pb (eutectic) Liquidus temperature (ºC) 138 114 (low-temp. Artaki. Fluid Properties of Some Molten Lead-Free Solders Solder Alloy Sn-58Bi Sn-2. . 1995).” Proc. 684 8. Materials Park.55 2.35 6.00 2.00* 1.50* Normalized (Pb = 1) 1.5* 2. 283. 1999) ($) 0.4 0.70 170.80 6.2.756 121.5Cu 12. Ohio 44073 USA.29 7.00 2.14 10. Brazing.6 8.91 8.00 163.5 Adapted from Alan Rae and Ronald C. 1999) ($) 0.77 Normalized (Pb = 1) 1.61 Sn-4Ag-0.0134 0.60* 5.0319 5. 6. 1993) . NEPCON WEST 2000 (February 27 – March 2.0905 14.66 10.92 9. CA *(1992 prices. Sn-37Pb 3.0413 6.” ASM Handbook.” Proc. (solder paste) Sn-0.80/kg) Paul T.36 309.0647 0.5 7. 242.30 0.25* 10.8 7. Lasky. Pb: $0. Welding.14 2.0134 0.31 10.50 6.Table 2. 9639 Kinsman Road. Vianco. “General Soldering.4 0.27 7.1 303. and Soldering (ASM International.3 3 Price per cm3 (2nd Q.00625 0.10 Sn-Pb 90.73 8. Vol. 2000). “Economics and Implications of Moving to Lead-Free Assembly.21.7Cu 5.36 6. Anaheim.78 1.39 0. Densities and Costs of Popular Solder Metals and Alloys – A Metal Pb Sb Cu Bi Sn Ag In Price per kg (2nd Q.25 22.1* Density (g/cm ) 11.0416 1.57 285. . 27Mar. Proc.48 3.316 0.5Sb 213-219 5.21 13.43 0.53 7.88 0.013 0.44 7.48 3.50 1.66 7.57 7.268 8.22.80 0.75 7.56 1.5Ag-1.8Bi Sn-3.70 1.92 1.13 0.92 0.104 0.50 7.46 0.02 2.65 1.80 1.00 2.5Cu Sn-3.37 3.39 7.24 125. NEPCON-West 2000 (Feb.324 8.39 1.41 7.85 1.264 7.067 0.92 30.31 0.11 14.00 2.012 1.45 0.2.947 33.073 0.10 0.31 0.31 8.20 0.48 12.5Ag-0.263 0.55 6.5Ag Sn-0.5Cu-7.73 13.15 5.085 Sn-2.06 0.24 5.61 0.4Ag-4.18 0.142 0.Table 2.21 0. Range (ºC) 183 221 227 139 232-240 199 217-218 208-215 216-220 179-189 218 Cost/(unit mass) [2/3/99] $/lb $/kg 0.489 0.28 7.272 0.75 2.5In Melt.014 0.42 Cost/(unit volume) $/in3 $/cm3 0.056 31.8Cu-0.056 0.13 17.097 0. “Lead-Free Alloy Trends for the Assembly of Mixed Technology PWBs”.28 7.42 7.264 7. 2) Anaheim.00 275.19 0.8Ag-20In Sn-3.99 0.37 6.267 0.269 0.273 7.02 66.008 0.14 0.20 0.44 7.06 8.09 0.40 7.133 Y Y Comment Availability limited limited scarce Patented Sn-2Ag-0.97 0.089 Y (Castin™) Authors not listed.93 Density (25 ºC) lb/in3 g/cm3 0.59 8.268 0.23 6.41 11.379 10. CA .35 0.18 0.39 0.354 9.263 0.011 0.44 3.50 0.41 13.5Ag-3Bi Sn-2.267 7.052 0.33 0.91 1.7Cu Sn-58Bi Sn-5Sb Sn-9Zn Sn-4Ag-0.264 0.80 7.20 185.09 11.76 1.90 7. Densities and Costs of Popular Solder Metals and Alloys – B Element Lead Zinc Copper Antimony Bismuth Tin Silver Indium Alloy Sn-37Pb Sn-3.269 0.70 84.046 0.239 6.5Bi 186-212 5.32 3.318 0.76 3.107 0.258 7.054 0. 83Bi (Tonset = 212 ºC).8Bi Relative Cost Bar 1. and (3) Sn-3.06 Sn-3.56 1.28 1.7Cu 2. Ag: 260. National Center for Manufacturing Sciences (NCMS).33Ag4.5Ag (Tmelt=221 ºC).26 Paste 1.000 1.27 1.06 1.5Ag Sn-3Ag-2Bi Sn-3. (2) Sn-3Ag-2Bi (Tonset = 216 ºC).6.17 2.23.06 1.” Chip Scale Review.5Ag-0.0In. Beginning with three alloys: (1) Sn-3.06 Sn-4.05 Sn-3." Lead Free Solder Project CD-ROM. “Lead-Free Soldering of Chip-Scale Packages.7Cu 2.21 1. Bi: 8.06 Costs of pure metals (relative to Pb=1): Zn: 1.8Cu-0.0.5Ag-5. Source: Technical Reports for the Lead Free Solder Project: Properties Reports: "Solder Alloy Development for Plated Through-Hole Applications: DSC Analyses and Ring-in-Plug Mechanical Tests. reducing the probability of its cracking due to buildup of residual stress during thermal cycling (cooling after a soldering operation). p.6Ag-0. A solder alloy with composition Sn-3.9.000 2. Sn: 11.5Sb 2.4Ag-4.7.3Cu 2. Au: 15000 Ning-Cheng Lee. Sb: 3.06 Sn-3. which is very ductile) was carried out by NCMS.08 Sn-2. Cu: 3.29 2.Table 2. Solder Alloy for Plated Through Holes A series of investigations to reduce the solidus temperature and strength of lead-free solders (by adding indium. 1998 .2Ag-0. 42 (March/April 2000) A.5Cu-1Zn 2.2.7Ag-1.5Ag-1. Cost of Lead-Free Solder Alloys Relative to That of Sn-37Pb Eutectic Alloy Sn-37Pb Sn-3. with addition of either 1 % or 2 % (by mass) Cu was found to reduce the alloy's melting temperature by 5 ºC and also desirably decreased the alloy's strength.07 1. Criteria for Down-Selection of Lead-Free Alloys Property Liquidus temperature Pasty Range Wettability Area of Coverage Drossing TMF Thermal Mismatch Creep Yield Strength Elongation Relative elongation of material under uniaxial tension at room temperature Definition Temperature at which solder alloy is completely molten Range of temperature between solidus and liquidus. A large force indicates good wetting.1. where alloy is part solid and part liquid. as does short duration t0 at zero wetting force and time t2/3 to reach two thirds of maximum wetting force.6 s t2/3 < 1 s > 85 % Qualitative > 75 % < 29 ppm/ºC > 500 psi >2000 psi > 10 % Source: Technical Reports for the Lead Free Solder Project: Properties Reports: "Down Selection." on Lead Free Solder Project CD-ROM.000 minutes (~167 hours) Minimum Acceptance Level < 30 (ºC) Fmax > 300 μN t0 < 0. for a specific configuration of board and solder joint Difference in coefficients of thermal expansion that causes unacceptable thermal stress Stress load to failure at room temperature. Assessed by force required to wet a copper wire with molten solder.3. 1998 . Measures coverage of copper test piece by solder Measured by amount of oxide formed in air on surface of molten solder after a fix duration at soldering temperature Lifetime at a given failure rate compared to that of (eutectic) Sn/37Pb. in 10. Candidate Alloys for Replacing Lead-Alloy Solders Table 3. National Center for Manufacturing Sciences (NCMS). 3Ag-15Bi Sn-6.7Bi-0.5Ag-19.8Ag-30Bi Sn-3.5In Alloy Code F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 Chemical Composition (% by mass) Sn-20In-2.6In Sn-5.4Ag-4.6Zn *Eutectic composition # Composition F2 is a proprietary composition.5Bi Sn-3Ag-41Bi Sn-55Bi-2Cu Sn-48Bi-2Cu Sn-57Bi Sn-56.3Ag-11.1Ag-6.8Bi-9.6Ag-0.4Sb Sn-4.5Ag-1.5Bi-1.5Bi-3Sb Sn-55Bi-2Zn Sn-0.6Cu-5Sb Sn-3.7Cu Sn-3. The seven lead-free alloys in bold type are those down-selected for extensive testing and measurement from the initial pool of 79. National Center for Manufacturing Sciences (1998).4In Sn-6.5Bi-0.5Ag-2Bi Sn-2Bi-1.Table 3.5Bi-3Zn Sn-3.5In Sn-2Ag-7.5Ag-56Bi Sn-4.7Cu Sn-3.5Ag-1. Castin® .2Bi-5.5Ag-2Bi-1.5Cu # D5 Sn-57Bi-1Sb F2 Sn-2.3Cu D1 Sn-45Bi D2 Sn-57Bi-2In D3 Sn-2Ag-57Bi D4 Sn-57Bi-2Sb F1 Sn-2Ag-7.2Ag-0.9In-0. Selection process is detailed in Technical Reports for the Lead Free Solder Project: Properties Reports: "Down Selection.8Ag-20In Sn-0.5Bi-0.8Cu-0.5Sb-1Cd Sn-75Pb Sn-50Bi Sn-52Bi Sn-55Bi-3Cu Sn-48Bi-4Cu Sn-2Ag-46Bi-4Cu Sn-56Bi-2In Sn-2Ag-1.3Cu-1In Sn-3.7Ag-1.5Ag-0.5In Sn-2.5Ag-1. Chemical compositions of 79 lead-free solder alloys down-selected for preliminary testing by the National Center for Manufacturing Sciences (NCMS). NCMS Alloy Code A1* A2 A3 A4* A5 A6* A7 A8 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4 C5 Chemical Composition (% by mass) Sn-37Pb Sn-2Ag-36Pb Sn-97Pb Sn-3.1Bi Sn-3.2Ag-2Cu-0.5Ag Sn-5Sb Sn-58Bi Sn-3.8In Alloy Code D8 D9 D10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8 EN9 Chemical Composition (% by mass) Sn-3Ag-55Bi-2Sb Sn-3Ag-54Bi-2In-2Sb Sn-3Ag-54Bi-2Cu-2Sb Sn-3Ag-2Sb Sn-3Ag-2Cu-2Sb Sn-3Ag-2Bi-2Sb Sn-3Ag-2Bi Sn-2.5Sb F3 Sn-0.5Sb D6 Sn-2Ag-56Bi-1.5Ag-4Cu D7 Sn-3Ag-55.8In-7.5Ag-10Bi Sn-3.5Sb Sn-2Ag-9.8Bi Sn-3Ag-15In Sn-3Ag-5Bi-10In Sn-5Bi-10In Sn-2.6Ag-14.8Ag-20In Sn-3.5Sb F4 Sn-8.5Cu-1Zn Sn-3Ag-10.5Sb-29Pb Sn-3Ag-4Cu Sn-2.8Zn Sn-5Bi-7Zn Sn-31.5Cu Sn-0.5Ag-11." on Lead Free Solder Project CD-ROM.5Ag-1.8Sb Sn-2.1Ag-1Bi-3.9Sb Sn-0.2.5Cu-3Sb Sn-2Bi-8In Sn-10Bi-10In Sn-10Bi-20In Sn-9Zn Sn-5Ag-8.2Bi-5.5Sb Sn-3Ag-1Bi-1Cu-1.5Ag-0. preforms. Major considerations for replacement of lead-free solders: ♦ Melting (or solidus) temperature similar to that of Sn-37Pb solder ♦ Other physical properties (such as ductility. such as wire.4. thermal conductivity and expansion. or better than. Miscellaneous A. spheres. and paste ♦ Adequate wetting properties and viscosity ♦ Acceptably low dross formation when used in wave soldering ♦ Compatibility with existing systems of liquid flux ♦ For paste. ribbon. adequate shelf life and performance ♦ No toxicity problems . those of Sn-37Pb solder ♦ Narrow plastic range ♦ Capability of being fabricated into contemporary physical forms of solder. tensile strength. powder. electrical conductivity) as good as. . mount 36 alloy Low-usage. properties used as reference.54 .5 3. Designation and Composition of Lead-Free Solders. contains cadmium. 46. A.57 7.21 3 P. very good in thermal fatigue. 64. 57. 22. Blank cells indicate either zero composition or no available data. properties used as reference. Comments Melting Temperature (ºC) L S Density (g/cm ) Calc. Meas.R. C4 97 alloy used by IBM.38 7. low-lead content.00 64. CTE = coefficient of thermal expansion.27 8.57 7.42 8. S = solidus.25 8. Cd: A7 A8 95 25 3.09 14. C.5 0.Table 4. L = liquidus.] Composition (% by Mass) A. Baseline (eutectic) alloy.39 8.68 7.5 1. Baseline (eutectic) alloy.39 9. Sn A0 A1* A2 A3 100 63 62 3 2 Ag Bi Cu In Sb Zn Pb Reference: pure Sn Baseline (eutectic) alloy.44 11.70 29.72 0 11. 7.04 20. 37 properties used as reference.26 20. 20.74 25. 17. 7. = "Alloy Code".44 Specific Heat (J/g) CTE (µm per m. R.1.39 10. 47.0 75 Alpha alloy #38. P.37 7.31 0 1 8. alloy. very-high-temp.13 A4* A5 A6* 96. source is documented at end of this series of tables.C. Popular high-temp.ºC) 183 183 180 179 318 318 45. 18. Popular surface. = pasty range. [Due to space limitations.5 95 42 58 5 221 221 241 234 138 138 223 221 264 183 0 7 0 2 81 7.30 8. low usage. 116% total elongation. R.01 . Calc.ºC) B3 42 55 3 Similar to B2. Meas. 12. (J/g) 14 13 8. Sn B1 B2 50 48 Ag Bi 50 52 Cu In Sb Zn Pb Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P. wide pasty range. 14. wide pasty range.52 36. high liquidus.42 43. 40. low >400 elongation Poor ductility (2.37 8. 45.4 8.39 9 14 8.55 B4 B5 B6 48 48 42 2 48 46 56 4 4 2 8. choose one.52 8.7% 146 137 elongation) Quenched alloy shows ternary melting (99°C 140 126 solidus).42 8. 151 138 High Bi content High Cu.44 8. C. wider pasty 152 138 range and lower elongation (21%) Compare solderability results with B1.) Composition (% by Mass) A. low >400 elongation High Cu. high liquidus.13 CTE (µm per m.38 16.37 8.Designation and Composition of Lead-Free Solders (cont. 8. 61.54 52. C.5 78.48 8.19 7.38 7.5 Zn Pb IBM patent alloy. 46.9 11. Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.) Composition (% by Mass) A. Meas.Designation and Composition of Lead-Free Solders (cont.42 7.ºC) 20. CTE (µm per m.1 7.8 1 9.42 7. high indium content ($12.34 7.86 . Similar to E3. R.1% total elongation. but meets acceptance criteria. (J/g) 198 183 221 221 226 219 224 220 195 163 15 0 7 4 32 8.4 3 2 19. Ag Bi 2 3 2 1 9.4 7. not commercially available. 59. A complex system. 7.5 1.39 7. 2. 65.8 / lb). Sn C1 C2 C3 C4 C5 67.8 4 1. liquidus > 300 ºC. Calc.5 93. same pasty range and YS but lower % elongation. 95 ºC pasty range.83 94.5 93.5 Cu In Sb 1. low 29 usage and lead content. 32 C pasty range.45 14. 2. 3.85 CTE (µm per m.Designation and Composition of Lead-Free Solders (cont. 55.61 8. Calc.61 8. lower pasty range Similar to B6.58 8.5 3.8%) Meets acceptance criteria but questionable value over D5 Similar to D7.ºC) 44. same % elongation. 3. 40.8%) Meets acceptance criteria but questionable value over A6 Similar to D5.24 44.8 3. wider pasty range (12 ºC) 99 ºC solidus. 2. 57. 29 ºC (26 ºC) pasty range. 41.53 8. 15. 39. 14. 2. 40. R.15 44.52 8. 2.54 8.56 8. lower % elongation (26.56 8.5 1.59 8.25 15. Cu In Sb Zn Pb Similar to B1.55 8. 2. 57. 1.7 % elongation Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P. 42. lower elongation.25 8. 2.56 8. 15.) Composition (% by Mass) A. high Bi Similar to D7.58 40. 41. 39. 2.39 45.5 2. wider (sic) pasty range Meets acceptance criteria. C. 41. 13.5 40. 1. 154 138 . 54.54 8. (J/g) 164 138 140 127 147 140 150 141 149 138 145 137 147 137 150 138 138 99 26 13 7 9 11 8 10 12 39 16 8.53 8. lower % elongation (71. 56. 15. 54. Sn D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 55. 57. wide pasty range (39 ºC) 3. Ag Bi 45. 55. 40.60 8. 57. Meas. 38.68 15.35 7.69 198 198 0 7.41 7.44 E4 E5 E6 E7 E8 E9 E10 95 3 2 2 2 1.34 7. good candidate Similar to E4. low Fmax Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.39 7.39 59. high Cu content Meets acceptance criteria.84 95. 31. Calc.5 93.77 .26 7. C. other alloys more promising Meets acceptance criteria. 60.47 7. 62. 49.39 7. 14. similar to F17.39 62.6% elongation High dross.29 69. (J/g) 228 225 224 221 226219 3 3 7 7. lower % elongation. lower elongation 30-degree pasty range Potentially expensive (high In content) and 3.) Composition (% by Mass) A.Designation and Composition of Lead-Free Solders (cont.5 90 80 70 91 7.34 7. R.49 57.44 13. 16.81 20.36 7.38 7.5 2.5 2 10 10 8 10 20 9 3 220216 221 215 231 225 215 206 200 170 4 6 6 9 30 7. wider pasty range Quaternary alloy.35 7. Meas.34 7. CTE (µm per m. high In content.ºC) 13. other alloys more promising Meets acceptance criteria.33 7.73 19. good yield strength and elongation Meets acceptance criteria. Sn E1 E2 E3 95 93 93 Ag 3 3 3 2 2 Bi Cu In Sb 2 2 2 Zn Pb Meets acceptance criteria.49 7. 12 7. . Sn EN1 86.6 7.8 EN4 90.5 5.26. high In.3 15 63. Calc. (J/g) 205 200 199 189 242113 215202 208 200 282 221 200 137 137 137 170 169 5 10 129 13 71 63 145 51 31 7. 137 ºC solidus Wide pasty range Wide pasty range Very wide pasty range Wide pasty range Wide pasty range Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.1 - 5.4 20 EN3 73.26.5 3.ºC) .46 7.5 86.5 10 81.61 7.44 7.83.8 30 803. 54. 78 degree pasty range.4 EN2 805. Meas.43 7.3 11.7 8. CTE (µm per m.6 Ag 5 Bi Cu In Sb Zn Pb Meets acceptance criteria.59 7.1 EN5 EN6 EN7 EN8 EN9 6. 8.45 7.Designation and Composition of Lead-Free Solders (cont.49 7. R.5 11.57 7. very wide pasty range From quench.67 8.66 7.73. similar to EN1 and F18 Low solidus. midrange melting temperature High liquidus.6 2 14.2 80.82. C.57 56.49 7.) Composition (% by Mass) A.2 46.10 7.49 7.41 7. 6 2. Sn F1 F2 F3 F4 F5 F6 F7 F8 F9 90 Ag Bi Cu 2 7.38 7.5 7.Designation and Composition of Lead-Free Solders (cont.50 7.29 7. lower yield strength may be beneficial Alpha quaternary alloy Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.6 95.2 88 65.6 77. high liquidus Midrange. Calc. Low elongation.2 20.8 4 8.5 90 2 26.) Composition (% by Mass) A. meets acceptance criteria. Zinc drossing Indium alloy. Meas. Meets acceptance criteria.30 CTE (µm per m.5 95 3.5 0.5 0. Meets acceptance criteria.30 7. lower elongation AIM "Castin" alloy. Trials Englehart alloy.5 0. wide pasty range Alpha midrange alloy.1 2.820 5 31.5 83.4 .93 7. (J/g) 213 193 226 211 226 218 195 178 180 106 194 185 171 133 220 214 238 229 20 15 8 17 74 9 38 6 9 7.8 7 3 0. Indium alloy.37 7.37 7. Zinc drossing Alpha alloy.38 7.5 7.5 0.ºC) 96. meets acceptance criteria.5 In Sb Zn Pb ITRI alloy.5 20.5 1. R. good results in mfg. C. wide pasty range Alpha high-indium alloy. 47 16.3 1 1 F17 91.35 CTE (µm per m.5 19. wider pasty range Similar to F13 and A6. similar to F15.5 56 43 50 3 41 55 48 2 2 F15 F16 42 42 57 56.8 Zn Pb Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.8 3. wide pasty 196 range IBM Endicott alloy.9 quench. meets acceptance criteria.5%). 140 lower elongation.5 22.8 97 0.ºC) 21.54 7. Meas. lower elongation (18.54 8. similar to A6. Sn F10 F11 F12 F13 F14 Ag Bi Cu 2 In Sb 0.24 8. 153 wider pasty range IBM alloy.53 8.) Composition (% by Mass) A. Similar to E4. 132 132 211 6 6 4.8 Kester alloy. meets acceptance criteria.3 . 138 lower elongation SNL alloy #1. R. lower 230 yield strength may be beneficial Kester alloy. low 166 elongation (38. poor wetting IBM alloy.Designation and Composition of Lead-Free Solders (cont. (J/g) 219 138 138 138 138 11 58 28 2 15 7.2 78 2.9%) High Cu.33 7. high Bi content. C. improved elongation over 138 A6.9 8.4 4. Calc.74 8. small peak at 137 ºC from 215.7 0. 43 7.1 CTE (µm per m. Sn F18 F19 F20 82 82 85 3 Ag Bi 3 5 5 2.5 85. composition adjusted to reduce pasty range INDALLOY 227 Plumbing solder Plumbing solder Ternary Sn-Bi-Zn eutectic Ternary Sn-Bi-Ag eutectic SNL alloy #2 AT&T alloy [check total composition.6 4.2 3.9 1.5%] Qualitek alloy SNL alloy #3 NIST alloy NIST alloy Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.5 F26 88.7 0.3 23.32 8.7 96.9 F28 F29 F30 F31 F27 95.6 0. (J/g) 113 7.37 7.9 3 2 5 1 Sb Zn Pb NIST Sn-Bi-In system.40 187 175 12 7.49 8.5 221 219 217.5 56 4.5 1. R.29 7.1 3.6 201 2 16.5 55 0.ºC) F21 77.7 3 93.38 7.5 10. similary to EN1.5 1. C.5 3.6 .39 7.3 0.Designation and Composition of Lead-Free Solders (cont.37 7.36 7.53 7. Meas.8 0. composition adjusted to reduce pasty range Midrange high-In alloy.) Composition (% by Mass) A.38 7. Calc.40 20.2 95.46 7.1 1 0.4 Cu In 15 10 10 20 3.2 F22 95 F23 95 F24 43 F25 43. 100. 113 ºC solidus Midrange high-In alloy.7 1. 9 210.40 91.1 208. plus 3% In.54 3.13 3.7 210.1 214.75 89. plus 5% In.97 1. plus 3% In.ºC) 95.06 2.2 1.9 6. Meas.99 2.3 5.91 4.0 185 213.8 7.76 Pb Alloy A4. R. Sn/Ag ratio preserved Alloy E4.8 216 214.33 94. Sn/Ag ratio preserved Alloy A4.89 3.30 4.46 7.40 7.5 8.51 7. Sn/Ag ratio preserved Alloy E4.47 7.91 4.43 3.47 93.24 4.57 89.5 86.90 90. plus 5% In.2 7.48 2. Sn/Ag ratio preserved Alloy A4. Sn/Ag ratio preserved Alloy E4.6 206. Sn F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 F42 Ag Bi Cu In 0.1 202. Sn/Ag ratio preserved Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.91 4.5 4.9 17 7. plus 1% In.76 0.94 90. C.99 2.91 1.37 4.5 3.5 3.40 7.1 215.40 7.1 208.3 205.1 202. Because these alloys were not intended to replace tin-lead solder. plus 5% In.0 199.38 7.8 215.86 1.9 4.38 7.23 2.Note: Following alloys F32 to F65 and A0 were experimental or reference alloys prepared to investigate failures due to fillet-lifting observed in through-hole joints when soldered with certain lead-free solder alloys.66 87. Composition (% by Mass) A.46 7.3 5.90 3.4 212.98 92. plus 1% In. Sn/Ag ratio preserved Alloy E4.5 7 10 .2 215. their property values were not systematically collected. plus 3% In.9 210.99 2.5 6. Sn/Ag ratio preserved Alloy E4. (J/g) 223 218.69 3. plus 1% In. Calc.76 0.4 221. Sn/Ag ratio preserved Alloy E4.57 CTE (µm per m.38 7. Same room-temperature strength as for F2. Cu added to improve wetting.5 1. Ag reduced to increase ductility.36 F45 91. Same room-temperature strength as for F2.35 F46 F47 95 94 5 5 1 222 221 7.5 0. lower melting pt. Ag replaced by 5% Bi to lower melting point. R.39 7.5 1 5 F44 91.5 2 5 205 140 7.37 CTE (µm per m. Cu added to improve wetting.) Composition (% by Mass) A. Cu added to improve wetting. Ag reduced to increase ductility.5 3 5 212 7. Calc. 1% In added to increase ductility. (J/g) 205 140 7.39 .ºC) F43 91.5 2. C. Same room-temperature strength as for F2.Designation and Composition of Lead-Free Solders (cont. Meas. Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P. Ag replaced by 5% Bi to lower melting point. Sn Ag Bi Cu In Pb Ag reduced to increase ductility. Add more Ag.39 CTE (µm per m.5 0. R. Meas.30 7.5 1 1 5 5 5 Ag replaced by 5% Bi to lower melting point. Calc. lower 221 melting pt Reintroduce Ag. lower melting pt.Designation and Composition of Lead-Free Solders (cont. Sn only. complements F43-F45. 3% In 215 added to increase ductility. Sn Ag Bi Cu In Pb Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P. 7. lower melting pt.5 92.33 7. complements F43-F45.39 7.35 .5 1.) Composition (% by Mass) A. 3% In 210 added to increase ductility. add Cu at eutectic composition. C. with 5% In added to increase ductility.ºC) F48 92 5 3 F49 90 5 5 F50 F51 F52 95 93. add Cu at eutectic composition. (J/g) 7. Ag replaced by 5% Bi to lower melting point. Sn/Ag ratio maintained same as in A4 2. keep In at 5%.5 0. Calc. Sn/Ag ratio maintained same as in A4 5% Pb added to A4.76 Pb Reintroduce 1% Bi to lower melting point.5 Ag Bi 1 3 Cu In 5 5 5 5 2. (J/g) 7. Increase Ag.44 4.33 7. keep In at 5%.44 4.50 7.ºC) 94.41 91.32 7.43 3.) Composition (% by Mass) A. R.59 CTE (µm per m.33 89.68 87.5% Pb added to F17.5 93.76 2.44 7. keep In at 5%.56 3. Sn F53 F54 F55 F56 F57 F58 F59 F60 94 92 94. Increase Bi.24 4. keep In at 5%.5 1.31 7. 2. Sn/Ag ratio maintained same as in F17 5% Pb added to F17.57 .32 4. Remove Bi.53 7.15 3. reintroduce Ag.90 3.36 7. C. Sn/Ag ratio maintained same as in F17 Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P.5% Pb added to A4.Designation and Composition of Lead-Free Solders (cont. Meas. 5 2. Calc.76 ratio maintained same as in F50 Comments Melting Density SpecTemperature ific 3 (ºC) Heat (g/cm ) L S P. Meas. C.48 97. Sn/In 2.88 4. (J/g) 7. National Center for Manufacturing Sciences (NCMS).5% Pb added to F63.48 CTE (µm per m.43 7.76 ratio maintained same as in F63 Ag Bi Cu In 4.Designation and Composition of Lead-Free Solders (cont.76 Pb 2.5 2.12 2. Sn/Ag 4." Lead Free Solder Project CD-ROM.38 Source: Technical Reports for the Lead Free Solder Project: Alloy Descriptions: "Lead-Free Solder Alloy Designation and Composition. Sn F61 F62 F63 F64 F65 92. Sn/In 4. 1998 .37 7.86 2.5% Pb added to F50.ºC) 95.68 90. 2.44 92.44 Sn/Ag ratio maintained same as in F63 5% Pb added to F63. R.) Composition (% by Mass) A.44 ratio maintained same as in F50 5% Pb added to F50.36 7.42 7. 28 . Foley. (Butterworths.” ASM Handbook.” Proc.S. Proc. S. “Wetting Characteristics of Lead Free Solders for High Volume Surface Mount Application. 23(7) 595-601 (1994) 4. References to Tabular Data: 1.A. Cook and Joel Harringa. 2000) Anaheim. Brandi.” (October 25-28. 575 (complete citation not available) 8.N. D. S. U. 1995). 495. 1999). 16.” J. Anderson. H. 705-709 10. “Tin-Silver-Copper: A Lead-Free Solder for Capacitor Interconnects. “Development of Eutectic and Near-Eutectic Tin-Silver-Copper Solder Alloys for Lead-Free Joining Applications. Tamara E. Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM 3) (The Minerals. “Brazeability and Solderability of Engineering Materials. “Wave Soldering with Pb-Free Solders. Finley. Bloomer and James C. “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu. 1996 5. “Effects of Transition Metal Alloying on Microstructural Stability and Mechanical Properties of TinSilver-Copper Solder Alloys. Liu. Vianco. 27-Mar.. and J. Bruce A. CA. 1998). Minneapolis. Iver E.W.5. Burchett. Chad M. p. Smithells Metals Reference Book. NEPCON West 2000 Conf. James C. 1993) 12. p.1. 11-15 March. Electronic Mater. Bloomer.D. Ray and P. 1994) .” Proc. Foley.R. Foley. Vol. 1998) 6.” p. Tamara E. 6th ed. Anderson and Jack F. S. A. Metals and Materials Society. Frear. “Development of Eutectic and Near-Eutectic Tin-Silver-Copper Solder Alloys for Lead-Free Electronic Assemblies. Surface Mount International (San Jose. Xu. Artaki. Peter Biocca. James C. Cook and Joel Harringa. New York. eds. NEPCON-West 2000 (Feb. Proc.” Proc. The Mechanics of Solder Alloy Interconnects. Authors not listed. Bloomer. E. Terpstra. 16th Capacitor and Resistor Technology Symposium (CARTS 96). Iver E. Jackson. Iver E. Iver E. D. 60 (Van Nostrand Reinhold. Useful References: 5. pp. 2. 6: Welding. Anderson. Robert L. Tamara E. Robert L. CA 3. Brandes. Morgan. August 27-31.” Proc. Terpstra.T. Özer Ünal. Brazing and Soldering (ASM International. (Feb. Smith. 9. CA. “Lead-Free Alloy Trends for the Assembly of Mixed Technology PWBs”.” IPCWorks ’99: An International Summit on Lead-Free Electronics Assemblies. Iver E. Surface Mount International (San Jose. Abtew.M. Miller. “Global Update on Lead-free Solders.E. M. CA 2. Anderson. London. MN 7. Bruce A.” p. Indacochea and R. J. Lau.H. 2) Anaheim.Mar. Anderson. 1983) 11. ” Proc. C.” Proceedings: NEPCON West Conference (February 28 – March 2.A. Lau. Ricky Lee. Res. Slattery. “Lead Finish Comparison of Lead-Free Solders versus Eutectic Solder. Lee. Cheng. 21.C.W. American Institute of Physics Handbook. 323. Lee. S. Vianco.T. Kwietniak. Li. Hampshire. 104 (MRS. William B. Korhonen.M. P. “PbFree Solder Alloys for Flip Chip Applications. J. Chen.” Proc. Sandusky. Anaheim. “The Search for Lead-Free Solders. Hwang. “Overview of Lead-Free Solders for Electronics & Microelectronics. .E. 729 18. Danovitch. p. Vol.” Mat. 1992) San Jose. (1999). CA 27.A. K. Judith Glazer. J. Anaheim. p. “A Drop-In Lead-Free Solder Replacement. Horkans. (McGraw-Hill. Vianco. SMI Conf. T. 599 (1992) 19. Rejent. p. “Fracture Mechanics Analysis of Low Cost Solder Bumped Flip Chip Assemblies with Imperfect Underfills.J. E. Electronic Materials 23(8).G. J. 1995). Brown and C. M. Electronic Mater. Proc. 648 17. S. Metallkde. Surface Mount International Conference (Sept. Angela Grusd. P. 405 21. Jerome A.Gebhardt and G.K. Cotte. D.” Proceedings: NEPCON West Conference (February 28 – March 2. Tseng.-Y.-W. p. Gray. J.S. p. Artaki. L. ed.A. CA. CA . Handbook of Chemistry. Sovinsky. Surface Mount International Conference (1994). J. I. Andricacos. p. P. D. “Microstructure and Mechanical Properties of Pb-free Solder Alloys for LowCost Electronic Assembly: A Review.” 49th Electronic Components Technology Conf. Kang. Foster. E. 100 (Handbook Publishers.13. Gruber.A. Carruthers. Lange. Datta.” SMI97. Paul T.R. Lau and S. San Diego CA 22.M. Hare and R. June 1-4. Hernandez. 433 24. “Effect of Interface Microstructure on the Mechanical Properties of Pb-Free Hybrid Microcircuit Solder Joints. Stang.” IPC/SMTA Electronics Assembly Expo (1998). Cynthia L. Chang. N.-C. Kwoka and D. T.H. J..E. Shi.” J. Petzow. Lin. p. “Mechanical Properties of Plated Copper. Brouillette and D. M. Soc. D. J. 693 (1994) 15. 1956) 25. Harper. Symp. “Thermal-Fatigue Life of Solder Bumped Flip Chip on Micro Via-In-Pad (VIP) Low Cost Substrates” 26. M. Ohio. 1994) (“plated [thin foil] copper”) 23. 1957) 16. “Lead Free Solders in Electronics.A. D. 1995). Sambucetti. 597 (1950) 14. J.-Y.D. R. J. S19-2-1 20. New York. N. R. G. Z.” Proc. 50. p.256. Soc. pp. Soc. 741 (1994) 31. 323. Ning-Cheng Lee. Anaheim. U. National Center for Manufacturing Sciences (NCMS). Stress Relaxation. 189 (1998) 36." Lead Free Solder Project CDROM. Binary Phase Diagrams. “Soldering Technology for Area Array Packages. Semyon Vaynman.28.-H.” Chip Scale Review (March-April 2000) 32. L. H. p.B. Fine. B.E. Res. 1995) 34. Subramanian. “A Primer on Lead-Free Solder. McCabe and Morris E. G. and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders. White.E. “Overview of lead-free solders. NCMS. 23(8). 26(7). J. Mat. “An Experimental and Modeling Study of Thermal Cyclic Behavior of Sn-Cu and Sn-Pb Solder Joints. 2000).N. 42 (March/April 2000) 30. Mavoori. Fine.T. “Economics and Implications of Moving to Lead-Free Assembly. NEPCON WEST 2000 (February 27 – March 2. Proc. Technical Reports for the Lead Free Solder Project: Properties Reports: "Room Temperature Tensile Properties of Lead-Free Solder Alloys.” Chip Scale Review. 50th IEEE 2000 Electronic Components and Technology Conference (May 21-24. 1994) 39. Matls. Fine. Symp. M.” JOM. 2000). & Proc.” Adv. Jason Chin. Mavoori. Brian Moran. McCabe and Morris E. N. Lee and W. “Mechanical Behavior of Eutectic Sn-Ag and Sn-Zn Solders. p. 1990) 33. 161 (MRS. Sigelko and K. NV 41.” Proc. 33 (June 2000) 37. Las Vegas. Chin.-C. Karl Seelig and David Suraski. Vol. Electronic Materials. 1998 38. Pao. “Athermal and Thermally Activated Plastic Flow in Low Melting Temperature Solders at Small Stresses.” Scripta Materialia 39(2). Lasky.” J. Loomans. Anaheim. Keer and Morris E. Vaynman.A.. Keer and M. Rao Mahidhara. Symp. Y. 2000).E. Alan Rae and Ronald C. 390. (Amer. Metals. 783 (1997) 35. “Creep. Moran. Slattery and C. Vol. Leon M. J. 47-48 (March 2000) 42. Rodney J.” Proceedings: NEPCON WEST 2000 (February 27 – March 2. CA 29. Rodney J. “Investigation of Multi-component Lead-free Solders. “The Creep Properties of Precipitation-Strengthened Tin-Based Alloys. S. “The Status of Lead-Free Solder Alloys. R. Vaynman. Massalski. Casey. 128 (MRS. Jih. H. 26. Badgley. Govila and E. 2nd ed.” Mat.” J.370 (Oct. p. CA 40. Res. Soc.” Proc.” Mat. 1993) .S. Proc. T. Jeff D. Elect. Patent 5. Fine.Ghosh and M. “Lead-Free Soldering of Chip-Scale Packages. S. S. Fine. (Butterworths.” Proc. 43-50 (1985) 48. Desk Edition (2nd ed.. Vol. 1993) 2. No. V.. Winterbottom. CA (Source: Indium Corp. “The Wetting and Mechanical Properties of Lead-Free Capillary Plumbing Solders. Materials Park. 1995). (ASM International. Smithells Metals Reference Book. eds. Hollen. ed.K. Matsunaga.. Frear. and Soldering (ASM International. “General Soldering. Vol. eds.E. L. Vol. p. 6.R.M. Proc. and J. Ohio 44073 USA. Vol. Solder Mechanics (TMS. Burchett. Canada 49.” Proceedings: NEPCON West Conference (February 28 – March 2. E..J. R. Materials Park. S. (MRS. 1994) . Anaheim.R. 28 . M. 1994) 45.S. Brazing. Welding.). Walter L.R.R. “Models for the Thermomechanical Behavior of Metal/Ceramic Laminates. London. S. “Electronic Packaging Materials Science VII. Solder Data Sheet. eds. 323. Reference Books: 1. Metals Handbook.Mar. K. D. Tenhover. 1991) 6. “Ceramic Ball Grid Array Solder Joint Thermal Fatigue Life Enhancement.” Matls.N. eds. 1994 3. Hamilton. 128 (MRS.R. Warwick. Paul T.B.” ASM Handbook. Pollak. Pittsburgh. “No-Lead Solder for CSP: The Impact of Higher Temperature SMT Assembly Processing.H. 323. Materials Park. Ohio 44073 USA.A. Rymaszewski.H. 1993) 47. Welco Castings. Ontario. M. 20-24 (July 1993) 50.F. Spearing. Lau. 6. 1989. “Converting to Lead-Free Solders: An Automotive Industry Perspective.A. D. Brazing. Brandes. Proc. ASM Handbook. 1. 2. H.B.2. Soc. J. Jones and K. 2000) Anaheim. Res. NY) 46. and Soldering (ASM International.43. Borgesen. The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold. 9639 Kinsman Road.” Mat. Tummala and E. Davis. 6th ed.” ATB Metallurgie XXV. Frear. 2 Hillyard Street. 1998) 5.) 44. W. Soc. Viswanathan and D. 1983) 4. Tim Wong and A. (Van Nostrand Reinhold. D. Solberg. Vianco. Lukco. Symp. P. CA 5. Welding. Jensen and R. Kinsman. New York. Microelectronics Packaging Handbook.A.” JOM. Ohio 44073-0002 USA. Morgan. (Feb. 9639 Kinsman Road. Symp. NEPCON West 2000 Conf. Res. “General Soldering.lead-free.R. 9639 Kinsman Road. 1988) 5.org/ and http://www. p. (John Wiley & Sons. 2nd ed. 1989. ed.” ASM Handbook. Materials Science and Engineering Laboratory (MSEL). 1956) 10. R.3. (Van Nostrand Reinhold.H. The Handbook of Machine Soldering.. (McGraw-Hill.com/ ) IPC: Association Connecting Electronics Industries (“Get the Lead OUT!) ( http://www.org/ ) Materials Properties and Data. Sandusky. R. 100 (Handbook Publishers. 1993) 15. Modern Soldering and Brazing Techniques (Business News Publishing Co. and Soldering (ASM International. Ohio 44073 USA. Brazing. American Institute of Physics Handbook. Skipp. NY) 14. R. Lieberman. Woodgate.7. NIST . Soldering Handbook (McGraw-Hill. 1964) 13. 3nd ed. Paul T. Tummala and E. Manko. Klein Wassink.A. Handbook of Chemistry.2 Lead Free Soldering Technology Centre (Soldertec) ( www. R.E.J. Ltd.leadfree. 1992) 12. H. Vol. Vianco. 1957) 8. Rymaszewski.J. Welding. D. Solders and Soldering. N. Gray. 1989) 9. Materials Park.. 6. Soldering in Electronics (Electrochemical Publications.W.solderworld. New York. 1988) 11. eds.. (McGraw-Hill. Ohio. Useful URLs Organizations Involved in Lead-Free Solder Issues: Japan Electronic Industry Development Association (JEIDA): “Challenges and Efforts Toward Commercialization of Lead-free Solder – Road Map 2000 for Commercialization of Lead-free Solder” – Ver 1. Microelectronics Packaging Handbook. Lange.
Copyright © 2024 DOKUMEN.SITE Inc.