Netmanias.2007.12.13-MPLS Backhaul & Backbone Network Design (en)



Comments



Description

Netmanias Technical document: MPLS Backhaul & Backbone Network Designwww.nmcgroups.com MPLS Backhaul & Backbone Network Design December 13, 2007 NMC Consulting Group ([email protected]) www.netmanias.com www.nmcgroups.com About NMC Consulting Group NMC Consulting Group is an advanced and professional network consulting company, specializing in IP network areas (e.g., FTTH, Metro Ethernet and IP/MPLS), service areas (e.g., IPTV, IMS and CDN), and wireless network areas (e.g., Mobile WiMAX, LTE and Wi-Fi) since 2002. Copyright © 2002-2013 NMC Consulting Group. All rights reserved. Netmanias Technical document: MPLS Backhaul & Backbone Network Design Table of Contents  MPLS Backhaul Network  MPLS Backhaul Concept  Backhaul Connectivity for Residential User  Backhaul Connectivity for Enterprise User  Backhaul Network Resiliency  MPLS Backbone Network  MPLS Backbone Concept  MPLS L3 VPN  MPLS L2 VPN: VPWS  MPLS L2 VPN: VPLS  MPLS Fast Recovery Copyright © 2002-2013 NMC Consulting Group. All rights reserved. 2 Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backhaul Network Copyright © 2002-2013 NMC Consulting Group. All rights reserved. 3 Netmanias Technical document: MPLS Backhaul & Backbone Network Design Backhaul Concept QinQ H-VPLS TPS Service Residential xDSL WiBro Service AS (PE) Active Spoke LSP FTTH ES (PE) VPN Service MPLS Backbone Enterprise Internet Service ER WiBro CO POP  Customer Separation by QinQ and H-VPLS  1 S-VID and 1 VC-LSP per access node for residential user  1 S-VID and 1 VC-LSP per enterprise user  Single backhaul can support  All kinds of access node: xDSL, FTTH, WiBro  Residential TPS service and WiBro service  Enterprise site-to-site VPN service and Internet service  Dual-homing architecture between AS (CO) and ES (POP) for redundancy Copyright © 2002-2013 NMC Consulting Group. All rights reserved. 4 All rights reserved. VSI S-VID=DSLAM ID Internet VLAN (5) C-VID=Service ID VSI S-VID=OLT ID/RAS ID Internet VLAN (5) C-VID=Service ID BRAS 5 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design Backhaul Connectivity for Residential User QinQ (Per-Access Node VLAN) QinQ RG/IAD DSLAM H-VPLS QinQ ES (PE) AS (PE) Active Spoke LSP ADSL2+ ER VPLS MTU-S PON ONT OLT VPLS PE-rs BS BRAS L2 SW CO POP Q-in-Q EMS Mgmt PVC (0/34) RG/ IAD GE port VC-LSP=Per DSLAM C-VID=Service ID VSI S-VID=DSLAM ID Voice VLAN (3) Voice VLAN (3) Video PVC (1/36) Video VLAN (4) Video VLAN (4) Internet VLAN (5) Internet VLAN (5) Internet PVC (1/37) Mgmt VLAN (1000) VC-LSP to VSI Tunnel-LSP=PE to PE GE port S-VID=DSLAM ID Voice PVC (1/35) EMS PON CPE S-VID to VSI GE port S-VID=OLT ID/RAS ID C-VID=Service ID VSI GE port VSI S-VID=DSLAM ID Voice VLAN (3) C-VID=Service ID Video VLAN (4) ER VC-LSP=Per OLT/Per BS S-VID=OLT ID/RAS ID Voice VLAN (3) Voice VLAN (3) Voice VLAN (3) Video VLAN (4) Video VLAN (4) Video VLAN (4) Internet VLAN (5) Internet VLAN (5) Internet VLAN (5) VSI S-VID=OLT ID/RAS ID Voice VLAN (3) C-VID=Service ID Video VLAN (4) GE port Copyright © 2002-2013 NMC Consulting Group. Netmanias Technical document: MPLS Backhaul & Backbone Network Design Backhaul Connectivity for Enterprise User QinQ (Per-Enterprise VLAN) H-VPLS QinQ CE DSLAM QinQ ES (PE) AS (PE) ER Active Spoke LSP ADSL2+ MTU-S CE OLT PE-rs BS L2 SW POP CO Q-in-Q S-VID to VSI GE port VC-LSP to VSI Tunnel-LSP=PE to PE VPN-A GE port C-VID=Defined by User VC-LSP=Per Enterprise VPN (VPN-A) S-VID=Enterprise ID (VPN-A) VSI S-VID=Enterprise ID (VPN-A) S-VID=Enterprise ID (VPN-B) VSI S-VID=Enterprise ID (VPN-B) GE port C-VID=Defined by User VSI S-VID=Enterprise ID (VPN-A) CPE VC-LSP=Per Enterprise VPN (VPN-B) VPN-B VSI S-VID=Enterprise ID (VPN-B) CPE VPN-C ER VC-LSP=Per Enterprise VPN (VPN-C) GE port S-VID=Enterprise ID (VPN-C) VSI S-VID=Enterprise ID (VPN-C) S-VID=Enterprise ID (VPN-D) VSI S-VID=Enterprise ID (VPN-D) VSI S-VID=Enterprise ID (VPN-C) CPE VC-LSP=Per Enterprise VPN (VPN-D) VPN-D VSI S-VID=Enterprise ID (VPN-D) CPE Copyright © 2002-2013 NMC Consulting Group. All rights reserved. 6 . April 1998 ER AN AS ES ER Active Spoke LSP VRRP VRRP Master Load Balancing BRAS AN AS ES BRAS < Node Fail > VRRP Master ER AN AS ES ER VRRP Master Load Balancing Load Balancing BRAS < Normal > AN AS ES VRRP Master ER BRAS < Link Fail > AN AS ES ER VRRP Master Load Balancing BRAS < Link Fail > Copyright © 2002-2013 NMC Consulting Group. All rights reserved.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Backhaul Network Resiliency  RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling. 2007 AN AS ES  RFC 2338: Virtual Router Redundancy Protocol . < Node Fail > BRAS 7 . Jan. All rights reserved. 8 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backbone Network Copyright © 2002-2013 NMC Consulting Group. CTY2 CR1 CR2 PE2.CTY6 PE2.CTY4 City 7 Metro Ethernet City 4 Backhaul  MPLS L2 VPN  Per-Enterprise VPN • Enterprise VPWS VPN • Enterprise VPLS VPN PE2.CTY3 PE1.CTY1 Metro Ethernet Backhaul City 1 PE1. All rights reserved.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Backbone Concept  MPLS L3 VPN  Per-Service VPN • Internet VPN: Residential ADSL/FTTH/WiBro Internet Access.CTY3 Metro Ethernet City 3 Backhaul PE2.CTY6 PE2.CTY2 Metro Ethernet City 6 Backhaul PE1.CTY1 PE1.CTY4 MPLS L3 Internet VPN MPLS L3 VoIP VPN Metro Ethernet Backhaul PE MPLS L3 Video VPN PE Metro Ethernet Backhaul MPLS L3 Enterprise VPN MPLS L2 VPN (VPWS) MPLS L2 VPN (VPLS) Copyright © 2002-2013 NMC Consulting Group.CTY7 CR3 Metro Ethernet Backhaul PE1.CTY5 Metro Ethernet City 5 Backhaul PE2. Enterprise ADSL/FTTB/WiBro Internet Access Service • Voice MPLS VPN • Video MPLS VPN  Per-Enterprise VPN • Enterprise MPLS L3 VPN PE1.CTY5 Metro Ethernet Backhaul City 2 PE1. 9 .CTY7 PE2. C) VRF VRF VRF VRF VRF VRF VSI MPLS L3 VPN (LSP to PE 2) VRF MPLS L3 VPN (LSP to PE 3) VRF MPLS L2 VPN (VPWS) VSI VSI VSI VSI VSI VSI VSI Per-Enterprise VLAN (C-VID=Private Use. B) Per-Enterprise VLAN (C-VID=Private Use.Netmanias Technical document: MPLS Backhaul & Backbone Network Design ADSL Case BRAS PE DSLAM AS Residential Internet Access PPPoE Internet PVC (1/37) Residential Voice DHCP Voice PVC (1/35) Residential Video DHCP ES Residential Internet VLAN (C-VID=Internet. S-VID=AN1) VRF Per-Service VRF (Internet) VRF Per-Service VRF (Voice) VRF Per-Service VRF (Video) PE/SAR PE2 PE3 MPLS L3 Internet VPN (LSP to BR) VRF Residential Voice VLAN (C-VID=Voice. S-VID=AN1) VRF VRF MPLS L3 Video VPN (LSP to SAR) VRF Per-Enterprise VLAN (C-VID=null. S-VID=Ent. S-VID=Ent. S-VID=Ent. A) Per-Enterprise VLAN (C-VID=null. S-VID=AN1) PE/BR MPLS L3 Internet VPN (LSP to PE:P2P) VRF MPLS L3 Voice VPN (LSP to SAR) VRF VRF MPLS L3 Voice VPN (LSP to PE: Data) Video PVC (1/36) Enterprise A Single PVC Internet Access Static/Public Subnet Enterprise A Single PVC L3 VPN Private Addressing and Routing Enterprise A Single PVC L2 VPN (PtP) Private Addressing and Routing A Single PVC Enterprise L2 VPN (PtMP) Private Addressing and Routing Residential Video VLAN (C-VID=Video. VSI VSI VSI VSI VSI VSI VSI VSI MPLS L2 VPN (LSP to PE 2) VSI MPLS L2 VPN (LSP to PE 3) VSI 10 . All rights reserved. S-VID=Ent. D) H-VPLS Copyright © 2002-2013 NMC Consulting Group. C L2 VPN (PtP) Private Addressing and Routing C-VID=Ent. B) Per-Enterprise VLAN (C-VID=Private Use. S-VID=AN1) VRF VRF MPLS L3 Video VPN (LSP to SAR) VRF Per-Enterprise VLAN (C-VID=null. S-VID=AN1) MPLS L3 Voice VPN (LSP to SAR) VRF VRF MPLS L3 Voice VPN (LSP to PE: Data) C-VID=Video(4) Enterprise C-VID=Ent. All rights reserved. B L3 VPN Private Addressing and Routing Enterprise C-VID=Ent. S-VID=Ent. VSI VSI VSI VSI VSI VSI VSI VSI MPLS L2 VPN (LSP to PE 2) VSI MPLS L2 VPN (LSP to PE 3) VSI 11 . S-VID=Ent. A) Per-Enterprise VLAN (C-VID=null. A Internet Access Static/Public Subnet Enterprise C-VID=Ent. S-VID=AN1) PE/BR VRF Per-Service VRF (Internet) VRF Per-Service VRF (Voice) VRF Per-Service VRF (Video) PE/SAR PE2 PE3 MPLS L3 Internet VPN (LSP to BR) VRF VRF MPLS L3 Internet VPN (LSP to PE:P2P) Residential Voice VLAN (C-VID=Voice. D) H-VPLS Copyright © 2002-2013 NMC Consulting Group.Netmanias Technical document: MPLS Backhaul & Backbone Network Design FTTH Case BRAS PE OLT AS Residential Internet Access DHCP C-VID=Internet(5) Residential Voice DHCP C-VID=Voice(3) Residential Video DHCP ES Residential Internet VLAN (C-VID=Internet. S-VID=Ent. C) VRF VRF VRF VRF VRF VRF VSI MPLS L3 VPN (LSP to PE 2) VRF MPLS L3 VPN (LSP to PE 3) VRF MPLS L2 VPN (VPWS) VSI VSI VSI VSI VSI VSI VSI Per-Enterprise VLAN (C-VID=Private Use. D Enterprise L2 VPN (PtMP) Private Addressing and Routing Residential Video VLAN (C-VID=Video. S-VID=Ent. All rights reserved.Netmanias Technical document: MPLS Backhaul & Backbone Network Design WiBro Case PE BS AS ES L3 ASN-GW GRE tunnel PE/BR VRF Per-Service VRF (Internet) VRF Per-Service VRF (Voice) VRF Per-Service VRF (Video) PE/SAR PE2 PE3 DHCP Residential Internet Access CID=Internet CID Residential Voice CID=Voice CID Residential Video Residential Internet VLAN (C-VID=Internet. S-VID=RAS1) Copyright © 2002-2013 NMC Consulting Group. VRF VRF MPLS L3 Video VPN (LSP to SAR) VRF 12 . S-VID=RAS1) MPLS L3 Internet VPN (LSP to PE:P2P) VRF MPLS L3 Voice VPN (LSP to SAR) VRF VRF MPLS L3 Voice VPN (LSP to PE: Data) CID=Video CID Residential Video VLAN (C-VID=Video. S-VID=RAS1) MPLS L3 Internet VPN (LSP to BR) VRF Residential Voice VLAN (C-VID=Voice. 13 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPN Service  MPLS L3 VPN  MPLS L2 VPN  Virtual Private Wire Service (VPWS)  Virtual Private LAN Service (VPLS) Copyright © 2002-2013 NMC Consulting Group. All rights reserved. IP/MPLS Network VPN A PE1.CTY7 CR3 Metro Ethernet PE1. RFC 2547bis VPNs are also known as BGP/MPLS VPNs because BGP is used to distribute VPN routing information across the provider's backbone and because MPLS is used to forward VPN traffic from one VPN site to another. All rights reserved.CTY1 Metro Ethernet Backhaul City 1 CE VPN A PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise RFC 2547bis defines a mechanism that allows service providers to use their IP backbone to provide VPN services to their customers.CTY1 PE1.CTY5 City 5 Metro Ethernet Backhaul City 6 Metro Ethernet Backhaul PE2.CTY4 CE Copyright © 2002-2013 NMC Consulting Group.CTY3 Metro Ethernet Backhaul City 3 CE PE2.CTY2 CR1 CE CR2 PE2.CTY6 PE2.CTY6 PE2.CTY5 Metro Ethernet Backhaul City 2 CE PE1.CTY7 PE2.CTY3 PE1. PE P P PE CE 14 .CTY4 City 7 Backhaul Metro Ethernet City 4 Backhaul CE PE2.CTY2 PE1. CTY5 CR3 RVSP-TE RESV Message  Distribute labels and reserve resource  PE1. PE1.CTY5 transmits a RESV message to PE1. All rights reserved. PE1. December 2001 PATH ERO = {CR1.CTY1 RVSP-TE PATH Message  Establish state and request label assignment  PE1.CTY5} RESV Label = 20 RESV Label = 3 MPLS Table MPLS Table In(port/Label) Out(port/label) 3/17 In(port/Label) Out(port/label) 6/20 2/20 CR1 5/3 CR2 PE1. Preemption and Fast Reroute  Flow-Spec: Request Bandwidth Reservation Copyright © 2002-2013 NMC Consulting Group.CTY5 Tunnel LSP PE2.CTY5} PATH ERO = {PE1.CTY1 PE1.CTY5  Label Request Object  ERO = {Strict CR1. CR2.CTY5}  PRO = {PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Tunnel LSP Setup: RSVP-TE RSVP-TE for Traffic Engineering RFC 3209. PE2.CTY1 transmit a PATH message addressed to PE1. RSVP-TE: Extensions to RSVP for LSP Tunnels. store and add IP hop address}  Session object identifies LSP name  Session Attribute: Priority.CTY1  Label = 3  Session object to uniquely identify the LSP  CR2 and CR1  Stores “Outbound” label and allocate an “Inbound” label  Transmits RESV with inbound label to upstream LSR  PE1. strict PE1. strict CR2.CTY1 IP address.CTY5} RESV Label = 17 Ingress Routing Table In Out(port/label) IP Route 2/17 PATH ERO = {CR2.CTY1 binds label to FEC 15 . Netmanias Technical document: MPLS Backhaul & Backbone Network Design Constraint-Based Routing Extended IGP (OSPF-TE. All rights reserved. IS-IS TE) Routing Table Traffic Engineering Database (TED) Constrained Shortest Path First (CSPF) User Constraints 1) Store information from IGP flooding 2) Store traffic engineering information Explicit Route 3) Examine user defined constraints 4) Calculate the physical path for the LSP 5) Represent path as an explicit route RSVP Signaling 6) Pass ERO to RSVP for signaling Copyright © 2002-2013 NMC Consulting Group. 16 . 2. RTs are added. 17 .2/24 •Label = 10 •BGP Next Hop = PE1.1.0/24 CE2 RIP CE CE-PE Routing: OSPF. VRF Green Destination BGP Next Hop Inner Label 10.1.CTY5  IGP (IS-IS) advertises IPv4 route 10 VRF Green CR1 CR2  IPv4 route is redistributed into MPiBGP. BGP. RD is added to IPv4 route to make it a VPNv4 route. VPN-B 10.1.0/24 IS-IS CE1 Site-1.1.1.1. IPv4 route is inserted into VRF Green routing table.1.CTY5 PE P CR3 P PE Site-2.2.1.  IPv4 route is inserted in VRF Green routing table.CTY5 City5 PE2. VPN-A 10. All rights reserved.CTY5 12  RT indicate to which VRF the route is imported.CTY1 Metro Ethernet City1 Backhaul CE MP-iBGP •Destination = RD_Green:10.0/24 Site-1.0/24 PE1. RD is removed from VPNv4 route. VRF Green  IGP (IS-IS) advertises IPv4 route PE1.0/24 IS-IS CE2 Metro Ethernet Backhaul Site-2. Static Route PE-PE Routing: MP-iBGP Copyright © 2002-2013 NMC Consulting Group. VPN-A 10.CTY1 PE2.2.0/24 RIP CE1 PE1.2.CTY5 •Route Target = Green PE1. RIP.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise: VPN Route Distribution VRF Yellow Destination BGP Next Hop Inner Label 10. VPN-B 10.1.  MP-iBGP advertises VPNv4 route with MPLS label and RTs. 1.CTY1 router does “IP Longest Match” from VRF.CTY5 and imposes a stack of labels Copyright © 2002-2013 NMC Consulting Group.CTY5) removes top label.0/24 IS-IS CE1 Site-1.1. VPN-A 10.0/24 RIP MPLS Table VRF Green 3/30 if2 CR2 CR1 10.1.2.1.CTY5 10 VRF Yellow Destination BGP Next Hop Inner Label 10.1.2.0/24 PE1.5 VPN Label(10) 10.1.1.2.2.5 City 5 10. VPN-B 10.2.2.5 1/10 VRF Green PE1. VPN-A 10.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise: Forwarding Customer Traffic Across the BGP/MPLS Backbone VRF Green Destination BGP Next Hop Inner Label 10.2.5 PE2.2.1. finds iBGP next hop PE1.1.CTY1 Metro Ethernet Backhaul City 1 IGP Label(25) VPN Label(10) PE2.0/24 RIP CE2 CR3 PE1. All rights reserved.CTY5 PE1. P routers switch the packet based on the IGP Label (top label) Egress PE router(PE1.CTY5 CR1 25 MPLS Table In Out Incoming (port/label) (port/label) (port/Inner label) 1/25 Site-1.1. VPN-B 10.CTY5 12 Global Routing Table Destination IGP Next Hop Tunnel Label PE1.1.1.CTY5 CE1 10. PE1. Inner label is removed and packet sent to CE2 router 18 .0/24 IS-IS CE2 Metro Ethernet Backhaul Site-2.CTY1 router receives normal IP packet from CE1 router.CTY1 Outgoing interface IGP Label(30) VPN Label(10) IGP Label(0) 10.2.0/24 PE1.5 Site-2.1. uses inner label to select which VPN/CE to forward the packet to. CTY1 Service Rate Control at each PE participating a VPLS instance  Upstream Rate Control: Ingress Rate Limiting  Downstream Rate Control: Egress Rate Shaping  Granularity of Rate Control: 1Mbps A pair of VC-LSPs VPN A A pair of VC-LSPs RT Voice RT Video Mission Critical Best Effort PE1.CTY7 CR3 V T M I CE3 S-VID 200/Eth30 City 7 S-VID 200 Metro Ethernet Backhaul PE2.CTY1 CE1 S-VID 200/Eth10 City 5 Metro Ethernet Backhaul City 1 CR1 CR2 CE2 Metro Ethernet Backhaul PE2.Site PE1. 19 .CTY5 PE2.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN: Rate Control Per-Customer and Per.CTY7 5Mbps shaper Per-Enterprise Hierarchical shaping (PIR/CIR) Eth30 S-VID 201 Copyright © 2002-2013 NMC Consulting Group. All rights reserved.CTY5 A pair of VC-LSPs S-VID 200/Eth20 PE1.CTY7 PE1.CTY1 S-VID 200 100Mbps shaper V T M I Per-Enterprise Hierarchical shaping (PIR/CIR) Eth10 PE1.CTY5 Application Classification (5-Tuple) RT Voice RT Video Mission Critical Best Effort RT Voice RT Video Mission Critical Best Effort V T M I S-VID 200 5Mbps shaper Per-Enterprise Hierarchical shaping (PIR/CIR) Customer Classification (VC-Label) S-VID 201 Eth20 S-VID 201 VPN A VPN A PE1. CTY1 Site-2.CTY5 VRRP between VRFs City 1 S-VID 100 City 5 PE2. All rights reserved. VPN-A Headquarter CE1 S-VID 100 Metro Ethernet Backhaul S-VID 100 PE1. etc. etc. Backhaul is connected to PE through 2 VLANs  VRRP redundancy per VRF between PE routers (255 VRRP instance for VRF)  Ex) PE redundancy in Headquarter site. Static.CTY1 PE1. RIP. Static. 20 . VPN-A Branch Office CE2 Metro Ethernet Backhaul PE2.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise: PE Redundancy CE PE P Metro Aggregation VPN Routing (OSPF.CTY5 VRF Green vc-lsp 200 CR3  VRF configuration in 2 PE routers. RIP. and single PE in Branch office Copyright © 2002-2013 NMC Consulting Group.) Tunnel Signaling (LDP/RSVP-TE) QinQ (Per-enterprise VLAN) CE QinQ (Per-enterprise VLAN) IGP (IS-IS) VLL/ H-VPLS H-VPLS vc-lsp 100 CR1 VRF Green CR2 VRF Green S-VID 100 Site-1.) P PE IP/MPLS Backbone Metro Aggregation VPN Route and Label Distribution (MG-iBGP) VPN Routing (OSPF. Thus. Customers do not have to deal with inter-site routing issues because inter-site routing issues are the responsibility of the service provider. VPN customers do not have a backbone or a virtual backbone to administer.           There are no constraints on the address plan used by each VPN customer. Without the use of cryptographic techniques. The RFC 2547bis model is link layer (Layer 2) independent. value-added services. The VPN can span multiple service providers. 21 . Flexible and scalable QoS for customer VPN services is supported through the use of the experimental bits in the MPLS shim header or by the use of traffic engineered LSPs (signaled by RSVP). The CE router at each customer site does not directly exchange routing information with other CE routers.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Benefits of BGP/MPLS VPNs The major objective of BGP/MPLS VPNs is to simplify network operations for customers while allowing the service provider to offer scalable. providers do not require management access to CE routers. security is equivalent to that supported by existing Layer 2 (ATM or Frame Relay) backbone networks. Service providers can use a common infrastructure to deliver both VPN and Internet connectivity services. The policies that determine whether a specific site is a member of a particular VPN are the policies of the customer. revenue-generating. All rights reserved. different customers can have overlapping address spaces. Thus. While this capability of BGP/MPLS VPNs is important. Copyright © 2002-2013 NMC Consulting Group. Providers do not have a separate backbone or virtual backbone to administer for each customer VPN. this paper does not describe inter-provider VPN solutions. From the service provider's perspective. BGP/MPLS VPNs has many benefits. including the following. The administrative model for RFC 2547bis VPNs allows customer policies to be implemented by the provider alone or by the service provider working together with the customer. The customer can use either globally unique or private IP address spaces. customers do not need management access to PE or P routers. Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L3 VPN for Enterprise Features Maximum Number of 802.1ad (QinQ) Circuits 26K Maximum Number of LSPs (LDP) 2. All rights reserved. 22 .1Q (VLAN) Circuits 26K Maximum Number of 802.4K Maximum Number of LSPs (RSVP-TE) 50K Maximum Number of VRF 4K Maximum VPN Route Entries per VRF Maximum Number of MPLS L3 VPN Instances 500K 4K Juniper M-series Copyright © 2002-2013 NMC Consulting Group. Pseudowire Setup and Maintenance Using LDP. April 2006 Copyright © 2002-2013 NMC Consulting Group. VPN-B CE2 CR3 Standard: RFC 4448 (Martini).Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN: VLL/VPWS/EoMPLS Service Metro Aggregation IP/MPLS Backbone Metro Aggregation Point-to-Point Transparent LAN Service (Customer VLAN (C-VID)) Per-enterprise VLAN (QinQ) Martini signaling T-LDP DU-LDP Per-enterprise VLAN (QinQ) PW (vc-lsp) PW Signaling (Martini Signaling: Targeted LDP) Tunnel Signaling (LDP/RSVP-TE) VLL/ H-VPLS Site-1. VPN-A IGP (IS-IS) PE1.CTY5 Site-2.CTY1 CR1 VLL/ H-VPLS CR2 PE1. April 2006 RFC 4447 (Martini). All rights reserved. Encapsulation Methods for Transport of Ethernet over MPLS Networks. VPN-A CE1 CE2 Metro Ethernet City 1 Backhaul Site-1. VPN-B City 5 Metro Ethernet Backhaul PE2.CTY5 CE1 Site-2. 23 .CTY1 PE2. CTY5 direction 24 .CTY5 CE1 VCID 2400 Port VLAN(S-VID) VC-Label Tunnel Label 30 Site-2.CTY5. 100 CR3 Site-2. VPN-A S-VID 200/Eth20 CE1 200 2000 Copyright © 2002-2013 NMC Consulting Group. Site-1.CTY1 binds vc-label 2000 to local VLAN 200 on Eth30 using VCID 2400 as common ID PE1.CTY1 Site-1. VPN-B PE2.CTY5 binds the VCID 2400 to vc-label 2000 PE1.CTY1 configured: Local S-VID200 on Ethernet30 to be configured with VCID 2400 going to PE1.CTY5 S-VID 200/Eth20 Vc-label 2000 Metro Ethernet Backhaul City 1 Site-2. VPN-B PE2.CTY1 Site-1. VPN-A S-VID 200/Eth30 CR1 PE1.CTY1 Site-1. VPN-A CE2 Metro Ethernet City 5 Backhaul PE2.CTY1 CR2 PE1. PE1.CTY1 and PE1. Configuring PE VCID (Virtual Circuit ID) represents the provisioned ID for the “circuit” between the (Ethernet port + VLAN ID) entities provisioned in the 2 PEs (PE1.CTY1.CTY5 CE1 2. VPN-A DU-LDP Label Mapping Message VC FEC TLV: • VC Type = Ethernet • VCID = 2400 VC Label TLV: • vc-label = 2000 CR1 CR2 PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN: VLL/VPWS/EoMPLS Service 1.CTY5 configured: Local S-VID200 on Ethernet20 to be configured with VCID 2400 going to PE1.CTY1 to PE1. VPN-B CE2 Unidirectional representation: same steps for PE1. All rights reserved.CTY5) PE1. VPN-B CE2 CR3 S-VID 200/Eth30 CE1 Tunnel LSP Site-2. VC Label Mapping and DU-LDP Signaling PE1.CTY5 CE2 Metro Ethernet Backhaul City 1 Metro Ethernet City 5 Backhaul Tunnel LSP PE2. VPN-A CE2 Tunnel LSP Metro Ethernet City 5 Backhaul PE2.CTY5 CE1 Site-2. Packet Forwarding VCID 2400 Port VLAN(S-VID) VC-Label Tunnel Label 30 200 2000 100 MPLS Table In Out (port/label) (port/label) 1/25 Site-1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN: VLL/VPWS/EoMPLS Service 3. C-VID C-VID C-VID IP Packet IP Packet IP Packet 25 . VPN-B CE2 CR3 D-MAC/S-MAC C-VID IP Packet D-MAC/S-MAC Tunnel Label(25) Tunnel Label(30) Tunnel Label(0) D-MAC/S-MAC D-MAC/S-MAC S-VID(200) C-VID IP Packet S-VID(200) VC Label(10) VC Label(10) VC Label(10) C-VID D-MAC/S-MAC D-MAC/S-MAC D-MAC/S-MAC C-VID IP Packet S-VID S-VID S-VID IP Packet Copyright © 2002-2013 NMC Consulting Group. All rights reserved. VPN-A PE1.CTY1 CE1 CR1 3/30 CR2 PE1.CTY5 S-VID 200/Eth30 S-VID 200/Eth20 Vc-label 2000 Metro Ethernet Backhaul City 1 Site-2. VPN-B PE2.CTY1 Site-1. 26 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design EoMPLS Service: QoS Per-Enterprise Rate Shaping (1Mbps increment from 1Mbps to 1Gbps) A customer traffic is classified to the application level and mapped to 4 Traffic class PE1.CTY1 Site-1. VPN-A CE2 Tunnel LSP Metro Ethernet City 5 Backhaul PE2.CTY5 CE1 Site-2.CTY1 V T M I S-VID 200 5Mbps shaper PE1. All rights reserved.CTY5 Application Classification RT Voice Per-Enterprise Hierarchical shaping (PIR/CIR) Eth30 V T M I RT Voice RT Video RT Video Mission Critical Mission Critical Best Effort Best Effort 5Mbps shaper Per-Enterprise Hierarchical shaping (PIR/CIR) Customer Classification S-VID 201 S-VID 200 Eth20 S-VID 201 3Mbps shaper 3Mbps shaper S-VID 202 S-VID 202 20Mbps shaper 20Mbps shaper Virtual Leased Line Site-1. VPN-B CE2 CR3 Copyright © 2002-2013 NMC Consulting Group. VPN-A PE1.CTY5 S-VID 200/Eth30 S-VID 200/Eth20 PW Metro Ethernet Backhaul City 1 Site-2. VPN-B PE2.CTY1 CE1 CR1 CR2 PE1. CTY5 PE1. All rights reserved. 27 .CTY7 Standard: RFC 4762: Virtual Private LAN Service (VPLS) Using LDP Signaling.CTY5 CE1 Site-2. 2006 Copyright © 2002-2013 NMC Consulting Group.CTY1 VSI PE1. 2007 RFC 4761: RFC 4761 on Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling. VPN-B CE2 PE2.CTY1 PE2.CTY3 PE1. VPN-B CE1 Martini signaling T-LDP DU-LDP Metro Ethernet City 5 Backhaul PE2. Sep. Jan.CTY3 Site-2. 2007 RFC 4664: Framework for Layer 2 Virtual Private Networks (L2VPNs). VPN-A VSI CR1 VLL/ H-VPLS CR2 PE1. VPN-A CE2 Metro Ethernet City 1 Backhaul Site-1. Jan.Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Service Metro Aggregation IP/MPLS Backbone Metro Aggregation Point-to-Multi-Point Transparent LAN Service Per-enterprise VLAN(QinQ) VPLS (Full-Meshed PW) Per-enterprise VLAN(QinQ) PW Signaling (Martini Signaling: Targeted LDP) Tunnel Signaling (LDP/RSVP-TE) VLL/ H-VPLS IGP (IS-IS) Site-1.CTY7 VSI VSI City 7 CR3 PE2. CTY7 CE CR3 Metro Ethernet City 7 Backhaul VSI Violet CE PE2.CTY7 Copyright © 2002-2013 NMC Consulting Group.CTY1 VSI Violet VSI Green PE1.CTY5 VSI Green PE1.CTY5 CE PE2. All rights reserved. 28 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Reference Model MPLS Tunnel LSP (Full-Mesh) Pseudo Wire (a pair of vc-lsp) VSI Green PE1.CTY1 CE VSI Violet Metro Ethernet Backhaul City 1 CR1 City 5 CE Metro Ethernet Backhaul CR2 CE PE2. T-LSP signaling for creating Full-Mesh PW T-LDP(PE1.label 103 when sending to me T-LDP(PE1.CTY5PE1. use VC.CTY1 PE1.CTY1 CE S-VID 200/Eth20 T-LSP signaling for creating PW12 S-VID 200/Eth10 CE Metro Ethernet City5 S-VID 300/Eth20 Backhaul Metro Ethernet City1 Backhaul CR2 CR1 PW12 CE CE PE2.CTY1(vc-lsp301) Remote Tunnel to PE1. S-VID 200 Local Eth30.label 201 when sending to me T-LDP(PE1.CTY7): For SVC-ID 1000.CTY1) MAC Location Interface FIB for VPLS 1000 (PE1.CTY7 S-VID 200/Eth30 CE CR3 City7 Metro Ethernet Backhaul CE PE2. use VC.CTY5 PE2. S-VID 300 Remote Tunnel to PE1.CTY7(vc-lsp203) Copyright © 2002-2013 NMC Consulting Group.CTY7(vc-lsp103) Remote Tunnel to PE1.CTY5): For SVC-ID 1000. All rights reserved.CTY7PE1. use VC.CTY1PE1.CTY7PE1.CTY5PE1.CTY1): For SVC-ID 1000.label 203 when sending to me Use vc-label 102 for VCID 1000 when sending to me Use vc-label 201 for VCID 1000 when sending to me PE1.CTY1): For SVC-ID 1000.CTY5 PE1.CTY7 2.CTY1PE1.CTY5(vc-lsp102) Local Eth20.CTY7) MAC Location Interface Local Eth10. S-VID 200 Remote Tunnel to PE1. 29 .CTY7): For SVC-ID 1000. use VC.CTY1(vc-lsp201) Remote Tunnel to PE1.label 102 when sending to me T-LDP(PE1.CTY5): For SVC-ID 1000.Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Instance Creation: PW Signaling 1.CTY5(vc-lsp302) Remote Tunnel to PE1. use VC.CTY5) MAC Location Interface FIB for VPLS 1000 (PE1.label 302 when sending to me T-LDP(PE1. S-VID 200 Local Eth20. VPLS Instance (VSI) Creation FIB for VPLS 1000 (PE1.label 301 when sending to me T-LDP(PE1. use VC. the first packets can be sent and the MAC learning process starts.CTY7) MAC Location Interface Eth20.Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS MAC Learning and Packet Forwarding D-MAC = M2 3.CTY5 CR1 IP Packet CE S-VID 200/Eth20 C-VID = 100 S-VID 200/Eth10 M2 CR2 Metro Ethernet City5 S-VID 300/Eth20 Backhaul Metro Ethernet City1 Backhaul CE CE D-MAC = M2 PW12 PE2.CTY5) MAC Location Interface Local M1 FIB for VPLS 1000 (PE1.CTY7(vc-lsp103) FIB for VPLS 1000 (PE1.CTY1(vc-lsp201) Remote Tunnel to PE1. S-VID 200 Local Eth20. S-VID 300 Remote Tunnel to PE1.CTY1) MAC Location Interface M1 Local Eth10.CTY1 does not yet know the destination MAC address M2.CTY5 S-MAC = M1 PE2.CTY7 FIB for VPLS 1000 (PE1.CTY1 M3 S-VID = 300 D-MAC = M2 Tunnel Label(15) S-MAC = M1 VC Label(103) S-VID = 200 D-MAC = M2 C-VID = 100 S-MAC = M1 IP Packet S-VID = 200 C-VID = 100 IP Packet PE1. so it floods the packet to PE1.  PE1.CTY1(vc-lsp301) Once the VPLS instance with vc-id 1000 has been created.CTY5 learns from VC label 201 that M1 is behind PE1.CTY5 with VC label 102 (on the corresponding MPLS outer tunnel) and to PE1. Copyright © 2002-2013 NMC Consulting Group. S-VID 200 Remote Tunnel to PE1.CTY5 destined for M2 (M2 and M1 are each identified by a unique MAC address). it stores this information in the FIB for vc-id 1000.  PE1. All rights reserved. it stores this information in the FIB for vc-id 1000.CTY1 receives the packet and learns (from the source MAC address) that M1 can be reached on local port Eth 10.CTY7 learns from VC label 302 that M1 is behind PE1.  PE1. Data Forwarding (VPLS MAC Learning) Tunnel Label(25) S-MAC = M1 VC Label(102) S-VID = 200 D-MAC = M2 C-VID = 100 S-MAC = M1 S-VID = 200 M1 CE PE1.CTY5(vc-lsp302) Remote Tunnel to PE1. S-VID 200.CTY5(vc-lsp102) Remote Tunnel to PE1.CTY7 with VC label 103 (on the corresponding MPLS outer tunnel). Assume M1 is sending a packet to PE1.CTY1. S-VID 200 Remote Tunnel to PE1.CTY1 IP Packet PE1.  PE1.CTY7(vc-lsp203) M1 Local Eth30. it stores this information in the FIB for vc-id 1000. 30 .CTY7 S-VID 200/Eth30 M4 CE CR3 C-VID = 100 City7 IP Packet Metro Ethernet Backhaul CE PE2.CTY1. CTY5 strips off label 102.CTY5 because of the split horizon rule.CTY7(vc-lsp203) FIB for VPLS 1000 (PE1. S-VID 300 M1 Remote Tunnel to PE1.CTY1(vc-lsp201) Remote Tunnel to PE1.CTY7 does not flood the packet to PE1.CTY7 M2 Local Local Eth20.  PE1. All rights reserved.CTY5(vc-lsp102) Remote Tunnel to PE1. When M2 receives the packet from M1.  M1 receives the packet. S-VID 200 M2 Remote Tunnel to PE1.CTY1 IP Packet PE1.CTY5 already knows that M1 can be reached via PE1. Copyright © 2002-2013 NMC Consulting Group. S-VID 200 and Eth20. does not know the destination M2 and sends the packet on port Eth30.CTY1 receives the packet for M1.  PE1.CTY5(vc-lsp302) Remote Tunnel to PE1. S-VID 200.CTY7 strips off label 103.CTY5 CE M3 PE2. PE1. S-VID 200. S-VID 200 M1 Local Eth30. PE1.  PE1. S-VID 200.CTY7) MAC Location Interface Eth20.CTY1 using VC label 201. 31 .CTY7 because of the split horizon rule.Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS MAC Learning and Packet Forwarding S-MAC = M2 VC Label(201) S-VID = 200 D-MAC = M1 C-VID = 100 S-MAC = M2 CE PE1.CTY5) MAC Location Interface Metro Ethernet Backhaul CE PE2. it replies with a packet to M1:  PE1.CTY5 does not flood the packet to PE1. does not know the destination M2 and floods the packet on ports Eth 20.CTY1) MAC Location Interface M1 Local Eth10. it stores this information in the FIB for vc-id 1000.  M2 receives the packet.CTY1(vc-lsp301)  PE1. it knows that M1 is reachable on port Eth 10.CTY5 S-VID = 200 M1 D-MAC = M1 Tunnel Label(12) CR1 IP Packet CE S-VID 200/Eth20 C-VID = 100 S-VID 200/Eth10 M2 CR2 Metro Ethernet City5 S-VID 300/Eth20 Backhaul Metro Ethernet City1 Backhaul PW12 CE PE2.CTY1 D-MAC = M1 S-MAC = M2 M4 S-VID = 200 PE1. S-VID 300.CTY7(vc-lsp103) CE FIB for VPLS 1000 (PE1.CTY1 and therefore only sends the packet to PE1. S-VID 200 Remote Tunnel to PE1.CTY5 receives the packet from M2 and learns that M2 is on local port Eth 20.CTY7 C-VID = 100 S-VID 200/Eth30 IP Packet CR3 City7 FIB for VPLS 1000 (PE1. CTY1 S-VID 200 100Mbps shaper V T M I PE1.CTY1 PW23 Service Rate Control At Each PE participating a VPLS instance PW13  Upstream Rate Control: Ingress Rate Limiting  Downstream Rate Control: Egress Rate PE1.CTY5 S-VID 200/Eth20 PE1.CTY7 5Mbps shaper Per-Enterprise Hierarchical shaping (PIR/CIR) Eth30 S-VLAN 201 Copyright © 2002-2013 NMC Consulting Group. All rights reserved.CTY7 Shaping  Granularity of Rate Control: 1Mbps RT Voice RT Video Mission Critical Best Effort PE1. 32 .CTY7 S-VID 200/Eth30 CE CR3 City7 V T M I S-VID 200 Metro Ethernet Backhaul CE PE2.CTY5 Application Classification Per-Enterprise Hierarchical shaping (PIR/CIR) Eth10 RT Voice RT Video Mission Critical Best Effort RT Voice RT Video Mission Critical Best Effort V T M I 5Mbps shaper Per-Enterprise Hierarchical shaping (PIR/CIR) Customer Classification S-VLAN 201 PE1.CTY1 S-VID 200/Eth10 Metro Ethernet Backhaul City5 Metro Ethernet City1 Backhaul Eth20 S-VLAN 201 PW12 CE S-VID 200 CR1 CR2 CE CE PE2.Site PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design VPLS Rate Control Per-Customer and Per.CTY5 CE PE2. 1ad (QinQ) Circuits 26K Maximum number of LSPs (LDP) 2.4K Maximum number of LSPs (RSVP-TE) 50K Maximum number of VPWS instances 16K Maximum number of VPLS instances 2K Maximum number of MAC addresses 850K Juniper M-series Copyright © 2002-2013 NMC Consulting Group. 33 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS L2 VPN for Enterprise: Scaling Characteristics Features Maximum number of 802.1Q (VLAN) Circuits 26K Maximum number of 802. All rights reserved. 34 .Netmanias Technical document: MPLS Backhaul & Backbone Network Design MPLS Protection Copyright © 2002-2013 NMC Consulting Group. All rights reserved. All rights reserved.CTY1 CR3 PE2. PE2.CTY1 CR2 PE1.CTY5 PE2.CTY1 CR3 PE2.CTY1 CR3 PE2.CTY5 PE1.  There are two types of secondary paths: standby and non-standby.CTY5 Secondary LSP 35 . Normal Operation Primary LSP RSVP Hello Secondary LSP 4.CTY5 2. Secondary LSP: Pre-computed/Pre-signaled backup LSP  Secondary paths support the configuration of primary and secondary physical paths for an LSP to protect against link and transit node forwarding plane failures. Primary LSP CR1 3.CTY5 PE1.CTY1 PE2.CTY1 PE2. Network Impairment 2. Outage 1) Link Failure 2) Node Failure (RSVP Hello) CR2 PE1.  The primary path is the preferred path while the secondary path is used as an alternative route when the primary path fails.CTY5 PE1.CTY5 PE1.CTY5  Ingress PE switches traffic to pre-established secondary path  Secondary LSP (Standby LSP Case)  Path: Pre-computed (CSPF)  BW Reservation: Pre-Signaled (RSVP-TE) Secondary LSP RSVP Hello 1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Path Protection: Secondary Path 1. Protection Switching Primary LSP RSVP Hello CR1 CR1 CR2 PE1.CTY1 CR3 Secondary LSP Copyright © 2002-2013 NMC Consulting Group. RSVP Patherr and Resvtear unicast to ingress PE CR1 Primary LSP CR2 PE1.  A standby secondary path is pre-computed and pre-signaled while a non-standby secondary path is pre-computed but is not pre-signaled.CTY1 PE2. and new detours established. detours are torn down.  For LSP PE1.CTY5 via CR3  CR1 create a detour to PE1. Outage 1) Link Failure 2) Node Failure (RSVP Hello) CR2 PE1.CTY5 PE1. All rights reserved.CTY5 PE1.CTY1  Fast reroute is only a short-term solution because the detour paths may not provide adequate bandwidth and the activation of a detour path can result in congestion on bypass links. 36 .CTY5 via CR3  CR2 create a detour to PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Local Protection: Fast Reroute (1:1 Protection) 1. RSVP Patherr and Resvtear unicast to ingress PE CR1 1. PE2.CTY1 CR3 PE2. 2.CTY1 PE2.CTY1 create a detour to PE1.CTY5. Re-optimization Detours LSPs CR3  Fast reroute provides local repair and allows connectivity to be restored faster than traffic can be switched by the ingress LSR to a standby secondary LSP.CTY1 PE2.CTY5 via CR3 CR1 LSP CR2 2.CTY5 PE1.CTY5 4. CR2 switches traffic to its dedicated detour path 3. Network Impairment  Fast reroute (or one-to-one backup) allows an LSR immediately upstream from an outage to quickly route around a failed link or node to an LSR downstream of the outage. the following detours are established  PE1. Normal Operation RSVP Hello RSVP Hello CR1 RSVP Hello CR2 PE1.CTY1 PE2. traffic is redirected along the new path.CTY5 CR3 Copyright © 2002-2013 NMC Consulting Group. Detour LSP Pre-Setup 3.  This is accomplished by pre-computing and pre-establishing detour paths that bypass the immediate downstream link and the next-hop LSR.CTY5 PE1.CTY1 PE2.  As soon as the ingress router calculates a new path avoiding the failure.CTY1-to-PE1. PE2. LSP2: PE1. Bypass Path Pre-Setup 2.CTY7  However. link protection provides local repair and restores connectivity faster than the ingress router switching traffic to a standby secondary path.CTY5 PE2. Network Impairment (Link Failure)  Many-to-one (facility backup) is based on interface rather than on LSP.CTY7 Copyright © 2002-2013 NMC Consulting Group.CTY5 PE1.CTY1-to-PE1.CTY3 PE1.CTY3 2. All rights reserved. A single bypass path safeguards the set of protected LSPs. PE1. then signals the link failure to the ingress router.CTY1 PE1. Bypass Path PE2. the router immediately upstream from the link outage switches protected traffic to the bypass link.  This is accomplished by pre-establishing a bypass path that is shared by all protected LSPs traversing the failed link. many-to-one protection can be applied on interfaces as needed.CTY1 3.CTY7 LSP2 PE2. While fast reroute protects interfaces or nodes along the entire path of a LSP.CTY5  When an outage occurs.CTY1 PE2.CTY7 PE1.CTY3 LSP1 1. Link Failure CR1 CR2 Bypass Path PE2.  Link protection (or many-to-one backup) allows an LSR immediately upstream from a link failure to use an alternate interface to forward traffic to its downstream neighbor LSR. CR1 switches all LSP traffic to the bypass link CR3 LSP1: PE1. link protection does not provide protection against the failure of the downstream neighbor.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Local Protection: Link Protection (Many-to-one or facility backup) 1.CTY5 CR3 PE2.  The bypass path is shared by all protected LSPs traversing the failed link (many LSPs protected by one bypass path).CTY7  Like fast reroute.CTY1 LSP2 PE2.  A bypass path is set up around the link to be protected using an alternate interface to forward traffic. unlike fast reroute.CTY3 LSP1 CR1 CR2 PE1. 37 .CTY5 PE1. RSVP Patherr and Resvtear unicast to ingress PE PE1.CTY3-to-PE1. CTY7 LSP2 CR3 2. All rights reserved. PE2.CTY5 LSP2: PE1. This type of bypass path is established exclusively when node-link protection is configured. PE1.CTY3 PE1.CTY3 LSP1 CR1 NHOP bypass PE2.CTY7 Node Failure LSP1: PE1.CTY3-to-PE1.CTY1 PE1. This type of bypass path is established when you enable either node-link protection or link protection.CTY3-to-PE1. Node Failure PE1.CTY5 PE1.  Next-next-hop bypass: Provides an alternate route for an LSP through a neighboring router en route to the destination router. Bypass Path Pre-Setup 2.CTY3 switches all LSP traffic to the NHOP bypass link 1.CTY5 PE2.CTY1 PE2.CTY1 PE1.Netmanias Technical document: MPLS Backhaul & Backbone Network Design Local Protection: Node-Link Protection (Many-to-one or facility backup) 1.CTY3 CR1 CR3 PE2. Network Impairment (Link Failure)  Next-hop bypass: Provides an alternate route for an LSP to reach a neighboring router.CTY5 PE1.CTY7 CR3 PE2. Link Failure LSP1 PE1.CTY7 LSP2 Copyright © 2002-2013 NMC Consulting Group.CTY1 PE2.CTY1 NNHOP bypass LSP2 PE2.CTY7 1.CTY3 LSP1 CR1 CR2 NNHOP bypass PE2.CTY3 PE1.CTY5 PE2.CTY5 CR2 NHOP bypass PE2. Link Failure 2. PE1.CTY3 switches all LSP traffic to the NNHOP bypass link PE2.CTY3 PE1.CTY1 CR2 PE1.CTY7 38 .CTY5 PE1.CTY7 PE1. 39 . All rights reserved.Netmanias Technical document: MPLS Backhaul & Backbone Network Design End of Document Copyright © 2002-2013 NMC Consulting Group. 40 .com to view and download more technical documents.Netmanias Research and Consulting Scope 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 eMBMS/Mobile IPTV CDN/Mobile CDN Transparent Caching BSS/OSS Services Cable TPS Voice/Video Quality IMS Policy Control/PCRF IPTV/TPS LTE Mobile Network Mobile WiMAX Carrier WiFi LTE Backaul Data Center Migration Carrier Ethernet FTTH Wireline Network Data Center Metro Ethernet MPLS IP Routing Visit http://www. Copyright © 2002-2013 NMC Consulting Group. All rights reserved.netmanias. Documents Similar To Netmanias.2007.12.13-MPLS Backhaul & Backbone Network Design (en)Skip carouselcarousel previouscarousel nextCarrier Ethernet Solution Overviewentuity_module_mpls[1].pdfWei Luo, Carlos Pignataro, Anthony Chan, Dmitry Bokotey Layer 2 VPN Architectures MarEn s8500 Adoc Operation Manual II v1.52(20060225)Compendium Szkolenie 5685 Check Point Security Engineering 2013Wireless Infra SetupCarrier Ethernet.pdf1721d_dsQuidway AR 28 Series Routers Installation Manualaag_c45-675118View Article350-029 (Latest)Multi-site Options and Cross-VC NSX Design Guide.pdfBrocade IronWare OS WP-00juniper-networks-presentation-templateus3452NoticeQuidway AR 46 Series Routers Installation ManualProtocol RecordingEthernet Service IntroductionTnc2013 Slides MWSDNBasedPOTSForTerenaFinalFortiOS 5 FeatureNetworkingIpo116121-tech-vpls-bgp-00Draytek Vigor 2910 & GreenBow IPSec VPN software ConfigurationHiPath 3000 & 5000 V8 Service Manual - Issue 10Close Windo1.Docxft.docx NdsA Novel Path Protection Scheme for MPLS Networks Using Multi-path RoutingHp Man Nnmi Step-By-step Deploying Nnmi 9.1x p1 PDFMission Critical Utilities Network Teleprotection AppNoteMore From Kedi KebbaSkip carouselcarousel previouscarousel nextELP 4003 LTE Air Interface07 TM32047EN04GLA0 e2 e4 Diameter Prot DocVolte Originating CallNokiaNSN DX 200 MSC Server MSS CatalogueDesign IP TelephonyVoice and SMS in LTELinux Commands23018-A10 - Basic Call Handling; Technical RealizationAlvarion WBSn 2450 ILTE in Bullets 2nd Edition ContentsBROCHURE Financial Markets & ACI Dealing CertificateIMEIGSM MM Call Flows3GPP-LTE-PDCPGSM Terminating Call FlowNetmanias.2015.02.17-LTE IP Address Allocation II - A Case for Two Cities (en)3GPP TS 32.422 Trace Control and Configuration ManagementNetmanias.2015.02.17-LTE IP Address Allocation II - A Case for Two Cities (en)Netmanias.2013.08.14-LTE Network Architecture - Basic (en)Lte Advanced Evolution Webinar 23 Sept 15Netmanias.2009.01.09-Backhaul Network Design (en)23272-a31Footer MenuBack To TopAboutAbout ScribdPressOur blogJoin our team!Contact UsJoin todayInvite FriendsGiftsLegalTermsPrivacyCopyrightSupportHelp / FAQAccessibilityPurchase helpAdChoicesPublishersSocial MediaCopyright © 2018 Scribd Inc. .Browse Books.Site Directory.Site Language: English中文EspañolالعربيةPortuguês日本語DeutschFrançaisTurkceРусский языкTiếng việtJęzyk polskiBahasa indonesiaSign up to vote on this titleUsefulNot usefulYou're Reading a Free PreviewDownloadClose DialogAre you sure?This action might not be possible to undo. Are you sure you want to continue?CANCELOK
Copyright © 2024 DOKUMEN.SITE Inc.