Compression MembersCOLUMN STABILITY A. Flexural Buckling • Elastic Buckling • Inelastic Buckling • Yielding B. Local Buckling – Section E7 pp 16.1-39 and B4 pp 16.1-14 C. Lateral Torsional Buckling AISC Requirements CHAPTER E pp 16.1-32 Nominal Compressive Strength Pn Fcr Ag AISC Eqtn E3-1 AISC Requirements LRFD Pu c Pn Pu Sum of factored loads c resistance factor for compression 0.90 c Pn design compressive strength . Design Strength . In Summary Fy 0.71 r Fy or Fe 0.44 Fy Fcr 0.658 F Fy e KL E if 4.877 Fe KL 200 r otherwise . 1-14 Local Stability: If elements of cross section are thin LOCAL buckling occurs The strength corresponding to any buckling mode cannot be developed .Local Stability .Section B4 pp 16. Section B4 pp 16.Local Stability .1-14 Local Stability: If elements of cross section are thin LOCAL buckling occurs The strength corresponding to any buckling mode cannot be developed . Section B4 pp 16.Local Stability .1-14 • Stiffened Elements of Cross-Section • Unstiffened Elements of Cross-Section . Local Stability .1-14 • Compact – Section Develops its full plastic stress before buckling (failure is due to yielding only) • Noncompact – Yield stress is reached in some but not all of its compression elements before buckling takes place (failure is due to partial buckling partial yielding) • Slender – Yield stress is never reached in any of the compression elements (failure is due to local buckling only) .Section B4 pp 16. 1-39 ) .Local Stability . r Reduce Axial Strength (E7 pp 16.1-14 If local buckling occurs cross section is not fully effective Avoid whenever possible Measure of susceptibility to local buckling Width-Thickness ratio of each cross sectional element: If cross section has slender elements .Section B4 pp 16. Limiting Values AISC B5 Table B4.1 pp 16.Slenderness Parameter .1-16 . 1 pp 16.1-17 .Limiting Values AISC B5 Table B4.Slenderness Parameter . 1-18 .Limiting Values AISC B5 Table B4.1 pp 16.Slenderness Parameter . 44QFy Fcr 0.Slender Cross Sectional Element: Strength Reduction E7 pp 16.1 – B4.1-40 to 16.1-39 Reduction Factor Q: QFy 0.71 r QFy or Fe 0.658 F QFy e KL E if 4.2 pp 16.877 Fe otherwise Q: B4.1-43 . 1-40 to 16.71 r QFy or Fe 0.658 F QFy Fy if KL E 4.44QFy Fcr 0.Slender Cross Sectional Element: Strength Reduction E7 pp 16.2 pp 16.1 – B4.1-43 . Qa: B4.1-39 Reduction Factor Q: e 0.877 Fe otherwise Q=QsQa Qs. Local Buckling – Section E7 pp 16. Flexural Buckling • Elastic Buckling • Inelastic Buckling • Yielding B.COLUMN STABILITY A. Lateral/Torsional Buckling .1-39 and B4 pp 16. Torsional.1-14 C. Torsional & Flexural Torsional Buckling When an axially loaded member becomes unstable overall (no local buckling) it buckles one of the three ways • Flexural Buckling • Torsional Buckling • Flexural-Torsional Buckling . Torsional Buckling Twisting about longitudinal axis of member Only with doubly symmetrical cross sections with slender crosssectional elements Cruciform shape particularly vulnerable Standard Hot-Rolled Shapes are NOT susceptible Built-Up Members should be investigated . double-angle.Flexural Torsional Buckling Combination of Flexural and Torsional Buckling Only with unsymmetrical cross sections 1 Axis of Symmetry: channels. equal length single angles No Axis of Symmetry: unequal length single angles . structural tees. Torsional Buckling ECw 1 Fe 2 K z L GJ I x I y 2 Eq.200 ksi for structural steel) J = Torsional Constant . E4-4 Cw = Warping Constant (in6) Kz = Effective Length Factor for Torsional Buckling (based on end restraints against twisting) G = Shear Modulus (11. Lateral Torsional Buckling 1-Axis of Symmetry Fe 2 Fey Fez 4 Fey Fez H 1 1 2H Fey Fez 2E Fey K y L ry 2 H 1 xo .t centroid of section . E4-5 2 ECw 1 Fez GJ 2 2 K L z Ag r o 2 o r x y 2 o 2 o Ix Iy Ag Coordinates of shear center w. yo xo2 yo2 r 2 o AISC Eq.r. E4-6 .Lateral Torsional Buckling No Axis of Symmetry Fe Fex Fe Fey Fe Fez 2 xo F Fe Fey ro 2 e yo F Fe Fex ro 2 e Fe is the lowest root of the Cubic equation 2 0 AISC Eq. torsional or flexural torsional) Theory of Elastic Stability (Timoshenko & Gere 1961) Flexural Buckling 2E Fe KL / r 2 Torsional Buckling Flexural Torsional 2-axis of symmetry Buckling 1 axis of symmetry AISC Eqtn E4-4 AISC Eqtn E4-5 Flexural Torsional Buckling No axis of symmetry AISC Eqtn E4-6 .Definition of Fe Fe: Elastic Buckling Stress corresponding to the controlling mode of failure (flexural.In Summary . 44 Fy 0.877 Fe otherwise Pn Fcr Ag .658 Fy Fy Fe Fcr if Fe 0.Column Strength 0. 43 Fy 50 OK Inelastic Buckling 2E 2 29.658 50 37.3 kips .44 Fy 0.71 113 87.44 ksi 2 2 KL r 87.9 in2 rx=3.000 Fe 37. Assume (KxL) = 25.50 4.59( 23.658 (50) 28.43 200 r rx 3.5 ft.05 in KL K x L 25.9) 683. (KyL) = 20 ft. and (Kz L) = 20 ft FLEXURAL Buckling – X axis WT 12X81 Ag=23.5 12 87.43 Fy Fe Fcr 0.71 E 29.000 4.50 in ry=3.EXAMPLE Compute the compressive strength of a WT12x81 of A992 steel.59 ksi Pn Fcr Ag 28. 05 in KyL ry 20 12 78.9 2 tf 2 .22 in4 Cw=43.000 46.22 ksi 2 78.05 2E Fey KyL r y 2 OK 2 29.EXAMPLE FLEXURAL TORSIONAL Buckling – Y axis (axis of symmetry) WT 12X81 Ag=23.69 y=2.87 23.22 in Shear Center Ix=293 in4 Iy=221 in4 x0 0 J=9.9 in2 rx=3.70 in tf=1.8 in6 y0 y Ix Iy r x y Ag 2 o 2 o 2 o 293 221 0 ( 2.50 in ry=3.69 200 3.09) 25. 87 167.22 in4 Cw=43.50 in ry=3.8 in6 2 ECw 1 Fez GJ 2 2 K L z Ag r o 2 ( 29. 9 25 .8) 1 11.70 in tf=1.22) 2 2 20 12 23 .EXAMPLE FLEXURAL TORSIONAL Buckling – Y axis (axis of symmetry) WT 12X81 Ag=23.05 in y=2.000)( 43.200(9.22 in Ix=293 in4 Iy=221 in4 J=9.4ksi .9 in2 rx=3. 9 in 2 H 1 0 2.22 in4 Cw=43.4 0.8312 46.22 167.8312 25.22 in 4 Fey Fez H Fey Fez 1 1 46.05 in Fey Fez Fe 2H y=2.70 in tf=1.22 167.63ksi .4 Ix=293 in4 Iy=221 in4 J=9.4 4 46.50 in ry=3.EXAMPLE FLEXURAL TORSIONAL Buckling – Y axis (axis of symmetry) WT 12X81 Ag=23.8312 1 1 2 2 0.8 in 6 53.090 1 0.87 2 xo2 yo2 r 2 o rx=3.22 167. 70 in tf=1.8 in6 Fy Fy Fe Fcr if Fe 0.44 Fy 0.22 in4 Cw=43.22 in Ix=293 in4 Iy=221 in4 J=9.658 y=2.877 Fe otherwise .9 in2 rx=3.05 in 0.63 ry=3.44(50) 22.50 in Elastic or Inelastic LTB? 0.0ksi Fe 43.44 Fy 0.EXAMPLE FLEXURAL TORSIONAL Buckling – Y axis (axis of symmetry) WT 12X81 Ag=23. 7kips Compare to FLEXURAL Buckling – X axis Pn Fcr Ag 21.9 in2 rx=3.9) 683.70 in tf=1.3 kips .95( 2.70) 739.50 in ry=3.658 Fy Fy Fe 50 43.22 in Ix=293 in4 Iy=221 in4 J=9.63 50 28.82( 23.05 in y=2.22 in4 Cw=43.658 0.8 in6 Fcr 0.EXAMPLE FLEXURAL TORSIONAL Buckling – Y axis (axis of symmetry) WT 12X81 Ag=23.59ksi Pn Fcr Ag 30. 22 pp (4-318 to 4-322) .Column Design Tables Assumption : Strength Governed by Flexural Buckling Check Local Buckling Column Design Tables Design strength of selected shapes for effective length KL Table 4-1 to 4-2. (pp 4-10 to 4-316) Critical Stress for Slenderness KL/r table 4. Use (a) Table 422 and (b) column load tables (a) LRFD .77 200 r ry 2.48 Fy=50 ksi Table has integer values of (KL/r) Round up or interpolate Pcr 22.67ksi Pn Pcr Ag 22.8) 494ksi . Assume pinned ends and L=20 ft.67( 21.Table 4-22 – pp 4-318 Maximum KL KL (1)( 20)(12) 96.EXAMPLE Compute the available compressive strength of a W14x74 A992 steel compression member. EXAMPLE Compute the available compressive strength of a W14x74 A992 steel compression member. Assume pinned ends and L=20 ft. Use (a) Table 422 and (b) column load tables (b) LRFD Column Load Tables Tabular values based on minimum radius of gyration Maximum KL (1)( 20) 20 ft c Pn 494kips Fy=50 ksi . Determine available compressive strength Ag 17 rx 5.55 200 rx 5.51 Enter table 4.24(17) 616kips .55 (LRFD) Pcr 36.22 with KL/r=54.Example II A W12x58.24ksi Pn Pcr Ag 36.28 K y L 1(8)(12) 38.51 K x L 1(24)(12) 54.25 200 ry 2. A992 steel is used.28 ry 2. 24 feet long in pinned at both ends and braced in the weak direction at the third points. 28 K y L 1(8)(12) 38. 24 feet long in pinned at both ends and braced in the weak direction at the third points.51 K x L 1(24)(12) 54.09ksi c Pn Fcr Ag 410kips c c .22 with KL/r=54.28 ry 2.55 (ASD) Fcr 24. A992 steel is used.55 200 rx 5.Example II A W12x58.25 200 ry 2. Determine available compressive strength Ag 17 rx 5.51 Enter table 4. A992 steel is used.28 CAN I USE Column Load Tables? K y L 1(8)(12) 38.25 200 ry 2.55 200 rx 5. Determine available compressive strength K x L 1( 24)(12) 54.Example II A W12x58. 24 feet long in pinned at both ends and braced in the weak direction at the third points.51 Not Directly because they are based on min r (y axis buckling) If x-axis buckling enter table with KxL KL rx ry . 43 ft rx ry 2. 24 feet long in pinned at both ends and braced in the weak direction at the third points.28 K y L 1(8)(12) 38. Determine available compressive strength K x L 1( 24)(12) 54.55 200 rx 5.25 200 ry 2.Example II A W12x58.51 X-axis buckling enter table with K x L (1)( 24) KL 11. A992 steel is used.1 Pn 616kips .