ME35R_L1.pdf

March 17, 2018 | Author: RamonPissolatti | Category: Pressure Measurement, Pressure, Viscosity, Mass, Stress (Mechanics)


Comments



Description

Ministério da Educação e CulturaUniversidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR Disciplina: Fenômenos de Transportes 1 Código: ME35R Turma: M51/E61/A41 Curso: Engenharias Mecânica, Elétrica e Automação e Controle Prof. Rubens Gallo PRIMEIRA LISTA DE EXERCÍCO E PRIMEIRA APS 1.) A distribuição de velocidade para o escoamento laminar desenvolvido entre placas paralelas é dado por: 2 max 2 1 u y u h · | | = ÷ | \ . , onde h é a distância separando as placas: a origem está situada na linha mediana entre as placas. Considere um escoamento de água, com e . Calcule a tensão de cisalhamento na placa superior e dê o seu sentido. Esboce a variação da tensão de cisalhamento numa seção transversal do canal. 2.) A distribuição de velocidade para o escoamento laminar desenvolvido entre placas paralelas é dado por: 2 max 2 1 u y u h · | | = ÷ | \ . , onde h é a distância separando as placas: a origem está situada na linha mediana entre as placas. Considere um escoamento de água, com e . Calcule a força sobre uma seção de da placa inferior e dê o sue sentido. 3.) Uma patinadora de estilo livre no gelo desliza sobre patins à velocidade V = 20 ft/s. O seu peso, 100 lbf, é suportado por uma fina película de água fundida do gelo pela pressão da lâmina do patim. Admita que a lâmina tem comprimento L=11,5 polegada e largura w = 0,125 polegada, e que a película de água tem espessura h=0,0000575 polegada. Estime a desaceleração da patinadora que resulta do cisalhamento viscoso na película de água, desprezando os efeitos das extremidades do patim. 4.) Petróleo bruto, com densidade relativa SG=0,85 e viscosidade , escoa de forma permanente sobre uma superfície inclinada de para baixo em relação à horizontal, numa película de espessura h = 0,125 polegada. O perfil de velocidade é dado por: ( ) 2 2 g y u h y sen µ u µ | | · = · ÷ | \ . . Determine a magnitude e o sentido da tensão de cisalhamento que atua sobre a superfície. 5.) Um bloco de massa M desliza sobre uma fina película de óleo, conforme mostrado na figura. A espessura da película é h e a área do bloco é A. Quando liberada, a massa m exerce tração na corda, causando a aceleração do bloco. Despreze o atrito na polia e a resistência do ar. Desenvolva uma expressão algébrica para a força viscosa que atua sobre o bloco quando ele se move à velocidade V. Deduza uma equação diferencial para a velocidade do bloco em função do tempo. A massa M=5kg, m=1kg, A=25cm² e h=0,5 mm. Se é necessário 1 segundo para atingir a velocidade de 1 m/s, determine a viscosidade, µ, do óleo. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 6.) Um bloco cúbico, com arestas de dimensões a [mm], desliza sobre uma fina película de óleo numa placa plana. O óleo tem viscosidade µ e a película tem espessura h [mm]. O bloco de massa M move-se com velocidade constante U sob a ação de uma força constante F. Indique a magnitude e o sentido das tensões de cisalhamento atuando no fundo do bloco. Esboce uma curva para a velocidade resultante do bloco em função do tempo, quando a força é repentinamente removida e o bloco começa a reduzir a velocidade. Obtenha uma expressão para o tempo requerido para que o bloco perca 95% de sua velocidade. 7.) Um bloco cúbico, com arestas de 0,2 m e massa de 5 kg, desliza em um plano inclinado de 30° para baixo em relação à horizontal, sobre um filme de óleo SAE 30 a 20° com 0,2 mm de espessura. Se o bloco for liberado do repouso em t=0, qual a sua aceleração inicial? Determine a velocidade do bloco após 0,1 s. Se desejássemos que o bloco atingisse uma velocidade de 0,3 m/s neste tempo, qual deveria ser a viscosidade µ do óleo? 8.) Um fio magnético deve ser revestido com verniz isolante, sendo puxado através de uma matriz circular com 1,0 mm de diâmetro e 50 mm de comprimento. O diâmetro do fio é de 0,9 mm e ele passa centrado na matriz. O verniz com (µ=20 centipoise) preenche completamente o espaço entre o fio e as paredes da matriz. O fio é puxado a uma velocidade de 50 m/s. Determine a força necessária para puxar o fio através da matriz. 9.) Um viscosímetro de cilindros concêntricos é constituído de um par de cilindros verticais adequadamente encaixados, sendo que o cilindro interno pode girar. A folga anular entre os cilindros deve ser muito pequena, de modo a desenvolver um perfil de velocidade linear na amostra líquida que preenche a folga. Considere um viscosímetro com cilindro interno de 4 in de diâmetro e altura de 8 in; a folga anular é de 0,001 in e está preenchida com óleo de rícino a 90°F. Determine o torque necessário para girar o cilindro interno a 400 rpm (rotações por minuto). 10.) Considere um viscosímetro de cilindros concêntricos como o do problema 9. Para pequenas folgas entre os cilindros, pode-se admitir um perfil de velocidade linear no líquido que preenche o espaço anular. O cilindro interno tem 75 mm de diâmetro e 150 mm de altura, e a folga anular é de 0,02 mm. Um torque de é necessário para girar o cilindro interno a 100 rpm. Determine a viscosidade do líquido no espaço anular desse viscosímetro. 11.) Um eixo com diâmetro externo de 18 mm gira a 20 rotações por segundo dentro de um mancal de sustentação estacionário de 60 mm de comprimento. Uma película de óleo com espessura de 0,2 mm preenche a folga anular entre o eixo e o mancal. O troque necessário para girar o eixo é . Estime a viscosidade do óleo que preenche a folga anular. 12.) Um viscosímetro de cilindros concêntricos é acionado pela queda de uma massa M, conectada pro corda e polia ao cilindro interno, conforme mostrado. O líquido a ser testado preenche a folga anular de largura a e altura H. Após um breve transiente de partida, a massa cai à velocidade constante. Deduza uma expressão algébrica para a viscosidade do líquido no dispositivo em termos de M, g, V m , r, R, a e H. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 13.) O viscosímetro do problema 12 está sendo usado para verificar se a viscosidade de um determinado fluido é realmente . Acidentalmente, a corda rompe-se durante o experimento. Qual a distância percorrida pela massa cilíndrica até perde 99% de sua velocidade? O momento de inércia do sistema cilindro/peça é de . 14.) O delgado cilindro externo (massa m 2 e raio R) de um pequeno viscosímetro portátil de cilindros concêntricos é acionado pela queda de uma massa m 1 , ligada a uma corda. O cilindro interno é estacionário. A folga entre os cilindros é a. Desprezando o atrito do mancal externo, a resistência do ar e a massa do líquido no viscosímetro, obtenha uma expressão algébrica para o troque devido ao cisalhamento viscoso que atua no cilindro à velocidade angular w. Deduza e resolva uma equação diferencial para a velocidade angular w. Deduza e resolva uma equação diferencial ara a velocidade angular para a velocidade angular do cilindro externo como função do tempo. Obtenha uma expressão para a velocidade angular máxima do cilindro. 15.) Um eixo circular de alumínio montado sobre um mancal de sustentação estacionário é mostrdo. A folga geométrica entre o eixo e o mancal está preenchida com óleo SAE 10W-30 a T=30°C. O eixo é posto em rotação pela massa e corda a ele conectadas. Desenvolva e resolva uma equação diferencial para a velocidade angular do eixo como função do tempo. Calcule a velocidade angular máxima do eixo e o tempo requerido para ele atingir 90% dessa velocidade. 16.) Um acoplamento imune a choques, para acionamento mecânico de baixa potência, deve ser fabricado com um par de cilindros concêntricos. O espaço anular entre os cilindros será preenchido com óleo. O dispositivo deve transmitir uma potência P = 5W. Outras dimensões e propriedades são conforme mostrado. Despreze qualquer atrito de mancal e efeitos de extremidade. Admita que a folga mínima, prática pra o dispositivo seja . A indústria Dow fabrica fluidosà base de silicone com viscosidades tão altas quanto 10 6 Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR centipoises. Determine a viscosidade que deverá ser especificada, de modo a satisfazer os requisitos desse dispositivo. 17.) Foi proposto empregar um par de discos paralelos para medir a viscosidade de uma amostra líquida. O disco superior gira a uma altura h acima do disco inferior. A viscosidade do líquido na folga deve ser calculada a partir de medições do torque necessário para girar o disco superior continuamente em regime permanente. Obtenha uma expressão algébrica para o torque necessário para girar o disco superior. 18.) O viscosímetro de cone e placa mostrado é um instrumento frequentemente usado para caracterizar fluidos não-newtonianos. Ele consiste de uma placa plana e um cone giratório, com ângulo muito obtuso ( é tipicamente, inferior a 0,5°). O ápice do cone apenas toca a superfície da placa, e o líquido a ser testado preenche a estreita fenda formada pelas duas peças. Deduza uma expressão para a taxa de cisalhamento no líquido que preenche a fenda em termos da geometria do sistema. Avalie o torque de acionamento do cone em termos da tensão de cisalhamento e da geometria do sistema. 19.) Uma embreagem viscosa deve ser feita de um par de discos paralelos muito próximos, com uma fina camada de líquido viscoso entre eles. Desenvolva expressões algébrica para o torque e a potência transmitida pelo par de discos, em termos da viscosidade do líquido, µ, do raio, e e 0 , do disco acionador externo. Desenvolva também expressões para a razão de deslizamento, ⁄ , em termos de e i e do torque transmitido. Determine a eficiência, q, em termos da razão de deslizamento. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 20.) Um viscosímetro de cilindros concêntricos é mostrado na figura. O torque viscoso é produzido pela folga anular em torno do cilindro interno. Um torque viscoso adicional é produzido pelo fundo plano do cilindro interno à medida que gira acima do fundo plano do cilindro externo estacionário. Obtenha expressões algébricas para o torque viscoso devido ao escoamento na folga anular de largura a e para o torque viscoso devido ao escoamento na folga do fundo de altura b. Faça um gráfico mostrando a razão b/a, necessária para manter o torque do fundo a 1%, ou menos, do torque do espaço anular versus as outras varáveis geométricas. 21.) Projete um viscosímetro de cilindros concêntricos para medir a viscosidade de um líquido similar à água. O objetivo é alcançar uma precisão de medida de . Especifique a configuração e dimensões do viscosímetro. Indique quais os parâmetros medidos que serão utilizados para inferir a viscosidade da amostra de líquido. 22.) Um eixo de ponta cônica gira em um mancal cônico. A folga entre as duas peças é preenchida com óleo pesado de viscosidade SAE 30 a 30°C. Obtenha uma expressão algébrica para a tensão de cisalhamento que atua na superfície do eixo cônico. Calcule o torque viscoso que atua no eixo. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 23.) Um mancal de escora esférico é mostrado na figura. A folga entre o membro esférico e seu alojamento tem largura constante H. Obtenha e faça o gráfico de uma expressão algébrica para o torque no membro esférico como uma função do ângulo o. 24.) Uma seção reta de um mancal giratório é mostrada na figura. O membro esférico gira com velocidade angular e, a uma pequena distancia, a, acima da superfície plana. A folga estreita é preenchida com óleo viscoso de viscosidade µ = 1250 cP (centipoise). Obtenha uma expressão algébrica para a tensão de cisalhamento que atua no membro esférico. Avalie a tensão máxima de cisalhamento que atua sobre o membro esférico para as condições mostradas. (A tensão máxima de cisalhamento está necessariamente localizada no raio máximo?) Desenvolva uma expressão algébrica (na forma de uma integral) para o torque de cisalhamento viscoso total que ague no membro esférico. Calcule o torque utilizando as dimensões mostradas. 25.) Um bloco de peso W desliza para baixo em um plano inclinado, sob uma película de óleo, como mostra a figura, a área do bloco que esta em contato com a película é A e a sua espessura h. Assumindo perfil de linear de velocidade no filme, obtenha uma expressão para a velocidade V terminal do bloco. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 26.) Se a massa do bloco do exercício 25 é 6 kg, a área de contato entre o bloco e a película 35 cm², o ângulo u = 15° e a espessura do filme é 1 mm, o óleo é o SAE 30 a 20°C, determine a velocidade terminal do bloco. 27.) Um placa fina é puxada por uma força F através de dois fluidos diferentes com viscosidades µ 1 e µ 2 , como mostra a figura. Os espaçamentos h 1 e h 2 são diferentes. Assumindo perfil de velocidade linear em ambos os fluidos, determinar a força F necessária para puxar a placa a uma velocidade V. Existe uma relação necessária entre as viscosidades dos dois fluidos? 27.) No sistema da figura desprezando-se o desnível entre os cilindros, determinar o peso G, que pode ser suportado pelo pistão V. Desprezar os atritos. Dados: . 28.) Aplica-se uma força de 200 N na alavanca AB, como é mostrado na figura. Qual é a força F que deve ser exercida sobre a haste do cilindro para que o sistema permaneça em equilíbrio? 29.) Qual é a altura da coluna de mercúrio que irá produzir na base a mesma pressão de uma coluna de água de 5 m de altura? ( ). Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 30.) No manômetro da figura o fluido A é água e o fluido B, mercúrio (Hg). Qual é a pressão p 1 ? 31.) No manômetro diferencial da figura, o fluido A é água e o fluido manométrico é mercúrio. Sendo , qual é a diferença de pressão ? Dado: SG óleo =0,8. 32.) No esquema dado, qual é a pressão em (1) se o sistema está em equilíbrio estático? (Leitura do manômetro .) 33.) O cilindro movimenta-se dentro da tubulação circular da figura com velocidade constante. A folga entre o cilindro e a tubulação contém óleo de viscosidade dinâmica . Pede-se: a.) O peso sobe ou desce? Justificar. b.) Qual é o comprimento do cilindro? c.) Qual é a massa especificado material do cilindro em kg/m³? Dados: . Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 34.) No manômetro da figura sabe-se que, quando a força F é 55,6 kN, a leitura na régua é 100 cm. Determinar o valor da nova leitura, caso a força F dobre de valor. 35.) O pistão da figura desce com velocidade constante de 5 m/s. Dados: espessura da camada de lubrificante 0,001 m; v = 10 -3 m²/s; , despreza-se o peso do pistão. Pede-se: a.) A força resistente oferecida pelo lubrificante. b.) A pressão absoluta em B. c.) A leitura do manômetro M. 36.) Calcular a pressão na câmara (1) sabendo que o pistão se desloca com uma velocidade constante de 1,2 m/s e a indicação do manômetro metálico é 10 kPa. Dados: D = 1 m; L = 0,2 m; v óleo = 10 -3 m²/s; D p = 0,998 m; ¸ óleo = 8.000 N/m3 e g = 9,81 m/s². Observação: considerar o nível do óleo constante. Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 37.) Considere o escoamento de água para cima em um tubo inclinado de 30°, como mostra a figura. O manômetro de mercúrio marca h = 12 cm. Qual é a diferença de pressão no tubo? 38.) Um pistão de 8 cm de diâmetro comprime um manômetro de óleo em um tubo inclinado de 7mm de diâmetro, como mostra a figura. Quando um peso P é acrescentado ao topo do pistão, o óleo sobre uma distância adicional de 10 cm no tubo, como mostra a figura. Qual é o valor do peso, em N? 39.) Água escoa para baixo em um tubo a 45° como mostra a figura. A queda de pressão se deve, em parte, à gravidade e em parte, ao atrito. O manômetro de mercúrio lê uma diferença de altura de 152 mm. Qual é a queda de pressão em Pa? O que o manômetro está lendo corresponde somente à queda devido ao atrito? Porque? Ministério da Educação e Cultura Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio Engenharia Mecânica – Tecnologia em Manutenção Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR 40.) Um manômetro de mercúrio, semelhante ao do problema 37, registra h = 1,2; 4,9 e 11,0 mm quando as velocidades da água no tubo são V = 1,0; 2,0 e 3,0 m/s, respectivamente. Determine se esses dados podem ser correlacionados na forma , na qual é uma constante adimensional.
Copyright © 2024 DOKUMEN.SITE Inc.