Markov Excel

April 29, 2018 | Author: Jorge Stiven Pico Morales | Category: Markov Chain, Matrix (Mathematics), Mathematical Analysis, Algebra, Matrix Theory


Comments



Description

MarkovExcel Moduleby Germán Riaño Grupo COPA [email protected] Ver esta página en español ... This workbook has a series of macros that can be used to analyze medium size Markov Chain Problems. Its accuracy for large model has not been tested, and anyway Excel cannot handle more than 256 columns For really large models use: jMarkov You have to enable macros in Excel in order to use this tool. Go to tools/Macros/Security to enable them Discrete Time Markov Chains DTMC Continuous Time Markov Chains CTMC Reference Manual Reference MarkovExcel can be used free of charge for academic purposes. No warranty is given or implied. I am extremely grateful if you point to me any mistakes in the program. But I cannot give personalized customer support by e-mail. In particular I canot teach you stochastics by e-mail, nor will I help you with homework (except my own students, of course) Discrete Time Markov Chains Go back to Main Menu Let's define P and call it "TheP", via Insert/Name/Define 0.2 0.7 0.1 P= 1 0 0 0.2 0.3 0.5 For steady state probabilities we mark the destination range and write ""=DTMCSteadyState(theP)" and then hit ctrl-shft-enter at the same time. Attention: For all functions you have to hit Ctrl shift y enter at the same time. p= #VALUE! #VALUE! #VALUE! To obtain powers of P we use: ' =MatPower(Matrix,power) #VALUE! #VALUE! #VALUE! P(4) = #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! To find the occupancy matrix: M(n) = I + P + P2 +...+Pn usamos "=DTMCMatOcup(Matriz, n)" #VALUE! #VALUE! #VALUE! M(1)= #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Reducible Chains 1 2 3 4 5 6 1 0.1 0.2 0.1 0.2 0.2 0.2 2 0.2 0.3 0.1 0.3 0.1 0 3 0.1 0.3 0.2 0.2 0.1 0.1 4 0 0 0 0.2 0.8 0 5 0 0 0 0.8 0.2 0 6 0 0 0 0 0 1 If we try DTMCSteadyState we obviously get an error: #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! The former chain must be decomposed as: T = {1,2,3} Transient states C1 ={4,5} First closed communicating class C2 = {6} Second communicating class Absortion Probabilities Find R y Q, that correspond to transitions among transient and from transient the the closed comunicating class 1 2 3 1 0.1 0.2 0.1 A= 2 0.2 0.3 0.1 R= 3 0.1 0.3 0.2 Absortion Probabilities are computed through DTMCAbsor(A,R) C1 C2 1 #VALUE! #VALUE! F= 2 #VALUE! #VALUE! 3 #VALUE! #VALUE! Expected time before absortion is computed through DTMCExpected(A) 1 #VALUE! m= 2 #VALUE! 3 #VALUE! Limit probability exists, since there are no periodic states, and is given by 1 2 3 4 5 6 1 0 0 0 #VALUE! #VALUE! #VALUE! 2 0 0 0 #VALUE! #VALUE! #VALUE! 3 0 0 0 #VALUE! #VALUE! #VALUE! 4 0 0 0 #VALUE! #VALUE! 0 5 0 0 0 #VALUE! #VALUE! 0 6 0 0 0 0 0 1 Lets compute a big power to check the result: 1 2 3 4 5 6 1 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 2 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 3 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 5 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 6 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! It works! e closed comunicating classes C1 C2 1 0.4 0.2 2 0.4 0 3 0.3 0.1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Continuous Time Markov Chains Go back to Main Menu Define generator matrix Q y and call it "Generateor", via Insert/Name/Define -9 4 5 Q= 10 -17 7 7 7 -14 For steady state probabilities mark destination range and write "=CTMCSteadyState(Generator)" and hit ctrl-shift-enter at the same time. Attention: For all functions you have to hit Ctrl shift y enter at the same time. p= #VALUE! #VALUE! #VALUE! To find P(t)=exp(Q t) we use: =CTMCTransient(Matrix, time) #VALUE! #VALUE! #VALUE! P(0.01) = #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! To find the occupancy matrix t M (t )=∫0 P(s)ds we use CTMCMatOccup(Generator, n) #VALUE! #VALUE! #VALUE! M(0.1)= #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Reducible Chains Assume Q is given as 1 2 3 4 5 6 1 -9 2 1 2 2 2 2 12 -17 1 3 1 0 3 1 3 -8 2 1 1 4 0 0 0 -8 8 0 5 0 0 0 8 -8 0 6 0 0 0 0 0 0 If we try CTMCSteadyState we get, obviously, an error: #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! The previous chain must be decomposed as T = {1,2,3} C1 ={4,5} C2 = {6} Absortion Probabilities: Lets compute R and Q 1 2 3 1 -9 2 1 A= 2 12 -17 1 R= 3 1 3 -8 Absortion Probabilities: DTMCAbsor(A,R) C1 C2 1 #VALUE! #VALUE! F= 2 #VALUE! #VALUE! 3 #VALUE! #VALUE! Expected time before absortion: DTMCExpected(A) 1 #VALUE! m= 2 #VALUE! 3 #VALUE! The limit matrix exists and is given by: 1 2 3 4 5 6 1 0 0 0 #VALUE! #VALUE! #VALUE! 2 0 0 0 #VALUE! #VALUE! #VALUE! 3 0 0 0 #VALUE! #VALUE! #VALUE! 4 0 0 0 #VALUE! #VALUE! 0 5 0 0 0 #VALUE! #VALUE! 0 6 0 0 0 0 0 1 As a test, we compute P(t) for a large t 1 2 3 4 5 6 1 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 2 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 3 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 5 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 6 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! and it works! C1 C2 1 4 2 2 4 0 3 3 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Reference Manual Go back to Main Menu The following functions are defined in the Macros. To use this functions in another worksheet save this workboos as an add-in (menu: File/Save as, choose the last option) If you plan to use the functions frequenlt you can install the add-in permanently (menu: Tools/Addins) General Matrix Functions MatPower(A, n As Integer) Computes the n-th power of the given matrix Function MatSum(A, B, Optional minus = False) Adds the given matrices. If minus is TRUE then it computes A-B Function MatTimes(A, alpha) Computes alpha*A Function MatIden(n As Integer) Returns an nxn identity matrix Function MaxRate(Q) As Double Assuming Q is a generator matrix this computes the biggest rate, i.e., the largest entry in the diagonal: λ=max (−qii ) Function UniformProb(Q, Optional EnsureGenerator As Boolean = True, Optional lda = -1#) Assuming Q is a generator matrix, computes the associated uniformized DTMC transition matrix. If lda is not given it is internally computed. If EnsureGenerator is true then Q is converted to a generator rather than a rates matrix Q P= +I λ DTMC Functions MatExpo(A, t) Computes exp(A x t) DTMCMatOccup(A, n As Integer) Computes the occupancy matrix for a Discrete Markov Chain Function DTMCSteadyState(P) Computes the steady state probability for DTMC with matix P. If P is not irreducible (or unichain) this returns an error. Function DTMCAbsor(A, R) This computes the absorving probabilities for a markov chain with transient to transient probabilities Q, and transient to absorving probabilities R, through the formula ( I − A )−1 R I− ( (I−Q )−1 RA )−1 R Function DTMCExpected(A) Computes the expected number of steps before absorption, starting from each transient state, through the formula −1−1 ( II−Q − A) ) R1 1 CTMC Functions Function CTMCSteadyState(Q) Computes the steady state probabilities for the given generator matrix Function CTMCTransient(Q, t, Optional Cum = False) Assuming that Q is a generator matrix this computes exp(Q t). If cum is true then it rathers computes the occupancy matrix. The algorithm used is uniformization. Function CTMCMatOccup(Q, t) Computed teh occupancy matrix t M (t )=∫0 P(s)ds Function CTMCAbsor(A, R) Computes teh absortion probabilities where A is the generator rates matrix from transient to transient states, and R from transient to the absorving classes Function CTMCExpected(A) Computes the expected value of the time to absortion starting from each of the given states. MarkovExcel Module por Germán Riaño Grupo COPA [email protected] See this page in English... Esta herramienta de Excel tiene una serie de macros para el análisis de Cadenas de Markov de tamaño intermedio. Su precisión para modelos muy grandes no has sido probada y, en todo caso, Excel no maneja más de 256 columnas. Para nodelos grandes use: jMarkov Para usar esta herramienta se deben habilitar los macros de Excel. Vaya al manu herrmiantas/Macro/Seguridad. Cadenas de Markov de Tiempo Discreto CMTD Cadenas de markov de Tiempo Continuo CMTC Manual de Referencia. Referencia MarkovExcel se puede usar sin costo para labores académicas. No se da garantía alguna ni explícita ni implícita Le agardezco que me avise si encuentra errores. Pero desafortunadamente no puedo dar "soporte al cliente" personalizado. En particular no puedo enseñarle procesos estocásticos por e-mail ni ayudarle en sus tareas (excepto a mis estudiantes claro). Cadenas de Markov de Tiempo Discreto Regresar al Menu Principal Definimos P y le damos el nombre "laPe", via Insertar/Nombre/Definir 0.2 0.7 0.1 P= 1 0 0 0.2 0.3 0.5 Para Probabilidades de estado estable marcamos el destino, escribimos "=DTMCSteadyState(laPe)" y luego ctrl-shft-enter al tiempo. OJO: Para todas las funciones damos Ctrl shift y enter al tiempo. p= #VALUE! #VALUE! #VALUE! Para potencias de P usamos MatPower(Matriz,potencia) #VALUE! #VALUE! #VALUE! P(4) = #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Para Hallar la matriz de ocupación: M(n) = I + P + P^2 +...+P^n usamos DTMCMatOcup(Matriz, n) #VALUE! #VALUE! #VALUE! M(1)= #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Cadenas Reducibles 1 2 3 4 5 6 1 0.1 0.2 0.1 0.2 0.2 0.2 2 0.2 0.3 0.1 0.3 0.1 0 3 0.1 0.3 0.2 0.2 0.1 0.1 4 0 0 0 0.2 0.8 0 5 0 0 0 0.8 0.2 0 6 0 0 0 0 0 1 Si intentamos DTMCSteadyState obviamente generamos un error: #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! La anterior cadena se DEBE descomponer como T = {1,2,3} C1 ={4,5} C2 = {6} Probabilidades de Absorción: Calculamos A y R 1 2 3 1 0.1 0.2 0.1 A= 2 0.2 0.3 0.1 R= 3 0.1 0.3 0.2 Las probabilidades de absroción son DTMCAbsor(A,R) C1 C2 1 #VALUE! #VALUE! F= 2 #VALUE! #VALUE! 3 #VALUE! #VALUE! Los tiempos esperados antes de absorción son DTMCExpected(A) 1 #VALUE! m= 2 #VALUE! 3 #VALUE! La matriz límite existe, pues no hay estados periódicos y es: 1 2 3 4 5 6 1 0 0 0 #VALUE! #VALUE! #VALUE! 2 0 0 0 #VALUE! #VALUE! #VALUE! 3 0 0 0 #VALUE! #VALUE! #VALUE! 4 0 0 0 #VALUE! #VALUE! 0 5 0 0 0 #VALUE! #VALUE! 0 6 0 0 0 0 0 1 A modo de revisión calculamos una potencia grande: 1 2 3 4 5 6 1 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 2 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 3 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 5 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 6 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! y si lo es! C1 C2 1 0.4 0.2 2 0.4 0 3 0.3 0.1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Cadenas de Markov de Tiempo Continuo Regresar al Menu Principal Definimos la matriz generadora Q y le damos el nombre "Generateor", via Inserter/Nombre/Definir -9 4 5 Q= 10 -17 7 7 7 -14 Para Probabilidades de estado estable marcamos el destino, escribimos CTMCSteadyState y luego ctrl-shft-enter al tiempo. OJO: Para todas las funciones damos Ctrl shift y enter al tiempo. p= #VALUE! #VALUE! #VALUE! Para hallar P(t)=exp(Q t) usamos =CTMCTransient(Matriz, tiempo) #VALUE! #VALUE! #VALUE! P(0.01) = #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Para Hallar la matriz de ocupación: t M (t )=∫0 P(s)ds usamos CTMCMatOccup(Generator, tiempo) #VALUE! #VALUE! #VALUE! M(0.1)= #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Cadenas Reducibles Suponga que Q viene dada por 1 2 3 4 5 6 1 -9 2 1 2 2 2 2 12 -17 1 3 1 0 3 1 3 -8 2 1 1 4 0 0 0 -8 8 0 5 0 0 0 8 -8 0 6 0 0 0 0 0 0 Si intentamos SteadyState obviamente generamos un error: #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! La anterior cadena se DEBE descomponer como T = {1,2,3} C1 ={4,5} C2 = {6} Probabilidades de Absorción: Calculamos A y R 1 2 3 1 -9 2 1 A= 2 12 -17 1 R= 3 1 3 -8 Las probabilidades de absroción son =DTMCAbsor(A,R) C1 C2 1 #VALUE! #VALUE! F= 2 #VALUE! #VALUE! 3 #VALUE! #VALUE! Los tiempos esperados antes de absorción son =DTMCExpected(A) 1 #VALUE! m= 2 #VALUE! 3 #VALUE! La matriz límite existe y es: 1 2 3 4 5 6 1 0 0 0 #VALUE! #VALUE! #VALUE! 2 0 0 0 #VALUE! #VALUE! #VALUE! 3 0 0 0 #VALUE! #VALUE! #VALUE! 4 0 0 0 #VALUE! #VALUE! 0 5 0 0 0 #VALUE! #VALUE! 0 6 0 0 0 0 0 1 A modo de revisión calculamos P(t) para un valor grande de t: 1 2 3 4 5 6 1 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 2 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 3 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 4 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 5 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 6 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! y si lo es! Nombre/Definir C1 C2 1 4 2 2 4 0 3 3 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 1 Check #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! Manual de Referencia Regresar al Menu Principal (Lo siento, no tengo traducción.. Quizás Ud. quiera ayudarme..) The following functions are defined in the Macros. To use this functions in another worksheet save this workboos as an add-in (menu: File/Save as, choose the last option) If you plan to use the functions frequenlt you can install the add-in permanently (menu: Tools/Addins) General Matrix Functions MatPower(A, n As Integer) Computes the n-th power of the given matrix Function MatSum(A, B, Optional minus = False) Adds the given matrices. If minus is TRUE then it computes A-B Function MatTimes(A, alpha) Computes alpha*A Function MatIden(n As Integer) Returns an nxn identity matrix Function MaxRate(Q) As Double Assuming Q is a generator matrix this computes the biggest rate, i.e., the largest entry in the diagonal: λ=max (−qii ) Function UniformProb(Q, Optional EnsureGenerator As Boolean = True, Optional lda = -1#) Assuming Q is a generator matrix, computes the associated uniformized DTMC transition matrix. If lda is not given it is internally computed. If EnsureGenerator is true then Q is converted to a generator rather than a rates matrix Q P= +I λ DTMC Functions MatExpo(A, t) Computes exp(A x t) DTMCMatOccup(A, n As Integer) Computes the occupancy matrix for a Discrete Markov Chain Function DTMCSteadyState(P) Computes the steady state probability for DTMC with matix P. If P is not irreducible (or unichain) this returns an error. Function DTMCAbsor(A, R) This computes the absorving probabilities for a markov chain with transient to transient probabilities Q, and transient to absorving probabilities R, through the formula ( I − A )−1 R ( I − A )−1 R Function DTMCExpected(A) Computes the expected number of steps before absorption, starting from each transient state, through the formula −1 ( I− A ) 1 CTMC Functions Function CTMCSteadyState(Q) Computes the steady state probabilities for the given generator matrix Function CTMCTransient(Q, t, Optional Cum = False) Assuming that Q is a generator matrix this computes exp(Q t). If cum is true then it rathers computes the occupancy matrix. The algorithm used is uniformization. Function CTMCMatOccup(Q, t) Computed teh occupancy matrix t M (t )=∫0 P(s)ds Function CTMCAbsor(A, R) Computes teh absortion probabilities where A is the generator rates matrix from transient to transient states, and R from transient to the absorving classes Function CTMCExpected(A) Computes the expected value of the time to absortion starting from each of the given states. Principal
Copyright © 2025 DOKUMEN.SITE Inc.