Mack Erle 2002

March 27, 2018 | Author: Carlos Vega | Category: Fracture, Fracture Mechanics, Welding, Pipe (Fluid Conveyance), Fatigue (Material)


Comments



Description

International Journal of Pressure Vessels and Piping 79 (2002) 1±26www.elsevier.com/locate/ijpvp Review Finite elements in the analysis of pressure vessels and piping, an addendum: a bibliography (1998±2001) Jaroslav Mackerle* Department of Mechanical Engineering, LinkoÈping Institute of Technology, S-581 83 LinkoÈping, Sweden Received 28 September 2001; revised 8 October 2001; accepted 8 October 2001 Abstract The paper gives a bibliographical review of ®nite element methods (FEMs) applied for the analysis of pressure vessel structures/ components and piping from the theoretical as well as practical points of view. This bibliography is an addendum to the Finite elements in the analysis of pressure vessels and pipingÐa bibliography (1976±1996) published [Int J Press Vess Piping 69 (1996) 279] and Finite elements in the analysis of pressure vessels and piping, an addendum (1996±1998) published [Int J Press Vess Piping 76 (1999) 461]. The new bibliography at the end of the paper contains approximately 670 references to papers and conference proceedings on the subject that were published in 1998±2001. These are classi®ed in the following categories: linear and nonlinear, static and dynamic, stress and de¯ection analyses; stability problems; thermal problems; fracture mechanics problems; contact problems; ¯uid±structure interaction problems; manufacturing of pipes and tubes; welded pipes and pressure vessel components; development of special ®nite elements for pressure vessels and pipes; ®nite element software; and other topics. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Finite element; Bibliography; Pressure vessels; Pipes; Linear and nonlinear static and dynamic analysis; Fracture mechanics; Contact problems; Thermal problems; Fluid±structure interaction; Welding Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Finite elements in the analysis of pressure vessels and piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1. Linear and nonlinear, static and dynamic, stress and de¯ection analyses (STR) . . . . . . . . . . . . . . . . . . . . . . . 2.2. Stability problems (STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3. Thermal problems (THE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4. Fracture mechanics problems (FRA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5. Contact problems (CON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6. Fluid±structure interaction problems (FLU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7. Manufacturing of pipes and tubes (MAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8. Welded pipes and pressure vessel components (WEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9. Development of special ®nite elements for pressure vessels and pipes (ELE) . . . . . . . . . . . . . . . . . . . . . . . . 2.10. Finite element software (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11. Other topics (OTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A. A bibliography (1998±2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1. Linear and nonlinear, static and dynamic, stress and de¯ection analyses (STR) . . . . . . . . . . . . . . . . . . . . . . . A.2. Stability problems (STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3. Thermal problems (THE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4. Fracture mechanics problems (FRA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.5. Contact problems (CON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.6. Fluid±structure interaction problems (FLU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.7. Manufacturing of pipes and tubes (MAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * Tel.: 146-13-28-1111; fax: 146-13-28-2717. E-mail address: [email protected] (J. Mackerle). 0308-0161/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved. PII: S 0308-016 1(01) 00128-4 1 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 9 10 11 19 21 21 2 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 A.8. Welded pipes and pressure vessel components (WEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.9. Development of special ®nite elements for pressure vessels and pipes (ELE) . . . . . . . . . . . . . . . . . . . . . . . . A.10. Finite element software (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.11. Other topics (OTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Introduction Pressure vessels and piping are widely used in reactor technology, the chemical industry, marine and space engineering. They often operate under extremes of high and low temperatures and high pressures, are becoming highly sophisticated and therefore also need advanced methods for their analyses. Advances are also made with materials applied for their fabrication. Concrete and composite materials are used in pressure vessels and their components more frequently to replace, in some cases, conventional steels. During the last three decades considerable advances have been made in the applications of numerical techniques to analyze pressure vessels and piping problems. Among the numerical procedures, ®nite element methods are the most frequently used. Pressure vessel and piping analyses may have a variety of phases such as: elastic stress and deformation analysis where both mechanical and thermal loads may be applied; heat transfer analysis; dynamic analysis; plastic and creep analysis; etc. There is in existence a large number of general purpose and special purpose ®nite element programs available to cope with each phase of the analysis. This review on the subject is divided into the following parts and it concerns: ² linear and nonlinear, static and dynamic, stress and de¯ection analyses (STR); ² stability problems (STA); ² thermal problems (THE); ² fracture mechanics problems (FRA); ² contact problems (CON); ² ¯uid±structure interaction problems (FLU); ² manufacturing of pipes and tubes (MAN); ² welded pipes and pressure vessel components (WEL); ² development of special ®nite elements for pressure vessels and pipes (ELE); ² ®nite element software (SOF); ² other topics (OTH). The status of ®nite element literature published between 1976 and 2001, and divided into the categories described earlier, is illustrated in Fig. 1. Data presented in this ®gure include published technical papers in the primary literature; this means papers appearing in the various general and specialized journals, conference proceedings as well as theses and dissertations. If we take the number of published 22 24 24 24 26 papers as a measure of research activity in these various subjects, we can see the priority trend in research in the past. This paper is organized into two parts. In the ®rst, each subject listed above is brie¯y described by keywords where current trends in application of ®nite element techniques are mentioned. The second part, Appendix A, is a listing of references on papers published in the open literature for the period 1998±2001, retrieved from the author's database MAKEBASE [1,2]. Readers interested in the ®nite element literature in general are referred to Ref. [3] or to the author's Internet Finite Element Book Bibliography (http://www.solid.ikp.liu.se/fe/index.html). The presented bibliography is an addendum to the author's earlier bibliographies [4,5] where approximately 1900 and 630 references, respectively, have been listed. 2. Finite elements in the analysis of pressure vessels and piping 2.1. Linear and nonlinear, static and dynamic, stress and de¯ection analyses (STR) The main topics included deal with the static and dynamic ®nite element analyses of pressure vessels, their components and piping, namely: stress and deformation analysis; 2D and 3D linear elastic static and dynamic analysis; material and geometrical nonlinear static and dynamic analysis; shakedown analysis; stress concentration factor studies; local stresses and deformations; free vibration analysis; response to shock loading; cyclic loading; seismic response analysis; random excitation; vibro-impact dynamics; estimation of residual stresses; study of mechanical properties; creep relaxation; whipping analysis; constraint effects; prestressing effects; boundary conditions identi®cation; stiffness properties identi®cation; structural integrity. Applications to: pipes; tubes; pipelines; pressure vessels; Fig. 1. Finite elements and various topics in pressure vessels and piping (1976±2001). J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 reactor pressure vessels; curved pipes; cantilevered pipes; dented pipelines; multi-supported pipelines; saddlesupported pipelines and pressure vessels; sling-supported pressure vessels; pressure vessel heads; pressure vessel components; ¯anges; piping elbows; pipe bends; nozzles; bellows; perforated tubesheets; framed-tube systems; vertical pumps; conical reducers; burst discs; PWR cores; boilers; corroded pipes; submarine pipelines; pipeline crossings; in¯atable tubes; coaxial ¯exible tubes; tubes with coating; shell intersections. Materials under consideration: steels; stainless steels; aluminium; composites; polymers; ®lament wound composites; ®bre-reinforced composites; concrete-®lled steel tubes. 2.2. Stability problems (STA) Stability problems are the main subject of this section. Other topics included are: stability and instability; buckling; postbuckling; local buckling; lateral buckling; torsional buckling; lateral thermal buckling; high-temperature buckling; buckle propagation; collapse; plastic collapse. Applications to: pipes; tubes; pipelines; pressure vessels; ellipsoids and toroids; corroded pipes; braced tubes; elbows; liners; bellows; cone±cylinder intersections; buckle arrestors. Materials: steels; low-alloy steels. 2.3. Thermal problems (THE) Heat transfer problems and thermomechanical ®nite element analyses are the main subjects of this section. The following topics are included: heat transfer analysisÐ natural convection, forced convection, mixed convection, radiation, turbulent problems; thermomechanical 2D and 3D analysis; thermoviscoplastic analysis; thermal deformation analysis; thermal shock; thermal ratchetting; transient and residual thermal stresses. Applications to: pipes; tubes; pressure vessels; reactor pressure vessels; PWR vessels; tube bundles; tubesheets; ®ns; pipe-cooling systems; liquid metal target container; boiler drums. Materials: steels; zircaloy; composites; glass reinforced plastics. 2.4. Fracture mechanics problems (FRA) In this section fracture mechanics and fatigue problems are handled. The listing of references in Section A.4 includes: linear and nonlinear 2D and 3D static and dynamic fracture mechanics problems; mechanical and thermal loading; macromechanical and micromechanical studies; cracks; multiple cracks; crack growth; crack opening; crack path bifurcation; crack arrest; crack shape development; circumferential cracks; longitudinal cracks; transverse cracks; axial cracks; surface cracks; through-wall cracks; part-through cracks; tight cracks; ductile fracture; brittle fracture; residual strength; ultimate strength; fracture 3 toughness; fatigue studies; thermal fatigue; multi-axial fatigue; damage; local damage; damage identi®cation; creep-damage analysis; creep failure; failure behaviour; cleavage failure; damage tolerance; creep crack growth; ¯aws; ¯aw detection; cladding effects; leak-before-break; load bearing capacity; limit load analysis; wave scattering; ring test; squash test; wide-plate test; failure probability; stochastic analysis; autofrettage; parametric studies. Applications to: pipes; tubes; pipelines; pressure vessels; reactor pressure vessels; bellows; elbows; nozzles; pump casing; threaded pressure vessels; pressure vessel closures; ring joint groove; tube-gusset plate connections; adhesively bonded connections; reinforced branch connections; ¯ange joints; welded pipes; pipe couplers; pipe piers; crushed tubes; corroded pipes; shell intersections; concrete containments. Materials: steels; stainless steels; low-alloy steels; aluminium; zircaloy; zirconium; concrete; composites; ®brereinforced composites; polymers; PVC; graphite±epoxy; refractory; functionally graded materials. 2.5. Contact problems (CON) 2D and 3D ®nite element studies of static and dynamic contact problems dealing with pipes and pressure vessels are included in this section. Other subjects under consideration are: mechanical behaviour of joints; structures under impact loading; blast loading effects; stress concentration factors; expansion and residual contact pressure. Applications to: pipes; tubes; pressure vessels; reactor pressure vessels; tube-to-tubesheet joints; reinforced nozzle connections; gasket seal rings; cylindrical shell connections; casing-tubing connections; threaded connections; bolted joints; bonded connections; adhesive butt joints; pipe ¯ange connections; press ®t joining; piping branch junctions; multi-connected systems. Materials: steels; stainless steels; aluminium; composites. 2.6. Fluid±structure interaction problems (FLU) The main topics include: coupled ¯uid±structure response analyses; pipe/tube conveying ¯uids; cross-¯owinduced vibrations; modal analysis and damping; active modal control; dynamic analysis of ¯uid-®lled pipes; ¯uid±structure interaction under cavitation; large displacement ¯uid±structure interaction; Stokes ¯ow problems; internal unsteady ¯ow; gas±solid ¯ow; instability analysis. Applications to: pipes; tubes; pressure vessels; tube bundles; submerged perforated tubes; cylindrical shells. Materials: steels; composites; elastomers; ¯uids; hot liquid sodium; high temperature ¯uids. 2.7. Manufacturing of pipes and tubes (MAN) The ®nite element simulation of manufacturing processes is the subject of this section. The main topics listed are: material characteristics and formability; spring-back analysis; drawing; bulge forming; hot extrusion process; isostatic 4 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 pressing; hydro-bulge forming; roll bending; rolling; extruding±bulging process; cold upsetting±extruding; dieless forming; hydroforming; backward tube spinning; local induction heating; pressure ®ltrating process; hydraulic bulge testing. Applications to manufacturing of: pipes; tubes; pressure vessels and closures; non-circular tubes; tube ¯anges; pipe bends; toroidal shells; elbows. Materials: steels; stainless steels; metals; copper; tungsten; composites; silicon carbide; ferromagnetic materials. 2.8. Welded pipes and pressure vessel components (WEL) The subjects in the simulation of welding processes included here are: 2D and 3D thermomechanical analysis; heat transfer analysis; shrinkage analysis; assessment of creep behaviour; residual stresses; effect of welding conditions on residual stresses; measurement of residual stresses; burn-through prediction; effects of repair; friction welding; seam welds; butt welds; multi-pass butt welds; multi-pass girth welds; circular patch welds; spiral weld cladding; bimetallic welds; wet repair welding. Welding of: pipes; tubes; pressure vessels; reactor pressure vessels; pipe-to-pipe; nozzles on spheres; pipe±¯ange. Materials: steels; stainless steels; austenitic steels; bimetallic materials. 2.9. Development of special ®nite elements for pressure vessels and pipes (ELE) In this section, references dealing with development as well as applications of special ®nite elements used for analyses of pressure vessels and piping systems are given. The element types included are: experiences with various types of elements; 3D special shell element; axisymmetric thin shell element; axisymmetric hybrid-stress±displacement element; enhanced pipe elbow element; interface beam element. 2.10. Finite element software (SOF) At present, thousands of ®nite element software packages exist and new programs are under development. The existing software can vary from large, sophisticated, general purpose, integrated systems to small, special purpose programs for PCs. Most of these programs have been mentioned and described in Ref. [4]. In Section A.10 some new references dealing with development/applications of FE software are listed. They are concerned with: code developments for pressure vessels and piping, code evaluations, users' experiences, etc. 2.11. Other topics (OTH) In this section, subjects not treated earlier are included. They deal with: static and dynamic geomechanical analyses of pressure vessels and pipes in 2D and 3D; buried structures; soil±structure interaction; seismic studies; inspection and maintenance; nondestructive testingÐeddy current, neutron diffraction; health monitoring; design sensitivity analysis; structural integrity assessment; pipeline bundles on seabed; reliability analysis; optimization problems. Applications to: crossbores; high-curvature well bores; steam generator tubes; evacuation pipes; offshore pipelines; pile-supported buried pipelines; metal beverage containers; pressure vessels with embedded sensors. Materials: steels; composites; braided composites; ®lament wound composites. Acknowledgements The bibliography presented in Appendix A is by no means complete, but it gives a comprehensive representation of different ®nite element applications on the subject. The author wishes to apologize for the unintentional exclusions of missing references and would appreciate receiving comments and pointers to other relevant literature for a future update. Appendix A. A bibliography (1998±2001) This bibliography provides a list of literature references on ®nite element analysis of pressure vessel structures/ components and pipes/tubes. The listings presented contain papers published in scienti®c journals and conference proceedings retrospectively to 1998. References have been retrieved from the author's database, MAKEBASE. They are grouped into the same sections described in the ®rst part of this paper, and are sorted alphabetically according to the ®rst author's name. In some cases, if a speci®c paper is relevant to several subject categories, the same reference is listed under the respective section headings. A.1. Linear and nonlinear, static and dynamic, stress and de¯ection analyses (STR) 1. STR Abdel-Hamid AN, Farahat WA. Evaluation of stresses in piping systems subjected to unspeci®ed random excitation. 17th Int Modal Anal Conf. Kissimmee: IMAC, 1999. p. 463±9. 2. STR Abdel-Haq M, et al. Constraint effects on energy absorption in unidirectional PMC tubes. J Compos Mater 1999;33(9):774±93. 3. STR Abhary K, et al. Exact analytical method for stress analysis of pipelines. Int J Press Vess Piping 1999; 76(8):561±5. 4. STR Afshari P, Widera GEO. Free vibration analysis of composite plates. J Press Vess Technol, ASME 2000; 122(3):390±8. 5. STR Al-Hassani STS, Vartdal B. Investigation into the effect of circumferential through-wall slits on a cantilevered pipe subjected to a transverse end load. Proc Inst Mech Engng, Part E 1998;212(3):163±70. 6. STR Alexander CR. Analysis of dented pipelines J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. considering constrained and unconstrained dent con®gurations. 1999 ASME Energy Sources Technology Conference, Houston. New York: ASME, 1999. p. 1±13. STR Alleyne DN, et al. The re¯ection of guided waves from circumferential notches in pipes. J Appl Mech, ASME 1998;65(3):635±41. STR Averbuch D, et al. Implementation of elastoplastic material laws in dynamic riser analysis with applications to reeled pipes. 9th International Offshore Polar Engineering Conference, ISOPE, vol. 2. 1999. p. 272±7. STR Babu S, Iyer PK. Inelastic analysis of components using a modulus adjustment scheme. J Press Vess Technol, ASME 1998;120(1):1±5. STR Babu S, Iyer PK. A robust method for inelastic analysis of components made of anisotropic material. J Press Vess Technol, ASME 1999;121(2):154±9. STR Badr EA, et al. An analytical procedure for estimating residual stresses in blocks containing crossbores. Int J Press Vess Piping 2000;77(12):737±49. STR Baniotopoulos CC, Preftitsi F. In¯uence of the design parameters on the stress state of saddlesupported pipelines: an arti®cial neural network approach. Int J Press Vess Piping 1999;76(7):401±9. STR Beltman WM, et al. The structural response of cylindrical shells to internal shock loading. J Press Vess Technol, ASME 1999;121(3):315±22. STR Betten J, Krieger J. Bestimmung des Aushartungsein¯usses bei FVK-Bauteilen mittels FEA. ZAMM 1999;79(S3):855±6. STR Binienda WK, Wang Y. Residual stress reduction in ®lament wound composite tubes. J Reinf Plast Compos 1999;18(8):684±701. STR Blachut J, Jaiswal OR. On the choice of initial geometric imperfections in externally pressurized shells. J Press Vess Technol, ASME 1999;121(1):71±6. STR Burdekin FM, Lidbury DPG. Views of TAGSI on the current position with regard to bene®ts of warm prestressing. Int J Press Vess Piping 1999;76(13):885± 90. STR Carter P. Stress analysis and design for cyclic loading. J Press Vess Technol, ASME 2000;122(4); 427±30. STR Chan WS, Demirhan KC. A simple closed-form solution of bending stiffness for laminated composite tubes. J Reinf Plast Compos 2000;19(4):278±91. STR Chawla DS, et al. Assessment of operability and structural integrity of a vertical pump for extreme loads. Int J Press Vess Piping 1998;75(4):297±306. STR Cohn MJ, Yee RK. Creep relaxation behavior of high energy piping. ASME/JSME Joint Pressure Vessel Piping Conference PVP 380, New York: ASME, 1998. p. 135±50. STR Cunha J, Piranda J. Identi®cation of stiffness pro- 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 5 perties of composite tubes from dynamic tests. Exp Mech 2000;40(2):211±8. STR Da Dilveira JLL, et al. Shakedown and limit analysis in a pressure vessel. Fourth World Cong Comput Mech, Buenos Aires, 1998. p. 198. STR Datta TK. Seismic response of buried pipelines: a state-of-the-art review. Nucl Engng Des 1999; 192(2/3):271±84. STR Desikan V, Sethuraman R. Analysis of material nonlinear problems using pseudo-elastic ®nite element method. J Press Vess Technol, ASME 2000;122(4):457±61. STR El-Abbasi N, et al. Three-dimensional ®nite element analysis of saddle supported pressure vessels. Int J Mech Sci 2001;43(5):1229±42. STR Filippov SB, et al. Free vibrations of square elastic tubes with a free end. Mech Res Commun 2000; 27(4):457±64. STR Franco JRQ, Barros FB. Advances in ®nite element modelling of plastic behaviour of pressure vessels. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 185. STR Frikha S, et al. Boundary condition identi®cation using condensation and inversionÐapplication to operating piping network. J Sound Vib 2000;233(3):495±514. STR Fyrileiv O, et al. Free span assessment of the Zeepipe IIA pipeline. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±8. STR Goncalves JPM, De Castro PMST. Application of the line spring model to some complex geometries, and comparison with three-dimensional results. Int J Press Vess Piping 1999;76(8):551±60. STR Hajjar JF, et al. Distributed plasticity model for concrete-®lled steel tube beam-columns with interlayer slip. Engng Struct 1998;20(8):663±76. STR Halldorsson B. On modeling of earthquake wave motion and its effects on multi-support pipelines. Acta Polytech Scand, Civ Engng Build Cons 1999;(115):1± 29. STR Hamilton R, et al. A simple upper-bound method for calculating approximate shakedown loads. J Press Vess Technol, ASME 1998;120(2):195±9. STR Hari Y, Williams DK. Analysis of transition radii in conical reducers. ASME/JSME Joint Press Vess Piping Conf PVP 360. New York: ASME, 1998. p. 335±42. STR Hauch S, Bai Y. Bending moment capacity of groove corroded pipes. 10th Int Offshore Polar Engng Conf, Seattle. 2000. p. 253±62. STR Hersh CL, Herakovich CT. Local effects in stiffened composite tubes under generalized plane deformation. J Compos Mater 1999;33(5):420±42. STR Hsieh CS, et al. Investigation of ¯anges subjected to operating conditions of pressure, temperature and bending moments. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 245±57. 6 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 39. STR Hsu PW. Stresses in a uniformly paralelepiped solid with a pressurized cylindrical cavity. 42nd Str, Str Dyn Mater Conf, Seattle. 2001. p. 2947±50. 40. STR Hu G, et al. Mechanical behaviour of ®lamentwound glass-®bre/epoxy-resin tubes. III. Macromechanical model of the macroscopic behaviour of tubular structures. Compos Sci Technol 1998;58(1): 19±29. 41. STR Hyer MW, Riddick JC. Internal pressure loading of segmented-stiffness composite cylinders. Compos Struct 1999;45(4):311±20. 42. STR Jacquelin E, et al. Modelling the behaviour of a PWR core by a homogenization technique. Comp Meth Appl Mech Engng 1999;155(1/2):1±13. 43. STR Jones DP, Holliday JE. Elastic±plastic analysis of the PVRC burst disk tests with comparison to the ASME code primary stress limits. J Press Vess Technol, ASME 2000;122(2):146±51. 44. STR Jones DP, et al. Application of equivalent elastic methods in three-dimensional ®nite element structural analysis. J Press Vess Technol, ASME 1999;121(3): 283±90. 45. STR Kabir MZ. Computer analysis of ®lament overwrapped metallic pressure vessels with an optimum head shape. 6th Int Conf Comput Meth Compos Mater, Montreal. Southampton: CMP, 1998. p. 483±92. 46. STR Kabir MZ. Finite element analysis of composite pressure vessels with a load sharing metallic liner. Compos Struct 2000;49(3):247±55. 47. STR Kalliontzis C. Non-linear ®nite element simulations of highly curved submarine pipelines. Commun Numer Meth Engng 1998;14(11):1067±88. 48. STR Kalliontzis C. Geometric nonlinear modelling of submarine pipeline crossings. Int J Offshore Polar Engng 1998;8(4):292±302. 49. STR Kardaras C, Lu G. Finite element analysis of thin walled tubes under point loads subjected to large plastic deformation. Key Engng Mater 2000;177±180: 733±8. 50. STR Knudsen J, Massih AR. Vibro-impact dynamics of a periodically forced beam. J Press Vess Technol, ASME 2000;122(2):210±21. 51. STR Koerner JP, Hiller W. Elastic±plastic ®nite element analysis of high pressure components in low density polyethylene plants. ASME/JSME Joint Press Vess Piping Conf PVP 371. New York: ASME, 1998. p. 17±22. 52. STR Koh BK, Park GJ. Analysis and optimization of bellows with general shape. J Press Vess Technol, ASME 1998;120(4):325±33. 53. STR Konno K, et al. Study on mechanical property of prestressed concrete encased by double steel tubes subjected to axial forces. Proc Jpn Soc Civil Engng 1999;613(V):1±18. 54. STR Kosasayama H, et al. New stress analysis procedure for piping with refractory lining. ASME/JSME Joint 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 201±10. STR Kristiansen NO, et al. Structural modelling of multispan pipe con®gurations subjected to vortex induced vibrations. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 127±33. STR Kumar R, Saleem MA. Bend angle effect on B2 and C2 stress indices for piping elbows. J Press Vess Technol, ASME 2001;123(2):226±31. STR Kussmaul K, Mayinger W. Numerical and experimental analyses of the behaviour of a nozzle with thermal sleeve under strati®ed ¯ow. Nuclear Engng Des 1999; 190(1/2):127±40. STR Lengsfeld M, et al. Spring rates for low type tank nozzles. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 275±80. STR Lengsfeld M, et al. Alternate method to determine ®xed tube sheet thickness. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 41±6. STR Liang CC, et al. Study of the nonlinear responses of a submersible pressure hull. Int J Press Vess Piping 1998;75(2):131±49. STR Liang CC, et al. Curvature effect on stress concentrations around circular hole in opened shallow cylindrical shell under external pressure. Int J Press Vess Piping 1998;75(10):749±63. STR Lidbury DPG, et al. Key features arising from structural analysis of the NESC-1 PTS benchmark experiment. Int J Press Vess Piping 2001;78(2/3):225±36. STR Lin CY, Chan WS. Stiffness evaluation of elliptical laminated composite tube under bending. 42nd Str, Str Dyn Mater Conf, Seattle. 2001. p. 1175±80. STR Liu J, Hirano T. Design and analysis of FRP pressure vessels with load-carrying metallic liners. ASME/ JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 95±101. STR Lo YL, et al. Pressure vessel wall thinning detection using multiple pairs of ®ber Bragg gratings for unbalanced strain measurements. J Nondestr Eval 2000;19(3):105±13. STR Loktionov VD, et al. Numerical investigation of the reactor pressure vessel behaviour under severe accident conditions taking into account the combined processes. Nuclear Engng Des 1999;191(1):31±52. STR Madureira L, Melo FQ. A hybrid formulation in the stress analysis of curved pipes. Engng Comput 2000; 17(8):970±80. STR Maher A, Hamada AA. On the modelling of tubes with composite coat. IMAC-XIX, Kissimmee, FL. 2001. p. 782±9. STR Mamalis AG, et al. The bending of ®bre-reinforced composite thin-walled tubular components: numerical modelling. Int J Crashworth 2000;5(2): 193±205. STR Masu LM. Numerical analysis of cylinders con- J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. taining circular offset cross-bores. Int J Press Vess Piping 1998;75(3):191±6. STR Matzen VC, Yu L. Elbow stress indices using ®nite element analysis. Nucl Engng Des 1998;181 (1/3):257±65. STR McGrath TJ. Replacing E prime with the constrained modulus in ¯exible pipe design. Proc Pipe Div Conf Pipelines Constr Env, San Diego. New York: ASCE, 1998. p. 28±40. STR Miki C, et al. Study on seismic resistance of steel pipe pier made of two different sections. Proc Jpn Soc Civil Engng 1998;605(I-45):117±27. STR Mirza S, et al. Fiber-reinforced composite cylindrical vessel with lugs. Compos Struct 2001;53(2):143± 51. STR Mohamed AI, et al. Applications of iterative elastic techniques for elastic±plastic analysis of pressure vessels. J Press Vess Technol, ASME 1999;121(1): 24±9. STR Mohan R, et al. A study of effects of pipe geometry on FAD curves for austenitic stainless steel and ferritic steel piping materials. J Press Vess Technol, ASME 1998;120(1):86±92. STR Mourad HM, Younan MYA. The effect of modeling parameters on the predicted limit loads for pipe bends subjected to out-of-plane moment loading and internal pressure. J Press Vess Technol, ASME 2000; 122(4):450±6. STR Mourad HM, Younan MYA. Nonlinear analysis of pipe bends subjected to out-of-plane moment loading and internal pressure. J Press Vess Technol, ASME 2001;123(2):253±8. STR Moussa WA, Abdel Hamid AN. On the evaluation of dynamic stresses in pipelines using limited vibration measurements and FEA in the frequency domain. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 705±10. STR Moussa WA, Abdel Hamid AN. On the evaluation of dynamics stresses in pipelines using limited vibration measurements and FEA in the time domain. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 29±34. STR Moussa WA, Abdel Hamid AN. On the evaluation of dynamic stresses in pipelines using limited vibration measurements and FEA in the time domain. J Press Vess Technol, ASME 1999;121(1):37±41. STR Moussa WA, Abdel Hamid AN. On the evaluation of dynamic stresses in pipelines using limited vibration measurements and FEA in the frequency domain. J Press Vess Technol, ASME 1999;121(3): 241±5. STR Mullarkey TP, et al. Assessment of alternative approaches for the representation of torque and twist in pipeline and riser analysis. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 37±41. STR Muller C, Bohmann A. Numerical simulation of 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 7 mechanical effects in composite structures by the ®nite element method. J Press Vess Technol, ASME 2001;123(2):248±52. STR Nadarajah C, Foo LT. Finite element study of keyed backing ring design for ¯oating head. Int J Press Vess Piping 1998;75(6):521±6. STR Nash DH, et al. A parametric study of metal-tometal full face taper-hub ¯anges. Int J Press Vess Piping 2000;77(13):791±7. STR Nash DH, et al. Finite element modelling of slingsupported pressure vessels. Thin-Wall Struct 1998; 30(1/4):95±110. STR Pantelelis NG, Kanarachos AE. FEM stress analysis and design of a PVC reinforced pipe. 56th Ann Tech Conf, ANTEC, Atlanta. 1998. p. 3517±21. STR Porter MA, Martens DH. Stress evaluation of a typical vessel nozzle using PVRC 3D stress criteria: guidelines for application. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 297±301. STR Preiss R. On the shakedown analysis of nozzles using elasto-plastic FEA. Int J Press Vess Piping 1999; 76(7):421±34. STR Price NM, et al. Vibrations of cylindrical pipes and open shells. J Sound Vib 1998;218(3):361±87. STR Ramos A, et al. Delayed coke drum assessment using ®eld measurements and FEA. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 231±7. STR Ramos R, et al. Comparative analysis between analytical and FE-based models for ¯exible pipes subjected to axisymmetric loads. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 80±8. STR Reid SR, Kim TH. Softening effects in the bending of tubular structures and components. Key Engng Mater 2000;177±180:679±90. STR Reid SR, Yang JL. Non-linear dynamic analysis of cantilever whipping pipes. Proc Inst Mech Engng, Part E 1998;212(3):133±49. STR Roberts KA, Pick RJ. Correction for longitudinal stress in the assessment of corroded line pipe. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 553±61. STR Ross CTF, Etheridge J. The vibration and instability of tube-stiffened axisymmetric shells under external hydrostatic pressure. Adv Civil Str Engng Comput Pract. Edinburgh: Civil-Comp, 1998. p. 335±42. STR Sakamoto H, et al. De¯ection of multi-cellular in¯atable tubes for redundant space structures. 42nd Str, Str Dyn Mater Conf, Seattle. 2001. p. 3204±11. STR Sanal Z. Geometrically and physically nonlinear analysis of pressure vessels. Stahlbau 1998;67(6): 478±82. STR Sanal Z. Nonlinear analysis of pressure vessels: some examples. Int J Press Vess Piping 2000; 77(12): 705±9. 8 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 101. STR Sarma GB, et al. Modeling studies to predict stresses in composite ¯oor tubes of black liquor recovery boilers. J Engng Mater Technol, ASME 2001;123(3):349±54. 102. STR Sattari-Far I, Dahlberg L. Sensitivity study of the pretest analysis of the NESC-1 spinning cylinder experiment. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 59±66. 103. STR Schneider SP. Flexural capacity of pressurized steel pipe. J Struct Engng, ASCE 1998;124(3):330± 40. 104. STR Schneider SP. Axially loaded concrete-®lled steel tubes. J Struct Engng, ASCE 1998;124(10):1125±38. 105. STR Seay PA, Plaut RH. Three-dimensional behavior of geosynthetic tubes. Thin-Wall Struct 1998; 32(4): 263±74. 106. STR Seibi AC, Al-Shabibi AM. Pipe bending and running forces in medium to high-curvature wells using FE analysis. J Energy Resource Technol, ASME 1998;120(4):263±7. 107. STR Seshadri R, Babu S. Extended GLOSS method for determining inelastic effects in mechanical components and structures: isotropic materials. J Press Vess Technol, ASME 2000;122(4):413±20. 108. STR Shalaby MA, Younan MYA. Nonlinear analysis and plastic deformation of pipe elbows subjected to in-plane bending. Int J Press Vess Piping 1998; 75(8):603±11. 109. STR Shalaby MA, Younan MYA. Effect of internal pressure on elastic±plastic behavior of pipe elbows under in-plane bending moments. J Press Vess Technol, ASME 1999;121(4):400±5. 110. STR Shen ZY, et al. Synthetic discrete method for analyzing the elastoplastic seismic response of tall steel framed-tube systems. Adv Struct Engng 1998; 1(3):177±83. 111. STR Sherry AH, et al. Application of local approach to predict the outcome of the NESC experiment. ASME/ JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 75±84. 112. STR Sherry AH, et al. Developments in local approach methodology with application to the analysis reanalysis of the NESC-1 PTS benchmark experiment. Int J Press Vess Piping 2001;78(2/3):237±49. 113. STR Shoji Y, Nagata S. On the modeling of pressure vessel shell portion affecting local deformation at nozzles and other structural discontinuities. ASME/ JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 47±53. 114. STR Shu D, et al. Investigation of pressure in pipe subjected to axial-symmetric pulse loading. Int J Impact Engng 2001;25(6):523±36. 115. STR Sinha JK, et al. Parameter identi®cation technique for detection of spacer locations in an assembly of two coaxial ¯exible tubes. Nuclear Engng Des 2000; 196(2):139±51. 116. STR Skopinsky VN. Stress analysis of shell intersections with torus transition under internal pressure loading. J Press Vess Technol, ASME 1998; 119(3): 288±92. 117. STR Skopinsky VN. Stresses in ellipsoidal pressure vessel heads with noncentral nozzle. Nuclear Engng Des 2000;198(3):317±23. 118. STR Skopinsky VN. Stress concentration in cone± cylinder intersection. Int J Press Vess Piping 2001; 78(1):35±41. 119. STR Takahashi H, et al. Multiple-slip work-hardening model in crystals with application to torsion±tension behaviors of aluminium tubes. Int J Plasticity 1998; 14(6):489±509. 120. STR Taljat B, et al. Mechanical design of steel tubing for use in black liquor recovery boilers. Int Symp Corros Pulp Paper Ind. Ottawa: CPPA, 1998. p. 193±7. 121. STR Taware A, Brown RH. Dynamic linear ®nite element model for pressure prediction in a gas pipeline. 38th IEEE Conf Decision Contr. Piscataway: IEEE, 1999. p. 3248±52. 122. STR Touboul F, et al. Experimental, analytical, and regulatory evaluation of seismic behavior of piping systems. J Press Vess Technol, ASME 1999; 121(4): 388±92. 123. STR Tripa VM, et al. On the transfer-matrix method (TMM) for the cylindrical vessels with an intermediate edge under uniformly distributed pressure. ASME/ JSME Joint Press Vess Piping Conf PVP 375. New York: ASME, 1998. p. 63±8. 124. STR Truong KT. Improved FCCU refractory-lined piping design. Hydrocarbon Process 1998;77(7):1±4. 125. STR Tsukimori K. Theoretical modeling of creep behavior of bellows and some applications. J Press Vess Technol, ASME 2001;123(2):179±90. 126. STR Ukadgaonker VG, Kale PA. Finite element stress analysis of tubesheets perforated by circular holes in square pitch pattern. J Press Vess Technol, ASME 1998;120(1):12±6. 127. STR Varga L. Design of pressure vessels taking plastic reserve into account. Int J Press Vess Piping 1998; 75(4):331±41. 128. STR Vitali L, et al. Hotpipe project: capacity of pipes subject to internal pressure, axial force and bending moment. 9th Int Offshore Polar Engng Conf. ISOPE, vol. 2. 1999. p. 22±3. 129. STR Vrbka J, et al. On stress and strain computational modelling at compound vessel. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 204. 130. STR Wada H, Oguchi N. Interaction between double dressed zones on the outer surface of a pressure vessel. ASME/JSME Joint Press Vess Piping Conf PVP 375. New York: ASME, 1998. p. 55±61. 131. STR Williams DK. Finite element analysis of composite pressure vessels in a microwave environment. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 79±85. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 132. STR Xu JJ, et al. Local pressure stresses on lateral pipe-nozzle with various angles of intersection. Nucl Engng Des 2000;199(3):335±40. 133. STR Xue M, et al. Analytical solution for cylindrical thin shells with normally intersecting nozzles due to external moments on the ends of shells. Sci China Ser A 1999;42(3):293±304. 134. STR Xue MD, et al. Stress analysis of cylindrical shells with nozzles due to external run pipe moments. J Strain Anal Engng Des 2000;35(3):159±70. 135. STR Yee RK, Cohn MJ. Creep relaxation behavior of high-energy piping. J Press Vess Technol, ASME 2000;122(4):488±93. 136. STR Yokoyama T. Finite element computation of torsional plastic waves in a thin-walled tube. Arch Appl Mech 2001;71(6/7):359±70. 137. STR Yoshizaki K, et al. Large deformation behavior of pipe bends subjected to in-plane bending. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 733±40. 138. STR Yu L, Matzen VC. B2 stress index for elbow analysis. Nuclear Engng Des 1999;192(2/3):261± 70. 139. STR Yu TX, et al. Dynamic behavior of double cantilever beams subjected to impact. Int J Press Vess Piping 2001;78(1):49±57. 140. STR Zouain N, Silveira JL. Bounds to shakedown loads. Int J Solids Struct 2001;38(10):2249±66. A.2. Stability problems (STA) 1. STA Assanelli AP, et al. Analysis of the collapse of steel tubes under external pressure. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 172. 2. STA Assanelli AP, et al. Experimental/numerical analysis of the collapse behavior of steel pipes. Engng Comput 2000;17(4):459±86. 3. STA Bai Y, Hauch S. Analytical collapse capacity of corroded pipes. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 182±8. 4. STA Bai Y, Song R. Reliability-based limit-state design and re-quali®cation of pipelines. 17th Int Conf Offshore Mech Arctic Eng. Lisbon: OMAE, 1998. p. 1±8. 5. STA Bai Y, et al. Local buckling and plastic collapse of corroded pipes with yield anisotropy. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2, 1999. p. 74±81. 6. STA Bastard AH. New buckle arrestor for reeled pipein-pipe. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 205±11. 7. STA Blachut J, Jaiswal OR. Buckling of imperfect ellipsoids and closed toroids subjected to external pressure. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 121±8. 8. STA Chattopadhyay J, et al. Closed-form collapse 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 9 moment equations of elbows under combined internal pressure and in-plane bending moment. J Press Vess Technol, ASME 2000;122(4):431±6. STA El-Sawy K, Moore ID. Stability of loosely ®tted liners used to rehabilitate rigid pipes. J Struct Engng, ASCE 1998;124(11):1350±7. STA Frederiksen PS, et al. Controlled lateral buckling of submarine pipelines in snaked con®guration. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±10. STA Gresnigt AM, Steenbergen, HMGM. Plastic deformation and local buckling of pipelines loaded by bending and torsion. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 143±52. STA Gresnigt AM, et al. Collapse of UOE manufactured steel pipes. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 170±81. STA Hoo Fatt MS, et al. Steady-state buckle propagation in corroded pipelines. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 197±204. STA Koundy V, Thiebaut C. High-temperature buckling analysis of titanium cans under external pressure. J Press Vess Technol, ASME 1999;121(4):364±8. STA Koundy V, et al. Effects of torsional buckling on the cleavage failure of low-alloy steel tension pipe specimens. J Press Vess Technol, ASME 1998; 120(3):256±61. STA Kyriakides S, Netto TA. On the dynamics of propagating buckles in pipelines. Int J Solids Struct 2000;37(46/47):6843±67. STA Li JZ, et al. Finite element analysis for buckling of pressure vessels with ellipsoidal head. Int J Press Vess Piping 1998;75(2):115±20. STA Magnucki K, Szyc W. Stability problems of pressure vessel ellipsoidal heads. Arch Budowy Maszyn 1999;46(1):43±55. STA Mikkelsen LP, Tvergaard V. A nonlocal twodimensional analysis of instabilities in tubes under internal pressure. J Mech Phys Solids 1999; 47(4): 953±69. STA Miles DJ, Calladine CR. Lateral thermal buckling of pipelines on the sea bed. J Appl Mech, ASME 1999;66(4):891±7. STA Mou Y, et al. Plastic instability in pressure vessels and their role in design. ASME/JSME Joint Press Vess Piping Conf PVP 370. New York: ASME, 1998. p. 135±41. STA Netto TA, Kyriakides S. Dynamic performance of integral buckle arrestors for offshore pipelines. Part II. Analysis. Int J Mech Sci 2000;42(7):1425±52. STA Palmer-Jones R, Turner TE. Pipeline buckling, corrosion and low cycle fatigue. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±8. STA Payten W, Law M. Estimating the plastic collapse of pressure vessels using plasticity contours. Int J Press Vess Piping 1998;75(7):529±36. 10 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 25. STA Razakamiadana A, Zidi M. Buckling and postbuckling of concentric cylindrical tubes under external pressure. Mech Res Commun 1999;26(3):353±62. 26. STA Skoczen B. Effect of shear deformation and relaxation of support conditions on elastic buckling of pressurized expansion bellows. J Press Vess Technol, ASME 1999;121(2):127±32. 27. STA Spinazze M, et al. Hotpipe project: use of analytical models/formulas in prediction of lateral buckling and interacting buckles. 9th Int Offshore Polar Engng Conf. ISOPE, vol. 2. 1999. p. 9±21. 28. STA Sriskandarajah T, et al. Effect of initial imperfections on the lateral buckling of subsea pipelines. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p. 168±75. 29. STA Teng JG, Ma HW. Elastic buckling of ringstiffened cone±cylinder intersections under internal pressure. Int J Mech Sci 1999;41(11):1357±83. 30. STA Teng JG, Zhao Y. On the buckling failure of a pressure vessel with a conical end. Engng Failure Anal 2000;7(4):261±80. 31. STA Wang A. Stresses and stability for the cone± cylinder shells with toroidal transition. Int J Press Vess Piping 1998;75(1):49±56. 32. STA Wu L, Carney JF. Experimental analyses of collapse behaviors of braced elliptical tubes under lateral compression. Int J Mech Sci 1998;40(8):761±77. 33. STA Xu B, et al. Practical computation of the plastic collapse limit of defective pipelines under complex loadings. Key Engng Mater 2000;177±180:691±702. 34. STA Yan AM, et al. Practical estimation of the plastic collapse limit of curved pipes subjected to complex loading. Struct Engng Mech 1999;8(4):421±38. A.3. Thermal problems (THE) 1. THE Amin MR. Conjugate forced convection heat transfer in tubes with obstruction. J Thermophys Heat Transf 1998;12(1):114±6. 2. THE Aswendt P, et al. Thermal deformation behaviour of CFRP pipes: veri®cation of ®nite element simulation by interferometric measurements. Materialpruefung/ Mater Test 1999;41(7):314±9. 3. THE Bass BR, et al. Overview of the international comparative assessment study of pressurized thermal shock in reactor pressure vessels (RPV PTS ICAS). Int J Press Vess Piping 2001;78(2/3):197±211. 4. THE Cannarozzi AA, et al. A hybrid ¯ux axisymmetric model for thermal analysis. Comput Struct 2001; 79(12):1187±201. 5. THE Chellapandi P, et al. Theoretical and experimental investigations of thermal ratchetting in PFBR main vessel. Trans Indian Inst Met 2000;53(3):391±9. 6. THE Diaz V, et al. Simpli®ed thermo-visco-plastic model for PWR vessel behaviour during a severe 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. accident. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 91±8. THE Fabbri G. Optimum pro®les for asymmetrical longitudinal ®ns in cylindrical ducts. Int J Heat Mass Transf 1999;42(3):511±23. THE Gowda YTK, et al. Finite element analysis of mixed convection over in-line tube bundles. Int J Heat Mass Transf 1998;41(11):1613±9. THE Guijt W. Design considerations of high-temperature pipelines. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p. 683±9. THE Han LH. Fire performance of concrete ®lled steel tubular beam-columns. J Constr Steel Res 2001; 57(6):697±711. THE Holstein D, et al. Simulation and experiment on the thermal deformation of composite tubes. Proc SPIE 1998;3479:264±73. THE Igari T, et al. Mechanism-based evaluation of thermal ratchetting due to travelling temperature distribution. J Press Vess Technol, ASME 2000; 122(2):130±8. THE Keim E, et al. Life management of reactor pressure vessels under pressurized thermal shock loading: deterministic procedure and application to western type of reactor. Int J Press Vess Piping 2001;78(2/3):85±98. THE Kim JK, et al. Thermal analysis of hydration heat in concrete structures with pipe-cooling system. Comput Struct 2001;79(2):163±71. THE Kim JS, Jin TE. Structural integrity assessment of the reactor pressure vessel under the external reactor vessel cooling condition. Nucl Engng Des 1999; 191(2):117±33. THE Konka WT. Natural convection heat transfer around horizontal tube in vertical slot. Int J Heat Mass Transf 2000;43(3):447±55. THE Kostylev VI, Margolin BZ. Determination of residual stress and strain ®elds caused by cladding and tempering of reactor pressure vessels. Int J Press Vess Piping 2000;77(12):723±35. THE Li LJ, et al. Turbulent heat transfer to near-critical water in a heated curved pipe under the conditions of mixed convection. 1998 ASME Int Mech Engng Cong Expo HTD 361-1. New York: ASME, 1998. p. 101±8. THE Lin CL, et al. Thermal performance of embedded heat pipe composite sandwich panels. 1999 Str, Str Dyn Mater Conf Exhib, St Louis, AIAA, 1999. p. 1125±34. THE Lin CX, Ebadian MA. Combined laminar forced convection and thermal radiation in a curved pipe. 7th Joint Thermophys Heat Trans Conf, Albuquerque, AIAA. 1998. p. 73±80. THE Looyeh MRE. Thermomechanical modelling of glass reinforced plastic pipes. 10th Int Offshore Polar Engng Conf, Seattle, vol. 4. 2000. p. 83±9. THE Mehta RC, et al. Thermal stress analysis of a solid rocket motor nozzle throat insert using FEM. Ind J Engng Mater Sci 1998;5(5):271±7. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 23. THE Mensah PF, et al. Thermal stress analysis of heat activated coupling of composite-to-composite pipe. 1999 ASME Energy Sources Tech Conf, Houston. New York: ASME, 1999. p. 1±9. 24. THE Miles DJ, Calladine CR. Lateral thermal buckling of pipelines on the sea bed. J Appl Mech, ASME 1999;66(4):891±7. 25. THE Miroshnik R, et al. Probabilistic life assessment of chest valve under thermal stresses. Int J Press Vess Piping 1998;75(1):1±5. 26. THE Moinereau D, et al. Methodology for the pressurized thermal shock evaluation: recent improvements in French RPV PTS assessment. Int J Press Vess Piping 2001;78(2/3):69±83. 27. THE Mukhopadhyay NK, et al. Deterministic assessment of reactor pressure vessel integrity under pressurised thermal shock. Int J Press Vess Piping 1998;75(15):1055±64. 28. THE Ni L, Bauer GS. Dynamic stress of a liquid metal target container under pulsed heating. J Press Vess Technol, ASME 1998;120(4):359±64. 29. THE Ong LS, et al. Parametric equations for maximum stresses in cylindrical vessels subjected to thermal expansion loading. Int J Press Vess Piping 1998; 75(3):255±62. 30. THE Perl M, Greenberg Y. Three-dimensional analysis of thermal shock effect on inner semi-elliptical surface cracks in a cylindrical pressure vessel. Int J Fracture 1999;99(3):161±70. 31. THE Reinhardt W, et al. Design and analysis of a tubesheet for extreme transient thermal loading. ASME/ JSME Joint Press Vess Piping Conf PVP 370. New York: ASME, 1998. p. 143±50. 32. THE Reinhardt W, et al. Analysis of a tubesheet undergoing rapid transient thermal loading. J Press Vess Technol, ASME 2000;122(4):476±81. 33. THE Reinhardt WD. Yield criteria for the elastic± plastic design of tubesheets with triangular penetration patterns. ASME/JSME Joint Press Vess Piping Conf PVP 370. New York: ASME, 1998. p. 113±9. 34. THE Reinhardt WD. Yield criteria for the elastic± plastic design of tubesheet with triangular penetration pattern. J Press Vess Technol, ASME 2001; 123(1): 118±23. 35. THE Schaf¯er I, et al. Thermomechanical behavior and modeling between 350 Degree C and 400 C of Zircaloy4 cladding tubes from an unirradiated state to high ¯uence. J Engng Mater Technol, ASME 2000; 122(2):168±76. 36. THE Sen S, et al. Transient and residual thermal stresses in quenched cylindrical bodies. Int J Mech Sci 2001; 42(10):2013±29. 37. THE Schimpfke T, et al. Simulation of the structuremechanical behaviour of a PWR coolant loop under extreme loads. Nucl Engng Des 1999;190(1/2):117±26. 38. THE Seibi AC, Amateau MF. Finite element modelling 11 and optimization for controlling the residual thermal stresses of laminated composite tubes. Compos Struct 1998;41(2):151±7. 39. THE Taler J, et al. Analysis of thermal stresses in a boiler drum during start-up. J Press Vess Technol, ASME 1999;121(1):84±93. 40. THE Tsai SF, Sheu TWH. Some physical insights into a two-row ®nned-tube heat transfer. Comput Fluids 1998;27(1):29±46. 41. THE Tzou DY, et al. Thermomechanical fracture on pressurized cylindrical vessels. Proc SPIE 1998;3343: 608±17. A.4. Fracture mechanics problems (FRA) 1. FRA Abah L, Limam A. Upon the effects of cutouts on the behaviour of axially crushed tubes. ASME/JSME Joint Press Vess Piping Conf PVP 361. New York: ASME, 1998. p. 187±94. 2. FRA Andersen A, et al. Protection against high-energy line breaks in WWER power plants. Nucl Engng Des 2001;206(2/3):119±28. 3. FRA Andrade-Lima E, Bruno AC. Improving the detection of ¯aws in steel pipes using SQUID planar gradiometers. IEEE Trans Appl Supercond 2001; 11(1):1299±302. 4. FRA Arsene S, Bai J. New approach to measuring transverse properties of structural tubing by a ring testÐexperimental investigation. J Test Eval 1998; 26(1):26±30. 5. FRA Bai H, et al. Scattering of guided waves by circumferential cracks in steel pipes. J Appl Mech, ASME 2001;68(4):619±31. 6. FRA Bass BR, et al. An investigation of cladding effects on shallow-¯aw fracture toughness of reactor pressure vessel steel under prototypic biaxial loading. J Press Vess Technol, ASME 1999;121(3):257±68. 7. FRA Becht C. Fatigue of bellows, a new design approach. Int J Press Vess Piping 2000;77(13):843± 50. 8. FRA Bhandari S, et al. Mechanical behaviour of RPV materials in case of complete core melt. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 167±74. 9. FRA Bhandari S, et al. Creep-damage analysis: comparison between coupled and uncoupled models. J Press Vess Technol, ASME 2000;122(4):408±12. 10. FRA Bhuyan GS, et al. Prediction of failure behavior of a welded pressure vessel containing ¯aws during a hydrogen-charged burst test. J Press Vess Technol, ASME 1999;121(3):246±51. 11. FRA Bouchard PJ, et al. J-integral and local damage fracture analyses for a pump casing containing large weld repairs. Int J Press Vess Piping 2001;78(4):295± 305. 12 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 12. FRA Bouyne E, et al. Mechanical and microstructural investigations into the crack arrest behaviour of a modern 2 1/4 Cr±1 Mo pressure vessel steel. Fatigue Fract Engng Mater Struct 2001;24(2):105±16. 13. FRA Brickstad B, Sattari-Far I. Crack shape developments for LBB applications. Engng Fract Mech 2000; 67(6):625±46. 14. FRA Brighenti R. Surface cracks in shells under different hoop stress distributions. Int J Press Vess Piping 2000; 77(9):503±9. 15. FRA Brighenti R. Axially-cracked pipes under pulsating internal pressure. Int J Fatigue 2000;22(7):559±67. 16. FRA Brighenti R. External longitudinal ¯aws in pipes under complex loading. J Press Vess Technol, ASME 2001;123(1):139±45. 17. FRA Brocca M, Bazant ZP. Evaluation of tube-squash test of concrete at very large strains using microplane ®nite element analysis. 5th US Nat Cong Comput Mech, Boulder. 1999. p. 320. 18. FRA Brown RG, et al. Fitness for service evaluation of ring joint groove cracking. J Press Vess Technol, ASME 2000;122(1):72±5. 19. FRA Burande S, Sethuraman R. Computational simulation of fatigue crack growth and demonstration of leak before break criterion. Int J Press Vess Piping 1999;76(5):331±8. 20. FRA Cai W, et al. Nonlinear analysis on residual strength of corroded pipeline. J Univ Petrol China 1999;23(1): 66±8. 21. FRA Carpinteri A, Brighenti R. Circumferential surface ¯aws in pipes under cyclic axial loading. Engng Fract Mech 1998;60(4):383±96. 22. FRA Carpinteri A, Brighenti R. A three-parameter model for fatigue behaviour of circumferential surface ¯aws in pipes. Int J Mech Sci 2000;42(7):1255±69. 23. FRA Carpinteri A, et al. Part-through cracks in pipes under cyclic bending. Nucl Engng Des 1998;185(1): 1±10. 24. FRA Carpinteri A, et al. External longitudinal partthrough ¯aw in an internally pressurized pipe. Fatigue '99, Higher Educat Press China, 1999. p. 2397±402. 25. FRA Carpinteri A, et al. Fatigue behavior of cracked pipes under rotary bending. Fatigue '99, Higher Educat Press China, 1999. p. 2431±35. 26. FRA Carpinteri A, et al. Fatigue growth simulation of part-through ¯aws in thick-walled pipes under rotary bending. Int J Fatigue 2000;22(1):1±9. 27. FRA Casey GA, et al. Stress intensity factors for circumferential cracks in pressure vessel door closures. Int J Press Vess Piping 1999;76(1):1±12. 28. FRA Cavak M, et al. Initial bending fatigue of PVC pipe joints. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 409±36. 29. FRA Chamis CC, Minnetyan L. Defect/damage tolerance of pressurized ®ber composite shells. Compos Struct 2001;51(2):159±68. 30. FRA Chang YS, et al. A parametric study on the fracture mechanics analysis of elbow with surface crack. Key Engng Mater 2000;183±187:505±10. 31. FRA Chapuliot S, et al. Stress intensity factors for internal circumferential cracks in tubes over a wide range of radius over thickness ratios. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 95±106. 32. FRA Chattopadhyay J, et al. Leak-before-break quali®cation of primary heat transport piping of 500 MWE Tarapur atomic power plant. Int J Press Vess Piping 1999;76(4):221±43. 33. FRA Chen HF, Shu D. Simpli®ed limit analysis of pipelines with multi-defects. Engng Struct 2001; 23(2):207±13. 34. FRA Chen HF, Shu DW. Lower and upper bound limit analyses for pipeline with multi-slots of various con®gurations. Int J Press Vess Piping 2000;77(1):17±25. 35. FRA Chen HF, Shu DW. The effects of the distance between two defects on the load-carrying capacity of a pressure vessel. J Press Vess Technol, ASME 2000; 122(2):198±203. 36. FRA Chen HF, Shu DW. The load carrying capacity of the pressure vessel with two defects along axial direction. Key Engng Mater 2000;177±180:757±62. 37. FRA Chen HF, Shu DW. Numerical method for lower bound limit analysis of 3-D structures with multi-loading systems. Int J Press Vess Piping 1999;76(2):105± 12. 38. FRA Chiesa M, et al. Ef®cient fracture assessment of pipelines. A constraint-corrected SENT specimen approach. Engng Fract Mech 2001;68(5):527±47. 39. FRA Choi JB, et al. Effect of cladding on stress intensity factors in the pressure vessel. ASME/JSME Joint Press Vess Piping Conf PVP 374. New York: ASME, 1998. p. 29±33. 40. FRA Choi SN, et al. Effect of cladding on the stress intensity factors in the reactor pressure vessel. Nucl Engng Des 2000;199(1/2):101±11. 41. FRA Chung M, et al. 3-D analysis and validation of a crack in a pressurized pipe under creep conditions using submodelling techniques. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 561. 42. FRA Cowan AL, et al. Crack path bifurcation at a tear strap in a pressured shell. 41st Str, Str Dyn Mater Conf Exhib, AIAA, 2000. p. 1090±101. 43. FRA Cui X, et al. Analysis on the elastic load bearing capacity of tubes inside slips. J Univ Petrol China 1999;23(1):62±5. 44. FRA Das J, Sivakumar SM. An evaluation of multiaxial fatigue life assessment methods for engineering components. Int J Press Vess Piping 1999;76(10):741± 6. 45. FRA Dhar S, et al. A continuum damage mechanics model for ductile fracture. Int J Press Vess Piping 2000;77(6):335±44. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 46. FRA Dinovitzer AS, et al. Strain-based failure criteria for sharp part-wall defects in pipelines. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 255±61. 47. FRA Dixon RD, Perez EH. Effects of cross-bores on the limit load of high pressure cylindrical vessels. ASME/JSME Joint Press Vess Piping Conf PVP 371. New York: ASME, 1998. p. 119±23. 48. FRA Eisinger FL, Francis JT. Acoustically induced structural fatigue of piping systems. J Press Vess Technol, ASME 1999;121(4):438±43. 49. FRA Endicott JS, Leventry SC. Ultimate strength of reduced girth seams on cylindrical vessels. ASME/ JSME Joint Press Vess Piping Conf PVP 360. New York: ASME, 1998. p. 361±9. 50. FRA Estrada H, Parsons ID. Strength and leakage ®nite element analysis of a GFRP ¯ange joint. Int J Press Vess Piping 1999;76(8):543±50. 51. FRA Feng H, et al. Finite element modelling of lowtemperature autofrettage of thick-walled tubes of the austenitic stainless steel AISI 304 L. Part I. Model Simul Mater Sci Engng 1998;6(1):51±69. 52. FRA Feng H, et al. Finite element modelling of lowtemperature autofrettage of thick-walled tubes of the austenitic stainless steel AISI 304 L. Part II. Model Simul Mater Sci Engng 1998;6(1):71±85. 53. FRA Folias ES, Perry LJ. Failure of a threaded pressurized vessel. Int J Press Vess Piping 1999;76(10):685±92. 54. FRA Foxen J, Rahman S. Elastic±plastic analysis of small cracks in tubes under internal pressure and bending. Nucl Engng Des 2000;197(1):75±87. 55. FRA Goldthorpe MR, Wiesner CS. Micromechanical prediction of fracture toughness for pressure vessel steel using a coupled model. ASTM Spec Publ 1999;1332:341±63. 56. FRA Goncalves R, Casanova EL. Stress intensi®cation factors for encirclement sleeve reinforced branch connections. ASME/JSME Joint Press Vess Piping Conf PVP 360. New York: ASME, 1998. p. 477±82. 57. FRA Gong JM, et al. Damage assessment and maintenance strategy of hydrogen reformer furnace tubes. Engng Failure Anal 1999;6(3):143±53. 58. FRA Grant RJ, Smart J. Crack growth in pin-loaded tubes. II. Comparison of experimental data with numerical results. J Strain Anal Engng Des 1999;34(4):271±84. 59. FRA Han J, Yamazaki K. A study on maximization of dynamic crushing energy absorption of square tubes with and without stiffener. JSME Int J, A 2000;43(2):138±45. 60. FRA Han LH, et al. Limit moment of local wall thinning in pipe under bending. Int J Press Vess Piping 1999; 76(8):539±42. 61. FRA Harris DO, Woytowitz PJ. Fully plastic J-integrals for through-wall axial cracks in pipes. ASTM Spec Publ 1999;1332:215±32. 13 62. FRA Hassan T, Liu Z. On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests. Int J Press Vess Piping 2001;78(1):19±30. 63. FRA Hassan T, et al. Improved ratchetting analysis of piping components. Int J Press Vess Piping 1998; 75(8):643±52. 64. FRA Hayhurst DR, Perrin IJ. Continuum damage mechanics analyses of Type IV creep failure in ferritic steel crossweld specimens. Int J Press Vess Piping 1999;76(9):599±617. 65. FRA Hong SJ, et al. A study on crushing characteristics of thick-walled aluminum tubes under axial loading. Int J Crashworth 1998;3(3):225±36. 66. FRA Hoogkamer D, et al. Damage tolerance of cracked cylindrical shells under internal pressure. 42nd Str, Str Dyn Mater Conf, Seattle. 2001. p. 2265±76. 67. FRA Hornet P, Comparison of experimental results, FE calculations and analytical approach on the fracture behavior of circumferential through wall cracked pipes. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 163±8. 68. FRA Hornet P, Eripret C. Fracture behaviour of circumferential through wall cracked welded pipes in four point bending. Engng Fract Mech 1999; 64(4):459±72. 69. FRA Hornet P, et al. Failure probability calculation of an axisymmetrically cracked pipe under pressure and tension using a ®nite element code. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 3±7. 70. FRA Hou YC, et al. Fracture analysis of welded pipes with consideration of residual stresses. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 433±7. 71. FRA Hsieh MF, et al. Nozzles in the knuckle region of a torispherical head: limit load interaction under combined pressure and piping loads. Int J Press Vess Piping 2000;77(13):807±15. 72. FRA Hu HT, Liang JI. Ultimate analysis of BWR Mark III reinforced concrete containment subjected to internal pressure. Nucl Engng Des 2000;195(1):1± 11. 73. FRA Huang X, et al. Collapse strength analysis of casing design using ®nite element method. Int J Press Vess Piping 2000;77(7):359±67. 74. FRA Huh NS, et al. Prediction of piping failure behavior using wide-plate test. Key Engng Mater 2000;183±187:655±60. 75. FRA Huo L, et al. Effect of mismatching on J-integral for pipe-welded joints with circumferential throughwall crack. Int J Press Vess Piping 1999;76(12):857± 62. 76. FRA Huo L, et al. Reliability calculation for piping containing circumferential crack based on 14 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 3-D elastic±plastic SFEM. Key Engng Mater 2000;183±187:613±8. FRA Huo LX, et al. Effect of the mismatching of J-integral for pipe welded joint with circumferential surface crack. Key Engng Mater 2000;183± 187:1327±32. FRA Huysmans G, et al. Structural analysis of GRP pipe couplers by using a fracture mechanical approach. Compos, Part B 1998;29(4):477±87. FRA Hyde TH, et al. Assessment of the use of ®nite element creep steady state stresses for predicting the creep life of welded pipes. Adv FE Proced Technol. Edinburgh: Civil-Comp, 1998. p. 247±51. FRA Hyde TH, et al. Experimental and ®nite element investigations on the static collapse of a plane tubular framework structure. 9th Int Offshore Polar Engng Conf. 4. ISOPE. 1999. p. 63±70. FRA Hyde TH, et al. Prediction of creep failure life of internally pressurised thick walled CrMoV pipes. Int J Press Vess Piping 1999;76(14):925±33. FRA Hyde TH, et al. Failure prediction for multimaterial creep test specimens using a steady-state creep rupture test. Int J Mech Sci 2000;42(3):401±23. FRA Hyde TH, et al. Effect of weld angle and axial load on the creep failure behaviour of an internally pressurised thick walled CrMoV pipe weld. Int J Press Vess Piping 2001;78(5):365±72. FRA Jing JP, et al. A continuum damage mechanics model on low cycle fatigue life assessment of steam turbine rotor. Int J Press Vess Piping 2001;78(1):59± 64. FRA Jones DP, Holliday JE. Elastic±plastic analysis of the PVRC burst disk tests with comparison to the ASME code primary stress limits. J Press Vess Technol, ASME 2000;122(2):146±51. FRA Jones DP, et al. Elastic±plastic failure analysis of pressure burst tests of thin toroidal shells. J Press Vess Technol, ASME 1999;121(2):149±53. FRA Jun HK, et al. Plastic collapse solutions based on ®nite element analyses for axial surface cracks in pipelines under internal pressure. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 523±8. FRA Keeney JA, Williams PT. Fracture analysis of ductile crack growth in weld material from a fullthickness clad RPV shell segment. ASTM Spec Publ 1999; 1332:851±61. FRA Kim CH, et al. Welding residual stress analysis and fatigue crack growth characteristics of multi-pass welded pipe weldment. Key Engng Mater 2000;183± 187:1345±50. FRA Kim JH, Hwang IS. Elastic plastic fracture mechanics behavior of a part-through crack in nuclear piping. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 325±31. FRA Kim WB. Ultimate strength of tube-gusset plate 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. connections considering eccentricity. Engng Struct 2001;23(11):1418±26. FRA Kim YJ, et al. Development of modi®ed piping evaluation diagram for leak-before-break application to Korean next generation reactor. Nucl Engng Des 1999;191(2):135±45. FRA Kisioglu Y, et al. Determination of burst pressure and location of the DOT-39 refrigerant cylinders. J Press Vess Technol, ASME 2001;123(2):240±7. FRA Knox EM, et al. Fatigue performance of adhesively bonded connections in GRE pipes. Int J Fatigue 2000; 22(6):513±9. FRA Kobidze G, Lord W. Tight crack modeling for the ®nite element simulation of inspection tools in pipelines. Mater Eval 1998;56(10):1223±6. FRA Koh BH, et al. Crack stability evaluation of nuclear main steam pipe considering load reduction effect. Nucl Engng Des 2001;203(2/3):175±84. FRA Koh SK. Fatigue analysis of autofrettaged pressure vessels with radial holes. Int J Fatigue 2000;22(8):717±26. FRA Kosai M, et al. Axial crack propagation and arrest in a pressurized cylinder: an experimental±numerical analysis. Exp Mech 1999;39(4):256±64. FRA Koundy V, et al. Effects of torsional buckling on the cleavage failure of low-alloy steel tension pipe specimens. J Press Vess Technol, ASME 1998; 120(3):256±61. FRA Koyama K, et al. Low alloy steel piping test for fracture criteria of leak before break. Nucl Engng Des 1999;191(2):147±56. FRA Kriel CJ, Heyns PS. Damage identi®cation on piping systems using on-line monitoring of dynamic properties. 17th Int Modal Anal Conf. Kissimmee: IMAC, 1999. p. 482±8. FRA Kriel CJ, Heyns PS. Damage identi®cation on piping systems using on-line monitoring of dynamic properties. Shock Vib Dig 2000;32(1):45. FRA Kumar R. Fatigue life estimation for internal threads in Class 1 components. J Press Vess Technol, ASME 1998;120(1):81±5. FRA Kuroda M, et al. In¯uence of precipitated hydride on the fracture behavior of zircaloy fuel cladding tube. J Nucl Sci Technol 2000;37(8):670±5. FRA Kwon O, et al. Effects of residual stress in creep crack growth analysis of cold bent tubes under internal pressure. Int J Press Vess Piping 2001;78(5):343±50. FRA Kwon O, et al. The development of a multiaxial stress rupture criterion for bolting steels using new and service aged materials. Int J Press Vess Piping 2000;77(2/3):91±7. FRA Labbe F, Donoso JR. An optimal ®nite element meshing for modeling large scale yielding around a defect in a nuclear pressure vessel. Int Conf Simul Tech Nuclear Power Plant, San Diego. 2000. p. 121±7. FRA Lam PS, Sindelar RL. Flaw stability in mild steel J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. tanks in the upper-shelf ductile range. Part II. J-integralbased fracture analysis. J Press Vess Technol, ASME 2000;122(2):169±73. FRA Lapsley C, Mackenzie D. Autofrettage of thick cylinders with radial cross bores. ASME/JSME Joint Press Vess Piping Conf PVP 371. New York: ASME, 1998. p. 71±5. FRA Law M, et al. Finite element analysis of creep using theta projection data. Int J Press Vess Piping 1998;75(5):437±42. FRA Le Delliou P, et al. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack. Nucl Engng Des 1999;193(3):273±82. FRA Lee H, Parks DM. Line-spring ®nite element for fully plastic crack growth. II. Surface cracked plates and pipes. Int J Solids Struct 1998;35(36):5139±58. FRA Lee HY, et al. Assessment of fatigue and fracture on a tee-junction of LMFBR piping under thermal striping phenomenon. J Korean Nucl Soc 1999; 31(3):267±75. FRA Lee HY, et al. Green's function approach for crack propagation problem subjected to high cycle thermal fatigue loading. Int J Press Vess Piping 1999; 76(8):487±94. FRA Lee JH, et al. Evaluation of plugging criteria on steam generator tubes and coalescence model of collinear axial through-wall cracks. J Korean Nucl Soc 2000;32(5):465±76. FRA Lee JH, et al. Determination of equivalent single crack based on coalescence criterion of collinear axial cracks. Nucl Engng Des 2001;205(1/2):1±11. FRA Lee S, et al. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes. Mater Des 1999;20(1):31±40. FRA Lee SM, et al. Leak before break criteria applied to main steam line. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 397±402. FRA Lei Y, et al. J estimation and defect assessment for combined residual stress and mechanical loading. Int J Press Vess Piping 2000;77(6):321±33. FRA Lei YP, et al. Effect of mechanical heterogeneity and limit load of a weld joint with longitudinal weld crack on the J-integral and failure assessment curve. Int J Press Vess Piping 1998; 75(8):625±32. FRA Leitch BW. Fracture analyses of an internally pressurized tube containing an axial through-wall crack. ASTM Spec Publ 1999;1332:830±50. FRA Leung AYT, Su RKL. Two-level ®nite element study of axisymmetric cracks. Int J Fracture 1998; 89(2):193±203. FRA Leung AYT, Su RKL. Eigenfunction expansion for penny-shaped and circumferential cracks. Int J Fracture 1998;89(3):205±22. FRA Levy C, et al. Three dimensional erosion geo- 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 15 metry effects on the stress intensity factors of an inner crack emanating from an erosion in an autofrettaged cylinder. ASME/JSME Joint Press Vess Piping Conf PVP 370. New York: ASME, 1998. p. 11±7. FRA Levy C, et al. Cracks emanating from an erosion in a pressurized autofrettaged thick-walled cylinder. Part I. Semi-circular and arc erosion. J Press Vess Technol, ASME 1998;120(4):349±53. FRA Li C, Zhou Z. Internally circumferentially cracked cylinder with functionally graded material properties. Int J Press Vess Piping 1998;75(6):499± 507. FRA Lin XB, Smith RA. Fatigue growth prediction of internal surface cracks in pressure vessels. J Press Vess Technol, ASME 1998;120(1):17±23. FRA Lin XB, Smith RA. Direct simulation of fatigue crack growth for arbitrary-shaped defects in pressure vessels. Proc Inst Mech Engng, Part C 1999; 213(2):175±89. FRA Ling X, et al. Damage mechanics considerations for life extension of high-temperature components. J Press Vess Technol, ASME 2000;122(2):174±9. FRA Ling X, et al. Application of Runge±Kutta± Merson algorithm for creep damage analysis. Int J Press Vess Piping 2000;77(5):243±8. FRA Liu Y, et al. On the limit analysis of defective pipelines under complex loadings. Arch Mech 2000; 52(4/5):629±44. FRA Liu YH, et al. Plastic collapse analysis of defective pipelines under multi-loading systems. Int J Mech Sci 2000;42(8):1607±22. FRA Lowe MJS, et al. The mode conversion of a guided wave by a part-circumferential notch in a pipe. J Appl Mech, ASME 1998;65(3): 649±56. FRA Lu Tao, et al. Residual stress distributions and plastic zones in heterogeneous welded plates with a transverse crack. Int J Press Vess Piping 2000; 77(9):549±53. FRA Majumdar S. Prediction of structural integrity of steam generator tubes under severe accident conditions. Nucl Engng Des 1999;194(1):31±55. FRA Majumdar S. Failure and leakage through circumferential cracks in steam generator tubing during accident conditions. Int J Press Vess Piping 1999; 76(12):839±47. FRA Margolin BZ, Kostylev VI. Analysis of biaxial loading effect on fracture toughness of reactor pressure vessel steels. Int J Press Vess Piping 1998;75(8):589± 601. FRA Margolin BZ, Kostylev VI. Modeling for ductileto-brittle transition under ductile crack growth for reactor pressure vessel steels. Int J Press Vess Piping 1999;76(5):309±17. FRA Margolin BZ, Kostylev VI. Prediction of ductile±brittle transition for ductile crack growth in 16 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 reactor pressure vessel steels. Strength Mater 1999;31(6): 525±38. FRA Markiewicz E, et al. An inverse approach to determine the constitutive model parameters from axial crushing of thin-walled square tubes. Int J Impact Engng 1998;21(6):433±49. FRA Meier G, Strohmeier K. Determination of limit load by means of elastic±plastic ®nite element analysis as exempli®ed by a lateral nozzle subjected to cyclic load. Chem Engng Technol 1999;22(3):216±9. FRA Merah N. Notch-strengthening phenomenon under creep-fatigue loading conditions. J Press Vess Technol, ASME 2000;122(1):15±21. FRA Merah N, et al. Notch and temperature effects on crack propagation in SS 304 under LCF conditions. J Press Vess Technol, ASME 1999;121(1):42±8. FRA Michel B, Plancq D. Lower bound limit load of a circumferentially cracked pipe under combined mechanical loading. Nucl Engng Des 1998;185(1): 23±31. FRA Minami F, et al. Small-size specimen with hard zones near crack tip for fracture toughness evaluation of pressure vessel in service (Part II. Numerical discussion). ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 219±26. FRA Minnetyan L, Chamis CC. Damage tolerance of large shell structures. J Press Vess Technol, ASME 1999;121(2):188±95. FRA Miura N. Approximate evaluation method for ductile fracture analysis of circumferentially throughwall cracked pipe subjected to combined load. Nucl Engng Des 1999;191(2):177±94. FRA Miura N, Shimakawa T. Ductile fracture behavior of stainless steel cracked pipes at high temperature. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 231±9. FRA Miura N, Wilkowski GM. J±R curves from circumferentially through-wall-cracked pipe tests subjected to combined bending and tension. Part I. Theory and numerical simulation. J Press Vess Technol, ASME 1998;120(4):406±11. FRA Miura N, Wilkowski GM. J±R curves from circumferentially through-wall-cracked pipe tests subjected to combined bending and tension. Part II. Experimental and analytical values. J Press Vess Technol, ASME 1998;120(4):412±7. FRA Mohan R. Fracture analysis of surface-cracked pipes and elbows using the line-spring shell model. Engng Fract Mech 1998;59(4):425±38. FRA Mohan R, et al. J-estimation schemes for internal circumferential and axial surface cracks in pipe elbows. J Press Vess Technol, ASME 1998; 120(4):418±23. FRA Moinereau D, et al. NESC spinning cylinder thermal shock experiment. French contribution to the pre test fracture analysis evaluation. ASME/JSME 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 261±79. FRA Moinereau D, et al. Use of local approach to fracture in reactor pressure vessel structural integrity assessment: synthesis of a cooperative research program. ASTM Spec Publ 1999;1332:284±314. FRA Moreton DN, et al. Ratchetting of plain carbon steel pressurized cylinders subjected to simulated seismic bending: the effect of the D/T ratio. J Strain Anal Engng Des 1998;33(1):39±53. FRA Moussa WA, et al. Interaction of two parallel non-coplanar identical surface cracks under tension and bending. Int J Press Vess Piping 1999;76(3):135±45. FRA Moussa WA, et al. The interaction of two parallel semi-elliptical surface cracks under tension and bending. J Press Vess Technol, ASME 1999;121(3):323±6. FRA Mukhopadhyay NK, et al. Fracture assessment of reactor pressure vessels under pressurized thermal shock. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 67±73. FRA Mukhopadhyay NK, et al. On-line fatigue-creep monitoring system for high-temperature components of power plants. Int J Fatigue 2001;23(6):549±60. FRA Nguyen QH, et al. Steam tube defect characterization using eddy current Z-parameters. Res Nondestr Eval 1998;10(4):227±52. FRA Nishimura N, et al. Numerical simulation on damage to pipe piers in Hyogoken±Nanbu earthquake. Engng Struct 1998;20(4/6):291±9. FRA O'Donoghue PE, Zhuang Z. A ®nite element model for crack arrestor design in gas pipelines. Fatigue Fract Engng Mater Struct 1999;22(1):59±66. FRA O'Donoghue PE, et al. An integrated computational/experimental approach to assess rapid crack propagation in polyethylene gas pipe. Comput Model Simul Engng 1999;4(3):193±200. FRA Otegui JL, et al. Local collapse of gas pipelines under sleeve repairs. Int J Press Vess Piping 2000; 77(9):555±66. FRA Otubushin A. Detailed validation of a non-linear ®nite element code using dynamic axial crushing of a square tube. Int J Impact Engng 1998;21(5):349±68. FRA Pal B, Salpekar VY. Stress analysis of damaged submarine pipeline using ®nite element method. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. 153±9. FRA Palmer-Jones R, Turner TE. Pipeline buckling, corrosion and low cycle fatigue. 17th Int Conf Offshore Mech Arctic Engng, Lisbon: OMAE, 1998. p. 1±8. FRA Papin MH, et al. Comparisons of simpli®ed method Js and ®nite element for cracked pipes under thermal and mechanical loading. Nucl Engng Des 1999;190(1/2):3± 15. FRA Park HC, et al. Crush energy absorbing characteristics of graphite/epoxy square tubes. Key Engng Mater 2000;183±187:1099±104. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 170. FRA Park YK, et al. Creep crack growth in X20CrMoV 121 steel and its weld joint. J Press Vess Technol, ASME 2001;123(2):191±6. 171. FRA Pavankumar TV, et al. Numerical investigations of crack-tip constraint parameters in two-dimensional geometries. Int J Press Vess Piping 2000;77(6):345±55. 172. FRA Pengfei He, et al. The cracking of zirconia refractory tubes under hot shock. J Mater Sci 2000; 35(10):2443±9. 173. FRA Perl M, Greenberg Y. Three-dimensional analysis of thermal shock effect on inner semi-elliptical surface cracks in a cylindrical pressure vessel. Int J Fracture 1999;99(3):161±70. 174. FRA Perl M, Nachum A. Effect of autofrettage on 3-D internal radial surface cracks in a pressurized cylinder. ASME/JSME Joint Press Vess Piping Conf PVP 371. New York: ASME, 1998. p. 37±43. 175. FRA Perl M, Nachum A. 3-D stress intensity factors for internal cracks in an overstrained cylindrical pressure vessel. Part I. The effect of autofrettage level. J Press Vess Technol, ASME 2000;122(4):421±6. 176. FRA Perl M, et al. Cracks emanating from an erosion in a pressurized autofrettaged thick-walled cylinder. Part II. Erosion depth and ellipticity effects. J Press Vess Technol, ASME 1998;120(4):354±8. 177. FRA Perl M, et al. Three-dimensional analysis of a semielliptical crack emanating from an erosion at the bore of an autofrettaged pressurized cylinder. J Press Vess Technol, ASME 1999;121(2):209±15. 178. FRA Perrin IJ, et al. Approximate creep rupture lifetimes for butt welded ferritic steel pressurised pipes. Europ J Mech, A/Solids 2000;19(2):223±58. 179. FRA Pilch MM, et al. Creep failure of a reactor pressure vessel lower head under severe accident conditions. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 131±8. 180. FRA Plancq D, Berton MN. Limit analysis based on elastic compensation method of branch pipe tee connection under internal pressure and out-of-plane moment loading. Int J Press Vess Piping 1998; 75(11):819±25. 181. FRA Poquillon D, et al. Local approach applied to creep-fatigue crack initiation and crack growth in circumferentially notched 316L tubes under tension and cyclic thermal shock. Mater High Temper 1998; 15(3/4):277±83. 182. FRA Prat F, et al. Behavior and rupture of hydrided Zircaloy-4 tubes and sheets. Metall Mater Trans A 1998;29(6):1643±51. 183. FRA Rahman MK, et al. Stress concentration incorporated fatigue analysis of die-marked drill pipes. Int J Fatigue 1999;21(8):799±811. 184. FRA Rahman MK, et al. Survival assessment of diemarked drill pipes: integrated static and fatigue analysis. Engng Failure Anal 1999;6(5):277±99. 185. FRA Rahman S. Probabilistic elastic±plastic fracture analysis of circumferentially cracked pipes with ®nite- 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 17 length surface ¯aws. Nuclear Engng Des 2000; 195(3):239±60. FRA Rahman S, Kim JS. Probabilistic fracture mechanics for nonlinear structures. Int J Press Vess Piping 2001;78(4):261±9. FRA Rahman S, et al. Crack-opening area analyses for circumferential through-wall cracks in pipes. Part II. Model validations. Int J Press Vess Piping 1998; 75(5):375±96. FRA Rahman S, et al. Crack-opening area analyses for circumferential through-wall cracks in pipes. Part III. Off-center cracks, restraint of bending, thickness transition and weld residual stresses. Int J Press Vess Piping 1998;75(5):397±415. FRA Rahman S, et al. Probabilistic analysis of off-center cracks in cylindrical structures. Int J Press Vess Piping 2000;77(1):3±16. FRA Rasheed HA, Tassoulas JL. Delamination growth in long composite tubes under external pressure. Int J Fracture 2001;108(1):1±23. FRA Reid A, et al. Case studies in pipeline free span fatigue. 10th Int Offshore Polar Engng Conf, Seattle. 2000. p. 275±84. FRA Rivalin F, et al. Ductile tearing of pipeline-steel wide plates. I. Dynamic and quasi-static experiments. Engng Fract Mech 2001;68(3):329±45. FRA Rivalin F, et al. Ductile tearing of pipeline-steel wide plates. II. Modeling of in-plane crack propagation. Engng Fract Mech 2001;68(3):347±64. FRA Rose CA, et al. Nonlinear local bending response and bulging factors for longitudinal cracks in pressurized cylindrical shells. 1999 Str, Str Dyn Mater Conf Exhib, St Louis, AIAA, 1999. p. 1791±800. FRA Russo EP, Traynham Y. Stress intensi®cation factors for piping tees using ®nite element analyses. 10th Int Offshore Polar Engng Conf, Seattle, vol. 4. 2000. p. 41±4. FRA Samal MK, et al. A study on ductile fracture initiation in the PHT piping material of an Indian PHWR using local approach. Int J Press Vess Piping 1999;76(5):319±30. FRA Segall AE, et al. Localized autofrettage as a design tool for the fatigue improvement of cross-bored cylinders. J Press Vess Technol, ASME 1998; 120(4):393±7. FRA Sergeeva LV. Strength analysis of pipe tees in case of support displacement. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 171±5. FRA Sergeeva LV. Investigation of the strength of branch areas in the piping of nuclear power installations. Nucl Engng Des 2000;196(1):105±10. FRA Seshadri R, Mangalaramanan SP. Lower bound limit loads of cracked and notched components using reduced modulus methods. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 129±38. 18 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 201. FRA Seshadri R, Wu S. Robust estimation of inelastic fracture energy release rate (J): a design approach. J Press Vess Technol, ASME 2001;123(2):214±9. 202. FRA Shalaby MA, Younan MYA. Limit load for pipe elbows with internal pressure under in-plane closing bending moments. J Press Vess Technol, ASME 1998;120(1):35±42. 203. FRA Shalaby MA, Younan MYA. Limit loads for pipe elbows subjected to in-plane opening moments and internal pressure. ASME/JSME Joint Press Vess Piping Conf PVP 368. New York: ASME, 1998. p. 163±70. 204. FRA Shalaby MA, Younan MYA. Limit loads for pipe elbows subjected to in-plane opening moments and internal pressure. J Press Vess Technol, ASME 1999;121(1):17±23. 205. FRA Shen FZ, et al. Two methods for assessment of residual life of HK-40 furnace tubes. Acta Metall Sinica 1999:12(1):105±12. 206. FRA Shibata H. Seismic hazard and damagesÐ avoiding disaster through simulation, experiment and experience. J Press Vess Technol, ASME 1999; 121(1):30±6. 207. FRA Shim DJ, et al. Fracture behavior of a crack in gas pipeline considering constraint effects. Key Engng Mater 2000;183±187:869±74. 208. FRA Siegele D, et al. Failure assessment of RPV nozzle under loss of coolant accident. Nucl Engng Des 1999;193(3):265±72. 209. FRA Smith MC, et al. Comparison of different failure assessment methodologies applied to the NESC-1 test. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 281±7. 210. FRA Sriskandarajah T, et al. Finite element based fracture assessment of HP/HT subsea pipelines. 10th Int Offshore Polar Engng Conf, Seattle. 2000. p. 234±43. 211. FRA Steinbuch R. Comparison of critical through-wall crack lengths in welds between pieces of straight pipes to welds between straight pipes and bends. Nucl Engng Des 1999;193(3):297±308. 212. FRA Su B, Bhuyan GS. Elasto-plastic fracture properties of an all-aluminum gas cylinder with different cracks. Int J Press Vess Piping 1998;75(12):879±86. 213. FRA Su B, Bhuyan GS. Effect of composite wrapping on the fracture behavior of the steel-lined hoopwrapped cylinders. Int J Press Vess Piping 1998; 75(13):931±7. 214. FRA Su B, Bhuyan GS. Fracture analysis on the metallined hoop-wrapped cylinders with internal axial cracks. Int J Press Vess Piping 1998;75(15):1047±53. 215. FRA Su B, Bhuyan GS. Elastic fracture properties of all-steel gas cylinders with different axial crack types. Int J Press Vess Piping 1999;76(1):23±33. 216. FRA Su B, Bhuyan GS. Different fracture performance of all-steel and all-aluminum cylinders with axial cracks. Int J Press Vess Piping 1999;76(6):345±53. 217. FRA Su B, Bhuyan GS. Elastic stress and deformation analyses on an all-steel cylinder without defects and with axial cracks. Int J Press Vess Piping 1999;76(11):789±97. 218. FRA Su B, Bhuyan GS. Fracture analyses on the allmetal cylinders and the metal-lined hoop-wrapped cylinders with axial cracks. Int J Press Vess Piping 1999;76(10):677±84. 219. FRA Su B, Gouri S. Fracture behaviors of all-steel gas cylinder with different axial cracks. Int J Press Vess Piping 1999;76(4):245±50. 220. FRA Su B, Gouri S. Fracture behavior of the aluminum lined hoop-wrapped cylinders with internal axial cracks. Int J Press Vess Piping 1999;76(4):251±7. 221. FRA Su B, et al. Comparison between fracture parameters of an all-aluminum cylinder with cracks under different deformation conditions. Int J Press Vess Piping 2000;77(4):179±84. 222. FRA Sun W, et al. Prediction of creep failure life of internally pressurized thick walled CrMoV pipes. Int J Press Vess Piping 1999;76(14):925±33. 223. FRA Sun W, et al. Comparison of the creep and damage failure prediction of the new, service aged and repaired thick-walled circumferential CrMoV pipe welds. Int J Press Vess Piping 2000;77(7):389± 98. 224. FRA Sun XK, et al. Bursting problem of ®lament wound composite pressure vessels. Int J Press Vess Piping 1999;76(1):55±9. 225. FRA Tafreshi A. SIF evaluation and stress analysis of drillstring threaded joints. Int J Press Vess Piping 1999;76(2):91±103. 226. FRA Tanaka M, Yamamoto Y. 2D and 3D collapse evaluation of small radial and oblique nozzle to spherical shell intersections. ASME/JSME Joint Press Vess Piping Conf PVP 360. New York: ASME, 1998. p. 317±26. 227. FRA Tay TE, et al. Modeling the crushing behaviour of composite tubes. Key Engng Mater 1998;141±143: 777±90. 228. FRA Teng JG. Collapse strength of complex metal shell intersections by the effective area method. J Press Vess Technol, ASME 1998;120(3):217±22. 229. FRA Teng JG, Zhao Y. On the buckling failure of a pressure vessel with a conical end. Engng Failure Anal 2000;7(4):261±80. 230. FRA Tu ST, et al. Damage assessment and maintenance strategy of hydrogen reformer furnace tubes. Engng Failure Anal 1999;6(3):143±53. 231. FRA Tzeng JT. Dynamic fracture of composite overwrap cylinders. J Reinf Plast Compos 2000;19(1):2± 14. 232. FRA Tzou DY, et al. Thermomechanical fracture on pressurized cylindrical vessels. Proc SPIE 1998;3343: 608±17. 233. FRA Underwood JH, Glennon MJ. Stress and fatigue J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. life modeling of cannon breech closures including effects of material strength and residual stress. J Press Vess Technol, ASME 2001;123(1):150±4. FRA Walker AC, Tam CKW. Application of limitstate assessment to pipeline installation. Pipes Pipelines Int 1999;44(4):19±31. FRA Wang W, et al. New rupture prediction model for corroded pipelines under combined loadings. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 563±72. FRA Wang WQ, et al. The characteristics of J-integral under biaxial stressing. Int J Press Vess Piping 2000;77(4):159±65. FRA Wang Y, Pan J. Analysis of small edge cracks and its implications to multiaxial fatigue theories. J Press Vess Technol, ASME 2001;123(1):2±9. FRA Weiss E, et al. Fatigue behavior of oblique nozzles on cylindrical shells submitted to internal pressure and axial forces. Int J Press Vess Piping 1998; 75(6):473±81. FRA Weisz E, Rauth M. FEM-integrated concept for the detailed proof of fatigue strength of nozzle-tovessel connections. Int J Press Vess Piping 2000;77(5):215±25. FRA Wilkowski G, et al. Progress in development of acceptance criteria for local thinned areas in pipe and piping components. Nucl Engng Des 2000;195(2): 149±69. FRA Wilkowski GM, et al. Estimation of crack-driving force in surface-cracked elbows. J Press Vess Technol, ASME 2001;123(1):32±40. FRA Yahiaoui K, et al. Piping elbows with cracks. Part 1. A parametric study of the in¯uence of crack size on limit loads due to pressure and opening bending. J Strain Anal Engng Des 2000;35(1):35±46. FRA Yahiaoui K, et al. Piping elbows with cracks. Part 2. Global ®nite element and experimental plastic loads under opening bending. J Strain Anal Engng Des 2000;35(1):47±57. FRA Yahiaoui K, et al. Plastic loads of cracked forged piping branch junctions: experimental results and comparison with numerical data. Int J Press Vess Piping 2000;77(5):249±60. FRA Yahiaoui K, et al. Local ®nite element and experimental limit loads of cracked piping elbows under opening bending. Strain 2000;36(4):175±86. FRA Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes. Struct Optim 1998; 16(1):37±46. FRA Yamazaki K, Han J. Maximization of crushing energy absorption of tubes. 39th Str, Str Dyn Mater Conf Exhib, Long Beach. 1998. p. 2708±17. FRA Yan C, Mai YW. Effect of crack depth and specimen width on fracture toughness of a carbon steel in the ductile±brittle transition region. Int J Press Vess Piping 2000;77(6):313±9. 19 249. FRA Yokoyama A, Tateishi M. Numerical simulation technique for progressive crushing behavior of FRP tube under impact loading. Key Engng Mater 2000; 177±180:327±32. 250. FRA Yoneno M, et al. The strength of joints combining adhesives with bolts (case where adherends are pipe ¯anges of which the interfaces are bonded partially). JSME Int J, Ser A 1999;42(1):126±34. 251. FRA Zarrabi K, Modarres-Motlagh, A. Approximate and computationally ef®cient algorithm for computing reference stress for creep life assessment. Int J Press Vess Piping 1998;75(6):459±65. 252. FRA Zhao JP, et al. Applications of 2D elastoplastic stochastic ®nite element method in the ®eld of fracture mechanics. Int J Press Vess Piping 1998;75(4):281±6. 253. FRA Zheng AS. Improved model for collapse pressure of oval coiled tubing. SPE/ICoTA Coil Tubing Roundtab Conf, Houston, SPE. 1998. p. 35±41. 254. FRA Zheng AS. Improved model for collapse pressure of oval coiled tubing. SPE J 1999;4(1):57±63. 255. FRA Zhuang Z, Guo Y. Analysis of dynamic fracture mechanisms in gas pipelines. Engng Fract Mech 1999;64(3):271±89. 256. FRA Zhuang Z, O'Donoghue, PE. Determination of material fracture toughness by a computational/ experimental approach for rapid crack propagation in PE pipe. Int J Fracture 2000;101(3):251±68. 257. FRA Zhuang Z, O'Donoghue PE. The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines. Int J Fracture 2000; 101(3):269±90. 258. FRA Zhuang Z, et al. The bridging analysis of dynamic crack propogation in ®ber reinforced PE pipelines. Key Engng Mater 2000;183±187:1111±6. A.5. Contact problems (CON) 1. CON Allam M, et al. Estimation of residual stresses in hydraulically expanded tube-to-tubesheet joints. J Press Vess Technol, ASME 1998;120(2):129±37. 2. CON Allam M, et al. Effect of tube strain hardening level on the residual contact pressure and residual stresses of hydraulically expanded tube-to-tubesheet joint. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 447±55. 3. CON Burke RN, et al. On the mechanics of gasket seal rings in ¯exible pipe end ®ttings. 17th Int Conf Offshore Mech Arctic Engng, Lisbon: OMAE, 1998. p. 1±7. 4. CON Cernocky EP, et al. A standardized approach to ®nite element analysis of casing±tubing connections to establish relative sealing performance. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 1167. 5. CON Cheng B, Chung JS. Application of thrusts to elastic joints on long vertical pipe in 3D nonlinear 20 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 motions. Part II. Numerical examples by MSE and FEM results. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 189±98. CON Chung JS. 3-D responses of vertical pipe bottom pin-joined to a horizontal pipe to ship motion and thrust on pipe. Part II. Comparison of MSE and FEM results. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 1±7. CON Chung JS, Cheng B. MSE and FEM modeling of thrusts to elastic joints of long vertical pipe in 3-D nonlinear motions. Int J Offshore Polar Engng 1999;9(2):117±25. CON Chung JS, Cheng B. 3-D response of vertical pipe bottom pin-joined to a horizontal pipe to ship motion and thrust on pipe. Part I. MSE and FEM modeling. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p. 265±71. CON Coppola T, et al. Simulation of complex mechanical and thermal loading conditions on OCTG premium connections by means of ®nite element modelling. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 1168. CON Folias ES, Perry LJ. Failure of a threaded pressurized vessel. Int J Press Vess Piping 1999; 76(10):685±92. CON Fukuoka T, Takaki T. Mechanical behaviors of bolted joint in various clamping con®gurations. J Press Vess Technol, ASME 1998;120(3):226±31. CON Fukuoka T, Takaki T. Three-dimensional ®nite element analysis of pipe ¯angeÐeffects of ¯ange interface geometry. ASME/JSME Joint Press Vess Piping Conf PVP 367. New York: ASME, 1998. p. 125±31. CON Gunay D, Aydemir A. Stress analysis in adhesive butt joints of cylindrical pressure vessels. Math Comp Appl 1999;4(1):233±9. CON Harrigan JJ, et al. Inertia effects in impact energy absorbing materials and structures. Int J Impact Engng 1999;22(9/10):955±79. CON Hashim SA, et al. Integrity of bonded joints in large composite pipes. Int J Adhes Adhes 1998; 18(6):421±9. CON Huang FY, Shi GL. Finite element analysis of pressure vessel using beam on elastic foundation analysis. Finite Elem Anal Des 1998;28(4):293±302. CON Jing YY, Barton DC. The response of square crosssection tubes under lateral impact loading. Int J Crashworth 1998;3(4):359±77. CON Kalliontzis C. Numerical simulation of submarine pipelines in dynamic contact with a moving seabed. Earthquake Engng Struct Dynam 1998; 27(5):465±86. CON Knox EM, et al. Creep analysis of adhesively bonded connections in GRE pipes including the effect of defects. Composites, Part A 2000;31(6):583±90. CON Knox EM, et al. Design guidance and structural integrity of bonded connections in GRE pipes. Composites, Part A 2001;32(2):231±41. CON Kobayashi T. Finite element analysis of self- 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. sealing pipe ¯ange connections. ASME/JSME Joint Press Vess Piping Conf PVP 367. New York: ASME, 1998. p. 35±40. CON Lehnhoff TF, Bunyard BA. Bolt thread and head ®llet stress concentration factors. J Press Vess Technol, ASME 2000;122(2):180±5. CON Lehnhoff TF, Bunyard BA. Effects of bolt threads on the stiffness of bolted joints. J Press Vess Technol, ASME 2001;123(2):161±5. CON Leu DK. Finite element simulation of the lateral compression of aluminium tube between rigid plates. Int J Mech Sci 1999;41(6):621±38. CON Meniconi LCM, et al. Preliminary design of composite riser stress joints. Composites, Part A 2001;32(5):597±605. CON Millan C, et al. Finite element calculation of a press ®t joint between a composite materials tube and an aluminium cylinder. Appl Compos Mater 1999;6(6):369±80. CON Moffat DG, et al. Effective stress factor correlation equations for piping branch junctions under internal pressure loading. J Press Vess Technol, ASME 1999;121(2):121±6. CON Plancq D, Berton MN. Limit analysis based on elastic compensation method of branch pipe tee connection under internal pressure and out-of-plane moment loading. Int J Press Vess Piping 1998;75(11):819±25. CON Reddy GR, et al. Decoupling criteria for multiconnected equipment. J Press Vess Technol, ASME 1998;120(1):93±8. CON Sang ZF, et al. Effect of gap between pad and vessel for moment loading on nozzle. J Press Vess Technol, ASME 1999;121(2):225±31. CON Sawa T, et al. Stress analysis of stainless steel elbow and tee ®ttings under internal pressure. ASME/ JSME Joint Press Vess Piping Conf PVP 375. New York: ASME, 1998. p. 69±74. CON Shen WQ, Chen KS. An investigation on the impact performance of pipelines. Int J Crashworth 1998;3(2):191±209. CON Skopinsky VN. Comparative study of reinforced nozzle connections. Nucl Engng Des 1998;179(2): 175±9. CON Stevens RR, Rojas SP. Blast con®nement in pressure vessels. Proc SPIE 2000;4062:328±34. CON Strub C, et al. Analysis of slug impact against the reactor pressure vessel head interpretation of Berda Test 07 with the ®nite element code PLEXUS. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 19±26. CON Stubble®eld MA, et al. Heat-activated joining technology for composite to alloy piping systems. 56th Annu Tech Conf, ANTEC, Atlanta. 1998. p. 1095±8. CON Suzuki S, et al. Development of divertor plate with CFCs bonded onto DSCu cooling tube for fusion reactor application. J Nucl Mater 1998;258±263:318±22. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 38. CON Vilhelmsen T. Reference stress solutions of ¯at end to cylindrical shell connection and comparison with design stresses predicted by codes. Int J Press Vess Piping 2000;77(1):35±9. 39. CON Webb DC, et al. Finite element simulation of energy absorption devices under axial static compressive and impact loading. Int J Crashworth 2001;6(3):399±423. 40. CON Yoneno M, et al. The strength of joints combining adhesives with bolts (case where adherends are pipe ¯anges of which the interfaces are bonded partially). JSME Int J, Ser A 1999;42(1):126±34. 41. CON Yoshii Y, et al. Experimental study of bond of anchor pipe with ribs embedded in the caisson type foundation. Proc Jpn Soc Civil Engng 1998;606(V-4): 129±40. 42. CON Zeinoddini M, et al. Contribution of ring resistance in the behaviour of steel tubes subjected to a lateral impact. Int J Mech Sci 2000;42(12):2303±20. A.6. Fluid±structure interaction problems (FLU) 1. FLU Au-Yang M. Joint and cross acceptances for cross¯ow-induced vibration. Part I. Theoretical and ®nite element formulations. J Press Vess Technol, ASME 2000;122(3):349±54. 2. FLU Au-Yang MK. Joint and cross acceptances for cross¯ow-induced vibration. Part II. Charts and applications. J Press Vess Technol, ASME 2000; 122(3):355±61. 3. FLU Baba K, et al. A simple method for ¯uid±structure interaction analysis under cavitation condition. J Press Vess Technol, ASME 1998;120(1):29±34. 4. FLU Brochard D, et al. Fluid±structure interaction in tube bundles: analysis of tubes movements in opposite directions. ASME/JSME Joint Press Vess Piping Conf PVP 366. New York: ASME, 1998. p. 179±86. 5. FLU Hansson PA, Sandberg G. Dynamic ®nite element analysis of ¯uid-®lled pipes. Comp Meth Appl Mech Engng 2001;190(24):3111±20. 6. FLU Heil M. Stokes ¯ow in an elastic tubeÐa large displacement ¯uid±structure interaction problem. Int J Num Meth Fluids 1998;28(2):243±65. 7. FLU Jo JC, Shin WK. Fluidelastic instability analysis of operating nuclear steam generator U-tubes. Nucl Engng Des 1999;193(1/2):55±71. 8. FLU Kawaguchi T, et al. Numerical analysis of density wave in dense gas-solid ¯ows in a vertical pipe. Prog Theoret Phys Suppl 2000;138:696±701. 9. FLU Koo GH, Yoo B. Dynamic characteristics of KALIMER IHTS hot leg piping system conveying hot liquid sodium. Int J Press Vess Piping 2000; 77(11):679±89. 10. FLU Lee U, Kim J. Dynamics of branched pipeline systems conveying internal unsteady ¯ow. J Vibrat Acoust, ASME 1999;121(1):114±22. 21 11. FLU Lin YH, Chu CL. Active modal control of Timoshenko pipes conveying ¯uid. J Chin Inst Engng 2001;24(1):65±74. 12. FLU Perov S, et al. Vibration analysis of the pressure vessel internals of WWER-1000 type reactors with consideration of ¯uid±structure interaction. Annals Nucl Energy 2001;27(16):1441±57. 13. FLU Ross CTF, Little APF. The vibration of a corrugated carbon ®bre pressure vessel under external hydrostatic pressure. Proc Inst Mech Engng, Part C 2000;214(10):1299±311. 14. FLU Sinha JK, Moorthy RIK. Added mass of submerged perforated tubes. Nucl Engng Des 1999;193(1/2):23±31. 15. FLU Sinha JK, et al. Finite element simulation of dynamic behavior of open-ended cantilever pipe conveying ¯uid. J Sound Vib 2001;240(1):189±94. 16. FLU Sinitsyn EN, et al. Numerical simulation cross¯ow-induced ¯uidelastic vibration of curved tube bundles. 3rd Int Conf Engng Aero-Hydroelast, Czech Republic. 1999. p. 356±61. 17. FLU Tooth AS, et al. The support of horizontal vessels containing high-temperature ¯uidsÐa design study. J Press Vess Technol, ASME 1998;120(3):232±7. 18. FLU Zhang YL, et al. Analysis of the vibration of pipes conveying ¯uid. Proc Inst Mech Engng, Part C 1999;213(8):849±60. 19. FLU Zhang YL, et al. A modal and damping analysis of viscoelastic Timoshenko tubes conveying ¯uid. Int J Num Meth Engng 2001;50(2):419±33. 20. FLU Zhang YL, et al. Observations on the vibration of axially tensioned elastomeric pipes conveying ¯uid. Proc Inst Mech Engng, Part C 2000;214(3):423±34. 21. FLU Zhang YL, et al. A ®nite element method for modeling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying ¯uid. J Sound Vib 2001;245(1):93±112. A.7. Manufacturing of pipes and tubes (MAN) 1. MAN Altan T, et al. Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J Mater Process Technol 2000;98(1):34±40. 2. MAN Asna® N, Skogsgardh A. Theoretical and experimental analysis of stroke-controlled tube hydroforming. Mater Sci Engng A 2000;279(1/2):95±110. 3. MAN Carleer B, et al. Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 2000;104(1/2):158±66. 4. MAN Chen FK. Formability analysis of tube-hydroforming process. Appl Mech Engng 1999;4(1):149±69. 5. MAN Droschel M, et al. Silicon carbide evaporator tubes with porosity gradient designed by ®nite element calculations. Mater Sci Forum 1999;308±311:820±6. 6. MAN Droschel M, et al. Simulation of pressure 22 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 ®ltrating process for making porosity graded silicon carbide evaporator tubes. Mater Sci Forum 1999;308± 311:814±9. MAN Du F, et al. Numerical prediction on drawing tube without plug. Engng Mech 1998;15(3):77±81. MAN Furugen M, et al. Characteristics of deformation in hot extrusion process of stainless steel tube. J Iron Steel Inst Jpn 1999;85(11):801±5. MAN Hashmi MSJ, Ahmed M. Finite element simulation of bulge forming of an elbow of box section from circular tube. J Mater Process Technol 1999;92± 93:410±8. MAN Henderson RJ, et al. Bag design in isostatic pressing. Mater Des 2000;21(4):259±62. MAN Hu Z. Elasto-plastic solutions for spring-back angle of pipe bending using local induction heating. J Mater Process Technol 2000;102(1/3):103±8. MAN Hu Z, Li JQ. Computer simulation of pipebending processes with small bending radius using local induction heating. J Mater Process Technol 1999;91(1/3):75±9. MAN Kildishev AV, et al. Deperming technology in large ferromagnetic pipes. IEEE Trans Magnetics 1999;35(5):3907±9. MAN Kirby DS, Wild PM. Deep drawing of pressure vessel and closures: ®nite element simulation and validation. J Mater Process Technol 2000;103(2):247±60. MAN Kleiner M, et al. Die-less forming of sheet metal parts. J Mater Process Technol 2000;103(1):109±13. MAN Koc M, et al. On the characteristics of tubular materials for hydroformingÐexperimentation and analysis. Int J Mach Tools Manuf 2001;41(5):761±72. MAN Li K, et al. Research on the distribution of the displacement in backward tube spinning. J Mater Process Technol 1998;79(1/3):185±8. MAN Livatyali H, et al. Roll bending irregular shapes from plate and sheet. TPJÐTube Pipe J 1999; 10(4):36±41. MAN Mac Donald BJ, Hashmi MSJ. Finite element simulation of bulge forming of a cross-joint from a tubular blank. J Mater Process Technol 2000; 103(3):333±42. MAN Massoni E, Aliaga C. 2D numerical simulation of tube hydroforming process. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 1116. MAN Montecinos RJ, Arauco ES. An investigation into the rolling process of copper tubes. J Mater Process Technol 1999;95(1/3):139±44. MAN Nielsen KB, et al. Optimization of sheet metal forming processes by a systematic application of ®nite element simulations. 2nd Europ LS-DYNA Conf, Gothenburg. 1999. p. A3±16. MAN Parker RB, et al. Residual stresses in an Inconel 718 clad tungsten tube processed by hot iso-static pressing. Mater Sci Forum 2000;347±349:229±34. MAN Rask I, Thuvesen D. Simulation of an engineering 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. processÐtube hydroforming. 2nd Europ LS-DYNA Conf, Gothenburg. 1999. p. C23±33. MAN Skogsgardh A. FE-simulation of tube hydroforming. 2nd Europ LS-DYNA Conf, Gothenburg. 1999. p. E23±31. MAN Smith MQ, et al. Full-scale wrinkling tests and analyses of large diameter corroded pipes. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 543±51. MAN Sokolowski T, et al. Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J Mater Process Technol 2000; 98(1):34±40. MAN Teng BG, et al. Experimental and numerical simulation of hydro-forming toroidal shells with different initial structure. Int J Press Vess Piping 2001;78(1):31±4. MAN Wang C, et al. 3-D rigid plastic FEM simulation of extruding±bulging process of tee tubes. Trans Nonferr Met Soc China 1999;9(2):249±54. MAN Wang Z, et al. Numerical and experimental research of the cold upsetting±extruding of tube ¯anges. J Mater Process Technol 2001;110(1):28±35. MAN Xu S, et al. Deformation and stress ®elds of noncircular tubes in roll forming process. J Univ Sci Tech Beijing 1999;21(5):455±8. MAN Xu Y, et al. 3D rigid-plastic FEM numerical simulation on backward tube spinning. Chin J Nonferr Metals 1999;9(S1):199±203. MAN Xu Y, et al. 3D rigid-plastic FEM numerical simulation on tube spinning. J Mater Process Technol 2001;113(1/3):710±3. MAN Yang H, et al. Application of similar theory to the computer simulation of the tube drawing. J Univ Sci Technol Beijing 1999;21(3):284±7. MAN Zhang SH, et al. Integral hydro-bulge forming of pressure vessel heads. J Mater Process Technol 1999;86(1/3):184±9. MAN Zhao Y, et al. Integral ¯ange for ®lament wound composite pipeÐfabrication and analysis. ASME/ JSME Joint Press Vess Piping Conf PVP 375. New York: ASME, 1998. p. 75±9. A.8. Welded pipes and pressure vessel components (WEL) 1. WEL Basavaraju C. Simpli®ed analysis of shrinkage in pipe to pipe butt welds. Nucl Engng Des 2000;197(3):239±47. 2. WEL Brickstad B, Josefson BL. Parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. Int J Press Vess Piping 1998;75(1):11±25. 3. WEL Chellapandi P, Chetal SC. In¯uence of mis-match of weld and base material creep properties on elevated temperature design of pressure vessels and piping. Nucl Engng Des 2000;195(2):189±96. J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 4. WEL Dekker CJ, Brink HJ. Nozzles on spheres with outward weld area under internal pressure analysed by FEM and thin shell theory. Int J Press Vess Piping 2000;77(7):399±415. 5. WEL Devaux J, et al. Evaluation of the integrity of PWR bimetallic welds. J Press Vess Technol, ASME 2000;122(3):368±73. 6. WEL Dong P. Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models. J Press Vess Technol, ASME 2001; 123(2):207±13. 7. WEL Dong P, Brust FW. Welding residual stresses and effects on fracture in pressure vessel and piping components: a millennium review and beyond. J Press Vess Technol, ASME 2000;122(3):329±38. 8. WEL Dong P, et al. Effects of repair weld residual stresses on wide-panel specimens loaded in tension. J Press Vess Technol, ASME 1998;120(2):122±8. 9. WEL Dickson TL, et al. Inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 387±95. 10. WEL Dupas P, et al. Evaluation of residual stress measurement techniques and ®nite element simulations on friction welded pipes. ASME/JSME Joint Press Vess Piping Conf PVP 373. New York: ASME, 1998. p. 439±46. 11. WEL Hyde TH, et al. Effect of weld angle and axial load on the creep failure behaviour of an internally pressurised thick walled CrMoV pipe weld. Int J Press Vess Piping 2001;78(5):365±72. 12. WEL Hyde TH, et al. Assessment of creep behaviour of a narrow gap weld. Int J Press Vess Piping 1999;76(8):515±25. 13. WEL Kim CH, et al. Welding residual stress analysis and fatigue crack growth characteristics of multipass welded pipe weldment. Key Engng Mater 2000;183±187:1345±50. 14. WEL Kockelmann H, et al. Investigation of residual stresses in a shape welded steel tube by the time-of¯ight neutron diffraction technique. Mater Sci Forum 2000;321:726±31. 15. WEL Koundy V, et al. Creep behavior of a large fullsize welded austenitic steel plate. J Press Vess Technol, ASME 1998;120(3):262±9. 16. WEL Law M, et al. Creep modeling of welded joints using the theta projection concept and ®nite element analysis. J Press Vess Technol, ASME 2000; 122(1):22±6. 17. WEL Law M, et al. Modelling the creep behaviour of a reheat header longitudinal weld. Int J Press Vess Piping 2000;77(2/3):99±103. 18. WEL Mochizuki M, et al. Comparison of ®ve evaluation methods of residual stress in a welded pipe joint. JSME Inter J, Ser A 1999;42(1):104±10. 23 19. WEL Nakacho K, Ueda Y. A simple estimating method for reduction of welding residual stresses in thick welded joint from stress-relief annealing. Part II. J Press Vess Technol, ASME 1999;121(1):11±6. 20. WEL Oddy AS, McDill JMJ. Burnthrough prediction in pipeline welding. Int J Fracture 1999;97(1/4):249±61. 21. WEL Sabapathy PN, et al. The prediction of burnthrough during in-service welding of gas pipelines. Int J Press Vess Piping 2000;77(11):669±77. 22. WEL Sablik MJ, et al. Finite element modeling of creep damage effects on a magnetic detector signal for a seam weld/HAZ-region in a steel pipe. IEEE Trans Magnetics 1998;34(4):2156±8. 23. WEL Sablik MJ, et al. Finite element modeling of magnetoacoustic emission and of stress-induced magnetic effects at seam welds in steel pipes. J Appl Phys 2001;89(11):6731±3. 24. WEL Sadaoka N, et al. Development of analysis system for ¯ow-induced vibrations in piping systems. In: ASME/JSME Joint Press Vess Piping Conf PVP 363. New York: ASME, 1998. p. 135±42. 25. WEL Souza LT, Murray DW. Analysis for wrinkling behavior of girth-welded line pipe. J Offshore Mech Arctic Engng, ASME 1999;121(1):53±61. 26. WEL Taljat B, et al. Numerical analysis of residual stress distribution in tubes with spiral weld cladding. Weld J 1998;77(8):328±35. 27. WEL Taran YV, et al. Measurements of residual stresses in a shape welded steel tube by neutron and X-ray diffraction. Textures Microstruct 1999;33(1/4):231±42. 28. WEL Taran YV, et al. The time-of-¯ight neutron diffraction measurements of residual stresses in a shape welded steel tube. Mater Sci Forum 2000;347± 349:640±5. 29. WEL Teng TL, Chang PH. Three-dimensional thermomechanical analysis of circumferentially welded thin-walled pipes. Int J Press Vess Piping 1998; 75(3):237±47. 30. WEL Teng TL, Lin CC. Effect of welding conditions on residual stresses due to butt welds. Int J Press Vess Piping 1998;75(12):857±64. 31. WEL Teng TL, et al. Finite element analysis of circular patch welds. Int J Press Vess Piping 2000;77(11):643± 50. 32. WEL Terry PC. Analysis of thermal stresses at dissimilar metal pipe welds. Pract Period Str Des Constr 1999;4(1):13±6. 33. WEL Troive L, et al. Experimental and numerical study of multi-pass welding process of pipe±¯ange joints. J Press Vess Technol, ASME 1998;120(3):244±51. 34. WEL Tsuboi H, et al. Eddy current analysis for the pipe welding. IEEE Trans Magnetics 1998;34(4):1234±6. 35. WEL Wernicke R, Pohl R. Underwater wet repairÐ welding and strength testing on pipe±patch joints. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±8. 24 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 36. WEL Wernicke R, Pohl R. Underwater wet repair welding and strength testing on pipe±patch joints. J Offshore Mech Arctic Engng, ASME 1998;120(4): 237±42. 37. WEL Xue H, Shi Y. Effects of mechanical heterogeneity on plastic zones of welded three-point bend specimens. Int J Press Vess Piping 1998;75(7):575±80. 38. WEL Zhang J, Dong P. 3-D residual stress characteristics in pipe repair welds. Trends Welding Res, ASM Int 1998:949±54. A.9. Development of special ®nite elements for pressure vessels and pipes (ELE) 1. ELE Arabyan A, Jiang Y. Consistent dynamic ®nite element formulation for a pipe using Euler parameters. Shock Vib 1998;5(2):111±7. 2. ELE Dong P. Residual stress analyses of a multi-pass girth weld: 3-D special shell versus axisymmetric models. J Press Vess Technol, ASME 2001; 123(2): 207±13. 3. ELE Franco JRQ, Barros FB. A new general axisymmetrical thin shell element for the FE computation of limit loads of pressure vessels. 4th World Cong Comput Mech, Buenos Aires. 1998. p. 327. 4. ELE Hechmer JL, Hollinger GL. Assessment of the ASME code stress limits for 3D, solid element, ®nite element analyses: summary of the PVRC project. ASME/JSME Joint Press Vess Piping Conf PVP 360. New York: ASME, 1998. p. 79±89. 5. ELE Karadeniz H. Interface beam element for the analysis of soil±structure interactions and pipelines. Int J Offshore Polar Engng 1999;9(1):22±9. 6. ELE Renganathan K, et al. An ef®cient axisymmetric hybrid-stress±displacement formulation for compressible/ nearly incompressible material. Int J Press Vess Piping 2000;77(11):651±67. 7. ELE Yan AM, et al. An enhanced pipe elbow elementÐ application in plastic limit analysis of pipe structures. Int J Num Meth Engng 1999;46(3):409±31. A.10. Finite element software (SOF) 1. SOF Broman GI, et al. Determining dynamic characteristics of bellows by manipulated beam ®nite elements of commercial software. Int J Press Vess Piping 2000; 77(8):445±53. 2. SOF Strub C, et al. Analysis of slug impact against the reactor pressure vessel head interpretation of Berda Test 07 with the ®nite element code PLEXUS. ASME/JSME Joint Press Vess Piping Conf PVP 362. New York: ASME, 1998. p. 19±26. 3. SOF Zhao Y, Olson RJ. Modeling nonlinear cracked pipe using ANSYS and ABAQUS ®nite element codes. ASME/JSME Joint Press Vess Piping Conf PVP 370. New York: ASME, 1998. p. 95±100. A.11. Other topics (OTH) 1. OTH Al-Hashmi MA, Seibi AC. Effects of pipe/formation interaction on the running force in high-curvature well bores. ASME/JSME Joint Press Vess Piping Conf PVP 375. New York: ASME, 1998. p. 89±94. 2. OTH Badr EA, et al. Residual stress estimation in crossbores with Bauschinger effect inclusion using FEM and strain energy density. J Press Vess Technol, ASME 1999;121(4):358±63. 3. OTH Bakhtiari S, Kupperman DS. Modeling of eddy current probe response for steam generator tubes. Nucl Engng Des 1999;194(1):57±71. 4. OTH Beard S, Chang FK. Design of braided composite tubes for energy absorption. 42nd Str, Str Dyn Mater Conf, Seattle. 2001. p. 139±49. 5. OTH Bezdikian G, et al. PWR vessel management: French approach for integrity assessment and maintenance strategy. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 3±10. 6. OTH Brown SJ, May IL. Risk-based hazardous release protection and prevention by inspection and maintenance. J Press Vess Technol, ASME 2000;122(3):362±7. 7. OTH Choi YH, Kang SC. Evaluation of piping integrity in thinned main feedwater pipes. J Korean Nucl Soc 2000;32(1):67±76. 8. OTH Clauss GF, et al. Prediction of limiting seastates for pipelaying operations. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±11. 9. OTH Clayton CRI, et al. Effects of sampler design on tube sampling disturbanceÐnumerical and analytical investigations. Geotechnique 1998;48(6):847±67. 10. OTH Corona E. Dome reversal of metal beverage containers. J Press Vess Technol, ASME 1998; 120(4):456±61. 11. OTH Cramer EH, et al. Reliability evaluation of evacuation pipes on the troll GBS. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±7. 12. OTH Damousis IG, et al. A fuzzy logic system for calculation of the interference of overhead transmission lines on buried pipelines. Electr Power Syst Res 2001;57(2):105±13. 13. OTH Fernando NSM, Carter JP. Elastic analysis of buried pipes under surface patch loadings. J Geotech Geoenvir Engng 1998;124(8):720±8. 14. OTH Foedinger R, et al. Structural health monitoring of ®lament wound composite pressure vessels with embedded optical ®ber sensors. 43rd Int SAMPE Symp Exhib, Anaheim 1998;143(1):444±57. 15. OTH Foedinger RC, et al. Embedded ®ber optic sensor arrays for structural health monitoring of ®lament J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. wound composite pressure vessels. Proc SPIE 1999;3670:289±301. OTH Fukutomi H, et al. Remote ®eld eddy current technique applied to non-magnetic steam generator tubes. NDT & E Int 2001;34(1):17±23. OTH Fyrileiv O, Venas A. Finite element analysis of pipeline bundles on uneven seabed. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 46±52. OTH Guo R, Li G. Study of mechanical law of omega type section of buried heating pipe. J Tsinghua Univ 1998;38(1):23±7. OTH Hofstetter G, et al. Design of pile-supported buried pipelines by a synthesis of FE ultimate load analyses and experimental investigations. Finite Elem Anal Des 1999;32(2):97±111. OTH Igland RT, Moan T. Reliability analysis of pipelines during laying, considering ultimate strength under combined loads. 17th Int Conf Offshore Mech Arctic Engng. Lisbon: OMAE, 1998. p. 1±8. OTH Igland RT, Moan T. Reliability analysis of pipelines during laying, considering ultimate strength under combined loads. J Offshore Mech Arctic Engng, ASME 2000;122(1):40±6. OTH Inoue K, et al. Neutron diffraction measurement and ®nite element method calculation of residual stress of a heat treated steel pipe. Jpn J Appl Phys I 2000;39(12A):6652±7. OTH Jeng DS, Cheng L. Wave-induced seabed response around a pipe laid on a poro-elastic seabed. 17th Int Conf Offshore Mech Arctic Engng, Lisbon: OMAE, 1998. p. 1±8. OTH Jeng DS, Lin YS. Response of inhomogeneous seabed around buried pipeline under ocean waves. J Engng Mech, ASCE 2000;126(4):321±32. OTH Kim HS, et al. Analysis of stresses on buried natural gas pipeline subjected to ground subsidence. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 749±56. OTH Kozak A, et al. Alameda tubes seismic retro®t studies. Comput Struct 1999;72(1/3):233±52. OTH Li Y, et al. Numerical simulation of wave forces on seabed pipelines. China Ocean Engng 1998; 12(2):203±11. OTH Lin S, et al. Sizing of axial defects in pipes with FEM simulation of wave propagation and wavelet transformation. 1998 IEEE Ultrasonics Symp, IEEE. 1998. p. 877±80. OTH Liu JS, et al. Shape optimization of axisymmetric cylindrical nozzles in spherical pressure vessels subject to stress constraints. Int J Press Vess Piping 2001; 78(1):1±9. OTH McGrath TJ, Hoopes RJ. Bedding factors and E prime values for buried pipe installations back®lled with air-modi®ed CLSM. ASTM Spec Publ 1998;1331:265-74. OTH Michailides P, Deis T. NPS8 GEOPIG: inertial 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 25 measurement and mechanical caliper technology. 1998 Int Pipeline Conf, Calgary. New York: ASME, 1998. p. 373±8. OTH Moinereau D, et al. Some recent developments in French reactor pressure vessel structural integrity assessment. ASME/JSME Joint Press Vess Piping Conf PVP 365. New York: ASME, 1998. p. 45±58. OTH Morley MS, et al. GAnet: genetic algorithm platform for pipe network optimisation. Adv Engng Software 2001;32(6):467±75. OTH Omara AA, Akl FA. Model for analysis of buried pipes installed using trenchless construction methods. J Infrastruct Syst 1998;4(1):5±18. OTH Ose BA, et al. Finite element model for in-situ behavior of offshore pipelines on uneven seabed and its application to on-bottom stability. 9th Int Offshore Polar Engng Conf. ISOPE, vol. 2. 1999. p. 132±40. OTH Perl M. The change in overstrain level resulting from machining of an autofrettaged thick-walled cylinder. J Press Vess Technol, ASME 2000; 122(1):9±14. OTH Rusu-Casandra AL, et al. Sizing design sensitivity analysis and optimization of a hemispherical shell with a nonradial penetrated nozzle. J Press Vess Technol, ASME 1998;120(3):238±43. OTH Song R, et al. FEA-based seabed intervention design for pipeline bundle system. 10th Int Offshore Polar Engng Conf, Seattle, vol. 2. 2000. p. 147±54. OTH Sriskandarajah T, et al. Fishing gear interaction on HP/HT pipe-in-pipe systems. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p. 160±7. OTH Takagi T, et al. Modeling and numerical analysis of eddy current testing of steam generator tube. Rev Roumaine Sci Technol, Ser Electrotech 1999; 43(3):295±300. OTH Tohda J, Yoshimura H. Proposal of a rational design method for buried ¯exible pipes. Proc Jpn Soc Civil Engng 1999;617(III):49±63. OTH Tornes K, et al. Pipeline structural response to ®shing gear pull-over loads by 3D transient FEM analysis. 8th Int Offshore Polar Engng Conf, Montreal, vol. 2. 1998. p. 134±42. OTH Torselleti E, et al. Hotpipe project: snaking of submarine pipelines resting on ¯at sea bottom using ®nite element method. 9th Int Offshore Polar Engng Conf, ISOPE, vol. 2. 1999. p. 34±45. OTH Xu XB, Liu G. A two-step numerical solution of magnetic ®eld produced by ELF sources within a steel pipe. J Electromag Wave Appl 2000;14(4): 523±4. OTH Zheng C. Analysis of controllable stress distribution and optimal design of ¯at steel ribbon wound pressure vessel. J Press Vess Technol, ASME 2000;122(2):186±91. OTH Zhu L, Boyle JT. Optimal shapes for axisymmetric pressure vessels: a brief overview. J Press Vess Technol, ASME 2000;122(4):443±9. 26 J. Mackerle / International Journal of Pressure Vessels and Piping 79 (2002) 1±26 References [1] Mackerle J. MAKEBASE, an information retrieval system in structural mechanics for main-frames and personal computers. Engng Comput 1989;6:178±85. [2] Mackerle J. An information retrieval system for ®nite element and boundary element literature and software. Engng Anal Boundary Elem 1993;11:177±87. [3] Mackerle J. Finite element methods, a guide to information sources. Amsterdam: Elsevier, 1991. [4] Mackerle J. Finite elements in the analysis of pressure vessels and pipingÐa bibliography (1976±1996). Int J Press Vess Piping 1996;69:279±339. [5] Mackerle J. Finite elements in the analysis of pressure vessels and piping, an addendum (1996±1998). Int J Press Vess Piping 1999;76:461±85.
Copyright © 2025 DOKUMEN.SITE Inc.