Machine Design Handbook for Engineeries



Comments



Description

Source: MACHINE DESIGN DATABOOKCHAPTER 1 PROPERTIES OF ENGINEERING MATERIALS SYMBOLS5;6 a Aj Af A0 Ar Bhn d D E f" f F G HB lf lj l0 Q RB RC   area of cross section, m2 (in2 ) original area of cross section of test specimen, mm2 (in2 ) area of smallest cross section of test specimen under load Fj , m2 (in2 ) minimum area of cross section of test specimen at fracture, m2 (in2 ) original area of cross section of test specimen, m2 (in2 ) percent reduction in area that occurs in standard test specimen Brinell hardness number diameter of indentation, mm diameter of test specimen at necking, m (in) diameter of steel ball, mm modulus of elasticity or Young’s modulus, GPa [Mpsi (Mlb/in2 )] strain fringe (fri) value, mm/fri (min/fri) stress fringe value, kN/m fri (lbf/in fri) load (also with subscripts), kN (lbf) modulus of rigidity or torsional or shear modulus, GPa (Mpsi) Brinell hardness number final length of test specimen at fracture, mm (in) gauge length of test specimen corresponding to load Fj , mm (in) original gauge length of test specimen, mm (in) figure of merit, fri/m (fri/in) Rockwell B hardness number Rockwell C hardness number Poisson’s ratio normal stress, MPa (psi)  The units in parentheses are US Customary units [e.g., fps (foot-pounds-second)]. 1.1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. PROPERTIES OF ENGINEERING MATERIALS 1.2 CHAPTER ONE b c s t sf 0sf transverse bending stress, MPa (psi) compressive stress, MPa (psi) strength, MPa (psi) tensile stress, MPa (psi) endurance limit, MPa (psi) endurance limit of rotating beam specimen or R R Moore endurance limit, MPa (psi) endurance limit for reversed axial loading, MPa (psi) endurance limit for reversed bending, MPa (psi) compressive strength, MPa (psi) tensile strength, MPa (psi) ultimate stress, MPa (psi) ultimate compressive stress, MPa (psi) ultimate tensile stress, MPt (psi) ultimate strength, MPA (psi) ultimate compressive strength, MPa (psi) ultimate tensile strength, MPa (psi) yield stress, MPa (psi) yield compressive stress, MPa (psi) yield tensile stress, MPa (psi) yield compressive strength, MPa (psi) yield tensile strength, MPa (psi) torsional (shear) stress, MPa (psi) shear strength, MPa (psi) ultimate shear stress, MPa (psi) ultimate shear strength, MPa (psi) yield shear stress, MPa (psi) yield shear strength, MPa (psi) torsional endurance limit, MPa (psi) 0sfa 0sfb sc su u uc ut su sb u suc sut y yc yt syc syt  s u su y sy sf0 SUFFIXES a b c f s t u y axial bending compressive endurance strength properties of material tensile ultimate yield ABBREVIATIONS AISI ASA AMS ASM ASME ASTM BIS BSS DIN ISO American Iron and Steel Institute American Standards Association Aerospace Materials Specifications American Society for Metals American Society of Mechanical Engineers American Society for Testing Materials Bureau of Indian Standards British Standard Specifications Deutsches Institut fu¨r Normung International Standards Organization Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS SAE UNS 1.3 Society of Automotive Engineers Unified Numbering system Note:  and  with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook. Other factors in performance or in special aspects are included from time to time in this chapter and, being applicable only in their immediate context, are not given at this stage. Particular Formula For engineering stress-strain diagram for ductile steel, i.e., low carbon steel Refer to Fig. 1-1 For engineering stress-strain diagram for brittle material such as cast steel or cast iron The nominal unit strain or engineering strain Refer to Fig. 1-2 The numerical value of strength of a material "¼ lf  l0 l lf A0  Af ¼ ¼ 1¼ l0 l0 l0 A0 ð1-1Þ where lf ¼ final gauge length of tension test specimen, l0 ¼ original gauge length of tension test specimen. F ð1-2Þ s ¼ A where subscript s stands for strength. Point P is the proportionality limit. Y is the upper yield limit. E is the elastic limit. Y 0 is the lower yield point. U is the ultimate tensile strength point. R is the fracture or rupture strength point. R0 is the true fracture or rupture strength point. FIGURE 1-1 Stress-strain diagram for ductile material.  Subscript s stands for strength. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. PROPERTIES OF ENGINEERING MATERIALS 1.4 CHAPTER ONE Particular Formula ¼ The nominal stress or engineering stress F A0 ð1-3Þ where F ¼ applied load. F tru ¼ 0 ¼ Af The true stress Bridgeman’s equation for actual stress (act ) during r radius necking of a tensile test specimen where Af ¼ actual area of cross section or instantaneous area of cross-section of specimen under load F at that instant.  cal  act ¼  ð1-5Þ 4r d ln 1 þ 1þ d 4r "tru ¼ "0 ¼ The true strain l1 l2 þ l0 l0 þ l1 þ ¼  Integration of Eq. (1-6) yields the expression for true strain From Eq. (1-1) The relation between true strain and engineering strain after taking natural logarithm of both sides of Eq. (1-8) "tru ¼ ln l3 þ  l0 þ l1 þ l2 ð lf l0 lf l0  dli li lf ¼1þ" l0   lf ln ¼ lnð1 þ "Þ or "tru ¼ lnð1 þ "Þ l0 " ¼ e"tru  1 Eq. (1-9) can be written as ð1-4Þ There is no necking at fracture for brittle material such as cast iron or low cast steel. FIGURE 1-2 Stress-strain curve for a brittle material. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. ð1-6aÞ ð1-6bÞ ð1-7Þ ð1-8Þ ð1-9Þ ð1-10Þ com) Copyright © 2004 The McGraw-Hill Companies. .   1 "ftru ¼ ln ð1-17Þ 1  Ar where Af is the area of cross-section of specimen at fracture. which is also known as the true fracture strain or ductility where df ¼ minimum diameter in the gauge length lf of specimen under load at that instant.digitalengineeringlibrary. The standard gauge length of tensile test specimen The volume of material of tensile test specimen remains constant during the plastic range which is verified by experiments and is given by pffiffiffi l0 ¼ 6:56 a A0 l0 ¼ Af lf  A0 Af ð1-14Þ or d02 df2 ð1-15Þ lf d ¼ 2 ln 0 l0 df ð1-16Þ lf A 0 ¼ ¼ l0 A f  ¼ ln Therefore the true strain from Eqs. Ar ¼ minimum area of cross section of specimen under load at that instant.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS Particular Percent elongation in a standard tension test specimen Reduction in area that occurs in standard tension test specimen in case of ductile materials Percent reduction in area that occurs in standard tension test specimen in case of ductile materials For standard tensile test specimen subject to various loads 1. Any use is subject to the Terms of Use as given at the website.5 Formula lf  l0 ð100Þ l0 A0  Af Ar ¼ A0 A0  Af ð100Þ Ar100 ¼ A0 "100 ¼ ð1-11Þ ð1-12Þ ð1-13Þ Refer to Fig. Downloaded from Digital Engineering Library @ McGraw-Hill (www. (1-7) and (1-15) "tru ¼ ln The true strain at rupture. All rights reserved. 1-3. FIGURE 1-3 A standard tensile specimen subject to various loads. 6 CHAPTER ONE Particular Formula Refer to Table 1-1A for values of "ftru of steel and aluminum. (1-9) and (1-16) Substituting Eq. F ðsy Þw ¼ w0 ð1-25Þ Aw where Aw ¼ A0w ¼ the increased cross-sectional area of specimen because of the elastic recovery that occurs when the load is removed. F ðsy Þw ¼ w0  w ð1-26Þ Aw By substituting Eq.com) Copyright © 2004 The McGraw-Hill Companies.digitalengineeringlibrary. (1-4) and using Eq. n ¼ strain hardening or strain strengthening exponent. which is also called the strainstrengthening equation. (1-26) into Eq. Refer to Table 1-1A for 0 and n values for steels and other materials. (1-24) ðsy Þw ¼ 0 ð"w Þn The tensile strength of a cold worked material ðsu Þw ¼ Fu A0w ð1-27Þ ð1-28Þ where Aw ¼ Au . Fw ¼ applied load. su ¼ tensile strength of the original non-cold worked specimen. All rights reserved. A0 ¼ original area of the specimen. "trup ¼ true plastic strain. it was found that the equation for plastic stress-strain line. The percent cold work associated with the deformation of the specimen from A0 to A0w A0  A0w A  A0w ð100Þ or w ¼ 0 A0 A0 W where w ¼ 100 W¼ Downloaded from Digital Engineering Library @ McGraw-Hill (www. The load at any point along the stress-strain curve (Fig 1-1) F ¼ s A0 ð1-21Þ The load-strain relation from Eqs. (1-18) in Eq. From Eqs. ð1-29Þ .PROPERTIES OF ENGINEERING MATERIALS 1. Fu ¼ A0 ðsu Þ0 . the true stress is given by A0 ¼1þ" Af or Af ¼ A0 1þ" ð1-18Þ tru ¼ ð1 þ "Þ ¼ e"tru ð1-19Þ tru ¼ 0 "ntrup ð1-20Þ where 0 ¼ strength coefficient. (1-22) and equating the results to zero yields the true strain equals to the strain hardening exponent which is the instability point "u ¼ n ð1-23Þ The stress on the specimen which causes a given amount of cold work W w ¼ 0 ð"w Þn ¼ The approximate yield strength of the previously cold-worked specimen The approximate yield strength since A0w ¼ Aw Fw Aw ð1-24Þ where Aw ¼ actual cross-sectional area of the specimen. (1-20) and (1-2) F ¼ 0 A0 "ntru e"tru ð1-22Þ Differentiating Eq. Any use is subject to the Terms of Use as given at the website. (1-3) the true stress From experimental results plotting true-stress versus true-strain.  HARDNESS The Vicker’s hardness number (HV ) or the diamond pyramid hardness number (Hp ) The Knoop hardness number The Meyer hardness number. mm.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS Particular For standard tensile specimen at stages of loading A0w is given by equation Formula A0w ¼ A0 ð1  wÞ Eq. F ð1-36Þ HK ¼ 0:07028d 2 where d ¼ length of long diagonal of the projected area of the indentation. (1-31) can also be expressed as ðsu Þ0 1w ðsu Þw ¼ ðsu Þ0 e"tru The modulus of toughness Valid for Aw  Au or "w  "u . kgf. kgf. d ¼ diameter of indentation. HK in kgf/mm2 . 0:07028 ¼ a constant which depends on one of angles between the intersections of the four faces of a special rhombic-based pyramid industrial diamond indenter 172. All rights reserved. The Meyer’s strain hardening equation for a given diameter of ball F ¼ Ad p ð1-39Þ where F ¼ applied load on a spherical indenter. HV in kgf/mm2 . mm. HM in kgf/mm2 . ð "r Tm ¼ s d" Expression for ðsu Þw after substituting Eq. HM 2F sinð=2Þ 1:8544F ¼ ð1-35Þ d2 d2 where F ¼ load applied.digitalengineeringlibrary. d and D in mm. (1-28) 1. . HV ¼ HM ¼ 4F d 2 =4 ð1-37Þ where F ¼ applied load. mm. mm. 1368. Any use is subject to the Terms of Use as given at the website. Downloaded from Digital Engineering Library @ McGraw-Hill (www. kgf. F ¼ load applied. d ¼ diagonal of the indentation. HB in kgf/mm2 .  ¼ face angle of the pyramid. d ¼ diameter of indentation.com) Copyright © 2004 The McGraw-Hill Companies. kgf.7 ðsu Þw ¼ 0 ð1-30Þ ð1-31Þ ð1-32Þ ð1-33aÞ s þ su ð1-34bÞ "r 2 where "r ¼ "u ¼ strain associated with incipient fracture. The Brinell hardness number HB HB ¼ 2F pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi D½D  D2  d 2  ð1-38Þ where F in kgf.58 and the other angle is 1308. p ¼ Meyer strain-hardening exponent. PROPERTIES OF ENGINEERING MATERIALS 1.8 CHAPTER ONE Particular Formula The relation between the diameter of indentation d and the load F according to Datsko1;2 F ¼ 18:8d 2:53 ð1-40Þ The relation between Meyer strain-hardening exponent p in Eq. (1-39) and the strain-hardening exponent n in the tensile stress-strain Eq.  ¼ 0 "n p2¼n ð1-41Þ The ratio of the tensile strength (su ) of a material to its Brinell hardness number (HB ) as per experimental results conducted by Datsko1;2 For the plot of ratio of (su =HB Þ ¼ KB against the strain-strengthening exponent n (1) where p ¼ 2.25 for both annealed pure aluminum and annealed 1020 steel, p ¼ 2 for low work hardening materials such as pH stainless steels and all cold rolled metals, p ¼ 2.53 experimentally determined value of 70-30 brass. su KB ¼ ð1-42Þ HB Refer to Fig. 1-4 for KB vs n for various ratios of ðd=DÞ. FIGURE 1-4 Ratio of ðsu =HB Þ ¼ KB vs strain strengthening exponent n. The relationship between the Brinell hardness number HB and Rockwell C number RC RC ¼ 88HB0:162  192 The relationship between the Brinell hardness number HB and Rockwell B number RB RB ¼ HB  47 0:0074HB þ 0:154  ð1-43Þ ð1-44Þ Courtesy: Datsko, J., Materials in Design and Manufacture, J. Datsko Consultants, Ann Arbor, Michigan, 1978, and Standard Handbook of Machine Design, McGraw-Hill Book Company, New York, 1996. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS Particular 1.9 Formula The approximate relationship between ultimate tensile strength and Brinell hardness number of carbon and alloy steels which can be applied to steels with a Brinell hardness number between 200HB and 350HB only1;2 sut ¼ 3:45HB The relationship between the minimum ultimate strength and the Brinell hardness number for steels as per ASTM sut ¼ 3:10HB The relationship between the minimum ultimate strength and the Brinell hardness number for cast iron as per ASTM sut ¼ 1:58HB  86:2 The relationship between the minimum ultimate strength and the Brinell hardness number as per SAE minimum strength sut ¼ 2:60HB  110 In case of stochastic results the relation between HB and sut for steel based on Eqs. (1-45a) and (1-45b) sut ¼ ð3:45; 0:152ÞHB In case of stochastic results the relation between HB and sut for cast iron based on Eqs. (1-47a) and (1-47b) sut ¼ 1:58HB  62 þ ð0; 10:3Þ MPa ¼ 500HB ¼ 450HB SI ð1-45aÞ USCS ð1-45bÞ SI ð1-46aÞ USCS ð1-46bÞ SI ð1-47aÞ USCS ð1-47bÞ SI ð1-48aÞ USCS ð1-48bÞ SI ð1-49aÞ USCS ð1-49bÞ MPa psi MPa psi MPa ¼ 230HB  12500 psi MPa ¼ 237:5HB  16000 psi ¼ ð500; 22ÞHB MPa psi SI ð1-50aÞ USCS ð1-50bÞ ¼ 230HB  9000 þ ð0; 1500Þ psi Relationships between hardness number and tensile strength of steel in SI and US Customary units [7] Refer to Fig. 1.5. The approximate relationship between ultimate shear stress and ultimate tensile strength for various materials su ¼ 0:82sut for wrought steel ð1-51aÞ su ¼ 0:90sut for malleable iron ð1-51bÞ su ¼ 1:30sut for cast iron ð1-51cÞ su ¼ 0:90sut for copper and copper alloy ð1-51dÞ su ¼ 0:65sut for aluminum and aluminum alloys ð1-51eÞ The tensile yield strength of stress-relieved (not coldworked) steels according to Datsko1;2 sy ¼ ð0:072sut  205Þ MPa The equation for tensile yield strength of stressrelieved (not cold-worked) steels in terms of Brinell hardness number HB according to Datsko (2) sy ¼ ð3:62HB  205Þ MPa The approximate relationship between shear yield strength ðsy Þ and yield strength (tensile) sy sy ¼ 0:55sy ¼ 1:05sut  30 kpi ¼ 525HB  30 kpi SI ð1-52aÞ USCS ð1-52bÞ SI ð1-53aÞ USCS ð1-53bÞ for aluminum and aluminum alloys ð1-54aÞ sy ¼ 0:58sy for wrought steel Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. ð1-54bÞ PROPERTIES OF ENGINEERING MATERIALS 1.10 CHAPTER ONE Particular The approximate relationship between endurance limit (also called fatigue limit) for reversed bending polished specimen based on 50 percent survival rate and ultimate strength for nonferrous and ferrous materials Formula For students’ use 0sfb ¼ 0:50sut for wrought steel having sut < 1380 MPa ð200 kpsiÞ ð1-55Þ 0sfb ¼ 690 MPa for wrought steel having sut > 1380 MPa ð1-56aÞ 0sfb ¼ 100 kpsi for wrought steel having sut > 200 kpsi USCS ð1-56bÞ For practicing engineers’ use 0sfb ¼ 0:35sut for wrought steel having sut < 1380 MPa ð200 kpsiÞ ð1-57Þ 0sfb ¼ 550 MPa for wrought steel having SI sut > 1380 MPa ð1-58aÞ for wrought steel having USCS sut > 200 kpsi ð1-58bÞ 0sfb ¼ 80 kpsi 0sfb ¼ 0:45sut for cast iron and cast steel when sut  600 MPa ð88 kpsiÞ ð1-59aÞ 0sfb ¼ 275 MPa for cast iron and cast steel when sut > 600 MPa SI ð1-60aÞ 0sfb ¼ 40 kpsi FIGURE 1-5 Conversion of hardness number to ultimate tensile strength of steel sut , MPa (kpsi). (Technical Editor Speaks, courtesy of International Nickel Co., Inc., 1943.) for cast iron and cast steel when USCS ð1-60bÞ sut > 88 kpsi 0sfb ¼ 0:45sut for copper-based alloys and nickel-based alloys 0sfb ¼ 0:36sut for wrought aluminum alloys up to a tensile strength of 275 MPa (40 kpsi) based on 5  108 cycle life ð1-62Þ 0sfb ¼ 0:16sut for cast aluminum alloys up to tensile strength of 300 MPa ð50 kpsiÞ based on 5  108 cycle life 0sfb ¼ 0:38sut ð1-61Þ ð1-63Þ for magnesium casting alloys and magnesium wrought alloys ð1-64Þ based on 106 cyclic life Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS Particular The relationship between the endurance limit for reversed axial loading of a polished, unnotched specimen and the reversed bending for steel specimens The relationship between the torsional endurance limit and the reversed bending for reversed torsional tested polished unnotched specimens for various materials For additional information or data on properties of engineering materials 1.11 Formula 0sfa ¼ 0:850sfb ¼ 0:43sut ð1-65Þ sf0 ¼ 0:580sfb ¼ 0:29sut for steel ð1-66aÞ sf0 ð1-66bÞ sf0  0:80sfb  0:480sfb 0:32sut for cast iron  0:22sut for copper ð1-66cÞ Refer to Tables 1-1 to 1-48 WOOD Specific gravity, Gm , of wood at a given moisture condition, m, is given by Gm ¼ W0 Wm ð1-67Þ where W0 ¼ weight of the ovendry wood; N ðlbfÞ; Wm ¼ weight of water displaced by the sample at the given moisture condition, N (lbf ). weight of ovendry wood and the contained water volume of the piece at the same moisture content The weight density of wood, D (unit weight) at any given moisture content W¼ Equation for converting of weight density D1 from one moisture condition to another moisture condition D2 D2 ¼ D1 For typical properties of wood of clear material as per ASTM D 143 Refer to Table 1-47. ð1-68Þ 100 þ M2 100 þ M1 þ 0:0135D1 ðM2  M1 Þ ð1-69Þ where D1 ¼ known weight density for same moisture condition M1 , kN/m2 (lbf/ft2 ), D2 ¼ desired weight density at a moisture condition M2 , kN/m2 (lbf/ft2 ). M1 and M2 are expressed in percent. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. 588 kN (60 kgf ) load 84 83 82 81 81 80 79 78 78 77 76 76 75 74 73 73 72 71 71 70 69 69 68 68 67 66 66 65 65 64 64 63 63 62 61 61 B scale 0.com) Copyright © 2004 The McGraw-Hill Companies.98 kN (100 kgf ) load C scale 1.40 745 712 682 653 627 601 578 555 534 514 495 477 461 444 429 415 401 388 375 363 352 341 331 321 311 302 293 285 277 269 262 255 248 241 235 229 223 217 212 207 201 197 192 187 840 783 737 697 667 640 615 591 569 547 528 508 491 472 455 440 425 410 396 383 372 360 350 339 328 319 309 301 292 284 276 269 261 253 247 241 234 228 222 218 212 207 202 196 A scale 0. All rights reserved.PROPERTIES OF ENGINEERING MATERIALS 1.20 3.90 2.65 3.40 2.digitalengineeringlibrary.10 3.95 3.80 3.95 4.85 3.25 3.25 2.45 2.147 kN (15 kgf ) load Shore Tensile strength.85 2.60 2.12 CHAPTER ONE TABLE 1-1 Hardness conversion (approximate) Brinell 29.15 3.20 4. 373 356 341 330 323 318 309 293 279 266 254 243 235 222 215 208 200 194 188 182 176 170 166 160 155 151 146 142 138 134 131 127 124 120 117 114 111 108 106 103 100 98 96 93 .65 2.50 2.30 3.45 3.25 4.50 3 55 3.10 4.70 2.90 3.35 3.55 2.70 3.47 kN (150 kgf ) load 15-N scale 0.75 3.42 kN (3000 kgf ) load 10 mm ball Rockwell hardness number Diameter (mm) Hardness number Vickers or Firth hardness number 2.30 4.60 3.75 2.00 3.35 4.05 4.15 4.30 2. Any use is subject to the Terms of Use as given at the website.05 3.35 2.40 3.80 2. sut scleroscope approximate hardness number MPa kpsi 110 109 109 108 108 107 106 106 105 104 103 102 101 100 99 98 97 96 96 95 94 93 92 91 65 64 62 60 59 58 57 55 54 52 51 50 49 47 46 45 43 42 40 39 38 37 36 34 33 32 31 30 29 28 27 25 24 23 22 21 19 18 16 15 14 13 12 10 92 92 91 90 90 89 88 88 87 87 86 85 85 84 83 83 82 81 81 80 79 79 78 77 77 76 76 75 74 74 73 73 72 71 70 70 91 87 84 81 79 77 75 73 71 70 68 66 65 63 61 59 58 56 54 52 51 50 48 47 46 45 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 2570 2455 2350 2275 2227 2192 2124 2020 1924 1834 1750 1675 1620 1532 1482 1434 1380 1338 12961255 1214 1172 1145 1103 1069 1042 1010 983 955 928 904 875 855 832 810 790 770 748 730 714 690 680 662 645 Downloaded from Digital Engineering Library @ McGraw-Hill (www.00 4. 30 5. Any use is subject to the Terms of Use as given at the website.50 5.98 kN (100 kgf ) load C scale 1.40 5.55 4. sut scleroscope approximate hardness number MPa kpsi 28 27 26 25 24 23 22 21 20 19 18 17 631 617 600 585 576 562 538 514 493 472 451 435 417 400 383 Downloaded from Digital Engineering Library @ McGraw-Hill (www.65 470 4.80 4.147 kN (15 kgf ) load Shore Tensile strength.) Brinell 29.digitalengineeringlibrary. All rights reserved.10 5.45 4.com) Copyright © 2004 The McGraw-Hill Companies.20 5.90 5.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS 1.47 kN (150 kgf ) load 90 89 88 87 86 85 83 81 79 76 74 72 70 68 65 9 8 7 5 4 3 1 15-N scale 0.60 183 179 174 170 167 163 156 149 143 137 131 126 121 116 111 192 188 182 178 175 171 163 156 150 143 137 132 127 122 117 A scale 0. 91 89 87 85 83 81 78 74 71 68 65 63 60 58 55 .50 4.60 4.42 kN (3000 kgf ) load 10 mm ball Rockwell hardness number Diameter (mm) Hardness number Vickers or Firth hardness number 4.588 kN (60 kgf ) load B scale 0.13 TABLE 1-1 Hardness conversion (approximate) (Cont.00 5. 41 1. Any use is subject to the Terms of Use as given at the website. g Solution treated. Technical Report on Fatigue properties. Source: SAE j1099.28 0. 1975.72 0.20 0. common machining steels.06 0.com) Copyright © 2004 The McGraw-Hill Companies. SHg ST and RT ageh ST and AAi MPa HRb Plate CDc Sheet HR Sheet Normalized HR Plate Q and Tf Q and T Q and T Annealed Q and T HR Plate Process/ Condition 68 69 84 135 60 50 60 64 105 210 242 134 227 77 kpsi Ultimate strength.96 1.19 0.24 "f True strain at fracture 0. strain hardened.13 0. a 2024-T351 2024-T4 7075-T6 Brinell hardness HB TABLE 1-1A Mechanical properties of some metallic materials PROPERTIES OF ENGINEERING MATERIALS 1.02 1. f Quenched and tempered.87 0.60 1.11 0. Af 0.06 0.03 0.05 0.22 0.16 0. c cold-rolled.43 0.06 0.14 0.19 n Strain harding exponent 131 903 66 117 120 107 166 302 308 253 738 1145 2082 2124 1744 455 807 827 170 76 77 kpsi 1172 524 531 MPa Strength coefficient.16 0. h Solution treated and RT age.290 125 90 80 108 225 410 430 260 410 150 Material RQC-100a 1005-1009 1005-1009 1015 1020d 1045e 1045e 5160 9262 9262 950 931 414 345 414 441 724 1448 1669 924 1565 531 469 476 579 ST. Bethlehem steel Corp.26 0.14 Downloaded from Digital Engineering Library @ McGraw-Hill (www.38 1. f kpsi Yield strength. d low carbon. heavy applications machinery. All rights reserved. i Solution treated and artificially aged. . b Hot-rolled. sut 379 303 469 883 400 262 228 262 634 1365 1531 455 1379 311 MPa 193 122 123 105 103 178 270 280 151 269 145 81 92 108 MPa 1331 841 848 724 710 1227 1862 1931 1041 1855 1000 Steel 128 58 38 33 38 92 198 222 66 200 48 Aluminum: 55 558 44 636 68 745 kpsi Stress at fracture.08 0. 0 Tradename. Used in structural. e Bar stock. sy 25 35 33 67 64 80 68 62 65 51 42 14 32 72 % Reduction in area.digitalengineeringlibrary. medium carbon high-strength machining steel.04 0. Rolled quenched and tempered carbon steel.02 1. 58 0. published by the Metals and Ceramics Information Center. Fundamentals of Mechanical Component Design. "f b A description of the materials and typical uses follows the table.r. 1985.84 0. syc Ultimate. Battelle Memorial Institute.69 0. E 81 79 83 11.69 1. s:r: ¼ stress relieved.97 0. syt Compressive. 1991.0 29. sut Tensile.  su Yield. which is drawn from the Structural Alloys Handbook.20 0.97 0.20 1. Source: Extracted from Kenneth S.  sy TABLE 1-1B Mechanical properties of some typical metallic materials PROPERTIES OF ENGINEERING MATERIALS 1. % 0.02 0. Inc. Any use is subject to the Terms of Use as given at the website. Edwards. sf 207 204 GPa 30. CD ¼ cold drawn (the percentage reduction in area). McGraw-Hill. McKee.25 mm (1 in) bar 25 mm (1 in) bar 4130 4340 Aged 4828C Aged 4828C Aged 4828C 876 CD 20% + s.15 Downloaded from Digital Engineering Library @ McGraw-Hill (www..80 0. WQ ¼ water quenched (temperature following is the tempering temperature).com) Copyright © 2004 The McGraw-Hill Companies. K IC Reduction in area GPa Mpsi GPa Mpsi A.7 11. and Robert B. Ohio.4 12. Jr. OQ ¼ oil quenched. All rights reserved. Columbus.0 110 75 100 68 55 62 50 64 52 47 31 57 50 44 25 40 70 70 62 54 26 59 Modulus of Fracture rigidity.78 0. HR ¼ hot rolled.51 1. unless noted A (¼ axial).63 0.6 Mpsi Young’s modulus. G toughness.89 True strain at fracture. .30 0.37 0. c Smooth-specimen rotating-beam results.digitalengineeringlibrary. a 18% Ni maraging 200 L plate 250 L plate 300 L plate 25 mm (1 in) bar 25 mm (1 in) bar or plate 25 mm (1 in) WQ bar or plate 25 mm (1 in) bar 1050 1040 1030 1020 Steel: 1016 Material Form Ultimate Yield strength Shear (torsional) strength tensile strength.73 0. d 106 cycles.33 0.2h (9008F WQ + (12008F) OQ + (1000 8F) OQ + (800 8F) 1540 1760 1980 814 1262 1531 517 621 805 965 634 586 455 620 710 790 448 Annealed HR CD 20% CD 50% Annealed (12008F) CD 0% CD 30% CD 60% CD 80% HR Condition/Process MPa 225 256 288 118 183 200 127 75 90 117 140 92 85 66 90 102 115 65 kpsi 1480 1630 1920 703 1172 1379 696 352 414 670 855 365 441 275 585 605 660 331 215 237 279 102 170 200 101 51 60 97 124 53 64 40 85 88 96 48 MPa kpsi 724 1310 1517 MPa 105 190 220 kpsi 876 127 1007 146 MPa kpsi 752 855 241 427 269 296 370 410 365 296 240 315 350 365 241 MPa 690 690 760 490 109 669 124 469 35 MPa kpsi 100 100 110 71 97 68 62d 39 43a 54d 60d 53 43 35d 46d 51d 53d 35d kpsi Fatigue limit. 331 Downloaded from Digital Engineering Library @ McGraw-Hill (www.278 0.330 0. cast Inconel x Lead Magnesium Malleable cast iron 0.303 0.291 0.305 0. tool Steel.PROPERTIES OF ENGINEERING MATERIALS 1.330 0. stainless (18-8) Tin Titanium Tungsten Vanadium Wrought iron Zinc 0.410 0.230 Molybdenum Monel metal Nickel.357 0.340 0.293 0. high carbon Steel.270 0.295 0.293 0. soft Iron.370 0.245 0. 30 Zn Cast steel Chromium Copper Douglas fir Ductile iron Glass Gray cast iron Iron. mild Steel. soft Nickel.280 0.210–0.16 CHAPTER ONE TABLE 1-2 Poisson’s ratio ðÞ Material  Material  Aluminium.306 0.365 0.342 0.239 0.320–0.350 0. Any use is subject to the Terms of Use as given at the website.490 0. .285 0. cast Aluminium.265 0.340–0.431 0.450–0.343 0.com) Copyright © 2004 The McGraw-Hill Companies.287 0. All rights reserved.348 0.367 0.370 0.210 0. drawn Beryllium copper Brass Brass.270 0. hard Rubber Silver Steel.digitalengineeringlibrary. 4–23.5–17. E 110–138 10–119 90–113 66–97 79–102 Brinell hardness.6–6.5 31 22 26 kpsi Tension. G 1 2 3 3 4 10 10 8 6 10 5 7 4 3 3 2 1 5 18 10 Elongation in 50 mm (2 in).8–6. E Modulation of elasticity Mpsi 54–59 7.5 73 57 48. s TABLE 1-3 Mechanical properties of typical cast ferrous materialsa 586 483 379 345 310 224 276 310 310 310 345 345 414 414 483 552 621 207 241 220 MPa 85 70 55 50 45 32 40 45 45 45 50 50 60 60 70 80 90 30 35 32 kpsi Yield strength.0 14. % 19 19 19 19 22 22 156 108 95 75 75 J 14 14 14 14 16.5 40 26 32 kpsi Torsional/ shear strength.5 164 140 124 109 83 97 kpsi 1670 1517 1434 1293 1130 965 855 752 572 669 MPa Compression.com) Copyright © 2004 The McGraw-Hill Companies.0–16.5 18.5 36. sy 276 270 255 220 214 193 169 148 128 110 97 69 79 MPa 40 39 37 32 31 28 24. valve parts Soft iron castings Cylinder blocks and heads.5 52.8–22.digitalengineeringlibrary. excellent shock resistance.5 kpsi Endurance limit in reversed bending.5 18.8 40–48 5.5–14. Any use is subject to the Terms of Use as given at the website. universal joint yokes Gears with high strength and good wear resistance General engineering service at normal and elevated temperatures General purpose at normal and elevated temperature.5 50–55 7. SAE J158 ASTM A197 Perlite and martensite: ASTM A220 ANSI G48-2 MIL-1-11444B Malleable cast iron: Ferrite ASTM A47-52.2–8. clutch plates Cam shafts.Automotive ASTMA602.0 GPa Shear.5 16 14 10 11.5 16.8 Mpsi Tension.4–7. mounting brackets Compressor crankshafts and hubs Parts requiring selective hardening.8–8.5 21.4 9.17 .2 13. 517 621 M5503e M7002e 724 517 M5003d M8501 448 M4504d e 345 414 448 448 448 483 517 552 552 586 655 724 40010 45008 45006 45010 50005 50007 60004 60003 70003 80002 90001 Grade M3210c 276 345 Class or grade 32510 431 293 60 121 40 252 362 120 35 50 111 30 214 152 179 Gray cast ironb ASTM class 20 25 SAE 110 MPa Material.0–20. brake drums and clutch plates Heavy-duty brake drums.8 16.2–6.5 42.0 11.9–5.6 27–39 3.9 36–45 5. housing Flywheels. sut 242 242 242 242 1670 1670 1670 220 208 187. specification 105 90 75 75 65 50 60 65 65 65 70 75 80 80 85 95 105 40 53 50 62.0 44–54 6. cylinder liners Special high-strength castings Special high-strength castings Typical application PROPERTIES OF ENGINEERING MATERIALS 1. A338. good machinability.6 32–41 4. sfb 269–302 229–269 187–241 187–241 163–217 156 max 149–197 156–197 156–207 185 179–229 204 197–241 226 217–269 241–285 269–321 156 max 156 max 156 max 302 262 235 212 210 156 174 186 186 183 180 172 172 141–162 130–157 27 27 26.5 115 80 70 55 55 ft-lbf Impact strength (Charpy) Steering gear housing. as gears For machinability and improved induction hardening Connecting rods. HB GPa 160 160 160 160 172 172 GPa 27 23. All rights reserved. class.2 23. Pipe flanges.  su 610 503 393 334 276 179 220 MPa 88.6–14. ANSI G 48-1 FED QQ-1-66e 365 35018 Downloaded from Digital Engineering Library @ McGraw-Hill (www.2 23.5 26 25 25 20. suc Ultimate strength 689 552 517 338 352 324 496 448 393 338 303 220 255 MPa 100 80 75 49 51 47 72 65 57 49 44 32 37 kpsi Shear.2 25 25 Mpsi Compression. 5g 9.3 110 81.2 62–64g 10 18 12 6 3 63.digitalengineeringlibrary. All rights reserved.3 72.0–9.7 60 40 kpsi 193–241 28–35 276 310 379 483 864 500 362 332 329 414 276 MPa Yield strength. gears and rollers High-strength gears and machine components Pinions. sfb Source: Compiled from AMS Metals Handbook. sy 434 379 345 241 MPa 63 55 50 35 kpsi Endurance limit in reversed bending.5 MPa kpsi Shear. Ohio. class.4g 15 64–65g 3 15–23 20–35 60–150 80–150 5–115 12 28 3 20–31 27–47 80–200 110–200 7–155 16 38 4 Pressurecontaining parts such as valve and pump bodies Machine components subjected to shock and fatigue loads Crankshafts.5 52.8 23.5g 15 Elongation in 50 mm (2 in).4 24.0 52. American Society for Metals.) 170–250 250–500 130–250 110–210 180–350 140–300 140–200 130–170 520 190 170 max 156–217 187–255 241–302 332 257 192 167 167–178 201 min 143–187 158 83 164 162 168 168 169 Brinell hardness. rollers and slides Steering knuckles Disk brake calipers Crankshafts Gears ft-lbf Impact strength (Charpy) 63–65.5 6-10 9.9 80 552 F34100 kpsi 60 MPa UNS No.1 68.5–64g 9.0 kpsi 1240–1380 180–200 620–1040 690 690–1100 480–690 920 1515 386 362 359 MPa Compression. 1988.2 47. Air-quenched and tempered. E 164 165 163 164 GPa 23. suc 875 504 475 472 126. Liquid-quenched and tempered.9 73. Any use is subject to the Terms of Use as given at the website.3 90–150 100 100–160 70–100 133. F32800 414 Alloy cast irons Medium-silicon gray iron High chromium gray iron High nickel gray iron Ni-Cr-Si gray iron High-aluminum gray iron Medium-silicon ductile iron High-nickel ductile iron (20Ni) High-nickel ductile iron (23Ni) Durion Mechanite SAE j 434C 120-9002h D4018 D4512 D5506 D7003 80–55– 06h 100-7003h Nodular (ductile) cast iron Grade 60-40-18 ASTM A395-76 ASME SA 395 ASTM 80-60-03 A476-70(d) SAE AMS5316 ASTM 60-40-18h A536-72 MIL-I-11466 B(MR) 65-45-12h Material.  su MPa kpsi Torsional/ shear strength.8 Mpsi Compression.6 23. specification Tension. % J Valves and fittings for steam and chemical plant equipment Paper-mill dryer rollers Mpsi Shear. E Typical application 9.3–9.8 23.5 52.559 758 F33800 F34800 1.4 24.0 56. Minimum values of u in MPa (kpsi) are given by class number.9 23. Annealed. g f e d c b a 24–45 30–90 25–45 20–45 34–90 60–100 55–60 58–65 16 35–55 60 65 80 100 141.1 67. G 18 GPa Modulation of elasticity PROPERTIES OF ENGINEERING MATERIALS . gears.3g 11.3g 1.5 48.2–9. Calculated from tensile modulus and Poisson’s ratio in tension.5 Mpsi Tension.1–9.18 Downloaded from Digital Engineering Library @ McGraw-Hill (www. sut Ultimate strength TABLE 1-3 Mechanical properties of typical cast ferrous materialsa (Cont. Heat-treated and average mechanical properties.9 68. s 40 45 55 70 125. 170–310 210–620 170–310 140–310 235–620 415–690 380–415 400–450 110 241–380 414 448 552 689 974 464 F33100 F36200 461 F32800 66.5 220.com) Copyright © 2004 The McGraw-Hill Companies. Metals Park. HB GPa 23 12 23.5 24. 6 125. notch depth 2.04 in).460 0.19 . 0.135 in)].8 in).4 mm (0. 1993.1 6. snt 0.1 6.1 12.5 mm (0.26 0.0 14.25 0.5 50. Unnotched 8. 32. V-notched [circumferential 458 V-notch with 0.  kg/m3 lbm /ft3 mm/mK min/in8F kJ/kg K Btu/lbm 8F Coefficient of the thermal expansion.0 18. Other properties may differ slightly from those given.0 6.4 in).18 0.0 11.2 37.0 8.4 25.1 32.5 0.4 13.460 0.5 32. sc Modulus of elasticity.digitalengineeringlibrary.50g 0. notch depth 3.0 40.7 5.0 17.1 7.0 16. Values depend on the composition of iron.1 6.5 104.0 12.5 12.7 FG 220 220 62e 143d a 29.420 0.5 mm (0.3 19.1 50.2 15.7 2.com) Copyright © 2004 The McGraw-Hill Companies.5 mm (0.1 6.5 30.0 20.0 23. G 320a 400b 280a 250b 240a 300b 208a 260b 176a 120b 160a 200b 120a 150b MPa 46. sf 145 140 135 128 120 114 100 GPa 21. c Poisson’s Density.5 14.5 43.6 28.4 21.1 6.95 9.1098 0.4 17.1 58.82 8.2 kpsi 460 403 345 299 253 230 173 MPa 66.460 0.0 11. All rights reserved. 174.26 0.  ratio. diameter at notch 8.6 449.4 mm (0.3 mm (0.22 0.2 37.0 6.1098 0.8 14.460 0.8 34.6 18.1 18.6 50.0 11.1089 0.4 58.17 0.0 45.0 43.8 kpsi Notched tensile strength.0 11.04 in) root radius.63g 180–220 0.2 MPa FG 150 150 42c 98d Grade Tensile strength. Poisson’s ratio  ¼ 0:26.1089 0.1 0. depth of notch 3.6 14.0640 Specific heat capacity at 20 to 2008C. Circumferential notch radius 9.35 8.4 MPa 68e 68f 90e 87f 99e 94f 117e 108f 135e 127f 149e 129f 152e 127f Fatigue limit.59 8.6 17.2 28.0 20.4 mm (0. notch depth 2.8 in).1 6.8 Mpsi Modulus of rigidity.2 33.4 48. notch diameter 7. where the tensile strength does not correspond to that given. Source: IS (Indian Standards) 210. % Brinell hardness HB 0.4 16.4 16.0 11.3 21.75g 130–180 Total elastic strain at fracture.48–0.336 in) diameter.50g 0.7 455.4 16.6 17.05 8.132 in).4 66.4 7.9 9. root diameter 20 mm (0.7 19.0 111. Any use is subject to the Terms of Use as given at the website.1 kpsi Shear strength.7 452.5 75. st TABLE 1-4 Typical mechanical properties of gray cast iron PROPERTIES OF ENGINEERING MATERIALS 1.36 in).1% proof stress.25 W/m2 K Btu/ft2 h8F Thermal conductivity at 1008C.6 mm (0. % 0.6 18.5 Mpsi Tension 145 140 135 128 120 114 100 GPa 21.6 18. h g f e d c b 1200 224 520 1080 196 455 960 168 390 864 146 338 768 123 286 720 112 260 600 84 195 MPa Compressive strength.3 440.26 0.0 11.8 50.75 8.4 21. E Circumferential 458 notch-root radius 0.375 26.2 in) diameter separately cast test bar or in a casting section correctly represented by this size of test bar.8 FG 200 200 56c 130d kpsi 21.0 20.8 52.2 29.8 6.7 25.7 47.37.7 FG 260 260 73c 169d FG 300 300 84c 195d FG 350 350 98c 228d FG 400 400 112c 260d Downloaded from Digital Engineering Library @ McGraw-Hill (www.8 43.6–0.01% proof stress.336 in).7 58.9 13.39–0.5 7.0 15.1 11.26 0.1003 0.7 10.7 87.20 0.5 446.28 0.2 24.5 14. notch diameter 20 mm (0.25 mm (0.8 41.67g 160–220 0. 0.50g 0.15 Elastic strain at failure. K Note: The typical properties given in this table are the properties in a 30 mm (1.8 7.2 49.  s kpsi 9.6 17.4 36.4 443.5 Mpsi Compression 58 56 54 51 48 46 40 GPa 8.38 in).25 mm (0. .4 56.6 24.0 139.3 19.6 18.0 9.26 0.7 33.2 37.26 0.0896 0.26 7300 7300 7250 7200 7150 7100 7050 455.4 156.57g 207–270 207–241 180–230 180–230 0. 20 to 2008C 44.4 8.3 50.4 in). 1101 0.5 31.2 24.0 11.5 24.2 25.3 443.3 58.7 240 34.4 210 30.275 67.461 0.7 31.0 44.5 25.5 7 420 61.1 6.1) 12.2 24.3 310 45.44–8.1101 0. G 11.com) Copyright © 2004 The McGraw-Hill Companies.3)c 17.5 447.0 2 600 87.2 25.40 32.44–8.3 lbm /ft3 Density 0.53 5.72 6.275 0.3 kpsi MPa 810 720 630 540 45 405 360 360 315 7150 7200 7200 7170 7100 7100 7100 7100 7100 kg/m3 117.461 0.1 6.3 (8.0b (14.3 65.56 9.5 24.6 86.3 15 370 53.8 52.9 GPa Poisson’s ratio.5 24.digitalengineeringlibrary.5 24.1 lin/in 8F at 208 to 2008C b 6.5 36.0 32.3 443.2 25.1 1 600 87.0 2 650 94.4 7 450 65.4 15 370 53.4 2.43 6.7 kpsi Shear strength.461 0.5 MPsi Com Modulus of rigidity.0)c J Thermal coefficient of linear expansion.4 2.5 Ten 24.4 2. All rights reserved.56 Mpsi Modulus of.3) ft-lbf Impact values min (23 58C) 9.3 (8.8 220 32.0) 10.44–8.2–2.1 68.1101 Btu/lbm 8F Specific heat.5 24. HB 14 12b 17b 15b b 10.95 9.86 9.9 18 320 46.275 0. Any use is subject to the Terms of Use as given at the website.3 300 43. st min Elongation is measured on an initial gauge length L ¼ 5d where d is the diameter of the gauge length of the test pieces.56 9.4 449.  kpsi MPa kpsi 0.1 6. c at 208 to 2008C kJ/kg K (11) (9)c (14)c (12)c c 33.5 24. c Individual value.95 9.0 in 317 304 280 248 224 210 195 195 180 MPa 46. at 1008C Ferrite Ferrite Ferrite Ferrite + pearlite Ferrite + pearlite Pearlite Ferrite Ferrite Pearlite Pearlite Ferrite and pearlite Ferrite and pearlite Predominant structural constituent Mean value from 3 tests on V-notch test pieces at ambient 6.1101 0.5 107. sc 446.1 kpsi Fatigue limit.20 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 11.43 Btu/ft2 h8F Thermal conductivity.80 35.6 (3.5 36.5 24.3 15 400 58.  Elongationa %.275 0.8 340 49.4 91.30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200 30–60 61–200 mm 1.1101 0.1101 0.0 22 MPa Tensile strength.53 5.0 360 52.0 250 36.1 40.0 11.5 46.5 (11.8 12 330 47.6 250 36.44–8.275 0. 1991.2–2.2–2.5 320 46.5 28.275 0. Source: IS 1865.4 2.7 52.6 35.8 (6.3 380 55. sc Grade SG 350/22A SG 400/18A SG 400/15A SG 500/7A SG 600/3A SG 700/2A SG 900/2 SG 800/2 SG 700/2 SG 600/2 SG 500/7 SG 450/10 SG 400/15 SG 400/18 SG 350/22 Grade Typical casting thickness TABLE 1-5 Mechanical properties of spheroidal or nodular graphite cast iron PROPERTIES OF ENGINEERING MATERIALS .0 11.0 1.0 250 36.0 11.8 12 390 56.0 11.1 41.2) 12.4 78.0 1.2–2.9 65.275 0.461 0.1) 8.1 6. sc 1.461 0.5 400 58.0)c 14. temperature.6 2 700 101.275 0.56 9.4 2.44–8.43 6.40 31.461 0.25 6.44–8.3 31.3 1 450 65.9 65.43 6.0 370 53. MPa Compression strength.5 600 87.2 45. Elasticity E 169 169 169 169 169 174 176 176 169 Ten GPa 169 169 169 169 169 174 176 176 169 Com 24.0 1.3 26.0)c 17.5 36.5 (10.3 28.0 290 42.0 lm/m K Measured on test pieces from cast-on test samples 700 101.461 0.4 2.6) 12.5 420 61.2–2.6 443.0 480 69.275 0.5 30.90 5.6 250 36.1 6.9 2231.0 11.6 67.2 52.1101 0.0 1.2 2 550 79.5 39.3 443.0b (11.1 6.2 25.5 449.0 11.9 65.6 18 350 50. sy min 9.7 2 500 72.3) 11.0 1.73 9.5 24.0 5 390 56.461 0.5 25.3 443.2% Proof stress.1 6.5 W/m2 K 5.1101 0. 550 362 318 286 272 253 216 216 181 SG 900/2 SG 800/2 SG 700/2 SG 600/2 SG 500/7 SG 450/10 SG 400/15 SG 400/18 SG 350/22 79.2–2.5 36.3 31.85 9.0 2 800 116.1 (8.7 240 34.1101 0.0b (4.8) 0.9 65.0 10 400 58.0b (15.1 6. min Measured on test pieces from separately cast test samples 900 130.50 36.5 (10.461 0.6 15 a 150 130–180 130–180 170–240 180–270 220–320 280–360 245–335 225–305 190–270 160–240 160–210 130–180 130–180 150 Brinell hardness.9 65. 7–68.5–1.4 15.080 0. Good bearing properties.0–32.8 10.5 0.3 16.0 18.3–21. valves.22 2.9 20.0–22.0–22.22 2.5–2.8 30.0–14.5–3.5–5.2 13.5–1.2 56.7–36.0 14.6 12. 1974.0–24.0 3.5–1.5 0. min hardness.0 462.080 0.4 2.5 <0.2 2.2 7.5 53.5–3.0 1.0 18.9–5. 140–150 112–130 112–133 112–133 85–112 120–140 112–130 92–105 91 112–140 112–123 ASG Ni 13 Mn 7 ASG Ni 20 Cr 2 ASG Ni 20 Cr 3 ASG Ni 20 Si 5 Cr 2 ASG Ni 22 ASG Ni 23 Mn 4 ASG Ni 30 Cr 1 ASG Ni 30 Cr 3 ASG Ni 30 Si 5 Cr 5 ASG Ni 35 ASG Ni 35 Cr 3 16. min Properties and applications 210–260 210–250 210–260 210–260 170–250 210–240 210–270 210–260 240–310 210–240 210–290 MPa 0.6–66.com) Copyright © 2004 The McGraw-Hill Companies.5–37. % TABLE 1-5A Chemical compositiona and mechanical propertiesc of spheroidal graphite austenitic cast iron PROPERTIES OF ENGINEERING MATERIALS 1.2 30.7 462.5 0.5–37.0 1.2–19.9 13.5 0.4 53.3–16.0–27.4 18.5 0.7 8.0 24.5 53.6 12.4 10.2 17. Power lower linear coefficient of expansion.2 53.8 63.0 28.0 462.080 0.9 20.2 Brinell Impact valuesd .080 0. Elongation is measured on an initial gauge length L ¼ 5d where d is the diameter of the gauge length of the test pieces. HB J ft-lb Non-magnetic. Source: IS 2749.5 2.080 0.2% proof stress.5 0.6–68.3.7 2.5 1.2 1.080 0.6 2.0–22.0–24. filter parts and exhaust gas manifolds. Used for pumps.0 18. a GPa Grade Modulus of elasticity E Cmax Grade Chemical compositiona .5–37.6 2.4 ASG Ni 13 Mn 7 ASG Ni 20 Cr 2 ASG Ni 20 Cr 3 ASG Ni 20 Si 5 Cr 2 ASG Ni 22 ASG Ni 23 Mn 4 ASG Ni 30 Cr 1 ASG Ni 30 Cr 3 ASG Ni 30 Si 5 Cr 5 ASG Ni 35 ASG Ni 35 Cr 3 Downloaded from Digital Engineering Library @ McGraw-Hill (www. Corrosion and heat resistance.2 18. compressor exhaust gas manifolds.0 11.0 4. Used in machine tool parts.6 14.0 1.0–3.5 4.1 kpsi 15–25 7–20 7–15 10–18 20–40 25–45 13–18 7–18 1–4 20–40 7–10 Elongation %.0 8.5 12.5 0.1 10.5 474. and parts requiring dimensional stability.5–1.5 0.5 0.3 17.0 30.5–3.5 0.5 0.5–3. valves and turbocharger gas housing.0 462.4 lm/m K lin/in 8F at 20 to 2008C 2.080 0.5–39.3 8.22 Btu/ft2 h8F Thermal conductivity.6 2. Used in gas turbine housings and glass molds.2 8.080 0.0 8.0 5. etc. Any use is subject to the Terms of Use as given at the website. sy min b 130–170 140–200 150–255 180–230 130–170 150–180 130–190 140–200 110–250 130–180 140–190 15.9 11.0 W/m2 K 12.0 1.7–68.7 34.5–5.5–37.5 0.4 53.0 462.0–36.5 0.0 7. Hence used as pressure covers for turbine generator sets.3 16.8 kpsi Tensile strength. etc.7 24.7 30.2–17.6 12. scientific instruments.7 12.080 0.6 12.digitalengineeringlibrary.0 3.2–20.0–2.22 2.7 18.8 16.8 30.2 56.6 12.1 53.5–2.5–3. 7300 7400 7400 7400 7400 7400 7400 7400 7400 7600 7600 kg/m3 Density b Unless otherwise specified. Used in valves.1–20.6 12.5 Cumax 2.5 0.8 12. High impact properties up to 1968C and non-magnetic.5 0.3 20. High value of linear expansion and non-magnetic.5 0.5 1. glass molds.3 1. c Measured on test pieces machined from separately cast test samples.5–3.0 462. Possess lower linear thermal expansion. Used in pump components.5–1.22 2.1 5.6–70.3 2.  6.3 10.5 13.5 1.6 0.5 0.7–59.2–19. housing for insulators.6 2.0 Si 0.5–1.3 30.5 2.5–3. Used in castings for refrigerators.1 6. Used in exhaust manifolds and pumps.7–62.5 <0.22 2.6 12.0 462.0–33.5 1.6 12.0 2.0 1.5–27.5–3.9–4.0 10.6 12. valves.0–3. valves. valves.5–1.22 2.2 16.0 21.3–15.7–63.0–3.9 Mpsi 12.0 34.7–63.5 lbm /ft3 390–460 370–470 390–490 370–430 370–440 440–470 370–440 370–470 390–490 370–410 370–440 MPa 56.5–42.4 14.0 1.0 10.8–45. Used in pumps.5–34.0 34. turbo-supercharger housings and bushings.0 462.5 4.0 3.7 30.080 0.0 0.0–36.22 2.5 0.0 Ni Thermal coefficient of linear expansion.8 2.0–7.2–18. Used in boiler pumps.0–32.22 2. All rights reserved.4–20. flanges and switch gears.5–36.0 17.21 . other elements may be present at the discretion of the manufacturer.0–2.0 18.8–24.5–34.0 474.0 3.2–18.6 12. st min 30.0–4.7 53.0–32.3 30. d Mean value from 3 tests on V-notch test pieces at ambient temperature.5 3. Good resistance to corrosion.0–6.0 28.080 0. compressor and exhaust gas manifold and turbocharge housings.5 Mn 5 5 18.6–71.6 12. pump components and components subject to high pressure.22 2.0 14.0–20.5–1. provided they do not alter the micro-structure substantially.0 22.5 7.3 16.0–1.7–62. or affect the property adversely. K Pmax Cr 455.0 28.22 2. 9 37.38 Btu/ft2 h8F Thermal conductivity.7–159.5 101.0 34.0–14. E Non-magnetic.5 27. All rights reserved.5 0.11–0.0 1.8 1.12 0.7–41.5 0.5–17.5–1.64–7.0–2.4 14.64–7.0 AFG Ni 13 Mn 7 AFG Ni 15 Cu 6 Cr 2 AFG Ni 15 Cu 6 Cr 3 AFG Ni 20 Cr 2 AFG Ni 20 Cr 3 AFG Ni 20 Si 5 Cr 3 9.0 3.3–32.9 37. corrosion.5–1. food and plastic industries.0 3.2–16.22 Downloaded from Digital Engineering Library @ McGraw-Hill (www.com) Copyright © 2004 The McGraw-Hill Companies. valves.0 5.4 12.64–7.0 81.5 0.0 AFG Ni 30 Cr 3 AFG Ni 30 Si 5 Cr 5 AFG Ni 35 6.7–159.7 455. and heat.8 27.5 0.9 37.7–41.3–15.8 1.5–3.11–0.5–1.7 455. min 630–840 700–840 860–1100 700–840 860–1100 860–1100 700–910 560 560–700 MPa 91.0 29.38 6.5–7.8 17.6–34.4 AFG Ni 13 Mn 7 AFG Ni 15 Cu 6 Cr 2 AFG Ni 15 Cu 6 Cr 3 AFG Ni 20 Cr 2 AFG Ni 20 Cr 3 AFG Ni 20 Si 5 Cr 3 AFG Ni 30 Cr 3 AFG Ni 30 Si 5 Cr 5 AFG Ni 35 12. Measured on test pieces machined from separately cast test pieces/samples.5 0.0 0.0–7.5 0.5–7.1. Resistance to thermal shock and heat.0–36.5 2. Possess high coefficient of thermal expansion. housing for switch gears and terminals.5 4.5 0.0–2. Used in pumps.9 37.5 2.7–41.2 14. Resistance to erosion.7–41.64–7. Any use is subject to the Terms of Use as given at the website.7 455.7–30. piston ring covers for pistons.5 0.2–13.6–40.5 13.64–7.2 1.7 18.5–5.5 1.9 W/m2 K 6.7–41. 1974. and ducts. sut Properties and applications 120–150 140–200 150–250 120–215 160–250 140–250 120–215 150–210 120–140 Brinell hardness.2 14. c 12.5–121.38 6.0 lm/m K lin/in 8F at 20 to 2008C Grade 0.5–3.0–6. provided they do not alter the microstructure substantially. Not suitable between 500 and 6008C. resistance to corrosion and erosion.7–41.9 37.7 Mpsi Modulus of elasticity.0–2.0–22. a 17. Source: IS 2749.0–2.9 37.9 37.8 24.11–0.5–3.0–22.11–0.1 2.38 6.7 18.0–2.4 16.0–32.11–0.4 10.digitalengineeringlibrary.5–3.5 0.11–0. erosion. bushings.4 10.7–30.12 0.5–4.7–41.5 101.0 28.12 0.5–132.12 0.64–7. Resistance to corrosion.38 6. filters.2 Cr Specific hear. % TABLE 1-5B Chemical compositiona and mechanical propertiesb of flake graphite austenitic cast iron PROPERTIES OF ENGINEERING MATERIALS .5 0.11–0.5 1.8 1.8 124.0–32.0 3.12 0.8 4.2–101. valves. Used in pressure covers for turbine generator sets.5 5.5–17.5–1.7 lbm /ft3 Density 1.7 455.0 18.0 18.5–1.0 1.5–121. turbine housings.0 24. Possess low thermal expansion and resistant to thermal shock.2 10.5 2.5 Cu 140–220 170–210 190–240 170–210 190–240 190–280 190–240 170–240 120–180 MPa 20.12 0.5–1. Used in components for industrial furnaces. Used in high temperature application.2–15.5–1.5 0.7–159.7 455. corrosion.0 13.12 0.7 18.64–7.6 27. glass molds and in such other parts where dimensional stability is required 455.0 3. pressure vessels.5–5. furnace components.9 37.38 6.38 6.1 12.5 0.64–7.38 6. heat.0–2.0 3. Possess average thermal expansion. st min – 2 1–2 2–3 1–2 2–3 1–3 – 1–3 Elongation %.11–0.4–26.12 0. HB 70–90 85–105 98–113 85–105 98–113 110 98–113 105 74 GPa 10.7 18.5 2.5 124.7–41.3 10.0 Ni J/kg K 6.2 81.4 10. and heat.8 124. Used in soap.5 2.3–15.5–1. and pump components. valves.4–121.5 0. Resistance to erosion.2–16. Used for pumps handling alkalis.0 14.5 18.5 5.5 Mn Thermal coefficient of linear expansion.4 10.0–2.6 5.5 kpsi Ultimate compressive strength.2 15.4–34.5 2. Used for pumps.38 6. Good bearing properties.6–34.7 455. or affect the properties adversely.5 1.8 460–500 460–500 460–500 460–500 460–500 460–500 460–500 460–500 460–500 0.  Si C Grade Chemical composition. corrosion at high temperature.0–22.7 455.9 8.7 455.7–41.1 kpsi Tensile strength.5 27.7 18.6–34.11–0. Used for scientific instruments.8 101.12 Btu/lbm 8F 7300 7300 7300 7300 7300 7300 7300 7300 7300 kg/m3 37. b Unless otherwise specified other elements may be present at the discretion of the manufacturer.8 27.0 2. exhaust gas manifolds.5 0.64–7.0–2. K 0. 25–0. .com) Copyright © 2004 The McGraw-Hill Companies.5–78.7–113.60–0.1–98. 1979.50 0.20–0.70 0.5–58.90 0. All rights reserved.10–0.3 68.90 0.50–0. min (if specified) PROPERTIES OF ENGINEERING MATERIALS 1.0 49.30–0.0 61.55 0.4 min 104.40 0.56 a round test piece) 40.30–0.10–1.6 40.40–0.30–0.10–0.30–0.60 0. st Notes: a .12 max 0. area of cross section.55 0.2–82.35 41.7 91.5–87. Mn 75 ¼ average content of Mn is 0.30–0.60–0.60–0.4–90.0–72.90 0.55–0.digitalengineeringlibrary.4 min 108.60 0.1 104.35 ft-lbf 55 55 J Izod impact value.7 72.6 40.90 1.90 0.90 0. Old New Designation TABLE 1-6 Carbon steels with specified chemical composition and related mechanical properties 27 26 26 25 25 24 23 22 21 20 20 18 15 13 11 13 11 10 Elongation.8–94.6–71.4–70.60 0.15–0.40 0.23 Downloaded from Digital Engineering Library @ McGraw-Hill (www.60–0.6 40.40 0.5 55 55 41.8 min 108.90 0.35 0.20 max 0.5 63.18 0.70 %C 0.5–75.45 0.0 53.50 max 0.60 0.6–65.30 0.60–0.5 30.30 0.65 0. Any use is subject to the Terms of Use as given at the website.0 75.(C 07) (C 10y) (C 14y) (C 15) (C 15 Mn 75) (C 20) (C 25) (C 25 Mn 75+) (C 30+) (C 35) (C 35 Mn 75+) (C 40+) (C 45+) (C 50+) (C 50 Mn 1) (C 55 Mn 75+) (C 60) (C 65) 7C4 10 C 4 14 C 6 15 C 4 15 C 8 20 C 8 25 C 4 25 C 8 30 C 8 35 C 4 35 C 8 40 C 8 45 C 8 50 C 4 50 C 12 55 C 8 60 C 4 65 C 6 0.60–0.60–0.25 0.90 0. + steel for hardening and tempering.20 0.50–0.75%.8 min kpsi Tensile strength.80 % Mn 320–400 340–420 370–450 370–490 420–500 440–520 440–540 470–570 500–600 520–620 550–650 580–680 630–710 660–780 720 min 720 min 750 min 750 min MPa 46.0 95.50–0.45–0.4–103.0 79.20–0. % (gauge length ffi pffiffiffiffi 5.60–0. Source: IS 1570.60–0.60 0.4 63.15 max 0.45–0.0 53.40–0.30–0. y steel for hardening.60–0.90 0.35–0.6 30.3 84.80 0. 70 % Mn 0.(10 S 11) (14 Mn 1 S 14) (25 Mn 1 S 14) (40 S 18) (11 S 25) (40 Mn 2 S 12) 10 14 25 40 11 40 0.50 0.35–0.08–0.10–0.0 87.80–1.25 max 0.30 0. Any use is subject to the Terms of Use as given at the website.2 35. steel for case hardening.060 0.3 72.  .14–0.0) 60 (2.05–0.20–1. . Source: IS 1570.7–71.2) 30 (1.25 max 0.13 0.4) 30 (1.90 1.0 79.060 0. area of cross section. st 24* 22* 20* 17* 22* 15* Minimum elongation.24 Downloaded from Digital Engineering Library @ McGraw-Hill (www.20–0.60–0.0 53.10–0.7–71.00–1.20 1.6 30.060 0.08–0.30 0. Minimum values of yield stress may be required in certain specifications.20–0.45 0. All rights reserved.80–1.65 a ) 40.15 0.manganese free . and in such case a minimum yield stress of 55 percent of minimum tensile strength should be satisfactory. C 8 S 10 C 14 S 14 C 12 S 14 C 10 S 18 C 10 S 25 C 15 S 12 Old New Designation TABLE 1-7 Carbon and carbon .22 0.15 %S 0.5 kpsi Tensile strength.060 370–490* 440–540 500–600* 550–650* 370–490* 600–700* %P (max) MPa 53.com) Copyright © 2004 The McGraw-Hill Companies.18 0.30 0.25 max % Si 0.8–94.0 63.0–101.060 0.18 0.45 %C 0. J ft-lbf mm (in) Notes: a .digitalengineeringlibrary.35–0.10–0.30 0.18 0.05–0. Limiting min (if specified) ruling section.08–0.2) Izod impact value. % (gauge length pffiffiffiffiffiffi ffi 5.10 max 0.30–1.5–87.8–78.50 1.060 0.15 max 0.cutting steels with specified chemical composition and related mechanical properties PROPERTIES OF ENGINEERING MATERIALS 1.20 0. 1979.4 55 41 48 100 (4. 7 25.7 341.3 140.3 330.8 551.3 31.3 44.0 18.8 65.5 21.0 620.0 60.8 9.0 30.2 36.0 62.7 123.0 50.0 147.4 41.9 748.0 12.0 37.0 18.0 48.2 64.3 667.0 50.1 284.0 28.7 723. st 558.0 51.4 584.0 33.6 34.7 55.0 21.3 44.0 58.5 47.0 32.0 13.3 118.2 52.0 75.0 54.5 85.0 67.0 23.6 13.0 112.0 64.0 386.2 84.9 48.5 965.2 27.4 344.0 53.2 441.0 17.5 67.8 305.0 9.7 625.8 ft-lbf Izod impact strength PROPERTIES OF ENGINEERING MATERIALS 1.0 86.0 41.9 346.8 467.7 344.3 61.4 39.0 39.9 379.1 16.0 9.0 48.3 42.7 17.3 50.7 50 40 Reduction in area.9 66.5 294.4 2.5 56.7 775.0 50. % 62.0 61.3 1013.0 108.4 413.25 .6 372.4 279.com) Copyright © 2004 The McGraw-Hill Companies.3 80.6 93.5 589. Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As-rolled Normalized Annealed As rolled Normalized Annealed Hot-rolled Cold-drawn Treatment 870 800 900 790 900 825 900 790 900 790 900 790 900 790 925 845 870 870 – 925 870 8C 1600 1475 1650 1450 1650 1575 1650 1450 1650 1450 1650 1450 1650 1450 1700 1550 1600 1600 – 1700 1600 8F Austenitizing temperature TABLE 1-8 Mechanical properties of selected carbon and alloy steels 836. G10100 G10150 G10200 G10300 G10400 G10500 G10600 G10950 G11170 G11440 G13400 AISIa no.0 69.1 44.0 60.digitalengineeringlibrary. % 248 207 212 197 167 143 137 121 293 293 192 241 229 179 229 217 187 201 170 149 179 149 126 143 131 111 126 121 111 95 105 Brinell hardness.5 83.0 353.5 75.0 40.8 70.5 92.6 69.0 60.5 70.0 60.6 67.5 48. Any use is subject to the Terms of Use as given at the website. 1010 1015 1020 1030 1040 1050 1060 1095 1117 1144 1340 Downloaded from Digital Engineering Library @ McGraw-Hill (www.3 65.1 81.0 37.1 320 370 MPa 121.5 115.8 69.6 424.0 54.3 85.5 32.7 324.0 49.9 346.5 55.4 65.8 33.5 365.7 420.0 J 68.0 37.4 180 300 MPa 81.2 40.0 72.7 813.3 703.0 4.5 115.5 436.1 5.7 374.7 448.9 50.0 61.1 93.UNS no. HB 92.4 110.0 96.3 102.0 40.6 4.7 486.3 41.5 656.0 3.0 69.3 45.3 61.4 420.9 57.5 518.5 13.4 86.0 2.7 427.3 703.2 572.8 36.1 429.8 62.0 57.0 25.2 32.0 20.0 63.8 84.0 463.5 90.0 22.3 394.3 90.0 70.0 32.6 420.0 24.3 413.3 51. sy 22.9 57.0 81.9 59.8 313.3 23.0 35.0 61. All rights reserved.0 62.0 85.2 482.2 57.8 58.8 91.0 102.0 28 20 Elongation in 50 mm (2 in).3 26 44 kpsi Yield strength.0 39.5 52.5 39.0 54.6 520.3 63.8 117.6 399.2 11.4 303.2 38.6 69.5 20.3 499.5 36.5 20.0 32.0 95.1 636.0 20.0 47 53 kpsi Tensile strength.8 105.8 57.3 74.0 13.0 63.9 43.0 31.7 8. 3 74.3 87.8 560.0 81.5 25.6 13.1 484.2 59.3 512.5 55.3 379.7 59.5 689.4 30.6 792.2 28.5 932.5 88.8 63.7 37.com) Copyright © 2004 The McGraw-Hill Companies.2 23.0 58.9 50.5 357.8 70.8 51.0 20.1 61.0 8. Source: ASM Metals Handbook.3 49.5 119.8 70.9 579.8 472.8 29.7 53.4 41.2 18.4 J All grades are fine-grained except for those 1100 series.5 18. 1988 a UNS no.0 48.8 40.3 98. AISIa no.8 76.7 415.2 1154.505 in) in diameter which were machined from 25 mm (1 in).8 126.3 81.8 97.0 681.7 21.3 129.0 21.3 96.5 108.1 42.8 Reduction in area.3 54.0 31.8 429.3 929.2 20.9 93.0 650.7 464.1.0 135.0 6.6 95.7 16.0 20.7 86.4 31.4 61.5 34.4 58.5 MPa 131.7 750.2 26.5 105.6 46.0 68.1 72.6 599.0 70.2 574.3 100.5 13.0 366.0 744.3 62.3 615.3 112.0 22.1 54.8 17.3 185.5 Elongation in 50 mm (2 in).1 606.5 98. G31400 G41300 G41500 G43200 G43400 G46200 G48200 G51500 G61500 G86300 G87400 G92550 G93100 3140 4130 4150 4320 4340 4620 4820 5150 6150 8630 8740 9255 9310 Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Normalized Annealed Treatment 890 845 900 845 870 815 870 845 870 815 870 825 860 815 900 855 870 810 895 850 870 815 870 865 870 815 8C 1630 1550 1650 1550 1600 1500 1600 1550 1600 1500 1600 1520 1580 1500 1650 1575 1600 1490 1640 1560 1600 1500 1600 1585 1600 1500 8F 906. which are coarse-grained.0 89. st 570.75 mm (0.0 609.3 19.8 675.7 88.1 47. All rights reserved.2 25.2 35.0 kpsi Tensile strength.2 564.8 667.0 60.2 19.8 11.0 29.2 63.4 360.8 84.8 100.6 15.7 60.3 134.7 24.9 51.0 109.0 22.3 67.5 372.5 27.5 24.digitalengineeringlibrary.3 29. % 269 241 269 229 269 201 187 156 269 197 255 197 229 197 174 149 363 217 235 163 321 197 197 156 262 197 Brinell hardness.0 11.7 22.6 8.3 1279.8 23. American Society for Metals.8 94.3 52.0 61.6 106.7 820.9 579.8 81.2 ft-lbf Izod impact strength 53.4 870. Values tabulated were averaged and obtained from specimen 12.4 695.5 58.2 22.3 12.0 939. % 58.6 57.3 529.3 53.6 MPa 82.1 43.0 94.1 372.6 40. rounded gauge lengths were 50 mm (2 in).2 486.2 58.8 66.8 92.0 69. Ohio.4 53. Heat-treated specimens were oil-quenched unless otherwise indicated.9 46.0 115. HB 119.9 109.0 125.7 43.7 58.7 412. Austenitizing temperature TABLE 1-8 Mechanical properties of selected carbon and alloy steels (Cont.7 45.9 729.) PROPERTIES OF ENGINEERING MATERIALS .9 61.2 23.3 50.9 439.0 84.5 67.5 891.0 167. sy 18.5 55.0 68.9 132.5 98.3 78.5 668.5 29.0 11.5 81.3 861.0 10. Metals Park.0 63.8 136.26 Downloaded from Digital Engineering Library @ McGraw-Hill (www.5 69.3 59.7 20.3 kpsi Yield strength.8 17.0 24.8 422.1 109.3 36.8 83.2 436.5 734.3 464. Any use is subject to the Terms of Use as given at the website.9 774.5 39. 65 a ) Gr 1 Gr 2 620 700 90.5 75.5 0.15 0.2 36. Downloaded from Digital Engineering Library @ McGraw-Hill (www.7 32.4-0. All rights reserved.27 TABLE 1-9 Mechanical properties of standard steels Tensile strength.5 320 370 46.65 a ) Fe 290 Fe E 220 Fe 310 Fe E 230 Fe 330 Fe F 250 Fe 360 Fe F 270 Fe 410 Fe E 310 Fe 490 Fe E 370 Fe 540 Fe E 400 Fe 620 Fe E 460 Fe 690 Fe E 520 Fe 770 Fe E 580 Fe 870 Fe E 650 (St 30) – (St 32) – (St 34) – (St 37) – (St 42) – (St 50) – (St 55) – (St 63) – (St 70) – (St 78) – (St 88) – 290 290 310 310 330 330 360 360 410 410 490 490 540 540 620 620 690 690 770 770 870 870 42.05 0.3 90.30 0. All castings shall be free from distortion and harmful defects.0 47.0 100. Any use is subject to the Terms of Use as given at the website.2 170 220 180 230 200 250 220 270 250 310 290 370 320 400 380 460 410 520 460 580 520 650 24.4 53.com) Copyright © 2004 The McGraw-Hill Companies. Unless agreed upon by the purchaser and the manufacturer. or nomalized and tempered condition.0 90.7 59.5-0.0 0.80 0. and machinable.4 58.60 1.15 0. 1973. sy New Old MPa kpsi MPa kpsi Elongation in 50 mm (gauge pffiffiffiffiffi length 5.3 32.0 26.1 78.7 84.60 0.4 29.3 50.9 52.7 126.80 Yield strength.0 111.40 0.0 100.0 101.2 52. TABLE 1-10 Chemical composition and mechanical properties of carbon steel castings for surface hardening Chemical composition (in ladle analysis) max. fettled.1 33. They shall be well-dressed.4 94.40 0. Source: IS 1570.05 0. sy Tensile strength.7 12 8 Brinell hardness HB 460 535 Notes: a area of cross section of test specimen.0 45. .5 59. Source: IS 2707.3 27 27 26 26 26 26 25 25 23 23 21 21 20 20 15 15 12 12 10 10 8 8 Note: a area of cross-section of test specimen. castings shall be supplied in the annealed.2 59.1 66.25 0.7 46. % min (gauge length pffiffiffiffi ffi 5.05 0.0 39.0 53.2 126.0 45.1 75.5 71.30 0.7 111.25 0.0 42.9 47. % Designation C Si Mn S P Cr Ni Mo Cu Residual elements Gr 1 Gr 2 0.0 42.1 71.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS 1.0 36.0 55. 1978. st Designation Yield stress.0 1.4 66.digitalengineeringlibrary.05 0.6 0.3 78. st Designation Mpa kpsi Mpa kpsi Elongation. 20–0.80 0.80 1.12–0.30–1.18 0.45–0.35 0.50 1.70 0.60–1.12–0.0.60–1.20–0.42 0.30 1.00–2.80 0.80–1.40 0.35–0.28 Downloaded from Digital Engineering Library @ McGraw-Hill (www.60–1.00 1.10–0.25 1.80 0.14–0.90–1.10–0.20 0.40–0.20–0.00–1.10 1.80–1.35 0.50–0.40–0.70 0.75 2.70 0.40–0.10–0.90–1.digitalengineeringlibrary.40 0.30 max 0.80–0.50 1.20 0.10–0.00–1.90–1.06–0.35 1.035 max.10–0.90 1.40–0.45 0.12–0.10–0. Any use is subject to the Terms of Use as given at the website.10–0.23 0.70 0.00–1.25 0.70 0.70 0.80 0.70 0. Source: IS 4367.75–1.60–0.90 0.45 0.35 0.com) Copyright © 2004 The McGraw-Hill Companies.30–1.10–0. All rights reserved.20–0.05 percent.70 % Ni 0.18 0.00 0.10–0.40–0.18 0.30 0.70–1.90–1.90–1.25 0.70–0.30 0.35 0.30–1.10–0.60 1.41 %C 0.40–0.22 0.00 0.40 % Si 1.90 0.33–0.18–0.30 0.15 max 0.75–1.30–0.50–0.35 1.50–2.35 0.10–1.45–0.20 % Cr 0.35 0.10–1.00–1.12–0.40 0.10 2.50–0. .80–2.02–0.00 0.75 0.15 0.70 0.15–0.60 0.20 0.02–0.45–0.40 0.18–0.60–0.65 0.80–4.60 1.19 0.15–0.35 1.30 1.75 0.12–0.50 3.35 0. (2) When the steel is Al killed.45 0.50–0. total Al contents shall be between 0.70 0.60 0.35 0.50 max 0.25–2.12 max 0.50 0.80 2.36–0.20 0.40–0.35 0.50–2.30 %V % Al Notes: (1) Sulfur and phosphorus can be ordered as per following limits: (i) S and P – 0.33–0.50–0.40–0.35–0.24 0.10–0.40 0.40–0.35 0.70 0.65 0.40–0.15–0.10–0.10–0.25 0.10–0.80–1.26 max 0.70 1.30–0.00 0.40 % Mn 0.30 max 3.40 0.40–0.35 0.30 max 0.40–0.50–2.10 % Mo 0.35–0.30 0.00–1.35 0.70 0.00–1.35 0.32–0.10–0.44 0.55 0.35 0.90–1.15 0.00 0.18 0.45–0.90–3.35 0.40–1.15–0.20 0.20–0.35 0.00–3.50–0.25–1.035 and P – 0.10–0. Mn 2 Cr 65 Mn 1 Cr 95 Mn Cr 1 Cr 1 Mo 28 Cr 90 Mo 55 Cr 2 Mo 1 Ni 3 Cr 80 Ni 4 Cr 1 Ni Cr 1 Mo 12 Ni Cr 1 Mo 15 Ni Cr 2 Mo 20 Si 2 Mn 90 Mn 2 Mn 2 Mo 28 Cr 1 Cr 1 Mo 28 Ni 1 Cr 60 Ni 2 Cr 1 Mo 28 Ni 3 Cr 65 Mo 55 Cr 3 Mo 55 Si 2 Mn 90 Cr 1 V 23 20 15 17 20 21 07 10 13 15 15 15 16 37 37 35 40 40 35 40 40 25 55 50 20 15 16 20 21 07 10 13 15 15 15 16 36 37 35 40 40 35 40 40 25 55 50 20 37 C 15 Cr 3 Mn 5 Cr 4 Mn 5 Cr 5 Cr 4 Mo 2 Cr 4 Mo 6 Cr 9 Mo 10 Ni 13 Cr 3 Ni 16 Cr 5 Ni 5 Cr 4 Mo 1 Ni 7 Cr 4 Mo 2 Ni 8 Cr 6 Mo 2 S 17 C 15 Mn 6 Mo 3 Cr 4 Cr 4 Mo 3 Ni 5 Cr 2 Ni 6 Cr 4 Mo 3 Ni 10 Cr 3 Mo 6 Cr 13 Mo 6 Si 7 Cr 4 V 2 Ni Cr MO 2 Mn 5 Si 5 Old New Designation TABLE 1-11 Chemical composition of alloy steel forgings for general industrial use PROPERTIES OF ENGINEERING MATERIALS 1.35 0.00 1.15–0. 1991.10–0.10–0.10–0.00 1.70 0. (ii) S – 0.10–0.35 0.35 0.35 0.30 max.10–0. 5–123.6 36.3 101. min (gauge length ffi pffiffiffiffi 5.3 101.9 35.0–108.4 35.R R.5–123.52 4.00 60 30 30 30 30 178–221 63 208–252 63 178–221 150 208–252 100 235–280 63 30 30 30 190–235 150 208–252 100 235–280 40 40 50 Brinellb Limiting hardness ruling section number HB mm in PROPERTIES OF ENGINEERING MATERIALS 1.2 40.5–123.H and T H and T R.3 40.52 1.20 6.3 116.3 130. Q and S.8 28. Q and S.0 78.6 35.R H and T 20 C 15 30 C 15 15 16 20 21 R.8 101.8 59. Q and S.4 35.3 kpsi Tensile strength.R R.00 4.6 36. Q and S.3 101.8 87.3–116.0 min 116.3 87.65 a )a 55 50 45 55 50 55 50 45 55 50 50 50 50 48 48 48 35 38 60 55 50 60 55 50 48 35 41 35 35 41 J 40.00 2. Q and S.20 1.8 113.0 min 145.5–152.com) Copyright © 2004 The McGraw-Hill Companies. 220 220 220 229 241 217 217 229 213 217 217 245 220 170 187 170 207 217 210 220 200 Brinell hardness in soft annealed condition.2 25. Q and S.5 116. Q and S.9 33.0 min 159.6 101.4 1.8 30.3 130.4–98.8 101.5–85. Q and S.0–108.5 min 195.20 1.20 6.1–134.00 2.6 36.5 540 700 800 540 700 540 700 800 540 700 61.5–123.6 75.b sy TABLE 1-12 Mechanical properties of alloy steel forgings for general industrial use Downloaded from Digital Engineering Library @ McGraw-Hill (www.20 1.00 6.3 116.60 1.3 130.9 188.0 66.b %.9 40.5–123.5–123.3 145.8 101. Any use is subject to the Terms of Use as given at the website.5 116.29 .00 1. HB 18 15 13 18 15 18 15 13 18 15 14 18 16 18 18 16 13 10 8 16 15 14 19 18 18 12 9 9 9 9 11 Elongation.20 1.6 36.0 101.6–217.8 78.2 40.8 55.3 101.0–137.4 25.1 32.9 36.6 36.0–137.3 101.digitalengineeringlibrary.b st 85.9 35.0 kpsi 590 420 460 580 225 245 310 400 460 440 540 600 MPa Yield strength.00 2.1–79.5–152.0–166.0 66.8 30.00 235–280 100 380–440 208–252 268–311 295–341 208–252 266–311 208–252 266–311 295–341 208–252 266–311 2.0 44.00 4.R R.4 25.9 36.0 min 94.52 1.5 min 116.0 78. max.20 2.5 78.R R.20 4.52 1.9 44.20 1.0–166.7 84.8 25.R H and T H and T H and T H and T 13 15 15 15 16 20 36 37 55 35 H and T H and T H and T 40 Cr 4 40 Cr 4 Mo 3 35 Ni 5 Cr 2 Ni 13 Cr 3 Ni 16 Cr 5 Ni 5 Cr 4 Mo 1 Ni 7 Cr 4 Mo 2 Ni 8 Cr 6 Mo 2 Ni Cr Mo 2 Si 7 Mn 5 Si 5 Si 7 Mn 6 Mo 3 N and T N and T 7 Cr 4 Mo 6 10 Cr 9 Mo 10 Cr 3 Mn 5 Cr 4 Mn 5 Cr 5 Cr 4 Mo 2 Condition Designation 600–750 700–850 600–750 700–850 800–950 600 min 800 min 1000 min 650–800 700–850 800–950 380–550 410–590 520–680 850 min 1350 min 1000 min 1100 min 1350 min 900 min 800–950 780–930 1300–1500 700–850 900–1050 1000–1150 700–850 900–1050 700–850 900–1050 1000–1150 700–850 900–1050 MPa 87.0 58.20 6.3 87.2 ft-Ibf Izod impactb value 100 150 63 30 100 30 150 63 30 150 63 4.9 33.8 min 145. Q and S.8 min 130.5–152.9 36.0–137.R R.8 101. All rights reserved.00 1.20 6.5–152.52 1.3 min 195.5–123.7 63.6 123.5 45.R R.3 130.00 2.3 145.60 2.3 40.6 78.6 36.R R. 8 min 130.00 4.5–181.5 127.digitalengineeringlibrary. min (gauge length pffiffiffiffi ffi 5.00 6.Q and S.0–195.8 174.5–181.2 33.0–174.3 130.) PROPERTIES OF ENGINEERING MATERIALS 1.8 224.2 40.5 116.com) Copyright © 2004 The McGraw-Hill Companies.6 30.2 ft–Ibf Izod impactb value 266–311 325–370 266–311 325–370 355–399 295–341 355–399 450 min 266–325 295–355 150 100 150 63 30 150 150 100 100 40 6. All properties for guidance only.5 145.0 kpsi 700 880 700 880 1000 800 1000 1300 700 800 MPa 101.5 101.3 174. 1991.3 159. HB 15 12 55 11 10 12 10 8 12 10 Elongation.60 Brinellb Limiting hardness ruling section number HB mm in b a a . area of cross section.0–195.0 145.4 25.6 145. N and T – normalized and tempered.H and T H and T 40 Ni 10 Cr 3 Mo 6 50 Cr 4 V 2 900–1050 1100–1250 900–1050 1100–1250 1200–1350 1000–1150 1200–1350 1550 min 900–1100 1000–1200 MPa 130.00 6. . All rights reserved.8 11.6 30.3 159. Any use is subject to the Terms of Use as given at the website. Mechanical properties in heat-treated conditions. Source: IS 4367.00 4.5–152.0 116. R.00 4. H and T Condition 40 Ni 6 Cr 4 Mo 3 25 Cr 13 Mo 6 Designation Tensile strength.65 a Þa 55 41 55 41 30 48 35 15 45 45 J 40.2 22.b st TABLE 1–12 Mechanical properties of alloy steel forgings for general industrial use (Cont.00 2.5 127.R – refined quenched and stress-relieved.20 6.52 1.1 33.0–166.5–152.b %.30 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 kpsi Yield strength.0 188. Notes: H and T – hardened and tempered. Other values may be mutually agreed on between the consumers and suppliers.b sy 240 250 230 230 Brinell hardness in soft annealed condition.6 101.1 35.5–159.00 1.8 145. max. 8 55 50 50 48 55 40.8 143.2 10.6–136.3 16 56.5–107.50– 0.8 143.2) Limiting ruling section.2) 100 (4.20– 0.0) 63 (2.5) 30 (1.8 223.35 Mo 2.8 35.30– 0.35 1.55 0. 11 750 108.0) 63 (2.10– 0.8 114.10– 0.8 130.3 116.0) 30 (1.6 36.8 55 40.35 1.0–121.30 0.3 129.45 0.com) Copyright © 2004 The McGraw-Hill Companies.6) 100 (4.35– 0.6–136.10– 0.0) 100 (4.5–107.10– 0.30– 0.30– 0.3 16 490 71.35 1.3 55 40.0–166.4 55 50 50 48 48 48 48 41 48 35.20 0.8 114.45– 3.35 1.65 2.80 0.6–136.1 79.6–165.6 48 35.30– 0.3 100.0) 100 (4.0–121.8 36.2) 15 (0.70 Mn 20 C 15 (20 Mn 2)## Si C Designation 0.8 143.3 71.4 35.0) 63 (2.90– 0.4 30.0) 100 (4.digitalengineeringlibrary.4 255–311 285–341 311–363 444 min 201–248 229–277 201–248 229–277 255–311 285–341 201–248 229–277 255–311 229–277 255–311 285–341 201–248 229–277 255–311 285–341 170–217 201–248 229–277 255–311 170–217 201–248 170–217 201–248 0.6–107.90– 0.0) 150 (6.3 129.80 0.8 35.20 Cr Percent V/Al TABLE 1–13 Chemical composition and mechanical properties of alloy steels 890–1040 990–1140 1090–1240 1540 min 690–840 790–940 700–850 800–950 900–1050 1000–1150 690–840 790–940 890–1040 790–940 890–1040 990–1140 690–840 790–940 890–1040 990–1140 590–740 690–840 790–940 890–1040 590–740 690–840 590–740 690–840 MPa 129.30 0.5) 150 (6.4 48 35.8 114.0) 150 (6.0) 63 (2.8 12 94.0) 100 (4.8 50 36.35 0.0) 100 (4.35 0.9 12 650 94.90– 0.65 a )a .0–150.3 750 108.42 0.65 0. elongation Izod impact min.5) 63 (2.35– 0.10– 1.30– 0.40 0.3 129.6 55 40.3 11 490 71.6 18 65.2 40.32– 0.8 16 650 94.30 0.40– 0.8 kpsi Tensile strength.5–123.0–150.3 145.2) 150 (6.9 13 14 12 12 10 18 18 16 15 56.8 10 830 120.2) 150 (6.10– 1.6 50 36.8 8 490 550 13 12 11 10 71.10– 1. Any use is subject to the Terms of Use as given at the website.0.0) 150 (6.8 650 94.0–150.35 0.60– 0.3 101.40– 0.5) 30 (1.1–179.24 0.8 100.20 0.40 0.5–152.0–121.0–121.35 0. MPa kpsi % J ft-lbf HB 150 (6.6 50 36.5) 150 (6. sy (gauge length value Brinell# pffiffiffiffiffi hardness ¼ 5.8 114.0) 63 (2.8 650 94.35 1.90– 1.8 390 490 550 650 390 450 390 450 40.4 30.3 100.20– 0.6 18 65.10– 0.40 0.10– 1.31 Downloaded from Digital Engineering Library @ McGraw-Hill (www.30– 0.0–150.6–136.90 0.4 50 48 41 14 36. All rights reserved.8 114.3 158.45– 3. .70 0.4 9 1240 179.32 0.0–150.35– 0.70 max 0.4 48 35.0–121.3 129.0–121.40 0.0) 63 (2.10– 1.8 85.5)þ 30 (1.1 550 79.6–165.22– 0.8 85.6–136.1 14 79.3 100. mm (in)þ PROPERTIES OF ENGINEERING MATERIALS 1.4 35.45 0.6 71.3 15 750 108.0–137. st 56.5) 30 (1.4 48 35.3.20– 1.80 0.4 min 100.8 490 550 650 550 79.8 35.1 550 79.8 36.3 100.70 0.3 750 108.6 36.30– 0.9 94.1 14 79.2% Minimum Minimum proof stress.4 35.6–165.70 max 27 C 15 (27 Mn 2) 37 C 15 (37 Mn 2) 35 Mn 6 Mo 3 (35 Mn 2 Mo 28) 35 Mn 6 Mo 4 (35 Mn 2 Mo 45) 40 Cr 4 (40 Cr 1) 40 Cr 4 Mo 2 (40 Cr 1 Mo 28) 15 Cr 13 Mo 6 (15 Cr 3 Mo 55) 25 Cr 13 Mo 6 (25 Cr 3 Mo 55) Ni 0.16– 0.3 85.35 0. 3 25.10 0.8 94.30 1.0) 150 (6.35 35 Ni 5 Cr 2 (35 Ni 1 Cr 60) 30 Ni 16 Cr 5 (30 Ni 4 Cr 1) 40 Ni 6 Cr 4 Mo 2 (40 Ni Cr 1 Mo 15) 40 Ni 6 Cr 4 Mo 3 (40 Ni 2 Cr 1 Mo 28) 31 Ni 10 Cr 3 Mo 6 0.8 100.80 3.2) 150 (6.75 1.3 15 750 108.35– 0.35 0.8 120.3 129. Any use is subject to the Terms of Use as given at the website.25 1.35– 0.70 1.25 Cr 40 Cr 7 Al 10 Mo 2 (40 Cr 2 Al 1 Mo 18) Ni 0.10– Al: 0.6 max 0.6 40.32 Downloaded from Digital Engineering Library @ McGraw-Hill (www.40– 0.2) (air-hardened) 150 (6.20 0.70 max Mn 40 Cr 13 Mo 10 V 2 (40 Cr 3 Mo 1 V 20) Si C 129.3 15 71.10– 0.8 16 94.35 0.30 790–940 890–1040 990–1140 1090–1240 1540 min 690–840 790–940 890–1040 790–940 890–1040 690–840 790–940 890–1040 1340 min 1540 min MPa 40 Ni 14 (40 Ni 31) V/Al 0.35 0.8 143.0–150.0) 63 (2.6 40.5) 150 (6.10– 0.4 min 114.45– 0.6–165.35 0.40– (31 Ni 3 Cr 65 Mo 55) 0.35– 0.70 max Mo 3.5) 100 (4.6 48 35. elongation Izod impact min.3 10 79.0–150.30 0.8 55 40.40– 0. st Designation Percent TABLE 1–13 Chemical composition and mechanical properties of alloy steels (Cont.6 55 40.60 1.3 158.6 55 40.0) 63 (2.0)þ 100 (4.35 0.0) 100 (4.50 0.10– 60–90 1.4 30.0–121.8 223.50– 0.3 55 40. 50– 3.4 min kpsi Tensile strength.27– 0.3 22.90– 0.20– 0.45 0.45 0.35 0.8 15 12 11 10 8 16 15 11 11 10 6 550 79.3 15 152.40– 3.9 179.00– 0.30 0.50 1.2) 30 (1.8 13 830 120.6–136.8 120.0–150. mm (in)þ PROPERTIES OF ENGINEERING MATERIALS 1.6–136.0) 100 (4.8 143.8 10.3 129.10– 0.45 0.30 0.3 129.6 36.0) 63 (2.0) 100 (4.26– 0.40 0.8 172.10– 0. All rights reserved.35 0.6 55 40.10– 0.40– 1.35– 0.00– 0.6–136.20– 0.4 21 15.40– 1.4 223. sy (gauge length value Brinell# pffiffiffiffiffi a ¼ 5.35 1.6–165.90– 1.65 a ) .8 194.9 8 71.90– 0.90– V: 0.45 0.6–194.8 12 94.0) 63 (2.0) 150 (6.45 0.35 – 0.6–194.0) 100 (4.6–136.8 79.) 8 8 179.6–165.75 0.70 1.6 35.6 35.1–179.1 40.5 14 10.10– 0.8 114.0–121.50– 0.70 2.0) 63 (2.3 14 10.790–940 890–1040 990–1140 1090–1240 1190–1340 1540 min 890–1040 990–1140 1090–1240 1190–1340 1540 min 0.4 min 223.8 16 650 94.3 158.6–136. 0.0–150. hardness MPa kpsi % J ft-lbf HB 150 (6.2% Minimum Minimum proof stress.4 min 100.70 4.2) Limiting ruling section.8 16 94.25– 0.5) 30 (1.34 0.30 0.1–179.0) 63 (2.2 179.8 114.10– 0.10– 0.4 13 1240 490 550 650 550 650 490 550 650 1050 1240 55 48 41 35 14 55 55 48 41 30 11 55 55 48 41 40.0) (air-hardened) 150 (6.80 0.4 223.40– 2.3 129.3 255–311 285–341 311–363 341–401 444 min 229–277 255–311 285–341 311–363 341–401 444 min 229–277 255–311 285–341 311–363 444 min 201–248 229–277 255–311 229–277 255–311 201–248 229–277 255–311 363 min 444 min 0.8 172.3 158. .90– 1.3 108.5) 30 (1.30 0.10– 0.8 650 750 830 930 1240 550 650 750 830 930 1240 94.3 40.0–150.9 179.5) 150 (6.1 18 79.4 134.8 30.40 0.5) 63 (2.5) 30 (1.80.8 114.1–179.6 50 36.3 108.digitalengineeringlibrary.4 30.20– 0.1 8.25– 0.8 143.45 0.4 min 114.8 50 36.70 1.75 0.5) 63 (2.com) Copyright © 2004 The McGraw-Hill Companies.0–150.1 14 79.4 134.30– 0.3 129.15– 3. 3 285–341 311–363 341–401 444 min 0.1–179.3 158.40– (40 Ni 3 Cr 65 Mo 55) (0.digitalengineeringlibrary. sy (gauge length value Brinell# pffiffiffiffiffi a ¼ 5.0) 150 (6.44 0. st 750 830 930 1240 108.4 30.4 min kpsi Tensile strength. area of cross section. x steel designations in parentheses are old designations. 1988. elongation Izod impact min.36– 0. mm (in)þ Note: a .com) Copyright © 2004 The McGraw-Hill Companies. # hardness given in this table is for guidance only.40– 2.  hardened and tempered condition – oil-hardened unless otherwise stated. Source: IS 1750.C Si Mn Ni Cr Mo V/Al 990–1140 1090–1240 1190–1240 1540 min MPa 143.0) 100 (4.) PROPERTIES OF ENGINEERING MATERIALS 1.9 10 179.0) Limiting ruling section.70 2.6–194. . Any use is subject to the Terms of Use as given at the website.4 11 134.10– 0.6–165.8 10.8 172.3 25.50– 0.33 Downloaded from Digital Engineering Library @ McGraw-Hill (www. þ numerals in parentheses are in inches.35 0.2% Minimum Minimum proof stress.4 223.75 0. 40 Ni 10 Cr 3 Mo 6 0.8 8 48 41 35 14 35. hardness MPa kpsi % J ft-lbf HB 150 (6. All rights reserved.25– 0.0) 150 (6.70 Designation Percent TABLE 1–13 Chemical composition and mechanical properties of alloy steels (Cont.8 12 120.80 0.65 a ) . 3 99.6 128.0 113.2) 90 (3.6 13 10 8 15 47 34 37 40 34.6) 30 (1. Any use is subject to the Terms of Use as given at the website. HB 130 143 10 C 4 (C 10) 14 C 4 (C 14) 490 490 71.8 30 (1.7 9 34 25.4) 90 (3.2) 60 (2.1 71. All rights reserved.4 17 17 54 40 39.2) 60 (2.6) 60 (2.com) Copyright © 2004 The McGraw-Hill Companies.3 30 (1.6) 170 207 217 184 834 784 735 834 784 1324 1177 1128 834 686 882 784 735 981 932 1079 932 932 1324 1177 1128 121.2) 30 (1.2) 60 (2.0) 30 (1.0 170.0 170.6 12 40 29.4) 30 (1.15) 16 Ni 8 Cr 6 Mo 2 (16 Ni Cr 2 Mo 20) 143 154 229 241 207 213 217 217 229 a area of cross section.2) 30 (1.4) 90 (3.7 25.6) 30 (1.7 9 34 25.2) 60 (2. max.2 121.7 121. mm (in) Brinell hardness number.2) 60 (2.3 12 61 44.9 10 C 8 S 11 (10 S 11) 14 C 14 S 14 (14 Mn 1 S 14) 11 C 15 (11 Mn 2) 15 Cr 65 17 Mn 1 Cr 95 20 Mn Cr 1 16 Ni 3 Cr 2 (16 Ni 80 Cr 60) 16 Ni 4 Cr 3 (16 Ni 1 Cr 80) 490 588 71.8 29.2) 60 (2. 1967.34 CHAPTER ONE TABLE 1-14 Mechanical properties of case hardening steels in the refined and quenched condition (core properties) Tensile strength.2) 30 (1.6) 30 (1.3 9 34 25.0 113.3 135.4) 90 (3.8 11 40 29.2) 30 (1.7 15 (0.7 30 (1.5 142.7 163.digitalengineeringlibrary. min (if specified) J ft-lbf Limiting ruling section. .6) 30 (1. a Downloaded from Digital Engineering Library @ McGraw-Hill (www.8 142.4 113.2) 154 588 784 981 686 85.7 9 40 29.5 29.PROPERTIES OF ENGINEERING MATERIALS 1.6) 13 Ni 13 Cr 3 (13 Ni 3 Cr 80) 15 Ni 4 Cr 1 20 Ni 2 Mo 25 20 Ni 7 Cr 2 Mo 2 (20 Ni 55 Cr 50 Mo 20) 15 Ni 13 Cr 4 (15 Ni Cr 1 Mo 12) 15 Ni 5 Cr 4 Mo 2 (15 Ni 2 Cr 1 Mo.7 163.1 85.65 a ) a Izod impact value.1 193. % (gauge length pffiffiffiffiffi = 5. Source: IS 4432.6) >15 (0.4 17 54 39.8 192.1 17 17 54 54 39.2) 90 (3.4) 90 (3.7 217 12 47 34.3 135.0 99.8 106.8 39.0 113.3 27.6) <30 (1.2) 588 85.1 156.8 106.4) 90 (3.7 142.4) 100 (4. st Steel designation MPa kpsi Minimum elongation. Any use is subject to the Terms of Use as given at the website...046 0.625 mm (0.045 0. sy Case Elongation Core in 50 mm Reduction Brinell.78 0.625 mm (0. tempered at 2328C (4508F). Downloaded from Digital Engineering Library @ McGraw-Hill (www.17 1. % H B Izod impact energy Thickness Rockwell. 4th ed.070 89 48 78 66 a Average properties for 15 mm (1 in) round section treated.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS 1.com) Copyright © 2004 The McGraw-Hill Companies. 12.505 in) round section tested. Bethlehem Steel Corp. All rights reserved. Source: Modern Steels and Their Properties. 1972. Water-quenched and tempered at 1778C (3508F).17 1. sut Tensile yield strength. 1958 and 7th ed.046 0.505 in) round section tested.91 1. AISI No. Oil-quenched twice.digitalengineeringlibrary.22 1.565 in) round section treated. RC mm in J ft-lbf Machinability Poor Poor Good Very good Excellent C1015 C1020 C1022 C1117 C1118 503 517 572 669 779 73 75 83 97 113 317 331 324 407 531 46 48 47 59 77 31 31 27 23 17 71 71 66 53 45 Plain carbon 149 156 163 192 229 62 62 62 65 61 1.35 TABLE 1-15 Typical mechanical properties of some carburizing steelsa Hardness Ultimate tensile strength.125 mm (0. except where indicated.52 1.048 0. . MPa kpsi MPa kpsi (2 in).060 106 0..065 123 126 110 45 22 91 93 81 33 16 4320b 4620b 8620b 100 793 897 146 115 130 648 531 531 94 77 77 22 22 22 56 62 52 Alloy steels 293 235 262 59 59 61 1. 12. % of area.14 1. b Core properties for 14.65 0.075 65 0. springs Bolts. and machine parts 45 52b 25b 55b High-strength parts used in aircraft and bolts Cutlery.PROPERTIES OF ENGINEERING MATERIALS 1. Any use is subject to the Terms of Use as given at the website. b Downloaded from Digital Engineering Library @ McGraw-Hill (www. cutlery. springs. American Society for Metals.com) Copyright © 2004 The McGraw-Hill Companies. Metals Park.2% offset. muffler Machine parts subjected to hightemperature corrosion Annealed high-nitrogen Austenitic S20200 202 S21600 216 S30452 304 HN 655 690 620 95 100 90 310 415 345 4560 50 Ferrite S40500 S43000 S44600 405 430 446 415 450 515 60 65 75 170 205 275 25 30 40 88 max 88 max 95 max 22e 20 Martensite S40300 403 S41000 410 485 450 70 65 205 205 30 30 88 max 95 max 25c 22c 100 100 40 40 30 S41400 S41800d S42000e S43100d 414 418d 420e 431d 795 1450b 1720 1370b 115 210b 250 198b 620 1210b 1480b 1030b 90 175b 215b 149b S44002 440 A 725b 105b 415b 60b 95b 20b S44003 S44004 S50200 440 B 440 C 502b 740 760b 485b 107b 110b 70b 425b 450b 205b 62b 65b 30b 96b 97b 18b 14b 30b 52RC b 15 18b 8b 16b Bolts. shafts. e Tempered at 2058C (4008F). nozzles and ball bearings 70b a At 0. d Tempered at 2608C (5008F). and machine parts Bolts. MPa kpsi Yield strengtha .3 mm (0.digitalengineeringlibrary. hardness. % Weldability Machinability Application Annealed (room temperatures) Austenitic S30200 S30300 S30400 S30500 S30800 S30900 S31000 S31008 S34800 S38400 302 303b 304 305 308 309 310 310 S 348 384 515 585b 515 480 515 515 515 515 515 415–550 75 85b 75 70 75 75 75 75 75 60–80 205 240b 205 170 205 205 205 205 205 30 35b 30 25 30 30 30 30 30 88 88 88 88 95 95 95 88 40 50b 40 40 40 40 40 40 40 55b Good Poor Good Good Poor Good Poor General purpose. sy MPa kpsi Brinell Elongation. 1988. Typical values. All rights reserved. AISI No. and nuts Welded structures General purpose Good Good Poor Poor Heat-exchange parts Turbine and furnace Jet engine parts Fasteners and cold-worked parts Excellent Fair Fair Fair to good Fair Screw machine parts. H B % Reduction in area. bearing parts. st UNS No. Ohio.36 CHAPTER ONE TABLE 1-16 Minimum mechanical properties of some stainless steels Tensile strength.050 in) or less. rivets. Source: ASM Metals Handbook. . c 20% elongation for thickness of 1. # the mechanical properties in parentheses are for bars and flats and the properties without parentheses for plates.0 0.030 0.digitalengineeringlibrary.0 23.0) 74.0 max 10.0 12.5 Cr 0.0/19.7 (40.0 max 10.7 {75.0 2.0) 74.0 17.0/17.030 0. All rights reserved.0) 29.08 max 1.0 2.0/3.0 0.15 1. 5XC0.5 Ni X 07 Cr 17 X 12 Cr 12  0. min.50 15.0/27.040 0.0/18.0 max 8.7 (75.045 Chromium–nickel steels 0.040 0.0) 74.7 (75.1) 79.35/0.045 0.5) 36.  for free-cutting varieties sulfur and selenium content shall be as agreed between the purchaser and the manufacturer.0 max 2. (2 in).045 0.7 (75.com) Copyright © 2004 The McGraw-Hill Companies. Any use is subject to the Terms of Use as given at the website.5 17. sheets.5/20.0 max 11.0/12.0 3.0) 74.0 17.0) 29.045 0.0 101.045 10XC1.0) 29.3 (70.0/14.030 0.0/3.030 0.0/21.0 max 18. 1985.5 (30.030 0.5 max 2. and strips.80/0.25/2.15 max 1.7 (40.0 0.3 24.0 17.0 max 2.2 (64.0 max 2.7 (30.0 max 2.030 0.8 70.045 0.0/15.0/18.0 in place of Ti.5/20.0/10.0 3.045 and N ¼ 0:25 max 0.0 max 1.0/14.0/3.7 39.0 max 2.20 max 1.0/18.3 (70.0 X 40 Cr 13 Mo 0.0 0.0) 24.030 0.12 max 1.7 (40.0) kpsi 0.7 (75.0) 29.0/19.0/4.50 2.0) 29.0 0.0) 29.0 max 10.0/14.0 0.0) 29.0 max 8. % TABLE 1-17 Chemical composition and mechanical properties of some stainless.2% proof stress.7 (30.0/10.0 max 1.030 0.0 16.08 max 1.11.9) 74.25 max 2.35/0.0 0.80 Ti and P max 0.0 max 1.045 0.0 24.030 0.0 max 9.5 max 1.7 (25.0 max 12.040 0.045 0.  for electrode steel Nb 10C to 1.0 16.0/15.37 .7 (25.0) (87.5/13.0 2. min.0 0.0 max 2.0 Nb (785) 515 (517) 515 (517) 515 (517) 485 (483) 515 (517) 515 (517) 515 (490) 550 485 (483) 515 (517) 515 415 (445}# 450 (483) 450 (483) (600 700) 515 (490) MPa (113.0 0.7 (71.0/26.0/20.7 60.0 max 2.0 max 1.0 max Mn X 04 Cr 12 Si C Designation of steel Chemical composition.030 Chromium steels 0.7 (30.08 max 1. min.6) 29.5 0.5/5.0 X 15 Cr 25 N X 02 Cr 19 Ni 10 X 04 Cr 19 Ni 9 X 07 Cr 18 Ni 9 X 04 Cr 18 Ni 10 Nb X 04 Cr 18 Ni 10 Ti X 04 Cr 17 Ni 12 Mo 2 X 02 Cr 17 Ni 12 Mo 2 X 04 Cr 17 Ni Mo 2 Ti 2 X 04 Cr 19 Ni 13 Mo 3 X 20 Cr 25 Ni 20 X 07 Cr 17 Mn 12 Ni 4 X 40 Ni 14 Cr 14 W 3 Si 2 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 max 1.030 0.0/3.0) 29.0 0.045 0.045 0.0 max 2.0 0.030 0. heat resisting and high alloy steels PROPERTIES OF ENGINEERING MATERIALS 1.3 (70.0 max 1.0 0.0 16. Source: Compiled from IS 1570 (part 5).0 max 1.5) 65.0/19. sy (269) 217 217 217 217 217 217 183 183 183 183 183 217 (212) (225) 183 217 183 88 95 95 95 95 95 88 88 88 88 88 – – 88 95 88 Brinell HB Rockwell RB Hardness number (35) 40 (40) 40 (40) 40 (40) 40 (40) 40 (40) 35 (40) 40 (40) 45 40 (40) 40 (40) 40 20 (16) 22 (20)# 20 (20) 22 (20) (40) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (45) (45) (45) (45)# Elongation Reduction in 50 mm of area.03 max 1.0/14. 16.030 0.030 0.7 (71.7 (30.040 S max 0.5) 74.9 (40.0 17.0 0.0 max 12.12 max 1.0) 30.045 0.45 1.7 (30.030 0.0 max 8.0 max 11.0) 74.0) 70.0) 74.80 5XC0.035 W 2. min.0/12.08 max 1.045 0.5/13.5 max 0.0) 65.030 0.0 max 1.0 max 2. st (345) 205 (207) 205 (207) 205 (207) 170 (172) 205 (207) 205 (207) 210 (210) 250 170 (172) 205 (207) 205 275 (280) 205 (276)# 205 (276) 205 (276) MPa (50.7 (30.03 max 1.0 max 10.0 max 9.0/18.0) 74.0/14.1) kpsi Tensile strength. % % Notes: Annealed quenched or solution-treated condition.08 max 1.3 (70.7 (75.0/15.08 max 1.0/12.0) 29.0 18.08 max 1. or riveted construction Structural members. bolted. or condition ASTM specification Minimum tensilea strength. bulkheads.1. Source: ASM Metal Handbook. bolted. brackets.a st TABLE 1-18 Mechanical properties of high-strength low-alloy steels 18 19 18 18 12 18 16 15 20 18 18 18 In 200 mm (8 in) 20–22 18–20 16–18 22–24 20–22 16–18 14 22 22 20 22 22–25 22 21 18 17 22 24 21 21 21 In 50 mm (2 ln) Minimum elongation. but used mainly in bolted or riveted bridges and buildings Intended uses PROPERTIES OF ENGINEERING MATERIALS . All rights reserved. improved formability. bolted.a % Truck frames. or riveted bridges and buildings Structural and miscellaneous purposes where greater strength or weight saving is important Structural and miscellaneous purposes where weight saving or added durability is important Structural members in welded.digitalengineeringlibrary. 1988. or riveted structures but primarily welded bridges Welded. Metals Park. primarily in bolted or riveted construction Welded. or riveted structures. weight savings. sea walls. crane booms. bolted. grade. a A715 A690 A656 A618 450 520 590 483 483 448 655–793 65 60 450 410 A607 Grade 50 Grade 60 Grade 70 Grade I Grade II Grade III Grade 1 and 2 65 450 Hot-rolled and annealed or normalized Cold-rolled Grade 45 A606 65 75 80 70 450 520 550 480 Grade 50 Grade 60 Grade 65 Hot-rolled 60 415 Grade 42 415–485 60–70 435–485 63–70 435–480 63–70 kpsi A572 K12211 A441 K11510 K12810 Type 1 A242 UNS designation MPa A440 Type. excavations. railcars.com) Copyright © 2004 The McGraw-Hill Companies.38 Downloaded from Digital Engineering Library @ McGraw-Hill (www.a sy May vary with product size and mill form. Any use is subject to the Terms of Use as given at the website. 415 485 550 620 Grade 60 Grade 70 Grade 80 485 Grade 50 K12249 K02601 K12609 K12700 70 80 90 60 70 65 75 85 70 70 65 95–115 kpsi 415 485 550 345 345 345 415 485 345 345 345 552 310 310 310 345 415 450 345 290 60 70 80 50 50 50 60 70 50 50 50 80 45 45 45 50 60 65 50 42 275–345 42–50 290–345 42–50 290–345 42–50 MPa Minimum yielda strength. American Society for Metals. and other applications where weight saving is important Dock walls. and good weldability are important General structural purposes including welded. and similar structures exposed to sea water Structural and miscellaneous applications where high strength. Ohio. CB-30d C-50d CE-30d CF-8d CH-20d ACId ASTM A607 A606 Types 2. sy 60 15 65 18 65 18 35–40 55 50 38 Ultra-High-Strength Steels To 2068 To 300 To 1724 To 250 10 J410CRg SAE J410Cg Medium carbon low alloys 4 140 M.com) Copyright © 2004 The McGraw-Hill Companies. HB GPa PROPERTIES OF ENGINEERING MATERIALS 1. 4h A607 715 (sheet)i A656 (plate) A607 A607 138 20 159 23 172 25 214 31 244 34 303 44 255 37 331 48 Cast Stainless Steels Cast Alloy Steels 24 20 22 20 17 9 14 6 200 172 193 193 29 25 28 28 3 61 14 95 20 81 75 65 54 79 41 61 32 2 45 10 70 15 60 55 48 40 58 30 45 24 255 448 414 483 586 J410Cg J410Cg Downloaded from Digital Engineering Library @ McGraw-Hill (www. high-strength and iron-based super alloy steels Cb and/or V Composition Cb and/or V (Proprietary) Cu. (10008F) temperature. Ti. All rights reserved. Zr. H-13 (Mod) Maraging steels (high nickel): 18 Ni (350) Almar 302 448 483 552 620 724 1034 827 1207 Grade LC1a WC4a 80-50a 90-60a 105-85b 150-125b 120-95b 175-145b ASTM A352-68a A219-6 A148-65 A148-1 A148-65 A148-65 A148-65 A148-65 655 483–669 600–669 517–586 552–607 MPa Materials classification Tensile strength. 70 85 65 60 414 60 448–483 65–70 1758 379 483 345 345 55 70 50 50 20 14 22 24 25 22 245 8 High-Strength Low-Alloy (HSLA) Steels 310 45 310–345 45–50 1689 6. P.digitalengineeringlibrary. and other additions Cb and or V (Proprietary) Cb. Ni.39 . Elongation Modulus of elasticity E Charpy sj in 50 mm (2 in) MPa kpsi % GPa Mpsi J ft-lbf TABLE 1-19 Mechanical properties of some cast alloy.6–12 31 23 17 20–30 15–22 35 40 50 60 85 125 95 145 kpsi To 2144 To 311 To 1703 To 247 414 448 448 241–276 345 241 276 345 414 586 862 655 1000 MPa 23 95 70–97 87–97 75–85 80–88 65 70 80 90 105 150 120 175 kpsi Yield strength. 4340 Mod. N. Cr. cast stainless. 5 Cr-Mo-V tool steels: H-11 (Mod). D 6AC. Any use is subject to the Terms of Use as given at the website. 433OV. V. and others 217 311 262 352 Rupture strength. Mpsi 8C (8F). Si. Brinell 100 h at 5388C hardness. st Fatiguec Impact endurance limit. Mn. Source: Machine Design. high-strength and iron-based super alloy steels (Cont.08 Brinell hardness. 1981 Materials Reference Issue.05 3.02 2.85 3. f Heat and corrosion resistance. cast stainless. sj TABLE 1-19 Mechanical properties of some cast alloy. d Corrosion resistance.3 19.3 20 21 22 21 b 2. Quenched and tempered. No. c Polished specimen. st Fatiguec endurance limit. e Heat resistance.94 2.5 20. killed. 1981). h Semikilled or killed-improved corrosion resistance. i Inclusion control-improved formability. 100 h at 5388C (10008F) PROPERTIES OF ENGINEERING MATERIALS 1.digitalengineeringlibrary. a Chromalloy 604 Martensitic AISI 601 17-22A Materials classification Tensile strength.H-11 422 AM 350 Stainless W 16-25-G 17-24 Cu Mo A-286 610 616 Austenitic 633 635 650 653 660 103–1413 1130 1517–1551 517–552 758–965 621 593–772 448 1007–903 827 531 682–896 758 931–2137 1241 1034–1655 1172 MPa 160–205 160 220–225 75–80 110–140 90 86–112 65 146 131 120 77 125–138 110 135–310 180 150–240 170 kpsi 414–1207 745 1482–2000 255–345 345–689 228 276–620 200 655 607 689 372 655–745 586 689–1655 965 682–1207 869 MPa kpsi 60–175 482–689 70–100 108 215–290 372–662 54–96 37–50 50–100 33 40–90 29 95 88 12–38 9 1. g Semikilled or killed.17 3.90 3. . 53. Ohio.9 20. All rights reserved.) 75 49 Mpsi 689 330 538 220 710 400 100 48 78 32 103 58 655–793 95–115 517 338 GPa Rupture strength.40 Downloaded from Digital Engineering Library @ McGraw-Hill (www. HB 14 21 538 5–144 4–106 21 538 20 15 21 538 11–35 8–26 21 538 56–81 41-60 21 538 19 70 1000 70 1000 70 1000 70 1000 70 1000 Temperature 8C 8F 21 70 538 1000 21 70 538 1000 14–43 10–32 21 70 538 1000 14–52 10–38 21 70 538 1000 Elongation Modulus of Impact in 50 mm elasticity E Charpy (2 in) % GPa Mpsi J ft-lbf Iron-Based Superalloys MPa 100 54 95–108 85 100–240 896 130 140 125–175 621–758 90–100 126 kpsi Yield strength. Cleveland. Penton/IPC.80 2. Any use is subject to the Terms of Use as given at the website. sy Normalized and tempered. 8C (8F).5 58 20–45 58 30–45 37 25 19 3–17 10 16–19 16 30 20 7 20 19. 6 (March 19.com) Copyright © 2004 The McGraw-Hill Companies. Vol.88 2. temperature. 1 kpsi Yield strength (or 0. 1979.5 ft-lbf Izod impact strength.8 149. % 15 14 12 8 5 Elongation.41 Downloaded from Digital Engineering Library @ McGraw-Hill (www.65 a ) a 190 207 248 305 355 Brinell hardness.1 21.6 14. st TABLE 1-20 Mechanical properties of high tensile cast steel 390 560 700 850 1000 MPa 56. min.2 101. area of cross section.7 81.1 20.com) Copyright © 2004 The McGraw-Hill Companies. min. min.5 123.digitalengineeringlibrary.5 121. HB 30 30 29 20 J 22.CS CS CS CS CS 1 2 3 4 5 a  a . .5% proof stress). min.8 101. All rights reserved. Source: IS 2644.3 145. % (gauge length ffi pffiffiffiffi 5. min. min PROPERTIES OF ENGINEERING MATERIALS 1. sy 35 30 28 20 12 Reduction in area. Any use is subject to the Terms of Use as given at the website. 640 700 840 1030 1230 Designation Grade 640 700 840 1030 1230 MPa 92.4 178.3 kpsi Tensile strength. 00 1.25–0.50 0.10–0.80 0.35 % Si 0.35 0.30–0.35 0.80–1.00–15.50 3.10–0.50 0.20–1.10–0.40–0.80 maxa 0.10–0.50–1.60–0.25–0.20–0.30 1.40–0.20–0.50–19.25–0.40–0.00–1.10–0.35 0.com) Copyright © 2004 The McGraw-Hill Companies.25–1.20 0.70 2.12–0.34 0.50 0.10–0.25–0.40 0.25 4.42 Downloaded from Digital Engineering Library @ McGraw-Hill (www.80 0.10–0.00 5.75–5.20 0.40 1.25–1.0 1.10–0.50 1.80 0.35 0.20–0.85–0.1.00 0.90–1.80–3.45–0.75–4.50–0.10–0.30 0.50–6.20 0.30 0.90–1.35 0.50 0.20–1.30 4.30 1.35 0.25–0.80 0.25–1.80–1.30 0.40 0.00–1.80 0.35 0.25–0.60 3.25 0.40 0.10–0.50–2.20–0.25 max 0.20–0.10–0.10–0.60 1.60 0.80 0. 1965.25–0.50–0.10–0.80 0.75–0.20 0.75 0.35 0.30–0.60–1.60 0.80 2.60 1.40 0.75–2.00 5.10–0.65–0.40 0.75–5.50 13.35 0.20–0.50 1. a %C Steel designation TABLE 1-21 Chemical composition of tool steels 0.75 0.25–0.30 150–1.00 0.50 1.0–13.50–6.20 0.50 0.30 0.50 1.50–0.50–0.26–0.0–13.10–0.40 1.10–1.50–1.50–0.35 0.25–0.10–0.15–0.0 11.35 0.50–0.40 0.30–1.40 0.90–4.50–0. Any use is subject to the Terms of Use as given at the website.25 11.80–3.75 1.95 0.55–0.20 %W 0.55 0.65 0.60 0.00–1.60 0.15 max T 140 W 4 Cr 50 T 133 T 118 T 70 T 85 T 75 T 65 T 215 Cr 12 T 160 Cr 12 T 110 W 2 Cr 1 T 105 W 2 Cr 60 V 25 T 90 Mn 2 W 50 Cr 45 T 105 Cr 1 T 105 Cr 1 Mn 60 T 55 Cr 70 T 55 Si 2 Mn 90 Mo 33 T 50 Cr 2 V 23 T 60 Ni 1 T 30 Ni 4 Cr 1 T 55 Ni 2 Cr 65 Mo 30 T 33 W 9 Cr 3 V 38 T 35 Cr 5 Mo V 1 T 35 Cr 5 Mo W 1 V 30 T 75 W 18 Co 6 Cr 4 V 1 Mo 75 T 83 Mo W 6 Cr 4 V 2 T 55 W 14 Cr 3 V 45 T 16 Ni 85 Cr 60 T 10 Cr 5 Mo 75 V 23 Optional Source: IS 1871.40 0.50–0.25–0.40–0.20a 0.00 0.90 0.60 0.30 0.40–0.30 0.25 maxa 0. .25–1.90–1.60 17.00 0.20 0.30 0.35 0.50–0.50–0.20 0.35 1.20–1.80 4.30–0.50 0.30 0.30–0.00–1.35 0.35 0.70 1.80 0.20 0.90–1.10–1.70–0.00–1.20–0.10–0.10–0.50–4.35 0.15–0.00–2.10–0.0–10.60–0.50–1.90–1.40 0.60 0.30 max 1.70 % Cr 0. All rights reserved.00 8.20 0.35 0.75 0.75–5.80 0.80 0.35 0.35 0.35 0.80 maxa %Mo 1.50 3.35 0.60–1.25–1.10–0.80–0.65 0.90–1.10–0.80 0.25 4.20–0.80 maxa 0.10–0.80–1.20–0.60 1.digitalengineeringlibrary.0 0.50 % Mn 0.70 0.90 0.50 2.10–0.12–0.80 maxa %V 0.75 % Ni 5.00–4.60 0.40 0.35 0.30–0.25–0.10–0.00 0.70–0.20–0.35 0.00 % Co PROPERTIES OF ENGINEERING MATERIALS 1.60–0.20–0.35 0.00–6.80 0.50–0. Double temper. 6 (March 19. Penton/IPC. oil-quenched unless otherwise indicated. Source: Machine Design.5 RC 97 RB 52 RC 93 RB 54 RC 96 RB 54 RC 96 RB 55 RC Elongation. st TABLE 1-22 Mechanical properties of some tool steels PROPERTIES OF ENGINEERING MATERIALS 1. sy 25 9 25 7 25 5 24 4 17 10 25 4 25 5 25 9 97 RB 52 RC 95 RR 58 RC 96 RB 59 RC 96 RB 57. c Charpy impact unnotched tests made on longitudinal specimens of small cross-sectional bar stock. Vol. All rights reserved.640 2170 710 1827 Annealed 7758C (14258F) Tempered 2058C (4008F) Annealed 8008C (14758F) Tempered 2058C (4008F) Annealed 7908C (14508F) Tempered 2058C (4008F) Annealed 8308C (15258F) Tempered 2058C (4008F) Annealed 8458C (15508F)b Tempered 5658C (10508F) P-20 S-1 S-5 S-7 A-8 724 2344 690 2068 103 265 93 315 105 340 100 300 100 270 95 290 103 290 100 295 kpsi 448 1550 380 1448 440 1930 414 1896 517 1413 380 1793 510 1793 365 1724 MPa 65 225 55 210 64 280 60 275 75 205 55 260 74 260 53 250 kpsi Yield strength. Ohio. 53. 1981 Materials Reference Issue.com) Copyright © 2004 The McGraw-Hill Companies. 1981). Any use is subject to the Terms of Use as given at the website. No. a 665 2000 Annealed 7758C (14258F)a Tempered 3158C (6008F) L-6 690 1860 710 2000 Annealed 7758C (14258F) Tempered 2058C (4008F) L-2 690 2034 Annealed 8708C (16008F)b Tempered 5408C (10008F) MPa H-11 AISI steel designation Conditiona Tensile strength.43 Downloaded from Digital Engineering Library @ McGraw-Hill (www. air-quenched. The heat treatments listed were to develop nominal mechanical properties for hardened and tempered materials for test purposes only and may not be suitable for some applications.digitalengineeringlibrary. . % Hardness 1010 940 1850 1725 1600 1700 925 870 1575 855 1550 1575 855 845 1850 8F 1010 8C Hardening temperature air air oil oil oil oil oil air 7 244 206 250 20 12 28 14 Quenched media J Medium to high 152c 5 Medium Medium Medium 184c 180 Medium to high Medium High Medium to high Machinability 15 9 21 10 ft-lbf Impact strength Charpy V-notch b Single temper. Cleveland. 5 Fine Medium Coarse Grain size 94WC-6Co Nominal composition Brinell Hardness HB Transverse strength.0 18008F Coefficient of linear expansion. sp 558 524 524 620 552 614 648 641 GPa 81 76 76 90 80 89 94 93 Mpsi Modulus of elasticity.5–95. 1985).9 14.3 4.36 1.0Co 6.0–87.24 0.6 12.50 0.8 – 5.3 4.4–88.9 2.45 0.54 0.5TaC-8.44 Downloaded from Digital Engineering Library @ McGraw-Hill (www.02 1. E 1860 1340 1450 1520 MPa 270 195 210 220 kpsi Tensile strength.5 90.  lm/m8C at lin/in8F at Source: Metals Handbook Desk Edition.5–93.7–92.com) Copyright © 2004 The McGraw-Hill Companies.90. sc 1720 970 700 1590 1170 2550 1930 1450 MPa 250 140 100 230 170 370 280 210 kpsi Proportional limit compressive strength.50 0. Metals Park.6 14.2 Fine Coarse Medium 84WC-16Co 72WC-8TiC11.52 0.5Co Medium 64TiC-28WC2TaC-2Cr3 C2 -4.2 90.5 94.4 2.6 13. 89 86.7–91.4 10008C 4008F – 3.3 87.90 3.2 – 3. Materials Park.03 1.9 5.1 91.0 15.83 1.2 4.6 3.2 Fine Coarse 90WC-10Co 92.3 2008C – 7.0 0.0 3.4 5.0 – – 5.4 2.36 J 8 27 25 15 18 9 12 12 in-lbf Impact strength – 50 88 – 112 – 100 121 W/m K Thermal conductivity – 5.5 15. OH 44073.54 0. OH 44073-0002 (formerly the American Society for Metals.54 Mg/m3 lb/in3 Density 690 1720 3380 2900 3100 2760 1790 2000 2210 MPa 100 250 490 420 450 400 260 290 320 kpsi 4340 5170 4070 3860 5170 4000 5930 5450 5170 MPa 630 750 590 560 750 580 860 790 750 kpsi Compressive strength.05 2. . Any use is subject to the Terms of Use as given at the website.3 3. All rights reserved.53 0.0 15.2 – 2. ASM International 1985.7–91.8 – 5.8 – 3.digitalengineeringlibrary. sb TABLE 1-23 Properties of representative cobalt-bonded cemented carbides PROPERTIES OF ENGINEERING MATERIALS 1.5–91.69 2.9 13.0 – 7. st 0.8 – – 3. heavy-duty punches. garden and agricultural tools.shear blades. reamers. Source: IS 1871. broaches. W 9 Cr 3 V 38 T 35 Cr 5 Mo V 1 T 35 Cr 5 Mo W 1 V 30 T 75 W 18 Co 6 Cr 4 V 1 Mo 75 T 83 Mo W 6 Cr 4 V 2 T 55 W 14 Cr 3 V 45a T 16 Ni 80 Cr 60 T 10 Cr 5 bee 75 V 23 Typical uses Cold-Work Oil and Air-Hardening Steels High-carbon highPress tools. All rights reserved. Nondeforming tool steels Engraving tools. vice jaws. scarfing tools.com) Copyright © 2004 The McGraw-Hill Companies. rivet shape. and forging High-speed tool steels Drills. cold punches. stamping. etc. tape. etc. high-speed and heavy-cut tools Low-Carbon Mold Steel Carburizing steels After case hardening for molds for plastic materials a May also be used as hot-work steel. knurling tools. shaping and wood-working tools. press tools Die blocks. trimming dies. Hot-Work and High-Speed Steel Hot-work tool steels Castings dies for light alloys. etc. Carbon tool steels Shock-resisting tool steels Pneumatic chisels. etc. milling cutters. drills. knives. press tools. heading and press tools. and other tools under high shock Nickel-chromemolybdenum tool steels Cold and heavy duty punches. etc.45 TABLE 1-24 Typical uses of tool steel Steel designation Type T 140 W 4 Cr 50 T 133 T 118 T 70 Cold-Work Water-Hardening Steels Fast finishing tool steel Finishing tools with light feeds. razors. slitting saws. pneumatic chisels. broaches. milling cutters. chisels. . marking tools. deep-hole drills. drawing and cutter dies. shear blades. shear blade thread chromium tool steels rollers.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS 1. files. Carbon-chromium tool steels Lathe centers. dies for extrusion. gauge. drills. Carbon tool steels Engraving tools.digitalengineeringlibrary. 1965. Any use is subject to the Terms of Use as given at the website. etc. Downloaded from Digital Engineering Library @ McGraw-Hill (www. dies. hard reamers. T 215 Cr 12 T 160 Cr 12 T 110 W 2 Cr 1 T 105 W 2 Cr 60 V 25 T 90 Mn 2 W 50 Cr 45 T 105 Cr 1 T 105 Cr 1 M 60 T 85 T 75 T 65 T 55 Cr 70 T 55 Si 2 Mn 90 Mo 33 T 50 Cr 1 V 23 T 60 Ni 1 T 30 Ni 4 Cr 1 T 55 Ni 2 Cr 65 Mo 3 T 33. punches. form cutters. scarfing tools. ‡ maximum.7 Notes: a .1 82.46 CHAPTER ONE TABLE 1-25 Mechanical properties of carbon and alloy steel bars for the production of machine parts Ultimate tensile strength. % 26 24 21 18 15 13 10 22 23 minimum.0 85.7 62.com) Copyright © 2004 The McGraw-Hill Companies. Source: IS 2073.6 62.PROPERTIES OF ENGINEERING MATERIALS 1.5 89. ## Minimum (gauge length pffiffiffiffielongation ffi = 5.4 106.7 101.8 69.6 52. area of cross section.digitalengineeringlibrary. All rights reserved. .65 a ).0 74.  steel designations in parentheses are old designations Downloaded from Digital Engineering Library @ McGraw-Hill (www. sut Steel designation MPa## kpsi MPa‡ kpsi 14 C 4 (C 14) 20 C 8 (C 20) 30 C 8 (C 30) 40 C 8 (C 40) 45 C 8 (C 45) 55 C 8 (C 55 Mn 75) 65 C 6 (C 65) 14 C 14 S 14 (14 Mn 1 S 14) 11 C 10 S 25 (13 S 25) 363 432 490 569 618 706 736 432 363 52.0 530 481 76.6 441 510 588 667 696 64.6 71.3 96. Any use is subject to the Terms of Use as given at the website. 1970.6 102. Source: IS 1871. a K Designation 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1100–850 1100–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 1200–850 8C Hot-working temperature 800–850 850–880 830–860 1123–1153 1103–1133 1073–1123 860–890 850–880 830–860 810–840 810–840 830–860 840–870 860–900 840–880 850–870 850–880 8C 1133–1163 1123–1153 1103–1133 1083–1113 1083–1113 1103–1113 1113–1143 1133–1173 1133–1153 1123–1143 1123–1153 K Normalizing TABLE 1-26 Recommended hardening and tempering treatment for carbon and alloy steels 1103–1123 1083–1103 1163–1183 1163–1183 1173–1213 1123–1173 1073–1123 1093–1133 1073–1113 1133–1163 1113–1153 1103–1133 1083–1113 1083–1113 1103–1133 1113–1143 1133–1173 1133–1153 1123–1143 1123–1153 1113–1133 1113–1133 1123–1153 1103–1133 1093–1123 1103–1123 1103–1123 K 830–850 810–820 890–910 890–910 900–940 850–900 800–850 820–860 800–840 860–890 840–880 830–860 810–840 810–840 830–860 840–870 860–900 840–880 850–870 850–880 840–860 840–860 850–880 830–860 820–850 820–850 830–850 8C Hardening 8C Oil Air or oil Oil Oil Oil Oil Oil Water or oil Water or oil Water or oil Water or oil Water or oil Oil Oil Oil Oil Water or oil Water or oil Water or oil Oil Water or oil Oil Oil Oil Water or oil Oil Oil K Quenching 823–923 803–1033 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 823–933 or 423–473 (depending on hardness required) 933 523 823–973a 823–973a 843–923 823–973 773–973 >423 403–453 K Tempering 660 250 550–700a 550–700a 570–650 550–700 500–700 >150 in oil 130–180 550–660 530–760 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 550–660 or 150–200 8C PROPERTIES OF ENGINEERING MATERIALS 1.digitalengineeringlibrary. All rights reserved. 1965.com) Copyright © 2004 The McGraw-Hill Companies.47 .Downloaded from Digital Engineering Library @ McGraw-Hill (www. Any use is subject to the Terms of Use as given at the website. 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1473–1123 1373–1123 1373–1123 30 C 8 (C 30) 35 C 8 (C 25 Mn 74) 40 C 8 (C 40) 50 C 8 (C 50) 55 C 8 (C 55 Ma 75) 40 C 10 Si 8 (40 S 18) 40 C 15 Si 2 (40 Mn 2 S 12) 220 C 15 (20 Mn 2) 27 C 15 (27 Mn 2) 37 C 15 (37 Mn 2) 40 Cr 4 (40 Cr 1) 35 Mn 6 Mo 3 (35 Mn 2 Mo 28) 35 Mn 6 Mo 4 (35 Mn 2 Mo 45) 40 Cr 4 Mo 3 (40 Cr 1 Mo 28) 40 Ni 14 (40 Ni 3) 35 Ni Cr 2 Mo (35 Ni Cr Mo 60) 40 Ni 6 Cr 4 Mo 2 (40 Ni Cr Mo 15) 40 Ni 6 Cr 4 Mo 3 (40 Ni 2 Cr 1 Mo 28) 15 Ni Cr 1 Mo 12 (31 Ni 3 Cr 65 Mo 55) 30 Ni 13 Cr 5 (30 Ni 4 Cr 1) 15 Cr 13 Mo 6 (15 Cr 3 Mo 55) 25 Cr 13 Mo 6 (25 Cr 3 Mo 55) 40 Cr 13 Mo 10 V 2 (40 Cr 3 Mo 1 V 20) 40 Cr 7 Al 10 Mo 2 (40 Cr 2 Al 1 Mo 18) 55 Cr 70) 105 Cr 4 (105 Cr 1) 105 Cr 1 Mn 60 Stabilization 823 K (5508C). 90 0.87 Other Mill liner Plate Round Round Round Round Round Round Plate Plate Round Round Keel block Form 100 100 25 25 25 25 25 25 25 50 25 25 100 mm 4 4 1 1 1 1 1 1 1 2 1 1 4 in Section 340 330a 655 600 745 600 695 560 510 435a 440 450 330a MPa 49 48a 181 150 3.6 14.75 1.28 0.11.24 0.0 Mo 0.5 34.3 0. st 2 1a 36 15.85 1.83 1.89 0. Source: Metals Handbook Desk Edition.6 0.67 0.94 Si Mo Mo Mo Mo 1. OH 44073.6 12.47 0. Materials Park.57 0.52 0.0 5. All rights reserved.95 1.46 Mo 1.5 11.37 0.64 0.5 J Impact strength Charpy b PROPERTIES OF ENGINEERING MATERIALS 1.com) Copyright © 2004 The McGraw-Hill Companies. OH 44073-0002 (formerly the American Society for Metals.98 0.20 Mo 3.8 6. ASM International. sy (0.48 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 Mo 3. % TABLE 1-27 Mechanical properties of some as-cast austenitic manganese steels ft-lbf 9 – – – – – – – 72 – 7 – – – – – – – 53 – – – – – 3.digitalengineeringlibrary.10 0.99 0.3 14. % – – 26 13 27 10 29 15 16 – – – – Reduction in area.60 0.4 Mo 2. Any use is subject to the Terms of Use as given at the website.96 1.6 0.5 Ni manganese steel 295 43 95 6 Mn-1 Mo alloys 325 47 – 220 183 235 2 Mo manganese steels 370 54 365 53 440 64 87 108 87 163 185 188 – 1 Mo manganese steels 101 345 50 81 400 58 74 365 53 63a – – kpsi Brinell hardness.7 12.1 14. Metals Park.11 1.2% offset) Plain manganese steels 64 – – 65 360 52 48a – – kpsi Tensile strength.96 0. Mn C Composition.93 0.2 12. Charpy V-notch.5 30 13 11 4a 14.4 2.16 0. 1985.54 0. .5 7.65 Ni 2.6 13. 1985). HB – – 245 MPa Yield strength.75 0.38 0.1 13. % b a Properties converted from transverse bend tests on 6  13 mm (14  12 in) bars cut from castings and broken by center loading across 25 mm (1 in) span.5 4 1a Elongation in 50 mm.6 13. fabrication characteristics. impellers. brackets Air compressor fitting.5 (2 in).5 10 11 kpsi Endurance limit in reversed bending. gear housing Cylinder heads.9 10. aircraft structures Screw machine products Sheet metal work. spun holloware. pulleys.0 1100 2014 -T 4.0 90 125 165 380 395 185 425 482 180 425 185 470 485 515 MPa Alloy no.0 -T6 356. 2017 -T 4.0 -F 295.d syc 60 75 90 220 235 125 260 290 125 260 125 285 280 310 152 221 193 235 234 9 11 13 32 34 18 38 42 18 38 18 41 40 45 22 32 28 34 34 26 26 31 22 29 179 217 152 200 179 42 kpsi 290 MPa Shear strength.0 4.5 7 7. brake shoes.179 278 331 250 290 303 283 186 -T 43 -T 6 240.0 3.0 10.com) Copyright © 2004 The McGraw-Hill Companies. aircraft structure Truck frames. % Elongation in 50 mm TABLE 1-28 Mechanical properties. Any use is subject to the Terms of Use as given at the website. impellers.5 Wrought alloys 72 Permanent mold casting 65 82 72 69 69 74 74 Sand casting alloys Brinell hardness Modulus of 4.7 10. syt 117 248 221 185 17 36 32 27 27 25 172 186 56 30 17 25 19 25 kpsi 386 207 117 172 131 172 MPa Compressive yield strength.0 -F -T 6 C 355.9 kN e (500 kgf) load elasticity.0 10. 13 18 24 55 57 27 62 70 26 62 27 68 70 75 27 44 41 42 26 40 48 36 60 65 34 32 36 27 26 39 33 kpsi Ultimate tensile strength. screw-machine products. sut 35 115 150 295 270 95 290 415 70 275 75 325 345 490 110 234 207 185 179 278 179 124 255 379 200 110 165 124 164 200 164 MPa 5 17 22 43 39 14 42 60 10 40 11 47 50 71 16 34 30 27 26 40 26 18 37 55 29 16 24 18 24 29 24 kpsi Tensile yield strengthd . All rights reserved. -T 6. spring hangers. E on 10-mm ball.0 -T 4 -T 6 319.0 513.0 3.7 10.0 D B B D B B B – C D D E D D A 1 3 3 3 4 4 1 1 1 1 3 2 2 3 3 3 3 Downloaded from Digital Engineering Library @ McGraw-Hill (www. marine hardware.49 .0 -T61 A 356.0 2. s 35 50 60 125 125 90 140 125 90 125 90 140 140 125 69 97 90 69 90 55 59 48 52 69 76 MPa 5 7 9 18 18 13 20 18 13 18 13 20 20 18 10 14 13 10 13 8 8. housing. sfb 23 32 44 95 97 45 105 135 45 105 47 120 120 135 60 90 90 90 100 140 75 65 130 90 60 75 70 80 85 70 9. meter parts Automotive engine blocks. aircraft wheels. pump parts.0 -T 6 A 390.0 -T 61 -F -O -H 14 -H 18 -T 3 -T 6 -O -T 451 -T 651 -O -T 451 -O -T 351 -T 3 -T 86 355.0 -F -T 6 C 355.0 -T4 A 535. levers. pumps Crankcases.0 10.5 10. 2024 -T 4. wheels Aircraft structural components Uses PROPERTIES OF ENGINEERING MATERIALS 1.0 -F -T 6 520.0 4 4 4 3 3 3 3 3 3 Corrosion resistance 17 8 1.0 8. 2011 414 448 235 221 250 186 250 269 228 201. crankcase.5 11. water jackets.0 <1. HB GPa Mpsi 35 9 5 15 17 18 20 13 22 22 20 20 18 6 7. valve bodies Ornamental hardware and architectural fittings Timing gears.0 16 9. D C C D D D D A A A D Machiability Gas C C A A A D 1 3 2 3 2 2 1 1 <1.digitalengineeringlibrary.a and typical uses of some aluminum alloysb D B B C D B B A A A D 5 2 2 2 2 2 5 4 2 2 4 2 2 2 2 2 2 Arc Welding D B B B B B B B A A D Resistance Truck wheels. timing gears.0 5. fin stock Machine-tool parts. compressor and aircraft and missile components requiring high strength Aircraft fittings and components.0 2.5 5. welded structures. sfb 95 25 73 60 150 68 77 30 40 55 45 63 77 47 28 ball. sheet metal work. 1 is the best and 5 is the poorest of the alloys listed. furniture. O.5-mm (12-in) diameter test specimens. All rights reserved. s 95 55 70 115 160 125 140 60 60 70 95 105 110 110 50 MPa 14 8 10 17 23 18 20 9 9 10 14 15 16 16 7 kpsi Endurance limit in reversed bending. strain hardened. storage tanks. cold-worked and artificially aged. chemical equipments. T7.digitalengineeringlibrary. Key: Temper designations: F. solution heat-treated and artificially aged. Any use is subject to the Terms of Use as given at the website. storage tanks.e E 12 17 11 12 10 7 25 8 4 20 9 5 25 30 (2 in).com) Copyright © 2004 The McGraw-Hill Companies. as cast. solution heat-treated and naturally aged. stressrelieved by stretching. Ohio. cooled from an elevated temperature shaping process and naturally aged. Hxx. Metals Park. Ultimate tensile strength. annealed. cooled from an elevated temperature shaping process and artificially aged. sut Compressive yield strength. . T5. boat sheet Trailer panel sheet.a and typical uses of some aluminum alloysb ðCont:Þ PROPERTIES OF ENGINEERING MATERIALS 1.2% offset. TX 51. Ratings A through D are relative ratings in decreasing order of merit. cold-worked and naturally aged. T3. HB Brinell hardness 4. railing. a 7075 6063 6061 5052 3004 MPa Alloy no.110 150 200 180 240 285 195 260 290 125 310 90 240 230 570 -O -H 14 -H 18 -O -H 34 -H 38 -O -H 34 -H 38 -O -T 6 -O -T 6 -O -T 6 3003 45 13 35 38 83 38 42 18 22 29 26 35 41 28 16 kpsi 275 50 215 105 505 215 255 55 145 185 70 200 250 90 40 MPa 40 7 31 15 73 31 37 8 21 27 10 29 36 13 6 kpsi Tensile yield strengthd . architectural extrusions Heavy-duty structures requiring good corrosion resistance.d syc TABLE 1-28 Mechanical properties. Source: ASM Metals Handbook. solution heat-treated. T4. c Endurance limits on 500 million cycles of completely reversed stresses using rotating beam-type machine and specimen.9 kN (500 kgf) load on 10-mm GPa Mpsi Modulus of elasticity. pipeline applications Hydraulic tube. furniture. 1988. truck and marine. syt MPa kpsi 205 70 150 150 330 145 165 80 95 110 110 125 145 125 75 MPa 30 10 22 22 48 21 24 12 14 16 16 18 21 18 11 kpsi Shear strength. bus body sheet.50 Downloaded from Digital Engineering Library @ McGraw-Hill (www. sheet metal works Pressure vessels. railroad car. appliances. cladding alloy Aircraft and other structures Pipe. cooled from an elevated temperature shaping process. American Society for Metals. solution heat-treated and cold worked and naturally aged. e Average of tension and compression moduli. T2. fabrication characteristics. d At 0. Average of tensile and hardness values determined by tests on standard 12. solution heat-treated and stabilized. % Elongation in 50 mm B A A – C A A B A A A A A A A Corrosion resistance C D B C C C D D D D C C D E A A A D D A A A A A B B B A A Machiability Gas A A A C C A A A A A A A A A A Arc Welding A A A B B A A B A A B A A B B Resistance Fin stock. cooking utensils Uses b For ratings of characteristics. T6. T1. heat-exchanger tubes. T8. 7 0.1 0.1 0.5 0.3–0.15 A-2 6.2 0.1 0.35 0.3 26.1 0.0 Fe Chemical composition.10 0.5–1.0–13.1 0.170 treated 231 Solution278 treated 307 Solution216 treated 263 WP 278 309 Fully heattreated WP 278 As cast Condition 24.1 0.3 0.2 22.7 0.0–10.8–1.0–4.6 0.3 Pb 0.0 22.digitalengineeringlibrary.3 44.05 0.4 A-4 A-5 A-6 A-8 A-9 A-10 LM10 0.0 4520 LM1 A-1 Mg 2447 Cu IS old IS new BS Designation 11.0 Si 0.5 0.8 kpsi Tensile strength.8 31.6 40.5 26.6 0.5 0.1 0.0 3.1 0.2 29.1 0.3 20.15–0.3 18.6 0.3 38.1 40.7–2.1 0.3 4.6 0.0 0.com) Copyright © 2004 The McGraw-Hill Companies.0 0.5 0.1 0.5 0.9 24.5 2.0 9.1 0.2 0.3 24.10 0.0–11.6.1 0.3 0.2–0.5 –6.05 0.7 0.0 0.5 2 8 12 7 13 4 9 2 2 3 5 5 7 2 3 2.0 21.7 0.0–6.05 0.0–5.0 A-12 LM12 9. Any use is subject to the Terms of Use as given at the website.2 Ti + Nb 0. Test piece % HB Mechanical properties PROPERTIES OF ENGINEERING MATERIALS 1.1 3.05 0.0 10.8 0.2 0.1 0.0–13.2 0.2 0.0–8.1 0.1 A-11 LM11 4.6 0.5 0.3 0.2 0. A13 (special) LM9 LM8 LM6 LM5 LM4 LM2 0.1 2.0 1.2 40. percent TABLE 1-29 Chemical composition and mechanical properties of cast aluminum alloy5.0 23.1 9.0–4.25 0. st 2 1.2 Zn 2.3 4223 5230 4600 4250 4635 5500 2280 2585 4685 Downloaded from Digital Engineering Library @ McGraw-Hill (www.2 24.5 23.0 0.2–0.1 0.1 0.0–11.5 33.1 0.5 1.8 1.5 0.20 0.5 Ni 0.3–0.2 0.2 0.6 36.0 0.0–6.9 33.0–3.0 0.25 10.0–13. All rights reserved.0 0.5 BS 1490 9.6 0.15 0.1 0.15 2.6 35.3 18.1 0.3 0.0 0.1 0.05 0.1 0.51 .1 0.6 Ti 0.2 0.4 40.3 20.5 (LM12) A-13 LM 13 0.2 2.05–0.1 0.05 0.25 0.3 44.05 0.6 21.2 0.3 20.2 0.05 0.5 0.5 5 1 2 65 65 100 100 100 Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Brinell Elongation hardness.5–1.5 0.1 0.1 0.2 0.6 23.2 0.35 0.05 0.0–4.9 18.20 Sn R E D N I A M E R Al MPa WP Fullly heattreated WP 170 247 170 278 139 201 124 154 As cast 124 147 As cast 139 154 As cast 139 170 As cast 162 185 As cast 124 162 162 232 147 185 232 278 Precipitation.8 0.05 0.6 Mn 0.3–0.3–0.1 0.8 1.3 0.0 2.0.0 1.6 40.5–11. Source IS Sp-1.9 33.6 29. BS 1490 only.05 0.5–4.5 3 4 8 2 3 100 100 75 75 Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Chill-cast Sand-cast Chill-cast Sand-cast Chill-cast Brinell Elongation hardness.0 4.9 31.05 Sn Al 216 278 185 232 MPa As cast 177 170 201 232 263 232 278 116 139 Solution (W).6 kpsi Tensile strength.5–9.5 0. 1967.8–2.1 0.2 0.2–1.0 0.0 4300 4223 4420 0.3 0.7 24.0 4.5–5.5 0.4–0.7 Mg 7. All rights reserved. Test piece % HB Mechanical properties PROPERTIES OF ENGINEERING MATERIALS 1.05 0. ** refer to British Standards.247 treated WP WP WP WP As cast Fully heattreated WP Solutiontreated Condition 25.8 40.2 Ti Ti + Nb 0.1 A-22 LM22 2.8–3.1 0.2 0.2 0.digitalengineeringlibrary.5 Zn 0.2 0.1 33. st 1.1 0.3 0.7 0.6 Mn Chemical composition.2 0.5 4.  Refer to both Indian Standards and British Standards. percent 0.15 0.6 38.3–0.5 0.20 0.2 35.25 0.6 0.6 0.3 0.5 1.A-18 LM18 0.0–1.2 0. Any use is subject to the Terms of Use as given at the website. A-16 LM16 1.52 Downloaded from Digital Engineering Library @ McGraw-Hill (www.05 0.com) Copyright © 2004 The McGraw-Hill Companies.3 26.05 0.1 0.1 1.1 0.8 20.0 3.05 Pb Notes: IS: Sp-1-1967 Specification of Aluminum Alloy Castings and BS 1490 (from LM 1 to LM 24) are same.3 40.5 Cu 2285 BS IS old IS new Designation TABLE 1-29 Chemical composition and mechanical properties of cast aluminum alloy (Cont.1 0.05 0.6 Si 1. .15 0.1 Ni 0.3 16.0–4.) 0.1 0.6 Fe 0.8 A-24 LM24 3.0–6.6 1.05 0.2 33.5 4225 A-14 (special) A-14 LM 14 3.5–6.6 0. 8 31.5 Si 0.4 21.5 min 19000 19500 Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder 24345 24534 43000 46000 52000 53000 54300 63400 19600 Al Designation Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 9.0) 200 (8.1 kpsi Tensile strength.4) 75 (3.6 – – – – 10. All rights reserved. Any use is subject to the Terms of Use as given at the website.5 21.0 1.1 0.53 .0 18.4 55.2 0.5–1.0) 15 (0.1 0.6 66.4–1.com) Copyright © 2004 The McGraw-Hill Companies.2–0.5 9.0) 75 (3.0) – 10 (0.0) 150 (6.2 0.8 20.8–5.2 – – 0.7 55.7 0.4) 10 (0.6 11.99 min 99.1 Cu 0.6 4.5 – 18.0 0.0 0.4 62.1 0.8 55.0) – – – – – – – 50 (2.1 34.0) 150 (6.0) 200 (8. min.4 14.8 54.0) 200 (8.2 0.2 0.9 18.5–1.4–1.0) – – – All sizes – – 150 (6.2 0.0 0.7 Fe 0.2 0.0) 150 (6.2 29.5 0.8 54.8 54.0 50. % (min) PROPERTIES OF ENGINEERING MATERIALS 1.8–4.2 0. sp TABLE 1-30 Chemical composition and mechanical properties of wrought aluminum and aluminum alloys for general engineering purposes6 65 110# 65 100# 65 150 240# 375 385 385 375 430 460 480 460 430 150 240 375 385 385 375 90 130# 100 150# 160 240# 215 200 260# 275 350 110 130# 140 125 MPa 9.0) – – – 10 (0.1 32.00 0.4 21.0 31.2 0.2 0.4 58.2 14.5–4.6) 15 (0.2 0.0) Over mm (in) Size 10 (0.0) 150 (6.7 40.25 0.6 34.7 62.9 kpsi 20 MPa 0.2 0.8 55.digitalengineeringlibrary.0 60.2 0.6 0.6) 150 (6.0–13.4) 25 (1.1 Zn 0.3 18.0) 150 (6.4 0.7 0.3* – – Cr O Ma O Ma O W Ma O Ma O Ma O Ma W Ma O WP Ma O Ma O Ma Ma O W Condition 10 (0. min.6 0.1 0.2 0.3–0.8 – 0.9 34. % 0.4) 25 (1.1 0.6 0.6 18 17 90 175 225 235 235 225 375 400 420 405 380 90 175# 220 235 235 225 – – – – 70 2.3 0.5 0.7 3.0) Up to and including mm (in) 2.1 34.4 16.3–1.0) 50 (2.0 34.2 0.0–4.2 34.4 66.05 0.0) 75 (3.6) 15 (0.0) – – 150 (6.8 23.7 0.6 54.4 13.9 2.4) 75 (3.1 32.0) 150 (6.0) 200 (8.8 54.7–2.5 0.4 55.3 0.5 0.1 0. st 18 25 23 25 23 12 12 10 10 8 8 6 6 6 6 6 12 12 10 10 8 8 18 18 10 12 14 18 14 14 10 11 13 13 18 14 13 Elongation.4 32.7 0.2 0.5 10.9 58.9 14.0 37.25 – – – 0.4) 75 (3.2 0.0) – – 10 (0.0) 150 (6.4) 75 (3.0) 150 (6.5– 6.6 34.1 3.1 0.05 0.0 18.25 0. 0.2 Mg 0.1 – – 11.6) 15 (0.2 0.7 69.6 0.9 4.0 25.0) 150 (6.1 13.0) 150 (6.3* – – Ti or others 0.6 100 100 – 130 125 – – 80 80 2.4–0.5 14.0) 10 (0.5 13 25.3 0.2–0.4 0.0) 150 (6.1 Mn Chemical composition.2% proof stress.6 0.7 0.8 16.5 0. 3 Mg 0.0 39.2 39.4–0.7–1.9 72.0 Cu 0.) PROPERTIES OF ENGINEERING MATERIALS . M – as-cast condition.5 24.4 11.0) – – – – All sizes – – 150 (6.2–0. 1983.8 Fe 0.24) 75 (3.7 22. % TABLE 1-30 Chemical composition and mechanical properties of wrought aluminum and aluminum alloys for general engineering purposes (Cont.1 22.3 Si 1.1 14.4–1.0) 150 (6.0 38. st 7 7 7 10 6 6 6 7 7 7 6 10 15 13 7 12 16 14 12 7 7 7 6 12 16 14 12 7 6 9 9 9 Elongation.54 Downloaded from Digital Engineering Library @ McGraw-Hill (www. a 76528 Al Designation Chemical composition.0) 23 (0. P – precipitation-treated.0) 150 (6.6 0.15–0.7 0. sp 285 310 290 290# 500 530 500 170 150 185 150 120 215# 265 330 110 150# 185 170 295 310 295 280 110 150# 185 170 280 245 255 275 265 MPa 41. All rights reserved.4 kpsi Tensile strength.8 18.6–1.4 33.7–1. W – solution-treated.1 42.4–0.Remainder Remainder Remainder Remainder 64423 64430 65032 74530 1.5–1.25 Cr WP WP W (Naturally aged for 30 days) WP WP Ma O W All sizes – 6 (0.3 16.0) 200 (8.5–1.2 Ti or others 0.3 0.5) 150 (6.0) 5 (0.5 37. 0. min.15–0.8 45.com) Copyright © 2004 The McGraw-Hill Companies.8 26.2 0.9 – 18.24) 75 (3.0) 200 (8.8 26.5 14.7 42.2 34.24) 75 (3.0) – 5 (0.6) 150 (6.0) 150 (6.5 38.1 0.4 kpsi 0.0 40.0 Zn 0.8 24. Any use is subject to the Terms of Use as given at the website.6 62.0) – 6 (0.0) 200 (8.4 66.6) 6 (0.0) 15 (0.2 0. min.0 31.2) 75 (3.12) 12 (0.5 37.0) Up to and including mm (in) 245 26245 – 430 455 430 140 110 150 130 – 125# 155 265 80 – 120 100 255 270 270 240 50 115# 115 100 235 200 220 230 220 MPa 35.0 42.0 1.9 16.2 0.2) 75 (3.2 1.1 72.5 34. % (min) Properties in M (as-cast) temper are only typical values and are given for information only.4 31.2 0.4–1.24) 15 (0.3 16.24) 75 (3.4 47.0 21.0 29.2% proof stress.2–0.8 26.7 35.8 24.0) All sizes – – 150 (6.0 21.0) 200 (8. WPS – fully heat treated plus stabilization.2 0.8 7.0) – – – – – – 150 (6.0 42.0) 150 (6.7 0.35 0.24) – 150 (6.6 – 18.8 21. Key: # Maximum.0) 200 (8.8 0.8 0.0) 150 (6.0) – 6 (0.8 40.8 17.0– 1.6 31.0) P – – Condition Ma O W WP Ma O W WP Over mm (in) Size 6 (0.6 16 21.5 37.0 Mn 4–5 0.4 20. Source: IS 733.3 45.8 0.5 – 62.0) 6 (0.6 35. 5 0.2 0.5 78.4 0.digitalengineeringlibrary.0) – 150 (6.2 38.7 40.7 0.0) 150 (6. WP – solution-treated and precipitation treated. R – stress-relieved only.7 21. Any use is subject to the Terms of Use as given at the website. water pump impellers and housings. 4 Si 63 Cu. marine fittings.2 Si. 29 Zn 255 Leaded yellow brass 85 Cu. valves. 25 Zn. welding equipment. marine propellers. 20 Ni. 2. 4 Ni. gears.5 Cu. bushings. nuts. 3 Mn 67 Cu. roll pins Valves.20 Co 99. 3. gears Valves.Downloaded from Digital Engineering Library @ McGraw-Hill (www. gears. 4 Fe. 25 Ni.4 Cu.9 kN Machin(500-kgf Rockwell. valves. 1. bushings. Composition. pipe fittings. screw-down nuts. diaphragms. high-strength alloy. 5 Pb. 3 Pb. 4. 5 Sn. musical instrument components. 1. % Cast Alloys 30 Tensile yieldb strength. 10 Sn. pump castings.0 Fe. rocker arms. welding equipment. rolling mill bearings. 1 Sn. small boat propellers Bearings. chemical plant equipment.7 Be. expansion joints Gears. bells. 1. 2. pump and valve components.0 Cd 90.3 Cu. gears. bolts. spring contacts. fasteners. 11 AI C 86300 C 87200 C 87500 C 90500 C 92200 C 96300 C 97800 C 99400 C 16200 C 17000 Silicon bronze Silicon brass Tin bronze Leaded tin bronze Leaded tin nickel bronze C 92900 High-leaded tin bronze C 93700 C 95500 Manganese bronze Aluminum bronze Copper-nickel Nickel-silver Special alloy Cadmium copper Beryllium copper Leaded beryllium copper C 17300 88 Cu. furniture hardware. 2. battery clamps. sanitary and ornamental hardware Valve stems. switch parts. lock washers.9 Be. impeller. 10 Sn. 0. ornamental fittings General-purpose yellow casting alloy. 10 Pb 241 81 Cu. All rights reserved. fuse clips.5 Pb. clocks. 1. sut TABLE 1-31 Typical mechanical properties and uses of some copper alloys4 RB 98 50 125–170d RB 77 60 130d 50 20 20 15 50 192–230d 150 40 80 42 30 50 80 60 65 115 134d 75 40 8 225d 85 80 84 50 60 Brinell. 5 Zn C 83600 Leaded red brass MPa UNS no. 14 Zn. switch gear components. 0. small gears. bourdon tubing Bellows. corrosion-resistant castings Bearings. fuse clips.digitalengineeringlibrary. guides Bearings for high-speed and heavy-pressure pumps.a ability load) HB R ratingc Hardness Trolley wire. cams. pump piston. valves. 84 Cu. 4. diaphragms. hydraulic cylinder parts Bearings. piston rings. 4 Si 89 Cu min. 2 Zn 82 Cu. chains. and fittings Extra-heavy-duty. 6 Sn. gears. mining equipment gears Typical uses PROPERTIES OF ENGINEERING MATERIALS 1. springs. 10 Sn. valve stems. large valve stems. flanges. radiator fittings. worms Marine fittings. valve components. wear plates.a Alloy name Ultimate tensile strength.0 Zn 47 35 40 45 67 55 115 34 37 kpsi 179 124 138 152 207 172 572 83 117 MPa 26 18 20 22 30 25 83 12 17 kpsi 517 30 55 25 15 10 12–10 20 20 30 25 21 30 15 25 469-1479 68-200 172-1255 25-182 48-3 483-1310 70-190 221-1172 32-170 45-3 Wrought Alloys 7–69 57–1 234–372 34–54 207 379 241–689 35–100 48–476 455–545 66–79 55 75 Elongation in 50 mm (2 in). 3. sleeves and seawater corrosion resistance parts Valves and valve seats. washers. 0. ship trimmings. 2 Pb. 1. 1. steam fittings.55 .0 Cu.2 Al. propeller wheels. 5 Sn. springs. 6 Al.5 Pb.com) Copyright © 2004 The McGraw-Hill Companies. fittings and pressure-containing parts for use up to 2888C (5508F).5 Cu. cams. pressure-tight castings Valve guides and seats in aircraft engines. 2 Zn379 79. slow heavy-load bearings.5 Zn 276 C 85400 99. hooks. lock washers. impellers. and ware-guide Bellows.5 Ni 324 80 Cu. syt 689–827 100–120 303–469 44–68 310 462 379 793 234 66 Cu. railbands. fasteners.7 Fe 88 Cu.4 Pb 99. impellers. marine uses. 3 Fe.2 Ni. high-strength transmission lines. Machinability rating expressed as a percentage of the machinability of d e 29. diaphragms. lamp fixtures. chemical hardware. 39.0 Zn. fasteners. hot forgings Butts. rivets. rivets.0 Si 95. anchor screws.0 Pb. and resistance wires Coins. 35.0 Zn C 21000 Guilding brass (95%) 95. trace P 60. cotter pins.) PROPERTIES OF ENGINEERING MATERIALS . bullet jackets.0 Zn 269–724 255–496 234–441 MPa High-silicon bronze -A C 65500 Phosphor bronze (5% A) Naval brass 90. flashlight shells. 34. condenser plates. 1. rivets. screen cloth.0 Cu. bourdon tubing. fasteners. sut TABLE 1-31 Typical mechanical properties and uses of some copper alloys (Cont.0 Pb. ferrules.0 Zn. welding rods. valve stems and bodies Condensers. C 36000. unless otherwise noted. B. fasteners. syt 40–2 45–15 33–19 63–3 64–2 50–17 60–7 53–18 45 65–60 52–10 65–3 66–3 55–3 50–3 45–4 Elongation in 50 mm (2 in). electrical conduits. lipstick cases.0 Pb. large nuts and bolts. valve stems.5 Cu. clutch disks. American Society for Metals. propeller.9 kN (500-kgf Rockwell. Composition.0 Cu.56 Downloaded from Digital Engineering Library @ McGraw-Hill (www. 35.0 Cu.0 Cu. heat-exchanger and condenser tubing. rivets Architectural. machine screws. 1. 1988. 39. 39.0 Cu. 0.a Alloy name Ultimate tensile strength. 5. nuts. Machin4. 18. evaporator and heat-exchanger tubing.75 Sn 65. shafts. lock washers. condenser plates.0 Ni 372–517 C 67500 Manganese bronze–A 386– 1000 324– 965 379–607 324–607 338–469 359 331–379 372– 510 317–883 303–896 97. balls. marine hardware. marine hardware. automatic high-speed screws. 10. engravings Gears. Source: ASM Metals Handbook.0 Cu. 41. jewellery base for gold plate Etching bronze. primers. condenser.4 Fe. 1. bolts.0 Cu. gears. screws.0 Zn UNS no.0 Zn C 22000 C 23000 C 26000 C 26800 C 28000 C 34000 C 36000 C 37700 C 44300 C 44400 C 44500 C 46400 to C 46700 C 51000 Commercial bronze (90%) Red brass (85%) Cartridge brass (70%) Yellow brass Muntz metal Medium leaded brass Free-cutting brass Forging brass Admiralty brass C 71500 C 77000 Copper-nickel (30%) Nickel-silver 55-18 1.0 Sn. welding rod Clutch disks. free-cutting brass. Any use is subject to the Terms of Use as given at the website. dials. ammunition components. grillwork. brazing rods. fuse caps.0 Cu. cap screws.0 Cu. textile machinery Hydraulic pressure liners. Ohio. flashlight shells. hinges. 30.0 Sn. 28. pump rods. 3.0 Zn.0 Zn 71.0 Ni 414–1000 58. lamp fixtures. nuts.0 Cu.0 Cu. machine parts Forgings and pressings of all kinds Ferrules.digitalengineeringlibrary. 55. pinions.4 kN (3000 kgf) load. screws.a ability load) HB R ratingc Hardness Aircraft turn buckle barrels. bolts. evaporator and heat-exchanger tubing.0 Zn 61. sockets. springs. kpsi 69–427 10–62 69–400 10–58 MPa 15–60 18–45 20 18–22 172–455 25–66 103–414 124–310 138 124–152 145–379 21–55 138–483 20–70 207–414 30–60 60—145 186–621 27–90 54–75 65–84 56–145 145–483 21–70 47–140 131–552 19–80 55–88 47–88 49–68 52 48–55 54–74 46–128 97–427 14–62 44–130 76–448 11–65 39–105 69–434 10–63 37–72 34–64 kpsi Tensile yieldb strength. fire extinguishers.. distiller tubing. RA . 3.com) Copyright © 2004 The McGraw-Hill Companies. 448– 579 1. 0.5 Zn 59. rivets Radiator cores and tanks. medals. All rights reserved. condenser and heat-exchanger tubing. 27.0 Cu. salt water piping Optical goods. Rockwell numbers in A. based on 100 percent for C 36000. fasteners. distiller tubing Typical uses a b c Nominal composition. nuts. shafting. hinges. U-bolts. 2. Note: Values tabulated are average values of test specimens.85.0 Cu. 5. 1 Mn 70. Metals Park. rivets Conduit. balls. RF .0 Zn 65. All yield strengths are calculated by 0. RB . 15.5 Cu.0 Cu. F scales. radiator cores Radiator cores and tanks. locks. locks. % 90-82RB 30 20 30 30 20 30 70 100 80 30 85RF –80RB 40 80RB –64RF 30 82RB –64RF 30 77RB –55RF 30 70RB –53RF 20 64RB –46RF 20 Brinell. 30.25 Zn. condenser plate Bellows.5 percent offset method.0 Sn 60.0 Zn 70. 5 2. sy Sand and Permanent Mold Castings 275 40 130 19 130 275 40 83 12 83 275 40 150 22 150 220 32 105 15 105 185 27 90 13 90 1.2 5.03 max Ni.5 3.7 0. .6 0. 10-mm ball. All rights reserved.13 0. (2 in).7 2.0 3. Ohio.30% max residual Cu is allowable in AZ91B.7 0. c A and B are identical except that 0.0 5.0 4.5 4 10 160 140 125 130 165 150 180 140 145 125 150 145 140 160 165 180 23 20 18 19 24 22 26 20 21 18 22 21 20 23 24 26 73 68 88 49 82 63 73 55 84 55 57 62 70 70 Shear strength.1 max Cu. Elongation s Brinellb in 50 mm hardness.6 9.6 1.3 Mn(a) Th 1. d Properties of B and C are identical.0 7.1 4. and 0.2 0.com) Copyright © 2004 The McGraw-Hill Companies.8 3. 15 min Mn.3 9. 1988.9-kN (500-kgf) load.0 3.0 0.7 6. but AZ31C contains 0. a Al Alloy Composition Tensile strength.0 Zn 0.45a 0.0 0.5 1.15 0.7 1.7 0. Metals Park.digitalengineeringlibrary.0 AZ63A–T6 AZ81A–T4 AZ92A–T6 HK3IA–T6 HZ32A–T5 ZE41A–T5 ZH62A–T5 ZK61A–T6 AM60A–F AS41A–Fc AZ91A and B–Fc AZ31B and C–Fd AZ80A–T5 HM31A–F ZK60A–T5 AZ3IB–H24 HK31A–H24 HM21A–T8 0.6. American Society for Metals. % MPa kpsi HB PROPERTIES OF ENGINEERING MATERIALS 1.13 0.57 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 2.7 0.7 Zr kpsi MPa kpsi 1.3 3.10 3.13 0.0 3. 0.0 8.2 RE 205 30 140 20 140 240 35 170 25 170 310 45 195 28 195 Others MPa Tensile Minimum. 4.35 0.0 0. st TABLE 1-32 Nominal compositions and typical room-temperature mechanical properties of some magnesium alloys 15 9 11 15 7 10 11 6 4 3 5 15 3 8 4 3.0 6. Any use is subject to the Terms of Use as given at the website. Source: ASM Metals Handbook.0 Si 290 255 235 260 380 290 365 205 220 230 b 180 160 130 26 23 19 14 35 27 36 Extruded Bars and Shapes 38 200 29 97 55 275 40 240 42 230 33 185 53 305 44 250 Sheets and Plates 42 220 32 33 200 39 34 170 25 17 22 24 115 150 165 Die Castings 30 115 17 32 150 22 33 150 22 19 12 22 15 13 20 25 28 MPa kpsi Compressive Bearing 325 285 270 345 405 230 360 305 450 275 255 350 340 47 41 39 50 59 33 52 44 65 40 37 51 49 MPa kpsi Yield strength. age-hardened Rod.digitalengineeringlibrary.5 56 35–10 35–40 4 50 55–35 28 60–35 45–25 5–2 30–20 49 46 28 102 24 9 60–30 50–25 5–2 56.com) Copyright © 2004 The McGraw-Hill Companies. corrosion resistance Corrosion-resistant parts Corrosion-resistant parts Typical uses PROPERTIES OF ENGINEERING MATERIALS . American Society for Metals.0 92 66 30–60 35–90 130–170 38 b 10 8 15 14 25 35 52 17 27 14. cast Bar. cold-drawn Annealed Bar. annealed Hot-finished Wire. annealed As rolled Bar. annealed. missiles.2% offset) Elongation in 50 mm MPa kpsi (2 in).25–0. 1988. where corrosion resistance and high strength are required High strength and hardness. missiles.75 in) thick Bar.58 Downloaded from Digital Engineering Library @ McGraw-Hill (www. 218C (708F) Wire. sut TABLE 1-33 Mechanical propertiesa of some nickel alloys4 87RB 24RC 75RB 86RB 95RB 35BB 35RC 53 Hardness number J 39 ft-lbf Impact strength notched Charpy Jet engines. 218C (708F) 8708C (16008F) Bar. annealed. Ohio. a Waspaloy Unitemp AF2–IDA Rene 95 Hastelloy B Udimet 700 Hastelloy G-3 Hastelloy W Incoloy 800 Inconel X-750 Inconel 825 Monel K-500 Inconel 600 Monel 400 Durnickel 301 Bar.6 162 70 75–100 80–120 140–175 105 kpsi 448–758 379–517 655 345 620–825 1275 517–621 483–655 1000–1240 965–1172 624 672 1276 135 1120 485 512–690 552–827 965–1207 725 MPa 1050 715 1310 1220 795 515 462 965 635 220 365 276–690 103–207 621 110 205–415 910 172–345 205–380 862–1172 724–1034 210 307 910 117 635 455 207–414 241–621 896–1172 260 152 104 190 177 115 75 67 140 92 32 53 40–100 15–30 90 16 30–60 132 25–50 30–50 125–170 105–150 30. Metals Park. etc. turbines where hightemperature strength and corrosion resistance are important Superalloy. syt (0. Source: ASM Metals Handbook.1.4–19 mm (0. 1290 830 1620 1460 1280 525 187 120 235 212 185 76 134 204 100 52 107 352 740 924 1410 690 65–110 55–75 95 50 90–120 185 75–90 70–95 145–180 140–170 91 98 185 19. solution-treated 4258C (8008 F) 9008C (16508F) Sheet. 218C (708F) 8708C (16008F) Nickel 200 Nickel 270 Condition Name of alloy Ultimate tensile strength. turbine. cold-drawn Annealed Strip. spring temper Bar. 6. Values tabulated are approximate average ones. % Values shown represent usual ranges for common sections.0 Tensile yield strength. 218C (708F) 8708C (16008F) Bar. 218C (708F) 8718C (16008F) Bar. 218C (708F) 7608C (14008F) Bar. annealed Spring temper Bar. All rights reserved. cold-drawn. jet engine. drawn.4 45 132 17. furnace Springs Corrosion-resistant parts Jet engines. annealed Age-hardened Bar. forging 218C (708F) 6508C (12008F) Bar. Any use is subject to the Terms of Use as given at the website. 1981). Brinell syt hardness. a 58–64 45–47 65 400–440 310–324 448 ZA-27 Sand-cast Sand-cast Die-cast 41 47 47 57 283 324 283 kpsi 393 Z 33520 Z 35531 MPa 40–45 45–50 903 925a 903 UNS 276–310 310–345 AG 40 A AC 41 A Alloy 3 Alloy 5 Alloy 7 SAE Ultimate tensile strength. 1981 Materials Reference Issue. Any use is subject to the Terms of Use as given at the website. All rights reserved. SAE Handbook. Source: Machine Design.2 kpsi Fatigue endurance limit. 6 (March 19.365 255 434 317 207 214 53 37 63 46 30 31 Zinc Foundry Alloys Die-Casting Alloys 110–120 90–100 110–125 110–125 105–120 105–125 82 91 Tensile yield strength. MPa kpsi HB 3–6 8–11 1 2 1–3 1–3 10 7 14 Elongation in 50 mm (2 in). 53. 1981. % 58 65 54 J 43 48 40 ft-lbf Impact strength Charpy Die-cast. Vol. Note: Values given are average values. Ohio. Penton/IPC. pp. Cleveland. 108 cycles PROPERTIES OF ENGINEERING MATERIALS 1. No.com) Copyright © 2004 The McGraw-Hill Companies.digitalengineeringlibrary. sut ZA-12 Sand-cast Permanent Mold Die-cast ASTM Grade Designation of alloy TABLE 1-34 Mechanical properties of some zinc casting alloys8 47 56 MPa 6. 11–123.59 Downloaded from Digital Engineering Library @ McGraw-Hill (www. . sf .8 8. com) Copyright © 2004 The McGraw-Hill Companies. 1985).c 900 790 690 1000 Ti-5Al-2. cyrogenic applications Uses b At 0. e Approximate values of annealed bars at room temperature. 1985 (formerly the American Society for Metals. aircraft gas turbine disks and blades. Mechanical and other properties given for annealed conditions. Metals Park. ASM International. pressure vessels. Any use is subject to the Terms of Use as given at the website.60 Downloaded from Digital Engineering Library @ McGraw-Hill (www. a Beta alloy Beta alloy R 56260 R 56400 80 450 ASTM Grade 3 (Ti-65A) ASTM Grade 4 Alpha-beta alloy 65 340 ASTM Grade 2 Commercially pure titanium Commercially pure titanium Commercially pure titanium Alpha alloy R 54520 Alpha alloy R 54521 Alpha alloy R 54790 35 ASTM Grade 1 Commercially R 50520 pure titanium 240 Designation Name of alloy UNS no. aerospace structural members. All rights reserved.5Sn Ti-5Al-2. excellent weldability. d Based on a rating of 100 for B1112 resulfurized steel. air frame structural components.2% offset. excellent corrosive resistance.digitalengineeringlibrary. c Mechanical and other properties given for solution-treated and aged condition. . easy to fabricate.5 24. gas turbine engines.550 R 58010 900 1030 1170 1170 Ti-6AI-4Vb Ti-6Al-6V-2Sn Ti-10V-2Fe-3Ala. excellent corrosive resistance. disks and fan blade.c Ti-6A1-2Sn-4Zr6Moe Ti-13V-11Cr-3Al Ti-3Al-8V-6Cr4Mo-4Zrb.25Al-11Sn5Zr-IMo 130 130 150 170 170 115 100 145 50 830 830 970 1100 1100 760 620 900 480 380 280 170 120 120 140 160 160 110 90 130 70 55 40 25 4 10 19 20 22 24 13. sut strength. advanced manned and unmanned airborne systems. Desk Edition. Source: Metals Handbook. % J ft-lbf TABLE 1-35 Mechanical properties of some wrought titanium alloy4 PROPERTIES OF ENGINEERING MATERIALS 1. components of compressors Missile applications such as solid rocket motor cases. Materials Park. springs for airframe applications Resistance to temperature effect of structures. Ohio 44073-0002.5 35 10 18e 26a 34RC 30RC 40b 22b 30b 40b MachiHardness nability Gas turbine engine casting and rings. Ohio. jet engine blades and wheels. Strength Ultimate impact tensile Tensile yield Charpy strength. large bulkhead forgings Most widely used alloy. turbine disks and blades. syt Elongation in 50 mm MPa kpsi MPa kpsi (2 in).5Sn-ELI Ti-2. Powder was vacuum filled into fluid dies following cold static outgassing for 24 h. a Plasma rotating electrode processed Ti-6Al-4V Powder metallurgy Ti-6Al-4Va Wrought commercial purity titanium Grade II Sponge commercial puritya Powder metallurgy titanium Wrought Ti-6Al-4V (AMS 4298) Powder metallurgy Ti-6Al-4V Name of alloy Ultimate tensile Yield strength. area.61 Downloaded from Digital Engineering Library @ McGraw-Hill (www. forged. E 5 11. Source: Metals Handbook. All rights reserved. c Consolidated at 811 MPa (58. Materials Park. Preheat temperature was 9408C (17258F) held at temperature 0. 1985 (formerly the American Society for Metals.5 17 16.75 h.8 15 15 Mpsi Elastic modulus.5 15 23 10 8 12–18 4. ASM International. e Ke .5 s dwell in low-carbon steel fluid dies. sut strength.digitalengineeringlibrary. cold Blended elemental alloy.8 tpsi). Any use is subject to the Terms of Use as given at the website.5 876 99 min 937 99 1103 Density .5 414 94 427 100 455 100 896 95. . 0. 1985). KIC 114 117 116 103 103 GPa 16. preforms or vacuum hot pressed Solution treated and aged Hot isostatically pressed Forged Processing 120 133. d Kt ¼ 3. % MPa Blended elemental alloy.5 138 50 60 62 66 130 127 136 160 kpsi 738 841 910 344 324 338 365 827 786 862 1013 MPa 107 122 132 50 47 49 53 120 114 125 147 kpsi 62 28 60 60d 414d kpsi 427 193 414 MPa Fatigue limit notched. Metals Park.951 827 920 100 94 100 Forged 100 345 95. sf 83f 55e 45e 61e 76f 50e 40e 56e pffiffiffiffi pffiffiffiffi MPA m kpsi in Fracture toughness.2% oxygen.6 35 14 ReducElonga.com) Copyright © 2004 The McGraw-Hill Companies. Ohio. sy TABLE 1-35A Mechanical properties of powder metallurgy and wrought titanium and titanium-base alloys PROPERTIES OF ENGINEERING MATERIALS 1. f Ktc . % % b 0. Ohio 44073-0002. Desk Edition.9 5 15 8 25 39 30 20 14 15-40 7.tion in tion.12% oxygen. 0. Metals Park.5 MPa for 1000 h 1.digitalengineeringlibrary.07 MPa Creep For general purpose.1 MPa for 1000 h at 1008C (2128F) 0. indium forms alloys with low melting point.2 Fatigue strength at 107 cycles. used as solder for the jobs lead alloyed with tin. used in automotive devices. 4700 55030 32.9 MPa for 1000 h 0.01% per day 19. Ultimate tensile strength.4350 4930 5367 54520 30 8 MPa at 1008C 54820 34 54915 37 1. Uses Note: Values tabulated are average values obtained from standard test specimens. 1985). sf Hardness Elongation number.1 16 14 12 10 30% at 1008C 12 8 30–60 135–200 at 1008C (2128F) 60 130 25 18 10 55 2 48 28 10 13 4–6 30 3. sy 50042 12-13 50132 35 1. 7610 2756 55111 52. Materials Park.4 870 4060 54321 28 6 MPa at 1008C 10297 53620 71 10 4002 9570 870–1160 7978 MPa psi 52901 27. Some of these are fusible alloys.790 MPa for 0.5 MPa-1000 h at 1008C 28 MPa for 100 h 3% per year at 2. fire extinguishers.8 MPa at 1008C 50750 70 51120 16-19 UNS No.  s 1495 624 464 8. All rights reserved. Source: Metals Handbook. sut TABLE 1-36 Mechanical properties of some lead alloys PROPERTIES OF ENGINEERING MATERIALS . ASM International. % MPa psi HB 2. in 50 mm (2 in). Ohio. sprinkler heads.45 MPa for 1000 h at 1008C (2128F) 2. most popular of all lead alloys Wiping solder for joining lead pipes and cable sheaths.6 psi 1740–1885 55 5076 261 at 2128F 10152 66 2320–2755 6–8 MPa Yield strength. Desk Edition. Ohio 44073-0002.5 19 MPa at 1008C 33 4790 1450 37 36 32 28 5380 5200 4640 4060 12.2–4.1 MPa for 1000 h 3. Any use is subject to the Terms of Use as given at the website.30 4. bismuth cadmium.3 3.5 30 MPa 4358 20 at at 2  107 2  107 10.5 1810 MPa psi Shear strength. 1985 (formerly the American Society for Metals. for automobile radiator cores and heating units Low melting-point chemical process applications.5 MPa-1000 h 7.com) Copyright © 2004 The McGraw-Hill Companies.62 Downloaded from Digital Engineering Library @ McGraw-Hill (www. 0 216 (31.0 5.8) 647 (93.8) Class III leaded 4.9)f Class I phosphora bronze b 4.com) Copyright © 2004 The McGraw-Hill Companies. Used for locomotive side valves.5) Class IV bronzed Railway. pony pivot bushes.8) Silicon bronze PROPERTIES OF ENGINEERING MATERIALS 1. relief valves.0 20.0 186 (27. e Used for castings for carriage and wagon bearings shells. .0) 539 (78.0)f 206 (29.0 647 (93. whistle valve body.7) 196 (28. d Used for locomotive grease lubricated non-ferrous axle boxes.Sand-cast (cast-on) Sand-cast (separately cast) Chill-cast Elongation percent.2) Grade II 15.0 12.0 490 (71. Any use is subject to the Terms of Use as given at the website. c Used for fusible plugs.9) 157 (22.3) 226 (32. HB for phosphor bronzes: 60 for sand cast (cast-on) test pieces and 65 for sand-cast (separately cast) test pieces.0 8.4) 216 (31. All rights reserved.0 2.8) 176 (25.8) Grade I 20.0 Tin bronze 20. min 8.0 186 (27.0 137 (19. oil-lubricated connecting rod.63 Downloaded from Digital Engineering Library @ McGraw-Hill (www. nonferrous boxes.3) Class II gun metalc 3. bronze 12. min sut . oil-lubricated side rod.0 157 (22. f sut given in parentheses are the units in US Customary Units (kpsi).0 309 (44.0 446 (64. large end bearings. stuffing box. side rod and motion bushes.8) 245 (35.0 196 (28.digitalengineeringlibrary.0 12. oil-lubricated connecting rod. MPa (kpsi) Property Mode of casting test pieces TABLE 1-37 Mechanical properties of bronzes 12.9) Class V leadede gun metal 20. a Sand-cast (cast-on) Sand-cast (separately cast) Chill-cast Ultimate strength. steel axle box.0 2.0) 206 (29.5) 8.4) Grade III Aluminum bronze b Brinell hardness. 1 kpsi Transverse strength. Any use is subject to the Terms of Use as given at the website. Coefficient of linear expansion from 0 to 333 K (608C ¼ 1408F) is 35  106 .64 Downloaded from Digital Engineering Library @ McGraw-Hill (www.00 0.1.27–3.6–2.digitalengineeringlibrary.0 0. c Coefficient of linear expansion from 0 to 333 K (608C ¼ 1408F) is 36  106 .0 9.5 MPa 0.8 110.06 1.40 1.4–28 14–62 3. a Specific gravity Compressive strength. sc TABLE 1-38 Mechanical properties of rubber and rubber-like materials 48 62 62 103 MPa 7.0 2. st b Sclerscope.97–1.98–1.35 Material Duprene Koroseal (hard) Koroseal (soft) Plioform (plastic) Rubberb (hard) Rubberc (soft) Rubber (linings) 88 758 14 103 MPa 12.30 1.1 kpsi 1.30–1.0 1.6 4.com) Copyright © 2004 The McGraw-Hill Companies. .6 kpsi Tensile strength.4–17 28–34 7–69 3. sb 50a /80 15–95 80–100 30–80 Hardness shore durometer 422 373 361 344–393 328–367 339–367 361 K 149 100 88 71–120 55–71 65–94 88 8C 300 212 190 160–250 130–160 150–200 190 8F Maximum temperature Softens Softens Softens Stiffens slightly Softens Softens Effect of heat PROPERTIES OF ENGINEERING MATERIALS 1.2–4.0 15.0 2.0 0.20–1.0–9.0–5.0 9.25 0.0–10. All rights reserved.00 1.0 15.12–2. housing for power tools.45 0. impeller. washing-machine agitators. bushings. industrial switch gears. optical and transparent parts for safety glasses. camera cases. bearings. small tools. helmets. . handles.1–1. Any use is subject to the Terms of Use as given at the website.0 55–69 69–138 3–48 55–83 45–48 Cellulosic (cellulose acetate) Epoxy resin (glass-fiber filler) Fluoroplastic group Nylon Phenolic (general purpose) 0. and sheet for packaging Mechanical gears.3 0. tracks. chute liners. phone and flashlight cases. handles for appliances.9 2. aircraft pressure bottles. pipes. % GPa Mpsi ABS (general purpose Name of plastic Tensile strength. used as synthetic rubber for tires Structural. automatic transparent rings.42 3. communication instruments. pistons.0 1. chute liners Filament wound structures. reinforced glass-fiber composites Decorative knobs. knobs.1 Acetal 5. transparent parts for safety glasses. battery cases.30–0. cams.04-0.4–0. extruded and cast film.4–9.4–1. Rockwell 0. small motors.5 5–50 2.4–10.5–2.40 1. bushings.6 8. pistons.8–3.1 2. housing for vacuum cleaners.5–1.0 15.52 0.digitalengineeringlibrary.0. wear strips. camera cases.5 ft-lbf Izod impact strength 0.6 1.2–2. housing for thermostats. components for aircraft and computers.9 8–12 6.4–0. camera cases. pump. mechanical components such as gears.5 2. valves.3 0.0 10–20 8–10 60–200 100–300 4.065–0. pumps and power tool housings. tool handles.13 0. E in 50 mm (2 in).com) Copyright © 2004 The McGraw-Hill Companies.5 4.2–6. automobile-steering wheels. fan blades. pipe fittings. snowmobile windshields. washing-machine agitator.8 21. rollerskate wheels. eyeglass frames.3 3 2–30 1. refrigerator shelves Light-duty mechanical and decorative eyeglass frames.18–0. rollers.65 Downloaded from Digital Engineering Library @ McGraw-Hill (www. refrigerator shelves and snowmobile windshields. sut TABLE 1-39 Properties of some thermoplastics Wall plates.4–4.5 1. phone and flashlight cases. eyeglass frames. pipe fittings.0 40–60 7.5–7. helmets.33 Modulus of Elongation elasticity.9 0.6–9. lens signs.2 6.0–3. bearings. pumps Application PROPERTIES OF ENGINEERING MATERIALS 1.  Chemical With plastic Resistance to 114–120 R Poor 50-80 D 100–110 M 122 R 80–94 M 92–100 M 103 Hardness.7–41 Excellent Good Available Available Heat Good Excellent High Fair Fair 0.22–0.8 J 1.5–3.2–47.35 70–95 E 1. valve. and cams Gears. automobile-steering wheels. oil storage tanks and highperformance tubing.5–7.3 37–72 5–20 Acrylics 6 kpsi 41 MPa 0.0–7.04 0. fan blades. All rights reserved.05 With steel Coefficient of friction. and structural components Light-duty mechanical knobs. handles. 35-0.3 0.0 1. tracks.52 0. knobs.) Mechanical cams. rotor housing for pumps. hydraulic valve seals. safety glasses.7-21.1–1. pump impellers.66 Downloaded from Digital Engineering Library @ McGraw-Hill (www. Penton/IPC. snowmobile windshields. E in 50 mm (2 in).2 0.4 Modulus of Elongation elasticity. camera and handle cases. transparent parts for safety glasses. trim moldings. gears.93 J Izod impact strength 120 R 50–110 R 10–65 R 65–100 M 88–120 M 62. All rights reserved.91 M 115-119 R 106-108 L Hardness. 1981). TV cabinets. signs. 50–100 10–500 20–1000 1–300 <1 25 0. 6 (March 19. battery cases.5–20 0. housings for pump and power tools Flashlight and phone cases. rollers.5–2. wear strips and other wearresisting parts Pipe fittings. eyeglass frames.4–6. chute liners. high load bearings for business machines and computer printout terminals. sut TABLE 1-39 Properties of some thermoplastics (Cont.8 0. 1981 Materials Reference Issue.8 ft-lbf 0.6–5. phone and flashlight cases.5–1.3-5. Any use is subject to the Terms of Use as given at the website. gears. lenses and snowmobile windshields.7–3. tool handles. phone cases.13 0. washing machine agitators. power tools. % GPa Mpsi 7. Cleveland. cable protective cover.6–50 25–345 Polyimide 10-125 2.2 0. bushings.7–6.7 2.9–11. and vandal-resistant glazing Decorative knobs. 70 5–14.25–17 2. flashlight cases. transparent parts. bushings. phone cases. pumps. bearings. refrigerator shelves.18 0. gear pump gaskets.1 0.9 0. small appliances. automobile steering wheels. pistons. pistons.7 2-16 2. eyeglass frames.12 0.28–1.3 4–60 kpsi 8-16 48-123 MPa Polycarborate 55-110 Phenylene oxide Name of plastic Tensile strength.55–159 4–38 Polyester Polyethylene 10. pump impellers. camera cases.7 0.86 0.6 0. valves.0-17. refrigerator shelves. power tools. Rockwell Excellent Excellent Excellent Excellent Good Heat Excellent Poor Excellent Fair Fair 0. hollow shapes for telephones.36 0. and flashlight cases Small housing for power tools.5 Polypropylene 34–100 0.014–0.39 With steel Coefficient of friction. fan blades. housing for pumps.7–27. tracks.5 8–23 3. Ohio.2 1. multilayer printed-circuit boards.12 0.22 0.7-6. housings for pumps. scrubbervane mist eliminators Application PROPERTIES OF ENGINEERING MATERIALS .2 Polysulfone 1.34-0. 53.  Chemical With plastic Resistance to Source: Machine Design. helmets. No.1–0. power tools and other appliances. bearings. fan blades. rollerskate wheels and chute liners Molded polyimides are used in jet-engine vane bushings.3–23 0.7–2. Vol.9 1.digitalengineeringlibrary. tool handles. tubes for oil-well exploration Mechanical gears.com) Copyright © 2004 The McGraw-Hill Companies.9 2-5 0. lenses. bush-bar sleeves. housings for electric shavers and mixers. potting and encapsulating electrical and electronic components ranging from miniature coils and switches to large motors and generators Electrical wiring devices and switch housings. synthetic rubber for tires and other mechanical rubber goods.3–10 ft-lbf Impact strength Izod Fair Chemical Excellent Excellent Excellent Good Excellent Excellent Excellent Excellent Excellent Excellent Good Heat Resistance Source: Machine Design. handles for pots and pans. MPa Name Tensile strength. utensil handles.5–14 J 0. toaster and other appliance bases. automotive power-brake systems and industrial terminal strips. st TABLE 1-40 Properties of some thermosets8 Refrigerator equipment.3–41 0. oil storage tank. used with various reinforcements.4–1. circuit boards.3–10 0. push buttons. asbestos. and housings. Rockwell 15 1–10 0. knobs.4–24 0.0–2. dinnerware. sealant. pump housings. cotton.Downloaded from Digital Engineering Library @ McGraw-Hill (www.04 1. glass fibers.3–16 0. Cleveland. Vol.67 .5 5–9 4–20 5–1 0 4–10 3–9. food-service trays.4 0.4–6. 6 (March 19. electrical terminal strips. and aircraft components requiring high modulus and light weight. 21–66 28–69 34–69 28–138 34–62 3–45 Alkyd Allylic Amino Epoxy Phenolics Silicone 0. used as baking enamel coatings. switch gear. radio and TV components.3–2. No.5 0. industrial switch gear. graphite and carbon-fiber-reinforced laminates used for radomes.2–30 0. piano keys and camera parts.9 Elongation in 50 mm (2 in). used as a washing. % 0. and small-appliance housings Application PROPERTIES OF ENGINEERING MATERIALS 1. laminating parts. injection mold silicon rubber Handles for appliances. automotive ignition parts.0 Mpsi Modulus of elasticity. aircraft pressure bottles. E 80–90 M 70–95 E 80–120 M 110–120 M 103–120 M 98E–99 M Hardness. All rights reserved. particle-board binders.3–3. Penton/IPC. housing for small motors and heavy-duty electrical components.5 kpsi 7–17 2. insulators. and relay housings and bases. automotive and aircraft ignition parts. thermostat housings. housing for vacuum cleaners. and metallic foils. connector plugs. 53. copper-clad laminate for high-performance printed-circuit boards Military switch gear.05 0.5 0.5–14 0. and electrical components. 1981).digitalengineeringlibrary. Ohio. coil forms.2–12 0. dry ingredients for brake linings. pressure vessels.5–21 9–16 2–21 GPa 1.com) Copyright © 2004 The McGraw-Hill Companies. paper and textile treatment materials Switch gear and TV components. Any use is subject to the Terms of Use as given at the website.3–0. 1981 Materials Reference Issue. clutch facings and other friction products Filament wound structures. tubing and aircraft parts. metal blocks.27–18 0.35–3.26–1. synthetic fibers. imprinted circuits. small power tools. automotive transmission rings. electrical components for aircraft and computers. 30 0.3 K at 748F 34.365 10.7 48.0 2.535 10.770 at 298 K 10.0 48.55–9.0 – 600.000 83.2 at 294 K 3.0 10.036 at 433 K 3.digitalengineeringlibrary.0 27.0–6.  0.600– 280.508 0.435 at 433 K 60.0 Cataline (61-893) 8.5 at 778F 58.30 0.2 3.59 at 293.0 8.000 135.7 1.5 at 708F 42.38 500. f 347.338 10.33 4.623–17.222 at 293.5 5.5 at 3208F 59.0–380.6 K 4.0 55.com) Copyright © 2004 The McGraw-Hill Companies.000 261.0 475 at 708F 370.00 5.83 4. st Material Elastic limit.000 290.12 at 299 K at 778F 4.3 4.010 14.4 75.5—99 54.0 GPa 0.57 25.000– 163.68 Downloaded from Digital Engineering Library @ McGraw-Hill (www.10 at 298 K 3.000 57.38 12.3 at 294 K 2.014 3.9 K (758F) at 405.4 3.0 83.724– 423.0 250. .5 10. All rights reserved.13 3.000 290.00 4.200 226.6 2.83 220 at 708F 157 210 170 191 180 at 778F 180 1000 39 191 468–492 3582 191 191 lin/fri Strain fringe value.0 16.0 550.0 460 at 708F 478. Any use is subject to the Terms of Use as given at the website.0–628. used for photoplasticity Used for 2-dimensional (2-D) and 3dimensional (3-D) models.0 615.332 61.2 at 3208F 452.0 56.5 48.57 at 298 K 4.0 0.355 14.7 K (808F) Araldite 6020 at 277.9 7.38 0.Polycarbonate Marblette [annealed 72 h at 356 K (1818F)] Bakelite ERL 2774 (50 phthalic anhydride) Hysole 4290: at 296.0 20.3 63.5 5.41 0.50 91.34 0. susceptible for time edge effect Low optical sensitivity.42 400.68 60.35 350.79 –4. Q ¼ ðE=f  Þ 4690 1694 4596 5360 2628 1408–1188 643 2500–4070 1970–1415 fri/m 119 43 16 136 67 36.2–4.7–2.2 28.38 0.0 88.83 4.6 K 7.000 116.33 623.20 Poisson’s ratio.25 at 296. fs lbf/in fri lm/fri 154.290 42.000 320.6 7.2–117.812 15.3 3.35 540.50 0.000– 150.40 1.25 7.157 880 87 1740–2420 5.0–41.362 0.3 22.0 MPa Glass kpsi MPa Tensile strength.000 fri/m 8810 6626 8333 1428 6291 8145 2080 7796 7672 7350 1428 3423 6750 2994–3838 455 7069–7218 5747–4132 fri/in Figure of merit.3 4.113 304. free from time edge effect Low optical sensitivity Free from time edge effect.0–62.0 310 245 182 80 83.0 5. E TABLE 1-41 Optical and mechanical properties of photoelastic material6 10.0–30.2 69.0 0.55 7.75 2.000 328.4 4.0 1.0 58.8 4.83 11. susceptible for time edge effect Used for 2-D and 3-D models Used for 2-D and 3-D models Used most commonly for 2-D and 3-D models Used for 2-D and 3-D models Used most commonly for 2-D and 3-D models Used for 2-D and 3-D models Used for 2-D and 3-D models Used for 2-D models.000 27.20 10.000 305.0 12.873 14.0 0. se 3.0 0.5 fri/in S ¼ e =f  Little optical and mechanical creep Good stress-optical relationship.7 1.0 at 778F 445.236 kN/m fri Stress fringe value.000 18.45 0.2 K (2708F) Armstrong C-6 Araldite 6020 at 299. rarely used Remarks PROPERTIES OF ENGINEERING MATERIALS 1.0 60.907 31.000 kpsi Young’s modulus.5–17.6 82.0 0.4 68.4 K (408F) Araldite B Methyl methacrylate (unplasticized) Polystyrene Cellulose nitrate Castolite Kriston CR-39 (Columbia resin) Epoxy Resin: Araldite CN-501 38.0 8.000 310.3 69.8–100 5–3.10 2.0 0.595 10.000 264.00 4.55 3.000 56.0 kpsi 51.90–12.245 13. 289 0.003 1. 60%water) Hysole 4485 0.0 6.425– 0.65 GPa 0. 1986.38 0. .025 0.40 Poisson’s ratio.000 3032 35. Suma Publishers.60 431.2.003– 0.14 0. Lingaiah.8 106 0.9 Urethane rubber Hysole 8705 at 26. and K.84 7.70 4.4 fri/in S ¼ e =f  Great optical sensitivity. Q ¼ ðE=f  Þ 1076 684 893 fri/m 31.69 Downloaded from Digital Engineering Library @ McGraw-Hill (www. All rights reserved.9 K (758F) 2. R.85 102 46.000 165.80 5.digitalengineeringlibrary.425 250. Gelatin (15% gelatin. Vol. Bangalore. se TABLE 1-41 Optical and mechanical properties of photoelastic material (Cont. st 0.  0.6 17.467 0.087 9. Any use is subject to the Terms of Use as given at the website.00 40. f 19.70 18.2 31. Vol. I (SI and Customary Metric Units).9 Marblette (phenofomaldehyde) Catalin 800 Natural rubber Hard Soft kpsi MPa Material Elastic limit.00 82.46 0.6 57.000– 25.4 47.0 1.752 0.0 kpsi Young’s modulus.50 0. Machine Design Data Handbook. Narayana Iyengar. Machine Design Data Handbook.0 240.87 19016 3228 1598 17000 230 310 lin/fri Strain fringe value.0 483.004 75.7 1. II (SI and Customary Metric Units).625 11 103 0.0 MPa 6. Lingaiah and B.5 10. used for model study of body forces Used for preparation of models in stress wave propagation and models of dam Good stress-optical relationship.982 kN/m fri Stress fringe value. 1986.) PROPERTIES OF ENGINEERING MATERIALS 1. Suma Publishers.9 0. 25% glycerine. India.17 1. E 0. Bangalore.158 0. susceptible for time edge effect Remarks Sources: K.084 57.50 kpsi Tensile strength. fs lbf/in fri lm/fri 10. India.700 170.72 1.com) Copyright © 2004 The McGraw-Hill Companies.000 fri/m 78 4722–694 850 4340 4210 fri/in Figure of merit. 5 0. 750 Summer Street.43 2. 91–94 Class 3.667 795 0.56 1.43–1. Source: Metals Handbook Desk Edition.8 13 0. K Class 2. RC .126 lb/in3 Density.2–0. J. All rights reserved. st 200 172 138–413 2.0 54 2. Inc.25 5 5–13 20. 0.49 2.4 0.0 W-Ni Fe alloy 18.0 lm/mK Coefficient of thermal expansion.4 0.097 0.5 0.0 2. OH 44073). 06901.75 1.6 10.4 5 4 0.283 0.8 4 72. 89–91 Tungsten. spl 275 310 345 275 GPa 40 45 50 40 Mpsi Modulus of elasticity. Conn.4 5.11 1.5 103 in 10. spl 260 350 450 205 MPa 38 51 65 30 kpsi Proportional limit.5 Btu/(ft2 h8F)/in 381 381 1.digitalengineeringlibrary.066 0.5 6.001–0. Stanford. and P.041 0.0 W-Ni-Fe alloy 18.com) Copyright © 2004 The McGraw-Hill Companies. Any use is subject to the Terms of Use as given at the website.7 11. W-Ni-Cu alloy 17.01 0.053–0.0 3.43 2. E glass S glass 970 S glass Boron on tungsten Graphite Beryllium Silicon carbide on tungsten Stainless steel Asbestos Aluminum Polyamide Polyester Fiber Typical fiber diameter TABLE 1-43 Representative properties for fiber reinforcement a 0. 1985. 94–96 Class 4.5 2 3 4 0. Halpin.066 0.614 895 0.650 925 0.  Virtually nonmagnetic Slightly magnetic Slightly magnetic Slightly magnetic Magnetic properties 1. % by weight Courtesy: J.2 10.4 5. OH 44073-0002 (formerly The American Society for Metals. E 30 3.62 1.7 22400–38080 100–170 13440 19488 6496 1680 W/(m2 K/m) Thermal conductivity.70 Downloaded from Digital Engineering Library @ McGraw-Hill (www.9 2.W-Ni-Fe alloy 17.2 5.614 785 130 134 115 114 kpsi 615 655 690 605 MPa 89 95 100 88 kpsi Yielda strength.8 lin/in8F 5.4 2. Technomic Publishing Co. 96–98 Class 1.46 2.2 0.8 1.090 0. Metals Park. Petit.  Ultimate tensile strength.092 0.091 0.095 0.5 4.5 81–90 81–90 2.3 14.025–0.64 2.4 0. Ashton. sut TABLE 1-42 Typical mechanical properties of commercial machinable tungsten alloys PROPERTIES OF ENGINEERING MATERIALS . H.3 5.2 102.  60 87 29 7.0 5–10 127 102 103 mm 7.  2852–4184 689–2067 1378–2067 827 690 3100 4498 5510 2756 1723–3445 1240 2480 MPa 385–600 100–300 200–300 120 100 450 650 800 400 250–500 180 360 kpsi Tensile strength. E 16 6 3 4 27 RC 29 RC 32 RC 27 RC Elongation in 50 mm (2 in). ASM International. Primer on Composite Materials—Analysis. C.2–0.0 Mg/m3 lb/in3 MPa 1 Classification Class of alloy Density.7 45–50 45–50 6..5 85 100 415 241–689 310 414 GPa 29 25 20–60 0. Rockwell hardness scale C.0 Coefficient of thermal expansion.090 0.40 g/cm3 0.2 10.5 60 35–100 45 60 Mpsi Modulus of elasticity. E. 1969.48 2.5 12.2% offset. Materials Park.4 4 0.052 0.. % Hardness lin/in8F 3.0 2.7 1.78 3.6 lm/m8C 5. 5 1.0–6.1 97.4 86.8–7.0 0.5–3.6–1.5–3. g/cm3 250 515 480 425 455 345 690 550 550 415 295 225 690 425 585 345 255 160 650 395 510 290 400 240 415 220 170 275 205 110 MPa MPa kpsi Yield strength.0–93.4 7.7 34 20 4.9 1. E 10d Steel 180 150 kpsi Fatigue strength.0–6.9 93.71 .7 97.6 0.9 93.2 6.3 max 0.0 0.0 4.5 3.0–99.6–1.2 6.1 93.8–7.0 HT 6.2 93.0 0.7–100 97.6 0.6–1.digitalengineeringlibrary.5–3.6 0.6 AS AS <6.8 6.4–95.5 2.0–99.9 93.5 75RB <0.6–1. . % HT <6.9 1.0 0.5–98.0–99.0 5.0–6.2 6.5 1.5 7.5–3.8–7.1 97.3–0.5 1.4 MPIF material designationa F-0000 F-0000 F-0000 F-0005 F-0005 F-0005 F-0008 F-0008 F-0008 F-0008 F-0008 F-0008 FC-0200 FC-0200 FC-0205 FC-0205 FC-0205 FC-0205 FC-0208 PC-0208 FC-0208 FC-0208 FC-0208 FC-0208 FC-0505 FC-0508 Downloaded from Digital Engineering Library @ McGraw-Hill (www. FC-0508 FC-0808 0.1–97.5 6.0 0.2–7.5 93.4–6.5–3.5 19 19 16 16 19 13 19 19 16 16 13 13 16 16 13 23 19 10.9 1.5 30RB <0.5 9.8 AS AS 6.4–99.5 3.5 100RB 50RB 100RB 45RB 20RB 30RB 15RB 10RH Apparent hardness <0.0–11.4 6.8 4.4–6.0 AS AS 6.7–100 97.6 0. Any use is subject to the Terms of Use as given at the website.5 70RB 95RB 1.9 1.8–7.5–3.2 6.0 60RB 1.3 max 0.3 max 0. Class B B 310.0 0.0 0.0 4.5–98.0 3.4–6.6–1.0 0.3–0.9 93.4 AS HT AS HT 6.9 1.3 max 0.0–95.8 6.5 <0.5 <0.3–0.0 0. sf Iron and Carbon Steel 10 75 11 40 kpsi Tensile strength.8 AS AS <6.2 Conditionc MPIF density.8 6.0 6.8 3.0 45RB <0. Grade 3 B 426.5 75RB 65RB 1.9 1.4–99.0 4.0–6.2 HT AS HT AS HT AS HT AS AS AS 6.0 1.0–99.0 1.5 30RC 75RB 3.8 6.5–3.4–6.0 AS HT AS 6.7 4.1 Mpsi J Modulus of elasticity.5 65RB 1.5 7.5–3.8–7.5 5.1–97.5 4.4–6.6–1.1 11 – – – 13 – 23 – – – – 6.5 60RB 40RC 1.0 0.0 2.5 93.6–1.3 max C 6.6–1.4–6.9 1.2 93.3–0.0 93.1 97.9 1.0 0.8 6.5 9.5–3.0 – – – – – – – 4.9 91.9 Cu Ni MPIF chemical composition limits and rangesb .1 7.0 0.4–6.Fe 97.6–1.8 6.0 <0.0–6.5 35RC 80RB 1.7–100 97.8–7.5 7 80RH 30RC 2.0 3.1 4.4 91.4 6.4–99.8–98.1–97.8 HT <6.0–6.4 – – – 6.9 1.1 97. All rights reserved.6 0. Grade 2 B 426.6–1.0–6.com) Copyright © 2004 The McGraw-Hill Companies.6 0.5 5.6–1.0 0.5 10.5–98.0 55RB 85RB 30RC <0.0 0.9 1.5–98. st TABLE 1-44 Designation.8–98.6 0.1–97.7 97.0–95.5 25RC 2.1–97.0–6.6 0.5–3.3–0.5 15 9 2 Elongation in 25 mm (1 in).5–3. % B 426.1–97.6–1.8–7.2 93.5 8.5 <0.4–6.6–1.4 AS AS 6.3–0.8–7. Grade 1 B 310.4 6.0–6.7 91.5 35RC <0. composition and mechanical properties of ferrous powder metallurgy structural steels 5. Class A ASTM designation PROPERTIES OF ENGINEERING MATERIALS 1.3–0.8 <6.6–1.2 6.5–3.0 4.0–99.6–10 0.8 6.2 6.7 97.2 93.1 97.5 17 – – – – 5.0 6.5 25 15 3 ft-lbf Impact energy <0.4–6.0 0. sy MPa 36 75 70 62 66 50 100 80 80 60 43 33 100 62 85 50 37 23 94 57 74 42 58 35 60 32 25 40 30 26 22 – 480 480 395 380 290 655 395 – 330 – 205 655 310 560 260 – 70 70 57 55 42 95 57 – 48 – 30 95 45 81 38 Copper Steel 23 – 195 185 160 170 130 260 210 210 155 110 85 260 160 220 130 95 110 130 130 90 116 90 90 116 30d 30d 38d 19d 25d 24d 27d 29d – 110 23d – 70 70 16d 130 14d 160 13d 90 130 9d Iron Copper Steel 115 17 60 91 150 38d 130 36d 245 625 40 130 130 22d 275 195 100 24d 110 28d – 36 150 110 110 14d – 250 – 110 90 22d – 31d 90 90 19d 110 30 155 85 13d 205 57 23 20 23d 395 160 140 90 160 15d 110 70 130 6 11d 12d 65 105 80 GPa – 16 13 13 16 13 19 19 16 16 10.4–6.9 1.7 6.3–0. Class C B 310.0–99. 8 AS AS 340 545 1105 HT 690 HT AS 330 AS 760 HT 6.4 FN-0408 HT AS HT 7.0–5.1–93.com) Copyright © 2004 The McGraw-Hill Companies.0 6.5 2.6 0.0 FN-0405 91.0 1.6 87.0 6 4 4.0 11 4 0. Grade 1. Grade 3.4–6. sy 160 145 160 160 115 115 160 145 160 115 160 160 115 115 160 145 160 160 115 115 145 145 115 115 160 115 – GPa 23 21 23 23 17 17 23 21 23 17 23 23 17 17 23 21 23 23 17 17 21 21 17 17 23 17 – 22 16 27 33 11 12 35 28 22 81 19 41 8. Class B B 484.0–3.1 14 36 19 – Mpsi J Modulus of elasticity.5 Ni FN-0405 92.5 FC-1000 C MPIF chemical composition limits and rangesb .0–3.7 91.3 max 0. All rights reserved.7 FN-0205 0.2 7.0 FN-0700 2.5 Elongation in 25 mm (1 in).0 1.8–7.0 1. Grade 1.0 FN-0208 FN-0400 1.2–7. st AS FN-0405 2.4–6.9–98.0 FN-0200 0.2–7. Class B B 484.9–98. Class B B 484.0 max 2.0 max 6. g/cm3 7.5 5. composition and mechanical properties of ferrous powder metallurgy structural steels (Cont.2–97.0 max AS 0.4–6.2.0 3.5 max 1.6 705 6.5 0.8–7.4–6. Grade 2. Grade 3.0 87.6 2. . Class A B 222.3–0. Grade 2.6 6.0 6.8 91.9 2. Class C B 484.8–7. B439.8 0.2–90.8 HT 6.0 FN-0200 9.9–96.0–3.2–7.5 1.2–7.5 3.0–3.1 14 68 47 24 30 8.0 0.7 FN-0208 0.3–0.6 655 550 HT FN-0708(e) 620 1160 AS – FN-0705 7.4–6. % 96RB 88RB 40RC 90RB 24RC 69RB 83RB 72RB 95RB 72RB 44RC 80RB 27RC 63RB 67RB 60RB 47RC 87RB 34RC 62RB 42RC 70RB 32RC 50RB 51RB 38RB 70RF Apparent hardness B 484.4–6.0 7.9–96. sf 155 1070 345 650 205 605 215 450 160 Nickel Steel 205 Iron Nickel 125 18 – Iron Copper MPa Yield strength.9–98.0–5.0 87.4–6.0 6.digitalengineeringlibrary.72 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 0.5 6.5 2.6 87.3 max AS 3.5–10.6 6.6 3. % FN-0400 Fe MPIF material designationa kpsi – 30 455 380 895 390 57 60 55 130 260 220 500 250 280 150 80 Nickel Steel 240 35 550 240 195 48 330 Iron Nickel 275 40 160 450 205 310 125 255 42 154 43 94 26 160 68 470 290 1060 295 650 180 Nickel Steel 36 140 250 Iron Nickel 205 30 220 275 130 305 140 225 105 415 50 94 30 88 31 65 23 75 125 – MPa 38 32 65 36 41 22 34 28 37 23 65 30 45 18 23 20 60 32 40 19 44 20 33 15 18 11 – kpsi Fatigue strength.6–98.0 max 2.0 max 6.2–7.0 max 2.5 max 2.5 1.6–0.5 3.3 max 0. Class A B 484.6 2.4–93.5 3.3–0–6 2.0 max AS 0.2–7. Class C B 484.5 max AS <60 6.0 370 2.2–7.4 AS AS 6.2–99.3 max Cu MPIF density.91.8–7. Grade 2.5 6 0. Grade 3 ASTM designation PROPERTIES OF ENGINEERING MATERIALS . E TABLE 1-44 Designation.7 92.7 90.) 16 12 20 24 8 9 26 21 16 6 14 30 6 10 50 35 18 22 6 8 16 18 6 10 50 14 – ft-lbf Impact energy 3.7 FN-0205 0.6 2.5 1. Class A B 484.7 585 490 FN-0705 AS AS 6.3–0. 0. Class C B 484. Grade 1.8 AS AS FN-0405 0.3 max Conditionc 89.5 0.0–5.6 6.5 3.6 0.0–3.1 11 22 24 8.5 max 1.8 89.0–3.0 2.8 345 SS 565 HT 7.6–0.0–8.9 0.3–0.0–5.0–8.2 255 310 195 205 MPa 95 80 168 90 102 54 85 71 93 57 80 74 112 45 58 49 160 79 100 48 110 50 82 37 45 28 30 kpsi Tensile strength.6–0.6–96.2 640 395 1240 510 770 310 400 FN-0700 6.5 1.5 7.7–94. Grade 3.2–7. Any use is subject to the Terms of Use as given at the website.5 3. AS 7.5 max 1.9 89.0–8.3–0.5 max 2.2–99. com) Copyright © 2004 The McGraw-Hill Companies.0–25. e x indicates infiltered steel. Class C B 303. 1985. ASM International. sy – – – – – – – – – MPa – – – – – – – – – kpsi Fatigue strength.0 8. oil quenched and tempered at 2008C (4008F). heat treated. E 5.5 16. OH 44073.6 C 15. as sintered.0 15. .0 10 6. Source: Metals Handbook Desk Edition.0–84.0% infiltered steel. Any use is subject to the Terms of Use as given at the website.0 0.7 80.3 max 0.7 0. 1985).0 14 ft-lbf Impact energy 80RB 92RC 1.5 15 7.80. a Fe MPIF material designationa TABLE 1-44 Designation. Materials Park.0–14. Class A ASTM designation b Designation listed are nearest comparable designations.6 7.0 0.2–7.8 14 8. . except that the total amount of other elements must be less than 4.1 12.6 7.0–25. Metal Powder Industries Federation (MPIF) standards require that the total amount of all other elements be less then 2.0 4.6–1.3–0.7–85. Metals Park.2–7.4 FX-1005 (e) FX-1008 (e) FX-2000 (e) FX-2005 (e) FX-2008 (e) 0.5 2.) PROPERTIES OF ENGINEERING MATERIALS 1.0 9. SS.0 70. ranges and limits may vary slightly between comparable designations.4 70.73 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0%. Class B B 303. % B 303. HT.0–25.9 8.2–7. All rights reserved.5 <0. composition and mechanical properties of ferrous powder metallurgy structural steels (Cont. g/cm3 895 585 860 HT 790 HT AS 515 AS 450 HT AS 620 830 HT AS 570 MPa AS Conditionc 125 85 115 75 65 130 90 120 83 kpsi Tensile strength.0 Elongation in 25 mm (1 in).2–7.6 MPIF density. sf 125 125 125 125 – 135 135 135 135 GPa 18 18 18 18 – 20 20 20 20 6.6 – 7. % 7. RB ¼ hardness Rockwell B scale.4–84. c AS.digitalengineeringlibrary. sintered and sized. st kpsi 740 515 655 345 – 775 515 740 107 75 95 50 – 105 75 107 Infiltered Steel 440 64 MPa Yield strength.6–1.0 9.7 70. d Estimated as 38% of tensile strength.0 60.5 19 Mpsi J Modulus of elasticity. RC ¼ hardness Rockwell scale C.0 15.6 1. OH 44073-0002 (formerly The American Society for Metals.9 20 9.0–14.0 12 7.0 30RC <0.1–91.9 Cu – – – – – Ni MPIF chemical composition limits and rangesb .5 75RB 60RB 40RC 80RB 35RC 75RB Apparent hardness 1. RF ¼ hardness Rockwell F scale.3–0.5 1.5–91. f Unnotched Charpy test. typically austenized at 8708C (16008F). 07 0.5Co. Ti-5Al-3.20 0.1 0.85 Nb 30 Zn 0.3 0.35 max 0.03 (AISI 304) S 31008 0. All rights reserved. % TABLE 1-45 Nominal composition of some of structural alloys at subzero temperatures (i.005B 0.16 17–19 24–26 18–20 15.0W 3.0 1.2 max 0.5 0.03 0.5 6.17 N 0.6 0.4 1.15 max 0.23 Cr 1.05 1.10 304 0.05 1.4 0.8 2.8 Si No 5500 No 9706 No 7718 UNS No.018 0.5 0.5 16 18.3 2.1 0..008Zr.2 Fe 0.4 0.0–3.com) Copyright © 2004 The McGraw-Hill Companies.045 (10C)(Nb+Tb) 0.7 Mn 4.1.05 0.04 0.045 3. at cryogenic temperatures) PROPERTIES OF ENGINEERING MATERIALS .1 0.5 0.0 (Nb+Ta) 5.28 0.0 Nb 0.6 0.08 max 5.08 max 4.30Mmax 0.4 6.005 0.5 max 0.02 0.045 1.5 Rem 18.8 0.7 0.05 0.15 max 0.5 8.8 0.0 0.15 max 4.0 max S 30400 0.9 Be 4.5 2.12 2–3 0.6 7.0 8–12 High Nickel Alloys Rem 1. 70% 2014 2219 5083 6061 7039 7075 Alloy designation Nominal composition.20 2. 0.5 Rem Copper and Copper Alloys 0.5 0.04 C 16 Mo 0.1 15 Ni 2.0–6.08 max 0.13 0.0 0.0 9.04 0.5–4.05 5.7–5.20 0.5 Mg 98.0 Smax Aluminum Alloys 0.0 0.6 15.4 9.25 2.06 Ti 0.9 Rem 2.0 Titanium and Titanium Alloys Omax Sn Hmax 0. 0.07 0.05 max 3.3 20 17 15.8 Al 0.1 V 70.07 max 0.15 3.1.74 Downloaded from Digital Engineering Library @ McGraw-Hill (www.0 Zn 5.0 2.6 Zn 0.0 max 2.3 Cu 0.02 0.02 2.5 0.5–6.20 0.0 max 2.1 0. Any use is subject to the Terms of Use as given at the website.5 0.0 0.0 8.5 23 9–13 19–22 Austenitic Stainless Steel 1.5Sn (EL1) Ti-6Al-4V (EL1) A 286 Pyromet 538 Nitromic 70 Kromare 5S 347 310S 0.7 39–44 0.15 0.5 0.6 0.5Sn Ti-5Al-2. Hastelloy C Inconel 706 Inconel 718 Inconel X 750 C 17200 Beryllium copper C 26000 Cartridge brass.016B 0.05 max 0.digitalengineeringlibrary.25 1.03 (AISI 347) 0.03 (AISI 310) S34700 0.2 3.18 Zr Pmax Other 0.08 max 1. 4.e.08 max 0.2 0.015 max 0. Uses and remarks PROPERTIES OF ENGINEERING MATERIALS 1.L.1 41.9 58.6 84.2 34.6 32. T6 temper.2 665 96.5 67.L.0 59.1 94.8 196 2219-T87 temper.0) 21.. T.0 575 83.O.1 29.0 (34.4 30.L.8 97. L.9 20.7* 48.1 60. L. 2219-T62 temper. Plate Plate Sheet Plate Sheet Plate Plate Sheet 97. L.e.9 32.T. All rights reserved.6 52.8 72.1 pffiffiffiffi kpsi m 27. Fracture toughness values in parentheses refer to specimen design C.e. Used to build liquefied natural gas (LNG) spherical tanks in ships. 24 196 253 7075. 24 196 269 7039.O.9 55.digitalengineeringlibrary. 5083-O is not heat treatable and used in annealed (O) condition.2) 42.O.3 41. L.3 425 61.4b 39.9 55.2 48. T 7351 temper.2 760 110 675 335 465 620 590 675 585 44.5 77. used for liquid oxygen and liquid hydrogen tanks for space shuttle. T.5 25. Bend Bend Specimen Orientdesign ation TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i. T651 temper. sy Elongation.2 20.2 66.5 320 46.4 Aluminum Alloys 50 432 62.6 43.O. L.com) Copyright © 2004 The McGraw-Hill Companies.O. 75 320 423 75 320 452 75 320 423 75 320 452 75 320 452 Downloaded from Digital Engineering Library @ McGraw-Hill (www.5 67.9 50. KIC (J). T.5) 52. st Temperature 290 340 365 290 335 380 410 495 535 530 650 770 455 570 605 510 235 27.9 40. cryogenic temperature) 7039 has good combination of strength and fracture toughness at room and at 196 8C Used for plate of 7075-T6 for the inner tank skirt between the liquid oxygen and liquid hydrogen sections of the external tank of the space shuttle.320 423 452 75 320 423 452 253 269 24 196 253 269 24 196 253 6061. % 35.9 43.  Fracture toughness values are for 5083O. CT T.8 495 72. 24 196 269 7075.5 37.1 90.1 74.2 580 84.0* 29. Bend.5 26.7 48 42 382 55.4 Reduction in area.5 78. L. Any use is subject to the Terms of Use as given at the website.T.3 70.75 .3 (26.2 705 102 825 120 525 76. High toughness at room and sub-zero temperatures.3 33.5 27. L.2 48.6 48.6 55.5 32. T.0 310 44.O.0 77.2 675 98.6* 39.4 77.2 82.L. 24 196 269 6061-T6 temper.5 71. syr 14 10 9 22 14 12 50 48 42 23 23 31 24 28 21 25 26 403 536 381 289 142* 382 58.2) 23.4 (31.7 29.0* 43. i.2 49.7 pffiffiffiffi MPa m Fracture toughness KIC (J) T. Improves ductility and notch toughness of 7075 alloy at cryogenic temperature processing it to the T7351 temper.5 305 280 490 460 290 335 380 290 345 370 390 380 42. T 651 temper.4) 48. Aluminum alloys 6061 in the T6 temper have the same strength and ductility at both room and sub-zero temperatures.O. L.8) 46.5 (37.O.2 39. T.5 (34.6 24.1 455 66.7 55. L.S. Bend Bend Bend C.5 88.2 26.3 485 70.2 28.0 41. Possess high strength at room temperature and sub-zero temperature.0 85.9 400 58.O. MPa kpsi % MPa kpsi Room temperature yield strength. 5083-H113.2 53.8 94.4 112 66. Plate MPa kpsi Form 8C Alloy and condition 8F Tensile strength. 310 400 485 415 460 545 650 465 75 320 452 75 320 423 452 75 24 196 269 24 196 253 269 24 2014-T651 temper.0 66.3 12 18 26 16 23 26 11 15 14 10 7 6 10 11 11 15 15 31 30 29 14 13 16 23 26 10 11 14 23 11 Yield strength.9 (28.6 42.6* 55.2 56.6 42.S.L.5b 36.1 22. C.O. # KIJ (J). structures and machineries in cold regions. b In weld fusion zone. and ductility over the entire range of subzero temperatures.1.5 1650 236 1700 247 330 48 670 97 715 104 930 135 1130 164 1810 1290 1540 1660 1410 204 1650 239 1140 1520 1740 1260 1570 1680 95.1 58. Used in energy related equipments such as superconducting motors and generators.8 111 30 204 125 137 148 170 197 145 186 200 152 174 181 61.digitalengineeringlibrary. Specimen Orientdesign ation Uses and remarks Austenitic stainless steels are used extensively for subzero temperature applications to 2698C.3 53.2 134# 176‡ 102 87. syr 825 1170* 1065 120 170* 154 Austenitic Stainless Steels – – – 76 260 37. as welded. L.O.4* 103 121† pffiffiffiffi kpsi m 133† pffiffiffiffi MPa m Fracture toughness KIC (J) 122# 160‡ C.com) Copyright © 2004 The McGraw-Hill Companies. C. T.9 67 Ferritic Nickel Steels 72 68 535 77. All rights reserved.8 32 82. 310 S annealed.R.8* 94 143† 157† 96. ‡ KIC (J).e. sy Elongation.) PROPERTIES OF ENGINEERING MATERIALS .9 2. cold worked to 12 hard) 75 320 423 75 320 423 Forging Sheet Plate Weldment Sheet Bar Forged billets Sheet Sheet Bar 165 220 252 183 228 243 263 187 224 241 660 95. aged 20 h at 7008C 253 269 24 162 196 269 24 196 269 24 196 A645 (5Ni Steel).5 55. 304 annealed.5 62 20  18 20 33 33 33 High-Nickel Alloys 58 63 58 Copper and Copper Alloys (L.T. * Refer to STDA alloy. fusion zone. % MPa kpsi Room temperature yield strength. vacuum electron beam weld † Tensile and fatigue properties of copper alloys increase as the testing temperature decreased. † Welding process.0 82. TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.76 Downloaded from Digital Engineering Library @ McGraw-Hill (www. solenoids and power cables at super temperatures. C17200 TD02 temper (Solution treated.4 112 178 79. quenched. These high nickel alloys exhibit excellent combinations of strength. 310S. L.O.5 84 155 75 42 30 40 46 76.O. L. Fracture toughness values refer to KIC (J). cold rolled 20%. reversion annealed. [Aged 34 h at 9828C (18008F)] 75 320 452 75 320 75 320 423 75 320 452 24 196 253 Inconel 706 (VIM-VAR) 24 STDA 196 269 Hastelloy C.0 68.2 117 132 90 117 137 24 196 253 24 196 253 C26000 03 temper (34 hard) 655 805 910 620 805 945 MPa kpsi Form 8C Alloy and condition 8F Tensile strength. Used in construction of storage tanks for liquefied hydrocarbon gases. cryogenic temperature) (Cont.O.5 80 100 109 Reduction in area. toughness.O. C. Filler. MPa kpsi % 196 87. 452 75 320 423 452 75 260 320 452 269 GTA weld in Inconel 24 X-750 sheet. Used in stabilizers. gas tungsten arc weld (GTA). 75 320 24 196 Inconel 718. (VEB). SMA.T.L.) Yield strength. st Temperature 295 425 570 580 1070 530 570 765 1410 860 945 1020 1170 1340 1000 1280 1380 1050 1200 1250 420 475 505 550 690 750 21 22 50 28 15 21 13 32 33 24 29 30 14 28 32 15 37 45 42. X-750 filler 196 metal.T. components of the windings in superconducting magnets.5 73. tempered. Any use is subject to the Terms of Use as given at the website. The fatigue strengths of high-nickel alloys are higher at cryogenic temperature than at room temperature. L. T. Specimen Orientdesign ation 114 112 107 146 163 225b 195 141b L. T.1 101 125 133 192 209 31 52 47 35 3 29 2 3 10 10 51 48 26 MPa 119 88. T. All rights reserved. TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i.2 53.O.75 320 423 75 320 452 75 452 452 A-286 annealed sheet. and for cylindrical magnet tubes for superconducting magnets.) PROPERTIES OF ENGINEERING MATERIALS 1. 75% cold reduced. L. Cast steels are used for Bubble Chambers. with good ductility and notch toughness in the cryogenic temperature range.digitalengineeringlibrary. annealed.S. Used in transfer of oxygen for storage tanks.L. Kromrc is used for structural appliances.O. 24 L. Weldment† .O. Filler: Kromrc 58. welded 24 and age hardened. as welded.O. % 610 600 87 745 108 870 126 750 1500 1410 495 855 1060 1240 180 1650 255 420 435 1190 1430 1560 1100 1540 1790 725 1455 650 1365 1610 1320 1900 2010 1180 1720 2000 415 1005 94 198 234 191 276 292 171 249 290 60 146 1105 825 120 Yield strength.77 . 109 218 204 72 124 154 11 16 15 66 60 24 36 46 33 79 66 27 61 41 40 24 74 61 24 370 340 – Downloaded from Digital Engineering Library @ McGraw-Hill (www. Filler: Pyromet 538. 24 196 253 304 hard cold rolled. Welding process: GTA. tested as welded*. L. T. Fracture toughness values refer to Pyromet 538 STQ. L.8 49 – kpsi Room temperature yield strength.e. and valves. Used in liquid hydrogen and liquid oxygen tank construction in Atlas and Centaur rockets.O. 165 at 2698C (4528F) 74b at 2698C (4528F) 159b at 2698C (4528F) – 250a 236 106b pffiffiffiffi kpsi m Fracture toughness KIC (J) Uses and remarks A-286 alloy develops good strength. st Temperature 125 123 118 161 179 247b 214 155b 181 82b 175b – 275a 259 116b pffiffiffiffi MPa m T.a Sheet Form MPa kpsi 8F 8C 269 269 347 annealed. 24 196 253 Kromarc 58 annealed 24 plate. c Gas tungsten arc weld. L.O. 196 Kromarc 58 STQ 269 310 S annealed. syr Plate 860 1145 1280 400 695 860 915 1325 1440 239 57 61 63 173 208 226 160 223 259 105 211 160 Reduction in area. ‡ Welding process: GTA. 196 253 Pyromet 538 annealed 24 Pyromet 538 STQ 196 Alloy and condition Tensile strength. Any use is subject to the Terms of Use as given at the website.com) Copyright © 2004 The McGraw-Hill Companies. Weldamentc 820 125 166 186 58.T. Type 304 stainless steels used in piping. L. b In weld fusion zone. Prototype super-conducting generators  Strength of these steels is increased by rolling or cold drawing at 1968C. 24 196 253 310. a Shielded metal arc weld. MPa kpsi % Bar Plate Weldamentc Sheet Plate Plate Weldmentc Weldmenta Bar Plate Sheet Sheet Plate. tubing. 196 A-286 STA 253 24 196 269 24 269 269 452 75 320 452 75 320 452 269 452 452 75 320 423 75 320 423 75 320 423 75 320 Nitronic 60.L. cryogenic temperature) (Cont. sy Elongation.O. T.4 pffiffiffiffi MPa m Fracture toughness KIC (J) C. Bend C. Metals Park. OH 44073-0002 (formerly The American Society for Metals.5 49.5 Sn (EL1) 24 annealed.8 53.. Specimen Orientdesign ation Ti-5Al-2. W. C. vacuum induction melted. 196 253 Ti-5 Al-2. S. VEB. L. L. 196 253 Ti-6 Al-4 V (EL1) as 24 forged 196 253 269 Alloy and condition Tensile strength.T. L. Bend Bend C. L.T. syr 40 31 24 830 120 Titanium and Titanium Alloys 875 127 875 127 875 127 705 102 705 102 Yield strength. GMA.. 75 320 423 75 320 423 75 320 423 452 Form MPa kpsi 8F 8C Ti-5 Al-2.T. Uses and remarks AAM. GTA.e.T. VIM.com) Copyright © 2004 The McGraw-Hill Companies.. L. Source: Metals Handbook Desk Edition. Any use is subject to the Terms of Use as given at the website.digitalengineeringlibrary. Materials Park.2 54. Should not be used at cryogenic temperatures for storage or transfer of liquid oxygen.6 71.T.) PROPERTIES OF ENGINEERING MATERIALS 1.T.T. OH 44073. L.O. All rights reserved. gas metal arc welding process. % MPa kpsi Room temperature yield strength.T.5 Sn. Used in spherical pressure vessels in Atlas and Centaur Rockets. longitudinal orientation.O.T.6 pffiffiffiffi kpsi m 610 111 89.T. L. solution treated and double aged. 1985). titanium alloys have high strength to weight ratio at cryogenic temperatures and preferred alloys at temperatures of alloys at temperatures of 1968C to 2698C (3208F to 4528F). since the condensed oxygen will cause ignition during abrasion. air arc melted. 1985.T. .Forging Sheet/ Plate Sheet/ Plate 850 1370 1700 800 1300 1570 970 1570 1650 123 199 246 116 188 228 141 227 239 795 1300 1590 740 1210 1450 915 1480 1570 115 188 231 107 175 210 133 214 227 16 14 7 16 16 10 14 11 11 Reduction in area. st Temperature TABLE 1-46 Typical tensile properties and fracture toughness of structural alloys at sub-zero temperature (i. compact toughness.5 65. C. MPa kpsi % 55. L. nominal 24 interstitial annealed. weld. solution treated. STDA. vacuum arc remelted.O.1 101 81. L. the Apollo and Saturn launch Boosters and Lunar Modules.78 Downloaded from Digital Engineering Library @ McGraw-Hill (www. gas tungsten arc weld. vacuum electron beam weld.5Sn and Ti-6Al-4V. ASM International. L. sy Elongation. VAR.4 48.T. cryogenic temperature) (Cont. 65 0.85 64.30 66.04 6.20 9.62 9.42 0.45 13.15 1.93 6.24 GPa kpsi 4.48 MPa 0.66 2.44 3.58 7.50 0.94 98.36 1.34 0.45 Kind of wood a Specific gravity Gm ovendry volume TABLE 1-47 Typical properties of wooda of clear material of section 50 mm  50 mm (2 in  2 in).45 0.19 139.86 14.27 0.27 13.04 0.34 37.33 67.09 85.30 1.47 0.9 11.6 6.24 8.4 3.17 5.58 0.23 2.50 61.34 0. st 1092 1041 1397 737 508 990 1422 813 1702 – 483 1092 940 559 610 864 430 864 787 533 660 889 660 483 457 584 483 635 508 mm 43 41 55 29 20 39 56 32 67 – 19 43 37 22 24 34 17 34 31 21 26 35 26 19 18 23 19 25 20 in Impact bending in a drop of 222 N (50 lbf) hammer 13.21 9.6 2.83 9.44 0.10 9. shagbark Mahogany (swietenia spp) Maple.72 50.45 5.42 0.42 0.33 2.53 0. ponderosa Pine.05 6.27 10.6 6.83 6.46 0. white Ash.80 66.23 0.3 4.2 3.83 4.90 4.37 0.86 1.58 0.55 – 5.25 1.68 1.33 75.8 3.06 5.95 7.51 0.27 8. sugar Oak.51 0.66 – 0.50 46.42 4.5 10.42 3.42 42 45 43 35 28 35 44 36 50 34 44 44 48 35 29 38 23 32 34 28 29 38 31 28 24 27 28 28 28 kN/m3 lbf/ft3 Density .9 4.18 102.9 2.79 6. mm (in).76 2.94 1.55 0.6 7.00 4.58 10.43 0.64 0.34 12.00 4.10 1.45 7.95 6.6 9.40 1.37 33.15 5.3 13. black 6.80 9.44 5.57 MPa 15.93 1.43 1.2 7.78 51.75 8.55 0.17 2.92 1.41 7.44 0.52 5.06 12.07 5. red Pine.56 0.43 0.34 – 0.0 10.06 1.9 11.4 8. All rights reserved.02 108.41 13. American Elm.50 1.64 6.93 13.57 38.94 1.95 49.5 8.76 8.  s 1320 1300 1260 950 430 830 1320 850 – 800 1450 1290 1360 810 540 1010 350 510 710 500 540 830 560 460 380 420 480 510 480 Hardness average of R and T f Seasoned wood at 12% moisture.32 9.16 1.53 7.3 4.87 52.90 1.2 Tan Shrinkage c 106. eastern Hemlock.79 .55 10.02 1.1 9.36 kpsi Tensile strengthe.6 12.com) Copyright © 2004 The McGraw-Hill Companies.01 1.06 1.93 0.03 16.37 77.7 10.4 4.47 1.6 4.00 3.86 13.75 1.14 7.69 1.03 3. E Static bending 8.46 kpsi Compressiona proportionality limit.45 9.7 7.21 1. coast region Hemlock.34 1.34 3.81 59.69 0.31 14.3 4.34 3.32 4.00 1.5 11.46 84.91 5.37 6.2 9.36 7.28 79.4 14.80 0.24 5.2 4.97 0.28 12.21 6.0 9.10 1.50 1.20 1.17 MPa 1.1 5.0 5. western Pine.45 8.71 73.20 69.6 12. eastern white Pine.51 1.69 7.2 9. black Yellow poplar Walnut.80 0.46 0.9 5.18 – 1.62 12.76 7.54 7.10 11.8 kpsi Modulus of rupture 12.70 0. scr MPa Mpsi Modulus of elasticity.11 6.93 7. b Seasoned wood at 12% moisture content.90 11.48 16.11 56.72 4.f .55 2.56 6.1 5.80 14.48 3.98 1.82 46.00 3. radially. D b 4. scp 6.53 4.1 10.20 11. eastern Elm.4 7.66 0.27 9.38 6.24 8.5 20.85 1.00 1. g Tensile strength parallel to grain may be taken as equal to modulus of rupture in bending.80 5.digitalengineeringlibrary.8 12.59 0.34 42.1 2.5 8.33 1.0 4.55 10. Source: Extracted from Wood Handbook and the U.77 51.16 63.37 0.07 0.0 7.58 Softwoods 1.58 38.60 0.0 6.01 1.76 – 0.48 7.52 4.3 4.80 0.2 5.61 5.10 14.75 – 0.5 8. Tan.98 0.72 Hardwoods 1.34 38.37 0.17 6.95 2.06 1.48 0.68 52.6 2.46 34.89 8. yellow Cherry.77 0.00 6.60 81.24 0.58 5.42 4. white Beech Birch.55 0.21 7.92 1.00 3.88 1.20 37.80 7.11 31.00 5.92 0.72 6.11 90.71 7.2 11.62 1.3 6.46 15.2 2.43 0.76 7.0 3. Forest Products Laboratory.5 4.8 4.86 2.14 7. white Tupelo.78 0. rock Sweetgum Hickory.48 4.69 0.8 3. as per ASTM D143 PROPERTIES OF ENGINEERING MATERIALS 1.00 3.68 1.58 2.00 6.65 9. c Percent from green to ovendry condition based on dimensions when green.64 43.63 41.60 10.08 kpsi Sheard strength.37 0.90 5.14 4.70 0.05 86.27 4.7 3.67 0.5 3.30 8.49 48.61 1.76 4.45 MPa 1.67 51.00 9.01 0.33 1.42 0.62 5.44 43.60 1.2 9.22 0.4 8.58 0.8 9.71 0.90 8.90 2.62 4.3 8.13 0.2 6.85 1.16 1. black Cottonwood.5 4.10 1.42 0. sitka Spruce.24 4.54 0.00 3.31 6.83 53.37 4.24 10.88 69.00 11.58 6.7 Rad 7.41 7.24 – 5.S.55 12.4 7.80 5.52 7.38 8.17 7.78 2.60 104. red.24 10.55 4.89 11.01 0.68 0.36 102.64 7.85 1.86 4.48 7.8 14. 0.76 1.31 – 0.00 7. western Larch. Rad.24 33.95 1.11 4.64 100.00 7.Downloaded from Digital Engineering Library @ McGraw-Hill (www.56 Cedar.00 70.20 38.47 7.44 1. northern Oak.79 6.53 4.6 7.42 5.88 1.69 4. e Perpendicular to grain.55 0.66 0.01 0.38 5.8 5.42 4.62 11.80 58.30 15.52 1. Height of drop of 222 N (50 lbf) hammer for failure.28 11.89 10.74 114.68 1.9 16.8 7.52 3.52 5.96 6.41 10.1 7. d Parallel to grain.29 36.41 3.9 4. western white Redwood Spruce.66 0.47 0. Any use is subject to the Terms of Use as given at the website.26 Maximumd crushing strength.76 1.24 11.30 1. tangentially. 0.17 – 5.31 12.64 49.0 9.2 10.19 1.54 48. western red Cypress Douglas fir.1 7.2 7.34 – 2. 09 1.  Mpsi lm/ m8C 708F Modulus of elasticity.63 0.393 in to obtain electrical resistivity in units of -in.5 5.26 0. All rights reserved.5 4. New York.0 8.com) Copyright © 2004 The McGraw-Hill Companies.5 2.25 0.06 0.58 10.0 9.50 0.5 1010 106 >1014 >1014 >1014 >1014 108 Thermal stress 708C resistance (218C) 102 104 107 108 107 105 500 18008F (9828C) Electrical resistivity. 1.06 0.097 0. Between 208C (658F) and 9828C (18008F).2 2.0802 21 0.84 1.11 2128F 18008F Btu/(ft2 h8F/in) kJ/kg8C Btu/lbm 8F Thermal conductivity.1 12320 29120 10528 4480 29120 4480 32480 32480 29120 22400 194880 64960 47040 324800 53760 13888 33600 12992 87360 44800 33600 49280 Specific heat.59 0.2 2.39 0. 3rd edition.14 0.0 4.4 24 40 1 40 166 276 7 276 28 60 10 12 7 15 kpsi 414 69 83 48 103 MPa 14 365 310 214 145 152 172 469 290 83 345 GPa 9828C 18008F 218C 2 53 45 31 21 22 25 68 42 12 50 4.96 3. d Stabilized.34 0.80 Downloaded from Digital Engineering Library @ McGraw-Hill (www.224 100 20 14 12 20 12 24 50 7 100 3. McGraw-Hill Book Company. Green and Stewart.20 Alumina (Al2 O3 ) Beryllium oxide (BeO) Magnesium oxide (MgO) Thoria (ThO2 ) Zirconia (ZrO2 ) Uranium oxide (UO2 ) Silicon carbide (SiC) Boron carbide (BC) Boron nitride (BN) Molybdenum silicide (MoSi2 ) Carbon (C) lb/in3 MPa kpsi 218C 708F 689 138 97 83 138 83 166 345 48 689 g/m3 Material Density Modulus of rupture.51 1. c 870 210 1450 240 62 15 58 390 200 150 220 290 55 130 47 20 15 20 145 145 130 100 1. and Norton Refractories.52 2. E 3871 2032 2571 2799 3049 2538 2799 2760 2449 2760 2143 8C 7000 3690 4660 5070 5520 4600 5070 5000d 4440 5000 3890 8F Fusion point Good Good Very good Poor Fair Fair Fair Excellent Good Good Good 103 10 0.97 3.6 5.396 0.22 2. C-8).25 0.36 0.110 0.7 9.202 0.9 10. Courtesy: Extracted from Mark’s Standard Handbook for Mechanical Engineers.03 3.143 0.05 0.129 0.1 4.0 5. sr TABLE 1-48 Mechanical and physical properties of typical densea pure refractories PROPERTIES OF ENGINEERING MATERIALS 1.9 7.  cmc b Porosity: 0 to 5%.22 0.digitalengineeringlibrary. a 3 2. 1978. Any use is subject to the Terms of Use as given at the website. K at 1008C 9828C lin/in8F W/(m2 8C/m) Linear coefficientb of expansion.46 0.0 4.116 0. c Multiply the values by 0.60 10.25 6.0813 0.361 0.5 5.25 0.00 5.09 2.20 0.42 1.5 9. 8th edition.6 2.2 5. ASTM Standards on Refractory Materials Handbook (Committee.0 9. .8 13. . K. 1981. ASM International. Gestalting und Bereching. Maleev. the International Nickel Company. John Wiley and Sons. and B. McGraw-Hill Book Company. Green and Stewart. 32.. 31. 1971. 1965. 10. and C. and P. K. 1985). 1970. and O. J. Ohio. 4th edition... E. Macmillan Company. Macmillan Publishing Company. and I.. Lingaiah. 24. Petit. Zarobsky. R. Decker. McGraw-Hill Book Company. New York. E. Machine Design. 15. Avallone. II (SI and Customary Metric Units). J. Design of Machine Elements. New York. 53. Machine Design Data Handbook. 5. Narayana Iyengar.. New York. 1978. 29. International Textbook Company. E. L. Fundaments of Machine Components Design. New York. Cleveland. Material in Design and Manufacturing. 1983. Vol. K. A. Metals and Ceramics Information Center. Primer on Composite Materials-Analysis. Machine Design Data Handbook. 26. All rights reserved. Lingaiah. Wood Handbook and U. L. 23. McGraw-Hill Book Company. G. Maschinenelemente. and Kabus. New York. S. A. Forest Products Laboratory. New York. Desk Edition. 8th edition. Decker. M. Juvinall.81 REFERENCES 1. II (SI and Customary Metric Units). B. Engineering College Co-operative Society. John Wiley and Sons. New Delhi. Springer-Verlag. Inc. 7. C. Hartman.. and J. Columbus. F. Machine Design.. McKee. McGraw-Hill Book Company. 11. 28. 1975. John Wiley and Sons. A. 1962. India. C. 6. Carl Hanser Verlag. 34. 1985 (formerly the American Society for Metals. 4. Metals Park. India. Suma Publishers. Machine Design Data Handbook. V. Machine Design Data Handbook. Fundamentals of Mechanical Components Design. 9. J. Ault. W. Lingaiah. Erster Band. New York. New York. Vol. F. K. 17. Ashton. Pennsylvania. 1951. 1963. 1986. Bangalore. Penton/IPC. Design of Machine Elements... Baumeister. B. Shigley. R. Design of Machine Members. H. 1977. 14. 1963. 21. V.. and C. Maschinenelemente-Aufgaben... March 19.. Suma Publishers. India. Lessels. 25. P. McGraw-Hill Book Company.. I (SI and Customary Metric Units). Mechanical Engineering Design. R. Vallance. Mark’s Standard Handbook for Mechanical Engineers. ASTM Standards on Refractory Materials Handbook (Committee C-8). New York. C. Bangalore. Vol. India. Malloy. Fundamentals of Machine Design. 1969. and B. 16. Metric Edition. Ohio. D. Norton. 1966. 2nd edition. 27. Materials Park. Structural Alloys Handbook. Mechanical Design of Machines. Ohio.-H. Carl Hanser Verlag. 1988. 1986. Jr. 30. 1981 and 1984. J. H.. Lingaiah. 1986. K. E. K. 18. New York. Black. Baumeister III. Prentice-Hall of India Private Ltd. 2. 20. Narayana Iyengar. Downloaded from Digital Engineering Library @ McGraw-Hill (www. McGraw-Hill Book Company. . 33. American Society for Metals. Ann Arbor. T. Michels. Suma Publishers. 1991.. Battelle Memorial Institute. ASM Metals Handbook. Conn 06901. India. SAE J1099. Munich.. Lingaiah.. Suma Publishers. Vol. 22. Halpin.. New York. Munich. Germany. SAE Handbook. R. Eugene Adams. Technical Report of Fatigue Properties. and T. Spotts. J. Nortman. Niemann. K. Narayana Iyengar. New York. 1951. Machine Design—Theory and Practice. Berlin. Datsko. 1965. 6. I (SI and Customary Metric Units).digitalengineeringlibrary. Michigan. Vol. and B. B.. 1981. 19... M. 3. Strength and Resistance of Metals. J. New York. M. S. Technical Editor Speaks. 3rd edition. K. Metals Park. Doughtie.. I... ISO and BIS standards.PROPERTIES OF ENGINEERING MATERIALS PROPERTIES OF ENGINEERING MATERIALS 1. Faires. A. J. Maschinenelemente. 1996. 1983.. Standard Handbook of Machine Design. Macmillan Company. and R. K. Technomic Publishing Co. Datsko. 8. 5th edition. Edwards. Jr. Siegel. Bangalore.. Ohio. 1943. 1981 Materials Reference Issue. Wilson. 750 Summer Street. 4th edition.-H. Stanford. Material Properties and Manufacturing Process. 1985. and V. 13. 1954. J. E. Shigley. Deutschman. Bangalore. 1978.com) Copyright © 2004 The McGraw-Hill Companies. Ohio. R. Mischke. Any use is subject to the Terms of Use as given at the website. 12. M. Scranton.. Germany. S. Machine Design Data Handbook. No. Refractories. Bangalore. Metals Handbook. S. Erster Band. McGraw-Hill Book Company. M. Machine Design—Theory and Practice. V. and J.-H.. F. H. M.. Machine Design. O. Eugene Adams.. E. Macmillan Publishing Company. Doughtie. K. Prentice-Hall of India Private Ltd. Design of Machine Elements. John Wiley and Sons. 1971. Munich. Wilson. P. A. New York. 1981. New York. 1951. and I. Scranton. 1965. J. Carl Hanser Verlag. 1978. New York.. Fundaments of Machine Components Design. M. Machine Design Data Handbook. Springer-Verlag. New York. E. 1975. Decker. ISO standards. Gestalting und Bereching. E. L. New York. 1954. 1983. Norman. Vallance. Siegel. Strength and Resistance of Metals. New Delhi.PROPERTIES OF ENGINEERING MATERIALS 1. Hartman. 1978. Engineering College Co-operative Society. Fundamentals of Machine Design. 4th edition. Faires. V. and O. Design of Machine Members. New York. 1970. C. J. Carl Hanser Verlag. Deutschman. Maschinenelemente.-H. (ASME) Handbook for Metals Properties.82 CHAPTER ONE BIBLIOGRAPHY Black. Honger. W. McGraw-Hill Book Company. B. Downloaded from Digital Engineering Library @ McGraw-Hill (www. . New York. Bangalore. K. B.. Jr. McGraw-Hill Book Company. International Textbook Company. and C. India. Pennsylvania. New York. (ed. Zarobsky. Maschinenelemente-Aufgaben. Mark’s Standard Handbook for Mechanical Engineers. McGraw-Hill Book Company. A. Decker. 1962... Any use is subject to the Terms of Use as given at the website. Spotts.. Munich.. Michels. 1983. L.. John Wiley and Sons. Design of Machine Elements.digitalengineeringlibrary. 4th edition.. Mechanical Design of Machines. E. Mechanical Engineering Design. and B. 5th edition. Germany. Niemann. D. S. 1963. J. New York. McGraw-Hill Book Company. Berlin. A. R.. K. 1965. Narayana Iyengar. K. Maleev. 8th edition.. McGraw-Hill Book Company. J. Lessels. 1954. and Kabus. and V. Lingaiah. 1986. All rights reserved.com) Copyright © 2004 The McGraw-Hill Companies.. Germany.... M.). Metric Edition. 1951. Ault. New York. SAE Handbook. Shigley. Maschinenelemente. R. C. McGraw-Hill Book Company. Juvinall. G.
Copyright © 2025 DOKUMEN.SITE Inc.