Lica Course File



Comments



Description

B.V.C.INSTITUTE OF TECHNOLOGY AND SCIENCE BATLAPALEM UNIT I INTEGRATED CIRCUITS Syllabus: Prepared By K.SRINIVAS Asst Prof, ECE Dept Differential Amplifier-DC and AC analysis of Dual input Balanced output configuration,Properties of other differential amplifier configuration(Dual Input Unbalanced Output,Single Ended Input-Balanced/Unbalanced Output),DC Coupling and Cascaded Differential Amplifier Stages,Level translator. Schedule: S.N O 1 2 3 4 5 6 7 8 NAME OF THE TOPIC Differential Amplifier DC analysis of Dual input Balanced output configuration AC analysis of Dual input Balanced output configuration Properties of Dual Input Unbalanced Output configuration Properties of Output Single Ended Input-Balanced Output Differential Amplifier configuration Properties of Output Single Ended Input-Unbalanced Output Differential Amplifier configuration DC Coupling and Cascaded Differential Amplifier Stages Level translator  Total no of periods required PERIODS REQUIRE D 1 2 2 2 2 2 2 2 15 Objective: By this Unit students should gain knowledge on  The basic concepts of Different types of differential Amplifier configurations.  Determination of voltage gain and differential input resistance,and the output resistance for a given differential amplifier configuration and cascaded differential amplifier configuration.  The use of a level translator circuit with the cascaded differential amplifier configuration Assignment Questions 1. (a) Derive the output voltage of an op - amp based differential amplifier. (b) List out electrical characteristics of an op - amp. 2. (a) Discuss about dc analysis of Dual input balanced output amplifier. (b) Why cascading is necessary for differential amplifier and explain its operation. 3.(a) Explain the use of constant bias circuit in operation of differential amplifier. Prepared By K.SRINIVAS Asst Prof, ECE Dept (b) Explain how large open circuit voltage gain of an op - amp can be obtained by using cascading of differential amplifier stages. 4.(a) Explain how large open circuit voltage gain of an op - amp can be obtained by using cascading of differential amplifier stages. (b) Explain ac analysis of differential amplifier. 5.(a) Define CMRR? Explain how this can be improved for differential amplifier with suitable diagram. (b) What is the voltage at point A and B for the circuit shown in figure 1 if v1 =5v and v2 =5.1v. 6.(a) Explain cascade connection of differential amplifier for active load. (b) Write the properties of different configurations of differential amplifier. 7. (a) List out different configurations of differential amplifier. Explain any one of them in detail. (b) Determine the emitter current in transistor Q3 of figure 1. If VBE = 0.7V and β = 100 Prepared By K.SRINIVAS Asst Prof, ECE Dept Figure 1 8.(a) Why is it necessary to use an external offset voltage compensating network with practical op - amp circuits. (b) Compare and contrast an ideal op - amp and practical op - amp. 9. (a) Discuss the differences between the differential amplifiers used in the first two stages of op - amp. (b) Draw an ideal voltage transfer curve of an op - amp. 10. (a) Draw the pin diagram and schematic symbol of a typical op amp IC 741 and explain the function of each pin. (b) Discuss the three basic types of linear IC packages and briefly explain the characteristics of each. Quiz Questions 1 . A typ ic a l h i gh ga i n I C d i ff e re nt i a l a m p l i fi e r ( a) C o n s i s t s of D ar l i n gt o n p a i r ( b ) H a s n o p r ov i s i o n f o r c o n n e c t i n g e x t e r n a l c o m p e n s a ti n g c om p o n e nt s ( c ) H a s t h r e e d i ff e r e nti a l a m p l i fi e r s t a ge s w i t h an op e n l o op ga i n a r ou n d 2 0 , 00 0 ( d ) H a s p owe r d i s s i p at i on of a b ou t 10 0 m i c r o wat t s Prepared By K.SRINIVAS Asst Prof, ECE Dept 2 . D i ff e r e n c e m o d e g ai n A d o f a s y m m e t r i c a l e m i t t e r c o u p l e d di ff e r e nti a l a m p l i fi e r i s gi ve n by ( a) A d = -h f e R c R s + h i e ( b ) A d = -1 2 h f e R c R s + h i e (c) Ad = 1 2 h fe R c R s +h ie (d) Ad = h fe R c R s +h ie 3 . I n a d i ff e r e n c e am p l i fi e r , a l ar ge R e l e a d s t o i n c r e a s e i n ( a) P S R R ( b ) C M R R o f t h e am p l i fi e r ( c ) C o m m on - m o d e g ai n ( d ) D i ff e r e nt i al - m o d e g ai n 4 T h e ga i n o f a d i ff e r e nti a l a m p l i fi e r g e n e r al l y f al l s a t t h e r at e of i nt e gr a l mu l t i p l e o f ( a) 4 d B p e r o c t ave ( b ) 6 d B p e r d e c ad e ( c ) 4 d B p e r d e c ad e ( d ) 6 d B p e r o c t ave 5 I n a d i ff e r e nt i al a m p l i fi e r , u s e o f a c o n s t ant c u r r e nt C E a m p l i fi e r s ta g e i n p l ac e o f e m i t t e r c i r c u i t re s i s t or R e c a u s e s C M R R ( a) I n c r e a s e s o r d e c r e a s e s d e p e n d i n g o n t e m p e r a t u re ( b ) R e m ai n s u n al t e r e d ( c ) To i n c re as e ( d ) To d e c r e as e 6 W h i ch o f th e f o l l ow i n g s t a t e m e nts i s n ot f or a c as c ad e l e ve l s h i f t e r ( a) I t c an s t e p u p t h e i n p u t vol t ag e ( b ) I t s vo l t ag e g a i n i s o n e ( c ) I t c an e i t h e r s t e p u p or s t e p d ow n ( d ) I t c an s t e p d ow n t h e i n p u t vo l ta g e t o a ny l e ve l 7. D i ff e r e nt i al t r an s c on d u c t a n c e g m d o f d i ff e r e nti a l a mp l i fi e r e q u a l s ( W h e r e I o i s t h e c c o l l e c t or c u r r e nt o f t h e C E s t a ge i n t h e e m i t te r c i r c u i t o f t h e d i ff e r e nt i al a m p l i fi e r ) ( a) 2 I 0 V T (b) I02V T (c) I04V T ( d ) √I 0 4 V T 8. A c as c ad e am p l i fi e r u s e s ( a) D i r e c t c o u p l e d C E - C C c ir c u i t s ( b ) T wo s t a ge s o f C E a m p l i fi e r ( c ) D i r e c t c o u p l e d C E - C B c i r c u i ts Prepared By K.SRINIVAS Asst Prof, ECE Dept SRINIVAS Asst Prof. W h i ch o f th e f o l l ow i n g s p e c i fi c a ti o n s i s n o t s p e c i fi e d f or a d i ff e re n c e a m p l i fi e r ? ( a) I n p u t . T h e d i ff e r e nt i al am p l i fi e r g a i n a n d t h e i n p u t r e s i s t an c e o f a d u a l i n p u t b a l an c e d o u tp u t d i ff e r e nti a l i s g i ve n by ( a) R *C r e . M o s t o f t h e l i n e ar I C s ar e b as e d o n t h e two t ra n s i s t o r d i ff e r e nt i al am p l i fi e r b e c a u s e of i t s ( a) H i g h i n p u t r e s i s ta n c e ( b ) I n p u t vo l ta ge d e p e n d e nt l i n e ar tr a n s f e r ch ar ac te ri s ti c s (c) High CM RR ( d ) H i g h vol t a g e ga i n 10. I n a d i ff e r e nti a l a m p l i fi e r t h e d i ff e r e nt i al i np u t re s i s t an c e R i d e q u a l s ( a) h i e / 2 (b) 4hie (c) hie (d) 2hie 14 . 2βac /re (d) RC /re .c u r re nt o ff s e t ( c ) C o m m on . ECE Dept .o ff s e t vo l t ag e ( b ) I n p u t b i a s . 2 β a c r e (b) Rc /re .C B c i rc u i ts 9 . T h e d i ff e r e nt i al ga i n o f t h e an Op am p s h ou l d b e ( a) S m a l l ( b ) Ve ry l ar g e ( c ) Ve ry s m al l ( d ) U n i ty 11. 2βa c re (c) RC /re . T h e l e ve l t r an s l a t or s t ag e i s u s e d f o r ( a) To s h i f t t h e o u t p u t d c l e ve l d ow n t o z e r o ( b ) To s h i f t t h e o u t p u t d c l e ve l d ow n t o V vol t s ( c ) To s h i f t t h e o u t p u t d c l e ve l u p t o z e r o vol t s ( d ) To s h i f t t h e o u t p u t d c l e ve l u p t o V vo l ts 13 .( d ) D i r e c t c o u p l e d C C .o ff s e t vo l t ag e 12 . W h i ch ch a r ac t e r i s t i c i s n o t b e l on g i n g to D C ch ar a c t e r i s t i c s ? ( a) S l e w r at e ( b ) I n p u t o ff s e t c u r re nt (c) Thermal drift ( d ) I n p u t b i a s c u r re nt Prepared By K.m o d e c u r r e nt r an g e ( d ) O u tp u t .βac re 15 . W h i ch o f th e f o l l ow i n g s t a t e m e nts i s n ot t r u e f or b al a n c e c ont r ol i n d i ff e r e n c e a m pl i fi e r ( a) I t r e d u c e s o ff s e t d u e t o V b e m i s m a t ch i n g o f th e t r an s i s to r ( b ) I t r e d u c e s o ff s e t d u e t o β m i s m a t ch i n g o f th e t r an s i s to r ( c ) I t i m p r ove s C M R R o f t h e a m p l i fi e r ( d ) I t c an on l y b e u s e d i n d i s c re te a mp l i fi e r BIBILIOGRAPHY TEXT BOOKS : 1.Salivahanan. ECE Dept .2003. T h e t ai l o f a d i ff e r e nt i al a m p l i fi e r a c t s l i ke a ( a) B a t t e r y ( b ) Tra n s i s t o r ( c ) C u r r e nt s o u rc e (d) Diode 1 9. T h e ab i l i ty o f d i ff e re nt i a l a m p l i fi e r t o re j e c t a c om m o n m o d e s i gn a l i s c a l l e d ( a) D i ff e r e nt i al m o d e r e j e c ti o n r a ti o ( b ) C o m m on m o d e r e j e c ti o n r a ti o ( c ) S u p p l y vol t a ge m o d e r e j e c ti o n r a t i o d ) Powe r s u p p l y m o d e r e j e c t i on ra t i o 17 .Linear Integrated Circuit Applications – S. Roy Chowdhury. 2. Linear Integrated Circuits – D.SRINIVAS Asst Prof. I n a d i ff e r e nti a l a m p l i fi e r C M RR i s n or m a l l y ( a) 0 (b) 1 ( c ) Ve ry l ar g e (d) Small 20 . u s e o f a con s t a nt c u r r e nt C E am p l i fi e r s t ag e i n p l ac e of e m i t t e r c i r c u i t r e s i s t or R e r e s u l t s i n ve r y h i g h va l u e of ( a) S l e w r at e (b) CMRR (c) PSRR ( d ) U n i ty ga i n c r o s s ove r f r e q u e n c y 18.16 . Top o l o gi c a l l y. 2nd Edition. I n a d i ff e r e nti a l am p l i fi e r .TMH Edition Prepared By K. New Age International (p) Ltd. a d i ff e r e n c e s am p l i fi e r c or r e s p on d s to a T T L ( a) N A N D g at e ( b ) N O R ga t e ( c ) O R ga t e ( d ) A N D g at e 21. DC and AC characteristics.741 op-amp & its features.slew rates. Operational Amplifiers & Linear Integrated Circuits–R. 6th Edition. 1988.Op-Amp parameters & Measurement.drift. Power supplies.REFERENCES : 1. Schedule: S.SRINIVAS Asst Prof.Frequency Compensation technique. Operational Amplifiers – C. McGraw Hill. Packages Types and temperature ranges.PSRR. ECE Dept . McGraw Hill. PHI.CMRR. UNIT II Syllabus: Characteristics of OP-Amps./ Elsevier.FET input Op-Amps.Classification.Ideal and practical Op-Amp specifications.Op-Amp parameters & Measurement Input & Output Offset voltages & currents slew rates. 4.1988. Ltd. 1971.Coughlin & Fredrick Driscoll.PSRR. 2. 3. Design with Operational Amplifiers & Analog Integrated Circuits . Power supplies Op-amp Block Diagram Ideal and practical Op-Amp specifications practical Op-Amp DC characteristics practical Op-Amp AC characteristics 741 op-amp & its features FET input Op-Amps Op-Amps.G.F. Clayton. Input & Output Offset voltages & currents.CMRR. Op-amp Block Diagram.Integrated circuits-Types.N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NAME OF THE TOPIC Characteristics of OP-Amps Integrated circuits-Types Integrated circuits Classification Integrated circuits Packages Types Integrated circuits temperature ranges. Micro Electronics – Millman.drift Frequency Compensation technique PERIODS REQUIRE D 1 1 1 1 2 1 1 2 2 1 1 2 1 1 2 20  Total no of periods required Objective: By this Unit students should gain knowledge on Prepared By K. Butterworth & Company Publ.Sergio Franco. amp and discuss about them.  External and Internal frequency compensation techniques necessity for practical OP .  Brief explanation of AC Characteristics . (a) For the 741 IC op .SRINIVAS Asst Prof. (a) What is an op-amp? Why it is called so? (b) Explain the parameters that should be considered for ac and dc applications of an op-amp.amp using block diagram. the supply voltage rejection ratio (SVRR) is 150µV/ V. 4. Assignment Questions 1. (c) Draw an equivalent circuit of op . The basic concepts of IC. (b) List and explain the characteristics of an ideal op .amp.amp. ECE Dept . (a) Broadly classify the integrated circuits for a wide range of applications.  ICs classification based no of components integrated on the same chip. Prepared By K.  Brief explanation of DC Characteristics .Amp.  Ideal and practical OP-Amp specifications.OP . (c) What is a practical op .Amp.I/P bias and offset currents.Frequency response and slew rate and their affct on OP-Amp.thermal drift.Linear and digital ICs.amp? Draw its equivalent circuit? 2.amp configurations with neat circuit diagram.Calculate the change in this op .I/p & o/P offset voltages. (b) Explain the operation of op . (c) Draw the pin diagram of µA741 op . 3. (a) What are the three operating temperature ranges of the IC? (b) List out the AC characteristics of an op .  741 op-amp all IC packages.and their pin diagrams  Different versions and important features of 741 IC.amp.  3 basic temperature grades for ICs and different circuit arrangements for obtaining +ve and -ve supply voltages for an OP-Amp from a single supply.amp. (c) Draw and explain the three open loop op .Amp parameters measurement.  FET i/p OP .amp’s input offset voltage Vi o if the supply voltages are varied from ±10V to ±12V.3 basic types of linear IC packages and significance of each.  Two types of ICs classified according to their mode of operation and significance of each. Amp.amp. CMRR=105 . 6.amp. (c) Draw and explain an ideal voltage transfer curve for an OP .5mV maximum. Ii o = 50nA maximum. PSRR=70dB(min).5. Ad =105 . The op .amp circuits.amp and practical op . Common mode gain iii. (c) Briefly explain the need for compensating networks in op .amps Figure 2 7. 8. (a) Compare and contrast an ideal operational amplifier and practical Prepared By K. numerical value of PSRR ii. (a) Compute the maximum possible total output voltages in the amplifier circuits shown in figure 2. (a) Explain the effect of slew rate on both open loop and closed loop op . differential mode gain.tions: Vi o = 7. Slew rate of the op . IB = 250 nA maximum at TA= 250 C. (b) What is the major difference between the power supply requirements of linear and digital Ics.SRINIVAS Asst Prof. Calculate i. ECE Dept .The output voltage changes by 20v in 4 microseconds. (a) For an op-amp. (b) Explain the difference between the slew rate and the transie nt response. (b) What are the three factors that effect the electrical parameters of an op -amp (c) Compare and contrast an ideal op .amp is the MC1536 with the following specifica. 5V/µs. 9. (b) With neat block diagram explain the function of various building blocks of an op . ECE Dept . (b) Give the design procedure of a compensating network for an op . (b) Why frequency compensation is required for an op .amp. (a) Explain the differences between ac and dc amplifiers.amp. calculate the amplitude of the common ? mode input voltage Vc m . (a) Calculate the effect of variation in power supply voltages on the output offset voltage for an op . 12.(a) In the circuit of figure 2b.amp change by 10V. Rf =4.amp circuit. Prepared By K.7kΩ .amp has a slew rate of 1.SRINIVAS Asst Prof.amp that uses ± 10 V supply voltages. 10. (c) Define thermal drift & slew rate. CMRR=90dB. (b) What are the differences between the inverting and non-inverting terminals? What do you mean by the term “virtual ground”? 13. (b) An op .operational amplifier.amp and explain frequency compensation technique using suitable diagrams. (a) Discuss the Pole .Zero and Dominant pole compensation techniques for an op . What is the maximum frequency of an output sinusoid of peak value 10 V at which the distortion sets in due to the slew rate limitation? 11. Assume necessary data. R1 =100ohms. If the amplitude of the induced 60 Hz noise at the output is 5mv (rms). if its slew rate is 1V/ µs. (a) Explain how the input offset voltage compensated for? (b) How fast can the output of an op . 1 0 mA (d) 1mV . T h e ou t p u t r e s i s ta n c e of a 7 41 C Op am p i s a b o ut ( a) 2 00 Ω (b) 75Ω (c) 10Ω (d) 40Ω 4. S l e w r at e o f an i d e al Op am p i s ( a) I n fi n i ty ( b ) U n i ty ( c ) I n d e fi n i t e ( d ) Z e ro Prepared By K. Ty p i c a l o ut p u t o ff s e t vo l t ag e a n d i n p u t off s e t c u r r e nt of a n O p am p ar e ( a) 1 m V .10 nA 7.SRINIVAS Asst Prof. ECE Dept .Figure 2b Quiz Questions 1 T h e e r r or vol t a ge o f a n i d e a l O p a m p i s ( a) ∞ ( b ) Ve ry l ar g e (c) 0 ( d ) Ve ry s m al l 2 . O p e n l o o p b a n d w i d t h o f a n O p a m p i s ( a) 5 K H z (b) 5MHz ( c) 5GHz (d) 5Hz 5 .10mA ( c ) 1 0 m V . O n e o f t h e Op am p i s N o r to n o r c u r r e nt d i ff e r e n c i n g O p a m p ( a) µ A 7 4 7 (b) LM318 ( c ) L M 3 9 00 (d) µ A741 3 . 1 0 n A (b) 1mV. C u r r e nt c a n n ot fl ow t o g ro u n d t h r o u gh ( a) A n AC gr o u n d ( b ) A v i r t u al gr o u n d ( c ) A n o r d i n ar y g r ou n d ( d ) A m e ch an i c a l g r ou n d 6. a m p wo r ks i n ( a) R e ve rs e r e g i on ( b ) S a tu r a t i on r e g i o n ( c ) C u t o ff re g i o n ( d ) L i n e a r r e gi o n 14 . I n Op am p c om p e n s at i o n t e ch n i q u e s ar e u s e d t o ( a) To ob t a i n w i d e r f re qu e nc y r an g e o f op e r a t i on an d avoi d i n s ta b i l i ty ( b ) A ch i e ve h i g h e r g ai n at DC ( c ) O b ta i n w i d e r f r e q u e n c y r a n ge of o p e r at i o n ( d ) A voi d i n s t ab i l i ty 10 . t h e o p . ECE Dept . T h e al g e b r ai c d i ff e r e n c e b e twe e n t h e c u r r e nt s i nt o t h e i nve rt i n g a n d n o n i nve rt i n g t e r m i n al s i s kn ow n a s ( a) I n p u t b i a s c u r re nt ( b ) I n p u t o ff s e t vo l t ag e ( c ) Tot a l o ff s e t vol t a ge ( d ) I n p u t o ff s e t c u r re nt 1 5. A ty p i c a l m e d i u m g a i n I C Op am p ( a) H a s o p e n l o o p g ai n of a b ou t 25 00 ( b ) I s s u i t ab l e f o r u s e on l y a t l ow f r e q u e n c i e s (c) Has only one input terminal ( d ) H a s o p e n l o o p g ai n of a b ou t 10 0 12 . T h e c o m mo n m o d e i n p u t i s th e va l u e of th e two i n p u ts ( a) R M S ( b ) A ve r ag e ( c ) Fo r m ( d ) Pe a k 9. A n O p e r a t i on a l a m p l i fi e r i s a ( a) H i g h g ai n C E a m p l i fi e r ( b ) H i g h g ai n d ir e c t c o u p l e d a m p l i fi e r ( c ) C a s c a d e d C E a m p l i fi e r ( d ) H i g h g ai n C B a m p l i fi e r 11 . P S R R of a g o o d q u a l i ty Op am p i s o f t h e or d e r o f ( a) 6 0 d B Prepared By K.8.SRINIVAS Asst Prof. T h e ou t p u t s t a ge o f a n O p a m p c i r c u i t p r ov i d e s ( a) L ow ou t p u t i m p e d an c e ( b ) H i g h g ai n ( c ) L ow c u r r e nt ga i n ( d ) H i g h o u tp u t i m p e d an c e 13 . I n op e n l o op c on fi g u r at i o n . 2T he b o d e p l o t f or s t an d a r d O p a m p s h ow s t h e g ai n d e c r e a s i n g a t 2 0 d B ]p e r d e c ad e b e yo n d t h e b r e ak f r e q u e n c y ( a) 1 Fa l s e . 2 Tr u e ( c ) 1 Tru e .( b ) 2 00 d B (c) 20dB ( d ) 1 00 d B 16. . 2 Fa l s e ( d ) 1 Fa l s e . 2 Fa l s e ( b ) 1 Tru e . 2 Tr u e 1 7. T h e i n p u t b i as c u r r e nt o f 7 41 C Op am p i s a b o u t ( a) 5 0 µ A ( b ) 5 00 n A (c) 50nA (d) 5 µA 20.SRINIVAS Asst Prof. T h e f o l l ow i n g p r op e r ty o f O p a m p p e r mi t s vo l t ag e ga i n d ow n t o z e r o fr equency ( a) H i g h o p e n l o o p g ai n ( b ) Fe e d b a ck (c) Directcoupling ( d ) C a p ac i ta n c e c ou p l i n g BIBILIOGRAPHY TEXT BOOKS : Prepared By K.1 A n O p a m p s l e w r at e l i m i t s i t s ou t p u t s w i n g a t h i g h f r e q u e n c y .a m p t h e b an d w i d th i s ( a) F i n i t e val u e ( b ) I n fi n i ty ( c ) U n i ty ( d ) Z e ro 21. ECE Dept . Fo r a n i d e a l o p . A n e xa m p l e of i nt e r n a l l y c o m p e n s a t e d O p a m p i s ( a) 7 09 (b) LM120 ( c ) 7 41 (d) LM110 18 . T h e l o op g a i n β A ( a) I s u s u a l l y < < 1 (b) Is usually >>1 ( c ) M ay n ot e q ua l t o 1 ( d ) b e twe e n 0 an d 1 19 . SRINIVAS Asst Prof.inverting amplifier Integrator and differentiator Difference amplifier Instrumentation amplifier AC amplifier . UNIT III LINEAR APPLICATIONS OF OP .  Analyse or design a Inverting and Non .2003.AC amplifier.I to V converters Buffers PERIODS REQUIRE D 2 1 1 1 1 2 2  Total no of periods required 10 Objective: By this Unit students should gain knowledge on  Different Non-Linear applications of OP-Amps. 4. Clayton. 1988. Op-Amps & Linear ICs .Instrumentation amplifier.Difference amplifier.Sergio Franco. 2. Ltd.G.Linear Integrated Circuit Applications – S.  Analyse or design a summing amplifier using the noninverting configuration.Buffers. Schedule: S. Linear Integrated Circuits – D. 1971. ECE Dept .inverting amplifier and determination of their gain equations.AMPS Syllabus: Inverting and Non .N O 1 2 3 4 5 6 7 NAME OF THE TOPIC Inverting and Non . Micro Electronics – Millman. 2.1987. PHI. McGraw Hill.inverting amplifier. PHI.F. Design with Operational Amplifiers & Analog Integrated Circuits .V to I.TMH Edition REFERENCES : 1. Prepared By K.integrator and differentiator and their mathematical expressions.Integrator and differentiator. Operational Amplifiers & Linear Integrated Circuits–R.V to I. 3. Butterworth & Company Publ.I to V converters.1.Salivahanan.Ramakanth A. McGraw Hill. Operational Amplifiers – C.Coughlin & Fredrick Driscoll. 2nd Edition. 3. Gayakwad. Roy Chowdhury. New Age International (p) Ltd. 6th Edition.1988./ Elsevier. figure 1 2. ECE Dept . Ri = 10Kohms. so that the peak gain is 20 dB and the gain is 3 dB down from its peak when ω = 10.000rad/sec.AMP. (b) Discuss the differences between differential amplifiers used in the first two stages of OP. Analyse the operation of AC amplifier. 4. Determine the output voltage and sketch it.  Significance of V to I & I to V converters and buffers. and the input is a step input Vin = 2V for 0 ≤ t ≤4. (b) Draw the frequency response curve of a differentiator. (a) Draw the circuit diagram of a two input non-inverting type summing amplifier and derive the expression for the output voltage. (c) How does negative feedback affect the performance of an inverting amplifier? 3. (b) Briefly explain why negative feedback is desirable in amplifier applications. How is it modified when a small resistor is connected in series with the Prepared By K.01µF .SRINIVAS Asst Prof. (a) In an integrator circuit. CF = 1 second. (a) Find V0 for the circuit shown in figure 1 (b) Find R1 and Rf in the practical integrator (lossy integrator).  Assignment Questions 1. (a) Design a current to voltage converter using OP-AMP and explain how it can be used to measure the output of photocell. Use a capacitance of 0. the input voltages v1 . i.(a) Find V0 for the circuit shown in figure 3 (b) Find R1 and Rf in the practical integrator (lossy integrator).?Rn = 2Rn-1 . (b) Why active differentiator circuits are not used in analog computer to solve differential equations. so that the peak gain is 20 dB and the gain is 3 dB down from its peak when ω = 10. (a) Explain how an op .capacitor? 5. For n = 4.01µF Figure 3 7. (a) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1KHz.amp can be used as summing amplifier? Draw the diagram of a four input summer and obtain the expression for the output. what is the maximum output voltage? 6.SRINIVAS Asst Prof. If a sine wave of 1V peak at 1000 Hz is applied to this differentiator draw the output waveforms. (b) Briefly explain about the buffers used in amplifier circuits. Use a capacitance of 0. Prepared By K. For n = 4.v2 . 8.000 rad/sec. R3 = 2R2 .?v n can be 0 to 10V. (b) The circuit of a inverting summing amplifier is designed with R1 = R’ =1Kohm. what is the smallest output voltage if at least one input is nonzero? ii. and R2 = 2R1 . ECE Dept .(a) What are the differences between the inverting and noninverting terminals? What do you mean by the term “virtual ground”. Figure 3 Quiz Questions 1.SRINIVAS Asst Prof. (a) What are the advantages of instrumentation amplifier? Derive an expression for the transfer function of an instrumentation amplifier. (b) Explain about any two linear and nonlinear applications of op . I n an a l og c om p u t at i o n we u s e ( a) I nt e g ra t or s an d d i ff e r e nt i at o rs i n p a i r ( b ) I nt e g ra t or al o n e b u t n o d i ff e re nt i a t or s ( c ) B o t h i nt e g ra t or s an d d i ff e r e nti a t or s ( d ) D i ff e r e nt i at o rs a l on e b u t n o i nte gr a to r s 4. U n d e r i d e al c on d i t i o n s .00.9. (b) Explain the use of reference terminal provided in an integrated circuit instru. (a) Calculate the exact closed loop gain inverting amplifier shown in figure3 if AOL = 2. Ri = 2MΩ and R0 = 75Ω.How the operational amplifier can be used as a differentiator and integrator.mentation amplifier. ECE Dept . I nve r ti n g a m p l i fi e r i s al s o kn ow n a s ( a) C u r r e nt s e r i e s F B am p l i fi e r ( b ) Vo l t ag e s hu nt F B a m p l i fi e r ( c ) Vo l t ag e s e r i e s F B a m p l i fi e r ( d ) C u r r e nt s hu nt F B am p l i fi e r 2 Fo r a s q u a r e wave i n p u t. f o r N o n i nve rt i n g a m p l i fi e r Prepared By K. 10.amp. ( a) S i nu s o i d al wave ( b ) Po s i t i ve & n e ga t i ve s p i ke s ( c ) S q u ar e wave ( d ) Tri a n g l e wave 3.000. t h e o u tp u t of a d i ff e r e nt i at o r w i l l b e . 11. mu ch hi g h e r t h a n e ve n i t s op e n l o o p i n p u t i m p e d a n c e 8. c al c u l a t e t h e V 0 . R f = 5 0K & V i = 2 V . O n e o f t h e f ol l ow i n g s t a te m e nt s i n r e f e re n c e t o vol t a ge f o l l owe r c o n fi g u ra t i on u s i n g Op am p i s i n c or r e c t ( a) T h e vo l t ag e g a i n i s u n i ty ( b ) I t s i n p u t i m p e d a n c e i s ve r y h i gh al m o s t a p p r oa ch i n g i ts o p e n l o o p i n p u t i m p e d an c e m ag n i t u d e ( c ) T h e i n p u t i s a p p l i e d at t h e n on i nve r t i n g i n p u t ( d ) I t h a s e x tr e m e l y h i gh i n p u t i m p e d a n c e .15 V ( d ) . I n a n O p a m p i nve r t i n g am p l i fi e r c on fi g u r at i o n w i t h a n i n p u t r e s i s t a n c e ( R 1 ) a n d a f e e d b a ck r e s i s t a n c e ( R 2 ) .( a) R 0 = 1 (b) R0 = ∞ (c) Ri =0 (d) R0 =0 5. T h e nu mb e r of o p . t he o u tp u t of t h e i nt e gr a t or w i l l b e ( a) S q u ar e wave ( b ) R am p vo l t ag e ( c ) I r r e g u l ar ( d ) S i nu s o i d al 7. T h e i n p u t t o an ac t i ve i nt e g ra t or i s 0 V . ( a) .20 V ( c ) . T h e C M R R i s a p r o b l e m f o r ( a) B o t h i nve r ti n g & n o n i nve rt i n g c o n fi g u ra t i on ( b ) H a s n o t h i n g to d o w i t h th e typ e o f f e e d b a ck ( c ) T h e n on i nve r t i n g am p l i fi e r on l y ( d ) T h e i nve r t i n g am p l i fi e r on l y 9. T h i s i s d o n e t o ( a) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t o ff s e t c u rr e nt ( b ) I m p r ove u p on C M R R ra t i n g of O p am p ( c ) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t b i a s c u r r e nt s ( d ) C o m p e n s a t e f o r t h e e ff e c t s of i n p u t o ff s e t vo l ta ge 6. ECE Dept .10 V 1 0. I n an i nve r t i n g am p l i fi e r . D u e to t h e off s e t vol t a ge .SRINIVAS Asst Prof.25 V ( b ) .a m p s r e q u i r e d t o p e r f o r m a d d i ti o n & s u b tr a c t i on s i mu l ta n e o u s l y ( a) 3 Prepared By K. R 1 = 5 K . i t i s n o rm a l p r a c t i c e t o c o n n e c t a re s i s t an c e ( R) e q u a l t o p a ra l l e l c omb i n a ti o n o f (R 1 ) & ( R 2 ) f r o m t h e no n i nve r t i n g i n p u t t o gr o u n d . P. X i s t h e ga i n b a n d w i d t h p ro d u c t o f t h e i nve r ti n g am p l i fi e r a n d z i s t h e g ai n b an d w i d th p r o d u c t o f t h e n on i nve rt i n g a m p l i fi e r . A n o n i nve rt i n g Op am p h a s Z i = 10 K Ω .P 1 3.a m p ( b ) Tra n s i s t o r ( c ) Tra n s d u c e r (d) FET 1 2.P ( d ) + 15 V P .P.P (b) 0 ( c ) + 0.P ( c ) + 8. T h e n ( a) X Z = R 2 R 1 (b) X = Z (c) X Z = R1 R2 (d) X = ZR2 R1 +R2 1 5.(b) 4 (c) 1 (d) 2 1 1. I n c as e o f n o n i nve r ti n g s u m m i n g am p l i fi e r t o g e t V 0 = V 1 + V 2 + V 3 t h e c on d i t i on i s Prepared By K.SRINIVAS Asst Prof. 5 V P . f e e d b ack r e s i s to r R f = 12 0 K Ω a n d V i = +0 . 8 V P . T h e i nte gr at o r w i l l h ave a D C g a i n ( a) E q u a l t o z e r o (b) . ECE Dept .1 ω RC ( c ) E q u a l t o op e n l o op ga i n ( d ) E q u a l t o i n fi n i ty 1 7.8VP-P 1 6. 5 V P .P (d) -7. T h e ou t p u t vol t ag e ( a) + 7.P ( b ) + 7. 8 V P .1 . I n a n i nve rt i n g O p am p Z i = 22 K Ω . T h e ou t p u t vo l t ag e w i l l b e a p p rox i m at e l y ( a) . W h a t i s t h e b as i c e l e m e nt i n i n s t r u m e nta t i on am p l i fi e r ? ( a) O p . 5 V P . T h e Op am p d i ff e r e nt i at or ( a) I s i n h e r e nt l y u n s t ab l e an d c a n b e s t ab i l i z e d by c o n n e c t i n g a r e s i s t o r i n s e ri e s w i t h t h e c a p ac i t o r ( b ) I s i n h e r e nt l y u n s t ab l e ( c ) C a n b e s t a bi l i z e d by c o n n e c t i n g a r e s i s t o r i n s e r i e s w i th th e c a p ac i to r ( d ) I s i n h e r e nt l y s t ab l e 1 4. Z f = 68 K Ω an d V i = +0 . 2 V P . 6 V P . 1987. 3. T h e i n p u t s i g n al w i l l b e d i ff e r e nt i at e d p r op e r l y i f t h e t i m e p e r i o d T of t h e input signal is ( a) T ≥ R F C 1 (b) T ≤ RF C1 (c) T ≥ RF CF (d) T ≥ RF CF 20.TMH Edition REFERENCES : 1. 6th Edition./ Elsevier. 2.F. A n i d e a l O p a m p i s u s e d t o m a ke a n i nve r t i n g am p l i fi e r . Design with Operational Amplifiers & Analog Integrated Circuits .Ramakanth A.SRINIVAS Asst Prof. op e n l o op ga i n o f t h e op . Operational Amplifiers – C. Gayakwad. Operational Amplifiers & Linear Integrated Circuits–R. New Age International (p) Ltd.Coughlin & Fredrick Driscoll.1988.am p i s i n fi n i ty ( d ) C M R R i s i n fi n i ty 19. 3. McGraw Hill. Clayton. PHI.2003. 2. PHI. ECE Dept .a m p i s i n fin i ty ( c ) C M R R i s i n fi n i ty. Roy Chowdhury. 2nd Edition. McGraw Hill. 4. T h e two i n p u t te rm i n a l s o f t h e Op a m p a re at t h e s am e p o t e nti a l b e c au s e ( a) T h e op e n l o op ga i n o f th e op .Linear Integrated Circuit Applications – S. Ltd.am p i s i n fi n i ty ( b ) T h e i n p u t i m p e d a n c e of th e o p .Salivahanan.Sergio Franco. UNIT IV NON .G.AMPS Prepared By K. Op-Amps & Linear ICs . 1971.( a) A l l a r e d i ff e r e nt ( b ) A l l r e s i s t an c e s mu s t b e h a l f t h e R f ( c ) A l l r e s i s t an c e s a r e s a m e ( d ) I n p u t r e s i s t an c e s a r e s a m e 18. Butterworth & Company Publ. 1988. Linear Integrated Circuits – D. Micro Electronics – Millman.LINEAR APPLICATIONS OF OP . I n c as e o f i nve r t i ng s u m m i n g am p l i fi e r i f R 1 = R 2 = R 3 = 3 R f t h e n V 0 i s ( a) V 0 = -[ V 1 + V 2 + V 3 ] / 4 ( b ) V 0 = -[ V 1 + V 2 + V 3 ] / 2 ( c ) V 0 = -[ V 1 + V 2 + V 3 ] / 3 ( d ) V 0 = -[ V 1 + V 2 + V 3 ] BIBILIOGRAPHY TEXT BOOKS : 1. Log and Anti .SRINIVAS Asst Prof.Syllabus: Non . (a) Design a logarithmic amplifier for positive input voltages in the range 5mV to 50V. bistable and monostable multivibrators.N O 1 2 3 4 5 6 7 NAME OF THE TOPIC Non . Prepared By K.Log and antilog amplifiers. ECE Dept .Linear function generation Comparator Multivibrators Triangular and Square Wave generators Log amplifiers Anti .Presicion rectifiers Schedule: S.  Analyse or design a different multivibrators.Multivibrators. (a) Distinguish between astable.log amplifiers Presicion rectifiers PERIODS REQUIRE D 1 1 2 2 1 1 2  Total no of periods required 10 Objective: By this Unit students should gain knowledge on  Different Non-Linear applications of OP-Amps.Comparator. Assignment Questions 1.comparator.  Analyse or design a square wave and triangular wave generators.log amplifiers.Triangular and Square Wave generators.  Analyse and discuss the significance of precison rectifiers. TH: upper threshold) and hysteresis of the inverting comparator shown in figure 1 Figure 1 2. (b) Determine VTH and VTL (TL: Lower threshold.Linear function generation. (b) Derive the frequency of oscillation of a RC phase shift oscillator and explain the operation of the circuit.(b) With suitable circuit diagram explain the operation of a triangular wave gen.SRINIVAS Asst Prof. Wien . ‘ON’ for 0. namely. (b) With the help of a neat circuit diagram logarithmic amplifier.erator using a comparator and a integrator 3.(a) List the conditions for oscillation in all the three types of oscillators. 6. (b) Design an op . Quiz Questions 1 .5 seconds each time it is pulsed. 9. (b) Explain the operation of an op . waveforms. Vsat = ±12Volts. (a) Design a monostable multivibrator with trigger pulse shape which will drive an LED. (a) Design an RC phase shift oscillator for a frequency of 500Hz. A s t a b l e mu l t i v i b ra t o r h a s ( a) O n e s t a b l e o n e q u a s i ( b ) A s ta b l e s t at e ( c ) A n o s c i l l a t or ( d ) T wo q u as i s t a te 2.amp based relaxation oscillator and derive the frequency of oscillation. Design and explain a saw tooth waveform generator using operational amplifier and plot the waveforms for the given specifications frequency = 5kHz. explain the working of a 7. mathematical expressions and characteristic curves.bridge and quadrature oscillators (b) Derive the expression of the output voltage of an antilog amplifier using op . (a) Explain. It is possible to obtain any shaped waveform as output for a basic oscillator.amp based monostable multivibrator 4. (a) Analyze the behavior of an analog phased detector through necessary circuit diagram. How to obtain triangular wave using a square wave generator.amp. ECE Dept . 8. RC phase shift. T h e c u r r e nt f ol l owe r ( a) R an g e i s l i m i t e d by t h e b i as c u r re nt as t h e l ow e n d ( b ) I s an i d e a l a m me te r c i r c u i t Prepared By K. 5. 69 RC 8. R 2 = 1 k an d V s a t = 15 v ( a) 1 3 (b) 14 (c) 12 (d) 10 10. 27 6 ( d ) 2 2.( c ) I t i s a n i d e a l a m m e t e r . S ch m i t t r i g ge r i s b a s i c a l l y ( a) A n o s c i l l a t or ( b ) A n a s t a b l e mu l t i vi b r a t or ( c ) A b i s ta b l e mu l t i v i b r at o r ( d ) A m o n o s t ab l e mu l t i v i b r at o r 6 A p e ak d e t e c t or i s a n e l e c tr o n i c c i r c u i t ( a) T h a t t r ack s t h e i n p u t s i g n al f ai t h f u l l y u nt i l i t d e t e c t s a p e ak ( b ) I t h o l d s th e d e t e c t e d p e a k va l u e u nt i l i t d e te c ts a n p e a k o f l a rg e r val u e ( c ) T h a t t r ack s t h e i n p u t s i g n al f ai t h f u l l y ( d ) I t t r a cks t h e i n p u t s i gn a l f a i t h f u l l y u nt i l i t d e t e c ts a p e a k a n d h o l d s u nt i l n e x t l a r ge r p e ak va l u e 7 T h e w i d t h o f t h e ou t p u t p u l s e of a m o n os t a b l e mu l t i v i b ra t or is g i ve n by ( a) RC ( b ) 3 RC ( c ) √ 2 RC ( d ) 0 . R 1 = 2 k. 6 7 4. t h e d i s ch ar g i n g t i m e c o n s t ant i s ( a) = t i m e p e ri o d (b) << timeperiod Prepared By K. 67 0 ( c ) 0 . ECE Dept . R an g e i s l i m i t e d by t h e b i as c u r re nt an d ou t p ut c u r r e nt ( d ) R an g e i s l i m i t e d by t h e ou t p u t c u r r e nt c a p ab i l i ty a t h i gh e n d 3. I n an ac t i ve p e ak d e te c t or . i f V s a t > > V D a n d R 1 = R 2 c a l c u l at e t h e t i m e e r i o d ( R= 2 k & C = . I n a A s t ab l e M u l t i v i b ra t or i f R 1 = R 2 t h e n t h e to t al t i m e p e ri o d T = ( a) 3 C ( b ) 3 RC ( c ) 2 RC (d) 2R 9 C a l c u l a te t h e H y s t e r i s i s vo l t ag e f or a Sch m i t t Tr i gg e r . I n a M on o s t a b l e mu l t i vi b r a t or .SRINIVAS Asst Prof. 00 2 F ) ( a) 2 . 76 ( b ) 2 . ( c ) N o r e l a ti o n ( d ) > > t i m e p e ri o d of t h e i n p u t 1 1. T h e Op am p i n a n ac ti ve h al f wave r e c t i fi e r h as a ga i n o f 2 0 0. T h e c l o s e d l o o p s i n c e vol t a ge i s ( a) 1 4 µ V (b) 3. I n c as e o f a s t a b l e c i r c u i t .5 µV (c) 1 µV Prepared By K. I n a mu l t i v i b r at o r. C i r c u i t u s e d f o r p r o d u c t i on o f d e l ay i s ( a) S ch m i t t t ri g g e r ( b ) A n a s t a b l e mu l t i vi b r a t or ( c ) A m o n o s t ab l e mu l t i v i b r at o r ( d ) A b i s ta b l e mu l t i v i b r at o r 1 5. I n c as e o f l o g a mp l i fi e r c i r c u i t t h e t e m p e r at u r e c o m p e n s at i o n i s p rov id e d by u s i n g e l e m e nt . S ch m i t t t ri g g e r c i r c u i t e mp l oys f e e d b ack m e t h o d . ( a) Fe e d b ack b e twe e n two s t ag e s i s 0 % ( b ) W h e n on e t ra n s i s t o r i s o n . ECE Dept . T h e Pe a k D e te c t or c i rc u i t s t or e s t h e f o l l ow i n g va l ue s ( a) h i g h e r n e w va l u e ( b ) L as t two val u e s ( c ) o n l y fi r s t va l u e ( d ) L as t t h re e val u e s 17. t h e ot h e r i s o ff ( c ) O u tp u t is avai l a b l e d i s c o nt i nu ou s l y ( d ) Fe e d b ack e m p l oye d i s n e g at i ve 1 4. i f R 1 = 1 . 0 00 . 1 6 R 2 t h e e xp r e s s i on f or ti m e p e r i o d will be ( a) T = RC ( b ) T = 2RC ( c ) T = 3RC ( d ) T = 4RC 12. ( a) N e g at i ve (b) closedloop ( c ) Po s i t i ve (d) openloop 16. ( a) T h e r m i s t o r ( b ) Tra n s i s t o r ( c ) S e n s i s to r (d) Diode 13.SRINIVAS Asst Prof. Roy Chowdhury. Prepared By K.Sergio Franco. 3. L og a m p l i fi e r s a r e u s e d i n ( a) A n a l og u e d a t a c om p r e s s i on . Linear Integrated Circuits – D.1987.R 2 ) ] ( + V s a t ) (b) [R1/(R1-R2 )](-Vsat ) (c) [R1/(R1+R2 )](+Vsat ) (d) [R1/(R1+R2 )](-Vsat ) 22.TMH Edition REFERENCES : 1. I n a S ch m i tt Tr i gg e r t h e U p p e r T h r e s h ol d Vo l ta g e i s gi ve n by ( a) [ R 1 / ( R 1 .Ramakanth A. McGraw Hill.2003. c o m p ut a t i on an d tr a n s d u c e r l i n e ar i z a t i on ( b ) E x p o n e nt i al t r a n s d u c e r l i n e ar i z a ti o n ( c ) A n a l og u e c om p u t at i o n ( d ) A n a l og u e d a t a c om p r e s s i on 21. T h e f r e q u e n c y o f o s c i l l a t i on i n c a s e of an as ta b l e mu l t i v i b r at o r d e p e n d s m ai n l y on ( a) R C va l u e s o f t h e c i r c u i t ( b ) Va l u e of V c c p owe r s u p p l y ( c ) Va l u e of t ra n s i s t o r β ( d ) C o l l e c t o r re s i s t or s 1 9. 1988. A n O p a m p z e ro c ro s s i n g d e te c t or i s b as i c al l y ( a) A s i n e wave t o r a m p wave c o nve r t e r ( b ) A s i n e wave t o s q ua r e wave c o nve r t e r ( c ) A s i n e wave t o t r i a n gu l a r wave c onve r te r ( d ) A s qu a r e wave t o s i n e wave c o nve r t e r BIBILIOGRAPHY TEXT BOOKS : 1. New Age International (p) Ltd. 2.(d) 7 µV 1 8.Linear Integrated Circuit Applications – S. A c om p a r at o r ( a) C o m p ar e s t h e o n l y D C vo l ta ge l e ve l s of two s i gn a l s ( b ) C o m p ar e s t h e o n l y AC vo l ta g e l e ve l s of two s i gn a l s ( c ) M a ke s u s e o f a n O p a m p w i t h h i g h s le w r a te ( d ) C o m p ar e s t h e vol t a ge l e ve l s of two s i g n a l s 2 0. Gayakwad.Salivahanan. Op-Amps & Linear ICs . PHI.SRINIVAS Asst Prof. ECE Dept . Design with Operational Amplifiers & Analog Integrated Circuits . 2nd Edition. Band reject filters all pass filters Applications of VCO(566) PERIODS REQUIRE D 1 1 1 2 1 2 1 1 10  Total no of periods required Objective: By this Unit students should gain knowledge on  Draw the frequency response of an ideal low-pass.N O 1 2 3 4 5 6 7 8 NAME OF THE TOPIC Introduction Butter worth filters 1st order LPF Butter worth filters 1st order HPF Butter worth filters 2nd order LPF Butter worth filters 2nd order HPF Bandpass. Schedule: S.G. 1971. Assignment Questions 1.1st order. (a) Explain the advantages of active filter. 3.a high-pass. PHI.  Significance of all-pass filters.and an all-pass filter. Explain different configurations of active filter. 6th Edition.Band pass. ECE Dept . Prepared By K.Applications of VCO(566). 4.2nd order LPF.1988. McGraw Hill. Clayton. Butterworth & Company Publ.HPF filters.Coughlin & Fredrick Driscoll. Micro Electronics – Millman.  Design a 1st order & 2nd order low-pass and a high-pass Butter worth active filters to satisfy the given requirements. UNIT V OSCILLATORS AND WAVEFORM GENERATORS Syllabus: Introduction.Band reject and all pass filters.2. Operational Amplifiers & Linear Integrated Circuits–R.F. Operational Amplifiers – C./ Elsevier.SRINIVAS Asst Prof. Discuss their merits and demerits.a bandpass.Butter worth filters .  Analyse a band-pass and band-reject filters.  VCO and their applications.a band-reject. Ltd. (a) Design a fourth order Butterworth low pass filter whose bandwidth is 1kHz. Butterworth and Chebysher filters. 9 Derive the expression for the transfer function of 2nd order High pass filter. fL =1KHz and a passband gain=4. (a) Explain the term “Frequency Scaling” with a suitable example. Explain its working.(a) Define Bessel. (b) Design a wide band-pass filter with fH =200Hz . RC phase shift.bridge and quadrature oscillators (b) Design an op . 5. 7. (b) Design a first order wide band reject filter with a higher cutoff frequency of 100Hz and a lower cutoff frequency of 1kHz. (a) Draw a band . and compare their frequency response. 4. (b) Sketch the circuit diagram of band elimination filter and design a wide bandreject having fH =200Hz and fL =1KHz. ECE Dept . Prepared By K. (b) Draw the schematic diagram of an all pass filter and determine the phase shift φ between the input and output at f = 2kHz.y 8. Assume necessary data 6.amp based relaxation oscillator and derive the frequency of oscillation. (b) Give the functional block diagram of VCO NE 566 and explain its working and necessary expression for free running or center frequenc. (a) Draw the wide band reject filter circuit and also the frequency response of it. namely. 3. (a) List the conditions for oscillation in all the three types of oscillators. (b) Explain the operation of narrow band pass filter and obtain the frequency response. (a) Derive the expression for the transfer function of 2nd order Low pass filter. Draw the frequency response and calculate Q factor for the filter.pass filter circuit with its frequency response curve.SRINIVAS Asst Prof. Wien . Calculate the Q of the filter. Select all capacitors equal to 1000nF.(b) List out the applications of VCO 566 2. fh)4)1/ 4. Quality of Q . Gain magnitude value at f=fH in L. the change is ---. (a) 40n db/decade (b) 60n db/decade (c) 20n db/decade (d) 80n db/decade 2. The voltage gain magnitude equation of second order LPF |Vo/Vin| is (a) Af/(1 + (f/fh)4)1/2 (b) Af/(1 + (fh/f)4)1/2 (c) Af/(1 + (f/fh)2)1/2 (d) Af/(1 + (f. ECE Dept .in the narrow band Band Elimination filter (a) Q = 1/(3(3 − AF )) (b) Q = 1/(2(1 − AF)) (c) Q = 1/(2(2 − AF )) (d) Q = 1/(2(AF − 1)) 5.P.sion for frequency of oscillation. (b) What is pass band and stop band for a filter? How are filters are classified 11 (a) Draw the schematic diagram of Wein bridge oscillator and derive the expres. Choose C= 500pF Quiz Questions 1. In general.SRINIVAS Asst Prof. The phase angle is given in All pas filter (a) Ø= −2 tan−1(2 π/fRC) (b) Ø = −2 tan−1(RC/2 π f) Prepared By K. (a) Explain the operation of Quadrature oscillator with neat diagram.10. (b) What are the conditions to be satisfied by a circuit to produce oscillations? 12.077Af 3.707Af (d) 0.for the nth order filter.F (a) < Af (b) Af (c) 0. (a) Derive an expression for the voltage to frequency conversion factor of 566 VCO. (b) Design a notch filter for fo = 8kHz and Q = 10. Calculate frequency scaling for the example. (a) 160 (b) 0.625 (c) 1. What is the active filter advantage over the passive filter. fH >f 8. f > fH (c) 0< f < fL.6 (d) 62.BW (c) Q = fc/BW (d) q = f 2c . ECE Dept . (b) reduced size and increased weight.586R1 (d) Rf= 1. convert the 1KHz cut off frequency of the LPF.(c) Ø = −2 tan−1(2 π fRC) (d) Ø = −2 tan−1(2 π f/RC) 6. VCO available in IC form is NE/SE 566 Prepared By K. Calculate Rf value in the second order HPF (a) Rf= 0.BW 5. the frequency of VCO (566) . f > fH (c) 0< fL < f. fH >f (d) 0< f < fL. fH >f (b) 0< fL < f.6KHz. f > fH (d) 0< f < fH. fo = (a) 2VccRC/(Vcc − Vc) (b) 2Vcc/CR(Vcc − Vc) (c) 2(Vcc − Vc)/RcVcc (d) 2(Vcc − Vc)RC/Vcc 10.SRINIVAS Asst Prof. fH >f (b) 0<f< fL. 7.586R1 (c) Rf= 0. (c) increased size and reduced weight (d) reduced size and reduced weight.44R1 (b) Rf= 1. to a cut off frequency of 1. (a) increased size and increased weight. The relation of quality factor (a) Q = BW/fc (b) Q = fc. Band stop or elimination filter conditions for pass bands (a) 0< fL < f. f > fH 11. Band pass filter condition for stop band is (a) 0< fL < f.5 9.44R1 12. pin IC (a) 4 (b) 20 (c) 16 (d) 8 18. High pass filter representation with stop band and pass band is (a) 0< fL < f.SRINIVAS Asst Prof.(a) intel (b) Motorola (c) signetic (d) fair child 13. Following is called as passive filter (a) RC component LPF (b) chebyschev LPF (c) cauver LPF (d) butter worth LPF 14. In narrow band pass filter---. NE/SE 566 VCO is --. Chebyshev filter is preferred because (a) flat pass band. through which component output is feedback towards the input (in filter circuit) (a) Capacitor (b) Inductor (c) R2 resistor Prepared By K.no. through which component output is feedback towards the input (in filter circuit) (a) Inductor (b) Rf resistor (c) Capacitor (d) R2 resistor 16. fL >f (d) 0 < fL < f. of feedback paths are (a) 1 (b) 3 (c) 2 (d) 4 17. ripple stop band (d) flat pass band. f > fL (c) 0<f< fL. ECE Dept . In the second order high pass filter. In the second order high pass filter. f > fL 15. flat stop band 19. flat stop band (c) ripple pass band. ripple stop band (b) ripple pass band. f > fL (b) 0 < f < fL. Gayakwad. Design with Operational Amplifiers & Analog Integrated Circuits .Sergio Franco. ripple stop band (b) flat pass band. Voltage to frequency conversion factor in vco(566) (a) kc = Δfo/ΔVc (b) kc=fo/Δfc (c) Kc =Δ fc/Δfo (d) kv =Δ Vc Δ.9 (d) 5. Linear Integrated Circuits – D. flat stop band (d) ripple pass band. 3. Roy Chowdhury. Prepared By K. Cauver filter is preferred because (a) ripple pass band.559 (b) 894 (c) 55. Active filter having one extra filter comparing passive filters is (a) BPF (b) All pass filter (c) LPF (d) HPF 23. ripple stop band (c) flat pass band. 2nd Edition. flat stop band 24.TMH Edition REFERENCES : 1.Ramakanth A.2003.(d) Rf resistor 20. Calculate Q value of the first order band pass filter when f H= 2000Hz and fL = 400Hz (a) 0.SRINIVAS Asst Prof. 1988. PHI.Salivahanan.59 BIBILIOGRAPHY TEXT BOOKS : 1.fo 22. McGraw Hill.Linear Integrated Circuit Applications – S. New Age International (p) Ltd.1987. Op-Amps & Linear ICs . Design first order wide band pass filter (a) HPF O/P connected to I/P of LPF (b) LPF O/P connected to I/P of HPF (c) HPF O/P connected to I/P of HPF (d) LPF O/P connected to I/P of LPF 21. ECE Dept . 2. AM.Coughlin & Fredrick Driscoll.  Different applications of PLL.introduction PLL block schematic principles and description of individual blocks 565 PLL Applications of PLL . PERIODS REQUIRE D 1 1 1 1 2 1 1 2 10 Assignment Questions Prepared By K. McGraw Hill. Clayton.frequency multiplication. Operational Amplifiers & Linear Integrated Circuits–R.F. 3.1988. ECE Dept . Micro Electronics – Millman.PLL . Butterworth & Company Publ. 4.G.functional diagram 555 timer Monostable operation and applications 555 timer Astable operation and applications Schmitt Trigger. 1971. PHI. FM & FSK demodulators.frequency translation Applications of PLL .PLL . Applications of PLL .Monostable and Astable operations and applications.frequency translation.principles and description of individual blocks. Operational Amplifiers – C.functional diagram.block schematic. UNIT VI TIMERS & PHASE LOCKED LOOPS Syllabus: Introduction to 555 timer.N O 1 2 3 4 5 6 7 8 NAME OF THE TOPIC Introduction to 555 timer.introduction.AM.frequency multiplication.Schmitt Trigger./ Elsevier.2. Ltd.565 PLL.  Explain the operating principles of a PLL and operation of 565 PLL. Schedule: S.  Analyse or design a frequency multiplier and frequency translation ckt using a 5675 PLL. 6th Edition. FM & FSK demodulators  Total no of periods required Objective: By this Unit students should gain knowledge on  Explain the operation of the 555 timer as a monostable and an astable multivibrator.SRINIVAS Asst Prof.  Astable and monostable multivibrator applications. Prepared By K. (a) Configure a 555 timer as a Schmitt trigger and explain. (b) Design monostable multivibrator using 555 timer to produce a pulse width of 100 m sec 4. (b) Draw the dc output voltage of VCO versus frequency characteristic of a PLL indicating the capture and lock range clearly. C2 is the ca. (a) Give the functional block diagram of NE 565 PLL (DIP) and for the given components values. (b) What is the purpose of low pass filter in a phase locked loop? Describe different types of low pass filters used in PLL. (a) Draw the block schematic of a PLL describing the function of each block briefly. (a) Explain how phase locked loop is used as a frequency translator and AM demodulator. C1 = 390PF. (b) Explain the application of 555 timer as linear ramp generator. ECE Dept . 5.1. (a) Explain the significance of each of comparators and operation of 555 timer. 2. 7. The lock range and capture range Where C1 is capacitor connected between pin number 9 and -Vcc . 3.SRINIVAS Asst Prof. (a) Draw the dc voltage versus phase difference characteristic of balanced modu.pacitor connected between +Vcc and ouput pin 7. C2 = 680PF and R1 = 10k. The free running frequency ii.lator phase detector of a PLL indicating all important regions. (a) Explain the operation of a zero crossing detector. Vcc = ±6V Find i. (a) Explain the operation of Monostable multivibrator using 555 timer. (b) Briefly mention the disadvantages of using zero crossing detector and how it is overcome in Schmitt trigger. 6. 8. and R1 is connected between pin number 8 and +Vcc . (b) Give the functional block diagram of VCO NE 565 and explain its working and necessary expression for free running or center frequency. Derive the expression of time delay of a Monostable multivibrator using 555 timer. the output of the timer is (a) low (b) zero (c) high (d) unpredectable 3. Draw the circuit and explain its operation with neat relevant waveforms and derive the pulse width.(b) Explain frequency translation and FSK demodulation using 565 PLL 9. Describe any two applications of 555 timer in (a) Astable multivibrator configuration (b) Monostable multivibrator configuration 11. (b) Design an op . In 14 pin 555 Ic . pin 5is (a) NC (b) control voltage (c) threshold (d) Vcc 2.amp based relaxation oscillator. Draw the functional block diagram of 555 IC timer. Explain the function of each block so also explain hoe it can be used as monostable multivibrator. If the voltage at the trigger input is greater than 2/3 vcc. 12 How is an astable multivibrator using 555 timer connected in to a pulse position modulator Quiz Questions 1. 10. ECE Dept .(a) Draw the circuit of PLL as frequency multiplier and explain its working. The lock range of a PLL (a) increase with increase in input voltage (b) decrease with decrease in supply voltage (c) voltage mirror (d) increase with increase in supply voltage Prepared By K. The time period of the monostable MV using 555 timer can be varied by the voltage applied to the terminal (a) control (b) discharge (c) ground (d) threshold 4.SRINIVAS Asst Prof. 5.1microfarad (a) 0. Calculate capture range frequency of the PLL when f2 =3. Calculate the frequency of astable MV for symmetrical squarewave f = ---when RA= RB=7. The output of the timer is ----. Timing range of 555 timer is (a) above one hour.83hz (d) fc= 6khz 11. (b) micro seconds to hours (c) nano to micro seconds (d) micro to milli seconds 7. ECE Dept .01μfarad (a) 5khz (b) 6khz (c) 3khz (d) 10khz 10.93k hz (a) fc= 1hz (b) fc= 0hz (c) fc= 72.25kiloohms.pin 7is (a) control voltage (b) Vcc (c) Threshold (d) discharge 12. Calculate free running frequency in PLL R1=10kohms C1=0.f1= 2. Voltage control oscillator of LM 565 PLL center frequency (a) 1000KHz (b) 500KHz (c) 200KHz (d) 100KHz 6.SRINIVAS Asst Prof.as long as the trigger input is low (a) unpredictable (b) high (c) low (d) zero 8.c=0. In 8 pin 555 Ic.5 KHZ (b) 2KHZ (c) 1.07khz .5KHZ (d) 1KHZ 9. Threshold terminal (a) monitors the output voltage Prepared By K. Following block is not present in PLL (a) amplifier (b) high pass filter (c) low pass filter (d) phase detector Prepared By K.10V (d) +/.of IC 566 (a) 10v to 0v (b) 10v to 24 v (c) 5v to 12v (d) 0 to 5v 15. ECE Dept .SRINIVAS Asst Prof.6V 16. Following is astable MV application (a) Linear ramp generator (b) Pulse width modulation (c) FSK generator (d) Missing pulse detector 19. Vcc supply of LM565 PLL (a) +/-2V (b) +/. The purpose of the transistor q connected to the discharge terminal is to (a) maintain threshold level (b) discharge the external capacitor (c) maintain trigger level (d) charge the external capacitor 18. Estimate dutycycle of astable MV when T= ton+toff (a) RA*RB*100 (b) RB*100/(RA+2RB) (c) RA*100/(RB+2RA) (d) 100/(RA+2RB) 14.(b) monitors the voltage at the discharge terminal (c) monitors the voltage across c (d) has no special role to play 13. Ic 555 works with the following voltages(dc) (a) +5v -0-(-5)v (b) -10v (c) 25v (d) +5v to +18v 17.3V (c) +/. Wide supply voltage range ---. T=100msec. calculate the value of c. Astable MV (555 timer ) generates a frequency for unsymmetrical squarewave (a) 1.1 μ farad (d) 0.20.9μ farad 26. (a) 0.09 μ farad (b) 2μfarad (c) 1. The time during which the output of a monostable multi vibrator(555) remains high is given by (a) RC (b) 1.means shifting the frequency of an oscillator by a small factor (a) frequency synthesizer (b) FM detector (c) frequency multiplier (d) Frequency Translation 24. No of LPF blocks are present in frequency translation using PLL (a) 1 (b) 3 (c) 2 (d) 4 21. The ---.45/(RA+2RB)C (c) 1. ECE Dept .45/2RBC (d) 1. IC ----. In the monostable multivibrator R=100 kilo ohms.SRINIVAS Asst Prof.1RC (c) R/C (d) 1.45/2RAC Prepared By K.45/(RA+RB)C (b) 1. (b) width (c) frequency (d) phase 25.5RC 22. The out put of timer depends on this property of the external trigger pulse: (a) amplitude.PLL (a) 1496 (b) 565 (c) 1596 (d) 566 23. 2/3RC (b) f0=1.parallel comparator type ADC. Op-Amps & Linear ICs . Design with Operational Amplifiers & Analog Integrated Circuits . 1988.TMH Edition REFERENCES : 1. inverted R .93k hz (a) fc= 0hz (b) fc= 72.2R DAC.07khz . Different types of ADCs . Butterworth & Company Publ.G.2/4RC 28. 6th Edition. PHI.1988. Linear Integrated Circuits – D.Sergio Franco.2R ladder DAC. McGraw Hill. 2. Micro Electronics – Millman.SRINIVAS Asst Prof.2/2RC (c) f0=1. PHI.2/RC (d) f0=1.f1= 2. 3. counter type ADC. 1971. UNIT VII D to A & A to D CONVERTERS Syllabus: Introductio. Roy Chowdhury. 4.N NAME OF THE TOPIC PERIODS REQUIRE Prepared By K.27. 3. Operational Amplifiers – C. Clayton. Schedule: S. The centre frequency of the PLL is determined by the free-running frequency of the Vco (a) f0=1.1987./ Elsevier.2003. Gayakwad. New Age International (p) Ltd. ECE Dept . 2.Coughlin & Fredrick Driscoll.Ramakanth A.83hz (c) fc= 6khz (d) fc= 1hz BIBILIOGRAPHY TEXT BOOKS : 1. Weighted resistor DAC. 2nd Edition.R . Calculate capture range frequency of the PLL when f2 =3.DAC and ADC Specifications. and IC 1408 DAC. Specifications of AD 574 ( 12 bit ADC).Salivahanan.Linear Integrated Circuit Applications – S.F. successive approximation ADC and dual slope ADC. Operational Amplifiers & Linear Integrated Circuits–R. BASIC DAC techniques. McGraw Hill. Ltd. of bits required to represent a full scale voltage of 10V with a resolution of 5mV approximately. specifications complexities of various of Digital to Analog Prepared By K. Explain the operation of the converter. ECE Dept . counter type ADC successive approximation ADC and dual slope ADC DAC and ADC Specifications Specifications of AD 574 ( 12 bit ADC)  Total no of periods required Objective: By this Unit students should gain knowledge on      D 1 1 2 1 2 2 1 1 11 Explain the operation of different types of ADCs and DACs Comparision of different typers of DACs Comparision of different typers of ADCs DAC & ADC specifications and applications of ADC & DACs Discussion about DAC IC and ADC IC and their pin diagrams. (a) Draw a schematic diagram of a D/A converter. BASIC DAC techniques Weighted resistor DAC R . (b) Calculate the no.2R ladder DAC. (b) Comparison of conversion times and hardware analog to digital converters.(a) Define important performance converters listing their typical values. 3. Sketch the output waveform. Different types of ADCs parallel comparator type ADC. Use resistance values whose ratios are multiples of 2.SRINIVAS Asst Prof. (a) Explain the operation of a Successive Approximation type analog to digital converter. inverted R . (b) Draw the block diagram of a converting 4-bit A/D converter and explain its operation. 4. Assignment Questions 1. 2. Write shorts on: (a) Tracking type analog to digital converters.O 1 2 3 4 5 6 7 8 Introduction.2R DAC IC 1408 DAC. (b) Define the following terms as related to DAC: i.tions. (a) Explain the difference between Analog to Digital converter and Digital to Analog converters through underlying equations.in DAC (a) VR_2n (b) VR/2 (c) 2VR (d) VR/2n 3. (c) With the help of a neat circuit diagram and waveforms.intervals (a) 8 (b) 4 Prepared By K.SRINIVAS Asst Prof.(a) Write short notes on A/D converters. In a 3 bit ADC. 5. Quiz Questions 1. (b) LSB of a 9 . The least significant-bit voltage is given by VSB= -. explain the operation of a dual slope ADC. Find the output of the DAC for an input 10110 1101 and 01101 1011. (a) What are the basic blocks preceding an Analog to Digital converter in a typical application like digital audio recording? (b) Draw the circuit of weighted resistor DAC and derive expression for output analog voltage Vo 6. (b) Illustrate one application each of Analog to Digital and Digital to Analog converters.2R ladder type DAC.(a) Sketch and explain the transfer characteristic of a DAC with necessary equa. the entire range of voltage should be divided In to ---.bit DAC is represented by 19. i. Linearity ii. What is the Full scale reading (FSR) of this DAC? 7.(b) Describe the operation of an R . ECE Dept . What are its special features 8. If an input of 9 zero bits is represented by 0 volts.6mv. Resolution. Both ADC and DAC are known as (a) Flash converters (b) Message converters (c) Memory converters (d) Data converters 2. ii. Find VOFS (a) 4. If the conversion time of 8-bit flash ADC is 10μs.voltage.092V (d) 2.17 Hz (d) 52.1V 8.1V (d) 5.2mV and 0000000000 reads 0V then 0101101111 will read (a) 2. An 8-bit DAC has resolution of 20mV/LSB.1V (c) 6. The fastest ADC is (a) ADC1103 (b) ADC141 (c) MOD 1020 (d) CA330D Prepared By K. ECE Dept . Reference current of Ic 1408 (a) 4mA (b) 6mA (c) 2mA (d) 10mA 9.17 Hz (b) 32. The basic step of a 10 bit DAC is 8. (a) -ve reference (b) +ve reference (c) Double (d) 0 reference 7.17 Hz 10.17 Hz (c) 62. find the maximum frequency of a sinusoidal voltage than can be digitized (a) 42.1V (b) 3.(c) 6 (d) 7 4.SRINIVAS Asst Prof. Number of comparators preferred in 3 bit ADC is (a) 3 (b) 7 (c) 6 (d) 8 5.902V (c) 3. Weighted Resistor DAC makes use of ---.902V (b) 3.092V 6. find t2 if the input voltage is 150mV Prepared By K. Indirect ADC method is (a) Dual slope ADC (b) Counter type ADC (c) Successive approximation ADC (d) Tracking or Servo type ADC 15. In sampling theorem. A 4-bit DAC has a hypothetical voltage of 8V. If t1=50ms.per step (a) 0. Nyquist frequency is (a) FS (b) FS/2 (c) FS/3 (d) FS/4 17.SRINIVAS Asst Prof. The processing in which a number of analog signals. ECE Dept . The cheapest ADC is (a) Successive approximation type (b) Flash type (c) Dual type (d) V/F type 16. one at a time. Calculate VLSB= --.5V (b) 1V (c) 2V (d) 0. One of the following is odd converter (a) single slope (b) successive approximation (c) R/2R ladder (d) dual slope 14.25V 13. The reference voltage for a dual slope ADC is 100mV. Resolution in ADC (a) 2Vifs/(2n−1) (b) Vifs/(2n−1)2 (c) Vifs/(2n−1) (d) nVifs/(2n−1) 18.11. are connected to common load is called (a) De-Multiplexing (b) Analog Multiplexing (c) Multiplexing (d) Analog Detection 12. 25 (b) 1. AD 574 is ----.479V (b) 3.mv/LSB (a) 100 (b) 1 (c) 10 (d) 20 23. An 8 bit ADC out put all 1‘s whenVi=2. Calculate R/RF in the R-2R ladder DAC (a) 1.(a) 150ms (b) 50ms (c) 75ms (d) 60ms 19. n=4 and resolution=0. The reading when the input is 001001011100 is (a) -1.17 Hz (d) 32.479V 20. Let VR=10V.0V 21.5 (d) 125 22.55v Find its resolution ---. calculate the magnitude of the output voltage represented by LSB (a) 15V (b) 8. If the DAC is a 4-bit circuit.SRINIVAS Asst Prof.12 bit DAC operates between +5V.17 Hz (b) 52.0V (c) 12V (d) 1.521V (c) -3.9 (c) 12.17 Hz 24.17 Hz (c) 62. The full-scale range of a DAC is 16V. If the conversion time of 8-bit flash ADC is 10μs.5.521V (d) 1. Noise can be reduced by transmitting as (a) Semi-digital signals Prepared By K. find the maximum frequency of a sinusoidal voltage than can be digitized (a) 42. ECE Dept .bit ADC (a) 4 (b) 10 (c) 8 (d) 12 25. Coughlin & Fredrick Driscoll.1987. McGraw Hill. UNIT VIII ANALOG MULTIPLIERS AND MODULATORS Syllabus: Four Quadrant multiplier. Design with Operational Amplifiers & Analog Integrated Circuits .Sergio Franco. Roy Chowdhury.2003. Operational Amplifiers & Linear Integrated Circuits–R. 4.N O 1 2 3 4 5 NAME OF THE TOPIC Four Quadrant multiplier balanced modulator IC 1496 Applications of analog switches and Multiplexers Sample & Hold amplifiers PERIODS REQUIRE D 1 2 1 2 2 Prepared By K. McGraw Hill. ECE Dept . Sample & Hold amplifiers. 2. 3. Operational Amplifiers – C. 3.TMH Edition REFERENCES : 1. Butterworth & Company Publ. New Age International (p) Ltd.1988. 6th Edition./ Elsevier. Schedule: S.(b) Semi-analog signals (c) Digital signals (d) Analog signals 26. 2. PHI. Micro Electronics – Millman. balanced modulator.Ramakanth A.Linear Integrated Circuit Applications – S.G. Op-Amps & Linear ICs . Applications of analog switches and Multiplexers.Salivahanan. Ltd. Linear Integrated Circuits – D.F. PHI. 2nd Edition. Number of comparators preferred in 3 bit ADC is (a) 8 (b) 3 (c) 7 (d) 6 BIBILIOGRAPHY TEXT BOOKS : 1.SRINIVAS Asst Prof. Gayakwad. 1988. Clayton. IC 1496. 1971. (a) What is Gyrator circuit? Explain its operation with a neat circuit diagram. Write short notes on (a) IC 1496 and its applications (b) Sample and hold circuit. (b) What do you mean by sampling? 3. Give block diagram of a 16 input analog multiplexer using CMOS gated and explain how it works.amp based sample and hold circuit. Draw the circuit diagram IC 1496 balanced modulator circuit and explain its Prepared By K. (a) What are the different types of multiplexers? 8.use in analog communications.What are all basic blocks of analog multiplexer? selections process is performed it. 4. describe the operation of an op . Assignment Questions 1. Total no of periods required Objective: By this Unit students should gain knowledge on 8  Complete theory and idea about four quadrant multiplier  Explain the operation of balanced modulator and balanced modulator IC 1496.  Brief discussion about S& H amplifiers. Different applications of analog switches and multipliers. (a) Explain the use of IC 1496 as AM modulator.. (b) What is a sample and hold circuit? Why is it needed? With neat circuit diagram. 2. 7. 6. 5. ECE Dept Explain how the data . 8.(a) Explain the operation of balanced modulator with neat sketch. (b) Explain the logic diagram and functional table of 4 to 1 line multiplexer.SRINIVAS Asst Prof. (b) Explain the operation of IC 1496 as mixer circuit. (a) Describe the operation of four quadrant multiplier with neat diagram. (b) Give the working principle of Analog multiplexer. is specified as the deviation of the actual output from that of the ideal (a) Linearity (b) Offset terms (c) Bandwidth (d) Accuracy Prepared By K. Analog multiplier is used as (a) JFET (b) diode (c) Rectifier (d) Transistor 4.SRINIVAS Asst Prof.operations.5mv (b) 5mv (c) 0. 9.5mv (a) 0db (b) 10db (c) 80db (d) 160db 6. (a) Explain different applications of multiplier circuits. ECE Dept . Sketch the output waveform for the square wave inputs with a phase difference ‘φ’. Quiz Questions 1. (b) What is analog switch? Explain the different analog switches with suitable diagrams.----. Calculate the change output Vo= ---. IC 1496 worked as also (a) VCO (b) PLL (c) Product detector (d) FM demodulator 3.signal (a) Two polar (b) One polar (c) Two bipolar (d) One bipolar 2.05mv (d) 50mv 5. Four quadrant device accepts ---.When change Vi=5v and FRR=80db (a) 0. Calculate the FRR when change Vi=5v and Vo=0. 60mv 8. for the carrier --. Balanced modulator IC (a) MC 2000 (b) MC 1429 (c) MC 1428 (d) MC 1496 12. 60 mv (d) 300mv . Sample and hold circuits ----. ms (d) ps.the crosstalk in the multiplexer (a) increase (b) constant (c) zero (d) reduces 10.rms (a) 300mv. ps (b) ms . The switch is closed in JFET when VGS= (a) Zero (b) more negative (c) infinity (d) Constant 9.SRINIVAS Asst Prof. MC 1595L is used as (a) only divider (b) sub tractor (c) Only multiplier (d) Multiplier and divider 13. In general for monolithic S/H circuits aperture time(tap)and aperture Uncertainty(Δtap) are of the order of (a) ns .rms. the Recommended i/p signal levels are---. ECE Dept .300 mv (c) 60mv. Because of propagation delays through the driver and switch Vo will keep tracking Vi some time after the inception of the hold command.ns (c) ns. This is the (a) hold mode settling time (b) aperture uncertainty (c) acquisition time (d) aperture time 11.7. 300mv (b) 60 mv . ns Prepared By K. The MC 1496 in a balanced modulator circuit maximum modulating signal levels. 5mv 17.14. Due to ---.it is difficult to compensate Aperture time by advance hold command (a) hold mode settling time(ts) (b) aperture time (c) aperture uncertainty (d) a acquisition time 19.05mv (d) 0. Sample and hold circuits ---. MC 1596 device can also be realized as a frequency (a) mono (b) scalar (c) constant (d) doubler 15. This is the (a) aperture time (b) acquisition time (c) aperture uncertainty (d) hold mode settling time 18.the crosstalk in the multiplexer (a) reduces (b) constant (c) zero (d) increase 20.SRINIVAS Asst Prof. ECE Dept . Feed through is usually expressed in terms of the feed through rejection ratio (FRR) (a) 20log2 (Δv0/Δvi) (b) 20log2 (Δvi/Δvo) (c) 20log10 (Δvi/Δvo) (d) 20log10 (Δvo/Δvi) Prepared By K. A device is used as a divider (a) RC 42000 (b) RC 4200 (c) RC 420 (d) RC 650 16 Calculate the change output Vo= When change Vi=5v and FRR=80db (a) 50mv (b) 5mv (c) 0. Because of propagation delays through the driver and switch Vo will keep tracking Vi some time after the inception of the hold command. McGraw Hill. 3. Clayton.2003. 1971./ Elsevier.F. Operational Amplifiers – C.1987. 4. Ltd.Salivahanan. 3.Sergio Franco.G. Op-Amps & Linear ICs . 1988. PHI. Gayakwad. Prepared By K. McGraw Hill.SRINIVAS Asst Prof. New Age International (p) Ltd. PHI.BIBILIOGRAPHY TEXT BOOKS : 1. Roy Chowdhury.Ramakanth A. Linear Integrated Circuits – D.1988. Operational Amplifiers & Linear Integrated Circuits–R. Micro Electronics – Millman. Design with Operational Amplifiers & Analog Integrated Circuits . Butterworth & Company Publ. 2.Linear Integrated Circuit Applications – S. 2nd Edition.Coughlin & Fredrick Driscoll. 6th Edition. 2. ECE Dept .TMH Edition REFERENCES : 1.
Copyright © 2024 DOKUMEN.SITE Inc.