Lab Report#1 Pcs130 magnetic field

March 30, 2018 | Author: Abdulrahman Jijawi | Category: Magnetic Field, Compass, Earth, Iron, Electric Current


Comments



Description

Department of PhysicsCourse Number Course Title Semester/Year Instructor PCS-130 Physics 2 Winter 2016 Dr. V.Toronov TA Name Ermias Wolde Michael Lab/Tutorial Report No. 1 Report Title Magnetic fields Section No. Group No. Submission Date Due Date 17 Student Name Abdulrahman Jijawi Won Park February 2nd, 2016 February 3rd, 2016 Student ID Format: xxxx12345 xxxx74011 Xxxx28379 Signature* (Note: remove the first 4 digits from your student ID) *By signing above you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a “0” on the work, an “F” in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: http://www.ryerson.ca/content/dam/senate/policies/pol60.pdf Objective  which is appropriate medium for  conduction. it acts as a magnet creating magnetic current on its surface. the magnitude of the field increases as the magnitude of the current  increases (Ryerson. When the iron ores are melted. 2002).  Theory The earth is surrounded with magnetic fields generated by molten iron cores from  earth’s crust and upper mantles (Lanza & Roberto. This experiment sought to measure the magnetic field  magnitude of the earth.  formed by iron ore bodies (Roberto & Antonio. It seems that the iron cores  have turned into mineral magnetite creating the magnetic loop that circulates around the  earth (Rolf. Regards magnetic field produced  around the wire.The purpose of the experiment. The earth’s magnetic current is created by the earth’s crust and upper mantle. This is the reason that north area on the compass points toward to the North Pole due the  opposite magnetic attraction. and around a long  straight conductor. creates the current loop that generates magnetism. there are it creates two succinct  category of metal conductor. 2006). field magnitude of the coil as the magnitude of the current  increases. According to Rolf (2002). “Magnetic Fields”. is to measure the magnetic  field of the earth and field caused by electric currents in a long straight wire and common coils. melted iron consisted of metal. . 2006). Given the fact that earth is self­creating current loop called geodynamo. field magnitude in different location of the current loop. 2016). 2013). Also the poles are slightly tilted by 10 degrees as the earth itself is tilted  and the North Pole’s magnetic pole is actually a south magnetic pole (Knight.  which is a good conductor of electricity as fluid. The direction of the B can be determined by using right hand rule (Knight. If the current moves right on the x-axis. which is the perpendicular distance from the conductor. the compass had to be adjusted to the correct  direction. the magnetic field will always move into the page and vice versa. The equation B= µ。I/2 πr. By examining the equation.3 mT. After  opening up the Logger Pro program. When the I value is constant but the R value. the magnitude of the B. is reversely proportional to magnitude of B.  B = µ。NI/2R. Same analogy can be explained when measuring the B value using a long straight conductor. values of B and R are reversely proportional to each other. which when value of I increases. which is the magnitude of the current. which suggests as R value increases.The magnitude and the direction of the magnetic field are determined by the  magnitude of the electric current created by the wire. The direction of the current is always perpendicular to the direction of the I. By examining B=4 µ。NI/(√(125)R). the magnetic field magnitude of North and South. Procedure Part I: Measure the Magnetic Field of the Earth in Your Lab Room Materials that were used for this experiment were Vernier magnetic field sensor. Logger Pro program. value of B increases. a compass. the magnetic field. the magnitude of B will decrease. which is the displacement from the center of two Helmholtz coils. the value r. lab computer and Vernier computer interface. East  . is directly proportional to the value of I. is not constant it will create changes in B value. where north points to the northern direction. After switching the sensor of the  magnetic field sensor to 0. 2013).  Logger Pro. Starting from the 0. For each  measurement. the magnitude of the magnetic field was obtained. After the graph of each  directions were illustrated using the Logger Pro. The graph of the B value was illustrated when clicking collect button. single coil.0A during this experiment to assign I value as  a constant.4 mT.  After the preparation. and Vernier computer interface.0m distance between the magnetic sensor and one of the  . such as.25A.and West. The power supply was set to 2. Part III: Measure the Magnetic Field Along the Longitudinal Axis Between the Two  Coils of a Helmholtz System Same materials were used as Part II of the experiment except one additional coil  was used. The sensor was again placed horizontally to be positioned perpendicularly to  the current. Part II: Determine the Relationship Between the Magnetic Field at the Center of a Single  Coil and the Current Through the Coil The materials that were used in this experiment were an adjustable power supply. After the graph was illustrated the power supply should be turned off before  the next measurement. the magnetic field sensor was set to zero by clicking 0 Zero button from  Logger Pro. the mean of the  values of graph was taken by clicking Statistics button. the B value was able to be measured. connecting the single coil to the power supply and placing  the magnetic field sensor horizontally so it could be perpendicular to the current after  setting it to 6. Vernier magnetic field sensor. and Up and Down were measured using the Logger Pro program. After obtaining the graph based on each I value. Starting from the current  magnitude of 2 A to 0. the mean value of the whole graph  would represent the average magnitude of magnetic field of the specific direction. 0 centimeter. the sensor  had to be set to 0. The magnetic field value was measured starting from 1.10m. the magnitude of magnetic field was measured. Again power supply had  to be off when the magnetic field was not measured and for every experiment. To obtain the value of the magnetic field.3 mT.0 cm away from the conductor to 5. . After setting the power supply to 3 A and sensor to 0.coils to 0. Part IV: Measure the Magnetic Field Around a Long Straight Conductor and Calculate   the Value of  µ。 The long straight conductor was connected to the power supply at the far right corner of the lab room. Collect button was pressed when collecting the data and magnitude of the magnetic field was obtained after calculating the means from each graphs illustrated by Logger Pro. the power supply should be off when the magnetic field was not measured and when starting the measurement. the sensor was placed horizontally to the straight conductor so it could be positioned perpendicularly to the current. the mean value of the graph  was calculated by clicking Statistics button from the Logger Pro. the sensor should be set to 0. Like the other experiments. 04071 + - Magnetic field magnitude 0.Observations and Result Part I Data table 1: Geographica Magnetic l Direction field North-> South East-> west Up-> down Component direction 0.01790 + 0.0445 mT For direction: East of north.002245 -0.0445 Magnetic field overall direction East of north: 7.9 =0. The direction of the compass was similar to that of the projection of the magnetic field on horizontal plane. Below horizontal. .15 Below horizontal: 67. 5621 0.46 2.370 1. .2643 Graph of magnetic field vs current in coil.50 1.8751 0. that is as current increases so does the magnetic field.00 1.75 0. The graph shows that there is a positive linear correlation between magnetic field and the current in coil.125 1.25 1.162 0.921 1.50 0.00 0.Part II Data table 2: Current in coil 2.25 Magnetic field 2.75 1. 396 0.3 0.02 2.06 2.09 2.349 0.03 2.01 2.129 0.223 0.315 0. The field at any point between the coils is approximately independent of the position of the point .295 0.10 2.012 0.331 0.297 0.00 2.07 2.05 2.08 2.Part III Data table 3: Current through Distance Magnetic field the coils between the (mT) sensor and one of the coils (m) 1.386 Figure 3.04 2.415 0. the graph of magnetic field vs the distance between the sensor and one of the coils. 0130 -0.256*10^-6) it is a much larger value so that magnetic field will be larger in air than in vacuum.045 0.03 0.6 25 22.02 0.7 50 40 33.01572 -0.05 Reciprocal of the distance from the sensor and center of the conductor (1/m) 100 66.04 0.01 0. the graph of magnetic field vs the reciprocal of the distance from the sensor and the center of the conductor.3 28.008380 Figure 4.1598 -0.015 0.025 0.008355 -0.01227 -0. .01250 -0.035 0.2 20 Magnetic field (mT) -0.0001649 mT/1/m comparing that value to that of vacuum (1.Part IV Data table Current through the straight conductor 3 4: Distance from the sensor and center of the conductor (m) 0. The slope of the graph represents the permeability in air and that is equal to – 0.0252 -0.0287 -0. our trials would be unreasonable to compare.In conclusion. our answers correctly answers the lab questions. as the sensor has a different normal level as it is rotated. and the hypothesis projected was correct. This would have influenced the magnetic field sensor because the sensor has a different normal at each point on the compass. This could have skewed the data. This issue may be alleviated by using a battery/current sensor that doesn’t jump around a lot. This could be alleviated by fixing the coil to the table so that it doesn’t move. There are three possible sources of error for this lab. so we weren’t sure if the current going through the wire was really what we recorded it as. As a result. This would have made our trials unreasonable to compare. Another possible source of error is that the current reading on the current sensor jumped around a lot. A final source of error could be that the direction of the coil moved during the experiment. One is that the magnetic field sensor could have rotated as we did the experiment. because magnetic field did decrease with decreasing the current and the results shown in table 2 supports it. This could be alleviated by securing the magnetic field sensor inside the coil. . Berlin/Heidelberg. Roberto. (2006). "Kinematics in One Dimension. DEU: Springer Meissner. N.References Lanza. (2002). Antonio. Randall Dewey. New York. USA: Springer. NY. and Meloni. 2004. pag. Concepts from the PCS130 textbook are referenced throughout the lab report: Knight. Rolf. San Francisco: Pearson/Addison Wesley." Physics for Scientists and Engineers: A Strategic Approach. Print. Third ed. . Little Book of Planet Earth. Earth's Magnetism : An Introduction for Geologists.
Copyright © 2024 DOKUMEN.SITE Inc.