Technical Handbookfor Radio Monitoring HF Edition 2013 2 Dipl.- Ing. Roland Proesch Technical Handbook for Radio Monitoring HF Edition 2013 Description of modulation techniques and waveforms with 259 signals, 448 pictures and 134 tables 3 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. © 2013 Dipl.- Ing. Roland Proesch Email:
[email protected] Production and publishing: Books on Demand GmbH, Norderstedt, Germany Cover design: Anne Proesch Printed in Germany Web page: www.frequencymanager.de ISBN 9783732241422 4 Please do not hesitate to contact me if you discover any wrong description. Andreas Schwolen-Backes Vaino Lehtoranta Mike Chase Disclaimer: The information in this book have been collected over years. Although I tried to verify these information from different sources it may be that there are mistakes.Acknowledgement: Thanks for those persons who have supported me in the preparation of this book: Aikaterini Daskalaki-Proesch Horst Diesperger Luca Barbi Dr. The main problem is that there are not many open sources to get information about this sensitive field. 5 . 6 . 1 Analogue Waveforms Amplitude Modulation (AM) Double Sideband reduced Carrier (DSB-RC) Double Sideband suppressed Carrier (DSB-SC) Single Sideband full Carrier Single Sideband reduced Carrier (SSB-RC) Single Sideband suppressed Carrier (SSB-SC) Single Sideband Modulation (SSB) Independent Sideband Modulation (ISB) Vestigial Sideband Modulation (VSB) Frequency Modulation (FM) Wide Frequency Modulation (WFM) Pre-emphasis and de-emphasis 37 37 38 38 39 40 40 40 41 42 42 43 45 1.Content 1 LIST OF PICTURES 19 2 LIST OF TABLES 29 3 REMOVED SIGNALS 33 4 GENERAL 35 5 DESCRIPTION OF WAVEFORMS 37 1.2 Digital Waveforms Amplitude Shift Keying (ASK) On-Off-Keying (OOK) Frequency Shift Keying (FSK) Continuous Phase Frequency Shift Keying (CPFSK) Double Frequency Shift Keying (DFSK) Constant Envelope 4-Level Frequency Modulation (C4FM) Minimum Shift Keying (MSK) Tamed Frequency modulation (TFM) Gaussian Minimum Shift Keying (GMSK) Multi Frequency Shift Keying (MFSK) Phase Shift Keying (PSK) Binary Phase Shift Keying (BPSK) Quadrature Phase Shift Keying (QPSK) Offset Quadrature Phase Shift Keying (OQPSK) Staggered Quadrature Phase Shift Keying (SQPSK) Compatible Differential Offset Quadrature Phase Shift Keying (CQPSK) Coherent Phase Shift Keying (CPSK) Differential Coherent Phase Shift Keying (DCPSK) 8PSK Modulation 46 46 46 47 48 49 49 50 51 51 52 53 53 55 57 57 57 58 58 58 7 . 3 Description of modulation states Asynchronous Data Transmission Synchronous Data Transmission Simplex Duplex Half duplex Semi duplex 68 68 68 69 69 69 69 1.5 Data formats NRZ (Non Return to Zero) NRZ (S) (Non Return to Zero . Symbol Rate Bit rate Symbol rate Baud rate 70 70 70 70 1.Differential Phase Shift Keying (DPSK) Differential Binary Phase Shift Keying (DBPSK) Differential Quadrature Phase Shift Keying (DQPSK) Differential 8 Phase Shift Keying (D8PSK) Quadrature Amplitude Modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) Spread Spectrum (SS) Direct Sequence Spread Spectrum (DSSS) Frequency Hopping Spread Spectrum (FHSS) Incremental Frequency Keying (IFK) Analogue Pulse Modulation Pulse Amplitude Modulation (PAM) Pulse Width Modulation (PWM) Pulse Position Modulation (PPM) Digital Pulse Modulation Pulse Code Modulation (PCM) Delta Modulation 59 59 59 59 60 62 63 63 64 64 65 65 65 65 66 66 67 1.4 Baud Rate.M (Biphase Mark) 71 72 72 72 72 72 72 1.6 Coding Code Codes in communication used for brevity An example: the ASCII code Interleaving in error-correction coding Interleaving examples Codes to detect or correct errors Error-correcting code (ECC) Forward Error Correction (FEC) Convolutional code Viterbi algorithm 73 73 73 73 74 74 75 75 75 76 77 8 .Space) NRZ (M) (Non Return to Zero . Bit Rate.Mark) Bi-Ф-L (Biphase Level) Bi-Ф-S (Biphase Space) Bi-Ф. 7 Used code tables ITA2. PICCOLO MK VI ITA 2 P ITA 3 CCIR 476 ASCII / CCITT 5 82 82 83 84 85 85 85 85 1. ITA2P and ITA3(CCIR342-2) Russian MTK2 CCIR476-4.11 97 97 97 98 98 98 99 99 100 101 106 107 109 110 Designation of Emissions 9 . HNG-FEC.Reed-Solomon error correction Overview of the method Properties of Reed-Solomon codes Use of Reed-Solomon codes in optical and magnetic storage Timeline of Reed-Solomon development Satellite technique: Reed-Solomon + Viterbi coding Turbo code Shannon-Hartley theorem Theorem Examples 77 77 78 78 79 79 79 80 80 81 1.25 Automatic Link Establishment (ALE) Codan Automated Link Management (CALM) 1.8 Channel access methods Frequency-division multiple access (FDMA) Time division multiple access (TDMA) Code division multiple access (CDMA) Orthogonal Frequency multiple access (OFDMA) 91 91 91 92 92 1.9 The OSI Reference Model The Physical Layer The Data Link Layer The Network Layer The Transport Layer The Session Layer The Presentation Layer The Application Layer 93 93 94 94 95 96 96 96 1.25 RSX.10 Protocols Automatic repeat ReQuest Protocol (ARQ protocol) Pure Stop and Wait ARQ Go Back N ARQ Selective Repeat ARQ Polling ACP127 STANAG 4406 Messaging STANAG 5066 X. ARQ 6-90/98 15. BR 6028 25. Baudot F7B 22. ALE400 4. ALIS 2 6.114 Determination of Necessary Bandwidths 1. ARD9800 OFDM 36ch Modem 7. BUL 107. Baudot–ARQ System 21. ARQ-SWE 13. CHN MIL 4MFSK 30.53 Bd 27. AUTOSPEC 19. ARQ-M4 11. CCIR 493 SELCALL 29.12 6 Table of system and user sorted by Baud rate 123 137 HF MODES General Information Spectrum Sonagram Oscilloscope Phase Spectrum Phase Plane Speed Bit Analyses Bit Correlation. ARQ-E3 9. BR 6029C Time Diversity Modem 26. ARQ 6-70S 14. AUM-13 17. ARQ-M2 10. ARQ-S 12. ALE 3G 3. AUS MIL ISB Modem 18. ASCII 16. ARQ-E 8. CHN MIL 64FSK 32. ALIS 5. BUL ASCII 28. CHN MIL Hybrid Modem (4FSK-OFDM20) 10 137 137 137 137 137 138 138 138 139 139 142 143 144 145 146 146 148 148 149 150 151 151 152 152 153 154 155 156 156 157 157 158 158 159 160 160 161 162 162 163 164 165 166 168 . CHN MIL 8MFSK 31. BEE 24. Autocorrelation Function (ACF) 1. AFS Navy FSK 2. Baudot ITA No.2 Baudot Code Murray Code Western Union Code ITA2 Code 20. Baudot Sync 23. CIS 500 Bd FSK Burst Modem 51. Clover 2500 68. CIS 3000 Bd Modem 53. CIS VFT 3 Channels 100 Bd 62. Clansman FSK Modem 64. CHIP 64/128 37. Coachwhip 69. CIS 36-50 44. Clover 65. CIS 81-29 48. CIS 14 41. CIS MFSK-20 60. CIS 12 ARQ 40. CIS 12 39.CHN MIL Hybrid Modem (4FSK-8FSK-OFDM19) 33. CIS BPSK 59. CIS 200-1000 50. 34. CIS 1280 Bd Modem 52. CIS 11 38. CIS 16x75 Bd 43. CIS-ARQ 57. CIS 4FSK 100 Bd 55. CIS 50-50 47. CIS 150 Bd SELCAL 42. CIS VFT 3 Channels 144 Bd 63. Clover 2000 Error-Correction Coding Selective ARQ Repeat Signal Format Modulation Formats Data Modes Data Throughput (Bps) 67. CIS 45/60/93/112/128 Channel OFDM 45 tone OFDM variant 1 45 tone OFDM variant 2 45 tone OFDM variant 3 60 tone OFDM variant 1 60 tone OFDM variant 2 93 tone OFDM 112 tone OFDM 128 tone OFDM 61. CODAN 11 169 170 172 173 174 175 176 177 177 178 179 180 181 182 183 184 184 185 186 187 187 188 189 190 192 192 194 195 195 195 195 196 196 196 197 197 198 198 200 200 202 203 204 205 205 205 205 205 206 207 207 . CHN 4+4 Modem 36. CIS AT-3004 Modem 58. CIS 81-81 49. Clover II 66. CIS 4FSK 96 Bd 54. CIS 50-17 Baudot 46. CHN MIL Hybrid Modem (8FSK-PSK) 35. CIS 405-3915 45. CIS 4FSK 150 Bd 56. DominoEX 85. D AF VFT 82. DGPS TX numbers Message types Type 3 Message Type 5 Message Type 7 Message Type 9 Message Type 9-3 Message Type 9-1 Message Type 16 Message DGPS Message Scheduling Type 3 Message Type 5 Message Type 7 Message Type 9 Message Type 16 Message 83. Coquelet 8 FEC 75. Coquelet 13 77. CROWD 36 78. CODAN Selcall 72. DPRK ARQ 1200 Bd 87. DominoF 84. CW-F1B 81. DPRK ARQ 600 Bd 86. CROWD 36 Selective Calling 79. Coquelet 100 76. CW 80. Contestia 73. DPRK FSK 600 FEC 88. DRM Stream Multiplexer Fast Access Channel (FAC) Service Description Channel (SDC) Main Service Channel (MSC) Transmission Frame MPEG-4 Advanced Audio Encoding (AAC) MPEG CELP Harmonic Vector Excitation Coding 12 .208 208 209 209 210 211 212 214 214 215 216 217 218 219 219 219 220 221 221 221 221 221 221 222 223 223 223 223 223 224 224 224 225 226 228 229 229 230 230 230 231 231 232 232 233 233 233 234 234 234 234 CODAN 4 Channel mode CODAN 8 Channel Mode CODAN 12 Channel Mode 70. CODAN Chirp mode 71. Coquelet 8 74. DPRK BPSK Modem DPRK 150 Bd BPSK DPRK 300 Bd BPSK DPRK 600 Bd BPSK DPRK 1200 Bd BPSK 89. DUP-ARQ II 93. IRN Navy Adaptive Modem V1 115. G-TOR 100. JT6M 13 . HELL F-Hell. IRN Navy Adaptive Modem V2 116. DUP-ARQ 92.3 Bd 4-Tone 97. DRM – WinDRM 91.234 235 236 238 238 239 239 241 242 246 246 248 249 250 250 251 251 252 252 253 254 255 255 255 256 256 257 257 258 259 259 260 260 261 265 265 267 268 269 271 273 273 274 274 274 275 276 277 278 279 280 Multilevel Coding 90. JT44 125. Japan 8-Tone ASK 120. HFDL 109. Globe Wireless Single Tone Modem 102. HNG-FEC 110. ECHOTEL 1810 HF Modem 95. Press-Hell Feld-Hell GL-Hell Hell-80 PC-Hell PSK-Hell and FM-Hell FSK-Hell Duplo-Hell Sequential Multi-Tone Hell Concurrent Multi-Tone Hell Slow-Feld 108. IRA-ARQ 112. Japan 16-tone PSK 121. FEC-A 99. F7B-195. Italian MIL 1200 Bd FSK 118. JT2 124. Japan 1500 Bd QPSK 122. Globe Wireless Multi Tone Modem Globe Wireless OFDM with 12 carriers Globe Wireless OFDM with 24 carriers Globe Wireless OFDM with 32 carriers 103. ECHOTEL 1820 HF Modem 96. ISR N Hybrid Modem 117. GMDSS-DSC HF 105. Italian MIL 1200 Bd PSK 119. IRN Navy 16 x 75 Bd 113. Japan 32-tone OFDM 123. HDSSTV 107. IRN Navy QPSK 207 Bd 114. Globe Wireless Pactor 101. DUP-FEC II 94. ICAO Selcal 111. HC-ARQ 106. GRC MIL FSK 104. Fax 98. MD 1280 144. Mazielka 138. MIL STD 188-141B Appendix A 161. MIL STD 188-110A ser 154. JT65A/JT65B/JT65C 127. MIL STD 188-203-1A 163. MT 63 14 281 283 283 284 284 284 287 288 289 290 290 291 291 292 292 293 294 295 295 296 297 297 298 298 299 299 299 301 301 302 303 304 304 306 306 307 307 308 308 308 308 309 309 309 309 310 310 310 310 311 312 . MIL STD 188-110B App C 157. MD 1142 143. MFSK-8 145. LINK 14 134. MIL STD 188-212 165. LINK Z 137.7 & 100 Bd 149. MLA Navy Baudot 167. MIL STD 188-141B Appendix C 162. MFSK YUG 20-Tone Modem 153. MIL STD 188-110A Appendix A 16-Tone 155.126. MIL STD 188-110A Appendix B 39-Tone 156. MFSK BUL 8-Tone 148. MD 522 NB 139. LINEA Sitor 129. MIL STD 188-342 166. LINK 11 CLEW 132. LINK Y 136. MIL STD 188-141A Linking Protection AL-0 AL-1 AL-2 AL-3 AL-4 (classified application level) Alternate Quick Call (AQC) ALE 160. LINK 10 131. LINK 22 135. MFSK TADIRAN HF Modem 150. LINCOMPEX 128. MIL STD 188-110C Appendix D 159. MD 522 WB 140. LINK 11 SLEW 133. MIL STD 188-110B Appendix F 158. MD 1061 142. MFSK TE-204/USC-11 Modem 151. MFSK AFS Navy Modem 147. LINK 1 130. MIL STD 188-203-3 164. MD 522 DIV 141. MFSK-16 146. MFSK Thrane & Thrane TT2300-ARQ Modem 152. MFSK Modem ALCATEL 801 MFSK 4-TONE ARQ SYSTEM 150 to 1200 Bd MFSK 8-TONE ARQ SYSTEM 16. SITOR A/B ARQ mode A FEC mode B 203. ROU-FEC 194. PSKAM 10/31/50 188. PACTOR II-FEC 174. RAC-ARQ 190. SSTV SSTV VIS-Code 205. STANAG 4198 207. PACTOR IV PACTOR VI 2-Tone-Chirp PACTOR IV Spread Modulation 176. STANAG 4415 15 . PACTOR I 172. STANAG 4197 206. PSK 125 FEC 186. 313 314 315 316 317 318 318 320 320 323 324 324 324 325 326 327 331 334 334 336 337 337 338 338 341 341 342 342 343 343 344 345 346 347 347 349 350 351 351 352 353 353 353 354 357 359 361 362 363 364 365 Nokia Adaptive Burst Modem NUM 13 Olivia Olivia MFSK layer Olivia Walsh functions FEC layer 171. Robust Packet Radio RPR 192. RFSM 2400/8000 RFSM-2400 Modem RFSM-8000 Modem 191. Siemens CHX-200 FSK Modem 202. 170. RTTYM 199. RS-ARQ II 196. ROS 193. RS GM2xxx Modem 197. 169. RS-ARQ 195.168. STANAG 4285 209. Selenia Parallel Tone Modem 201. STANAG 4202 208. Packet Radio 177. PICCOLO Mark VI 180. PSK 31 184. RS GN2130 Modem 198. PSK 10 183. SKYFAX 204. PAX/PAX2 179. PICCOLO 12 181. PACTOR III 175. POL-ARQ 182. PACTOR II 173. PSK 220 FEC 187. Panther-H FH Modem 178. PSK 63 FEC 185. Q15x25 189. RUS Mil Voice Scrambler 200. 7 366 367 368 368 369 370 371 371 372 372 372 373 373 374 375 376 377 377 378 380 381 382 STANAG 4444 STANAG 4479 STANAG 4481 FSK STANAG 4481 PSK STANAG 4529 STANAG 4538 STANAG 4539 STANAG 4591 STANAG 5031 STANAG 5035 STANAG 5065 Systeme 3000 HF Modem Tadiran AutoCall Tadiran Data Mode TFM3/5 Thales Voice Scrambler Throb TMS-430 Modem TWINPLEX VFT VISEL WINMOR OTHER ACTIVE SYSTEMS ON HF 232. 229. 225. 230. 215. 233. Buoy Directional Waverider DWR-MkIII 238. Digisonde 4D 242. 222. Long Range Ocean Radar 245. 211. Buoys Drifting buoys Fishing Buoys Sel-Call Buoys 237. 219. Analogue Voice Scrambler Sailor CRY-2001 236. 224.210. 228. AMSS Advanced Narrowband Digital Voice Terminal (ANDVT) Family TACTERM MINTERM AIRTERM 234. 227. 212. Chirpsounder Chirpcomm 239. CODAR 240. 218. 213. 231. 221. 214. Beacons Maritime Mobile Service (MMS) Beacon Aeronautical Mobile Service (AMS) Beacon Amateur Radio Beacon Single Letter Beacons (SLB) 235. LORAN-C LORAN data channel communication (LDC) 16 386 386 387 387 388 388 389 389 389 389 391 392 393 393 394 394 394 395 397 397 399 400 402 403 404 405 406 . Eurofix 244. Datatrak 241. 217. EFR 243. 226. 216. 220. 223. RFID 255. Russian BRAS-3 and RS-10 System 257.15 Selective Calling 446 1. Time Signal Stations 259. NDS200 DGPS 253.14 Alphabetical List of Country Codes 442 1. Super Dual Auroral Radar Network 258. Hybrid FM NBTV PN Sequence Sync Operating Modes Modulation 252. Russian ALPHA and LORAN-C System 256. Digital NBTV Modem Codec Interpolation Compression Error Correction Data Transmission Transmission Speed 251.13 Allocation of International Call Signs 438 1. NAVTEX 248.16 Allocation of Maritime Identification Digits 450 1.Ninth-Pulse Modulation Messages 246.19 AFTN Messages Standard Messages 464 464 17 .18 Aeronautical Fixed Telecommunication Network 462 1. OFDM NBTV Limitations The OFDM NBTV Modes 48 x 48 Mode 96 x 72 Mode 96 x 72 Mode 250. NBTV 249. Over The Horizon Radar 254.17 NATO Routing Indicators 456 1. WERA 8 406 407 407 408 410 411 412 412 412 413 413 414 416 417 417 417 418 418 418 418 419 419 420 421 423 425 426 427 430 432 433 TABLES FOR RADIO MONITORING 438 1. MF RADAR 247. 1.24 Q .22 ATU 80 Words Identification 478 1. X and Z .Code Q-Codes X-Codes Z-Codes 484 484 494 496 1.21 Teleprinter Alphabets 476 1.25 506 9 Abbreviations 514 INDEX 18 .20 Notice to Airmen (NOTAM) TAF METAR 466 473 473 1.23 Arabic words identification 481 1. ................................................................................................................................................ 56 Picture 34: Phase plane of a QPSK ................................................. 47 Picture 16: Oscilloscope display of an OOK ...... 48 Picture 20: Spectrum of a DFSK ................................................... 44 Picture 13: Amplitude Shift Keying (ASK) .......................1 List of Pictures Picture 1: Different AM waveforms ................................................... 54 Picture 31: QPSK-A ........................................... 37 Picture 2: Spectrum and sonagram of an amplitude modulation ............................................................................................................................ 51 Picture 25: Spectrum of a MFSK with 12 tones............................................................................................................................................................................................................................... 40 Picture 6: Spectrum of a single sideband modulation .................................. 48 Picture 19: Spectrum of a CPFSK with 100 Bd .................................................................................................................... 54 Picture 29: Spectrum of a BPSK with 600 Bd .......................... 41 Picture 8: Frequency Modulation ..................................................................... 57 Picture 36: Phase Plane of an 8PSK ........................................................................................................................................................................... 56 Picture 33: Spectrum of a QPSK with 600 Bd ............................................................................................ 61 Picture 41: Comparison of FDM and OFDM ............................ 58 Picture 37: Spectrum of an 8PSK with 600 Bd ............................................................................................... 53 Picture 27: BPSK-A ......................................... 55 Picture 32: QPSK-B ........................... 49 Picture 21: IQ Plot of C4FM .. 54 Picture 30: BPSK-B ........................................................... 62 Picture 43: Function of DSSS .. 59 Picture 38: Example of an 8QAM and 16QAM in the Phase Plane .............. 56 Picture 35: Phase plane of an OQPSK (right) compared to QPSK (left) ......... 43 Picture 10: Spectrum of a wide FM broadcast transmitter ........................................ 46 Picture 14: Spectrum of an ASK with 100 Bd ......................................................... 39 Picture 4: Spectrum and sonagram of a single sideband modulation with full carrier ....................................................................................... 43 Picture 11: Audio chanels of a broadcast signal ....................................................................................................................................... 41 Picture 7: Spectrum of an independent modulated signal ................................ 47 Picture 18: Spectrum of an FSK ......................................................................................................................................................................................................................... 39 Picture 5: Spectrum and sonagram of a single sideband modulation with reduced carrier ......................................... 60 Picture 39: Spectrum of a QAM8 with 600 Bd ............................................................................................................................................................................................................... 62 Picture 42: Spectrum of OFDM with 45 channels ....................................................................................................................... 50 Picture 22: Sonagram and spectrum of C4FM in idle mode .......... 38 Picture 3: Spectrum of a double sideband suppressed carrier signal ..................................... 53 Picture 28: Phase plane of a BPSK ......................................................................... 61 Picture 40: Spectrum of a QAM16 with 600 Bd . 47 Picture 17: Frequency Shift Keying (FSK) .................................................................... 63 Picture 44: Function of FHSS............................................................................. 52 Picture 26: Phase shift Keying......................................................................................................................................................... 51 Picture 24: Spectrum of a Tamed Frequency Modulation (TFM 3) with 100 Bd ................................... 46 Picture 15: On-Off-Keying OOK .................................................................................................................... 44 Picture 12: Spectrum of FM stereo signal with sub-channels ...................... 64 19 ............................................................................................................................................................................................................................. 42 Picture 9: Spectrum and sonagram of a frequency modulation ................................................................................................................................................................................................................ 50 Picture 23: Minimum Shift Keying............................................................................. ......... 159 20 ....................................................................................................................................................... 153 Picture 79: Spectrum of the 50 Bd waveform .................................................................... 98 Picture 57: STANAG 5066 layers ................................................................................. 146 Picture 71: Spectrum of ARQ-E3 in idle mode ....................................................................................... 100 Picture 58: Spectrum of an AFS navy modem ................................ 156 Picture 86: Spectrum of the Russian Baudot-ARQ system ................................................................... 66 Picture 47: Delta Modulation......................................................................... 159 Picture 89: Spectrum of Baudot Sync ................................................................................................................................................................................. 145 Picture 70: Spectrum of an ARQ-E signal with 288 Bd ................................................ 142 Picture 64: Expanded spectrum of ALE400 ........................ 98 Picture 56: Selective repeat ARQ method .................................................................................................................................................................................. 154 Picture 80: Spectrum of the 600 Bd waveform ..... 156 Picture 85: Hell display of a Baudot signal ........................................................................................................................... 65 Picture 46: Quantization in a PCM ............................ 97 Picture 54: ARQ stop and wait ........................................................................... 158 Picture 87: Spectrum of Baudot F7B with 50 Bd ................................................... 93 Picture 53: Basic elements of the ARQ protocol ...................................................................................... 149 Picture 74: Spectrum of ARQ-SWE ............................................................................................................................... 147 Picture 72: ARQ-E3 – Signal Structure .............................................................................................................................................. 153 Picture 78: Spectrum of the AUS MIL ISB modem with both waveforms .................. 67 Picture 48: Common data formats ................................................................................................. 145 Picture 69: Spectrum and Sonagram of ARD9800-OFDM ................................................................................................................................................................................... 144 Picture 67: Spectrum of ALIS 2 ....................................................................................................... 151 Picture 76: Oscilloscope display of ARQ 6-90 ................. 143 Picture 66: Sonagram ALIS link setup procedure ...................... 144 Picture 68: Spectrum of ARD9800-OFDM .......... 140 Picture 62: ALE 3G protocol data units ........................................................................................................................................................................................... 155 Picture 84: Bit correlation of a Baudot signal ............................................................................................................................................................................................................................................................... 139 Picture 60: Phase constellation of an ALE 3G 8PSK signal ........................................................ 91 Picture 51: Principle of OFDMA .............................. 71 Picture 49: Principle of FDMA .......................... 91 Picture 50: Principle of TDMA .................................................................................................................................................................................................... 154 Picture 81: Spectrum of AUTOSPEC with 75 Bd ...................................................................................................................................................................... 155 Picture 83: Baudot signal in the oscilloscope display...............................................................................................................................................................Picture 45: Different types of amplitude modulation ..................................... 97 Picture 55: Go Back N method ................. 150 Picture 75: Spectrum of an ARQ 6-90 ........................... 154 Picture 82: Spectrum of a 150 Bd Baudot signal ................................................................ 139 Picture 59: Spectrum of an ALE 3G ................................................ 142 Picture 65: Spectrum of an ALIS signal ............................... 92 Picture 52: The OSI reference model ............................................................................... 147 Picture 73: Typical spectrum of an ARQ-M4 ............................................................................... 141 Picture 63: Spectrum of ALE400 ........................................................................................................ 140 Picture 61: Dwell structure of an ALE 3G ... 152 Picture 77: Spectrum of AUM 13 signal ................................................ 158 Picture 88: Sonagram of Baudot F7B ....................................................................................... ................. 176 Picture 123: Spectrum of CIS 14 with 96 Bd and 1000 Hz shift ............................................................... 165 Picture 97: Spectrum of CHN MIL 4FSK 400 Hz variant ........................ 163 Picture 96: Spectrum of CHN MIL 4FSK 500 Hz variant ................................ 172 Picture 113: Spectrum of a CHIP64 signal ........................................................................................................................................ 166 Picture 101: Spectrum of the CHN 64FSK ...................................................................................................... 166 Picture 100: Sonagram of CHN MIL 8FSK ...... 173 Picture 115: Phase spectrum of a CHIP 64 signal ........................................................................................................................... 159 Picture 91: Spectrum of a CIS 36-50 signal .............................................................................................................................................................................. 178 Picture 127: Phase plane of one channel ......................................................................................................................................................... 182 Picture 134: Auto correlation function (ACF) of CIS 50-17 Baudot FROST2 .... 178 Picture 126: Spectrum of CIS 16x75 Bd .......53 Bd ................................................................................................. 173 Picture 114: Phase plane of a CHIP signal ............................................................................................................5/1000 signal ............................................................................................................................................................................... 176 Picture 121: CIS 20 averaged sonagram.................... 167 Picture 102: Zoomed spectrum of the CHN 64FSK ............................................................................................... 171 Picture 110: 8FSK preamble for CHN MIL Hybrid modem .................... 181 Picture 133: HELL display of CIS 50-17 Baudot FROST2 ... 167 Picture 104: Post sequence of the CHN 64FSK........ 174 Picture 117: Spectrum of CIS-11 ......................................................................................... 180 Picture 130: Message structure of a CIS 36-50................. 160 Picture 92: Spectrum of a BR6028 signal .............. 165 Picture 98: Sonagram of CHN MIL 4FSK 500 Hz variant ................................ 167 Picture 105: Spectrum CHN hybrid modem 4FSK-OFDM20 ................................................................Picture 90: Baudot sync display speed in relation to bit ........................................................................................................................................ 175 Picture 120: CIS 20 spectrum with reference tone .................................................................. 163 Picture 95: Spectrum CCIR 493-4 ............. 168 Picture 106: Sonagram CHN hybrid modem 4FSK-OFDM20 ..... 178 Picture 128: Spectrum and sonagram of CIS 16x75 Bd .................................................................... 170 Picture 108: Preamble of the CHN hybrid modem 8FSK-OFDM19 ................................. 182 21 .......................................................... 169 Picture 107: Spectrum of the 19 tone OFDM ............................. 175 Picture 118: CIS12/MS5 spectrum with reference tone .......................................................... 177 Picture 124: Auto correlation display of CIS 14 with ACF at 14 bit ......... 161 Picture 93: Spectrum of BUL 107............ 179 Picture 129: Spectrum of a CIS 36-50 in idle condition . 175 Picture 119: CIS 12/MS2 spectrum in idle mode ............. 172 Picture 112: Spectrum of MFSK 4+4 signal ................................ 181 Picture 132: Spectrum of CIS 50-17 Baudot FROST2 ............................. 171 Picture 111: PSK preamble for CHN MIL Hybrid modem ............................................................. 170 Picture 109: Sonagram of CHN MIL Hybrid modem 8FSK-QPSK ................................................................................................................................................................... 177 Picture 125: Spectrum of CIS 150 Bd selcall ............................................................ 180 Picture 131: Spectrum and sonagram of a CIS 40................................................................. 165 Picture 99: Spectrum of CHN MIL 8FSK ..................................................................................................................................................................................................................................................................................................................................................................................... 162 Picture 94: Spectrum and sonagram of a BUL ASCII signal ... T600 .......................... 174 Picture 116: Phase oscilloscope display of a CHIP 64 signal ........... 167 Picture 103: Sonagram of CHN 64 tone MFSK .............................................................................................................. 176 Picture 122: CIS 12 ARQ bursts ...................................................................................................................................... .................................................................................................... 196 Picture 165: Spectrum of CIS 93 tone OFDM shifted by 550 Hz ............................................................................................................................................................................................................................... 194 Picture 162: spectrum of a CIS 45 tone OFDM ........................ 210 22 ..................................................................................................... 186 Picture 145: Spectrum of CIS 3000 Bd 8PSK modem ............................ 209 Picture 177: CODAN 12 channel mode ....................... 210 Picture 179: Spectrum of CODAN Selcall.................................... 185 Picture 142: Sonagram of CIS 500 FSK burst ............................................................................................................................................. 189 Picture 153: Sonagram of a CIS 4FSK with 4000 Hz shift ............................... 182 Picture 136: Oscilloscope display of a CIS 50-50 in idle condition .............................................................................................................................. 185 Picture 141: Spectrum of CIS 500 FSK burst....... 199 Picture 170: Spectrum of the Clansman FSK modem .................................................................................... 193 Picture 160: Spectrum of MFSK-20 ........................................ 192 Picture 158: Spectrum CIS BPSK system ....................................................................................................................................................................................................................................................... 208 Picture 175: CODAN 4 channel mode .................................. 194 Picture 161: Sonagram of MFSK-20 ........................................................................................... 200 Picture 171: Spectrum of a CLOVER signal ................................... 196 Picture 164: Spectrum of a CIS 93 tone OFDM........... 190 Picture 154: Spectrum of the CIS ARQ ................ 195 Picture 163: Spectrum of a CIS 60 tone OFDM........................................ 209 Picture 178: Spectrum of CODAN chirp selcall............................ 190 Picture 155: Sonagram of the CIS ARQ .................................... 184 Picture 139: Spectrum of a CIS 200-1000 signal ..................... 184 Picture 140: ACF of a CIS 200-1000 ..... 183 Picture 137: Spectrum and sonagram of a CIS 81-29............................................................................................................................................................................................................................................................................................................................... 204 Picture 174: Spectrum of CODAN 16 channel mode ................................................................................................................................................................. 197 Picture 166: Spectrum of a CIS 112 tone OFDM............................................... 187 Picture 146: Speed measurement of CIS 3000 Bd 8PSK modem ..................................................................................... 208 Picture 176: CODAN 8 channel mode .............. 188 Picture 149 : MFSK display of a CIS 4FSK with 96 Bd ....................................................... 183 Picture 138: Typical spectrum of an 8181 signal with 500 Hz shift................................... 188 Picture 148: Tones of a CIS 4FSK with 96 Bd ...................Picture 135: Spectrum of a CIS 50-50 in idle condition ... 191 Picture 157: Spectrum of CIS 1200 Bd modem .............................................................................. 186 Picture 144: Phase Plane of CIS 1280 Bd modem ........ 197 Picture 167: Spectrum of a CIS 128 toe OFDM............................................. 187 Picture 147: Spectrum of a CIS 4FSK with 96 Bd............... 189 Picture 151: MFSK demodulation of a CIS 4FSK with 100 Bd and 500 Hz shift .......................................................................................... 198 Picture 168: Spectrum of a CIS VFT 3 Channels 100 bd .................................... 198 Picture 169: Spectrum of a CIS VFT 3 channels 144 bd ..................................................................................................................................................................................... 188 Picture 150: Spectrum of a CIS 4FSK with 100 Bd and 500 Hz shift ............................................................................ 201 Picture 172: Sonagram of a CLOVER signal ........................................................................................ 201 Picture 173: Spectrum of Clover in 8P2A mode ....................................................................................................................... 193 Picture 159: Phase spectrum of CIS BPSK .......................................................... 189 Picture 152: Spectrum of a CIS 4FSK with 4000 Hz channel shift .......... 191 Picture 156: FSK oscilloscope display of the CIS ARQ ..................................................... 185 Picture 143: Spectrum of CIS 1280 Bd modem ......................................................................................................... ......................................................... 215 Picture 186: Spectrum of Coquelet 13 ........ 218 Picture 190: Sonagram of CROWD 36 selective calling ........................................ 227 Picture 199: ACF of DPRK ARQ with 600 Bd .............................................................................................................. 233 Picture 209: Spectrum of WinDRM ........................................................................ 226 Picture 196: Spectrum of DPRK FSK in ARQ mode ............................................... 236 Picture 210: Spectrum of DUP ARQ ............................................................................................................... 247 Picture 220: Sonagram of a G-TOR signal ........................................................ 216 Picture 187: Spectrum of CROWD 36 ............................................................................................................................ 228 Picture 200: Data packets of a DPRK ARQ with 1200 Bd ........................................................... 231 Picture 207: Spectrum of DRM-OFDM ............................................................................................................................................................................................. 248 Picture 221: Spectrum of GW Single Tone Modem ...... 219 Picture 192: Spectrum of a DGPS signal with 100 Bd ............... 226 Picture 195: Spectrum of DominoEX with 22 Bd ............................................................................................................................... 239 Picture 212: Spectrum of FARCOS mode ...................................3 Bd ......................................................................... 250 23 .............................................................Picture 180: Spectrum and sonagram of Contestia 4-250 mode .......................................... 229 Picture 203: Spectrum of a DPRK BPSK modem with 150 Bd............. 211 Picture 181:: Spectrum and sonagram of Contestia 8-1000 mode ........................ 226 Picture 197: Sonagram of DPRK FSK in ARQ mode .................................................................................................................................... 249 Picture 222: Phase Plane of GW Single Tone Modem ......................... 217 Picture 188: Crowd 36 in sonagram display .............................................................................................................................................................................................................................. 218 Picture 191: Spectrum of a D AF VFT signal ....... 240 Picture 213: Phase spectrum of FARCOS with peaks at 1800 Hz . 230 Picture 204: Spectrum of a DPRK BPSK modem with 300 Bd...... 217 Picture 189: Spectrum of CROWD 36 selective calling .................... 230 Picture 206: Spectrum of a DPRK BPSK modem with 1200 Bd........................................................... 246 Picture 219: Spectrum of a G-TOR signal with 300 Bd ............................................................ 213 Picture 184: MFSK Coquelet-8 signal............................................... 231 Picture 208: Framing OFDM ............................................................ 229 Picture 202: Spectrum of DPRK FSK 600 FEC ............................. 243 Picture 218: Spectrum of a FEC-A with 192 Bd .................................................. 228 Picture 201: Spectrum of a DPRK ARQ 1200 Bd ......................................................................................... 227 Picture 198: Different sonagram of DPRK FSK in ARQ mode ........................................................................................................................................................... 241 Picture 215: Sonagram of F7B 195................... 249 Picture 223: Sonagram GW Multi Tone Modem with 30 tones ........................................................................................... 225 Picture 194: Spectrum of DominoEX with 11 Bd ................................... 214 Picture 185: Spectrum of Coquelet 100 with 16....................................................................................... 212 Picture 183: Example of Coquelet-8 decoding ......................................... 212 Picture 182:: Spectrum and sonagram of Contestia 32-1000 mode .........7 Bd......................................................... 242 Picture 216: Spectrum of a FAX transmission...........................3 Bd........................................................................................................................................ 250 Picture 224: Spectrum of a Globe Wireless OFDM with 12 carriers .................................................................................................... 240 Picture 214: Spectrum of F7B 195................................................................................... 230 Picture 205: Spectrum of a DPRK BPSK modem with 600 Bd..................................... 236 Picture 211: Spectrum of MAHRS with 2400 Bd ........................................................... 220 Picture 193: Spectrum of DominoEX with 4 Bd ............................................................................ 242 Picture 217: Typical picture of a FAX transmission ......................................................................................................................... .................................... 269 Picture 254: Phase spectrum of IRN 207 Bd signal with peaks at 207 Bd................................................................................................................................................................................... 254 Picture 232: Matrix Feld Hell ................................................. 256 Picture 235: Sonagram of a Feld-Hell signal ................................................. 276 Picture 269: Speed measurement of the Japan 1500 Bd QPSK ............................................................ 251 Picture 227: Spectrum of GRC MIL FSK ....................... 256 Picture 237: Spectrum of a PSK-Hell signal ............................................ 253 Picture 230: Spectrum of DSSTV ........................... 258 Picture 239: Phase constellation of a PSK-Hell signal ......................................................................................... 256 Picture 236: Matrix of GL-Hell ................................... 271 Picture 257: Spectrum of the adaptive IRN N QPSK modem with 414 Bd ........................ 272 Picture 262: Spectrum of 1200 Bd FSK ........................................................................................................................................................................................... 271 Picture 258: Speed measurement of the adaptive IRN N QPSK modem with 414 Bd ........................................................................................... 259 Picture 242: Spectrum of a HFDL signal ........................ 269 Picture 253: Spectrum of IRN 207 Bd modem ............................................................... 274 Picture 264: Spectrum of Japan 8-tone ASK ................................................... 252 Picture 229: Spectrum of GMDSS-DSC ... 275 Picture 265: Sonagram of Japan 8-tone ASK ........................................................................... 254 Picture 231: Sonagram of DigiTRX with embedded callsign ................................................................................. 266 Picture 248: Oscilloscope display of IRA-ARQ................................................................................................... 255 Picture 234: Feld Hell modulation ................................................................. 251 Picture 226: Spectrum of a Globe Wireless OFDM with 32 carriers ..................... 274 Picture 263: Spectrum of Italian MIL PSK 1200 Bd ........ 276 Picture 267: Sonagram of Japan 16tone PSK .................................................................................................................. 252 Picture 228: Preamble of the GRC MIL FSK ................................. 272 Picture 259:Speed measurement of the adaptive IRN N QPSK modem with 828 Bd ........................... 267 Picture 250: Spectrum of an IRN Navy 16 x 75 Bd modem.............................................. 276 Picture 268: Spectrum of the Japan 1500 Bd QPSK ...... 270 Picture 256: Sonagram of IRN QPSK 207 Bd ................................................................. 270 Picture 255: Phase plane of IRN QPSK 207 Bd modem ................................................................................................................................ 267 Picture 249: Spectrum of IRA-ARQ with 600 Bd .....................................Picture 225: Spectrum of a Globe Wireless OFDM with 24 carriers ........................................ 255 Picture 233: Spectrum of a typical Feld-Hell signal .. 272 Picture 261: Speed measurement of the adaptive IRN N QPSK modem with 1656 Bd .. 261 Picture 243: Sonagram of a HFDL signal with sub-carrier of 1440 Hz .................................................................................................................................................................................................................................................................................................................................................... 268 Picture 251: IRN N 16 x 75 Bd modem with precarrier .................................. 268 Picture 252: Phase spectrum of one channel with 75 Bd .......................................................... 275 Picture 266: Spectrum of Japan 16tone PSK .......................... 258 Picture 240: Spectrum of a FSK-Hell signal ............................................................................................................................................................................................................................................. 259 Picture 241: Sonagram of a FSK-Hell signal ...................................................... 277 24 . 265 Picture 246: Typical spectrum of ANNEX 10 with two tone pairs .......................................................... 262 Picture 245: Oscilloscope display of HNG-FEC......... 266 Picture 247: Timing of the ICAO SELCAL....................................................................................................................................................................................................... 257 Picture 238: Phase spectrum of a PSK-Hell signal............................................................................. 272 Picture 260: Spectrum of the adaptive IRN N QPSK modem with 1656 Bd ................................................................................... 261 Picture 244: Framing of HFDL....... ...................................................................................... 297 Picture 296: Spectrum of South African Navy MFSK ................. 297 Picture 297: Spectrum of MFSK BUL 8-Tone ...................... 299 Picture 301: Spectrum of TE-204 modem .............................................................. 300 Picture 303: Spectrum of TT2300-ARQ ......................... 304 Picture 308: Data block structure used for MIL STD 188-110B ....................................................................... 293 Picture 290: Spectrum of MD 1061 ....................................................................... 291 Picture 285: Sonagram of Mazielka .......................................................................................... 295 Picture 293: Spectrum of a MFSK-8 signal ................................................................................ 280 Picture 274: Spectrum and sonagram of a JT6M signal ................................................. 289 Picture 284: Spectrum of Mazielka ................................................................................................................................................................................................................................................................. 282 Picture 277: Sonagram of JT65C signal .............................................................................................................. 277 Picture 271: Sonagram of Japan 32-tone OFDM .................................................................................................... 293 Picture 289: Sonagram and spectrum of a MD 522 DIV ........................................................................................... 298 Picture 299: Spectrum ALCATEL 801 for 150 Bd ......................................................................... 291 Picture 286: Spectrum of MD 522 NB ....... 305 Picture 309: Spectrum of a MIL STD 188-110 Appendix C in HDL mode............................................. 279 Picture 273: Spectrum and sonagram of a JT44 signal................................................................... 301 Picture 305: Spectrum of a MIL STD 188-110A ser modem ................ 301 Picture 304: Spectrum of the YUG 20 tone system .............................................................................................................................................. 288 Picture 282: Sonagram of LINK 11 SLEW ............................... 294 Picture 291: Spectrum of MD 1142 ................................ 311 Picture 314: Bit pattern of a MLA Navy Baudot.............................................................................................................................................................................................................................................. 300 Picture 302: Sonagram of a TE-204 modem ........................... 288 Picture 283: Typical spectrum of a LINK 14 signal .............. 308 Picture 312: Spectrum of MIL STD 188-342 .............................. 302 Picture 306: Spectrum of 16 tone MIL STD 188-110A App A ........................................................................... 296 Picture 295: AFS Navy modem FSK preamble ...................................................................... 305 Picture 310: Spectrum of MIL STD 188-141A............................................................ 298 Picture 300: Spectrum of a TADIRAN modem ............................................................................................................................................................................................... 307 Picture 311: Linking Protection in MIL STD 188-141A............ 312 25 ................................................................................................................................................................................................................................... 292 Picture 288: Spectrum of a MD 522 DIV ......................................................................................................... 296 Picture 294: Spectrum of a MFSK 16-signal ............................. 283 Picture 280: Spectrum of a LINK 11 transmission ............................Picture 270: Phase constellation of the Japan 1500 Bd QPSK ............................................................................... 285 Picture 281: Spectrum of the LINK 11 single Tone Modem ..................................................................................... 283 Picture 279: Spectrum of LINEA Sitor ...... 282 Picture 276: Sonagram of JT65B signal .............................. 295 Picture 292: Spectrum of MD 1280 with 75 Bd and 850 Hz shift....................................... 303 Picture 307: Spectrum of MIL 188-110A 39 tone ............................................................................. 282 Picture 278: Spectrum of a LINCOMPEX signal with two channels .......... 278 Picture 272: Spectrum and sonagram of a JT2 signal............... 281 Picture 275: Sonagram of JT65A signal ................................................................................................................................................................ 292 Picture 287: Spectrum of a MD 522 WB ...................................................... 311 Picture 313: Spectrum of a MLA Navy Baudot................................................................................................................................. 298 Picture 298: Spectrum ALCATEL 801 for 300 Bd ................. ... 345 Picture 353: Spectrum of ROU-FEC ...................................................................................................................................................................................... 313 Picture 316: Spectrum of Nokia burst system with 150........................................................................................................................................................................................................................................................................... 352 26 ..... 340 Picture 346: Sonagram of Q15x25 .............. 338 Picture 342: Phase plane of PSKAM 10/31/50 ........ 318 Picture 323: Spectrum of PACTOR II .............................................................. 320 Picture 325: Spectrum PACTOR III speed level 1 .......... 332 Picture 338: Spectrum of a PSK31 signal .............................. 346 Picture 354: Spectrum of RS-ARQ II ......... 313 Picture 318: Spectrum of Nokia burst system with 602.............................................................................................................................................................................. 342 Picture 348: Spectrogram of RFSM-2400 modem ............................................................. 319 Picture 324: Spectrum of PACTOR II-FEC ................... 324 Picture 332: PANTHER-H synchronisation and frequency hops ......................... 316 Picture 322: Spectrum of PACTOR I ....................................................................................................................................................... 331 Picture 337: Spectrum of PICCOLO 12 .............................................................................................. 326 Picture 335: Spectrum of PICCOLO MK VI ...................... 323 Picture 330 Spectrum PACTOR IV on 1800 Hz ......................... 325 Picture 333: PANTHER-H synchronisation bursts ........................................... 336 Picture 340: Spectrum of PSK 63 in QPSK mode ......7 Bd .............................................................................................................................................. 322 Picture 329: PACTOR III speed level 6 ........................... 340 Picture 345: Spectrum of PSKAM 50 ..................................................................................................... 351 Picture 358: FSK oscilloscope of FSK carrier of the RUS MIL voice scrambler ........................................................................................................................................ 339 Picture 344: Spectrum of PSKAM 31 ................................... 341 Picture 347: Oscilloscope display of RAC-ARQ ...........................6 Bd ............................................................................... 330 Picture 336: Multi-channel Piccolo ................. 322 Picture 328: PACTOR III speed level 5 ..................................................................................................................................... 322 Picture 326: PACTOR III speed level 2 ......................................................................................................................................................... 348 Picture 357: Spectrum of RUS MIL voice scrambler with FSK lower/upper band ........................................................................................................ 347 Picture 355: Frame structure of the HF Modem GM2100........................... 322 Picture 327: PACTOR III speed level 3 .................................................................. 344 Picture 351: Spectrum of ROS.................................................................................... 313 Picture 317: Spectrum of Nokia burst system with 301...........14 Bd ................................................... 314 Picture 320: Spectrum of an Olivia signal ...................................................................... 339 Picture 343: Spectrum of PSKAM 10 .... 315 Picture 321: Oliva in the MFSK oscilloscope ........................Picture 315: Spectrum of MT63 ..................................................................................................................................................................................... 336 Picture 339: Phase plane of a BPSK PSK31 signal .................................... 348 Picture 356: Spectrum of the HF Modem GM2100........................................................................................... 344 Picture 350: Expanded spectrum of Robust Packet Radio ..................................................................................................................................................................................................................................................................................................... 337 Picture 341: Spectrum of PSK 125 in QPSK mode ........................................................................................................................................... 345 Picture 352: Sonagram of ROS with pre-carrier ................. 351 Picture 359: Spectrum of Marconi 25tone .............. 324 Picture 331: Spectrum of a Packet Radio signal ........................................ 343 Picture 349: Spectrum of Robust Packet Radio ................................................................................... 326 Picture 334: PANTHER-H detailed view of one burst ......................................................................... 314 Picture 319: Spectrum of NUM 13 ........ ................................................................................................................................................................................................................................................... 391 Picture 400: Spectrum of CRY-2001 FSK.............5 Hz shift ..................................... 376 Picture 387: Sonagram of Thales voice scrambler ......... 355 Picture 365: Spectrum of a SSTV transmission calling CQ ............... 393 Picture 402: Spectrum of a MK III buoy........ 375 Picture 384: Spectrum of a TFM3 signal................................................................................................. 384 Picture 396: Spectrum od the AMSS carrier ........................ 395 27 .......................................................................................................... 376 Picture 388: Typical Spectrum of Throb...................................................................................................... 363 Picture 370: Framing of a STANAG 4202 .................................................................... 394 Picture 403: Oscilloscope display of a MK III .............................................................................................................................. 381 Picture 392: Spectrum of VISEL ......................................................................................................................................... 375 Picture 385: Spectrum of a TFM5 signal............................................................................................. 374 Picture 383: Spectrum with Sonagram .. 383 Picture 395: Sonagram of a WINMOR 4FSK with CW ID ................................................................................................................................................... 373 Picture 380: Spectrum of TADIRAN AutoCall............................... 393 Picture 401: Sonagram of CRY-2001 ................. 387 Picture 399: Spectrogram of single letter beacons ................................................................................................................................ 360 Picture 368: Sonagram of STANAG 4197 ............................................................................................................................................ 377 Picture 390: Spectrum of a typical Twinplex signal .. 382 Picture 394: Spectrum of a WINMOR 4FSK ................................................................................................................................................................................Picture 360: Spectrum and Sonagram of Marconi 25tone .............................................................................................................. 372 Picture 379: Spectrum of Systeme 3000 FEC mode ... 386 Picture 398: Phase constellation of the AMSS signal ............ 377 Picture 389: Spectrum of TMS-430 modem .......................................................................... 352 Picture 361: Spectrum of Siemens CHX-200 modem .................................................................................................... 374 Picture 381: Sonagram of TADIRAN AutoCall ......................................... 360 Picture 367: Sonogram of SSTV with VIS code .......................................... 365 Picture 373: Spectrum of a STANAG 4415 signal ......................................... 368 Picture 377: Typical spectrum of a STANAG 4529 signal ........................................................................................................................ 375 Picture 386: Spectrum Thales voice scrambler ............................................ 364 Picture 371: Spectrum of a typical STANAG 4285 signal ............................................... 395 Picture 404: Auto correlation function of a MK III ............... 367 Picture 375: Spectrum of a STANAG 4481 FSK....................................................... 369 Picture 378: Spectrum of STANAG 5031 with 75 bps and 42..................................... 353 Picture 362: Spectrum of SITOR A ............................................................................................ 374 Picture 382: Spectrum of a Tadiran signal .............................................................................................. 379 Picture 391: Typical spectrum of a VFT signal ....................................................................................................................................................................................................................................................................................... 353 Picture 363: Timing of a SITOR A signal in the oscilloscope display . 368 Picture 376: Spectrum of STANAG 4481 ............................................ 357 Picture 366: SSTV VIS code ......... 362 Picture 369: Spectrum of a STANAG 4202 ......................... 365 Picture 372: Framing of a STANAG 4285 signal .. 382 Picture 393: VISEL bit correlation ..................... 366 Picture 374: STANAG 4479 over STANAG 4444 ............................................................................................................................................................................................................................. 354 Picture 364: Spectrum of SKYFAX ................................................................................................... 386 Picture 397: AMSS measurement of the baudrate ............................................................................................................................................. .............................................................................. 402 Picture 412: Function of an Ocean Radar ..................................................................................................................................... 435 Picture 448: Function of a wave radar ....................................................................................................................................................................................... 426 Picture 439: Spectrum and sonagram of a BRAS signal ........................ 431 Picture 445: Sonagram of a 7s operation of SuperDARN ................................................................................................................................................................. 416 Picture 423: Baudrate measurement of digital NBTV ................................................. 401 Picture 410: Chip sequence of a Digisonde 4D ....................................................................................................................................................................... 411 Picture 418: Spectrum of 48 x 48 OFDM NBTV .. 435 28 . 405 Picture 413: Transmission of LORAN-C .......................... 413 Picture 419: Spectrum of 96 x 72 OFDM NBTV ................................................................................ 424 Picture 434: OTHR SuperDARN with 25ms or 40 pps.............................................................................................................................................................. 427 Picture 440: Timing of the BRAS system .................Picture 405 : Typical track of a chirpsounder................. 424 Picture 435: Chirp OTHR with 20ms or 50 pps ..... 429 Picture 443: BRAS-3/RS-10 burst sequence slave............................................................................................................ 398 Picture 407: Oscilloscope display of a typical CODAR signal ...................................................................................................................................................................................................................................................... 422 Picture 429: Over the horizon radar (OTHR) ............................... 424 Picture 432: Cyprus OTHR with 20ms pulses or 50 pps ................ 425 Picture 438: Pulses of RFID tags ...................... 429 Picture 444: Spectrum of a SuperDARN ... 416 Picture 424: Spectrum of Hybrid NBTV .......................................................................................................... 428 Picture 441: Timing of the RS-10 system .................... 432 Picture 446: Pulse sequence of a SuperDARN ............................................................................................................................... 395 Picture 406: Typical spektrum of a CODAR signal .................................................................................................................................................................................................................................................... 428 Picture 442: BRAS-3/RS-10 burst sequence master ..................................................... 408 Picture 415: Puls repetition time of the MF radar at Juliusruh ........................ 399 Picture 409: Spectrum of a Digisonde 4D................... 405 Picture 414: Spectrum of the MF radar at Juliusruh ....................................560 MHz .................................................. 420 Picture 426: Spectrum of a BCPSK signal of NDS200 DGPS ................................................................................................................................... 414 Picture 421: Phase plane of digital NBTV ......... 414 Picture 420: Spectrum of digital NBTV ............................................................................................ 420 Picture 425: Sonagram of Hybrid NDTV ................... 425 Picture 437: Audio spectrum of RFID tags .............................................. 423 Picture 430: French OTHR with 25ms pulses or 40 pulses per second (pps) ....................................... 432 Picture 447: Frequency sweep of a FMCW signal ........... 424 Picture 433: IRAN OTHR with 30ms pulses or 33 pps .............................................................................................. 401 Picture 411: Spectrum of an EFR signal ...................................................................................... 424 Picture 436: HF spectrum around 13........................................................... 415 Picture 422: Framing of digital NBTV ......... 421 Picture 427: Phase spectrum of NDS200 DGPS signal with 100 Bd peaks ................................................................................................... 398 Picture 408: Spectrum of a Datatrak signal ................................................................................................................................................................... 422 Picture 428: Phase plane of NDS200 DGPS signal ........... 408 Picture 416: Spectrum of a NAVTEX signal.. 424 Picture 431: CIS OTHR ABM-2 with 100ms pulses or 10 pps ........................................................................................................................................... 409 Picture 417: Spectrum of an OFDM .................................................... ......................................................................................................................................................................................... 160 Table 22: BR6029C channel frequencies.................. 216 Table 43: Morse alphabet ..... 162 Table 23: Tone layout for the 500 Hz variant ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 164 Table 25: Tone layout of CHN MIL 8FSK . 215 Table 42: Crowd 36 control sequences............................................................................................... 88 Table 11: CCIR 493 alphabet .. 59 Table 5: Bit values for QAM .................... 90 Table 12: X................................................................................................. 209 Table 38: Most common modes of Contestia ............................................ 142 Table 19: ARQ-S repetition cycle .........................................................................................................................................................................................................................................................................................................2 List of Tables Table 1: C4FM symbol table .......................................................................................... 168 Table 27: Tone layout of the CHN hybrid modem ...................................................................................................................... 202 Table 31: CLOVER-II modulation modes.............. 113 Table 14: Terms and their description .............................................. 206 Table 34: CLOVER 2500 tone frequencies ......................................................................................................................................................... ITA2P and ITA3 ................................................................................................................................................................................... 169 Table 28: Frequencies of the Chinese 4+4 modem ......................................... 207 Table 36: CODAN tone frequencies ............................... 203 Table 32: CLOVER 2000 Modulation formats ............ 164 Table 24: Tone layout for the 400 Hz variant ....................................................... 83 Table 9: Code table for CCIR476-4........... HNG-FEC and PICCOLO MK VI alphabetsITA 2 .................... 57 Table 4: Bit values for DQPSK ......................................... 172 Table 29: Tone layout CIS VFT 3 channels 100 bd . 68 Table 7: Code table for ITA2.............................................................................................. 122 Table 16: Table of waveforms and possible user sorted by Baud rate ............................................................. 60 Table 6: Different description for data levels ........................................ 214 Table 41: Frequencies used by Coquelet .......................................... 166 Table 26: Tone layout CHN hybrid modem 4FSK-OFDM20 ........................................... 219 29 ......................................................................................................................................................................................................................................................................... 208 Table 37: Tone frequencies for CODAN 12 channel mode .......................................................................... 213 Table 40: Coquelet tone frequencies ............................................ 150 Table 21: BR6028 channel frequencies .............................................. 102 Table 13: Common used transmission modes .......................................................................................................................................... 49 Table 2: Bit value for QPSK ....................................................................................................................... 84 Table 10: ASCII table ................................................................................ 55 Table 3: Phase shifts for CQPSK ............................................................................................................................................................. 206 Table 35: CLOVER 2500 Modulation ............................. 211 Table 39: Coquelet tone frequencies ...................... 149 Table 20: ARQ-SWE repetition cycle........................ 114 Table 15: Determination of necessary bandwidths for emissions ......................................................................................................................................... 82 Table 8: Russian MTK2 alphabet ........................................................ 205 Table 33: Clover 2000 modes and data rates .............................................................................................. 141 Table 18: Tone layout for ALE400 . 135 Table 17: ALE 3G call types ..................................25 Packet frame ........................... 198 Table 30: CLOVER-II tone frequencies ............................... .............................................................................................................................. 264 Table 55: Ground stations using HFDL identified by ID ..................................... 315 Table 74: Different PACTOR I modes ...... 235 Table 50: Data rates of WinDRM......................... 323 Table 79: Tone frequencies for Piccolo 6/12 .................................................................................. 285 Table 61: Tone table for MD 1061 ... 294 Table 62: Tone table for MD 1142 ........................... 303 Table 67: Modulation types used for MIL STD 110B Appendix C .......... 266 Table 57: Tone layout for Japan 8-tone ASK ...................................................................................... 329 Table 81: Character/tone combination for inverted mode ................................................................................................................................................................................... 311 Table 72: MT 63 transmission modes........... 333 Table 83: PSK10 character set ................. 304 Table 68: Baud rates of MIL 188-110C Appendix D .............................. 278 Table 59: JT65 tone separation for the modes A/B/C .............................................................................................................................. 275 Table 58: Tone layout of Japan 32-tone OFDM modem.................................................................................................................................................................................................................................................................................... 348 Table 85: Most common modes of RTTYM ...................................... 306 Table 69: Table of ALE tone frequencies ................................................................................................................................................................... 321 Table 78: Speed levels of PACTOR VI .......................................................... 225 Table 47: DRM OFDM parameter .................................................................................................................... 296 Table 64: MIL STD 188-110A ser data rate versus FEC . 359 30 ................ 312 Table 73: Most common modes of Olivia ....... 248 Table 54: Used HFDL frequencies sorted by ID .................................... 303 Table 66: Tone layout Mil 188-110A 16 tone variant ................. 330 Table 82: Character/tone combination for PICOOLO 12 ............................................................................. 307 Table 70: Waveforms of ALE 3G ...................................................................................................................... 245 Table 53: ID's of Globe Wireless coast stations ............................................................................................................................................................................................................................................................ 294 Table 63: Frequencies of MFSK-16 ........................................................................Table 44: Data structure of DGPS ........................................................................ 232 Table 49: Number of carrier for WinDRM .......................................................................................................................... 232 Table 48: DRM OFDM number of carriers ....................................................... 237 Table 51: Abbreviations in FAX transmissions ........................................................................ 222 Table 46: DominoEX waveforms ........................................................... 321 Table 77: PACTOR III relation between speed level and used tones .......................................................................................................................... 220 Table 45: PRC Message Broadcast Parameters .............................................................................................................................................................................................................................................. 245 Table 52: Geographical letter groups ..................... 357 Table 87: Different SSTV modes ................... 350 Table 86: SSTV tones used ...................................................................... 235 Table 50: Controll codes DUP-ARQ ..................................... 335 Table 84: GM2100 transmission modes ........................................ 302 Table 65: Tone layout Mil 188-110A 16 tone................................................................................................................................................................................................................................................ 282 Table 60: LINK 11 frequencies ......................................................................................................................................................................................................................................................................... 319 Table 76: PACTOR III speed levels ................................................................................................................................ 264 Table 56: Annex 10 Audio frequencies ......................................................................................................................... 328 Table 80: Character/tone combination .............................................. 318 Table 75: PACTOR II modes ....... 310 Table 71: Tone layout MIL STD 188-342 ............ ............................................................... 380 Table 97: Centre frequencies in different VFT systems ................................. 463 Table 126: Priority levels in AFTN messages........................ 407 Table 107: NAVTEX identification letters ............................................................................................................................................................................................................................................................................................................... 406 Table 106: LORAN Data Channel message components .............................. 426 Table 113: Frequency setup of the BRAS system for one chain („Semba“) ............................................................... 369 Table 93: Waveforms of STANAG 4538 ................................................................................................ 362 Table 90: STANAG 4285 transmission modes ......................................................................................................... 430 Table 115: Active time signal stations .................................................. 465 Table 128: Letter groups in NOTAM messagesWeather Forecast (TAF and METAR) ........................................................................................................................................................................................ 447 Table 121: Coast station identification numbers by blocks and countries ................................ 403 Table 105: LORAN chains and their identification numbers.............................................................................................................................................................. 449 Table 122: Allocation of MID's ............................. 392 Table 102: Known Datatrak systems and their frequencies ....................................................... 409 Table 108: Structure of a NAVTEX message ........... 493 Table 132: X-codes ................................................................................................................................................. 412 Table 110: Modes of digital NBTV ............................................................................................................................................................................................ 441 Table 118: Country codes ..... 433 Table 116: Parameter of the WERA system ................................................................................................................... 472 Table 129: Description of METAR groups ........................................................ 456 Table 124: List circuits and their routing indicators ....... 390 Table 99: Schedule for the amateur radio beacon system ................................................................................................................................................................................................................................................................................................................ 378 Table 95: TWINPLEX shift modes .................................................... 434 Table 117: International callsigns .................................................................................................................................................................................... 428 Table 114: Location of SuperDARN transmitter . 379 Table 96: Typical parameters for VFT ............................................................................................................................................................Table 88: Tone layout STANAG 4197 16 tone part ............................................ 392 Table 101: Typical cluster of single letter beacons ............................................................................... 445 Table 119: Translation of a four digit SELCALL number ....................................................................................................................... 370 Table 94: TWINPLEX modes .......................... 464 Table 127: Table of AFTN message contents ............................................................................................................................... 367 Table 92: STANAG 4529 transmission modes .......................................................................... 381 Table 98: Transmission slots of the amateur radio beacon system ................... 409 Table 109: OFDM NBTV modes.... 364 Table 91: LPC10 2400 bps and 800 bps parameters ....................................... 476 Table 131: Q-codes ..................... 446 Table 120: Translation of a five digit SELCALL number ... 402 Table 104: EUROFIX modulation pattern combination........................................................ 494 31 .......................................... 390 Table 100: Russian single letter beacons ... 475 Table 130: Teleprinter Alphabets for Comparison ..... 421 Table 112: Frequencies of the RSDN 20 system .. 459 Table 125: Circuits in the AFTN............................................................................................................................................................................................................................... 400 Table 103: Byte structure of the EFR signal................................................ 418 Table 111: Frequencies for NDS200 DGPS system ......................................................... 454 Table 123: NATO routing indicators ........................................................ 361 Table 89: Tone layout STANAG 4197 39 tone part ... .............................................................. 513 32 .......................................................................................Table 133: Z-codes ..................................... 504 Table 134: Abbreviations ............................................. 33 .3 Removed Signals There are some modulations and systeme which ar not used anymore. those signals are deleted where the probabilty is very high that they never will be active on shortwave. At the moment these are the following signals: ALF DECCA OMEGA D-OMEGA (2013) (2013) (2013) (2013) This list will grow with the next editions. To keep the number of pages in a useable range. In brackets you will find the year of removment. 34 . Due to the sophisticated possibilities of modern modems the signal analyses becomes more and more very difficult.4 General For years shortwave radio has been used for communication beyond the line of sight. Most equipment for shortwave like modems and radios are able to interface with local networks by LAN. potentially global communication that has the important attributes of national ownership and military control. New waveforms are heard nearly every month. 35 . i. And in comparison to satellite services shortwave communication is harder to disrupt. New developments are expected which will enhance the capabilities of transmission protocols and modem technology for higher transmission speed. For example an automatic link setup (ALE) according to an international standard is performed with a flexible address pattern. Shortwave radio. Passive and active channel analysis. With the introduction of world wide satellite services in the geostationary or low earth orbits HF radio communication lost more and more in interest. It will never be complete. But with the introduction of new. Algorithms were created to adapt transmission parameters to channel quality or initiate a change to a better channel. All these circumstances will present old modes with improvements but mainly new modes with their unique sound to the shortwave listener. This book has been written to help the listener on shortwave in identifying the different modes or waveforms which are active throughout the shortwave band. TCP/IP is the most widely used network protocol and supported by the majority of computers and software. With modern processor technology the adaptation of transmission parameters to the channel conditions will give a higher quality for the exchange of information via shortwave. By intensifying the modulation/coding higher data rates and throughputs are possible.e. The good old radio for shortwave has been perfected during the last years in several ways. sophisticated modems and digital broadcast services in high quality HF communication has seen a renewal during the last years. Even conversions form ISDN networks. This international standard ensures interoperability of very different platforms or operating systems. sending and measuring test signals on assigned pool frequencies have been developed to solve problems of channel distortions. In the military context this translates to low cost. GSM. Using wider bandwidths will also achieve higher data rates. Automation guarantees a link setup whenever a useful frequency is found in the pool. however. PSTN and others are possible. The most important one for commercial users is that there is no charge for using the ionosphere. has some qualities that will ensure its attractiveness for some time. Information data rates of a few tens of bits per second were increased to more than 19200 bit/s by sophisticated modem techniques and error correction. error correction and so on which are often used in the field of radio communication. The following section describes most of the waveforms which can be heard on shortwave. The next part is showing some tables and description which are useful for identifying stations or circuits. If there is any further information available like framing.But this book will give a good overview which techniques are state of the art today. In comparison to the previous version the descriptions of waveforms used on VHF/UHF has been moved to a second book called “Technical Handbook for Radio Monitoring VHF/UHF”. This step was necessary because the number of pages was increasing above 800 which is very difficult to handle. 36 . It has to be mentioned that most of the pictures were produced with the decoder CODE 300-32 by HOKA. This part also describes standard expressions from the field of coding. but some pictures are made with the PROCEED decoder by PROCITEC GmbH. The book finishes with the abbreviation table and the index. Where ever possible the waveform is described with it’s main parameter. these are also described. This book is divided in four main parts: Basic information Waveforms used on shortwave Tables to help identifying stations or circuits on shortwave Abbreviations and Index The first part basic information is giving an overview about common modulation techniques with a short description and how they look like in the spectrum or phase plane display. coding aso. the second axis the time. These different type of pictures are described in the following part. General Information In the following descriptions there are different sort of illustrations for the described waveforms. correlation functions. By zooming into the spectrum these peaks can be determined and allow the measurement of the symbol rate. sonagram and so on. On top of the page is written the used name. phase plane or oscilloscope pictures. One axis shows the frequency similar to the spectrum display. Spectrum The spectrum display is showing the audio frequency range from 0 Hz to 5500 Hz (sometimes a larger bandwidth with 11 kHz or 22 kHz is used). Wherever possible the spectrum is shown. But there are also pictures for phase constellations. Below the name is also mentioned other known names for the same waveform. Because PSK signals very often also produce a n amplitude modulation with a peak at the symbol rate. Sonagram The sonagram view displays the relation between frequency. Without any zoom the display is similar to the normal spectrum view. Wherever possible the different waveforms are described and enriched by spectrum.6 HF Modes The following part of the “Technical Handbook” describes waveforms in different depths. For FSK or MFSK signals in the vertical domain the audio frequency is shown instead of the amplitude of a signal. Oscilloscope The oscilloscope display is showing the amplitude behaviour of a signal either as direct audio signal or the constellation after demodulation of the signal. The amplitude of the signal is displayed in the colour of the signal. time and amplitude of a signal. 137 . Phase Spectrum For determination of the speed of a PSK signal the phase spectrum is used. The spectrum is the result of a Fast Fourier Transformation (FFT) calculated on the samples of the used audio card. Autocorrelation Function (ACF) The Autocorrelation Function is used to analyse the repetition of bit pattern in a bit stream. Speed Bit Analyses This function is similar to a FAX display. These values can range from 2 over 7.5 stop bit). 11 (like in a ASCII transmission with 1 start. The phase plane is used to show the phase constellation of phase modulated signals. It displays any frequency or phase modulation as a rotary vector. The bit information is displayed as a line with black for a 1 and nothing for a 0. Bit Correlation. 138 . 1 stop and 1 parity bit . up to i. The ACF value is very specific for various modes. With the correct baud rate patterns in the bit stream can be recognized. 64 for STANAG 4529.e.5 (like in Baudot with 1.Phase Plane This display is also sometimes called a vector scope. If these repetition are constant the ACF will show a peak at a value related to the length of bit pattern with is repeated. 1.36 Bd and a shift of 700 Hz.33 ms or 1472 PSK symbols. ALE 3G STANAG 4538. C ALE 3G is the third generation of automatic link establishment. It is based on the MIL STD 188-110 with a centre frequency of 1800 Hz and a symbol rate of 2400 Bd. MIL STD 188-110A. AFS Navy FSK This FSK modem is using a baud rate of 130. The spectrum is shown in the following picture: Picture 58: Spectrum of an AFS navy modem 2. Traffic is always encrypted. The modem is in use of the AFS navy. ALE 3G has a burst length of 613. The modulation is 8PSK. Picture 59: Spectrum of an ALE 3G The typical phase constellation of a 8PSK is as following: 139 . The payload is always 26 bit. The following spectrum shows an ALE 3G. The preamble has a length of 160 ms or 384 PSK symbols. MIL STD 188-141B App. Picture 61: Dwell structure of an ALE 3G Each dwell period starts with a listen slot where the modem tries to detect traffic in the specific channel. Each so called dwell structure has a length of 4 seconds. The timing is divided into 5 different slots with 800ms each. The PDU has a length of 613 ms and allows 70 ms for propagation delay and 100 ms for synchronisation uncertainty. The next figure shows the dwell structure of an ALE 3G. If the channels are free it will call in a slot and will listen to a handshake PDU in the next slot.Picture 60: Phase constellation of an ALE 3G 8PSK signal ALE 3G has the possibility to work in an asynchronous mode as ALE 2G but achieves the best performance with a synchronous mode. In the synchronous mode a fixed structure for transmissions and listening to a channel is used. This listen slot is followed by the calling slots which are used for exchanging protocol data units (PDU). The following picture shows the different PDU’s which are used in an ALE 3G: 140 . If a calling station detects a handshake PDU it will stop its own call. negative SNR is ok Traffic will use an HF data modem. These types are listed in the following table. Needs positive SNR Order wire voice traffic. Call Type Packet Data HF Modem Circuit Voice Circuit High-Quality Circuit Unicast Multicast Link release Description Traffic will use the ALE 3G protocol. caller will designate the traffic channel Caller announces release of called station (or stations) and the traffic channel Table 17: ALE 3G call types 141 .Picture 62: ALE 3G protocol data units During the call a 3 bit call type is used. caller will designate the traffic channel One-to-many call. Needs SNR > 10 to 15 dB Traffic needs higher SNR than order wire One-to-one call. The baud rate was reduced to 50 Bd. ALE400 Automatic Link Setup ALE400 is an 8FSK waveform for automatic link establishment developed by Patrick Lindecker F6CTE derived from the MIL STD 188-141A with a narrow bandwidth of 400 Hz so that this mode can be used in 500 Hz channels. Related to a centre frequency of 1625 Hz this gives the following tone layout: Tone Number Frequency in Hz Binary Value 1 2 3 4 5 6 7 8 1450 1500 1550 1600 1650 1700 1750 1800 000 001 011 010 110 111 101 100 Table 18: Tone layout for ALE400 Picture 63: Spectrum of ALE400 Picture 64: Expanded spectrum of ALE400 142 .3. It has exactly the same functions as the standard ALE. The tone distance between carriers is 50 Hz. 66 Bd (normal FSK modulation.66 Bd and a shift of 170 Hz. ALIS Automatic Link Setup ALIS is the automatic link processor and frequency management system used by all Rhode & Schwarz modems besides ALE. ALIS is using narrowband FSK with 228. either at a data rate of 228. PRP) Automatic error correction (ARQ or PRP) and adaptive response during message transmission. spectrum pollution and probability of intercept considerations o Operator convenience. error correction and expandability o Interoperability with legacy systems and those of other manufacturers 143 . Picture 65: Spectrum of an ALIS signal With the ALIS software selected for the Data Link Processor R&S GS2200. ARQ. the following functions are automatically handled by the processor: Continuous passive channel analysis of all pool frequencies during scanning mode Channel selection by means of computation of the optimum working frequency from a pool of frequencies Reliable and fast link setup at the optimum available frequency Selective calling addresses (up to 9999) Automatic transmission of status o Type of modulation o Speed of data transmission o Type of data protection (FEC.4. basic feature) or with additional HF data modem up to 5400 bit/s Data transmission format o 5 bit Baudot (telex) o 7 bit ASCII (text files from PCs) o 8 bit ASCII (text and binary files etc) Message length: unlimited Depending on the requirements: o Preferred or existing method o Link setup with or without adaptive response o Response to interference on the radio link (ARQ) o Frequency economy. A 16 bit CRC checksum is used. Shift between tones is 240 Hz. The system can use either 5 bits ITA2 or 8 bits ASCII ITA5 alphabet.15254 ms.The following sonagram shows the typical link set up procedure of the R & S –ALIS: Picture 66: Sonagram ALIS link setup procedure 5. A preamble which contains an identification code and has a length of 21 bits. Picture 67: Spectrum of ALIS 2 144 . and the tone duration is 4. ALIS 2 Improved Automatic Link Setup ALIS 2 is a burst 8 tones MFSK ARQ system made by Rohde & Schwarz with a standard speed of 240 Bd (equivalent to 720 bit/s). The transmission block consists of 55 tri-bits. resulting in 165 bits per frame. Each transmission starts with a header of 1 sec and consists of 3 tones and a BPSK training pattern for synchronization. The OFDM is using 36 carriers in the range from 300 Hz . for video/data Convolution & Reed-Solomon. The error correction for voice is Golay & Hamming. The symbol rate of each carrier is 50 Bd with a guard interval of 4 ms. The spacing between the carriers is 62.5 Hz.6.2500 Hz. For digital voice the AMBE2020 coder and decoder are used. ARD9800 OFDM 36ch Modem ARD9800 This modem developed by AOR is using OFDM as modulation method. Picture 68: Spectrum of ARD9800-OFDM Picture 69: Spectrum and Sonagram of ARD9800-OFDM 145 . Each carrier is DQPSK modulated. 192 and 288 Bd. ARQ-1000 duplex ARQ-E is a synchronous duplex ARQ with the 2 stations on different frequencies. 5th or 8th character. In the ARQ-N system all characters are erect. 72. 50. inverting every 4th. It is using the 7 bit ITA 2-P alphabet with 4. 64. ARQ-N is mainly heard with 96 Bd. All characters are checked within one repetition cycle. an error signal is triggering another repetition process immediately until all signals are received correctly. ARQ-E ARQ-N. If another faulty code than the 35 combinations of the allowed alphabet is received a repetition request is initiated. TDM 342 1 Channel ARQ-E3 is a synchronous duplex ARQ using the 7 bit error correcting ITA 3 alphabet with repetition cycle of 4 or 8 characters. Picture 70: Spectrum of an ARQ-E signal with 288 Bd ARQ-E and ARQ-N are operating in duplex mode with baud rates of 48.6. The RQ signal is initiating the retransmission.7. 184. 96. In a standard repetition cycle of 4 characters one RQ and three repeated characters and in a repetition cycle of 8 characters one RQ and 7 repeated characters are transmitted. ARQ-E3 CCIR 519 Variant. 8. 5 or 8 character repetition cycle. 146 . 144. Two stations are working on different frequencies as Master and Slave stations. 96. 192 and 288 Bd.Picture 71: Spectrum of ARQ-E3 in idle mode Note: In idle mode ARQ-E3 is often detected as FEC 100! ARQ-E3 is operating in duplex mode with baud rates of 48. 50. Picture 72: ARQ-E3 – Signal Structure 147 . The two stations use different frequencies for full duplex operation. If there is any information transmitted this rhythm is not audible. character interleaved. A/B and C/D bit interleaved. TDM 342. 10. A. working as ISS (transmitting) and IRS (receiving) station. B-channel inverted. ARQ–M4 is used on fixed lines between two stations. i. B-channel inverted. -B etc. Due to their automatic transmission they often have long idling periods in which no information is transmitted. -B. 1 channel: A-channel erect 2 channel: A-channel erect. CCIR 242. which uses the ITA 3 alphabet 7 bit.M2 is used on fixed lines between two stations. 4 channel: A-channel erect. ARQ-M2 TDM 242. The 2 channel system is simply made from interleaving erect characters for channel A and inverted characters for channel B. -B. Due to their automatic transmission they often have long idling periods in which no information is transmitted. CCIR 242. At start of a cycle the first characters of all channels are inverted. CCIR 342. C-channel inverted. TDM 342. ARQ . D-channel erect Channels A and B character interleaved. ARQ-M4 TDM 242.9. A. 148 . If there is any information transmitted this rhythm is not audible. These periods can be recognized by a typical rhythm on the signal. Two or four channels in TDM (time division multiplex) are possible. CCIR 342-2. A. Marked cycles of 4 and 8 characters. These periods can be recognized by a typical rhythm on the signal. Two stations are working on different frequencies. The main baud rate is 96 and 200 Bd. ARQ-28 ARQ-M2 CCIR 242 is a synchronous duplex ARQ system using the 7 bit error correcting ITA 3 alphabet consisting of two or four channels in time division multiplex in a single radio channel. ARQ-56 ARQ – M4 CCIR 342 is a synchronous duplex ARQ. -B. A.e. Siemens ARQ 1000 ARQ-S is a synchronous simplex ARQ using the 7 bit error correcting ITA 3 alphabet with the addition of 1 bit for parity-check. Every odd numbered cycle has all bits inverted.Picture 73: Typical spectrum of an ARQ-M4 This system was mainly heard with 192 Bd. ARQ-S ARQ 1000-S. If the pulse polarity is not corresponding to this ratio. Two stations use the same frequency. The receiving station is transmitting an acknowledgement signal RQ if the character block is received correctly and requests the next block. the system is waiting for the second transmission to print the correct information. The additional parity of 1 bit is reducing the error rate. 5.up selective calling is possible also FEC operation with error correction in time diversity mode for broadcast transmissions. Repetition cycle timings for block lengths of 3. 6 or 7 characters are as follows: Cycle 438 ms 583 ms 729 ms 875 ms 1021 ms Characters 3 characters at 7 bits 4 characters at 7 bits 5 characters at 7 bits 6 characters at 7 bits 7 characters at 7 bits Transmission 219 ms 292 ms 365 ms 438 ms 510 ms Pause 219 ms 292 ms 365 ms 438 ms 510 ms Table 19: ARQ-S repetition cycle For FEC operation every message is transmitted twice in a time diversity procedure. a special character for retransmission is transmitted. For automatic setting . The receiving station is checking the 3:4 ratio of the ITA 3 code. If the received block contains errors a repetition is requested. If this is also not possible this character is replaced by a blank space. an automatically repetition is initiated. 149 . If the acknowledgement signal is not received correctly. After a space of 15 characters the first transmission is repeated. 11. 4. working as ISS (transmitting) and IRS (receiving) stations. If a character block is received with errors. 12. ARQ-SWE SWED ARQ. The repetition cycle is as follows: Cycle 450 ms Characters 3 characters at 7 bits Transmission 210 ms 210 ms Pause 900 ms 9 characters at 7 bits 630 ms 270 ms 1800 ms 22 characters at 7 bits 1540 ms 260 ms Table 20: ARQ-SWE repetition cycle SW ARQ is normally using 100 Bd and a shift of typical 400 Hz. was used by the Ministry of Foreign Affairs (MFA) of Sweden. This system. CCIR 518 Variant ARQ-SWE is a synchronous simplex ARQ using the error correcting 7 bit ITA 3 alphabet with one extra bit for parity checking. Every odd cycle has all the bits inverted. A similar ARQ was used by the MFA of Norway but without changing the character cycle. According to the quality of the radio link SW ARQ can change the block length between 3. working as ISS (transmitting) and IRS (receiving) stations. based on normal SITOR. Picture 74: Spectrum of ARQ-SWE 150 . Two stations use the same frequency. 9 or 22 characters. A block length of 3 characters is identical to SITOR A. 13. one of them called the ISS (transmitting). ARQ 6-90/98 CCIR 518 variant SITOR ARQ 6-90/98 is a synchronous simplex ARQ using the 7 bit error correcting CCIR 476 alphabet with two stations (usually) on the same frequency. Picture 75: Spectrum of an ARQ 6-90 151 . Complete repetition cycle is as follows: ARQ 6-70: 350 ms: 6 characters at 35 ms = 210 ms with 140 ms pause. one of them called the ISS (transmitting). ARQ 6-70 is working with 200 Bd. the other the IRS (receiving) station. ARQ 6-90/98 is working with 200 Bd. ARQ 6-70S CCIR 518 variant S ARQ 6-70 is a synchronous simplex ARQ using the 7 bit error correcting ITA3 alphabet with two stations (usually) on the same frequency. Complete repetition cycle is as follows: ARQ 6-90: 450 ms: 6 characters at 35 ms = 210 ms with 240 ms pause. Each transmitted block contains 6 characters or 42 bit. the other the IRS (receiving) station. ARQ 6-98: 490 ms: 6 characters at 35 ms = 210 ms with 280 ms pause. 14. one for the space and one for repetition. 9 and 10 bits.5 ASCII is a continuous asynchronous signal with 1 start bit. This system implements the parity check which means that one bit (parity bit) is added at the end for error detection. 6. then the parity bit should be 1. 5. or 7 data bits and optional a parity bit and 1 stop bit. On tone is assigned as idle. 152 . otherwise an error has occurred. The transmission starts with a sequence transmitted with 1Bd and is changing to 8 Bd for the data. This mode uses 10 tones for the transmission of the numbers 0…9 and 3 tones for message handling. If parity has been defined as EVEN and an even number of 1s is found. The modulation is AM. ASCII IRA-ARQ ITA No. AUM-13 AUM-13 is a MFSK which is transmitting numeric codes with a data rate of 8 Bd. 16. A character can consist of total 8. The total bandwidth is 480 Hz. then the parity bit should also be 1. The number of 1s is checked and if an odd number is found and parity has been defined as ODD.Picture 76: Oscilloscope display of ARQ 6-90 15. This slow speed allows an exchange of information even under poor conditions and multipath propagation with fading. Parity can be none odd or even. Picture 77: Spectrum of AUM 13 signal 17. In the upper sideband is transmitted a 50 Bd signal with 340 Hz shift and in the lower sideband a 600 Bd signal with 600 Hz shift. AUS MIL ISB Modem This ISB modem is in used of the Australian forces. It is using the upper and lower sideband with different signals and modulation. Both modems are encrypted with no apparent ACF. Picture 78: Spectrum of the AUS MIL ISB modem with both waveforms 153 . 5 Bps for 50 Bd input and 102. 20 and 50 character interleave. It is used in one way or two way radio links. Spread 51 AUTOSPEC is a synchronous FEC system that converts the 7 1/2 unit ITA-2 code into 10 element error detectable characters.Picture 79: Spectrum of the 50 Bd waveform Picture 80: Spectrum of the 600 Bd waveform 18. AUTOSPEC AUTOSPEC with Spread 11. The system operates at 68. Spread 21. Single bit errors are corrected. MK II introduced 10 (the 'norm'). Picture 81: Spectrum of AUTOSPEC with 75 Bd 154 . The original Mark I was 0 interleave.75 Bps for 75 Bd input. Contestia 8-1000 mode: Picture 181:: Spectrum and sonagram of Contestia 8-1000 mode Contestia 32-1000 mode: Picture 182:: Spectrum and sonagram of Contestia 32-1000 mode 73. in sequence from a selection of 8 for each of the different characters to be sent. 212 . Coquelet 8 Coquelet 8 is a French designed system based on sending 2 audio tones. Idle /standby condition is between tones 4 and 5. 3 Bd system and 26.7 Hz for the 26.67 Bd system.The tones used have a space of 27 Hz for the 13. Tuning Spectrum Analyzer full scale Transmission start Only one tone present Idle conditions Only the first and the last tone are present Transmission: All eight tones are present Picture 183: Example of Coquelet-8 decoding Tone assignment 1 773 2 800 3 826 Group 1 4 5 853 880 6 907 Table 39: Coquelet tone frequencies 213 7 933 8 960 9 880 Group 2 10 11 907 933 12 960 . Both are grouped in 2 tone groups. 214 . Coquelet 8 FEC Coquelet 80 Coquelet 8 FEC is a synchronous system with error correction.Picture 184: MFSK Coquelet-8 signal 74. The second character has a different format caused by mathematical operations. The tone spacing is 100 Hz.7 and 100 Bd. Coquelet 100 MFSK Modem ALCATEL 810 This robust waveform uses 8 tones which are modulated with different speeds of 16. Similar to Coquelet 8 the system is using two tones assigned to two groups but with slightly different frequencies. Tone assignment: Group 1 1 773 2 800 3 827 4 853 5 880 Group 6 907 7 935 8 960 1 773 5 880 6 907 2 7 935 8 960 Table 40: Coquelet tone frequencies 75. The FEC is done by transmitting every character twice with a specific time between both transmissions. Picture 185: Spectrum of Coquelet 100 with 16. 215 . Idle /standby condition is tone 0. Coquelet is using the ITA 2 characters. thus making tuning easy when the station is in standby/ idling. Coquelet 13 Coquelet MK1. The baud rate transmitted is 13. each 75 ms.7 Bd 76. 9 to 13 at 30 Hz apart for group II. in sequence from a selection of 12 for each of the different characters to be sent. 1 to 8 at 30 Hz apart for group I and tones No. They are converted into tones by the following table: Tone number Frequency in Hz 1 2 3 4 5 6 7 8 0 (idle tone) 9 10 11 12 812 842 872 902 932 962 992 1022 1052 1082 1112 1142 1172 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 41: Frequencies used by Coquelet The two tones are selected from each frequency group for the transmitted characters. This tone 0 is between the two centre tones 8 and 9. Tones used are No.33 Bd and 20 Bd. French Multitone Coquelet 13 is a French designed system based on sending 2 audio tones. CIS 10 11 11 It is Soviet MFSK full duplex system on two transmission frequencies that can be also used in simplex mode. Each data frame contains five data characters with one parity character. Each of the 32 tones represents one ITA2 character code. Russian Piccolo. URS Multitone. A spectrum analyzer will show the tones arranged in 3 distinct groups of 10+11+11 tones spaced 40 Hz. CROWD 36 CIS-36. Idle tone is number 24. This system runs usually at 40 Bd with a single tone lasting 25ms and hand keyed traffic between operators at 10 Bd with a single tone lasting 100ms. For encryption a shift register can be used. 24 and 36 are rarely used so you are likely to see an 80 Hz gap between groups. For example: VDAE VDBA VDBG VDGB VDCB VDCE VDFB VDEA Change to chat modus resynchronisation? break end of transmission Table 42: Crowd 36 control sequences 216 . CIS diplomatic and Mil service is the main user with suspected use by CIS Intel and Military services. There are several 4 letter groups or control sequences used for different transmission modes. 12. It uses 36 tones based on the British Piccolo. CROWD 36 is transmitting blocks of ten data frames and an additional parity frame. Tones 1.Picture 186: Spectrum of Coquelet 13 77. In case an error is detected the receiving station requests a frame repetition (NAK instead of ACK) from the last complete and correctly received frame. Picture 187: Spectrum of CROWD 36 Preamble and 5 letter group transmission Op chat : ‘RYRYRY’ and ‘CFM’ Op chat: ‘QSL’ and ‘end of transmission’ Picture 188: Crowd 36 in sonagram display 78. 217 . CROWD 36 Selective Calling This mode is used for calling a station in the network outside the scheduled times. --..-.-. -…. The standard code is as follows: A B C D E F G H I ..-…. . … .-… -. -.-..--…-….--.--. .…- 1 2 3 4 5 6 7 8 9 218 . --.-. …. ? ( ) “ _ ‘ .. .. -. -.--. ----.Picture 189: Spectrum of CROWD 36 selective calling Picture 190: Sonagram of CROWD 36 selective calling 79. --… ---. ..-. ..--.-.--.---...--.…..----. N O P Q R S T U V -. ... -. Marine and Military operations. still in use by the Amateur community..-.-.. .-. CW Morse The oldest “data” transmission. -. -. Morse F1B In this special mode of a standard FSK the morse character are keyed by using the two frequencies of the FSK.. Marine radio beacons are used to broadcast DGPS 219 . 0 / + = -----...--.-. It is transmitting three channels with 144 Bd or 192 Bd and 340 Hz Shift..-. .. D AF VFT This VFT with 3 channels is in use by the German Airforce. CW-F1B FSK Morse.---.-.- Table 43: Morse alphabet 80.-. $ ---. The shift between channels is 680 Hz...5 KHz to 325 KHz band which is allocated for maritime radio navigation (radio beacons).-.. -…- : . -- W X Y Z . This system can often be heard for communication training.J K L M . DGPS Differential Global Positioning System DGPS transmissions are broadcasted in the 284. .---..-. Picture 191: Spectrum of a D AF VFT signal 82.. 81.-. 9 and 16.signals on the main carrier using Minimum Shift Keying (MSK) modulation. DGPS stations have also been monitored in the frequency range up to 7 MHz.31 111 = unhealthy broadcast 110 = unmonitored broadcast 101 = UDRE Scale Factor = 0. Two numbers exits: 1.10 100 = UDRE Scale Factor = 0. Some authorities use the RTCM standard and send the reference station number.50 001 = UDRE Scale Factor = 0.30 010 = UDRE Scale Factor = 0. the message type. The station health gives the resolution of the user differential range error (UDRE). Each data word has a length of 30 bits with 24 bits data and 6 bits parity. DGPS broadcast station number. 7. Broadcasted message types are 3. The baud rate can be 100 Bd or 200 Bd. a sequence number and the health of the station. The two first words of each frame are containing the reference station ID. There have been stations monitored with 300 Bd and a shift of 200 Hz.20 011 = UDRE Scale Factor = 0.6 s Counts from 0 to 7 Number of data words following 0 . 220 . 6. GPS reference station number and 2.00 XOR Table 44: Data structure of DGPS TX numbers The TX number in the first header word identifies the received beacon. DGPS data are transmitted in frames. 5.75 000 = UDRE Scale Factor = 1. Parameter Preamble Message type Station number Modified z count Seq N Station health Bits 8 6 10 13 3 5 3 Parity 2x6 Description Fixed pattern 0110 0110 0 – 63 0 – 1023 Counts from 0 to 6000 every 0. others use the TX number. Picture 192: Spectrum of a DGPS signal with 100 Bd The modulated signal is containing DGPS information and the identification of the transmitting DGPS station according to the RTCM SC104 standard. This is denoted as Type 9-3 Message. appropriate arrangements will be made to provide reciprocal information. the user’s equipment suite should immediately update its internal almanac. The user equipment suite should not use an unhealthy satellite unless a Type 5 Message allowing the use of an unhealthy satellite was received within the last thirty minutes. In this method all satellites for which corrections are broadcast are assigned to either three satellite 221 .e.hot standby. At any given time one will be on air and the other will serve as a . Upon receiving the next Type 7 message. In the event of a reference station changeover. This is accomplished by the setting of the “Health Enable Function” in the Type 5 Message by the reference station in order to indicate this condition. Two methods of transmitting the Type 9 message are possible. then the use of that satellite should be discontinued if it were being used earlier (i. the position coordinates which are broadcast in the Type 3 Message will change to reflect the other reference station surveyed position and its identity. Two reference stations are provided in a DGPS station (dual redundancy). When a broadcast becomes unhealthy or unmonitored in a DGPS coverage area. via a previous Type 5 Message). Type 9 Message Due to the advantages of greater impulse noise immunity.Message types Type 3 Message A Type 3 message contains information on the identity and surveyed position of the active reference station in the DGPS station. Type 5 Message The Type 5 message will notify the user equipment suite that a satellite that is deemed unhealthy by its current navigation message is usable for DGPS navigation. the Type 7 Message will be set to indicate the subject condition. Additionally. If the most recent Type 5 Message received does not indicate that an unhealthy satellite can be utilized. the user equipment suite is immediately notified by means of the station health status indicator contained in the second word of the universal message header. The user should be able to view the contents of the current Type 7 Message in order to obtain information on coverage areas that may soon be entered. Non volatile memory should be employed to store the internal almanac. Type 7 Message A Type 7 Message provides information of its broadcasting DGPS station and the other two or three adjacent DGPS stations. The user equipment suite should update its internal almanac immediately as new information is received. Where adjacent stations are under US jurisdiction. lower latency and a timely alarm capability. but would be correctable by the reference station for DGPS use. The Type 3 Message will contain NAD 83 coordinates since this system is the only one in North America that can take advantage of the centimetre resolution provided in this message. An example of this situation is a slowly drifting satellite clock that may render a satellite unhealthy for GPS use. Type 9-3 Message The first method of broadcasting PRC’s (Pseudo Range Corrections) is based upon “Three-Satellite “Type 9 Messages. the Type 9 Message has been selected for broadcasting pseudo range corrections instead of the Type 1 Message. PRC accuracy is for the most part a function of the latency of the Range Rate Correction (RRC) since it is the only PRC component in which the error is a function of time. satellites will be grouped in messages by their UDRE values.the phasing of the PRCs. An equal number of corrections are broadcast for each satellite. This method of transmitting a Type 9 message at 100 bps and 200 bps will be used for the standard and enhanced/multiple coverage areas respectively.e. Lower transmission rates such as 50 bps could not be used at this time because of the need to meet the time to alarm requirement due to the length of the PRC Messages. Figure 3 illustrates an additional advantage of the Type 9 Message . For example. An equal number of corrections are broadcast for all satellites regardless of their pseudo range rates or accelerations The following table summarizes the above mentioned methods of Type 9 message transmission. The potential to weight pseudo ranges on the basis of latency is readily apparent and should be beneficial to the user. Generally. and is denoted in this document as the Type 9-1 Message. This capability should be implemented for the Type 9 Message in all user equipment suites. Method 1a 1b 21 Message Type Type 9-3 Type 9-3 Type 9-1 Data Rate 200 Bps 100 Bps 50 Bps Trans. This provides a built-in immunity factor to high pseudo range accelerations on one or more satellites. computed at the latest possible time before broadcast). the latencies in Figure 3 are the maximum latencies. The error of the PRC (t0) term is fixed at the time of measurement and any errors that result from its propagation are a function of RRC accuracy. The user equipment suite can mix corrections that may have been computed up to 30 seconds apart. Clock stability is of far greater priority then absolute time accuracy since PRC's are generated relative to each other for a given Reference Station. Rate 200 Bps 100 Bps 50 Bps Table 45: PRC Message Broadcast Parameters Since each Type 9 Message contains the freshest possible corrections. as long as the parity for both of the words which contain a given correction is verified. the pseudo range corrections for eight satellites will consist of three Type 9 Messages. In order to optimize use of the UDRE Scale Factor in the message header. thus the reference station should utilize a highly stable frequency source. Type 9-1 Message The second method of broadcasting pseudo range corrections is to broadcast individual Type 9 Messages for each satellite at a transmission rate of 50 Bps. When the latency for certain satellites is nearing its maximum the latency for others is very low. the Reference Station clock will be within 100 ns of GPS time. two with 3 satellites and one with two satellites. A high level of impulse noise immunity is achieved by this technique that will extend the effective range of the broadcast. This message is referred to as the “Single Satellite” Type 9 Message. At a transmission rate of 200 bps this represents a minimum of a forty percent reduction in message loss as compared to a Type 1 Message under high noise conditions broadcast at the same bit rate.note that since the corrections can be applied as soon as the parity is verified for the words that contain a given correction. The relative latency of the different PRC message types is illustrated in Figure 2 . within one part in 10-11 (30 second Allan Variance).Type 9 Messages or to a remainder message of either one or two satellites. The higher rate of preambles allows a 222 . The use of a highly stable frequency reference and a tightly controlled clock provides the additional benefit of allowing corrections for each satellite to be applied as they are received. The shorter message length and greater frequency of preambles provided by the Type 9 Message result in a substantially improved impulse noise performance as compared with the Type 1 Message. The transmission rate could be at either 100 or 200 bps. the corrections contained in each and every Type 9 Message are computed at different times (i. or unavailable. the Type 16 Message may provide limited information on service outages in adjacent coverage areas or planned outages for scheduled maintenance at any broadcast site. The Type 16 Message is not intended to act as a substitute for the notice to mariners. Type 16 Messages will be utilized to alert the user of an outage condition for which a broadcast in an adjacent coverage area may be unhealthy. unmonitored. Type 7 Message 223 . Type 16 Messages will contain only system information that is crucial to the safety of navigation. 15 and 16 will not be broadcast within 90 seconds of each other under any circumstances. Additionally. as it will be able to instantaneously read the navigation messages as they are broadcast from each satellite. especially during high noise periods. Type 5 Message If an unhealthy satellite is deemed usable for DGPS. making it advantageous when operating with a low data rate as well as in high noise environments. Any short term blockage of a satellite at IOD. Due to the advent of continuous tracking receivers the Type 2 Message is no longer required and its use would only serve to increase the latency of the broadcast. In order to keep data link loading to a minimum. such as passing under a bridge. This information would be useful to the mariner who is planning a transit through an affected area or whose equipment suite is presently incapable of automatic selection from the beacon almanac. Further details of an outage condition can be derived from the Type 7 Message for route planning purposes. Message Types 3. At 200 bps this translates into 32 words that allow a maximum 90 characters after accounting for the message header.1) that designate this condition. This method of handling a new IOD requires the user equipment suite to store both the new and the old IOD for the subject period. If an unhealthy satellite that was deemed usable is later deemed unusable the reference station will no longer broadcast corrections for the subject satellite. Type 16 Message The Type 16 message will be utilized as a timely supplement to the notice to mariners or shipping. are compensated for by the ninety second delay.6 and 16 will be on an exceptional basis. 7. DGPS Message Scheduling The routine data stream will consist mainly of message types 3. If a satellite suddenly becomes unhealthy when in use by a given reference station the PRC (to) and the RRC are set to predefined values as delineated in RTCM SC104 (Version 2. even though it pertains to DGPS information. regarding information on the status of the local DGPS service that is not provided in other message types. a Type 5 Message will be broadcast at fifteen minute intervals beginning at five minutes past the hour. For each new Issue of Data (IOD) there will be a 90 second delay before the broadcast pseudo range corrections are computed with the new IOD. even in low noise conditions the Type 9-3 Message provides a lower latency than the Type 1 Message. 5. This is especially useful since the position error growth due to latency is non-linear. Ninety seconds should be more than adequate for a continuously tracking DGPS receiver.8 seconds. 7. & 9 and broadcast of message types 5.much faster re-synchronization. As previously discussed. Type 3 Message Type 3 Messages will be broadcast at fifteen and forty-five minutes past the hour. Any broadcast of the Type 16 Message will not exceed 4. subject to the other scheduling constraints. Interleaving the tone sets does reduce the necessary bandwidth. Positioning users of the system who are interested in achieving the highest accuracy level possible should use a higher mask angle in order to avoid the more pronounced atmospheric effects associated with satellites at low elevation angles. Satellites at elevation angles lower than 7. The level of 7. This will aid the user equipment suite in its choice of the proper beacon. this was done by double-spacing the tones and interleaving the tone sets. In DominoF. In fact. A character is composed of 2 symbols of 3 bits each. each of 16 tones. and minimal processing time between acquisition and actual use. 83. using sequential tones in spectrum-managed orthogonal tone sets The tone sets are arranged so that ionospheric modulation products cannot easily spill from one possible tone position to another or from one symbol to the next.A routine Type 7 Message will be broadcast at ten minute intervals beginning at seven minutes past the hour.5 degrees are adversely affected by spatial decorrelation. multipath. used alternately. when the status of a beacon in the almanac changes. each symbol being sent on a tone set (first symbol on J1 then second symbol on J2). Sync lock-up time was well under one second. The official GPS coverage is based on elevation angles of ten degrees or higher. 18 tones (2 x 9) are used to limit the rotations. The character set has 62 characters (lower case.766 Hz. Special Type 7 Messages will be broadcast as soon as possible. The interval between successive Type 16 Messages will be no less than three minutes. The total bandwidth is 213 Hz. 224 . Another advantage was that the alternation is very quickly detected as an odd-even component in the receiver FFT. DominoF DominoF is an experimental amateur mode with dual interleaved tone sets. DominoF had two independent tone sets. numbers and some punctuation) & an error reset character (6 bits long characters) & a synchronization character.5 degrees or higher through use of the Type 9 Message. Corrections for all satellites in view above the mask angle will be broadcast.5 degrees is identical to that recommended by RTCA Special Committee 159. When a reference station drops a satellite it will broadcast an indication to the user equipment suite to stop applying corrections for that satellite to its navigation solution Type 16 Message This message type will be broadcast as deemed necessary but within strict limits. DominoF uses a tone spacing of 10. Type 9 Message Pseudo range corrections will be broadcast only for satellites at an elevation angle of 7. to ensure that tones could not overlap. and this was used to provide sync. DOMINO is the name given by the developers to a family of IFK coded coherent phase single tone MFSK keyed modes. from its value.3833 Bd 7. The main data of this waveform are collected in the following table: Mode DominoEX 4 DominoEX 7 DominoEX 8 DominoEX 11 DominoEX 16 DominoEX 22 Baud rate WPM Tone Shift 3.766 Bd 15.625 Bd 21.8125 Hz 10. Each transmitted character is composed of 1 to 3 "nibbles" (group of 4 bits).533 Bd 27 38 55 77 110 154 7.766 Hz 15.84. The "initial nibble" is compulsory and. Only one tone is used for a given "nibble".766 Hz 15. The "continuation nibbles" exist only depending of the transmitted character. it is used the following formula: * Tone number (between 0 and 17) = Previous tone number + data nibble (0 to 15) +2 * If the tone number>=18 then Tone number = Tone number -18 Picture 193: Spectrum of DominoEX with 4 Bd 225 . DominoEX DominoEX is an experimental amateur mode using a MFSK with 18 tones which are separated by a shift which is related to the transmission speed.625 Hz 21.533 Hz Total Bandwidth 140 Hz 194 Hz 281 Hz 194 Hz 281 Hz 388 Hz Table 46: DominoEX waveforms DominoEX is using the incremental frequency keying (IFK). For determination of the tone number. permits to know that it is the first 4 bits start of the character. The first one is called "Initial nibble" and has a value between 0 and 7. the 2 others are called "Continuation nibbles" and have a value between 0 and 15.625 Hz 10.90625 Bd 5.8125 Bd 10. DPRK ARQ 600 Bd This teletyper is used by the Democratic People Republic of Korea (DPRK) with 600 Bd and 600 Hz shift for diplomatic traffic in ARQ mode.Picture 194: Spectrum of DominoEX with 11 Bd Picture 195: Spectrum of DominoEX with 22 Bd 85. the pause 323 ms so that the total packet has a length of 540 ms. Each bit has a length of 1.67 ms so that one packet has 130 bit Picture 196: Spectrum of DPRK FSK in ARQ mode 226 . The block length is 217 ms. This measurement gives to every station a line of position. Every master has 10 ms and the secondary station 8 ms for his group transmission. In Japan. which corresponds to the range resolution of about 7 km. These transmitters are located several 100 miles on land. The master station is transmitting 8 pulses with a space of 1000us. additional a ninth pulse which follows after 2000 us behind the 8.2 MHz with maximum transmission power of 1 kW. The cross point of several lines of position gives the location of the user. It is hyperbolic navigation system which uses three to five transmitters. X. pulse. The current velocity resolution.C net is transmitting group repetition intervals which is unique for this net. is 2. LORAN-C Long range Navigation LORAN is a navigation system used by ships and planes to accurately determine their position. which is determined by the incoherent integration time of received signal. The transmission signal of the secondary stations are synchronised to the signal of the master station. The sweep bandwidth is 22 kHz.possible by transmitting radio waves at frequency of 9. Y and Z. The net has one master station and several secondary stations which are called W. For navigation is measured the time difference between the master station and a minimum of two secondary stations. Picture 413: Transmission of LORAN-C 405 .3 Picture 412: Function of an Ocean Radar 245. it is almost impossible to secure a sufficiently wide and continuous frequency bandwidth in the HF band. LORAN transmits on a centre frequency of 100 kHz. so the LROR adopts a frequency modulated interrupted continuous wave (FMICW) type radar that is able to use frequencies resources more efficiently than the short-pulse type radar.5 cm/s. The minimum length of group of intervals is determined by the number of stations. ig. Every LORAN . Differential LORAN corrections for maritime and timing users. The pulse is also coded for internal information. anomalous propagation (early sky wave) warnings and LDC system information for high-integrity applications. The following table gives the LORAN-C nets working in different areas: GRI number Location of LORAN . The capabilities should include: the transmission of absolute time. that the pulse group is transmitted by a master station.The secondary station is transmitting 8 pulses with a space of 1000 us.C net 9990 9970 9960 9940 8970 7990 7980 7970 7960 7930 5990 5930 4990 9980 8000 8990 7170 8290 9610 7950 5970 6930 North Pacific North West Pacific USA North East Coast USA West Coast Great Lakes Mediterranean Sea USA South East Coast Norway Sea Gulf of Alaska North Atlantic Canadian Pacific Coast Canadian Atlantic Coast Central Pacific Iceland Russia West Saudi Arabia North Saudi Arabia South USA North USA South Russia East Asia East China India Bombay India Calcutta Table 106: LORAN chains and their identification numbers LORAN data channel communication (LDC) During the operation of the LORAN system it was desired to add a communication functionality to the current LORAN-C signal. The identification of the group repetition interval is a fixed length divided by ten. Ninth-Pulse Modulation 406 . The ninth pulse gives the information. This modulation scheme was chosen for its negligible impact on the current operational LORAN-C signal, and its facility for cancellation of cross-rate interference. Here, an additional pulse is inserted in time following the eighth pulse of the LORAN pulse group. Thirty-two state Pulse-position modulation is used to change the time delay of this pulse from the zero-symbol offset. In this manner, the data transferth rate is five bits per group repetition interval (GRI). The phase code of the 9 pulse is the same as the phase code th of the last navigation pulse. The zero-symbol offset is 1000 microseconds after the 8 navigation pulse. The remaining 31 symbols are positioned in time a specific number of microseconds later in relationship to the zero symbol. Messages All messages are 120 bits in length and consist of 3 components: a 4-bit type, a 41-bit payload, and a 75-bit parity component as shown in Table 2. The messages are transmitted 5bits/GRI. The time length of the messages is 24 GRI (maximum of approximately 2.4 seconds). Section Length (bits) Bit assignment Type Payload Parity 4 41 75 0…3 4…44 45…119 Table 107: LORAN Data Channel message components 246. MF RADAR MF radars are used for measurments on freuencies between 2 and 3 MHz and allow the cointinuous observation of the mesosphere in heights of 50 km to 95 km during the entire year. The radar are used for studies of the dynamic of the mesosphere, turbulences, internal gravity waves, tides and planetary waves. In Juliusruh a MF radar on the frequency 3,18 MHz is operated. It is a puls radar, which is equipped with a modular transmit and receive system with distributed power and a so-called Mills-Cross antenna. This antenna radiates a beam of a width of 18° which can be directed from the vertical elevation to any direction in the sky. It works in defined time angles and also allows DBS (DopplerBeam-Swinging-Mode) measurements. The puls power is 128 kW with a puls width of 27 us. The hight resolution is 4 km and the sample resolution 1 km. The spektrum of this radar is shwon in the next picture: 407 Picture 414: Spectrum of the MF radar at Juliusruh The time distance between pulses is 12,5 ms and shown in the following picture. Picture 415: Puls repetition time of the MF radar at Juliusruh 247. NAVTEX The stations in the NAVTEX system are transmitting navigational and meteorological warnings and other important information. It is a part of the Maritime Safety Information (MSI) net which is part of the Global Maritime Distress and Safety System (GMDSS). The information is transmitted on 518 kHz by selected coast stations in SITOR B. The baud rate is 100 Bd with a shift of 170 Hz. 408 This time shared service is designed for a distance of 400 nautical miles around the coast station. Picture 416: Spectrum of a NAVTEX signal For differentiation the following identifications are used: A B C D E F G H I J K L Z : navigational warnings : meteorological warnings : ice messages : search and rescue information : meteorological forecast : pilot message : information about DECCA : information about LORAN - C : information about OMEGA : information about SATNAV : information about other navigational systems : navigational warnings : QRU Table 108: NAVTEX identification letters NAVTEX messages are started with an identification group which has the following meaning: 1. ZCZC followed by the identification letter of radio station with message number 2. Identification for message type 3. Date/Time group 4. Message 5. Ending with NNNN Table 109: Structure of a NAVTEX message 409 248. NBTV Narrow Band Television The following information about all NBTV modes are taken from the webpage www.qsl.net/Zl1bpu/NBTV with permission by Murray Greenman NBTV (Narrow Band Television) is a technique with some similarity to SSTV, and some to conventional FSTV (Fast Scan TV). Like SSTV, it operates in a narrow bandwidth, suited to an HF SSB transceiver, but rather than send individual image frames, NBTV is designed to send multiple frames one after the other, in much the same way as FSTV, but with considerably slower frame rate. This idea allows frame-averaging to be used on noisy channels, and enables the transmission of moving images. For the technique to be practical, the frame rate must of course be much slower, the image resolution is much reduced, and various compression techniques must be used, along with a range of strategies designed to reduce or eliminate the effects of propagation, especially noise and multipath fading and timing errors. The image resolution is generally lower than it is for SSTV, but this is made up for by the motion effects, and also by the faster frame rate, typically 1 - 10 seconds per frame, rather than 30 seconds or more for SSTV. Three systems are described here. They are broadly, analogue, digital, and hybrid designs, and all were developed by Con Wassilieff ZL2AFP, the acknowledged world expert on NBTV, and to date the only developer of modes that are successful on HF (there have been modes which work on VHF or on telephone lines). These new systems use sophisticated techniques, including digital signal processing, forward error correction, image compression and even path equalization. The three modes are: Orthogonal Frequency Division Multiplex Analogue OFDM NBTV Single-tone 2000 baud PSK modem Digital NBTV Hybrid FM NBTV with PN-sequence synchronization With all three of these systems you can transmit live pictures from a web camera, TV capture card or TV camera, send still frames in any image format and any size, and transmit movie clips in several formats. Because the frame rate is low, the receiving programs allow transmissions to be recorded, and played back later at movie speed. Compared with SSTV, which sends even more slowly (and still has trouble with multi-path propagation tearing the images) NBTV must send faster, and is therefore even more prone to ionospheric effects. Thus the unconventional nature of these designs is explained by the emphasis on managing or countering these effects. These different NBTV programs enable low and modest resolution B&W and colour TV images to be transmitted at modest power, and received via a limited performance HF radio channel. The systems has been optimized for specific radio conditions; most are designed for NVIS conditions (such as the 410 and at least one faster version for VHF.it simply isn't necessary. The design is very versatile. screen shots from other software. on a slightly different frequency. which means that although the computer samples the images for transmission and display. but there are other versions with better resolution. so an SSB transmitter and receiver can be used. although only one frame in many is transmitted in this case. and even live (fast scan) TV. sound card. and an SSB or (on VHF) FM transceiver. A 'drag-and-drop' technique makes all this very easy.each line is transmitted separately. and the overall transmission bandwidth is only 2 kHz. controlled by the computer sound card. in fact it is a true Fuzzy design as well. In most cases the pictures are easily tuned with practice. more suited to higher bands. OFDM NBTV OFDM NBTV is an analogue technique. in fact there is no automatic synchronizing mechanism at all .Amateur 80m band at night). This means that the signals are inherently very noise immune and continue to be useable despite interference and propagation effects until they fade into the noise. radio interface with audio and PTT functions. These modes are Fuzzy Modes. moving GIF images. Use the links below to explore these modes further. but all lines are sent at the same time.they are interpreted by eye and brain at the receiver. there is no need for any sync pulses to align the picture. digital cameras. video capture cards. as the software provides special tuning aids. All three systems operate using a conventional digital modes setup: PC. The transmission technique used is quite different from conventional TV . 249. and at the receiver the images are presented without decoding decision or interpretation by the computer . including 'web cams'. and you can use still photographs (like a slide show). The following picture is showing the typical spectrum of the OFDM signal: Picture 417: Spectrum of an OFDM Modulation on each of the many carriers is very narrow FM (a few Hz). Because the transmitter and receiver operate at precisely the same speed. AVI movies and many different types of live video. the signals are essentially analogue in nature. for best noise rejection. 411 . The picture on the right below shows typical 48 x 48 colour reception. but is suited only to higher bands and VHF. so you can soon work out which is being transmitted. The total signal is therefore about 2 kHz wide. There are two different image resolutions. and thus avoid the problem completely.0 s 3.0 s 9. This includes a 'pilot carrier'. Tuning needs to be within 1Hz of the transmission. the received signal can be recorded and later played back faster for a very realistic effect. This is slowly sine-wave modulated.0 s 3. the pictures are superb. and used for fine tuning. which of course is slower.a VFO rig CANNOT be used . On VHF the secret is to use FM transceivers. A special compressed 96 x 72 pixel colour-only version is provided . depending on the mode used. Most modern synthesized transceivers are OK if used with care.it simply isn't stable enough. However. 48 x 48 pixel low resolution (which is faster and more robust). and 96 x 72 pixel modest resolution. Each image frame takes from one second to nine seconds to transmit. Another limitation is that tuning requirements are fairly stiff . The quality of moving images is such that you'd never believe that the pictures contain only 48 or 72 lines! On lower HF bands. The 96 x 72 pixel colour mode is most affected. The images can also be post-processed for noise reduction and smooth motion effect. it is not possible to send moving pictures in real time. However.this provides a frame rate twice as fast as the standard 96 x 72 colour mode.0 s 6. Standard . but gives more picture detail. spaced 42Hz apart. and the transmitters can also retransmit previous recordings. 48 x 48 Low resolution B&W and RGB colour for NVIS conditions 96 x 72 Modest resolution B&W and RGB colour for HF use 96 x 72 Modest resolution compressed RGGB colour for VHF The following table shows an overview of the technical parameter of these modes: Mode BW 48 CO 48 BW 96 CO 96 RGGB Image Properties 48 x 48 Black & White 48 x 48 RGB 96 x 72 Black & White 96 x 72 RGB 96 x 72 RGGB Pixel Rate 50 Hz 50 Hz 33 Hz 33 Hz 33 Hz Frame Period 1. 412 . one carrier for each picture line. There is some compatibility between the B&W and Colour modes.Limitations Because of the low bandwidth. performance suffers as noise and colour stripes invade the picture. transmitted in the middle of the image carriers (see picture above). two black and white.0 s Bandwidth 2100 Hz 2100 Hz 2100 Hz 2100 Hz 2100 Hz Table 110: OFDM NBTV modes 48 x 48 Mode In this mode.AVI format files are used. The OFDM NBTV Modes There are in total five modes. there are 48 carriers. and three colour. especially with NVIS conditions (strong fading and multi-path reception). on the higher bands and VHF. The picture has a standard TV (4:3) aspect ratio. The total signal bandwidth is also about 2kHz. each pixel takes 20ms to transmit. three separate fields are transmitted for Red. At the end of the third (blue) frame. Picture 418: Spectrum of 48 x 48 OFDM NBTV 96 x 72 Mode This mode uses 72 carriers. so again the end of frame and correct colour order can be identified. As in the 48 x 48 modes. 413 . spaced 32Hz apart. and each pixel takes 30ms to transmit. just one field is transmitted per frame. three separate fields are transmitted for Red. In the B&W mode.In the B&W option. In the B&W mode. again one carrier for each picture line. The pixel modulation rate is lower. the end of each frame is identified by a vertical dotted line. three separate fields. a vertical dotted line is transmitted. and so the carriers can be closer together. and the carrier modulation bandwidth is about 40Hz. much the same as described. so the end of frame can be identified. so again the end of frame and correct colour order can be identified. just one field is transmitted per frame. The total signal bandwidth is also about 2kHz. and so the carriers can be closer together. In colour mode. There is one 'pilot carrier'. are transmitted for Red. and each pixel takes 30ms to transmit. At the end of each line a vertical dotted line is transmitted. right in the middle of the picture carriers. again one carrier for each picture line. There are 96 pixels per line. As in the 48 x 48 modes. With 48 pixels per line. a vertical dotted line is transmitted. the end of each frame is identified by a vertical dotted line. In colour mode. spaced 32Hz apart. In this case it also identifies the correct colour order (you can see this line at the left of the picture). right in the middle of the picture carriers. In colour mode. There are 96 pixels per line. At the end of the third (blue) field of. just one field is transmitted per frame. 96 x 72 Mode This mode uses 72 carriers. The picture has a standard TV (4:3) aspect ratio. Green and Blue image data. Green and Blue image data. a vertical dotted line is transmitted. At the end of the third (blue) frame. so again the end of frame can be identified. There is one 'pilot carrier'. The pixel modulation rate is lower. Green and Blue image data. The picture has a square (1:1) aspect ratio. but the packet size is constant at 256 symbols plus an 80 symbol header. An equalizer system is included to compensate for ionospheric path variation Wavelet image compression and forward error correction are used. Using BPSK modulation. The audio spectrum is shown in the following picture: Picture 420: Spectrum of digital NBTV 414 . It provides completely noise-free and error-free image reception. First. especially for beginners. in many senses: It uses separate programs for modem and codec in the transmitter and receiver TCP/IP communications is used between program modules The modem is high speed single-tone PSK. the OFDM signal is very difficult to tune. Digital NBTV A number of problems experienced with the OFDM NBTV system led to the development of this Digital NBTV mode. each containing data for a small number of image lines. and requires extreme transceiver accuracy and stability. the compression level and the level of forward error correction included. and is used to identify an exact point in the transmission from which the data can be synchronized. So nothing could be more different! The transmission consists of a stream of packets. Modulation Digital NBTV uses a modulation technique which is widely used by high speed HF radio modems. The amount of data in the packet varies according to the image complexity. A single 1500Hz phase modulated carrier is used to send both packet sync and payload. similar to NATO's STANAG 4285. even on 80m. Then in addition. especially when used on the lower bands. a pseudo-random binary (PN) sequence starts each packet.Picture 419: Spectrum of 96 x 72 OFDM NBTV 250. The approach taken for the Digital NBTV mode is completely different. the pictures tend to be noisy and individual frames can be marred by multi-path effects. The phase constellation is shown in the next picture: Picture 421: Phase plane of digital NBTV The two dots on 135° and 315° are bigger in size and density. 415 . It uses 80 symbols (modulation time slots) to send this sequence about 2. or 3047 bps raw data rate. The data symbols are scrambled in an 8PSK pattern to improve resistance to selective fades. The cross-correlator works with a known pattern to look for. Digital NBTV uses a 31-bit PN sequence borrowed from STANAG 4285.5 times. with one chance in two billion of a perfect score being caused by noise. Since 4-PSK is used for the data. using a signal processing device called an 'equalizer'. The equalizer also corrects for Doppler errors which affect carrier phase.A cross-correlator is used in the receiver to locate the one point in the whole message where the sequence matches up with the local copy of the sequence. These radio modems use the PN sequence technique to enable complex high speed data to be decoded accurately . and is a very powerful and sensitive tool. each packet could contain 512 bits of image data. This is caused by the BPSK which is used for synchronisation.the ranging information determined from the cross-correlator is used to correct the received data timing to reduce errors induced by the ionosphere. 256 symbols are used for image data and FEC information. Each packet is contained in a 336 symbol frame. making the use of 8-PSK practical. using a 2000 baud modem. This technique is extremely sensitive. using a sub-carrier frequency of 1800Hz. The corresponding bandwidth (just under 3kHz) is too much for most HF transceivers. and also serves as a measuring point for the receiver equalizer software which measures and compensates for frequency offset and drift. There are nearly six packets per second. Each transmitted packet commences with a BPSK pseudo-random (PN) sequence (same sequence as STANAG 4285). The receiver modem also has to manage sync and equalization.Picture 422: Framing of digital NBTV Like the STANAG 4285 system. and gives a worthwhile speed improvement. 416 . However. Detection of the PN sequence is achieved using a cross-correlator. respectively. single-tone PSK Digital NBTV can also operate at 2400 baud. which is used to synchronize the receiver timing with the start of the packet. to ensure a high data rate. and other code which compensates for timing errors. but quite suitable for VHF. The packet data payload is transmitted as 4-PSK. or received audio into digital data. to fit the signal into a normal amateur transceiver IF. packet synchronization is secure. it is usually operated at 2000 baud using a 1500Hz sub-carrier. The following picture shows the measurement of the baudrate of 2000 Bd with the help of a phase spectrum: Picture 423: Baudrate measurement of digital NBTV Modem The modem section of the transmitter or receiver converts digital data into PSK audio for the transmitter. so no matter how weak the signal is.