geopolymer-book-chapter1 (1).pdf

March 19, 2018 | Author: arunachelam | Category: Composite Material, Concrete, Cement, Materials, Chemistry


Comments



Description

Geopolymer Chemistry and Applications 3rd editionJoseph Davidovits ©2008, 2011 Joseph Davidovits ISBN: 9782951482050 3rd edition, july 2011. Published by: Institut Géopolymère 16 rue Galilée F-02100 Saint-Quentin France Web: www.geopolymer.org Written and edited by: Joseph Davidovits Web: www.davidovits.info All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher. Tous Droits Réservés. Aucune partie de cette publication ne peut être reproduite sous aucune forme ou par aucun moyen, électronique ou mécanique, incluant la photocopie, l’enregistrement ou par système de stockage d’informations ou de sauvegarde, sans la permission écrite préalable de l’éditeur. Contents I Polymers and Geopolymers 1 Introduction 1.1 Geopolymer technology . . . . . . . . . . . . . . . . . . 1.1.1 The invention of the first mineral resin, October 1.2 The scope of the book . . . . . . . . . . . . . . . . . . . 1.3 Early observations . . . . . . . . . . . . . . . . . . . . . 1.4 Phosphate-based geopolymer . . . . . . . . . . . . . . . 1.4.1 Phosphate geopolymers . . . . . . . . . . . . . . 1.4.2 High-molecular phosphate-based geopolymers: balitic AlPO4 . . . . . . . . . . . . . . . . . . . 1.5 Organic-mineral geopolymers . . . . . . . . . . . . . . . 1.5.1 Silicone . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Humic-acid based: kerogen geopolymer . . . . . The 2.1 2.2 2.3 2.4 2.5 2.6 3 . . . . 1975 . . . . . . . . . . . . . . . . . cristo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 4 6 11 11 14 14 15 16 16 16 21 22 23 28 29 30 30 32 34 39 40 42 43 43 44 44 2 mineral polymer concept: silicones and geopolymers The polymeric character of silicones . . . . . . . . . . . . . The dispute over ionic or covalent bonding in silicates . . . Covalent bonding in alumino-silicates / silico-aluminates . . Tetra-coordinated Al or tetra-valent Al? . . . . . . . . . . . Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Poly(siloxo) / poly(siloxonate) / poly(silanol) . . . 2.5.2 Poly(sialate) . . . . . . . . . . . . . . . . . . . . . . Polymeric character of geopolymers: geopolymeric micelle . Macromolecular structure of natural silicates and aluminosilicates 3.1 Silicate ionic and covalent structural representations . . . . . . 3.2 Ortho-silicate, 1[SiO4 ], ortho-siloxonate, Zircon ZrSiO4 . . . . . 3.3 Di-silicate, di-siloxonate, Epidote . . . . . . . . . . . . . . . . . 3.4 Tri-silicate, tri-siloxonate, ring silicate, Benitoite . . . . . . . . 3.5 Tetra-silicate, 4[SiO4 ], ring silicate [Si4 O12 ] . . . . . . . . . . . 3.6 Hexa-silicate, hexa-siloxonate, ring silicate, Beryl . . . . . . . . 3.7 Linear poly-silicate, poly(siloxonate), chain silicate, Pyroxene, Wollastonite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Branched poly-silicate, poly(siloxonate), ribbon structure, Amphibole [Si4 O11 ]n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 . 47 i . . . . . . . . . . . . . poly(siloxo-aluminumhydroxyl) . . Nepheline Na[AlSiO4 ] and Kalsilite K[AlSiO4 ] 54 Framework silicate. . . . . . . . .15 3. . . .11.1 Anorthite Ca[Al2 Si2 O8 ] . .4 Structure of solid poly(siloxonate). . . .Contents 3.14 3. . . .11. . . . .14. . . . . . . .2 FTIR. . Hydrolysis. . .2 Pyrophillite Al4 (OH)4 [Si8 O20 ].2 Furnace route . . . . . X-rays. . . . poly(siloxo-intra-sialate) 49 3. . . . . . .K)–poly(siloxonate).3 Muscovite K2 Al4 [Si6 Al2 O20 ](OH)4 .2 Molecular structure of poly(siloxonate). . . . . . . . .6. . . . . . . . . . . . . . 49 3. . . . . 5. . . . .5 Poly(siloxonate) in solution. . . . . . . . . . . . 5. . . . . .11 3. . . . . . . .6. . . . . . . . depolymerization of solid silicates .12 3. . . . . . . . .9. . . . . . . . . . . . 51 Framework silicate. . . . 53 Framework silicate. .3 MAS-NMR spectroscopy . Gehlenite. .13 3. . . . . .2 Si MAS-NMR Spectroscopy . . . . . composite sheet .1 Structure of Quartz . . . . 52 3. . . . . . . . . . . . . . 57 Framework silicate. . .4 Silica fume dissolution . 48 3. . .1 History of soluble silicates . . . . . . . . . .3. . . . Sodalite Na[AlSiO4 ] . . . . . . .1 Kaolinite.3 Manufacture of soluble (Na. . 5. . . . .2 Structure of Tridymite . . .Al)4 O8 ]n 55 3. . . . . . . . . . . . Quartz. . . . . . . . . . . . . 5. . . .3. . 4. (Na. .10 3. 5. . . . . . . 5. . . . . 27 4. . . . . . . .3 Hydrolysis of poly(siloxonate) alkali-glass into water soluble molecules . . . . . . . . . . . . . . . . soluble silicates 5. . Si:Al=1:0 5. . . . .3. . . .6. . . . . . . . . 63 63 68 70 70 73 79 79 81 82 82 84 87 87 87 89 91 97 98 98 99 101 5 Poly(siloxonate) and polysilicate. . . .2 NMR spectroscopy: identification of soluble species . . . . . . . . . . . . . . . [Si2 O5 ]n . . FTIR. . .3.2 Sanidine K[AlSi3 O8 ] . . . . . . . . . . . . . . . . . . . . 5. . . . . . . 54 Framework silicate. soluble alkali silicates . . . . NMR 4. . . . . . . . . . . . . . . . . .9. . . . . . . . . .3 Hydrothermal process . . alkali silicate glasses . . . .6 Structure of poly(siloxonate) solutions. . . 58 II The synthesis of alumino-silicate mineral geopolymers 61 4 Scientific Tools. . . . . SiO2 .3. . . .1 Chemical mechanism . . . poly(siloxo-intra-sialate) 50 Other sheet silicates. . . . . . .4. Feldspathoid. . . . . .3. . . . . soluble silicate. . . . . 5. . .1 Al MAS-NMR spectroscopy 29 4. . . . . . . 52 3. . . . . . . . . .K)–silicate glasses . . . . . .9. .14. pentagonal arrangement. . . . . 4. .1 X-ray diffraction . . 5. . . . . . 56 Framework silicate. . . . . . 5. . . .16 Sheet silicate. . . . alkali-tridymite glasses .1 Early studies . . . . . Feldspar double-crankshaft chain [(Si. . Melilite. . . . . . . . .4. . . . . . . . . . . . . . ii . Tridymite. . 5. .2 Chemical composition of soluble silicates . . . . 2D-poly(siloxo). . . . . . . . . . . . . . . zeolite group . . . . . . . . . . 5. . 5. . Leucite K[AlSi2 O6 ] . 56 3. . . . . . . . . Akermanite. . . . . . . . . . .1 Molecular structure of poly(siloxonate). infra-red spectroscopy . . .9 3. . . . . . . . . . . . . . . . . 106 Viscosity . 175 8. . . . . . . . . . 167 8. . . .8 Geopolymerization of poly(sialate-siloxo). . . . . . . . .2. . . . . . . function of curing temperature . specific gravity . . . . . . . . .4 Hydrosodalite Na–poly(sialate) and Zeolite A formation with calcined kaolin . . . 159 8. . . . . . . . . . . . . . . . . . . . . .1 Characteristic of kaolinite and dehydroxylated kaolinite . . . . . . . .3. . . . 6. . . . a function of Al(V) content . . . . . . poly(sialate-siloxo) with Si:Al=2:1 149 8. 107 Powdered poly(siloxonates). . . .1 Chemical mechanism with Al(V) -Al=O alumoxyl. . . . . . . .K)– poly(sialate-siloxo) . . . .3 Chemical mechanism: formation of ortho-sialate (OH)3 -Si-O-Al(OH)3 . . . . . . . . . Na-metasilicate . . . . . . . . . soluble hydrous alkali silicate powders108 Poly(siloxonate) MR=1. . .Contents 5. . . . . geopolymerization into (Na. . . . .2. . . .9 Geopolymerization of poly(sialate-siloxo).2. .9 5. .2. . .2. . . . . . . . . . . . . . .7 Geopolymerization into poly(sialate-siloxo). . . . . .2. . . . . . 175 8. . . . . . 149 8. . . . . . .3. .1 (Na. . . . .7 5. . . 157 8. . . . . . . .1 Poly(sialate-disiloxo) gel . . . . . . 6. . . . . . . . . . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . 156 8. .2. . . . . . . . . . . . . . . . . . . 7 Kaolinite / Hydrosodalite based geopolymer. . . . . . . . 109 Replacement of poly(siloxonate) solution with powdered equivalent product. . . 169 8. . . 107 pH value and stability of alkali silicate solutions .2. 163 8.2. .2 Chemical mechanism in Al-O-Al-OH geopolymerization .K)–oligo-sialates: hydrous alumino-silicate gels and zeolites 6. . . . . 176 8. . . . . . . . 8 Metakaolin MK-750 based geopolymer. Na–poly(sialate). . . 7. . . .11 5. . 177 iii . . . . . . . . . .1 Zeolite Synthesis . . . . . function of SiO2 :M2 O MR ratio . . . poly(sialate) with Si:Al=1:1 7. . . . . . . . . . .3 Geopolymerization mechanism of kaolinite under covalent bonding concept . . . . .3. . . . . . . . . . .1 Geopolymerization mechanism of kaolinite under ionic concept. . . . . . . . . . 118 122 122 124 129 130 134 139 143 Chemistry of (Na. . . . . . . . . . .K)–poly(sialate-siloxo) . . .8 5. . . . .3. . . .3 MAS-NMR spectroscopy of dehydroxylated kaolinite . . .4 Dehydroxylation mechanism of kaolinite . . . . . . . . . . . . . . . .3 Examples of poly(sialate-multisiloxo) gels . . . .12 6 Density. . . . . . . . . . . MK-750 . 172 8. . . . . . . . . . 6. 174 8. 7. . . .2 Hypothetical or real oligo-sialates: polymerization mechanism into poly(sialate) . .2 Ultra rapid in situ geopolymerization of kaolinite in hydrosodalite. . . 7. . . . . . . . . . . . . . . earlier studies. . . . . . . . . . . . 110 115 . . . . . . . . . . . . . . . . .10 5. . .2 IV-fold coordination of Al in dehydroxylated kaolinite. . . . . . . . . .5 Reactivity of MK-750. . . . . . . . . . . . . . . . .6 Exothermic geopolymerization . . . . . . . . .2 Poly(siloxonate-intra-sialate) gels . . . . . . 158 8. .2 Alumino-silicate oxide: dehydroxylated kaolinite. . . . . . 115 . . . . . . . . . . .1 Kalsilite framework. . . . . .6. . 216 9. 2. . . . . . . .6. . . . . .6. . . 194 Synthesis of MK-750 type molecules . . . . . . . . . . . . . . . (Ca. . . . . gehlenite based blast furnace slag . . . . 3 201 9. . . . .K)–based geopolymers . . . . .2 Which chemical reaction for MK-750 / slag-based geopolymer? . . . . . . . . .1 Congruent dissolution and ionic bonding concept . 215 9. . . . . . . . .1 MAS-NMR Spectroscopy . 1984 . .5. . . 234 9. . Na–poly(sialate) . .2 Alkali-Activated slag . . . .5. . . . gehlenite hydrate Ca2 Al2 SiO7 . . . . .1 Nepheline framework Si:Al=1. . . . . . . . .2 Leucite framework with Q0 siloxonate. . . . . . . . . . . 237 9. . . .1 Alkalination mechanism study with MAS-NMR spectroscopy . . . . .5 8. 189 Simplified structural model for (Na. . . . . . . . . . . . . . . filed February 22. . .1. . . . . .1 Ca-poly(alumino-sialate). . . . . . . . . . . . .1. . Si:Al=2. . . . . . . . . Na)-sialate. .5. . .2 Chemical and mineral composition of gehlenite based slag. . . . . . . . . . . 205 9. . . . . . . . . . . . . . . . . . . . . . .K)–poly(sialate) . . . . . . .6 8. .3 Phillipsite framework with Q0 siloxonate. . . . . . . . . . . .509. . . .1. . . . . 223 9. . . poly(sialatesiloxo) . 202 9. . . . .1 Opus Signinum . . . . . . . .4 8.3.6. . . . . . . . . . .1 Excerpt from Davidovits J. 1985. . . 180 8. . gehlenite synthesis with MK750 . 187 8. . 181 8. . . . 231 9. . 211 9. . . .4. . .4. poly(sialate-multisiloxo) 1<Si:Al<5 245 10. . . . . . . . 216 9. 238 10 Rock-based geopolymer. . Si:Al=2. . . . .6. . . . 247 iv . . .3 Chemistry mechanism.2 Ca-poly(alumino-sialate). . . . . . . . . . . . . .2 (Ca)–poly(alumino-sialate) + (Na. . . . . . .4 Structural molecular model for Ca-based geopolymer matrix . .5. . .9 9 Kinetics of chemical attack . . . . K–poly(sialatesiloxo) . . . . . . .5. . . . . poly(sialatesiloxo) and poly(sialate-disiloxo) . . . . . . / Sawyer J. . . . . 246 10. . . . . 191 Al-O-Al bond formation in geopolymers . . H2 O . . .5. . . . . . . 207 9. . . . Si:Al=1. solid solution in Ca-based geopolymer matrix . . . .4 Alkalination of Ca-poly(alumino-sialate) glassy slag with NaOH and KOH . . . K–poly(sialate) . .209 9. . . .5 MK-750 / slag based geopolymer . . . . US Patent 4. . . 208 9. . . . . 222 9. .6.985. Na– poly(sialate-siloxo) . . . . . .6 Chemistry mechanism of MK-750 / slag Ca-based geopolymer matrix . . . . . . . . . . . . . 182 Chemical mechanism for K-based sialate: poly(sialate).3 Formation of soluble calcium disilicate? . . . . . . . . . . . . . . . . . .1 Alkalination and dissolution of rock forming minerals . 211 9. . . . . . .3. . . . . . . . . . . . . . . . . .2 Albite framework with Q1 di-siloxonate. . . . . . . . . . . . . . . K. . . . . . . . . .8 8. Si:Al=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Ca-poly(alumino-sialate). 201 9. . 179 8. . 196 Calcium based geopolymer. . .7 8. . . .1 The manufacture of iron blast furnace slag glass . . Na– poly(sialate-disiloxo) . . . 184 8. . . . . . . . . Si:Al=1. . . 177 Chemical mechanism for Na-based sialate: poly(sialate). . . . . . . . . . . . . . . . .L.2 Electron microscopy . . . .Contents 8. 201 9. . . . . . . . . 231 9. . . . . . . . . .3. .5 Applications of SiO2 nano-particles and rice husk ash . . . . 267 11. . . . nanocomposite geopolymer .5. . . . .1 Nano-poly(siloxo) geopolymer . . . . . . . 13. . . . . . . . . . . . . . . . . . .5. . . . .2 Silica Fume / Microsilica . . . . 303 12. . .5 The GEOASH research project . . 311 13 Phosphate-based geopolymers 13. . . .1. . . . .3 1 H MAS-NMR studies . 271 11. . . .2. . . . . . . . . . . . . . . . .3. . . . . . 268 11. . . . . . .3. .5. . . . . . . 309 12. . . . . . . . . 274 11. .and poly-phosphoric acid 13. . .3 X-ray diffraction . . . . .6 The future with gasifier slag technology . . . . . . . . .1 A 4500 year-old Egyptian technology! . . . . . . . . .1 Fume silica SiO2 . . . . . 250 10. . . . . . . . . . . . . . . . . . . . . . . . . . . .6. silica fume SiO2 . 247 10. . . . . . . . . . di-. . . . . . . . . . . . 278 11. . . . . . .7 Possible health hazards of SiO2 nanoparticles . . . . 292 12. . . . .3 Low-molecular phosphate-based geopolymers . composition . .2 (Na. . . . . 289 12. 309 12. . . . .4 K–nano–poly(sialate) geopolymer composite .6 Poly(siloxo) and poly(sialate) cross-links.1 Ortho-. . . . 263 11. . . . . .3 (K. . . . . .3. . .2. . . . . . . . . . . . . . . . .2 Morphology .2 29 Si MAS-NMR studies on the transition nano-poly(silanol) to nano-poly(siloxo) . . . . . . . . . . . . . . . . . . . .1 Alkali-activation and geopolymerization . . . . . . . . .Contents 10. . . . 272 11. . . . . . . . . . . . . .1 NMR spectroscopy . . . .6. 254 11 Silica-based geopolymer. .2 Polyphosphate linear chains . . . . . .294 12. . tri. . . . . . . . 287 12. . . . . . .2 Fly ash geopolymerization without soluble silicate? . . . . . 267 11. . sialate link and siloxo link in poly(siloxonate) Si:Al>5 263 11. . . . . . . 297 12. . . 302 12. . . . .1 A 5000 year-old technique . . . . . . . . .K)-based geopolymer matrix: composition and structure . . . .2 Compressive strength . 287 12. . . . . . . . . . . . . . . . . .1 First production of fly ash-based cement . . . . . . . . . . . . . . . . . .4 Geopolymerization in low alkaline milieu (user-friendly) . . 299 12. . 284 12. . . . .2 Alkalination. . . . . . . . . . . 270 11.1. . . . . 285 12. . . .3 Geopolymerization in high alkaline milieu (corrosive system) . . . . . . . . . . . . . . . . . . . 13. . . . . . . . 307 12. . . .5. . 280 12 Fly ash-based geopolymer 283 12. . . . . . . . . . . . . . . . .4.2 Brief survey of phosphate chemistry . . . . 315 315 317 317 318 320 v . . . . . . . 13. . . . . . . .2 Incongruent dissolution and covalent bonding concept . . . . . .2 Silica Flour . . . . . . . . . .3 Nano-silica.1. . . . . . . . .3 Fly ash geopolymerization with addition of soluble silicate. . . . . . . . . . . . micro-silica. . . . . dissolution and zeolite formation . . . . . . . . . . . . . . . . . . . . . . . . .K)–poly(sialate) matrix for rock based geopolymerization . .3. . .4 Rice Husk Ash . .6. . . . . .4 Leaching properties .6. . . . . . . . . .5.1 Production of fly ashes . . . . . . 273 11. . . . . .1 Types of fly ash. . . . . . . . . . . . . . . . . 296 12. . .5 (Ca. . . . . .Ca)–poly(sialate-multisiloxo) matrix for rock-based geopolymers. . . . 289 12. . . . . . . . 275 11. . 268 11. . 2 Thermal behavior. . . . . . . 353 355 . . .4 MK-750 metakaolin-based AlPO4 -geopolymer . . . . . . . . . .1. . . . . . . .1.4 Water and moisture absorption .7 Practical physical properties . . . 14. . . . 355 . .3. . . . .1 C. . . . . . . . .6. the major role of ceramic fillers .1 Poly-organo-siloxanes / silicones .3 Thermal Expansion C. . . . -Si-O-P-O-Si. .3. . 15. . . 348 III Properties 15 Physical properties of condensed geopolymers 15. .1. . . .3. . . . . . . . . . . . . . 360 . . . . . .T. . . . . Geopolymer with Si:Al>20 . .3. . . 356 . . . . . 13. . . . . . . . .Contents 13.3 Depolymerization and cleavage . . . . . . . . . . . . . . . . . . . shrinkage on dehydroxylation . . 13. . . . . .1 Geopolymeric identity . 15. 361 . . . . . . . . . . .3 Adhesion on metal. . . . . . . . . . . . 333 337 337 337 338 340 340 343 345 346 347 348 .3 Organo-geopolymer compounds . 14. . . . . .6 AlPO4 -based geopolymers .2. . . . . 321 322 324 328 . . . . .6. . . . . .3. . 15. . . . 332 . . . . . 13. .. . . . 15. . . . . 359 . . . . . . 15. . . . .1 Adhesion on natural stone.4 Poly(sialate-siloxo) / phosphate composites . . . . . . . . . . . .4 Properties of technical silicones . . . . . 14. .E. . . 14. . . . . . 13. . . . . . . . . . . . . 14.5 Electrical values: resistivity and dielectric properties . . . . . . . . . . . . . .3 Synthesis of AlPO4 -geopolymers: the modified Al2 O3 routes . . . . . . . 15. 14.1 DTA-TGA and Shrinkage on dehydration and dehydroxylation . . . . .E. . . . . . . . . 15.2 Two polymerization mechanisms: acidic and basic . . . .3. 14. . . . . . . . geopolymer with Si:Al=2 . . . . . . . . . . . . . .2 Synthesis of AlPO4 -geopolymers: the solution and solgel routes . 13. . . 15. 15. . . . . . . . . . . . . . . . . .2 Yield of the conversion of kaolinite into Na–poly(sialate) Na–PS . . . . . . . . . . . . . . . . 362 364 366 368 368 368 370 371 vi . . . 13. .6. . . . . .1 Polymeric structures of AlPO4 -geopolymers: 27 Al and 31 P NMR. . . . . .6 Adhesion . . . .6. . . . . . . poly(ethylene glycol) 14. . . . . . . . .1. . . . 14 Organic-mineral geopolymer 14. .2 Adhesion on steel and glass. . . . . . . . . .5. . . . . . . . . . . 15. . . . . . . . . . . . .2 Mean linear thermal expansion. . . . . . .6. . .5 Phospho-siloxonate geopolymer. . . . 13.1 Inclusion of hydrophilic polymers. . . . . . . . . . . . . . .1 Ca-phospho-silicate . .6. . . 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Reaction with isocyanate R-N=C=O . . . . . . . . . . . . . . .2 Kerogen-geopolymer . Coefficient of Thermal Expansion . .2. . . . . . . . Geopolymer with Si:Al=2 15. . . . . . .T.4 Reaction with aqueous phenolic resin and poly(styrene butadiene) latex . 15. . .3 Reaction with poly(acrylic acid) R-C(=O)-OH .6. . 15. . . . . . . . . . . 356 . 330 . . . . . . . . 14. . . . . . . . .1 Density and softening temperature . . . . . . . . . . 14. . . . . . .1 Raw-materials . . . . . . . .1 Acid resistance . . . . . . . 409 . . . . . . . . . .3. . . . . . . . . . . 380 16. . . . . . . . 18. . . . . . . . . 17. .4.4 Ancient Roman cements and concretes . . . . . . . 18. . . . . . . . . . .1 Influence of acid on incompletely condensed Na–poly(sialatesiloxo) . . . . . . . . . . . . .1. . 18. . . 17. . .2 Chemistry of the casing stones . . . . . .Ca)–poly(sialate-siloxo) and (K. . . . . 386 16. . . . . . . . . . . .3 Control on the hardening paste: penetrometer 18. . . . . . . . . . . . . 17. . . . . . . .1. . . . . . . . . . . . . . . . . . . . . 18. .4 Plasticizers and retarders . . . . . . . . . . . . . . . .1. . . . . .3. . . . 18.2 Acid resistance of geopolymer cement towards sulfuric acid . .1 Working time (pot-life) . . . . .5 Geological analogues . . . .3 Egyptian Pyramid stone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ca)–poly(sialate-disiloxo) cements: . with Carbunculus. . . 18. . . . resin and paste . 18. .3 Working time (pot-life). . . . . . . . . . . .3. . . . . . . . . .4 Compressive strength and tensile strength .2 The second high-performance Roman cement. .1 The oldest geopolymer artifact: 25000 year-old ceramic Venus from Dolní Věstonice . . 385 16. . . . . .2 pH determination of the raw-materials . . . . . . . .3. . . . . . . . . . .4. .1. . . . . . . . . . . . . . . 377 16. .4. . . . . . . . .3 Corrosion of metal bars . . . . .1 Chemistry of the core blocks . . . . . . . . . .2 Chemicals extracted from plant ashes . . . . . re-agglomerated limestone concrete. . . . .2 Alkali-aggregate reaction . . . . .3 Granulometry . . . . 17. . . . 2700 B. . . . . . .1 Cements and concretes . . .3. . . . . . . . . .3. . 386 16. . . 18. . . geological analogues 17. . . . . . . . . . .Contents 16 Chemical Properties of condensed geopolymers 375 16. . . . . . . . .3 Comparison between Roman and modern geopolymer cements .4 Practical chemical properties . . . . . . . . . . .3. . . . . . . . . . . . . . . . . . 18. . . . . . .1. .C.1 pH values . . . . . .4. . . . . . . . . . . 386 17 Long-term durability. .1 Solid elemental composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 413 413 415 417 418 420 420 421 423 424 425 vii . . . . . . . . . . . . . . . . 17. .2 Role of additional water . . . . . . . . . . . . . . . . 383 16. . . . . . . . . . .2 (K. . . . . .2 Determination of the geopolymeric reactivity . . . . . . .3 The experimentation: manufacturing 14 tonnes of pyramid stones . . . . . . . . . . 17. . . . . . . . . . . . . . . . . . . . . . . . 17. . .1. . . . . . . . . . . . .3 Sulfate resistance of geopolymer cement . 389 390 391 392 395 396 397 398 399 400 401 406 IV Applications 18 Quality control 18. . . . . . . . . . . . 378 16. . . . . . . . . . . . .4. . . . . . 383 16. . . . . . 17. . . . 17. . archaeological analogues. . . . . . . . . . . . . . . . . . . . . . . . . . . 17. . . . . . . . . . . . . . . . 21. . .1 Compressive strength . .3. . . 21. .5. . . . . . . . . . 19. . . .1 Hand lay-up . . . . . .4. . . . . . . . . . . . . . . . .3. . . . . .5. . .3. . . . . . .1 K–poly(sialate) K–PS/K–PSS matrix . . .1 Advanced geopolymer tooling . . . 20. . . . . . . . . . . . . . . 425 427 428 428 428 . . . . . .5 Fire resistance with K–nano–poly(sialate) laminates . . . . . . .2 Vacuum bagging . . 20. 21. . . . . . . . . . . . . . 21. . . 21. . . . .4 Geopolymer-composite tools fabrication . . . . . . . . . 18.Contents 18. . . 18. .2. . . . . . . . . 433 433 434 437 438 440 445 445 449 454 454 455 458 459 460 463 464 464 466 468 468 471 473 474 475 475 476 476 477 477 478 481 481 483 484 20 Castable geopolymer. . RTM (injection molding) . applications . . . 21. . . . . 19. . . . . . . . . . . . . . . 21. . . . . . . . . . . . . . . . . . . . . . . .5 Additional fast testing on hardened geopolymers . . . . . . . . 21. industrial and decorative 20.3 Filament winding .2 Instruction for use . .3 Flashover temperature . . . . . . . .4 Modern geopolymer stone artifacts . 20. . . . . . .1 Fundamental remarks on heat and fire resistance . . .2 Flammability of organic and geopolymer composites . . . . .3. . . . 20. . 21. . . . . . .2 K–poly(sialate-siloxo) for castable artifacts. . . .2 Review of carbon/geopolymer and other ceramic-ceramic composites . . . . . . . . . . . . . . . . . .2 Improvement of the matrices: K–PSDS. . . . . . . . . . . . . . . . . . . 21.2 Freeze-Thaw / Wet-Dry . 429 . . . .4 The pH values of geopolymers . . . . . . . . .5. . . . . . . . . 19. . . . . . . . . . . . . . .1 Fabrication of K–nano–poly(sialate) carbon composite for fire-resistance testing . . . . . . . . . . . . . . . . . . . .2 The need for user-friendly systems . . . 18.5 Decorative stone tiles for floor and wall . . . . . . . .1. . . . . 21. . . . . . . . .5. 21. . . 21. . . . .6 Autoclave curing . . . . . . . . . . 21. . . . . .5. . . . . . . . . 19. .2 The development of high performance geopolymer matrices .3. . . . .3 Improvement with high-temperature post-treatment of the matrices K–PS / K–PSS . . . . . . . 21. . . . . . . . . . . . . . . . . . . . . . . 21. . . . . . . . . . . . . . 19 Development of user-friendly systems 19. . . .3 Thermal behavior. . . . 21.3 The position of civil engineers .3 Principles in geopolymer-composite manufacture . . . . . . . . . . . . . . . . . . . . .5 Infusion (infiltration) process . . . . . . . . . . . . . . . . . . .4 Resin Transfer Molding. . . . .1 Boiling water / steam . . . . . 18. . . . . . . .5 K+ versus Na+ . . . . . . . . . . . .2. .4. . . . viii . F.M-PSDS and K–nano–PSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. . . . . . . . .2.5. . . . . . . . . . 20. . . . . . . . . . . . . . . .1 Definitions . expansion at 250°C.3. . . .1 Heat resistance applications in racing cars . . . . . . . . thermal dilatometry . . 21. . .1 The 5000 year-old Egyptian stone vases . . . . . . . . . . . . . . . . 20. . .3 Tooling materials and techniques . . . . . . . . . .1. . .3. . . . . 18. . . . . . . . . .2 Tensile strength . . . 21 Geopolymer – fiber composites 21. . . . . . . . . 20. . . . . . . . . . . . . . . . .6 Restoration of ceramic works of art . . . . . .7 21. . . . . . . .4 Geopolymer cement for CO2 storage and sequestration . . .6. 22. . . . . . . .6.8 21. . 23. .1 Low Temperature Geopolymeric Setting of ceramic. . . . . . . .2. . . . . . . . . . . . . . . . . . . . . . . .2 Additional Raw-Materials from industrial wastes . . . . 23. . . . . . . . . . . . . .C. .6 The geopolymer route to high-temperature ceramics . . .1. . . 23. .1. . . . . at temperature lower than 500°C . 540 24. .4 User-friendly LTGS . . . . . 23. . . . . . . . . 23.1 Geopolymer foam fabrication . . . . .1.3 Gallium-.3 Examples of low-CO2 mitigation with geopolymer cements539 24. . . . . . . . . . . . . 508 . .1 High-tech Leucite and Kalsilite from geopolymer precursors . . . . 507 .1 Evidence of LTGS in ancient ceramics . . . . . . .5. .2 The making of Etruscan Ceramic (Bucchero Nero) in 600–700 B. . . . . . .6. . . . 22. . . . 526 . . . . Fatigue loading of K–nano–poly(sialate) / carbon composite K–nano–poly(sialate) / carbon / E-glass composite . . . . .1. . . .4 Passive Cooling in big cities . . . . . 23. . . . .1. 524 . . . . . . . . . . . . .2 Archaeological ceramics . . . Liebenbergite from geopolymer precursors . . . . . . . . . 23 Geopolymers in ceramic processing 23. . .2 Comparison between CaO. . 510 510 510 511 . . . . . . . .9 21. .4 The making of foamed clay bricks . . . . . . . . . . . . . .3 The making of Ceramic with black or brown-black finish in a wood campfire. . . . . . . . . . . 535 24. . . .1. . . . . . . . . . . . . . . . . . . . . 507 . . Na2 O and K2 O cementitious systems . . . . .2 High-temperature insulation . . .3 Resistance to water . 528 24 The manufacture of geopolymer cements 533 24. . .2. . . . . . . . . . . . . . . Geopolymer composite for strengthening concrete structures Geopolymer composite for fire resistant structural elements . . 518 . 518 522 523 524 . . . . .1. . . . . . . . . . . . . . . . . . . . . . . . .2 High-tech Pollucite. . . . . .3 Passive cooling of buildings in hot / arid climate 22. . .10 21. . . . 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23. . . . 515 . . . . . . . . 542 ix . . . . .1 Geopolymeric setting at room temperature below 65°C 23. . . . . .2. 23. . 23. .1. . . . . . . . . . . . . . LTGS .3 Low-energy modern ceramic processing and sustainable development . . 537 24. . . . . . .1. . 23. . . . . . . . . . . . . . . . .1 Foaming with Na perborate . . 23. . . . . .6 21. . Germanium-based geopolymers . . .4 Residual strength after fire exposure . β -Spodumene.1 Greenhouse CO2 mitigation fosters the development of geopolymer cements . . . 23. . . 22. 485 486 487 488 489 491 497 498 498 499 500 501 502 504 22 Foamed geopolymer 22.2 Geopolymeric setting at temperatures ranging between 80°C and 450°C . . . . . . . . . . . . . . . . . . . 534 24. . . .5 Ceramics with no clay? . . . . . . . . 22. . . . . . 23. . . .3 Insulating value of geopolymer foam . .1. . . .Contents 21. . . . . Geopolymer composite sandwiches for heat barrier . . .2 Foaming with H2 O2 .1 Cement CO2 emissions in developing countries . . . . . . . . . 512 .2. . . . . . . . . . . . 23. . . . . 25. . . . . . .3. . . . . .2 Leachate testing . 25. . . . . . . . . . . . . . . .1 Behavior in compression . . . . . . . . 544 24. . .3. .1 Compressive strength . . . . . 26.3 Heavy metals in mine tailings . . . . . .2 Mixing. . . .4 Geopolymer cement mass production with synthetic lava?556 25 Geopolymer concrete 25. . . 542 24. . . . . . . . . . . . . . . 25. 26. . . . .2 Results . . . . . . . . . . .3 Not realistic for mass production of geopolymer cements 548 24. . . . . . . . . . .4 The use of geopolymers for paint sludge disposal . . . . . 546 24. .2. . . . . . . . . . . . . .2 Creep and drying shrinkage . . . . . 25. 25. . . . . . . . . . . . . . . . . . . . .1 The manufacture of synthetic lavas .4. x . . . . . . . .5. . . . . . . . 25. . 563 564 566 568 568 569 570 571 571 571 573 576 581 585 588 589 589 590 591 592 592 595 595 596 597 597 598 26 Geopolymers in toxic waste management 26. . . . .4. . . . . . . . . . . . . . . . . . . .1 Muscovite based mine tailings . . .2 Manufacture of powdered K-silicate with MR SiO2 :K2 O < 2 . .2 Geopolymeric Solidification . . . .6 Long-term properties of fly ash-based geopolymer concrete . . . . . . . . . . 25. . . . . .1 Structural model for safe encapsulation . . .1 Solidification procedure . . .2 Molecular structure of synthetic lava . . . .5 Short-term properties of fly ash-based geopolymer concrete . . . . . .4 Coal honeycomb briquette ash . . . . .5 Treatment of arsenic-bearing wastes . . . . . . .4. 545 24. . . . . .2. . . 26. . . . . . . . . 549 24. . . . .6. . . . . . . . . . . . .4. . .2 Waste encapsulation requires MK-750-based geopolymers . .4 Unit-weight . . . . . 561 . . . . . 26. . . . . . . . . . . . . . . . . 26. .5. . . . . . . . . . . . .3. . . . . . . . . . . . . . . casting. . . . . . . . . . . . . . . . . . . . . . . .1 Mixture proportions of fly ash-based geopolymer concrete . . .4. . . . . . .2 Kaolinitic shale wastes . . . . . . . .2. . . 542 24. .3 The need for dry mix geopolymer cement . . .2. . . . 26. . . . . .3. . 25.2 Safe chemical bonding with MK-750-based geopolymers 26. .5. . . . . . . 25. . .5. . . . . . . . .3 The molecular structure of lava-based geopolymer cement554 24. . 549 24. 26. . . . . .3 Curing of fly ash-based geopolymer concrete . . . . . . . . . . . .1 Containment with barriers . . 26. . 552 24. . . . . . . . 26. . . 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. . . .2. . . . . and compaction of fly ash-based geopolymer concrete . 547 24. . . . .4. 26. . . . . . 25. . . . . .4 Design of fly ash-based geopolymer concrete mixtures .1 The use of solid silica + solid alkalis . . .Contents 24. . . . . . . .1 Nature of the Problem .8 Better than Portland cement concrete? . .3 Indirect tensile strength . .6 Ferronickel slag . . . . . . .2. 25.3. 25. . . . . . .7 Reinforced geopolymer concrete beams and columns . .5. . . . . . . . . . . . .3 Coal-waste mine tailings . . . . . . . . . . . .2 Compressive strength of aggregates weaker than geopolymer matrix . .4 Replacement of (Na. 542 24. . . 25. .2. . .2. . . . . . . . . . . 546 24. . . . . . . . . . . . . . . .1 Experimental . . 26. . . . . . . .K) soluble silicates with synthetic lavas . . . . . 545 24. .5. . . . . . . . . . . . . . . . . . . . . . .5 Public water reservoir sludge . . . . . . . . . . . . . . . management ap.6. . . . . . . . . . . .6. . . . 26.1 Specificity of uranium immobilization 26. . . .6. . . . . . . . . . . . . . . . 26.2 The uranium waste sludge . . . . . . . . .3 Two-Step solidification technology . . 608 xi . . . . . . . . . . 26. . . . . 26. . . . . .6. . . . . . . .5 Pilot-scale experimentation . . . . .6. . . . . .4 Results . . . . . . .6 Uranium mining waste treatment . . . 26. . . .Contents 26. . . .7 Geopolymers in other toxic-radioactive waste plications . . . . . . . . 600 601 602 603 603 606 . . . . . . . . . . . . . . . . . . . Part I Polymers and Geopolymers 1 . resulted in wide scientific interest and kaleidoscopic development of applications. The Third International Conference.org): "Since 1997. Eleven years later in June-July 1999. the Geopolymer Institute organized the Second International Conference Geopolymere ’99. geopolymer resins. until the end of 2006. the First European Conference on Soft Mineralurgy. hundreds of papers and patents were published dealing with geopolymer science and technology. it focused on the ways needed to "Turn Potential into Profit ". The extent of international scientific and commercial interest in geopolymers was evidenced by several large conferences. In France.geopolymer. was held at the University of Technology of Compiègne in June 1988 (Geopolymer ’88 ). van Deventer. On August 31.S. binders. 2005.J. From the first industrial research efforts in 1972 at the Cordi-Géopolymère private research laboratory. organized by the Geopolymer Institute and sponsored by the European Economic Commission. Since 2003. the published proceedings included 32 papers presented to the 100 scientists from over 12 countries. France. Geopolymer 2002 was held in Australia in October 2002.Chapter 1 Introduction The discovery of a new class of inorganic materials.org website ". Saint-Quentin. "geopolymer seminars" 3 . the Geopolymer Institute (a non-profit scientific organization founded in 1979) was proud to announce in its News on line (www. 80000 papers have been downloaded by 15000 scientists around the world at the geopolymer. Organized by the University of Melbourne and chaired by J. held in Saint-Quentin. cements and concretes. several national and international scientific institutions have organized "geopolymer sessions". They cover a wide scope of topics ranging from geopolymer chemistry. Introduction and "geopolymer conferences". Rangan. The main topic of the world congress was Geopolymer-chemistry and sustainable Development. at Daytona Beach. physical chemistry. and a Geopolymer Camp in July. waste encapsulation and new cement for concrete. September 2005. In 2009. colloid chemistry. the University of Alabama. USA. The conference and workshop covered the science and application of geopolymers. a new binder or a new cement for concrete? Geopolymers are all of these. They are new materials for coatings and adhesives. organized by the Geopolymer Institute. applications in construction materials. Green Chemistry and Sustainable Development Solutions.1 Geopolymer technology How should we consider geopolymers? Are they a new material. geology. applications in high-tech materials. The Geopolymer 2005 World Congress was a tribute to the 26th anniversary of the creation of the Geopolymer Institute by J. The properties and uses of geopolymers are being explored in many scientific and industrial disciplines: modern inorganic chemistry. with the frame of the International Conference on Advanced Ceramics and Composites. geopolymer cements. France. The wide variety of potential applications includes: fire resistant materi4 . chaired by V. Davidovits. and sponsored by the National Science Foundation. and in all types of engineering process technologies. organized by the American Ceramic Society.J. More than 200 scientists attended the congress and 85 international public and private research institutions presented a total of 75 papers. at Saint-Quentin. It gathered two major events in two different locations: the Fourth International Conference in Saint-Quentin. USA. matrix for fire/heat resistant composites. June-July.1. the International Workshop on Geopolymer Cements and Concrete in Perth. Australia. Florida. France. we agreed to propose every year two international events: a Geopolymer Symposium in January. and applications in archaeology. The published proceedings (Geopolymer 2005 ) includes 60 selected papers and is titled: Geopolymer. industrial wastes and raw materials. Perth. geopolymer concretes (including fly ash-based geopolymers). 1. organized by Curtin University of Technology. USA. 2005. mineralogy. organized by the Geopolymer Institute. new binders for fiber composites. a feldspathoid). archaeology and history of sciences. cements and concretes. On the other hand. cultural heritage.1). arts and decoration. as well as mineral feldspathoids and zeolites. low energy ceramic tiles. My chemistry background had focused on organic polymer chemistry and in the aftermath of various catastrophic fires in France between 1970–72. bio-technologies (materials for medicinal applications).1: Phenoplast polycondensation between phenol and formaldehyde. Figure 1. high-tech resin systems. in alkali medium. the aluminosilicate kaolinite reacts with NaOH at 100–150°C and polycondenses into hydrated sodalite (a tectoaluminosilicate. thermal shock refractories. In my pursuit to develop new inorganic polymer materials. I founded the private research company Cordi SA. refractory items. radioactive and toxic waste containment. I was struck by the fact that the same simple hydrothermal conditions governed the synthesis of some organic plastics in alkali medium. research on nonflammable and noncombustible plastic materials became my objective. In 1972.Geopolymer technology als. later called Cordi-Géopolymère. one of the oldest man-made plastic (Figure 1. which involved common organic plastic. composites for infrastructures repair and strengthening. From the study of the scientific and patent literature covering the synthesis of zeolites and molecular sieves — essentially in the form 5 . phenol and formaldehyde polycondense into the famous Bakelite invented by Bakeland at the beginning of the 20th Century. thermal insulation. foundry industry.3). decorative stone artifacts. low-tech building materials. high-tech composites for aircraft interior and automobile. or hydroxysodalite (Figure 1. Thus. the hardening of organic material (wood chips and organic resin based on urea-formaldehyde aminoplast) occurred simultaneously with the setting of the mineral silico-aluminate (Na–poly(sialate) / quartz nanocomposite). of powders — it became clear that this geochemistry had so far not been investigated for producing mineral binders and mineral polymers. such as fire-resistant chip-board panels. I recognized the potential of this discovery and presented an Enveloppe Soleau for registration at the French Patent Office. we discovered at the CORDI laboratory a geopolymeric liquid binder based on metakaolin and soluble alkali silicate.2: Polycondensation of kaolinite Si2 O5 . Here is the English translation of the hand written text: 6 .Al2 (OH)4 in alkali medium. An unusual feature was observed to characterize the manufacturing process: for the first time. when applying the same thermosetting parameters as for organic resin: 150–180°C temperature (Davidovits. in which the entire panel was manufactured in a one-step process (Davidovits. The first applications were building products developed in 1973– 1976.1 The invention of the first mineral resin. geopolymers (mineral polymers resulting from geochemistry or geosynthesis). The material was wet clay and could only be processed through compression or extrusion.1. we were involved in applying a methodology based on the transformation of kaolinitic clays. 1973). which I call in French "géopolymères". I proceeded therefore to develop amorphous to semi-crystalline three-dimensional silico-aluminate materials. 1.1. comprised of a wooden core faced with two geopolymer nanocomposite coatings. October 1975 Since 1972. We coined it "Siliface Process ". Introduction Figure 1. 1976). in 1975. The real breakthrough took place when. so far. We did not have at our disposal a fluid binder. and allows reducing the quantity of mineral binder used in the process. at Institut National de la Propriété Industrielle. The addition of a binder such as Na-Silicate leads to a liquid coating. 1975 we study the behaviour of metakaolin in our Siliface system. namely if we cure immediately the mixture. 7 . English translation from French: "Since October 1.Geopolymer technology Figure 1. the temperature in the center of a 15 cm thick core reaches 100°C after only 3-4 minutes. agglomerated with metakaolin + NaOH. then the exothermic reaction becomes very powerful and the product obtained is very hard after 2 minutes at 120°C. number 70528. In a panel covered with a Siliface facing. Paris. X-ray diffraction shows picks attributed to hydrosodalite and to Zeolite A.3: Enveloppe Soleau filed on 29/12/1975 Text of the Enveloppe Soleau filed on 29/12/1975. The first goal was to find a process for the manufacture of synthetic zeolites (type Zeolite A) by reacting metakaolin + NaOH. If we do not let this exothermic reaction to start at room temperature. We noticed that this mixture was prone to a very important exothermic reaction [t° exceeding 100°C after 1 hour of storage in a bag]. We immediately planed to use this exothermic reaction in the manufacturing of insulating blocks consisting entirely of a mineral core made of expanded shale or expanded glass spheres. INPI. Consequently.agglomeration of wood chips (A2 panels). Introduction It seems that metakaolin behaves as a hardener for Na-Silicate. On December 20. This opens very interesting new prospects. was a good fire resistant alternative to organic resin. Mineral polymer. Neuschäffer (1983) at the licensed German Company Dynamit Nobel (later Hüls Troisdorf AG) discovered the high reactivity of silica and alumina fumes. . Lone Star took the opportunity to challenge Shell Oil’s chemical expertise. 1979). or alone. Lone Star Industries and Shell Oil Company had just announced the formation of a corporation to develop. or by performing the suitable treatment to transform them into reactive raw material. ground. Then. . was traveling in Europe and learned about our new geopolymeric binders. and market a new class of materials that were expected to have a wide-ranging impact on construction. It was the first mineral resin ever manufactured. either by using natural raw materials for example standard clay like Clérac B16. The title of the patent. together with Na-Silicate. dried.Reaction with Na-Silicate (very fast hardening of the liquid binder). 1975. These materials were made from mineral aggregates combined with organic polymers and monomers. In early 1983. New patent filings will sanction all these discoveries. at this time the leading cement manufacturer on the American continent. . architectural.mineral and refractory fire barrier. In other words. produce. and engineering applications. It is a step towards more knowledge on the specific reactions involving mineral polymers.zeolites. J.. . Tests already undertaken on: . The commercial product.1. while Lone Star supplied the mineral aggregates. Shell Oil supplied the chemical expertise in organic polymers. Davidovits" End of translation. a mixture involving Na-Silicate + NaOH + Metakaolin has the following advantages: . coined Geopolymite™.Exothermicity (hardening to the heart of thick material).sand agglomeration (foundry cores). 8 . it was an "organic polymer concrete". by-products of the manufacture of high-tech ceramics. Another consequence of this discovery is that one can treat common clays at 500-600°C. to obtain a very reactive argillaceous raw material (metakaolin type) being able to be used in the preceding examples in place of pure metakaolin. By enlisting our new inorganic geopolymers. was self evident (Davidovits. the Chairman of Lone Star Industries Inc. In August 1983. a 4–6 hours hardening is enough to allow the landing of an Airbus or a Boeing. Lone Star Industries Inc. and highway roads. and for nonmilitary airports. Pyrament. The corresponding European Patent. 1989). Within one month. which is a latent hydraulic cementitious product. In 1994 the US Army Corps of Engineers released a well-documented study on the properties of Pyrament Blended Cements based concretes. Their purpose was to take advantage of the good properties of geopolymeric cement along with the low manufacturing cost of Portland cement. which are performing better than had ever been expected for high-quality concretes. A few months later.Geopolymer technology with James Sawyer as Head of Lone Star’s research laboratory in Houston. The resulting Pyrament®Blended Cement (PBC) was very close to alkaliactivated pozzolanic cement. 1984. 9 . It comprised 80 % ordinary Portland cement and 20 % of geopolymeric raw materials (Heitzmann et al. I started to develop early high-strength geopolymeric binders and cements based on both geopolymeric and hydraulic cement chemistries. which was exclusively dedicated to the implementation of this new class of cement. Texas. Geopolymer cements are acid-resistant cementitious materials with zeolitic properties that can be applied to the long-term containment of hazardous and toxic wastes. 1985). At Lone Star. Pyrament PBC was recognized in the construction industry for its ability to gain very high early strength quite rapidly (US Army Corps of Engineers. As of fall 1993. and 7 in other countries. Lone Star separated from the Shell Oil deal. In the case of a runway. accelerates the setting time and significantly improves compressive and flexural strength. formed the development company.. whereas plain concrete gets to this strength after several days. 22. The geopolymeric cement reaches a compression strength of 20 MPa after 4 hours. to the poly(sialate) type of geopolymer. in 1984. It was discovered that the addition of ground blast furnace slag. The first Davidovits and Sawyer (1985) patent was filed in Feb. industrial pavements. and titled "Early HighStrength Mineral Polymer" (US Patent). filed in 1985. Richard Heitzmann and James Sawyer likewise blended Portland cement with geopolymer. It was the ideal material for repairing runways made of concrete. Pyrament concrete was listed for over 50 industrial facilities and 57 military installations in the USA. is titled "Early High-Strength Concrete Composition" and these patents disclose our preliminary finding from the research carried out in August-September of 1983. My research on this very important geopolymer application started in 1990 at PennState University. The production of 1 tonne of kaolin based-geopolymeric cement generates 0. The safe containment of uranium mine tailings and radioactive sludge started in 1994 within the European research project GEOCISTEM.1. USA. Introduction In the field of so-called high-tech applications.Ca)–poly(sialatedisiloxo) cements. Lyon. The GEOCISTEM project was aimed at manufacturing cost-effectively new geopolymeric cements (Geocistem. Our results clearly show that solidification with geopolymeric cement (K. since 1982. Materials Research Laboratory. In 1994 the American Federal Aviation Administration (FAA) with R. More than a hundred tooling and other items have been delivered for aeronautic applications and SPF Aluminum processing. with the financial support of CANMET Ottawa. in Canada. former East Germany. six times less. Fly ash based10 . The Geopolymer composites were selected by FAA as the best candidate for this program (Lyon. 1991). essentially geopolymeric cements with very low CO2 emission. 1999). with the collaboration of BPS Engineering. 1988). and Comrie Consulting (Davidovits and Comrie. Germany. It was experimented on two important uranium-mining locations of Wismut. from combustion carbon-fuel. 1997). initiated a cooperative research program to develop environmentally friendly.Ca)– poly(sialate-siloxo) is a prime candidate to cost-efficiently fill the gap between conventional concrete technology and vitrification methods (Hermann et al.e. fire resistant matrix materials for aircraft composites and cabin interior applications. compared with 1 tonne of CO2 for Portland cement. i. funded by the European Union. On the other hand.. 1997). in emerging countries. Environmentally-driven geopolymer applications are based on the implementation of (K. Ontario Research Foundation.Ca)–poly(sialate-siloxo) / (K. Major efforts were dedicated to greenhouse CO2 mitigation with the development of low CO2 geopolymer cements. Heavy metal waste encapsulation with geopolymer started in 1987. the applications relate to sustainable development. the French aeronautic company Dassault Aviation (Vautey. Both fields of application are strongly dependent on politically driven decisions.180 tonnes of CO2 . 1990) has used geopolymer molds and tooling in the development of French Airforce fighters (Davidovits et al. Toronto. In industrialized countries (Western countries) emphasis is put on toxic waste (heavy metals) and radioactive waste safe containment. such as sodium and potassium hydroxide. Excerpts from the more important patents are included in some chapters. It is this void that we hope to fill with this book. Alkali-activated slag cements (called Trief cements) were used in large-scale construction as early as the 1950s. in newly industrializing countries. 1993).2 The scope of the book Although review articles and conference proceedings cover various aspects of the science and application of geopolymers. and a reference for additional information.5 % NaOH to 11 . dealt with the study of European fly ashes and the implementation of userfriendly processes (GEOASH. There are many examples in geopolymer science where an issued patent is either a primary reference or the only source of essential technical information. synthesis. were originally used to test iron blast furnace ground slag to determine if the slag would set when added to Portland cement. for students. a researcher or engineer is still at a loss to readily obtain specific information about geopolymers and their use. 2004-2007). properties. characterization. In the course of studying the testing systems for slag.The scope of the book geopolymeric cement has attracted intensive research world-wide because it emits even less CO2 . six to nine times more cement for infrastructure and building applications might be manufactured. alkalis.1). 1. up to nine times less than Portland cement. Each chapter is followed by a bibliography of the relevant published literature including patents. The industrial applications of geopolymers with engineering procedures and design of processes is also covered in this book. rapid-hardening binder (see Table 1. for the same emission of green house gas CO2 (Davidovits. chemistry applications are included. The usual activation called for adding 1. One particular project.3 Early observations In the 1930s.5 % NaCl and 1. 1. Background details on structure. GEOASH. Belgian scientist Purdon (1940) discovered that the alkali addition produced a new. This simply means that. There are two main purposes in preparing this book: it is an introduction to the subject of geopolymers for the newcomer to the field. In 1957. 1953). Table 1. Introduction 97 % ground slag mix (U. Zeolite molecular sieve 1930 1940 1945 : Barrer (UK) 1953 : Barrer. Borchert and Keidel (1949) prepared hydrosodalite (Na–PS) 12 . (France) 1972 : Davidovits (France) Siliface Process 1976 : Davidovits (IUPAC terminology) 1979 : Davidovits (France) Geopolymer Earlier. and calcium and sodium alumino-silicate hydrates (zeolites) as solidification products.S. Army Engineer Waterways Experiment Station. Victor Glukhovsky. He also noted that rocks and clay minerals react during alkali treatment to form sodium alumino-silicate hydrates (zeolites). Flint & al (1946). (USSR) 1969 : Besson et al. at the National Bureau of Standards were developing various processes for the extraction of alumina starting from clays and high-silica bauxites.1: Milestones in alumino-silicate chemistry. Keidel (Germany) Geopolymer 1950 1960 1970 1963 : Howell (USA) 1964 : Berg et al. Glukhovsky called the concretes produced with this technology "soil silicate concretes" (1959) and the binders "soil cements" (1967). confirming earlier work carried out on clay reactivity (see below). One intermediary step of the extraction process involved the precipitation of a sodalite-like compound. a scientist working in the Ukraine at the KICE (Kiev Institute of Civil Engineering in the USSR) investigated the problem of alkali-activated slag binders and in the 1960s and 1970s made major contribution in identifying both calcium silicate hydrates. White (UK) 1956 : Milton (USA) 1940 : Purdon (Belgium) 1953: Trief Cement (USA) 1957: Glukovsky (Ukraine) soil-silicate concrete Alkali-activation (slag) Hydrosodalite (kaolin) 1934 : Olsen (Netherland) 1945 : US Bureau of Standard (USA) 1949 : Borchert.1. at 180°C and 40 kg/cm2 hydraulic pressure.Early observations by reacting kaolinite in a concentrated NaOH solution.e. the industrial application of this kaolinite reaction with alkali began in the ceramic industry with Niels Olsen (1934) and was later on reinvented in 1964 by Berg et al. In fact.. carried out the synthesis of hydrosodalite from various phyllosilicates (kaolinite. montmorillonite. (Besson et al. Howell (1963) obtained a Zeolite A type. which was then hot-pressed (thermosetting process) in a mold equipped with a porous layer for water evaporation. using calcined kaolin (metakaolin) instead of kaolinite. the press must be equipped with safety devices (see for 13 . Paris. The setting time is relatively short. Besson. One component of clay. i. The resulting granules were cold-pressed at 15 MPa into a green body. and water (1–1. halloysite) at 100°C in concentrated NaOH solution. 1974). without firing.5 g water for 1 g NaOH). The thermosetting parameters were: – Temperature: 130°C to 180°C.e. In the absence of any pervious device. i. In 1969. at 100°C. at CORDI laboratory in Saint-Quentin. 10 to 30 bars. a Russian team. we developed a technology based on this geosynthesis. when degassing is not working. – Applied hydraulic pressure: higher than the saturated vapor pressure of water. In 1972. the ceramicist team Jean Paul Latapie and Michel Davidovics confirmed that water-resistant ceramic tiles could be fabricated at temperatures lower than 450°C. In 1972. the polycondensation into hydrosodalite occurs very rapidly in a time as short as 15–20 seconds per millimeter thickness. (1970). Caillère and Hénin at the French Museum of Natural History. but without any successful industrial implementation. for the selected temperature. which has been disclosed in various patents issued on the applications of the so-called "SilifaceProcess" (Davidovits and Legrand. 1969). 65 to 75 % of the total time is devoted to degassing water. To a natural kaolinite/quartz blend (50/50 weight ratio) was added and mixed solid NaOH in the proportion of 2 moles or less of NaOH for 1 mole Al2 O3 of the contained kaolinite. preventing the formation of hydrosodalite. reacted with caustic soda at 150°C.e. i. Yet. – Time: one minute per millimeter thickness at 150°C or 10 minutes for a 10 millimeters thick plate. due to the high internal pressure of water and the danger of explosion. kaolinite. 1. (1) (2) These reactions occur at room temperature.1. 2003. Introduction more details in Chapter 7). They contain naturally occurring mineral phases. 2004) 2CaO + Ca(H2 PO4 )2 + H2 O ⇒ CaO + 2CaHPO4 ·H2 O ⇒ Ca3 (PO4 )2 + 2H2 O MgO + KH2 PO4 + 5 H2 O ⇒ MgKPO4 ·6H2 O (Ceramicrete™). however. They have found a wide range of applications such as dental cements. The following are the most common examples (Wagh and Yeong. They represent another variety of mineral geopolymer. ceramics can be formed. Wagh.1 Phosphate geopolymers A very wide range of phosphate geopolymers may be synthesized by acid-base reaction between an inorganic oxide (preferably that of divalent and trivalent metals) and an acid phosphate. where Si is totally or partially replaced by P. The reaction product is generally a poly(hydrophosphate) or an anhydrous poly(phosphate) that consolidates into a ceramic. With trivalent oxides. By controlling the rate of reaction. A 14 . and hazardous and radioactive waste stabilization. construction materials.4.4 Phosphate-based geopolymer Phosphate ceramics are synthesized at room temperature and they set rapidly like conventional polymers. oil well cements. Otherwise. is their syntheses. similar ceramics can be formed at a slightly elevated temperature. notably apatite. They are formed by an acid-base reaction between a metal oxide and an acid phosphate. Virtually any divalent or trivalent oxide that is sparingly soluble may be used to form these phosphate geopolymers. The main difference between the silicate based geopolymers and phosphate geopolymers. it is recommended to wait until the item has cooled down to room temperature before opening the press. 1. Poly(sialate) geopolymers and their derivates are synthesized in alkaline environment. but phosphate geopolymers are fabricated by acid-base reactions. The reason that berlinite is able to have the same structure as quartz is because the aluminum and phosphorus ions are of similar size to silicon ions with following bond lengths Si-O 1.63 Å. Quartz.73 Å. (4) 1. P-O 1.63 Å. would seem to be very different from berlinite. 15 . The cristobalite form of aluminum phosphate may be obtained by heating the normal berlinite form of aluminum phosphate at an elevated temperature which is preferably in excess of 1000°C. SiO2 . Thus the same structure can be achieved since the aluminums and phosphorus can completely replace the silicons without alteration of the quartz structure. But if the formula of quartz is written as SiSiO4 instead of 2(SiO2 ) then the similarity is obvious. AlPO4 . which is formed by the reaction between alumina and phosphoric acid: Al2 O3 + 2H3 PO4 ⇒ 2AlPO4 + 3H2 O (3) It was also demonstrated that phosphate geopolymers of trivalent oxides such as Fe2 O3 and Mn2 O3 might be produced by reduction of the oxide and then acid-base reaction of the reduced oxide with phosphoric acid. The reaction may be described by the following equation: X2 O3 + X + 3H3 PO4 + nH2 O ⇒ 3XHPO4 ·(n+3)H2 O where X is Fe or Mn. Al-O 1.2 High-molecular phosphate-based geopolymers: cristobalitic AlPO4 Berlinite (AlPO4 ) is the only known mineral to be isostructural with quartz.Phosphate-based geopolymer good example is berlinite (AlPO4 ). Isostructural means that they have the same structure although the two minerals have rather different chemistries. The synthesis of cristobalitic (high-molecular) AlPO4 geopolymers follows two different routes.4. The first process includes sol-gel chemistry whereas the second system involves the reaction between phosphoric acid and metakaolinite MK-750 (see in Chapter 13). and networks of silicon and oxygen found in silica and the silicate minerals. The structures that result from this replacement closely resemble the silicate and aluminosilicate molecules: monomers.1. working on the transformation of geomolecules through geochemical processes during diagenesis. As observed by Noll (1968) it is possible to pass from the polymeric silicate to the polymeric covalent molecules of an organosiloxane by replacing the bridging oxide ions of the silicate anions with methyl groups. (1963) reported the correspondence in a study of disiloxane H6 Si2 O. dimers. When the organic radical is methylene the structures of the oligomeric poly-methyl-siloxanes are identical with those of poly(siloxonate) (SiO-Si-O) and poly(sialate) (Si-O-Al-O-Si) geopolymers. etc. The small content of organics is a key parameter governing the strength and durability of material in a large volume of inorganics. Some geopolymeric materials can last for a long time due to their unique geopolymeric structure. chains. Organic compounds can be incorporated into refractory macromolecules such as lignin and melanodin or humic materials (Henrichs 1992). Diagenesis of organic matter leads from biopolymers synthesized by organisms through "humin" to Kerogen. Almennigen et al.K. synthetic analogue of naturally occurring macromolecules (Kim et al.1 Organic-mineral geopolymers Silicone The similarity of the siloxane (Si-O-Si) structure in organo-silicones to the chains. by partial destruction and rearrangement of the main organic building blocks 16 .2 Humic-acid based: kerogen geopolymer T. Yen and his team. 1. Introduction 1.5 1. has been pointed out many times. trimers.. rings. 2006) have drawn attention to the concept of geopolymer in association with kerogen and petroleum.5. 2004... Kerogen-geopolymer is the most stable material and the final alternating product in the Earth. Chapter 2 and Chapter 14 focus on silicone poly(organo-siloxane). rings. for example in quartz. Humic materials represent an inorganic-organic structure. Geopolymers can be classified into two major groups: pure inorganic geopolymers and organic containing geopolymers. so-called three-dimensional crosslink. (Kim et al. a geopolymer. 2006).5. sheets and frameworks of corner-sharing silicate [SiO4 ] groups. 2004. Scand. while others have the opposite.. however. It is the most abundant form of organic carbon on Earth. about 1000 times more abundant than coal. This geopolymeric structure exhibits a similar organization to human bone and teeth. evident that both inorganics and organics are required in a mix at a certain ratio. and Traetteberg. typical inorganic-organic composites that show extreme durability and mechanical strength. which will result in a geopolymeric structure.Organic-mineral geopolymers Figure 1.. Hedberg.. It is. V. Acta Chem. O. K. The mechanism of geomacromolecule formation involves the crosslink reaction between the inorganic and organic materials. Kerogen is considered to be the major starting material for most oil and gas generation as sediments are subjected to geothermal heating in the subsurface. (1963). Ewing. 17. Kerogen geopolymers generally occur in numerous forms: some have more organics and less inorganics.4). which forms primarily from terrigenous remains of higher plants..4: Evolution of organic matter to kerogen-geopolymer (Figure 1. M. References Almennigen. 2455–2460. Kerogen is a geopolymer that contains a high content of organics. 17 . Bastiansen. A. . United Kingdom Patent UK 1. Emerging Technologies Symposium on Cement and Concrees in the Global Environment. Min. Davidovits J.481. filed Dec. Delft.18970 (FR 2. and Keidel J. Proceedings. It involved: Antenucci D.. Geopolymer ’88 Proceedings. Saint-Quentin. US Patent 4. Topic III. Division of Environmental Chemistry. Fernández-Pereira C. Process for the fabrication of sintered panels and panels resulting from the application of this process. Petr. pp. Toronto. and Davidovics M. Vol. Covina. Davidovits J. (1970). Stroitel’nye Materialy (USSR).and ButselaarOrthlieb V. Flint E.464. Reminikova V. Beitr. Davidovits J.S.. Demidenko B. 1976..454 (1977).22041 (FR 2.382). Mineral polymer.. French Patent Application FR 72. Davidovits J. C..L. American Chemical Society. u. (1988).. Bur. Davidovits J. US Patent 3.. Spain. Izquierdo and M. Rend. GEOASH (2004–2007).479 (1977).I. Early high-strength mineral polymer. Bishop D.C. 1. Newman E..386. Besson H.950.. Nugteren H.. Clarke W.324.1.290). filed Jan. Archaeological long-term durability of hazardous waste disposal: preliminary results with geopolymer technologies. Davidovits J. filed Jan. 1939–1949. Barcelona. Delft University of Technology.S..985. (1946). Solid phase synthesis of a mineral blockpolymer by low temperature polycondensation of aluminosilicate polymers. Geocistem (1997). 22. Davidovits J. Geopolymer: Ultra-High Temperature Tooling Material for the Manufacture of Advanced Composites".. (1949). (1991). (1993).. D269. and Nisamov N. Borchert W. (1985).349. (1976). 2.. 1367. Davidovits J. 1984..489. SAMPE Symposium. Stand. Institute of Earth Sciences "Jaume Almera".. and Luna Y. CSIC. GEOCIS- 18 . 31.. and Sawyer J. 2. 3.-J. Conditions de préparation de l’hydrosodalite à basse température.38746 (FR 2. Sept. 9. Res.P.. German Patent DE 25 00 151 (1979).999) and FR 73. Spain. 237–240.509. US Patent 4. J. 1975. 36. July 1997. and Comrie D. 21p. Querol X. Carbon-Dioxide Greenhouse-Warming: What Future for Portland Cement.. Extended Abstracts. Introduction Berg L. 1988. Illinois. Heidelb. See also: Long Term Durability of Hazardous Toxic and Nuclear Waste Disposals. The GEOASH project was carried out with a financial grant from the Research Fund for Coal and Steel of the European Community.. Liège. Caillère S. School of Industrial Engineering. Procédé de fabrication de panneaux agglomérés et panneaux resultant de l’application de ce procédé..36. and Wells L. The Netherlands.F.427 filed Jan. France. Nat.35979 (FR 2.L.S. 1985. 11. filed February 22. March 1993. (1974) French Patent FR 2. BRITE-EURAM European research project BE-7355-93. 1974. GEOCISTEM.227) and FR 80. University of Seville.246. Sci. Society for the Advancement of Material and Process Engineering. California. (1969). Synthesis Report and Final Technical Report.. Polymère Minéral. IUPAC International Symposium on Macromolecules Stockholm.028.. z. Shartsis L.. French Patent Application FR 79. New Polymers of high stability. Acad.. 125–134. see also US Patent 4. and Henin S.. Sevilla. 1975.A.. Belgium. USA. (1979). 63. 1974 .470. Davidovits J. ISSeP. Cordi-Géopolymère Sarl. Portland Cement Association. Chicago. and Legrand J. (1972).204. The GEOASH project is known under the contract number RFC-CR-04005. 10. Kiessig G. (2004). Cement Composition Curable at Low Temperature. Mississipi. Tocco. Germany). Chapter 6. Zoche US Patent 4. Journal de la Société des Industries Chimiques.. B.327. K. Ukraine (former USSR). Hermann E. Belgium.. (2006).608... Al. Geo-polymerization of biopolymers: a preliminary inquiry. H. US Patent 4. Neuschäffer K. Technology and Manufacturing and Fields of Application.. BRGM Bureau de Recherches Géologiques et minières. P.V.H. Saint-Quentin. 19 . Chem.522.D.W.. Philip. and Kirkpatrik T. (Journal of the Society of Chemical Industry). (1999).. (1994). Marini and S.. J.. Gravitt. 103–111. Mar.842.652 . (1968). MAS-NMR spectroscopy was performed by Z. 56. Doct Tech Sc. Potential for Use of Alkali-Activated Silico-Aluminate Binders in Military Applications. 191–202. Yen T. Neuschäffer.. Balaguru P.649. (1992). Kim D.W. 287 -317) on the "Siloxane Bonds in Molecules of Siloxanes and Anions of Silicates. Neuschäffer.. Howell P. Fire and Materials.K)2 [(Mg. 67–73.. Purdon A. Carbohyd Polym.J. Environ. Orléans..J. N. – C.. Gatzweiler R."). Rocher. Gebert H. P.B.G. Olsen N. Civil Engineering Institute. and Sawyer.. Geology Dept. Lai H. Engels US Patent 4. Malone. 119–149. Verlag Chemie. Heitzmann R. Corps of Engineers. Geol.. Zoche and H. Yen T. Glukhovsky V. (1985). US Army Corps of Engineers.O.-T. Academic Press. Properties of Geopolymer Matrix-Carbon Fiber Composites. US Patent 3.795 (1986). France. Husbands. Randal C. and Davidovits J. Kiev.393 (1985).. in particular. (1965). 59.W. Kunze C.Fe2+ . 211–228.A. G.G. US Patent 4. Geopolymer ’99 Proceedings. Foden A. Lyon R. L’action des alcalis sur le laitier de haut-founeau (The action of alkalis on blast furnace slag).A. University of Cagliari.Organic-mineral geopolymers TEM is the acronym for "cost effective GEOpolymeric Cements fo Innocuous Stabilisation of Toxic EleMents".. Petrisor I.. Their Properties. Chemistry and Technology of Silicone. Engels and G. German Patent 600. (First published in the German language under the title "Chemie und Technologie der Silicone". 21. Early diagenesis of organic matter in marine sediments: progress and perplexity.. Malone P. 39. Engels H. Performance of Concretes Proportioned with Pyrament Blended Cement. Geopolymer formation and its unique properties. Laube R. Chilingar G. The primary objective of the Geocistem research project was the fabrication of alkali-melilitic glass (Ca. Gimeno.E. Davidovits J. Report WES/MP/GL-85-15. Vitrification at temperatures ranging from 1200°C to 1350°C and mineral binder formulations were performed by J.. Spielau.H. France.F. (1997). Belgium. Noll W..H.114. by Tony B. Kim D.. 51[1]. Gabelica at that time in Namur University. 213–217. The selection of European geological materials was carried out by – P. University of Barcelona. Italy. Spain.3 (pp.. see also K. 1989.M. – D. Soil silicates. (1934)..F. Solidification of various radioactive residues by Geopolymere with special emphasis on long-term stability. and Davidovics M. 1960. Spielau. Degree thesis. G. (1963).Si)3 O7 ]. US Army Corps of Engineers.F. Bruxelles.533.603.Y.W.Na.. Vicksburg. (1986). Davidovits in the laboratory of Cordi-Géopolymère SA.L. Henrichs S. (1940). and Zoche G. Wagh A. France. Wagh A. Saint-Quentin. French Aerospace ’90 Aeronautical Conference. Publications of the Geopolymer Institute (www. Geopolymer 2005.. 1999.. Geopolymer Workshop. France. Chemically Bonded Phosphate Ceramics: I. edited by Joseph Davidovits. Wakeley. D. J. Indianapolis.org) Geopolymer ’88. 20 . Vautey P. Introduction Lilian D. April 1994. Australia. 1–22...1.. Comparison of Mechanical Properties. A Dissolution Model of Formation. (2003). Perth. Washington.. June 1988. Geopolymer Chemistry and Applications. of the American Ceramic Society. Compiègne. Proceedings of the First European Conference on Soft Mineralulgy. edited by Joseph Davidovits. Sept. (2004). 86 [11] 1838–1844. Proceedings of the World Congress Geopolymer 2005. Chemically Bonded Phosphate Ceramics – A Novel Class of Geopolymers. June 12–14. Ceram. 2005. Proceedings of the 106th Ann. 4th International Geopolymer Conference.geopolymer. Proceedings of the Second International Conference Géopolymère ’99. Ralph Davidovits and Claude James.S. 1st edition march 2008. July 2005. 1990 pp. Geopolymere ’99.S. Geopolymer. Final Report CPAR-SL-94-2. Green Chemistry and Sustainable Development Solutions. and Jeong S. 2nd edition June 2008. edited by Joseph Davidovits and Joseph Orlinski. by Joseph Davidovits. (1990). US Army Corps of Engineers. Mtg. Saint-Quentin. France. June 30-July 2.Y. Soc. Thermoplastic and Thermosetting Composites for Structural Applications.C. Dépôt légal juillet 2011 . The body text is set in 11pt with Computer Modern Roman designed by Donald Knuth. Italic.A This book was typeset using the L TEX typesetting system and the memoir class. Smallcaps. and Slanted are all from Knuth’s Computer Modern family. Other fonts include Sans.
Copyright © 2025 DOKUMEN.SITE Inc.