SUMITOMO CORPORATIONPROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS 6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span a) INPUT DATA :(Refer Appendix-E, for EOT drawing) Crane Capacity Weight of Crab Weight of Crane Bridge Self weight of the Rail Width of Walk way Dead Load of the Walkway Live Load of the Walkway Height of the Crane Rail Span of the Crane Girder, Lg Centre to centre distance of , Lc Rail (i.e. Span of Crane Bridge) Mini. approach of crane hook to the gantry No. of Wheels Wheel Spacing1 Wheel Spacing2 C.G of loading from left load Impact Factor : Vertical Horizontal (Transverse to rail) Vertical Horizontal Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf = = = = = = = = = = = = 1050 kN 320 kN 780 kN 2 kN/m 0.6 m 1.5 kN/m² 5 kN/m² 65 mm 11 m 32 m All below references are BS 5950, part-1, UNO = = = = = = = = = = = = 1.800 m 4 1.40 m 4.70 m 3.75 m 30 % 10 % 600 500 1.6 1.6 1.4 2 265.0 N/mm 1.40 4.70 1.40 Deflection Factor Table:5 Load Factor : Design strength of steel, py Maximum unsupported length Top Flange Table:6 2.60 m 146905687.xls.ms_office .xls REF gvrs/ST SUMITOMO CORPORATION PROJECT : SKS.3 kN 547 kN 875.ms_office .a) Conc.00= 1682.1.40 / 4 67.66 8.73 kN/wheel Wheel Load by calculation b) LOAD CALCULATIONS: b.b) Uniform Dirstributed Load Self weight of rail Walkway Dead Load Walkway Live Load Self weight of girder Factored load b.68 kN = 0.60 x 547.40 b.xls REF gvrs/ST .60 m Kicker RL 32.938 kN 420.7 126.20 + 780 x 32.40 x 8.70 1. Prai . static Wheel Load Load due to Impact Total load Factored Load say Wm = = = = 421 kN 875.1.36 kN/wheel from Fig-1 BS:2573.45 1.4 kN 4 wheels are resisting the total lateral load Factored lateral load W df = 1.7 875.TITLE: DOC.30 x 421 W mf = 1. Lateral load = 168.80m (1050+320)kN = = 780 kN 0.30 1.61 = = = = 2.06 kN/m kN/m kN/m kN/m kN/m kN/m Maximum lateral load per wheel is equal to 10% Static vertical wheel load.40 4.00/2)/32.61 12.00 0.60 x 168.00m RR RL = (1370 x 30.50 4.2) Horizontal Loads W df = 1.350MW CCGT Power Plant DOC. Dept Structural REFERENCES / REMARKS Depth of the surge girder Maximum unsupported length Bottom Flange 1. Loads Max.part-1 146905687.1) Vertical Loads b. l = 0.60 m 2. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.xls.1 W H = 0.10(421*4) Max. 7)/11 + 12.ms_office .525 = = 1443.xls REF gvrs/ST .68+12.4 .0/2) = (4 x 875.68kN 12.8] /11+ (12.33²/2) = 4904.68x(11 . Prai .5 . Reaction c.m c.1.SUMITOMO CORPORATION PROJECT : SKS.0.33) -875.xls.06kN/m = = C RA 11.517 kN.428 kN 2374.11*0. Dept Structural REFERENCES / REMARKS c) MAXIMUM BENDING MOMENT AND SHEAR FORCE: c.06kN/m RA 11.68kN 875.06 x 4.53 x 4.1 x 11.1) For vertical loads c.68 x 1.68kN 875.0-3.930 kN 1260.930 kN Max.1.350MW CCGT Power Plant DOC. CG.06x11.93 = 2374.TITLE: DOC.00m Reactions :Ra = 4x875.00m CG.(12.68kN 875.a) Bending Moment :The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span.2) For Horizontal loads :- 146905687.525 kN Mid Span of Crane Girder RB Rb = 2191.2374.1 x 11.7 x [11. Mux1 = (1443. OF GANTRY Reactions: RA RB = 4 x 875. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.68kN 875.68kN 12.1.b) Shear Force:875.7) + (12.0) . OF LOADS 875.25*4.443.834 kN Maximum Bending moment occurs at C.06 x 11 /2 = 4x875. xls REF gvrs/ST .5 x 67.b) Axial Force: Because of Lateral force.75m 11.177.0 .xls.27 / 0.8]11.2.m c.SUMITOMO CORPORATION PROJECT : SKS. Prai . Crane Girder is laterally bending between Node points of surge Girder Muy = 67. Horzontal reaction RH d) DESIGN OF GANTRY GIRDER: y 146905687.36kN 377. Max lateral bending Moment 4904.78 kN RA Reactions :RA RB 3.350MW CCGT Power Plant DOC.c) Shear force :67.855 kN 177.784 kN.4[11.ms_office . Dept Structural REFERENCES / REMARKS 67.585 kN Max. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.3.360 .36 / 875.2.27 kN-m 628.585 = = = 177.36kN 67.36kN C c.TITLE: DOC.a) Local Bending Moment at C.68 F=Axial force in the surge girder 377. the Crane Girder is subjected to axial force.6 /4 43.00m RB = 4x 67.2.6 c.360 x 2.00 = 4 x 67.585 kN 91. 4. A Flange Area on one side.38 = 58.1) Shear Capacity Web slenderness.7. e.4. Mb 146905687.3. Avx=t*d Critical Shear strength.3. T Effective depth of web.1 Satisfactory Cl. x : D/T Sectional Area.50 Shear Capacity.3 Satisfactory d.350MW CCGT Power Plant DOC.374.08E+08 101.4.2.4. Ixx Second moment of inertia. b/T Web slenderness.93 kN Cl.SUMITOMO CORPORATION PROJECT : SKS. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.6 kN >2. u Torsional index. Vcr=qcr*Avx 5.4. = sqrt(275/py) = = = = = = = = = = = = = = = = = = 1250 450 20 40 1170 1.02 23400 mm2 159 N/mm2 3720.59E+10 6.70E+06 2. Syy Buckling parameter. d/t d.28E+06 1 31. qcr for t/d =58.5. D Width of the section.25 59400 18000 215 1. Dept Structural REFERENCES / REMARKS Depth Width t T = = 1250 mm 450 mm 20 mm 40 mm 40 20 x x 1250 450 Properties :Depth of the section. Iyy rmin Section modulus.ms_office . B Thickness of web. Sxx Plastic modulus.4. Ag Out stand width of panel.xls.5.50 < 63*1.xls REF gvrs/ST .2) Moment capacity. Cl.TITLE: DOC.2 and Table:7 = = = = 58.5 mm2 mm2 mm Outstand element of compression flange.4.3.02 = mm mm mm mm mm mm4 mm4 mm mm3 mm3 mm3 mm3 conservatively as per Cl.50 Plastic Plastic Cl.96E+07 4. Zyy Plastic modulus.19 2. d Second moment of inertia. Prai . d/t Shear area parallel to the web. t Thickness of flange. b Constant. Table:21. Zxx Section modulus.54E+07 2. 4.a) Lateral-torsional buckling moment.1.3.5 Table:27c e.m >4904.832 1. Mb: ( as per clause 4.7.4.2) Overall buckling check (As per Clause 4. py pc = = = 25.350MW CCGT Power Plant DOC.00 N/mm2 pb*Sxx 7843. l = LE/rmin Reduced design strength.822 0. u l/x N Slenderness factor. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.000 0.69 265.2 e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) e.7.23 kN.2. n lLT pb Buckling resistance. Prai .5 conservatively conservatively Table:9 Table:14 Table:12 Satisfactory Cl. m Buckling parameter. part-1) Effective length factor = 1.0 1.00 N/mm2 Cl. Mb = = = = = = = = = = = = = nunl 1.BS 5950.xls.69 245. BS 5950: part-1) F/Ag*pc + mMux1/Mb + mMuy/py*Zyy = < 0.ms_office .3.part-1: Beam partial restrained against rotation) Effective length.m > m*Mux1 2.3.60 m 25.1) Compressive strength pc :Slenderness.52 kN.xls REF gvrs/ST .3 of BS 5950.69 Cl. n Uniform moment factor.8. l = LE/rmin Equivalent slenderness.3.TITLE: DOC.00 ( Destabilizing condition) (As per table:9.7.50 1. lLT Slenderness correction factor.0 1.SUMITOMO CORPORATION PROJECT : SKS.00 25.000 Satisfactory f) CHECK FOR LONGITUDINAL STRESS: 146905687. Dept Structural REFERENCES / REMARKS d.4. LE Slenderness.7.00 N/mm2 240.3. 0 /500 = Vertical Deflection:3. h = Span / 500 = 11.m CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb = 0.59E+10)} x {[3 x 1.xls REF gvrs/ST . v = Span / 600 =11.960 < 18.84 kN.TITLE: DOC.0 = Allowable deflection for horizontal loads d lim.75/11)³] + [3 x 3. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build. OF GANTRY RB dv = 5 384 ´ WL EI 4 + PL 3 48EI ´ê é 3a1 ê L ë .0) 120.350MW CCGT Power Plant DOC.14 kN Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2 = 175136 x (65 + 625.000.960 mm 11.00 CG. Dept Structural REFERENCES / REMARKS Height of rail 5% of the static wheel load = = 5/100 x4x 875. 146905687.00 mm CG OF LOADS 547.4ç 3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù + ´ 4 ÷ ú ê ç ÷ ú èLø û èL ø û ú 48EI ê ú ë L = = #VALUE! {( 2 x 547300 x 11000³)/( 48 x 205000 x 1.0 / 600.ms_office .xls.61kN/m RA c 11.SUMITOMO CORPORATION PROJECT : SKS.681 Satisfactory g) CHECK FOR DEFLECTION: Allowable deflection for vertical loads d lim.15/11 .15/11)³]} 11.33 mm 22.3kN = = 18.15 1.4 x (3.3 HENCE SAFE CHECK dv < Allowable Deflection h) Crane Girder Welding Calculation Top Flange & Web is welded by full Penetration Butt weld.4 x (1.75 547.3kN 8.000.75/11 .7 65 mm 175. Prai . ms_office . Dept Structural REFERENCES / REMARKS Bottom Flange Weld.421 mm 12 mm Outstand of web stiffeners.00 mm 450.60 mm2 25.xls.08 mm mm Satisfactory Bearing resistance of the stiffener Bearing Stress in member = 2 211.88 331. ts Width of the stiffener. Horizontal Shear = FAy/ Ixx A.631.626 N/mm Size of the weld on each side 1.707) Provide weld as i) DESIGN OF BEARING STIFFENER Bearing check: Minimum area of stiffener in contact with the flange = Fx = pys = Minimum Area of stiffener required Conside Thk.1.00 mm 11250.2 of BS5950: Limits: 19tse 13tse = = 483.5.00 mm2 Satisfactory = 5.4. bs Area of the stiffener Check for outstands Outstand from the face of the web = = bs/2-web thickness 215. Of Stiffener .00 mm = = = = 0.G of flange Plate from C.350MW CCGT Power Plant DOC.5.xls REF gvrs/ST .8*Fx/pys Cl.930 kN Horizontal Shear 2. Prai .TITLE: DOC. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.4.6/ ( 2 x 215x 0.C.G of section Ixx of the section Maximum vertical shear = = = = 2 18000 mm 605 mm 4 1.10 N/mm 146905687.374.9 x 1000 x 18000x605 / 15851055000 1631.Area of the Bottom Flange y . as per Cl.59E+10 mm 2374.4.2 External reaction Design strength of stiffener 7169.SUMITOMO CORPORATION PROJECT : SKS. 4.5.SUMITOMO CORPORATION PROJECT : SKS.0 N/mm2 Satisfactory Cl.4.68 kN Satisfactory Web buckling under wheel load (as per Cl.00 mm 4 1. Dept Structural REFERENCES / REMARKS < 265 Buckling resistance of the stiffner (as per Cl.9 x1000/(1170x2x0.1.4 Compressive strength.1.58 245.00 mm 6. Satistactory Weld between Stiffener & web Vetical Height avilable for Welding = 1170.part-1) Design strength of the stiffner in buckling = = py-20 245.90E+08 mm 99.350MW CCGT Power Plant DOC. Prai .38 mm 12.5 N/mm2 Buckling resistance check as a column: Area of combined section 450 x25 + 20 x 20 x 20 Ixx Rmin = I / A l = l / Rmin =1250x 1000 / 99.25 kN > 2374.TITLE: DOC.00 mm Thk.27c.11.BS 5950.xls.5.ms_office .7*215) Provide weld thickness = j) Shear buckling of Web under Wheel load Web bearing under wheel load (as per Cl. of weld reqd =2. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.1.xls REF gvrs/ST . BS 5950.part-1) 146905687.00 N/mm2 4716.93 kN Tb.4.374.4.4.2. part-1) Load dispersion under wheel.lw= 2(Height of the wheel + Thickness of the flange) = 210 mm Bearing Capacity = lw*py*t = 1113 kN > 875.5 of BS5950.5.74 mm 12. pc Buckling resistance of the stiffener = = = = = 2 19250. 350MW CCGT Power Plant DOC. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build.82 N/mm (No.2. Prai . Dept Structural REFERENCES / REMARKS b1 = Stiff bearing length = = 2(Height of the crane rail) 130.07 1.00 RSC cm2 cm m = = = = 175. pc Buckling resistance.00 mm n1 = = = = = Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 1250 mm Depth of the web 1170 mm = 2. of bolts provided Stress in Bolts l) Design of Surge Girder Design of bracing members Maximum Horizontal force Max Force in diagonal Angles provided Area of the Section Rmin of the section Length of diagonal Inclination of diagonal w.ms_office .1 d Web slenderness.bays are not to count in the sketch) Allowable Stress in member l=1.xls REF gvrs/ST .TITLE: DOC.5.50 32.25 = = = 70 N/mm2 (b1+n1)*t*pc 1932.585 kN 335.5 *100 / 3.xls.5*depth of the web/thickness of the web = 146.86 146905687.60 3.00 kN > 875.00 mm 4.r.78 N/mm < 160 N/mm2 2 214.14 kN 24.1 kN 100X100X8 15.07 = 48.00 2 96. l Compressive resistance.t Horizontal Stress in member = = = = = = = = 177. Pw Table 27c Satisfactory k) Connection for Longitudinal Force Longitudinal Force Dia of bolt provided No.SUMITOMO CORPORATION PROJECT : SKS.68 kN Cl.4. 1 Satisfactory Cl.02 28400 mm2 159 N/mm2 4515.11 N/mm = 161.29 = 79. NO : Checked By 0 Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev DESIGN CALCULATIONS Page of Area: Turbine build. Tb Thickness of the web plate.xls REF gvrs/ST .4.6 kN >2.3.350MW CCGT Power Plant DOC. bottom chord members are designed for compression) Member size provided Area of the Section Rmin of the section Unsupported length Maximum axial force.44 < 63*1.93 kN Satisfactory Cl. Wb Thickness of the flange plate.3 Satisfactory 146905687. Ab=Me/Db Stress in top flange=Ab/Wb*Tb Design for shear Web slenderness Shear area parallel to the web Critical Shear strength Shear Capacity. Db Width of the flange plate. tb Eccetricity of Crane girder from grid Maximum Vertical force Design for Moment Moment due to eccentricity.93 mm mm mm mm m kN = = = < = = = = 2374.93 kN. Prai . Cl.xls.6 *100 / 3.2.03 Compressive stress.SUMITOMO CORPORATION PROJECT : SKS.00 N/mm2 > 214.00 32.60 MS profile cm2 cm m 628. pc = = = = = = 300X150X32 40.4. F Stress in member Allowable Stress in member l=2.82 Table 27c Satisfactory Design of bottom chord member (as surge may come on either direction.78 kN 2 154.00 1. = = = = = = 1200 600.3078569 N/mm2 265. Me Axial Force in Top flange.m 1979.80 3.4.29 2.11 Table 27c Satisfactory j) Design of Crane Girder Bracket Depth of the bracket.2.4.374.0 N/mm2 45.00 N/mm2 > 154. Dept Structural REFERENCES / REMARKS Compressive stress.00 2374.4.ms_office .00 25.11 kN 10. pc = 225.TITLE: DOC. 20 G Ixx 4 mm mm 21 760000 28 1867000 35 4164000 40 7794000 40 12233000 40 18193000 45 26946000 45 38168000 50 63626000 60 100080000 60 150828000 Iyy mm4 126000 259000 599000 1023000 1210000 1404000 1872000 2191000 3108000 4306000 5048000 Rxx mm 29.30 7.30 22.80 80.40 22.90 19.10 14.10 136.3036 300 90 0.2591 250 80 0.60 24.40 7.60 154.30 Zxx Zyy mm3 mm3 20300 4700 37300 7500 66600 13100 103900 19400 139800 22800 181900 26300 239500 32800 305300 38400 424200 46800 571900 57000 754100 66600 Area mm2 867 1170 1619 2088 2438 2821 3301 3867 4564 5366 6293 146905687.70 5.80 23.1914 200 75 0.30 90.4212 400 100 0.30 99.40 12.70 6.0681 100 50 0.ms_office Page 12 of 29 ISMC .10 8.00 23.40 24.10 28.3583 350 100 0.00 50.80 26.10 6.20 11.20 22.2214 225 80 0.50 8.40 4.5/21/2013 9:48 PM Name ISMC 75 ISMC 100 ISMC 125 ISMC 150 ISMC 175 ISMC 200 ISMC 225 ISMC 250 ISMC 300 ISMC 350 ISMC 400 Depth Breadth wt/m mm mm kN/m 75 40 0.1639 175 75 0.xls.00 23.10 7.00 10.70 23.10 13.30 19.30 28.40 14.70 61.60 Cyy mm 13.10 70.40 118.80 Ryy mm 12.1271 150 75 0.4940 Tf mm 7.00 5.10 15.20 22.60 40.0918 125 65 0.00 13.10 22.10 9.30 23.30 Tw mm 4.00 21.60 8.50 15.40 5. 0 10.2 Zxx mm3 51500 71840 96853 145371 223540 305938 410512 573560 778874 1022920 1350702 1808732 3060433 Zyy mm3 10880 11653 13150 18889 30000 39691 53520 64843 76814 88871 111200 152200 252476 146905687.0 7.5 152.6 10.15 G mm 35 35 40 50 55 60 65 80 80 80 90 100 140 Ixx mm4 2575000 4490000 7264000 12720000 22354000 34418000 51314000 86034000 136303000 204584000 303908000 452183000 918130000 Iyy mm4 408000 437000 526000 850000 1500000 2183000 3345000 4539000 5377000 6221000 8340000 13698000 26510000 Rxx mm 42.9 83.6 8.2 113.1 242.5 10.85 27.6 18.7 173.1 241.6 21.95 45.524 140 0.9 161.5 14.2 30.2 12.5 9.4 14.0 7.xls.00 32.5 202.373 140 0.4 4.80 35.442 140 0.616 150 0.724 180 0.40 37.7 16.0 4.8 71.9 123.0 4.50 17.0 5.0 11.05 20.4 379.0 6.149 90 0.5 181.0 4.1 509.115 75 0.0 14.130 80 0.5 28.4 26.0 89.1 103.226 A mm2 1460 1660 1900 2462 3233 3972 4755 5626 6671 7846 9227 11074 15621 Tf mm 7.8 12.5 12.5 23.1 8.869 210 1.4 10.ms_office Page 13 of 29 ISMB .0 6.4 28.9 134.193 100 0.2 20.2 16.0 8.5 20.0 R1 R2 mm mm 9.9 9.2 41.4 Ryy mm 16.1 35.254 110 0.0 52.4 17.0 7.5/21/2013 9:48 PM Section ISMB100 ISMB125 ISMB150 ISMB175 ISMB200 ISMB225 ISMB250 ISMB300 ISMB350 ISMB400 ISMB450 ISMB500 ISMB600 H mm 100 125 150 175 200 225 250 300 350 400 450 500 600 B wt/m mm kN/m 75 0.90 18.25 31.8 11.8 5.9 7.5 8.0 17.0 4.25 23.5 9.5 17.8 Tw mm 4.5 6.0 15.5 12.95 29.0 5.3 194.0 14.2 16.0 61.7 H2 mm 17.65 25.0 334.6 7.4 28.2 7.5 5.2 424.7 142.7 6.0 H1 mm 65.2 93.6 288.0 7.312 125 0.0 13. part-1.00 kN/wheel say Wm = = = = 50.60 ii) Uniform Dirstributed Load Self weight of rail Self weight of girder Factored load W df = 1.30 m 30 % 10 % 16 kN 1000 1000 1.40 x 2.DESIGN CHECK 1) INPUT DATA (Refer Appendix-A.0 15. Lg Mini.00 kN 65 kN 104.70 m 8.6 1.00 0.49 kN/m 3.00 kN/m 1.b) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load.00 kN = 0.60 #### 0.70 m 2) LOAD CALCULATIONS Wheel load calculation Wheel Load by Vendor 2. approach of crane hook to the gantry No.60 m 0. of Wheels Wheel Spacing1 C.0 104.49 kN/m 2.a) Vertical Loads i) Conc.000 m 2 0.49 kN/m 2. Loads Average static Wheel Load Load due to Impact Total load Factored Load = 50.1 from Fig-1 .DESIGN OF CRANE GANTRY GIRDER Project : Building : Girder Type : PRAI POWER 350 MW CCGT POWER PLANT PROJECT CW PUMPHOUSE ( INTERNAL) EXISTING CRANE BEAM .0 kN 104.4 2 275 N/mm All below references are BS 5950.7 m 1. py Maximum unsupported length Top Flange Maximum unsupported length Bottom Flange Table:6 8.G of loading from left load Impact Factor : Vertical Horizontal (Transverse to rail) On Stopper Deflection Factor Vertical Horizontal Imposed load vertical -gIvf Imposed load Horiz. for EOT drawing) Crane Capacity Weight of Crab Weight of Crane Bridge Self weight of the Rail Height of the Crane Rail Span of the Crane Girder.60 x 65.30 x 50 W mf = 1.6 1.49 = = = 1. Table:5 Load Factor : Design strength of steel.gIhf Dead load gdf = = = = = = = = = = = = = = = = = = = = = 100 kN 0 kN 0 kN 1 kN/m 70 mm 8. l = 0. 7/2) = (2 x 104.40 kN.09E+06 mm3 .0 x [8.2 = 1.m Max. d Second moment of inertia.3]8. T Effective depth of web.70/2 2x104+3.7 .60/2/8.b) For Horizontal loads i) Local Bending Moment at C.759 = = 122.49x8.60 x 16. Reaction 3.35) -104 x 0.000 x 8.00 / 2 = 8.0 kN BS:2573. t Thickness of flange.0.60 x 10.5 x 8.8 = 11.7) .9 = 19.45 . ( refer diagram at deflection check) Reactions :Ra Rb = = 104x(1 + 0.9 = 304.59 kN Maximum Bending Moment Mux1 ii) Shear Force:Reactions: RA RB = 2 x 104.76 kN 115.35²/2) = 355.m ii) Shear force Reactions :RA RB = 2x 8.90 mm = 4.70 = 2 x 8. Zxx = 609.c) Stopper Loads Factored lateral load Wsp = 1.7.10(50*2) = 10.49x8.7) +3.49 x 4.part-1 2 wheels are resisting the total lateral load Factored lateral load 2. Ixx Second moment of inertia. D Width of the section.7 /4 = 17.30E+07 mm4 = 69.6 kN/stopper W df = 1.a) For vertical loads i) Bending Moment The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. Iyy rmin Section modulus.7 = 537.216.448 = = = 15.00 = 25. Lateral load W H = 0.15. Crane Girder is laterally bending between points of restrained at support Muy = 8.5 x 8.7-0.0[8.(3.7+ (3.122. B Thickness of web. Horzontal reaction RH 4) DESIGN OF GANTRY BEAM Properties :Depth of the section.Max.25E+09 mm mm mm mm mm mm4 UB610X305X149kg/m = 9.35 kN 216.000 .20 kN.00 kN/wheel 3) MAXIMUM BENDING MOMENT AND SHEAR FORCE 3.552 kN 15.00 kN = (122.0) + (3.3] /8.76 x 4.448 kN Max.00 = = = 216.00 kN 22.448 kN 0. Mb = = = = = = = = = = = = = 10.5.3. Avx=t*d Critical Shear strength.2 and Table:7 = = = = 45.a) Shear Capacity Web slenderness. d/t 4.00 = = 7.b) Moment capacity. part-1) Effective length factor = 1.3 of BS 5950. Zyy Plastic modulus.13 kN.1.5 conservatively conservatively Table:9 Table:14 Table:11 Satisfactory Cl.000 Satisfactory 6) CHECK FOR LONGITUDINAL STRESS Height of rail = 70 mm .14 < 63*1.3.20 kN.7. Vcr=qcr*Avx = 6.44 m 149.00 N/mm2 pb*Sxx 498. l = LE/rmin pc = = 149.4.14 Shear Capacity.0 0.3 Satisfactory 4.57E+06 mm3 = 9. x : D/T Sectional Area.3.4.2 5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) 5.3.8. BS 5950: part-1) mMux1/Mb + mMuy/py*Zyy = < 0.4.20 ( Destabilizing condition) (As per table:9.36 81 N/mm2 Table 27c 5.00 6392.37E+05 mm3 = 0. Sxx Plastic modulus.part-1: Beam partial restrained against rotation) Effective length.3.50 0.45 mm = 1.4.43 Plastic 45.68 mm2 165 N/mm2 1054.14 Plastic Cl.4. Syy Buckling parameter. u Torsional index. e. n lLT pb Buckling resistance. b/T Web slenderness.1 Satisfactory Cl.886 = 32. Mb i) Lateral-torsional buckling moment.7.3. Mb: ( as per clause 4.BS 5950. m Buckling parameter.b) Overall buckling check (As per Clause 4.4.596 0.79 kN > 216 kN Cl.Section modulus.5 = 19000 mm2 = 6005 mm2 = 146.817 1. b Constant.7.4. d/t Shear area parallel to the web.2. l = LE/rmin Equivalent slenderness.a) Compressive strength pc Slenderness.5. Ag Out stand width of panel.51 109.0 1. Table:21. LE Slenderness. qcr for d/t =45. n Uniform moment factor. lLT Slenderness correction factor. u l/x N Slenderness factor.10E+05 mm3 = 4.m > m*Mux1 Cl.36 nunl 1.m >355.886 4. = sqrt(275/py) Outstand element of compression flange. Cl.82 108.3.4. A Flange Area on one side. part-1) Load dispersion under wheel.70 mm 4. OF GANTRY RB dv = 5 384 ´ WL EI 4 + PL 3 48EI ´ê é 3a1 ê L ë .4ç ÷ ú+ ÷ ú èLø û èL ø û ú 48EI ë ê L ú dv = = #VALUE! {( 65000 x 8700³)/( 48 x 205000 x 1.4 x (4.5*depth of the web/thickness of the web 119. l 2.5.00 mm n1 = = = = Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 609. BS 5950.4.1.5 mm Cl.m CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb = 0.90 kN.625 mm 7.4 mm Bearing Capacity = lw*py*t = 587.0 10.70 CG. h = Span / 1000 = 8.000.b) Web buckling under wheel load (as per Cl.4.7 HENCE SAFE CHECK dv < Allowable Deflection 8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD 8.4.0 / 1.25E+09)} x {[3 x 3.70 mm 8.700.1 d Web slenderness.000 = Vertical Deflection:4.part-1) b1 = Stiff bearing length = = 2(Height of the crane rail) 140.a) Web bearing under wheel load (as per Cl.90/9 . pc Table 27c .20/9)³]} 7.40 kN Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2 = 10400 x (70 + 305.5 3.2.4ç 3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù ´ê .11.4 x (3.90 65kN = = 8.90/9)³] + [3 x 4.2 CG OF LOADS 65kN 2.lw= 2(Height of the wheel + Thickness of the flange) = 179.BS 5950.4.625 < 8.0 /1.2.0) = 3.00 kN Satisfactory 8.0 = Allowable deflection for horizontal loads d lim.85 = 97 N/mm2 Compressive resistance.20/9 .9 mm Depth of the web = = = 570.742 Satisfactory 7) CHECK FOR DEFLECTION Allowable deflection for vertical loads d lim.5. v = Span / 1000 =8.49kN/m RA c 8.5% of the static wheel load = 5/100 x2x 104.700.0865 kN > 104. m 91. Mc = PypZxx = = = = = = = = 250 102 6 6 1 0.b) Weld between Bracket and flange of Crane Girder Design strength of fillet weld. S 10.86 N/mm < 160 N/mm2 2 10) DESIGN OF STOPPER BRACKET Depth of the bracket.6 mm mm mm mm nos m kN kN = = = = = = > 5.Buckling resistance.8 mm 3 88189 mm 24.4 Satisfactory 10.61 kN > 104..2.12 kNm Cl. T = M/x Capacity of bracket weld under tension = = = = = > 2 215 N/mm Tb.13.20 16. Dsp Width of the bracket. pw Weld thickness Effective length of flange weld Max.2 kN Satisfactory O.25 kNm 5.K. Pw = (b1+n1)*t*pc= = 9) CONNECTION FOR LONGITUDINAL LOAD Longitudinal Force Dia of bolt provided No. BS5950 6 mm 400 mm 56. Mc Combined plate C.36. of bolts provided Stress in Bolts = = = = 865. Ns Distance between Stopper and flange of Crane girder Maximum Stopper force Maximum ultimate Stopper force.40 kN 16 mm 2 25. x Combined plate Ixx Distance of compression edge Combined plate Zxx Moment capacity. . Wsp Thickness of the bracket plate.00 kN Satisfactory 10.2 kN 361.2 mm 4 1. Ts No of stiffener plate.40E+07 mm 158.0 25.12 kN. Tsp Thickness of stiffener plate.bending tension in bracket.G.2 kN 56.a) Design for Moment Moment due to eccentricity.4.