Home
Login
Register
Search
Home
Fundamentals of Analytical Chemistry by Skoog et. al. 8th ed. Chapter 18 answers
Fundamentals of Analytical Chemistry by Skoog et. al. 8th ed. Chapter 18 answers
March 28, 2018 | Author: Edin Abolencia | Category:
Electrochemistry
,
Physical Chemistry
,
Chemistry
,
Physical Sciences
,
Science
DOWNLOAD
Share
Report this link
Comments
Description
Fundamentals of Analytical Chemistry: 8th ed.Chapter 18 Chapter 18 18-1 (a) Oxidation is a process in which a species loses one or more electrons. (b) An oxidizing agent is an electron acceptor. (c) A salt bridge is a device that provides electrical contact but prevents mixing of dissimilar solutions in an electrochemical cell. (d) A liquid junction is the interface between dissimilar liquids. A potential develops across the interface. (e) The Nernst equation relates the potential to the concentrations (strictly, activities) of the participants in an electrochemical reaction. 18-2 (a) The electrode potential is the potential of an electrochemical cell in which a standard hydrogen electrode acts as the reference electrode on the left and the half-cell of interest is on the right as written in cell notation. (b) The formal potential of a half-reaction if the potential of the system (measured against the standard hydrogen electrode) when the concentration of each solute participating in the half-reaction has a concentration of exactly one molar and the concentrations of all other constituents of the solution are carefully specified. (c) The standard electrode potential for a half-reaction is the potential of a cell consisting of the half-reaction of interest on the right and a standard hydrogen electrode on the left as written in cell notation. The activities of all of the participants in the half-reaction are specified as having a value of unity. The additional specification that the standard hydrogen electrode is the reference electrode implies that the standard potential for the half-reaction is always a reduction potential. (d) A liquid-junction potential is the potential that develops across the interface between Fundamentals of Analytical Chemistry: 8th ed. Chapter 18 two dissimilar solutions. (e) An oxidation potential is the potential of an electrochemical cell in which the cathode is a standard hydrogen electrode and the half-cell of interest acts as anode. 18-3 (a) Reduction is the process whereby a substance acquires electrons; a reducing agent is a supplier of electrons. (b) A galvanic cell is one in which a spontaneous electrochemical reaction occurs and is thus a source of energy. The reaction in an electrolytic cell is forced in a nonspontaneous direction through application of an external source of electrical energy. (c) The anode of an electrochemical cell is the electrode at which oxidation occurs. The cathode is the electrode at which reduction occurs. (d) In a reversible cell, alteration of the direction of the current simply causes a reversal in the electrochemical process. In an irreversible cell, reversal of the current results in a different reaction at one or both of the electrodes. (e) The standard electrode potential is the potential of an electrochemical cell in which the standard hydrogen electrode acts as the reference electrode on the left and all participants in the right-hand electrode process have unit activity. The formal potential differs in that the molar concentrations of the reactants and products are unity and the concentrations of other species in the solution are carefully specified. 18-4 The first standard potential is for a solution that is saturated with I2 and has an I2 (aq) activity significantly less than one. The second potential if for a hypothetical half-cell in which the I2 (aq) activity is unity. Such a half-cell, if it existed, would have a greater potential because the driving force for the reduction would be greater at the higher I2 The second half-cell potential. Only under these conditions is the hydrogen activity constant so that the electrode potential is constant and reproducible. Chapter 18 concentration. is nevertheless useful for calculating electrode potentials for solutions that are undersaturated in I2. 18-5 It is necessary to bubble hydrogen through the electrolyte in a hydrogen electrode in order to keep the solution saturated with the gas.) 18-7 (a) 2 Fe 3 Sn 2 2 Fe 2 Sn 4 (b) Cr ( s ) 3Ag Cr 3 3Ag( s ) (c) 2 NO 3 Cu( s ) 4 H 2 NO 2 ( g ) 2 H 2 O Cu 2 (d) 2 MnO 4 5H 2SO3 2 Mn 2 5SO 4 (e) Ti 3 Fe(CN ) 6 3 2 4 H 3H 2 O H 2 O TiO 2 Fe(CN ) 6 (f) H 2 O 2 2Ce 4 O 2 ( g ) 2Ce 3 2 H (g) 2Ag( s ) 2I Sn 4 2AgI ( s ) Sn 2 (h) UO 2 2 Zn( s ) 4 H U 4 Zn 2 2 H 2 O 4 2 H .250 V. although hypothetical. 18-6 The potential in the presence of base would be more negative because the nickel ion activity in this solution would be far less than 1 M. and the electrode potential would be significantly more negative.Fundamentals of Analytical Chemistry: 8th ed.72 V. Consequently the driving force for the reduction if Ni (II) to the metallic state would also be far less. whereas the standard electrode potential for Ni 2 2e Ni( s ) is –0. (In fact the standard electrode potential for the reaction Ni(OH ) 2 2e Ni( s ) 2OH has a value of –0. Cr ( s ) Cr 3 3e (c) Oxidizing agent NO3-. Fe 3 e Fe 2 Reducing agent Sn2+. H 2SO 3 H 2 O SO 4 2 4 H 2e 3 (e) Oxidizing agent Fe(CN)63-. NO 3 2 H e NO 2 ( g ) H 2 O Reducing agent Cu. Sn 4 2e Sn 2 4 . Ag e Ag( s ) Reducing agent Cr. Fe (CN ) 6 e Fe (CN ) 6 Reducing agent Ti3+. Ce 4 e Ce 3 Reducing agent H2O2. Chapter 18 (i) 5HNO 2 2 MnO 4 H 5NO 3 2 Mn 2 3H 2 O (j) H 2 NNH 2 IO 3 2 H 2Cl N 2 ( g ) ICl 2 3H 2 O 18-8 (a) Oxidizing agent Fe3+. H 2 O 2 O 2 ( g ) 2 H 2e (g) Oxidizing agent Sn4+.Fundamentals of Analytical Chemistry: 8th ed. MnO 4 8H 5e Mn 2 4 H 2 O Reducing agent H2SO3. Cu( s ) Cu 2 2e (d) Oxidizing agent MnO4-. Ti 3 H 2 O TiO 2 2 H e (f) Oxidizing agent Ce4+. Sn 2 Sn 4 2e (b) Oxidizing agent Ag+. Ag( s ) I AgI( s ) e (h) Oxidizing agent UO22+. Zn( s ) Zn 2 2e (i) Oxidizing agent MnO4-. IO 3 6H 2Cl 4e ICl 2 3H 2 O Reducing agent H2NNH2. Chapter 18 Reducing agent Ag. HNO 2 H 2 O NO 3 3H 2e (j) Oxidizing agent IO3-. UO 2 2 4 H 2e U 4 2 H 2 O Reducing agent Zn. MnO 4 8H 5e Mn 2 4 H 2 O Reducing agent HNO2.Fundamentals of Analytical Chemistry: 8th ed. H 2 NNH 2 18-9 N 2 ( g ) 4 H 4e (a) MnO 4 5VO 2 11H 2 O Mn 2 5V(OH ) 4 2 H (b) I 2 H 2S( g ) 2I S( s ) 2 H (c) Cr2 O 7 2 3U 4 2 H 2Cr 3 3UO 2 2 H 2 O (d) 2Cl MnO 2 ( s ) 4 H Cl 2 ( g ) Mn 2 2 H 2 O (e) IO 3 6H 5I 3I 2 H 2 O (f) IO 3 2I 6H 6Cl 3ICl 2 3H 2 O (g) HPO 3 2 3 2 MnO 4 3OH PO 4 2 MnO 4 (h) SCN BrO 3 H 2 O SO 4 2 2 HCN Br H (i) V 2 2V(OH ) 4 2 H 3VO 2 5H 2 O 2 H 2 O (j) 2 MnO 4 3Mn 2 4OH 5MnO 2 ( s ) 2 H 2 O . H 2S( g ) S( s ) 2 H 2e (c) Oxidizing agent Cr2O72-. I 1 I 2 3H 2 O 2 1 I 2 e 2 (f) Oxidizing agent IO 3 . Cr2 O 7 2 14 H 6e 2Cr 3 7 H 2 O Reducing agent U4+. I 2Cl ICl 2 2e (g) Oxidizing agent MnO4-. IO 3 6H 5e Reducing agent I-. I 2 (ag ) 2e 2I Reducing agent H2S. BrO 3 6 H 6e Br 3H 2 O . 2Cl Cl 2 ( g ) 2e (e) Oxidizing agent IO 3 . VO 2 3H 2 O V(OH ) 4 2 H e (b) Oxidizing agent I2.Fundamentals of Analytical Chemistry: 8th ed. MnO 4 e MnO 4 Reducing agent HPO32-. HPO 3 2 3OH PO 4 2 3 2 H 2 O 2e (h) Oxidizing agent BrO3-. Chapter 18 18-10 (a) Oxidizing agent MnO4-. U 4 2 H 2 O UO 2 2 4 H 2e (d) Oxidizing agent MnO2. MnO 2 ( s ) 4 H 2e Mn 2 2 H 2 O Reducing agent Cl-. MnO 4 8H 5e Mn 2 4 H 2 O Reducing agent VO2+. IO 3 6 H 2Cl 4e ICl 2 3H 2 O Reducing agent I-. 256 Zn 2 2e Zn( s ) -0. MnO 4 4 H 3e MnO 2 ( s ) 2 H 2 O Reducing agent Mn2+. SCN 4 H 2 O SO 4 2 HCN 7 H 6e (i) Oxidizing agent V(OH)4+.36 AgBr ( s ) e Ag( s ) Br 0.25 Tl 3 2e Tl 3 Tl Tl 3 2e (b).Fundamentals of Analytical Chemistry: 8th ed.073 V 3 e V 2 -0. Mn 2 2 H 2 O MnO 2 ( s ) 4 H 2e 18-11 (a) AgBr ( s ) e Ag( s ) Br V 2 V 3 e Tl 3 2e Tl Fe (CN ) 6 V 3 e V 2 Zn( s ) Zn 2 2e 3 Fe (CN ) 6 e Fe (CN ) 6 S2O8 2 2e 2SO 4 4 2 2 2e 2SO 4 3 Fe(CN ) 6 e AgBr ( s ) e Ag( s ) Br E 2. Chapter 18 Reducing agent SCN-. V 2 H 2 O VO 2 2 H 2e (j) Oxidizing agent MnO4-.01 2 1. V(OH ) 4 2 H e VO 2 3H 2 O Reducing agent V2+.763 . (c) S2O8 4 Fe(CN ) 6 e Fe(CN ) 6 4 0. Chapter 18 18-12 (a) Sn( s ) Sn 2 2e 2 H 2e H2 (g) Ag e Ag( s ) Fe 2 Fe 3 e Sn 4 2e Sn 2 H 2 (g) 2 H 2e Fe 3 e Fe 2 Sn 2 Sn 4 2e Sn 2 2e Sn( s ) Co( s ) Co 2 2e (b).00 Sn 2 2e Sn( s ) -0.771 Sn 4 2e Sn 2 0.277 18-13 (a) 0. (c) E Ag e Ag( s ) 0.154 2 H 2e H 2 (g) 0.337 log 0.0440 .Fundamentals of Analytical Chemistry: 8th ed.136 Co 2 2e Co( s ) -0.297 V 2 0.799 Fe 3 e Fe 2 0.0592 1 ECu 0. 521 log 0.128 0.8 10 20 [Cu 2][OH ]2 0.190 V (c) K Cu ( OH )2 4.337 0.62 10 2 3 4 4 [Cu ][ NH 3 ] 11 0.521 log K 1 1 [Cu ] CuCl 0.337 0.521 log(3.33 1016 ) 20 2 2 4.0592 4 [ NH 3 ]4 ECu 0.0592 [Cl ] ECu 0.290 0.337 log 2 0.048 V .0592 0.0592 0. Chapter 18 (b) K CuCl 1.521 log 0.03 109 ) 2 0 .337 log log(3.Fundamentals of Analytical Chemistry: 8th ed.0400 0.0592 0.152 V (d) 2 [Cu( NH ) ] 4 5.521 0.0592 1 0.0592 5.0592 0.0592 [OH ]2 ECu 0.0592 1 0.95 105 ) 7 1 1.337 log log(6.337 log 2 0.62 1011 0.489 0.9 10 7 [Cu ][Cl ] 0.0592 0.337 log [Cu( NH ) 2] 2 2 [Cu ] 3 4 4 0. 0250 2 0.331 0.337 log K 2 2 [Cu ] Cu ( OH )2 2 0.337 0.0750 0.9 10 1 0.0592 1 0.337 0.8 10 0. 0 10 0.0592 1 E Zn 0.33 1011 ) 16 2 2 3.337 log [CuY 2] 2 2 [Cu ] 0.337 log 0.341 1.0100 0.763 log K 2 2 [Zn ] Zn ( OH )2 2 0.763 log log(3.33 0.0592 2.763 0.0592 0.763 log 0.3 1018 2. Chapter 18 (e) [CuY 2] 4 K CuY 3.763 0.0250 0.337 log(1.0592 1 0.337 0.00 10 3 0.0592 0.0250 0.0592 0.76 10 2 3 4 4 [Zn ][ NH 3 ] 8 . 00 10 2 0.3 1010 0.0592 4 K CuY 2cT ECu 0.3 1010 [Cu 2]cT [CuY 2] 4.0592 1 0.90 10 2 4.Fundamentals of Analytical Chemistry: 8th ed.0600 (b) K Zn ( OH )2 3.337 log 2 0.007 V 18-14 (a) 0.763 log 2 0.6 10 9 6.0592 [OH ]2 E Zn 0.799 V 2 0.00 10 3 cT 2.0 10 16 [Zn 2][OH ]2 0.4 1011 ) 3 2 4 .10 V (c) 2 [Zn( NH ) ] 4 7. 477 1.00 E E o log 2 2 0.763 log [Zn( NH ) 2] 2 [ Zn ] 2 3 4 4 0.2 10 2 3.0592 4 K ZnY 2cT E Zn 0.763 0.0592 0.3 1016 ) 3 2 5 .0592 1.763 0.250 0. E Zn Chapter 18 0.2 1016 1.763 0.7 1015 [ Zn 2]cT [ZnY 2] 5.0100 2 0.45 10 2 5.0592 1 0.763 log(1.00 10 3 0.00 10 3 cT 4.01 V (d) [ZnY 2] 4 K ZnY 5.0100 0.763 log log(3.0395 0.763 log [ZnY 2] 2 2 [ Zn ] 0. 00 10 2 0.24 V 18-15 2 H 2e H2 (g) pH 0.76 108 0.913 0.0592 4 [ NH 3 ]4 0.913 .763 log 0.0395 0.0592 7.0592 0.00 0.763 log 2 0.121 0.0100 12 0.0592 1.763 log 2 0.7 1015 0.00 log 2 2 2 0.0592 1.0100 2 From Table 10-2 H 0.121 V E 0.0100 12 0.0592 1 0.03 108 ) 2 0.0592 0.251 1.00 log 2 2 [ H ] 2 2 a H H The ionic strength of the solution is given by 1 0.Fundamentals of Analytical Chemistry: 8th ed.00 0. 960 0.00 0.154 ( 0.920 mmol Fe 3 1.1568 mmol FeCl 3 1 mmol Fe 3 mmol Fe 3consumed 25.210 V E Pt 0.0586 2 0.0 E Pt 0.73 ( 0.960 mmol Sn 4 3 2 mmol Fe mmol Sn 2remaining 2.0592 1.30 mmol Sn 2 mL mmol SnCl 2 0.00 L 3.359 V 0.0592 0.0592 0.30 1.920 mmol Fe 3 mL mmol FeCl 3 1 mmol Sn 4 mmol Sn 4formed 3.154 log 7.0918 mmol SnCl 2 1 mmol Sn 2 mmol Sn 2consumed 25.1492 0.340 mmol Sn 2 0.149 0.50 10 3 E Pt 0.Fundamentals of Analytical Chemistry: 8th ed.100 (e) 2 Fe 3 Sn 2 2 Fe 2 Sn 4 0.50 10 2 0.154 log 0.00 L 2.0592 2. 0263 (b) 0.359 log 2 2 0.340 / 50.0 .355 V E Pt 0.78 V E Pt 0.177 V 2 1.359 0.73 log 2 0 .0353 0.051) 0.198 V 2 (c) 0.000 log 2 6 2 1.00 10 (d) VO 2 2 H e V 3 H 2 O E o 0.023) 0. 18-16 PtCl 4 2 2e Pt ( s ) 4Cl Chapter 18 E o 0.73 V (a) 4 0.960 / 50.044) 0.0592 0.154 ( 0. 29 V 0. Chapter 18 (f) V(OH ) 4 V 3 2VO 2 2 H 2 O 0.0592 log 0.174 mmol VO 2 3 mmol V mmol V(OH ) 4 remaining 2.00 0.08 mmol V(OH ) 4 mL 0.174 / 75.993 / 75.0400 E Pt 0.087 0.00845 (c) pH 5.022 0.749 V 2 0.0592 log 2 0.1996 .0592 log 0.36 0.000 log 2 6 2 2 .0789 1.771 0.00 18-17 (a) 0.86 V E Pt 1.771 0.894 V E Pt 1.55 [ H 3O ] 2.00 0.106 0.000 0.00 0.08 1.00566 (b) 0.Fundamentals of Analytical Chemistry: 8th ed.139 0.329 V E Pt 0.0813 E Pt 0.00 0.087 mmol V 3 mL mmol V2 (SO 4 ) 3 2 mmol VO 2 mmol VO 2formed 1.00 L 2.0592 1.0832 mmol V(OH ) 4 mmol V(OH ) 4 consumed 25.329 0.00 1.1000 0.00 L 1.01087 mmol V2 (SO 4 ) 3 2 mmol V 3 mmol V 3consumed 50.087 mmol V 3 2.82 10 6 0.068 0. 82 10 (d) 0.00 0.993 mmol V(OH ) 4 2.0800 0.36 0.0592 log 2 0. 0607 mmol Ce(SO 4 ) 2 1 mmol Ce 4 mmol Ce 4consumed 50.16 0.011) 0.359 0.100 0.00 E Ni 0.314 mmol V 3 0.00 L 5.85 mmol V(OH ) 4 3.00 0.Fundamentals of Analytical Chemistry: 8th ed.00 18-18 (a) 0.68 0.0592 1.04 0.04 mmol Fe 3 mmol Fe 2remaining 5.250 log 0.00 L mL mmol Ce(SO 4 ) 2 3.00 mmol Fe 2 mL mmol FeCl 2 2 mmol Fe 3formed mmol Ce 4consumed 3.250 0.04 / 100.314 mmol V(OH ) 4 mL 0.04 mmol Ce 4 0.0 (f) V(OH ) 4 V 3 2 VO 2 2 H 2 O 0.00 3.030 0.965 / 100.0943 .69 V 3.00 L 0.16 mmol V 3 2 mmol VO 2 mmol VO 2formed 0.0628 mmol V(OH ) 4 mmol V(OH ) 4 consumed 50.00 L mL mmol V2 (SO 4 ) 3 4.359 0.280 V anode 2 0.196 mmol Fe 2 1. Chapter 18 (e) 0.628 mmol VO 2 mmol V 3 mmol V(OH ) 4 remaining 4.628 / 75.68 ( 0.100 mmol FeCl 2 1 mmol Fe 2 mmol Fe consumed 50.0 E Pt 0.0592 log 2 0.194 V E Pt 0.85 / 75.165 0.0592 log 0.314 3.0832 mmol V2 (SO 4 ) 3 2 mmol V 3 mmol V 3consumed 25. 237 V anode E Pt 0.50 10 780 / 760 (d) 0.771 0.Fundamentals of Analytical Chemistry: 8th ed.1628 (d) E Pt 0.0922 0.1439 E Ag 0.017 0.0897 (b) E Pt 0.015 0. Chapter 18 (b) E Ag 0.984 0.756 V cathode 0.090 V anode (c) 0.003 V cathode EO2 1.0592 log 0.306 V cathode 2 0.171 V cathode 2 0.031 0.00753 0.0592 0.009 V anode 2 18-19 (a) 0.00 0.229 0.0592 0.229 log 4 4 4 1.0592 log 0.771 0.237 0.0592 1.337 0.061) 0.00 1.185 0.337 log 0.226 1.026 0.0592 1.151 0.017 0.154 log 0.00 log 4 2 2 1.0944 E Pt 0.054) 0.131 V anode (c) 0.350 (e) 0.017) 0.154 ( 0.185 ( 0.0906 .0592 log 0.00 ECu 0.0592 log 0.00 10 0.151 ( 0.12140. 5 10 14 K sp 18-21 2 Ni 2 4e 2 Ni( s ) E o 0.0592 1.0827 0.799 0. Chapter 18 (e) 2 0. Thus.7 10 13 K sp 4 [ P2 O 7 ] 0.00 0.799 log 0 .0592 1.0592 1.31 ( 0.390 V 2 2 1.250 4 [ Ni 2]2 [ P2 O 7 ] 1.0699 E Ag 0. E = Eo for Ni 2 P2 O 7 ( s ) 4e 2 Ni( s ) P2 O 7 .250 log 4 [ Ni ] 4 K sp 4 When [P2O74-] =1.150 log 4 4 1. 0.779 2 [Ag ]2 [SO 3 ] 1.439 V .250 log 2 2 0.31 0.00.00 E 0.00 0. Thus.0592 E 0.799 log 0.799 log 0.Fundamentals of Analytical Chemistry: 8th ed.24 V anode 18-20 2Ag 2e 2Ag( s ) E o 0. 0.0592 1 0.189 0.00 E 0.5 10 14 K sp 2 [SO 3 ] 0.073) 0.00.7 10 13 K sp 0.0592 log 0.0592 E 0. 799 log [ Ag ]2 K 2 2 sp 2 When [SO32-] =1.250 0.409 0.0592 1 0.0592 1.250 log 0. E = Eo for Ag 2SO 3 ( s ) 2e 2Ag( s ) SO 3 . 0.0592 1 0.126 log K 6 6 [ Pb ] sp When [AsO42-] =1.0592 1.475 V 0.00 E 0.0592 1. Thus. E = Eo for Pb 3 AsO 4 ( s ) 4e 3Pb( s ) 2AsO 4 .0592 E 0.0592 1 0.126 2 [ Pb 2]3 [AsO 4 ]2 4.349 0.00 E 0.0592 1.628 0.00.336 log 0.0592 [S2] E 0. E = Eo for Tl 2S( s ) 2e 2Tl ( s ) S 2.1 10 36 K sp 2 [ AsO 4 ]2 0.336 log 22 K 2 2 6 10 sp 0.336 [Tl ]2 [S 2] 6 10 22 K sp 0.336 log K 2 2 [Tl ] sp When [S2-] =1. 18-22 2Tl 2e 2Tl ( s ) Chapter 18 E o 0.336 log 2 0.126 log 2 3 0.00.00 0.Fundamentals of Analytical Chemistry: 8th ed.126 log 0. 0.336 0.00 0. 2 2 Thus.0592 1.96 V 18-23 3Pb 3 6e 3Pb( s ) E o 0.1 10 sp 0.126 log 36 K 6 6 4.126 0.0592 1 18-24 E 0.2 1016 [Zn 2][ Y 4] .763 log 2 2 [ Zn ] [ZnY 2] 3. E E o FeY 1.763 0.153 0.771 0.00 7.2 1016 E 0.62 1011 0.2 10 [ NH 3 ]2 5.Fundamentals of Analytical Chemistry: 8th ed.00 1.153 0.0592 log 10 1.1 10 18-26 2 [Cu( NH 3 ) 2 ] [Cu( NH 3 ) 2 ] [Cu ] and [Cu 2] 2 10 [ NH 3 ] 7.100 V E 0.00.0592 log [Cu 2] [Cu( NH 3 ) 2 ] 5.00.25 V 2 1.0592 [ Y 4] 3.0592 log 2 10 [ Cu ( NH ) ] 7 .763 log 2 2 [ ZnY ] When [Y4-] = [ZnY2-] = 1.771 0.62 1011 0.2 1016 E 0.0592 1. 2 10 3 2 When [Cu(NH3)2+] = [Cu(NH3)22+] = 1. E E o Cu ( NH 3 )22 1. E E o ZnY 2 0.1 1014 [ Fe 2] E 0.13 V E 0.2 10 .3 10 25 0.0592 log 14 [ FeY ] 2.489 1.153 0.00 3.64 0.0592 log 14 1.3 10 25 0.771 0.00 5.3 10 25 [ Y 4] 2. Chapter 18 0.00 18-25 [ FeY ] [ FeY 2] 2 [ Fe 3] 4 and [ Fe ] [ Y ] 1.153 0.0592 log [ Fe 3] [ FeY 2] 1.763 log 0.053 0.771 0.00.1 10 When [FeY2-] = [FeY-] = 1.62 1011 [Cu ] E 0.00 2. 00 1.00 40.400 0.50 1.764 0.500 0.50 5.V 0.812 0.676 0.00 0.00 20.781 0.617 0.753 0.25 1.785 0.200 0.01 0.250 0.100 0.854 0.771 o o We also assume 25 C 3+ 2+ 3+ E=E -0.771 0.0592log([Fe ]/[Fe ]) 2+ 2+ [Fe ]/[Fe ] 3+ [Fe ]/[Fe ] E.0075 0.800 0.593 0.025 0.00 400.830 0.0025 0.571 0.653 0.005 1000.V Note: We use the Nernst equation in column C to calculate the potentials from 0.00 75.00 Spreadsheet Documentation B6=1/A6 C6=$B$3-0. A 1 2 3 4 5 6 7 8 3+ 18-27 Fe /Fe 2+ Chapter 18 B C D half-cell potentials o E.010 0.704 0.00 200.795 0.00 100.00 10.00 13.001 0.667 0.Fundamentals of Analytical Chemistry: 8th ed.75 2.05 0.712 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0.635 9 10 11 12 13 14 0.00 2.00 0.33 100.040 0.33 10.882 0.100 133.075 0.00 0.33 1.0592*LOG10(B6) 4.694 0.750 1.645 0.889 .777 0.00 1.013 0.735 0.00 25. 00 13.00 20.V 0.564 1.571 1.724 1.00 10.00 133.759 1.00 100.693 1.7 o [Ce4+]/[Ce3+] o 3+ 4+ E=E -(0.50 5.500 0.00 400.546 1.0592)log([Ce ]/[Ce ]) [Ce3+]/[Ce4+] E.010 1.040 0.682 1.00 4.783 1.250 100.750 1.800 0.641 1.100 0.605 1.33 10.741 1.667 0.Fundamentals of Analytical Chemistry: 8th ed.00 Spreadsheet Documentation B6=1/A6 C6=$B$3-0.400 0.01 0.623 1.075 0.710 1.001 0.00 40.00 75.V 4 We also assume1 M HClO4 25 C 5 6 7 8 9 C Note: We use the Nernst equation in column C to calculate the potentials from 1.200 0.00 25.633 1.0075 1000.00 1.005 0.00 200.00 0.664 16 17 18 19 20 21 0.05 0.811 1. Chapter 18 18-28 A 1 2 4+ 18-28 Ce /Ce 3+ B D half-cell potentials o 3 E.00 1.574 10 11 12 13 14 15 0.00 1.706 1.013 0.0592*LOG10(B6) 0.33 1.522 1.50 1.818 .714 22 23 24 25 26 27 28 29 30 2.33 1.25 1.700 1.582 1.025 0.100 0.0025 0.75 2. 850 E.900 0.700 1. Chapter 18 Plot for Probelm 18-27 0.600 0.Fundamentals of Analytical Chemistry: 8th ed.600 1.950 0.650 0.500 0 20 40 60 4+ 3+ [Ce ]/[Ce ] .750 0.700 0. V 1.550 0 20 40 60 80 100 120 80 100 120 [Fe3+]/[Fe2+] Plot of Problem 18-28 1.750 1.800 0.550 1.650 1. V 0.850 1.800 E. 30 0.50 0.30 0.785 1.70 1.12 1.777 1.676 0.00 0.40 0.712 0.00 2.57 0.66 0.75 0. Eo.12 1.500 -0.01 -2.60 0.62 0.25 0.56 0.250 -0.735 0.30 1.30 1.12 1.0025 -2.0075 -2. 18-28 and log ratio D E F o 3+ Note: We calculate the logarithm of concentration E .71 1.0025 -2.854 25. V (Fe ) 0.753 0.617 0.24 1.50 0.60 0.69 1.71 2.0592*LOG10(A6) F6=$B$4+0.00 0.40 1.00 1.645 0.7 3+ 2+ 3+ 2+ 4+ 3+ 4+ 3+ [Fe ]/[Fe ] Log([Fe ]/[Fe ]) E.812 5.00 1.500 -0.18 0.V [Ce ]/[Ce ] Log([Ce ]/[Ce ]) E.10 0.63 0.00 0.001 -3.750 -0.00 0.76 25.18 1.882 75.55 0.075 -1.00 1.70 1.00 1.025 -1.78 75.12 0.40 0.74 10.00 0.52 0.005 -2.60 1.593 0.88 1.30 1.694 0.00 1.25 0.100 -1.40 1.0592*LOG10(D6) .01 -2.60 1.10 1.100 -1.12 0.00 1.12 0.00 1.750 -0.60 0.00 1.795 2.71 1.830 10.88 0.001 -3.771 4+ ratio in column B.Fundamentals of Analytical Chemistry: 8th ed.00 2.250 -0.764 0.704 0.771 1.05 -1. Chapter 18 18-29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A B C 18-29 Plots for Problems 18-27.00 0.81 100.00 0.24 0.889 100.72 5.075 -1.61 0.60 1.00 1.05 -1. V (Ce ) 1.82 Spreadsheet Documentation B6=LOG10(A6) E6=LOG10(D6) C6=$B$3+0.70 0.75 0.005 -2.68 0.635 0.00 0.00 0.781 1.00 0.653 0.00 1.0075 -2.00 1.64 0.30 0.50 0.V 0.025 -1.50 0.00 1.58 0. Plot of Problem 18-27 0.00 1.00 3. V 1.950 0.00 2. Chapter 18 A plot of potential versus logarithm of the concentration ratio is a straight line.00 3+ 1.00 3.600 0.00 -1.70 1.Fundamentals of Analytical Chemistry: 8th ed.65 1.750 0.650 0.700 0.900 0.00 -2.85 1.00 -3.55 1.550 0.00 2+ Log([Fe ]/[Fe ]) Plot of Problem 18-28 1.00 0.850 E.60 1.80 E.00 0.50 -4. V 0.800 0.500 -4.00 2.00 -3.00 -2.00 -1.00 4+ 3+ Log([Ce ]/[Ce ]) .75 1.
Report "Fundamentals of Analytical Chemistry by Skoog et. al. 8th ed. Chapter 18 answers"
×
Please fill this form, we will try to respond as soon as possible.
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Copyright © 2024 DOKUMEN.SITE Inc.