Folleto del Ing. Rubio

March 22, 2018 | Author: Carlos Duran Salazar ✅ | Category: Transistor, Bipolar Junction Transistor, Electric Power, Amplifier, Physical Quantities


Comments



Description

ESCUELA SUPERIOR POLITECNICA DEL LITORALFACULTAD DE INGENIERA EN ELECTRICIDAD Y COMPUTACION ELECTRÓNICA II: PROBLEMAS RESUELTOS Y PROPUESTOS (BORRADOR 6.0) PROFESOR: ING. GÓMER RUBIO ROLDÁN OCTUBRE 2014 Contenido 1. POLARIZACIÓN DE TRANSISTORES BJT Y FETs ................................................. 3 2. AMPLIFICADORES DE PEQUEÑA SEÑAL CON BJT Y FETs ............................... 46 3. RESPUESTA DE FRECUENCIA ............................................................................... 91 4. AMPLIFICADORES DE POTENCIA....................................................................... 155 4.1. AMPLIFICADORES DE POTENCIA CLASE A ............................................................ 155 4.2. AMPLIFICADORES DE POTENCIA CLASE B ............................................................ 177 5. AMPLIFICADOR DIFERENCIAL ............................................................................ 199 6. AMPLIFICADOR OPERACIONAL .......................................................................... 228 6.1. OPAMP REAL ........................................................................................................ 228 6.2. APLICACIONES CON OPAMPs ............................................................................... 265 1. POLARIZACIÓN DE TRANSISTORES BJT Y FETs Problema No. 1.1 En el siguiente circuito, determinar los puntos de operación (ID, VDS) de los transistores. Datos.- Q1: IDSS = 10mA, VP = -4V; Q2: IDSS = 5mA, VP = -5V; Q3: k = 0.3mA/V², VT = 2V Como G y S están cortocircuitados: Vs = 0.5*ID2 = (0.5) (5) = 2.5V – – 2.5 – VGS1 = 10(1 + 0.25VGS1)² 2.5 – VGS1 = 10(1 + 0.5VGS1 + 0.0625VGS1²) 2.5 – VGS1 = 10 + 5 VGS1 + 0.625VGS1² – 0 = 7.5 + 6* VGS1 + 0.625* VGS1² ( ) VGS1a = -8.123V 0 < | VGS1| < | Vp1| VGS1b = -1.477V 0 < 1.477 < 4 ID1= 2.5– VGS1 IX = ID1 + ID2 POR MALLA: VGS1= -1.477V ID1= 2.5 + 1.477 ID1 = 3.977mA Ix = 5 + 3.97 Ix = 8.97mA 18 – ID1 – VDS1 – Ix*1 = 0 18 – 3.977 – 8.97*1 = VDS1 VDS1sat = 4V VDS1 = 5.05V VDS1 no está saturado VDS1 + 1* ID1 = VDS2 + ID2*0.5 5.05 + 3.977 = VDS2 + 5*0.5 5.05 + 3.977 – 5*0.5 = VDS2 VDS2 = 6.527 V VG3 = VDS2 + ID2*0.5 VG3 = 6.527 + 5*0.5 VG3 = 9.027 V VS3 = 0 V VGS3 = VG3 – VS3 VGS3 = 9.027 V ID3 = k*(VGS3 – Vt)² ID3 = 0.3*(9.027 – 2)² ID3 = 14.81mA VDS3 – 18 + ID3*0.8 = 0 VDS3 = 18 – 14.81*0.8 VDS3 = 6.152 V Problema No. 1.2 En el circuito dado: a) Determine el valor de VDD (asuma que todos los transistores están en región activa y que VDSQ1 = 8V). b) Calcule los puntos de operación (ID,VDS) para Q1, Q2, Q3. Q1:IDSS1 = 8mA, VP = -4V; Q2: IDSS2 = 2mA; Vp = -2V; Q3: IDSS3= 8mA; VT = 4V VGS2 = VG2 – VS2 VG2= 0 VS2 = 0 ^ VGS2 = 0V ID2 = ID1 ID2 = IDSS2 ID2 = ID2 = 2mA VGS1 = VG1 – VS1 VS1 = VDS2 VGS1 = 0 – VDS2 2mA = 8mA*(1 + 0.25* VGS1)² 2 = 8*(1 + 0.5 VGS1 + 0.0625 VGS1²) 2 = 8 + 4 VGS1 + 0.5 VGS1² 0 = 6 + 4 VGS1 + 0.5 VGS1² ( ) VGS1a = -2V VGS1b = -6V 0 < | VGS1| < |Vp1| 0 < |2| < |4| VGS1 = VG1 – VS1 -2 = 0 – VS1 VS1 = 2V VS1= VDS2 VDS2 = 2 V Q2: VDS2 = 2V; Q1: VDS1 = 8V; Id2 = 2mA; VGS2 = 0V VGS1= -2V Id1 = 2mA; POR MALLA: VDD - VDS1 – VDS2 = 0 VDD = 8 + 2 VDD = 10V VGS3 = VG3 – VS3 VGS3 = VDS2 - 0 VGS3 = 2V ID3 = 8*(1.5)² ID3 = 18mA VDD – (200* ID3) – VDS3 = 0 VDS3 = 10 – (200*18mA) VDS3 = 6.4V Q3: VDS3 = 6.4v; ID3 = 18mA Problema No. 1.3 En el siguiente circuito, calcular el punto de operación del transistor Q 3. Q1: IDSS =10mA Vp= -4V Q2: IDSS =8mA Vp= -5V DIODO Vz= 4V Vd= 0.7V Análisis para Q1 VGS1= VS1 -> VGS1=0V Si VGS1=0 -> ID1= IDSS1 Análisis para Q2 VGS2= VS2 -> VGS2=0V Si VGS2=0 -> ID2= IDSS2 Del gráfico se observa: Id= ID1-ID2 Id= IDSS1- IDSS2=10mA-8mA VDS2= VD+ R3* Id VDS2= 0.7V+ 4.7K(2mA) VDS2=10.1V VDS1=+V- VDS2 Q3: K=0.3 Vt= 1V VDS1= 20V- 10.1V VDS1= 9.9V VDS1= Vp1- VGS1=4V VDS2= Vp1- VGS2=5V Análisis para Q3 VG3= R3*Id VS3=R4* ID3 -> VGS3= (R3*Id- R4* ID3) ID3= K(VGS3-VT)2 ID3= 4.52mA VDS3=+V-(R5+R4) ID3 VGS3= 4.88V -> VDS3=10.06V Problema No. 1.4 Determine los puntos de operación de los transistores M1 y Q1: Datos.- β = 20; IDSS = 5ɱA ; Vp = 1V Se abre Se abre + ID Q1 +VDS- IC Q2 +VCE- 0 IB +VGS- IX - + IE - ( ) ( ( Como es NPN el voltaje debe ser (-) sino el transistor está saturado. ) ) ( +). Cuando es PNP el voltaje debe ser Se asume que el y se vuelven a realizar los cálculos. El transistor Q1 está saturado ya que debe ser (+) en el MOSFET de agotamiento | | | | | | | | 0 Problema No18. En el siguiente circuito determine los puntos de operacionde Q1(ID,VDS) , Q2(IC,VCE) Q1 { Q2 { 0= Respuestas Problema No 5. Determinar Vo1 y Vx Datos: 𝐼𝐷𝑆𝑆 Q1:{ 𝑉𝐺𝑆𝑜𝑓𝑓 𝑚𝐴 𝑣 𝐼𝐷𝑆𝑆 Q2:{ 𝑉𝐺𝑆𝑜𝑓𝑓 𝑚𝐴Q3: 𝑉𝑏𝑒 𝑣 𝑣;𝛽 Hallar Vo1 VGS2 = 0 ID2 = IDSS = 2mA VGS1 = Vx – 0.7 – 1K (201IB3) ID1 = ID2 + IB3 Asumo Ib3 despreciable; ID1=ID2 = 0.7 + 1.5k(201IB) ID1 = IDSS (1 - )2 ID1 = 8mA (1 - VGS1 = -0.7 – 1K (201 IB3) )2 Reemplazando en las ecuaciones: 2mA = 8mA (1 + 2mA = 8mA ( )2 ) VG=0, VS 2mA = 8mA + 4 VGS1 + 0.5 VGS12 0 = 6mA + 4.0049 VGS1 + 0.5 VGS12 Soluciones VGS11 = -2V tomando este valor que no se excede de Vp VGS12 = -6V Reemplazando los datos en la ecuación (3) VGS1 = -Vs , entonces Vs = 2V IE3 = IE3 = IE3 = IE3 = Vo1 = 1.5K IE3 = Vo1 = 2.7µV IE3 = Problema No 6. En el siguiente circuito, encontrar los puntos de operación de los transistores. Datos: MOSFET: ID=5 mA, Vp=3 V BJT: =100 El circuito equivalente quedara así: IG=0 ID=Is  ID=IB   Ahora: e √ Por mallas: Por malla: Problema No 7. En el siguiente circuito: a) Calcule VDS, ID, VCE y Ic. b) Si VCEsat=0, calcule Rb mínima para saturar al transistor. =50 Datos: IDSS=10mA, Vp= -4V Solución: El circuito queda así: 1. 2. Trabajando con 1. ; √ Por malla: PQ : (ID =1.6mA, VDS=11.68 V) Trabajando con 2.   Por malla: Parte b: Pero:  Problema No 8. En el circuito mostrado a continuación, calcular los puntos de operación tanto del BJT como del FET Datos: IDSS=10mA Vp=-5 Β=180 En análisis DC se abren los capacitores y redibujando el circuito se obtiene lo siguiente: Aplicando Thevenin obtenemos lo siguiente: =1,4809V Redibujamos y obtenemos lo siguiente: Aplicando mallas: Aplicando shotky: Igualando las ecuaciones se obtiene lo siguiente: Resolviendo la ecuación general se obtiene: | | Por lo tanto | | ID= 0.3785mA Por mallas: Se debe recordar que el voltaje VCE es negativo debido a que es una configuración PNP. Problema No 9. En el circuito mostrado a continuación, calcular los puntos de operación tanto para el BJT como para el FET. Datos β=100 IDSS=10mA Vs=4 Al realizar el análisis DC se abren los capacitores, por lo que al aplicar Thevenin y redibujar el circuito, se obtiene: Aplicando la ecuación general se tiene: √ Por mallas: ( ) Recordar que es una configuración PNP. Problema No 10. Para el siguiente circuito calcule el punto de operación de cada transistor, indicando en que zona se encuentran operando. Datos: Q1: IDSS=10 mA, |Vp=5V| Q2: β=100 VCC 15V R1 3MΩ R5 1kΩ R2 1kΩ + - ID IG=0 D1 3.1V Q1 IE IB R4 Q2 100kΩ R3 ID + IB 1.5kΩ IC ( ) ( ) | | | | Problema No 23. Dispositivo Valor Encontrar el valor de IE en Q2 a) 0.35mA b) 0.07mA c) 1.9mA d) 2.09mA +Vcc R2 ID Q1 VS R1 Q2 IDR3 IG = 0 IE VG ID R4 R5 ( ) V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] R4 8.2[kΩ] R5 2.2[kΩ] Reemplazando VGS en la ecuación 1 ( ) El JFET (Q1) es de canal tipo n => VP = - 4[V] Reemplazando valores: ( ) Resolviendo la ecuación cuadrática: Calculando el valor de la corriente de emisor: Problema No 24. Dispositivo Valor V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] Determine el voltaje VE de Q1 R4 8.2[kΩ] a) 2.1V R5 2.2[kΩ] b) 5.34V c) 6V d) 4.6V Problema No 25. Dispositivo Valor Calcular el voltaje VDS1 en Q1 a) 17.9V V 24[V] |VP| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] R4 8.2[kΩ] R5 2.2[kΩ] b) 11.3V c) 4.7V d) 23,3V ANÁLISIS DC 𝑉𝐺𝑆 ( ) ( ) 𝐼𝐷𝑅 𝑉𝐺𝑆 𝑉 𝐼𝐷 | | 𝑉𝐷𝑆 𝑚𝐴 | | Problema No 26. Calcular en el transistor Q2 el valor de VCE a) 23.3V b) 11.3V Dispositivo Valor c) 19.4V V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] R4 8.2[kΩ] R5 2.2[kΩ] d) 17.9V ANÁLISIS DC 𝐼𝐸 𝑚𝐴 𝐼𝐶 𝑚𝐴 𝐼𝐵 𝜇𝐴 𝑉𝐶𝐸 𝑉 Problema No 34. En el siguiente circuito, la corriente continua ID en el transistor Q2 es: *VGSQ: VGS en el punto de operación de Q2 a) 4.4 mA b) 4.6 mA ELEMENTO VALOR c) 0.3 mA R1 1MΩ d) 1.3 mA R2 100KΩ R3 5KΩ R4 1KΩ R5 8KΩ R6 2KΩ +Vcc 22V K 0.3mA/V2 VT 1V VGSQ 2V Q1 Β=100 Problema No 35. En el siguiente circuito, el voltaje continuo VDS del transistor Q2 es: ELEMENTO VALOR R1 1MΩ R2 100KΩ R3 5KΩ R4 1KΩ R5 8KΩ R6 2KΩ a) 22 V +Vcc 22V b) 11 V K 0.3mA/V2 c) 3 V VT 1V d) 20.5 V VGSQ 2V Q1 Β=100 *VGSQ: VGS en el punto de operación de Q2 COMO SE PIDE VDS SE DEBE ANALIZAR EL CIRCUITO EN DC DEBIDO A ESTO LOS CAPACITORES SE ABREN ( ( ) ) || +VDS- Problema No 22. Determine la corriente ID en (DC) del transistor Q1 Dispositivo Valor a) 6.49mA b) 2.02mA c) 0.51mA d) 2.24Ma V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] R4 8.2[kΩ] R5 2.2[kΩ] Problema No 30. Dado . Calcule el Punto de operación de Q1 a) { c) { b) { d) { I1 IG ID IB Ie Ic ( ( )) ( ( ( ) ) ) ; Problema No 31. Dado Calcule el Punto de operación de Q2 a) { b) { c) { d) { . Problema No 32. Dado Determine . de Q1 a) 1.567 V b) 0.9728 V c) 0.853 V d) Ninguna de las anteriores Problema No 33. a) Calcule los puntos de operación de Q1, Q2, Q3 b) Encuentre Vx Datos: Q1: IDSS= 8mA, Vp= -5V; β= Q2: K= 0.3 mA/ , VT= 2V; Q3: 2. AMPLIFICADORES DE PEQUEÑA SEÑAL CON BJT Y FETs Problema No12. En el siguiente circuito, asumiendo que los transistores se encuentran en la zona lineal, determine Zi, Zo, Av (Vo/Vi). Datos Q1: , Q2: Q3: Solución: Análisis DC: , , , . Análisis AC: || || ( || ) || Problema No11. En el siguiente circuito, asumiendo que los transistores se encuentran en la zona lineal, determine Zi, Zo, Av. Datos. Q1: , , Solución: Análisis DC: Análisis AC: || || || || || Q2: - 3,68 || || 2.14 M Ω * || || || + || Problema No13. Para el siguiente circuito determine: a) La expresión literal y valor numérico para la impedancia de entrada Zi. b) La expresión Literal y valor numérico para la impedancia de salida Zo. c) La expresión Literal y valor numérico para la ganancia de voltaje Av. Datos Q1: , Q2: , , Solución re = 0.0099 || || || || || . * || || + || Problema No14. Determine: Datos K=0,3[mA/ ], , , β=99, hie=1k v1 = =15II1.5II = II10MII(1+1)= 15II1.5II0.087II10000II2=0.078 = = = -0.074 = = 0.5 = Zi= = = -12.6 = 0.04 = 135M Zo=0.01II = 0.0052k =5.2 Problema No15. En el siguiente circuito calcular: a) Av=Vo/Vi* b) Zi c) Zo Datos.- Q1: gm=6uV Q2: hfe=100, hie=1K Rd2=R1||R2 Rd2=4K Zi=RG=0.5MΩ Zo=RC=2.2K || || 202 | =-0.0134 Problema No16. Para el siguiente circuito encuentre: a) La expresión literal y valor numérico para la ganancia de voltaje ⁄ . b) La expresión literal y valor numérico para la impedancia de entrada c) La expresión literal y valor numérico para la impedancia de salida d) La expresión literal y valor numérico para la ganancia de corriente ; ; Análisis DC = ( ) ( ; ) Ω . . ⁄ . ⁄ [ ] Problema No17. Asumiendo que los transistores se encuentran en la zona activa. Determine ( ⁄ ) ⁄ { Solución: Se procede a realizar el análisis en AC 𝑔𝑚 Asumo que Reemplazando 𝑚𝐴⁄ 𝑉 es grande por lo tanto usando el siguiente circuito tenemos: en 𝐴𝑉𝑀 Reemplazando 𝑍 𝑍 Como anteriormente. 𝑀Ω 𝑀 entonces se puede concluir que esta correcto lo que se asumió 𝑍𝑖 Para hallar 𝑀Ω se analiza el siguiente circuito: Si Si 𝑍𝑜 Para hallar ⁄ 𝐴𝑣 Problema No19. Para el siguiente circuito se pide: a) Graficar el circuito equivalente en AC b) La expresión literal y el valor numérico de la ganancia de voltaje Av =Vo/Vi c) La expresión literal y el valor numérico para la impedancia de entrada Zi d) La expresión literal y el valor numérico para la impedancia de salida Zo e) La expresión literal y el valor numérico para la ganancia de corriente Ai=Io/Ii +Vcc R2 2kΩ R5 2kΩ R8 1kΩ C6 C2 Q1 R1 3MΩ R3 1kΩ RL 2kΩ 300kΩ Q2 C1 Vi Q3 C4 R4 C3 R6 1kΩ R7 100kΩ C5 a) Circuito equivalente en AC Vi R1 3MΩ + Vgs - gmVgs Vx R2 2kΩ Zmi hie R4 1kΩ ibhfe Zmo Vy R5 2kΩ R7 100kΩ hie2 R8 1kΩ Vo ibhfe2 RL 2kΩ b) Ganancia de voltaje Av =Vo/Vi ( )( )( ) Suposición: | | | ‖ ‖ | ; ‖ ‖ ; ( ) ; ‖ ‖ ‖ ; ‖ ‖ ; ; ; ‖ ‖ ‖ Evaluando las ecuaciones: ‖ ‖ ‖ ‖ ‖ ‖ | | ; c) Impedancia de entrada: d) Impedancia de salida: * + * + e) Ganancia de corriente: ( ( AMPLIFICADORES MULTIETAPAS Problema No20. Dado el siguiente ejercicio: a) Calcular los puntos de operación Q1 y Q2 b) Calcular Av, Zo. DATOS: Q1(VT=1V, K=0.3mA/V2) Q2 (hfe=100, VEB=0,7V) Vcc=22v ) ) ANÁLISIS DC Capacitores: Circuito Abierto VTH= 22( ) = 2V = VG1 VGS1 = VG1 - VS1 = 2 - 0 = 2V ID1 =k(VGs1 - VT)2 m1: -22 + 5(0.3) + V1= 0 V1= 22 -1.5 = 20.5V IB ≈ 0 ID1 = 0.3m(2 -1)2= 0.3mA m2: V1-22+0,7 +1IE = 0 IE= 0.8mA IC= ( IB IC= ( IE =0,79mA IE= ( IB IB = 7,9uA Q1 (ID=0.3mA, VG1 = 2V) Q2 (IC=0.79mA, VCE = 19.62V) ANÁLISIS AC re = = 32.5Ω Zo = 2kΩ ΔvT= Δv1Δv2 Δv3= ΔvT= -(0.98)(2.78)(0.95) = 2,58 ( )( ) Obs. la ganancia es negativa por que la configuración es Source Común. Problema No 21. En el siguiente circuito determinar: a) Punto de operación b) Av1, Av2, Zi, Zo1, Zo2 DATOS: hFE=100, VBE= 0.7V, VZ=10 ANALISIS EN DC Análisis AC RZ= 1K Zi  1k Zo1  10 Zo2  100 Problema No 27. Dispositivo Valor V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] R3 2.2[KΩ] Calcular el valor de AVT de todo el sistema (Análisis Ac) R4 8.2[kΩ] a) 2 R5 2.2[kΩ] b) 0.96 c) 7 d) Ninguna de las anteriores En AC R= R4|| Rmo||R2||R5= 8.2||Rmo||1.5||2.2 R= 0.8KΩ Rs=Rmi || (Rmo || R+Re)(hfe+1) Rmi--> ∞ , Rmo-->∞ Rs=(R+re)(hfe+1)= 82.05K | | ( ) Problema No28. Dispositivo Valor V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] Calcular el valor de Zi(Análisis Ac) R3 2.2[KΩ] a) 1 MΩ R4 8.2[kΩ] b) 2 MΩ R5 2.2[kΩ] c) 25MΩ d) 1.5 MΩ Problema No29. Dispositivo Valor V 24[V] |Vp| 4[V] VBE 0.7[V] IDSS 1[mA] β 100 R1 1[MΩ] R2 1.5[KΩ] Calcular el valor de ZO(Análisis AC) R3 2.2[KΩ] a) 0.038kΩ R4 8.2[kΩ] b) 100kΩ R5 2.2[kΩ] c) 2MΩ d) 32kΩ Analisis AC ( * ( ) ) + ( | | ( ) ( ) ) Problema No 33. En el siguiente circuito, la impedancia de entrada , para una frecuencia de operación en banda media es: a) 1 MΩ b) 100 KΩ c) 91 KΩ d) 1.1 MΩ ELEMENTO VALOR R1 4K Ω R2 0.8KΩ R3 2KΩ R4 2KΩ R5 4KΩ R6 2KΩ +Vcc 22V K 0.3mA/V2 VT 1V VGSQ 2V Q1 Β=100 Problema No 36. En el siguiente circuito, la ganancia de Voltaje total , para una frecuencia de operación en banda media es: *VGSQ: VGS en el punto de operación de Q2 a) 2.7 b) 2 c) 1.5 ELEMENTO VALOR R1 1MΩ R2 100KΩ Mediante las siguientes ecuaciones podemos obtener ie R3 5KΩ que necesario para el cálculo re y de gm que son R4 1KΩ necesarios para calcular la ganancia. R5 8KΩ R6 2KΩ +Vcc 22V K 0.3mA/V2 VT 1V VGSQ 2V Q1 Β=100 d) 1 El cálculo de la ganancia para este circuito está dado por: Donde la ganancia de colector común de la segunda etapa es aproximadamente uno ( ). Para el análisis de ganancia de la primera etapa: || || || || Si se quiere ser preciso con los valores podemos calcular la ganancia de la segunda etapa Problema No 37. En el siguiente circuito, La impedancia de salida , para una frecuencia de operación en banda media es: *VGSQ: VGS en el punto de operación de Q2 a) 0.66 KΩ b) 2 KΩ c) 73.01 Ω ELEMENTO VALOR d) 100 Ω R1 1MΩ R2 100KΩ R3 5KΩ R4 1KΩ R5 8KΩ R6 2KΩ +Vcc 22V K 0.3mA/V2 VT 1V VGSQ 2V Q1 Β=100 – – * + Problema No 38. En el siguiente circuito, la impedancia de entrada , para una frecuencia de operación en banda media es: a) 2.1 KΩ b) 1 KΩ c) 250 KΩ ELEMENT d) 239 KΩ O VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 39. En el siguiente circuito, la impedancia de salida , para una frecuencia de operación en banda media es: a) 1 KΩ b) 0.7 KΩ c) 2.1 MΩ d) 2.28 KΩ ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 40. En el siguiente circuito, la ganancia de voltaje , para una frecuencia de operación en banda media es: a) 2.56 b) 1 c) 0.5 d) 10 ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 41. En el siguiente circuito, la ganancia de corriente para una frecuencia en banda media es: a) -0.65 b) -2.2 c) -1 d) -0.01 ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 42. En el siguiente circuito, la corriente continua ID en el transistor Q2 es: a) 4.10 mA b) 1.21 mA c) 2.4mA d) 10 mA ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 43. En el siguiente circuito, el voltaje continuo VDS del transistor Q2 es: ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ a) 3.40 V Rin 1KΩ b) 6.64 V RL 1KΩ c) 6.15 V Q2 IDSS=8ma d) 1.82 V VP=-4V || ( Q1 β=120 +V +16Vdc ) Como se puede observar se elige el Id2 porque el Vgs1 es muy pequeño a Vp. Problema No 44. En el siguiente circuito, el voltaje continuo VE del transistor Q1 es: a) 4.53 V b) 13.19 V c) 13.89 V d) 9.35 V ELEMENTO VALOR R1 2.1MΩ R2 270KΩ R3 2.4KΩ R4 1.5KΩ R5 10KΩ R6 47KΩ R7 1.1KΩ R8 2.4KΩ Rin 1KΩ RL 1KΩ Q2 IDSS=8ma VP=-4V Q1 β=120 +V +16Vdc Problema No 62. En el siguiente circuito calcule la ganancia ∆V Q1: hie1 =0.524 K, hf e1 =100, β1 =100 Q2: hie2 =9.42 K, hf e1 =100, β2 =100 Solución: Análisis AC: Primera etapa: es una configuración emisor común; por lo tanto: Por lo tanto: Segunda etapa: también es una configuración emisor común: Tercera etapa: es un divisor de tensión: Por lo tanto: Problema No 45. Determinar Av, Zi, Zo Datos: Q1: K= 0.3mA/ , VT= 2v, VGS= 3v; Q2: β=99 Problema No 45. Encuentre una expresión literal y los valores para Av, Zo, Zi Datos: Q1: K= 0.3 mA/ , VT= 2V; Q2, Q3: β= 100 3. RESPUESTA DE FRECUENCIA Problema No 45. Determine el punto de operación de Q1. a){ b){ c){ En análisis DC, los capacitores se abren. Dispositivo Valor Vcc 24[V] Rs 100[Ω] VBE 0.7[V] β 100 R1 7.5[KΩ] R2 1.87[KΩ] RE 1[KΩ] RC 3[kΩ] CE 54.4[F] Cs 50.42[F] Cc 1.32 [F] RL 1[KΩ] Problema No 46. gm=3mA/V a) Encontrar las frecuencias de corte en baja frecuencia. b) Graficar bode |Δv| vs f. c) Determinar la función de transferencia Δv(s). Para determinar fo, asumo Cs -> cortocircuito  Xcs a la frecuencia de fo => Se cumple aceptablemente, luego, asumo que Cs se cortocircuita Cs: cortocircuito; Vgs=0 => gmVgs=0 Y por lo tanto la fuente se abre. Luego: Redibujando el circuito: => ( ) Se ha encontrado Voca e Iocc en términos de Vi, porque Vi es el único parámetro que no cambia si abro o cortocircuito la salida. Se debe de tomar muy en cuenta que no es lo mismo los parámetros en C.A. que en C.C. (Vgsca≠Vgscc) Calculando la frecuencia de corte: Grafica de bode: aquí se necesita encontrar los valores de la magnitud en |Δv|=> Δvmax Δvmin Δvmax => el circuito tendrá a los capacitores en cortocircuito Cs->0 Ci->0 Co->0 En forma general: (Si existe un Cs) ( ) | | ganancia (dB) Grafico de Bode 0 50 100 150 200 250 frecuencia (Hz) Chequeando el resultado para comparar con lo asumido:  Ci: fs2=39.88 Hz fs1=15.92 Hz ( ) => está cercano a 1, que fue lo que nos dice el cortocircuito Ci Esto quiere decir que asumir Ci en cortocircuito fue correcto A fsi ya el efecto no es tan despreciable, sin embargo para más del 71% de la señal Vi lo asumido es correcto. , y esto es que  Co: fs2=39.88 Hz fs1=15.92 Hz => asumir Co en cortocircuito es correcto A fs2 el efecto puede ser ya considerado, sin embargo el error que se introduce es Δv≈-10.59, es decir 6% de error. Lo asumido es correcto. Podría considerarse entonces que, en realidad, la frecuencia encontrada de esta forma, sobre todo fs1, es una frecuencia minima. Viéndolo desde un diseño: Cs seria el minimo valor Cs entre estas frecuencias, se supone que Cs esta desde un circuito abierto hasta en corto = 0 no es necesario hacer un cálculo. Sin embargo, a fo=2.12 Hz. Función de transferencia: Problema No 47. ; ; Cbe1=80pF ; Cbe2=4pF a) Encontrar las frecuencias de corte en alta y baja frecuencia b) Graficar bode |Δv| vs f c) Determine el ancho de banda del circuito d) Si se desea una fh=200KHz, rediseñe el circuito (realice los cálculos necesarios) f1 (asumo C2 en cortocircuito): ‖ Verifico que Xc2 -> 0 ‖ f2: ‖ ‖ 4. f3: (asumo C4 cortocircuito) ‖ Verificación: f4: ‖ ‖ ‖ ‖ f5: ‖ ‖ ‖ ‖ ( ( ) ( ) ) ‖ ‖ ‖ ¡Esto no existe! Se podría tomar a f1 como una década encima de 4.88x105 Hz, porque R1 -> ∞ ‖ ‖ Grafica de bode ‖ ‖ Ganancia dB Grafico de Bode frecuencia Hz Ancho de banda Si se desea una fh=200KHz Coloco un capacitor C6 a la salida Debido a que C3=10pF Problema No 48. Calcular y graficar Bode en alta y baja frecuencia ANALISIS DC: Ib= 16,34 uA hie=1,59k ANALISIS AC: 38 * + ( ⁄ ) ( ( ) ) Problema No 49. Determinar Frecuencia de Corte FL, FH y Ancho de Banda ( ) 20log( ) ( ) [ [ ( ( )] )] Problema No 50. En el siguiente circuito, determinar los valores de las resistencias R1, R2, Rd y R4, para que se cumplan las siguientes condiciones de diseño: Vcc=24v , Vds=8V, Zi=1M, Zo=10K, Av=-8, Q1:|Vp|=4v, Idss=8mA DC Zo=Rd=10K Vgs=Vg-Vs (1) Vcc- RdId – Vds - RsId=0 (2) 24-RdId-8-RsId=0 16-Id(Rd+Rs)=0 (3) AC Zi=R1||R2 1M=R1||R2 (4) Vx=Vi(R1+R2)1000 =R1R2 De (6) R1=6.0505MΩ | Av=-8=-gm(Rd||Rl) ) | (5) ( | ( )| || En (1) Reemplazo en (2) (6) Reemplazo R1 en (6) R2=0.198(6.0505M) R2=1.2MΩ Reemp. Id y Rd en (3) Problema No 51. R1= 10 k Vce= 10V F2= 20 HZ. AV= -10 Ic= 5mA. Hallar R1, R2, Rc, Re, Cs, Co, Ce β=100 Análisis DC Ic=5mA 20-Ic.Rc-10-Ie.Re=0 10-Rc-5.05Re=0 : I Si lo hacemos independiente de β: 10R2= (β+1) Re; 10R2=101Re : II ya que como demostramos más adelante, no se puede simplificar. Condicion de Li=10R1R2 :  III Análisis AC ||  ||  1 2    De II  De III  398.46=203.228+10.4364R1 R1=17.844K || || R2=19.473K Como va a salir negativo no se cumple esta conclusión  Fe=frecuencia de corte Req=Reflejada al emisor = || |  Para ⁄ (una década antes) Puede asumirse también Problema No 52.  Grafique en Bode en alta y baja frecuencia  Rediseñe el circuito para fL=500Hz y fH=100KHz Cbe = 40 pF; Cbc = 3pF; Cce = 1 pF; Cwi = 5 pF y Cwo = 7 pF. Análisis DC Análisis Ac Se encuentra el Av Av(dB)= 20 log (66.08)= 36.40 dB Respuesta de baja frecuencia Cs: Asumir Ce, Cc en corto circuito Comprobamos: Como observamos Xce > Re, Asumimos bien Cc: asumir Ce, Cs en corto circuito Ce: CE: fLCE = 1  3.979 Hz 2 220mF  Respuesta de alta frecuencia Rediseño Baja Frecuencia fc=500Hz Altas Frecuencias fH= 100KHz C= Tengo que poner una capacitancia en paralelo de C=2569.6pF. A la entrada del amplificador. Esta capacitancia no interfiere en baja frecuencia, pues es un sistema abierto, ya que Kc es muy grande. Problema No 53. Se desea diseñar un amplificador basado en el circuito mostrado de tal forma que las frecuencias de corte para baja sean: fLCs= 2 Hz;fLCc= 30 Hz;fLCe= 400 Hz. Para el diseño considere lo siguiente: * Q1: VBE= 0,7 V * Vcc= 24 V ; Rs= 100 Ω (Resistencia de la fuente alterna) ; RL= 1 KΩ (Resistencia de la carga). * Vc= Vcc/2 para tener igual excursión alterna máxima alrededor del punto de operación. * ICQ= 4 mA; R1= 4R2 y RC= 3RE. * Cbe= 40pF; Cbc= 3pF; Cce= 1pF; Cwi= 5pF; Cwo= 7 pF. Determine los valores de RC, RE, R1, R2, CS, CE, CC. { Determine las frecuencias de corte en alta Fhci; Fhco. a) b) , , c) , Análisis DC VTHV= 24( )= R1||R2 = ( 24( )= )= ( )= 24( ) = 4.8V =0.8R2 RCIC= 1/2(Vcc) (Criterio de Diseño) RC = 0.5(24) / 4 = 3KΩ RE= RC/3 = 1KΩ IC=4mA IB= IC/ β = 40uA IE= β+1/ β= 4.04mA 4.8 - O.8R2IB - 0.7 - REIE = 0 R2 = 4.8 - 0.7 - 1(4.04) /0.8(40x10-3) = 1.87KΩ R1 = 7.48 KΩ re= 26mV/ IE= 26/4.04 = 6.43Ω Valores de las capacitancias: ( || ( || || || ) ) || AV = Rc || RL / re + Re = -0.01 RL= ( || || ) RC|| RL = 7.32 = 7.38 Problema No 54. Determine las frecuencias de corte en baja. Dispositivo Valor a) { b) { c){ ANÁLISIS DC VTHV= 24( ) = 4.79V RTH= R1||R2 = 1.50Ω 4.8 - 1.5IB - 0.7 - 1IE = 0 4.8 - 1.5 (IE/ β+1) - 0.7 - 1IE = 0 IE = 4.03mA Vcc 24[V] Rs 100[Ω] VBE 0.7[V] β 100 R1 7.5[KΩ] R2 1.87[KΩ] RE 1[KΩ] RC 3[kΩ] CE 54.4[F] Cs 50.42[F] Cc 1.32 [F] RL 1[KΩ] re= 26mV/ IE= 26/4.03 = 6.45Ω Valores de Frecuencias ( || ( || || || ) ) || Problema No 55. Determine el ancho de banda del circuito. Dispositivo Valor Vcc 24[V] Rs 100[Ω] a) VBE 0.7[V] Bw= β 100 19. 25 MHz R1 7.5[KΩ] b) Bw= 400 MHz R2 1.87[KΩ] c) Bw= 4928 KHz RE 1[KΩ] RC 3[kΩ] CE 54.4[F] Cs 50.42[F] Cc 1.32 [F] RL 1[KΩ] Problema No 56. En el siguiente circuito, Determine el ancho de banda BW dado que la respuesta de frecuencia en alta es 1.2Mhz: *Asuma Resistencia en el emisor de Q1 y Q2 Re = 2Ω ELEMENTO VALOR Ri 1KΩ R1 4KΩ a) 1.2Mhz R2 0.8KΩ b) 1.1942Mhz R3 2KΩ c) 1.105Mhz R4 2KΩ d) 1.1998Mhz R5 4KΩ R6 2KΩ R7 2 KΩ R8 0.8KΩ RL 5KΩ Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF β (Q1 Y Q2) 100 Análisis DC Primer análisis: Rth=R1||R4 -> Rth=1.333KΩ ( ) Segundo análisis: ( Análisis AC: ) {[( * )|| || || {[( * || } ] } + )|| || ] + Problema No 57. En el siguiente circuito, La Frecuencia de corte es: *Asuma Resistencia en el emisor de Q1 y Q2 Re = 2Ω ELEMENTO VALOR a) 6 Khz Ri 1KΩ b) 4 Khz R1 4KΩ c) 5.8 Khz R2 0.8KΩ d) 10 Khz R3 2KΩ R4 2KΩ R5 4KΩ R6 2KΩ R7 2 KΩ R8 0.8KΩ RL 5KΩ Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF Problema No 58. En el siguiente circuito, determine la respuesta de frecuencia en alta dado su ancho de banda BW=10Mhz : *Asuma Resistencia en el emisor de Q1 y Q2 Re = 2Ω ELEMENTO VALOR Ri 1KzΩ R1 4KΩ R2 0.8KΩ R3 2KΩ R4 2KΩ b) 10Mhz R5 4KΩ c) 9.87Mhz R6 2KΩ d) 9.97Mhz R7 2 KΩ R8 0.8KΩ RL 5KΩ Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF *Asuma que normalmente. a) 9.99Mhz el circuito esta operando Problema No 59. En el siguiente circuito, la ganancia |Av|db es: Asuma resistencia en el emisor de Q1 y Q2 Re = 2Ω a) 51 db b) 35 db c) 61 db d) 72 db ELEMENTO VALOR Ri 1KΩ R1 4KΩ R2 0.8KΩ R3 2KΩ R4 2KΩ R5 4KΩ R6 2KΩ R7 2 KΩ R8 0.8KΩ RL 5KΩ Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF Problema No 60. En el siguiente circuito, la ganancia de Voltaje total para una frecuencia en banda media es: *Asuma resistencia en el emisor de Q1 y Q2 Re = 2Ω a) 1153 b) 2551 c) 3575 d) 1222 ELEMENTO VALOR Ri 1KΩ R1 4KΩ R2 0.8KΩ R3 2KΩ R4 2KΩ R5 4KΩ R6 2KΩ R7 2 KΩ R8 0.8KΩ RL 5KΩ Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF Problema No 61. En el siguiente circuito, la respuesta en alta frecuencia es: *Asuma resistencia en el emisor de Q1 y Q2 Re = 2Ω *Asuma que el circuito se encuentra operando ELEMENTO VALOR Ri 1KΩ a) 3.55Mhz R1 4KΩ b) 30.94 Mhz R2 0.8KΩ c) 22.28Mhz R3 2KΩ d) 4.21Mhz R4 2KΩ R5 4KΩ R6 2KΩ R7 2 KΩ R8 0.8KΩ RL 5KΩ correctamente. Cs1 470uF CE1 47uF Cs2 33uF CE2 1uF Co 470uF Cw1=Cw2=Cw3 5pf Solución: a) Cbe1 80pF Cbe2 4pF b) c) Respuesta: la frecuencia de corte en alta es 14 MHz 3.1) En el circuito de la figura: a) Calcule el punto de polarización del transistor JFET ( ID, VDS1) b) Calcule el punto de polarización del BJT (IC, VCE2) c) Dibuje el circuito para frecuencias medias. Calcule las impedancias Z1, Z2, Zi. d) Calcule la frecuencia de corte superior utilizando el método de las constantes de tiempo. e) Calcule la frecuencia de corte inferior asociada a los condensadores C1 y C2. Utilice el método de las constantes de tiempo. C3= C4 ∞ Datos: Idss=10[mA], Vp= -3[V], VBE=0.6 [V], β=200 Cgs1 =1[pF], Cgd10, Cu2=0, Cπ2=0.5 [pF] ANÁLISIS DC ( ( ) ) ( ) || || ANALISIS DE FRECUENCIA MEDIA || || || ⁄ ANALISIS DE FRECUENCIA BAJA ( ) ( || || ANALISIS EN FRECUENCIA ALTA ) || || || || || 3.2) El circuito de la figura es un amplificador multi-etapa con transistores bipolares. a) Obtenga el punto de polarización de ambos transistores. b) Dibuje el circuito equivalente en frecuencias medias. Calcule Zi (Vg/IRg), Z2 (Vb2/Ib2), Z3 (Vo/Ie) y Gv. c) Calcule las frecuencias de corte superior. d) Calcule las frecuencias de corte inferior. DATOS: Considere C1=C3∞ , Cu1=0.5pF , Cπ1= Cπ2= Cu2 =0 VBE=0.6[V] β=200 ANALISIS DC || || ANALISIS EN FRECUENCIA MEDIA || || *( || ) || || + || || * + ||( || || || || ANALISIS DE FRECUENCIA EN BAJA )|| || ( || || ) || || || ( || ) 3.3) El circuito de la figura es un amplificador multi-etapa de gran ancho de banda. a) Obtenga las tensiones V1 y V2 en corriente continua. Desprecie la corriente de base de Q1 y Q2 b) Obtenga el punto de polarización de ambos transistores. c) Dibuje el circuito equivalente para frecuencias medias. Calcule la ganancia Gv. d) Calcule Zi y Ze e) Calcule la frecuencia de corte inferior utilizando el método de las constantes de tiempo. f) Dibuje el equivalente para frecuencias altas y calcule la frecuencia de corte superior. ANALISIS DC Subiendo que las corrientes base de cada transistor son despreciables, la corriente que pase por R1 es igual a la corriente que pasa por las resistencias R2 y R3. Como las resistencias son iguales entonces tendremos la misma caída de tensión en cada una. Son 3 resistencias entonces cada una tiene una caída de 5[v]. Vb1=10[V] y Vb2=5[V] 1mA)=5[V] [V] 5V) ANALISIS DE FRECUENCIA MEDIA || || || || ANALISIS DE FRECUENCIA BAJA || ANALISIS DE FRECUENCIA EN ALTA || || || 3.4) El circuito mostrado es un amplificador en configuración cascada, constituido mediante transistores BJT, considere el valor de y muy grande y que se conocen . a) Exprese literalmente la ganancia de voltaje desde Vi hasta Vo. b) Encuentre literalmente la respuesta en baja frecuencia del circuito. c) Encuentre literalmente las frecuencias de corte en alta frecuencia, considerando la existencia de y como capacitancias parasitas. d) Si no existe, determine literalmente la respuesta en alta de frecuencia. e) Grafique la ganancia de voltaje respecto de la frecuencia para el literal b) y c). 4. AMPLIFICADORES DE POTENCIA 4.1. AMPLIFICADORES DE POTENCIA CLASE A 90. En el siguiente circuito, determine R₂ para obtener la máxima excursión de salida. 91. Diseñar un amplificador que ceda el máximo de potencia, sin distorsión a una carga de Rι=750Ω. Se ha escogido ICQ= 0.2 A para ubicar el punto Q. a) Obtener la línea de carga alterna que satisfaga este requerimiento de potencia. - La línea de carga DC. - Los valores de VCEQ, R1, R2, R3, R4. - Máxima excursión de salida Nota: asuma VR4= 3V y R₁ R₂ = 45Ω b) Suponga que este máximo requerimiento se lo quiere proporcionar a una carga de 5Ω a través de un transformador. Obtener: - El número de vueltas que satisfaga esa línea de carga alterna para máxima potencia. - La eficiencia. - Los valores R₁, R₂, R4, requeridos - Nota: asuma VRE= 3V. 92. En el siguiente circuito, determinar: Datos.- Q3: hfe= 50, hie= 8.66Ω a) Pin b) a= N₁/N₂=? para un correcto acoplamiento de carga. c) Si , halle Vsmáx para evitar distorsión en Vo. d) MES (máxima excursión de salida sin distorsión) 93. Para el circuito de la figura, la potencia entregada a la carga es 0.3W. Determine: a) La eficiencia. b) La potencia que disipa el transistor. Datos.- N₁/N₂=4/1, hfe= 60 Problema No 63. Dado el siguiente circuito clase A. Determine el valor de la resistencia R2 a) b) c) d) e) 𝑁𝑁 Problema No 64. Dado el siguiente circuito. Determine la eficiencia máxima si      :0.7V, y Problema No 65. Dispositivo Valor hfe 100 VEB 0.7[V] RB1 3.6[kΩ] RB2 20[kΩ] RE 4[Ω] RL 4[Ω] Transformador Valor Determine el punto de operación de Q2. a){ b){ c){ Rp 1[ Ω ] Rs 0.1[Ω] Np 3000 Ns 750 Problema No 66. Transformador Valor Rp 1[ Ω ] Rs 0.1[Ω] Np 3000 Ns 750 Dispositivo Valor hfe 100 VEB 0.7[V] RB1 3.6[kΩ] RB2 20[kΩ] RE 4[Ω] RL 4[Ω] Encontrar los valores de Vcep e ip del circuito (considerar recta de carga) a), b), c), Problema No 67. Transformador Valor Rp 1[ Ω ] Rs 0.1[Ω] Np 3000 Ns 750 Dispositivo Calcul Valor hfe 100 VEB 0.7[V] RB1 3.6[kΩ] RB2 20[kΩ] RE 4[Ω] RL 4[Ω] ar las potencia del circuito Pin ,Po a){ b){ c){ Problema No 68. En el siguiente circuito amplificador clase A, la corriente ICQ= 4.3 mA, encuentre la potencia PL máxima para estas condiciones. ELEMENTOS TRANSISTOR Q1 a) 14.46 W b) 28.93 W β 25 c) 14.42 W VBE 0.7 V d) 28.84 W TRANSFORMADOR RP 40Ω N1 74 N2 14 Problema No 69. En el siguiente circuito amplificador clase A, la corriente ICQ= 4.3 mA, determine el Vi para obtener la potencia máxima en la salida. ELEMENTOS a) 24.35 mV, b) 29.85 mV c) 24.98 mV d) 30.96 mV TRANSISTOR Q1 β 25 VBE 0.7 V TRANSFORMADOR RP 40Ω N1 74 N2 14 Problema No 70. En el siguiente circuito amplificador clase A, determine la eficiencia de potencia, para estas condiciones. ELEMENTOS TRANSISTOR Q1 a) 22% b) 25% c) 30% d) 40% β 25 VBE 0.7 V TRANSFORMADOR RP 40Ω N1 74 N2 14 Problema No 71. En el siguiente circuito amplificador clase A, determine la eficiencia de potencia, para estas condiciones. a) 11% b) 20% c) 6.5% d) 26% ELEMENTOS TRANSISTOR Q1 K 0.03 VT 3V TRANSFORMADOR RP 3Ω RS 0.25 Ω N1 2 N2 1 Problema No 72. En el siguiente circuito amplificador clase A, determine la potencia máxima en la salida. a) 2.3 W b) 9.3W c) 1.4W d) 5.6 W ELEMENTOS TRANSISTOR Q1 K 0.03 VT 3V TRANSFORMADOR RP 3Ω RS 0.25 Ω N1 2 N2 1 Problema No 73. En el siguiente circuito amplificador clase A, determine el V1 para obtener una eficiencia de 26%. a) 2.3 Vp b) 3 Vp c) 2.5 Vp d) 2 ELEMENTOS TRANSISTOR Q1 K 0.03 VT 3V TRANSFORMADOR RP 3Ω RS 0.25 Ω N1 2 N2 1 Problema No 74. En el siguiente circuito amplificador clase A, Si V1= 1Vp, determine la Potencia en la Carga y la eficiencia del circuito para estas condiciones. ELEMENTOS TRANSISTOR Q1 K 0.03 VT 3V TRANSFORMADOR RP 3Ω RS 0.25 Ω a) 1.04W, 4% N1 2 b) 1.44W, 7% N2 1 c) 0.36W, 1.6% d) 0.26W, 1.2% Problema No 75. Para el siguiente circuito determine el valor de V1(RMS) para que la eficiencia del circuito sea máxima . *Asuma ganancia total del circuito 3000 a) 14 Vrms b) 10 Vrms c) 5 Vrms d) 7Vrms ELEMENTOS TRANSISTOR Q1 β 150 VBE 0.7 V TRANSFORMADOR N1 400 N2 100 94. Dado el siguiente circuito, encontrar: a) La máxima potencia que se puede desarrollar en la carga sin saturación o corte b) La máxima eficiencia del circuito. c) La potencia disipada en el transistor (PQDC) Datos.- Resistencia del primario= 10Ω, U2=N1/N2= 4/1 95. En este amplificador de clase A la corriente ICQ=0.5 A. Calcular: a) La máxima potencia de salida disponible. b) La eficiencia del sistema. c) La potencia disipada en el transistor. Datos.- hfe=49, U2=N1/N2=4/1 96. Dado el siguiente circuito, encontrar: a) La máxima potencia simétrica en la carga RL= 3Ω. b) La relación que debería tener el transformador para obtener la máxima potencia de salida. c) Icmáx y la potencia disipada en el transistor para PLmáx. Datos: ß=24, U2=N1/N2= 4/1 97.Dado el siguiente circuito, determinar: a) Vo/Vs b) Po/Ps Datos.- hfe= 100, U2=N1/N2=3/7 98. Dado el siguiente circuito y la corriente del colector Ic=130 mA, determinar: a) Los valores R1, R2, R3 b) La recta de carga c) La eficiencia del circuito Datos.- hfe= 22, U2= N1/N2= 3/1 4.2. AMPLIFICADORES DE POTENCIA CLASE B 99. Dado el siguiente circuito y una Pomáx=20W, determinar: a) Vcc b) Ic c) Vin d) La potencia disipada en cada transistor. 100. dado el siguiente circuito, determinar: a) la eficiencia b) La potencia disipada por cada transistor c) Vi(rms) máx d) La eficiencia cuando Vi= Vi(rms) máx Nota: para los literales a) y b) asuma Vi= 12Vrms 101. En el siguiente circuito, asumiendo condiciones óptimas de operación, determine: a) PL b) Pin (DC) c) Eficiencia(η) d) Potencia disipada en cada transistor 102. En el siguiente circuito, asumiendo Vi=8 Vrms, determine: a) PL b) Pin (DC) c) Eficiencia(η) d) Potencia disipada en cada transistor 103. En el siguiente circuito, asumiendo Vcc= 40V y Vi= 18 Vrms, determine: a) PL b) Pin (DC) c) Eficiencia (η) d) Potencia disipada en cada transistor 105. En el siguiente circuito, determinar: a) Los puntos de operación (VCE, IC) de los transistores b) PLmáx b) Pinmáx c) Vimáx d) Potencia máxima que podría disipar uno de los transistores de salida Datos.- hfe1=hfe2=100 y hfe3=hfe4=50 106. En el amplificador, si Q₁ tiene una corriente de colector máxima de 100mA y una potencia de disipación de 600 mW, determinar la potencia máxima en la carga. si Datos.- hfe3=hfe4=20 107. En el circuito mostrado, si VCE= 18 Voltios, determinar: a) La caída de voltaje en R2 b) La corriente a través de Q2 c) La impedancia a la entrada del circuito (después de Vi) d) La ganancia de voltaje (Vo/Vi) e) La máxima potencia disipada en la carga Datos.- R1=R4= 120Ω, R2= 5.6Ω, R6=R7=0.68Ω y RL= 8Ω, ß= 50 Problema No 76. Dado el siguiente circuito clase AB .Determine el valor de VCEQ1 y la corriente de colector ICQ1 a){ b){ c){ Problema No 77. Dado el siguiente circuito, en condiciones de máxima eficiencia, determine la potencia de entrada Pin y la potencia de salida Po. a){ b){ c){ d){ Problema No 78. Dado el siguiente circuito, determine la eficiencia máxima a) b) c) d) e) Problema No 79. Del siguiente circuito Amplificador clase B, encontrar la expresión (ecuación) en el análisis AC para la recta de carga. Nota: asuma R3=R4 Vcc1=Vcc2 a) b) c) d) e) y Problema No 80. Del siguiente circuito amplificado clase B, encontrar valor de ). a) 58.90 [W] b) 54.76 [W] c) 52.35 [W] d) 50.68 [W] e) 56.43 [W] (Nota: No hace falta Problema No 81. En el siguiente circuito amplificador clase B, determine la potencia máxima de salida. a) 30.9 W ELEMENTOS b) 39.1 W TRANSISTOR Q1,Q2 c) 34.6 W K 2 d) 36.8 W VT 1[ V] Problema No 82. En el siguiente circuito amplificador clase B, determine el Vcc necesario para una eficiencia de 50% si su potencia de salida es 40[W]. a) 40 [V], ELEMENTOS b) 25 [V] TRANSISTOR Q1,Q2 c) 15 [V] K 2 d) 20[V] VT 1[ V] Problema No 83. En el siguiente circuito amplificador clase B, determine la eficiencia del circuito y la potencia de salida Po para un V1(pico)= 10V a) 28.6%, 5.54[W] ELEMENTOS b) 31.4%, 6.25[W] TRANSISTOR Q1,Q2 c) 50.3%, 7.55[W] K 2 VT 1[ V] d) 78.5%, 5.54[W] Problema No 84. En el siguiente circuito amplificador clase B, determine la potencia máxima de salida para tener la máxima eficiencia. a) 54.9[W] b) 70.7[W] c) 56.3[W] d) 55.5[W] Problema No 85. En el siguiente circuito amplificador clase B, determine la potencia que entregan las fuentes de alimentación, cuando Vi=10 a) 23.9 [W] b) 70.7[W] c) 23.6[W] d) 54.9[W] (V). Problema No 86. En el siguiente circuito amplificador clase B, determine el máximo valor que puede tomar Ve(t) cuando a) 10 Vp b) -10 Vp c) -20 Vp d) -30Vp (V). Problema No 87. En el siguiente circuito amplificador clase B, determine la potencia máxima AC que se desarrolla en RL a) 57.7 [W] b) 58.3[W] c) 61.3 [W] d) 60 [W] Problema No 88. En el siguiente circuito amplificador clase B, determine el máximo valor que puede tomar Ve(t) (voltaje en emisor), para la máxima eficiencia del circuito. a) 34[Vpico] b) 39[Vpico] c) 29[Vpico] d) 30[Vpico] Problema No 89. En el siguiente circuito amplificador clase B, determine el máximo valor que puede tomar Ve(t)(voltaje emisor) para V1p=5V y –Vcc1 =Vcc2= -40V a) 4.95[V] b) 7.85[V] c) 6.85[V] d) 12.95[V] 5. AMPLIFICADOR DIFERENCIAL Problema No 109. En el siguiente circuito amplificador diferencial, el valor de R que permite una razón de rechazo en modo común de 40dB es: a) 7.4 KΩ b) 5.5 KΩ c) 3.4 KΩ d) 6.5 KΩ ELEMENTOS TRANSISTOR Q1,Q2 β 60 VBE 0.7 V Problema No 110. En el siguiente circuito Amplificador Diferencial, Determine la Ganancia Diferencial a) -267 ELEMENTOS b) 267 VCC 10[V] c) -182 RC1 10 KΩ RC2 17.2 d) 182 KΩ RD 18.6 KΩ RE 10 KΩ VD 0.7[V] VBE 0.7[V] hie 5KΩ hfe 200 Problema No 111. En el siguiente circuito Amplificador Diferencial, Determine la Ganancia Diferencial. a) 442 ELEMENTOS b) 332 TRANSISTOR Q1,Q2 c) 632 β 100 d) 580 VBE 0.7 V TRANSISTOR Q3 K 0.39 VT 3[V] rDS 100K Problema No 112. En el siguiente circuito Amplificador Diferencial, Determine la Ganancia en Modo Común. a) 465 b) 0 c) 100 d) 332 ELEMENTOS TRANSISTOR Q1,Q2 β 100 VBE 0.7 V TRANSISTOR Q3 K 0.39 VT 3[V] rDS 100K Problema No 113. En el siguiente circuito amplificador diferencial, determine la corriente I en DC a) 6.5 ELEMENTOS b) TRANSISTOR Q1,Q2 3.2 c) 1.4 β 100 d) 2.2 VBE 0.7 V TRANSISTOR Q3 K 0.39 VT 3[V] rDS 100K Problema No 114. En el siguiente circuito amplificador diferencial, determine la ganancia diferencial. a) 331.7 b) 0 c) 1 ELEMENTOS d) 444.2 TRANSISTOR Q1,Q2 β 100 VBE 0.7 V TRANSISTOR Q3 β 100 VBE 0.7 V hoe 10-7 mΩ Problema No 115. En el siguiente circuito Amplificador Diferencial, Determine la Ganancia en Modo Común. a) 331.7 b) 0 ELEMENTOS c) 1 TRANSISTOR Q1,Q2 d) 444.2 β 100 VBE 0.7 V TRANSISTOR Q3 β 100 VBE 0.7 V hoe 10-7 mΩ Problema No 116. En el siguiente circuito amplificador diferencial, determine la ganancia diferencial. a) 150 b) 0 c) 1 d) 300 ELEMENTOS TRANSISTOR Q1,Q2 β 80 VBE 0.7 V TRANSISTOR Q3 β 80 VBE 0.7 V hoe 5uΩ Problema No 117. En el siguiente circuito amplificado diferencial, encontrar los valores de todas las resistencias. a. { b. { c. { d. { Problema No 118. Hallar la corriente de cola (la que pasa a través de la resistencia R2) Dispositivo a) 0.28 [mA] b) 0.63 [mA] c) 0.7[A] d) 0.56 [mA] e) 1 [mA] Valor Rc1 21k Rc2 21k VEB 0.7[V] Problema No 1119. Calcule la ganancia AVD y AVMC del sistema a){ b){ c){ Dispositivo Valor Rc1 21k Rc2 21k VEB 0.7[V] Problema No 120. Calcule la relación de rechazo en modo común CMRR: a) -52.7 [db] Dispositivo Valor b) 60[db] Rc1 21k c) 0.7[db] Rc2 21k d) 52.68 [db] VEB 0.7[V] e) 1 [db] Problema No 121. Calcule a){ b){ c){ el punto de operación de Dispositivo Q3: Valor Q1,Q2,Q3 β 80 VEB 0.7[V] Q3 1/hoe 100k Problema No 122. Calcule la ganancia AVD y AVMC del sistema a){ b){ c){ Dispositivo Valor Q1,Q2,Q3 β 80 VEB 0.7[V] Q3 1/hoe 100k Problema No 123. Para el circuito calcule el valor del CMMR a. -52.7 b. 21 ] Dispositivo Valor Q1,Q2,Q3 c. 6.59 β 80 d. 130.5 VEB 0.7[V] e. Q3 1/hoe 7.2) En el siguiente circuito mostrado, determine: 100k a) los puntos de operación de Q1, Q2, Q3 b) Ganancia diferencial Ad c) Ganancia en modo común Ac d) CMRR en dB Datos., , , || | | En el siguiente circuito mostrado, encuentre: a) Ganancia diferencial Ad b) Ganancia modo comun Ac c) CMRR Datos: Q1,Q2,Q3,Q4: β=200, Vbe=0.7 J1: Idss=12mA, Vp=-4, rds=100kΩ | En el siguiente circuito, determinar: a) hie (Q3) y gm (Q1 y Q2) b) Ganancia diferencial Ad c) Ganancia modo común Ac d) CMRR (dB) | Datos: Vz=5.6[V]; Vd=0.7[V]; Rd=0[Ω] Q1,Q2: K=42 [mA/V2 ]; VT=-1.4[V] ; ; ; ( ) ; ; ; | | 71.29 Dado el siguiente circuito amplificador diferencial: a) Calcular el CMRR b) Graficar Vo(t) Datos: hfe=100, hoe=10-7 ohm, Vbe=0.7 ( || ) ; || ( ; ) || (| |) || 6. AMPLIFICADOR OPERACIONAL 6.1. OPAMP REAL 6.1 Demostrar que: 6.2. Calcular: a) Vo/Vs. b) Si se quitan los resistores de 1k y 3k dejando R=∞ en lugar de 1k y 3k, calcular Vo. 6.3. Para el amplificador mostrado, asumiendo una resistencia de entrada infinita, una resistencia de salida cero, y una ganancia diferencial finita: : a) Obtener una expresión para la ganancia ΔVf= Vo / Vs b) Demostrar que cuando ΔV → ∞ (en el límite), ΔVf = n+1. 1) Obtenga la curva de transferencia Vo vs. Vs Problema No 124. Dado el siguiente circuito, determine: a) Vx, Vy e en términos de Vi b) El intervalo de Vi para el cual son válidas las expresiones anteriores Datos.- β=200, |VBE|= 0.7[V]; OPAMs ideales Suponemos que Q1 esta operando en Zona Lineal. Dado que el OPAM opera con +15V y -15V tomamos el valor de +15V, este valor se vera reflejado en la salida del amplificador ya que tomando este valor tendremos una caída de voltaje positiva en nuestro transistor y por consiguiente una Ib mayor a cero. Vo = Voltaje de salida en el transistor Vo = 15V Si Vo=15 Vi – Vo + 0.7 > 0 Vi > 14.3 Opam 1: Comparador ( 0≤Vi≤7.6 V ) Opam 2: Asumiéndolo en Zona Lineal Problema No 125. Obtener Vx y Vz en función de Vi. Asuma que Vi=Sen (2 60t). Datos.- R1=R3=R4=R5=R6=R8=R9; R2=2R1; R7=2R1 a) , b) , c) , d) , OPAMP 1: ZONA LINEAL = 5= = - (ix + iy) Vi = -(Vo1- ) Vi = -Vo1 Vo1 = 2Vx Vi = - (2Vx Vx = -0.5Vi + 0.5 Vx= 2.5 - 0.5Vi OPAMP 2: ZONA LINEAL = Vo1= Vs= 3 Vo - 3 Vo = 7 Vo= - 7Vi =3 7 Vo1 Problema No 126. Diseñe un OPAMP que cumpla con: R12=2 R11, Gráfico es la respuesta. Problema No 127. Obtener Vo en función de Vi. Vo Datos.- R2=R4=R7=10R1; R6=R5=2R1; R3=R8 a) Vo= Vi b) Vo= Vi c) Vo= Vi d) Vo= Vi Problema No 128. En el siguiente circuito con amplificadores operacionales, determine la expresión de V1(t). a) ∫ b) ∫ c) ∫ d) Circuito Integrador = = V1(t) = V1(t) = - ; ∫ ∫ V1 = ; V1(t) = - ∫ Problema No 129. En el siguiente circuito con amplificadores operacionales, determine la expresión de V2(t). a) b) c) d) V1 == Expresión del ejercicio 5 = + SC2 V1 V2 = V2 = Vi Vi Vi2 Vi2 V2 = -1.5 Vi – 0.5 Vi2 Problema No 130. ; V1 = En el siguiente circuito con amplificadores operacionales, determine el mínimo valor que toma Vo(t), dado las Vi1 y Vi2. a) -15[V] b) -6[V] c) -10[V] d) -9[V] ; Valor mínimo: observando las gráficas dadas (valores picos) tomamos el valor de Vi2 (por ser negativo) y el máximo de Vi1 (por ser positivo) Vo = (2.5)(6) + 0.5 (-12) = 15-6 Vo =9V Problema No 131. En el siguiente circuito, determine la expresión que relaciona a Vi con I. a) b) c) d) - Problema No132. En el siguiente circuito, determine la salida Vo en términos de Vi. a) b) c) d) Al tener realimentación negativa, se activa: + = = = 0.5 Vo =Vo ( = ) = asume que el circuito opera en la zona Problema No 133. En el siguiente circuito, considere V1=8 Sen (wt) [V], Vcc=15V. Determine Va, Vb, Vc. R2 Va R4 Vb 10k 20k R3 30k Vc -Vcc lm741 R1 4 2 V- - 50k V1 5 6 3 + 7 U1 1 V+ +Vcc a) Va= 0[Vp], Vb= 8/5[Vp], Vc= -88/15 [Vp] b) Va= 8[Vp], Vb= -8/5[Vp], Vc= -88/15 [Vp] c) Va= 0[Vp], Vb= -8/5[Vp], Vc= -88/15 [Vp] d) Va= 0[Vp], Vb= 8/5[Vp], Vc= 88/15 [Vp] Va =0 Problema No 134. En el siguiente circuito, determine el mínimo valor que toma Va(t). Considere Vcc=15V C1 20uF +6v -Vcc R3 D1 lm741 R1 -Vcc 2 Vs Diodo ideal 40k 4 - 50k 3 V- 6 R4 Va 20k 1 + U2 7 V+ +Vcc R2 50k lm741 2 4 V- 5 3 1 + U3 7 V+ +Vcc Vs(V) 4 t(s) 1 3 a) -15[V] b) -4[V] c) -0[V] d) -8[V] ∫ Va = -8 V Problema No 135. Vo 5 6 En el siguiente circuito con amplificadores operacionales, determine el mínimo valor que toma Vo(t). Considere Vcc=15V C1 20uF +6v -Vcc R3 D1 Diodo ideal 40k lm741 R1 -Vcc 2 Vs 4 - 50k 3 R2 V- 6 Va R4 20k 1 + U2 7 50k V+ +Vcc lm741 2 4 V- 5 3 1 + U3 7 V+ +Vcc Vs(V) a) 4[V] b) 2[V] c) 0[V] d) -2[V] Vo 5 4 t(s) 1 3 6 Problema No 137. Dadas las gráficas de Va, Vb y Vc, grafique Vo1 y Vo2. +15v R1 2 Etapa 2 - 200k C1 +15v VA Vo1 R11 3 +12v 10uF - R2 VB R7 Vx 100k + 11k Etapa 1 R10 1k -15v 5k + R6 -15v C2 10k 20uF +15v +15v Etapa 4 - R3 VC - Etapa 3 Vy R4 +12v Vo2 R8 50k + + 5k R9 10k 10k R5 2k -15v -15v Problema No 136. En el siguiente circuito con amplificadores operacionales, determine el intervalo de tiempo en que la etapa 2 se satura. +15v R1 2 Etapa 2 - 200k C1 +15v VA Vo1 R11 3 +12v 10uF - R2 VB R7 Vx 100k + 11k Etapa 1 R10 1k -15v 5k + R6 -15v C2 10k 20uF +15v +15v Etapa 4 - R3 VC - Etapa 3 Vy R4 +12v Vo2 R8 50k + + 5k R9 10k 10k R5 2k -15v -15v a) t>8 b) t>6 c) t>10 d) t>12 Dado que en la etapa 2 no hay retroalimentación en el OPAM, este no funcionará en zona lineal, por lo tanto siempre estará saturado Problema No 137. En el siguiente circuito con amplificadores operacionales, determine el intervalo de tiempo en que la etapa 4 se satura. +15v R1 2 Etapa 2 - 200k C1 +15v VA Vo1 R11 3 +12v 10uF - R2 VB R7 Vx 100k + 11k Etapa 1 R10 1k -15v 5k + R6 -15v C2 10k 20uF +15v +15v Etapa 4 - R3 VC - Etapa 3 Vy R4 +12v Vo2 R8 50k + + 5k R9 10k 10k R5 2k -15v -15v a) 0<t<2 y 4<t<6 b) 0<t<1 5<t<6 c) 0<t<6 y 7<t<12 d) 0<t<3 y 5<t<6 Etapa 1 y Etapa II ∫ ∫ Etapa III R6 Vx R7 - Vy Vo R8 + R9 ( ) Etapa IV OPAMP SAT Vx Vo1 11k +12v 2) Calcular: + 1k a) Vo/Vs si R= 1M b) Vo/Vs si R= 1k. Vs 3) Grafique Vo(t), especificando magnitudes de voltajes. Dado Vs(t). 1M 6 4 2 0 1 2 2,5 4 5 5,5 7 t(sg) 4) Hallar las formas de onda en A, B, C, y D, dados V1 y V2 t(sg) 0 0 3 4 5 8 10 12 V1(t) -0,5 -1 -1,5 0 0 2 4 6 8 10 12 14 V2(t) -0,5 -1 -1,5 5) Grafique V1, V2, y V3 indicando las magnitudes en V y t, para la señal de entrada Vi dada 4 t(sg) 2 Vi(t) 0 -2 -4 0 1 2 3 4 5 6 7 6) Grafique V1, V2, y V3 indicando las magnitudes en V y t, para la señal de entrada Vi dada. Vb 0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 V1(t) -0,5 -1 -1,5 0 V1(t) -0,5 -1 -1,5 7) Dado el circuito, determinar lo siguiente: a) Una expresión para Zin y su valor nominal b) Si Vi= 10 sen 2000 πt (mv), grafique las señales Vx, Vy, Vz. c) Si Vi= 8 sen 1000 πt (mv), grafique Vx 8) En el siguiente circuito: a) Encuentre una expresión para Vo b) Sea R= 10k, C= 0.01uF, si Vi = 6sen 500 πt (v) grafique Vo. 9) Encuentre una expresión para Vo. 10) Demostrar que: ( ) 11) Demostrar que: ( ) 12) Encuentre las expresiones para Vo y para la corriente a través de RL 6.2. APLICACIONES CON OPAMPs 1.- El circuito mostrado es un medidor de presion constituido esencialmente por el circuito integrado MPX100AP del fabricante Motorola, que mide entre 0 y 100KPa. a) Determine la ganancia de voltaje desde el sensor hasta V1. b) Exprese V2 como una dfuncion de V1 y Vref. c) Determine el rango de ganacia de Vo1/V2 (Ganancia minima y ganancia maxima). d) Determine la ganancia de voltaje Vo2/Vo1. e) Ajuste los potenciometros P1 y P2 para que 0 ≤ Vo1 ≤ 5 Vdc, para presiones en el rango de 0 a 100KPa respectivamente (considere una temperatura de trabajo de 25°C). Para empezar se divide el circuito en 2 partes, empezando con la mostrada a continuación: Como se puede observar los OPAMPS U9, U10, U11 tienen retroalimentación negativa, por lo que se asume que el Voltaje diferencial es 0 y por tanto: Para U9: ( ) ; donde es la salida de U9. Para U10: ( ); donde es la salida de U10. U12: opera como un restador, por lo tanto: ( Dado que y ) ( ) son iguales la expresión final para V1 seria: ( ( ) ) Para expresar el voltaje V2 en función de V1 y Vref se necesita conocer la ganancia del Opamp U11, y para ello, se puede expresar el voltaje en el pin (+) y el pin (– ) como , las respectivas corrientes en cada ramal de interés como puesto que e y, Para establecer el rango de ganancia máxima y mínima de V01/V2, se define la salida del opamp U14 como ( ) ; ; Para calcular la ganancia de voltaje V02/V01, tenemos: Para tener un voltaje entre 0 y 5Vdc en V01, se ajustan los potenciómetros de la siguiente manera: ; Usando las ganancias obtenidas se tendría Ajustando P1: Ajustando P2: Problema 3: difícil de modificar * +
Copyright © 2025 DOKUMEN.SITE Inc.