Flujo rápidamente variado.pdf

April 2, 2018 | Author: Desconocido | Category: Motion (Physics), Equations, Mechanics, Physics, Physics & Mathematics


Comments



Description

FLUJO RAPIDAMENTEVARIADO: RESALTO HIDRAULICO Sonia L. Gonzaga V. Definición del fenómeno  El resalto o salto hidráulico, es un fenómeno local,, propio del flujo rápidamente variado. Su característica principal es el aumento súbito del tirante acompañado de una considerable perdida de energía (se disipa principalmente en forma de calor) en un tramo muy corto (longitud del salto).  Ocurre en el paso brusco de régimen supercrítico (rápido) a régimen subcrítico (lento), es decir, en el resalto hidráulico el tirante, en un corto tramo, cambia de un valor inferior al critico a otro superior a éste. En la siguiente figura se muestra este fenómeno. Flujo Supercrítico Resalto Hidráulico Flujo Subcrítico Generalmente, el resultado se forma cuando en una corriente rápida existen algún obstáculo o un cambio brusco de pendiente. Esto sucede al pie de estructuras hidráulicas tales como vertederos de demasías, rápidas, salidas de compuertas con descarga por el fondo, etc. Como se muestra en la siguiente figura. Lugares apropiados para formarse el resalto hidráulico . después de efectuado el fenómeno (incremento del tirante). cuando el agua escurre todavía en régimen rápido.Características del resalto hidráulico  Antes del resalto. siendo esta la que predomina. es la altura del resalto y L su longitud.  La diferencia ∆y = y2-y1.  Al tirante y1 se lo considera conjugado menor. . predomina la energía cinética de la corriente parte de la cual se transforma en calor (perdida de energía útil) y parte en energía potencial (incremento del tirante).  Al tirante y2 se lo considera conjugado mayor.  E1 es la energía especifica antes del resalto y E2 la que posee la corriente después de el. debido a las perdidas de energía útil que el fenómeno ocasiona. esta perdida se representa como: ∆E = E1 – E2 . Se observa que en 2 la energía especifica es menor en q. Incremento del caudal descargado por una compuerta deslizante. La recuperación de carga aguas debajo de un aforador y mantenimiento de un nivel alto de agua en el canal de riego o de distribución del agua.Usos Prácticos del resalto hidráulico     Prevención o confinamiento de la socavación aguas debajo de las estructuras hidráulicas donde es necesario disipar energía. . al rechazar el retroceso del agua contra la compuerta. debido a la naturaleza fuertemente turbulenta del fenómeno. Esto aumenta la carga efectiva y con ella el caudal. Mezclado eficiente de fluidos o de sustancias químicas. usadas en la purificación de aguas o de aforos químicos. . confirman la seguridad de un análisis general del fenómeno con base en este principio. La concordancia general entre los resultados teóricos y los experimentales. es mas adecuada la aplicación del principio de la cantidad de movimiento. y al hecho de que no se requiere conocer los cambios de energía interna. en el análisis del fenómeno del resalto hidráulico. la aplicación de la ecuación de energía antes y después del resalto. no proporciona un medio adecuado de análisis. Debido a la gran variación de la velocidad media entre los dos extremos del resalto.Ecuación general del resalto hidráulico.    Debido a que en principio se desconoce la perdida de energía asociada con el resalto hidráulico. Es gracias a la concordancia entre los cálculos y los resultados experimentales que se confirma este método.   Hasta ahora se desconoce la perdida exacta de energía asociada con el resalto hidráulico. y como n es de interés el calculo de la variación de energía interna. Así mismo. así mismo no se sabe la cantidad de calor que se produce como resultado de la perdida de energía. aplicar el principio de cantidad de movimiento o momentum. . resulta mas apropiado para el calculo del resalto. la gran variación de velocidad media entre el inicio y el fin del resalto. por lo tanto la ecuación de la energía antes después del resalto no proporciona un medio adecuado para el análisis. pudiendo despreciarse la componente del peso del fluido.Para deducir la ecuación básica del salto hidráulico se utiliza la ley de la cantidad de movimiento. es prácticamente uniforme y que los coeficientes: . considerando que se satisface las siguientes condiciones:    El canal es horizontal y de sección constante. Se considera que la distribución de velocidades en las secciones 1 y 2 de la figura siguiente. Se desprecia la resistencia de fricción originada en la pared del canal. debido a la poca longitud del tramo en que se desarrolla el resalo. las solución de uno de los tirantes conjugados a partir del otro conocido y representa la ecuación general del resalto hidráulico . La ecuación siguiente. es la cual proporciona en todos los casos. . es decir cuando el tirante conjugado necesario es mayor al tirante aguas abajo. Un colchón hidráulico se hace necesario cuando no es posible lograr la disipación de energía deseada de manera natural. . Existen diferentes formas de colchones hidráulicos con el objeto de lograr una mejor disipación de energía en una menor longitud.Características del salto hidráulico    Las características del resalto hidráulico han sido aprovechadas para reducir las velocidades de flujo en canales a valores que permitan el escurrimiento sin ocasionar tensiones de corte superiores a los limites permitidos por los materiales que componen el perímetro mojado. El lugar geométrico en el que se presenta el resalto se denomina colchón hidráulico. . . . Por lo tanto. la ecuación anterior se puede escribir: A partir de la ecuación se desarrollan las ecuaciones para las secciones mas usuales. . permiten el calculo directo del tirante conjugado mayor. Estas.Donde k es un coeficiente que depende de la geometría de la sección. a partir de las condiciones en la sección del conjugado menor y viceversa. se tiene las siguientes relaciones:  Remplazando la ecuación básica del salto y una vez resuelta se obtiene: Si se utiliza .Sección Rectangular En una sección rectangular de ancho de solera b y tirante y. 1.2 La ecuación que nos permite calcular el tirante conjugado mayor conocido el caudal por unidad de ancho y el conjugado menor.Las formula se presentara así  Conocido conjugado menor Ec. en un canal de sección rectangular. 1. es: .1  Conocido conjugado mayor Ec. . conocido el régimen subcrítico.Figura 2. conocido el régimen supercrítico. Figura 2. .2 Curva para determinar el tirante supercrítico.1 Curva para determinar el tirante subcritico. 3 Esquema de uso de la figura 2.Figura 2.1 . SECCIÓN TRAPEZOIDAL  Régimen supercrítico conocido Con un ancho de solera b y taludes Z1 y Z2 donde: además: . que permite calcular el tirante conjugado mayor conocidos: El tirante menor y1 .Esta ecuación es de cuarto grado con raíz real positiva. RÉGIMEN SUBCRÍTICO CONOCIDO Donde: La solución de la ecuación que permite conocer el tirante crítico conjugado menor y1. r yt . conocido y2. SECCIÓN CIRCULAR Sea la sección circular con un diámetro D .  Régimen supercrítico conocido  Régimen supercrítico conocido . SECCIÓN PARABÓLICA  Régimen supercrítico conocido O . .Longitud del resalto (L) La longitud del resalto. pero hasta ahora no se ha desarrollado un procedimiento satisfactorio para su calculo. ha recibido gran atención por parte de los investigadores. Se acepta comúnmente que la longitud L del resalto hidráulico (figura) se define como la distancia medida entre la sección de inicio y la sección inmediatamente aguas abajo en que termina la zona turbulenta.  Según Sieñchin. .Varios autores han propuesto otras formulas de carácter empírico. siendo las mas conocidas las siguientes. Según Chertoúsov. Según Shaumian.Según Hsing. . Para un canal trapezoidal se cumple Según Pavlovski. Bureau of Reclamation La longitud L del resalto en un canal rectangular horizontal se puede calcular con la siguiente tabla: .Según el U.S. . tanto para una pendiente horizontal con la So=0 o para pendiente de fondo diferente de cero Longitud del resalto en canales con pendiente según el U. Bureau of Reclamation.La figura siguiente también permite el calculo de la longitud del resalto para un canal rectangular.S. El nivel de aguas debajo de obras hidráulicas se puede encontrar las siguientes formas de conjugación del régimen supercrítico con el subcrítico (resalto)  Primer caso: salto libre (rechazado. . desplazado o barrido) El resalto se ubica a una distancia I del dique. Esta distancia se conoce como «distancia de barrido»).Tipos de resaltos hidráulicos. El nivel de aguas abajo «ahoga» al resalto y es a lo que hay que propender para evitar socavaciones del lecho. Segundo caso: Salto ahogado o sumergido. . También se dice que el salto se encuentra en la sección contraída. . Tercer caso: Salto en posición crítica.
Copyright © 2025 DOKUMEN.SITE Inc.