Final Bridge Design Report (Berhampur ani

March 29, 2018 | Author: Yogesh Indolia | Category: Deep Foundation, Stress (Mechanics), Structural Engineering, Building Engineering, Civil Engineering


Comments



Description

GOVERNMENT OF ORISSAWORKS DEPARTMENT ORISSA STATE ROAD PROJECT FINAL DETAILED ENGINEERING REPORT FOR PHASE-I ROADS DESIGN REPORT OF BRIDGES (BERHAMPUR TO BANGI JUNCTION) (0.0 TO 41.0) C O N S U L T I N G Engineers Group Ltd. Jaipur E-12, Moji Colony, Malviya Nagar , Jaipur, Raj. + 91-141-2520899, Telefax +91-141-2521348 E-mail : [email protected] URL : www.cegindia.com Consulting Engineers Group Ltd., Jaipur Bridge Design Report INDEX Sl. No. Title Pages 1-2 1 Introduction 2 Bridge at Ch:11/600 (i) Design of Substructure (Abutment) 1 - 25 (ii) Design of Superstructure 1-1 3 Bridge at Ch:29/500 (i) Design of Substructure (Abutment) 1 - 48 (ii) Design of Superstructure 1-1 INTRODUCTION The work of detailed feasibility & preparation of Detailed Project Report has been awarded to M/S Consulting Engineers Group by client, The Chief Engineer (World Bank), Project Implementation Units & OWD, Bhubaneswar, vide agreement No.1 of 2005-06 dated 28/10/05 This report presents the detailed design report for bridges from Berhampur-Rayagada road on SH17.from 0.0 km to 41.0 km. In this stretch, there are 10 nos of existing bridges. The final recommendation after analyzing the data based on detailed inventory & condition assessment, NDT testing, horizontal alignment, hydrological study, geo-technical investigations, vertical alignment & decision taking during site visit with PIU officials. Geo-technical report, NDT reports & site visit report has already been submitted. The final recommendations after incorporating the above report are summarized in Table appended in next page. The overall width of new construction has been kept as 12.0 m with or without footpath with clear carriageway width of 11.0 m in case of bridge without footpath and 7.5 m in case of bridges with footpath. Footpath has been provided for all major bridge and minor bridge lying in village vicinity. The design of superstructure for RCC girder type bridge has been given as per STANDARD PLANS FOR HIGHWAY BRIDGES ( R.C.C. T-Beam and Slab superstructure). The design of superstructure for Solid slab type bridge has been given as per “STANDARD DRAWINGS FOR ROAD BRIDGES ( R.C.C. Solid slab superstructure ( 15 and 30 skew).span 4.0 m to 10.0 m ( With and without footpath)” The substructure has been design using in-house software in Standard excel sheet. The following code of practice has been referred in the designs. 1. IRC : 21-2000 2. IRC : 6-2004 3. IRC : 78-2000 4. SP : 13-2004 5. IRC : 89-1997 6. IRC : 83-1987 7. Specification for Road and Bridges works (MOST Book) 5 7.8 3 x 10.5 High Level Repair/Rehabilitation - Open foundation PCC wall type RCC solid slab Rehabilitation required High Level Repair/Rehabilitation - Open foundation RCC wall type RCC solid slab Good.8 2 x 6.6 RCC T-beam Girder Pile foundation RCC wall type RCC T-beam girder Reconstruction due to narrow in width and realignment as per proposed alignment 5 6 7 8 9 10 29/500 2 x 7. Rehabilitation required High Level Repair/Rehabilitation - Open foundation RCC wall type RCC solid slab Good.5 7.5 High Level .0 High Level Reconstruction 1 x 10. Rehabilitation required Open foundation RCC wall type RCC solid slab Reconstruction due to poor condition Remarks 3 11/270 1 x 6. Rehabilitation required High Level Repair/Rehabilitation - Open foundation PCC wall type RCC solid slab Good.6 2 4/400 3 x 6. Rehabilitation required High Level Nothing to do - Well foundation RCC wall type PSC T-beam girder Good.0 High Level Rehabilitation - Open foundation PCC wall type RCC solid slab Widening required due to change of alignment 7. Nothing to do Reconstruction 1 x 21.5 7.8 4 X 6.5 7.8 4 x 6.Sl No Location/ Chainage Existing Span Arrangeme nt Existing Carriage way width 1 1/915 2 x 6.2 7.0 5.8 Solid Slab 4 11/660 15/185 15/680 17/900 21/850 29/230 3 x 6. Rehabilitation required High Level Repair/Rehabilitation - Open foundation PCC wall type RCC solid slab Good.75 Type of Bridge Recommended for Proposed Span Arrangement Type of foundation Type of substructure Type of superstructure 7.5 High Level Repair/Rehabilitation - Open foundation PCC wall type RCC solid slab Good.5 7.35 5.8 3 x 42. . Jaipur Bridge Design Report MINOR BRIDGE AT CH:11/270 Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project .CEG.Ltd. CEG. Jaipur Bridge Design Report DESIGN OF SUBSTRUCTURE Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project ..Ltd. 000 850.056 = = = = 925.Ltd.00 0.00 = = = = = 24.000 20.000 22.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Design of RCC abutment a) General arrangement The General arrangement is as follows 0.524 0.00 420 420 Skew Dimension= 300 11550 300 925 ELEVATION Basic parameter Unit weight of RCC Unit weight of wearing coat skew angle skew angle in radian Thickness of wearing coat Dead load calculation Thickness of slab deck center Thickness of slab at edge Average Thickness of slab Dead load of top slab 30/180*3..50 Carriageway 11.Design of Substructure CEG.000 775.Jaipur Slab Bridge Span 10.85*24.1416 0.400 kN/m 3 kN/m 3 degree radian M mm mm mm kN/m 2 600 400 400 775 Parapet kerb 500 Footpath 925 11000 carriageway 12000 500 .000 30.000 0.500 PLAN Clear span= 10. Ltd.04*1.5 ) x Thickness of wearing coat Weight of wearing coat including provision for one additional coat 0.Jaipur Slab Bridge Span 10.980 KN Total Reaction due to Class 70R wheel loading and class A loading = 1183.075.265 kN 174.30 0.50)*0.700 0.550 0.060 1.200 4.5 1.00/2-4.485 kN = = 20..000 KN 274.00 iii) IRC 70R Wheeled and Class A loading .80 4.056*22*2 Total pressure due to dead loads Crash barrier 8.Design of Substructure CEG.330 KN = 726.000*24) (0.22 0.530 KN Maximum Reaction on Abutment (STADD OUTPUT) = 348.526 meter meter meter meter meter KN-m Reaction due to Class A Loading (STADD OUT PUT) = 350.3 kN 0.62 363.50 0.930 KN Reaction due to 70R wheel Loading (STADD OUT PUT) = 832.84 174.000 meter meter meter meter meter = = 8.510 KN Total Reaction = 1075.84 kN 1.255 kN 1.38 1.255 1.55/2*2 = Top slab Total Dead load of slab at center of bearing of abutment ( stadd out put ) Super Inposed Dead load at center of bearing of abutment ( stadd out put ) Total (Dead+SIDL) load at center of bearing of abutment ( stadd out put ) = = = 12.15 12.5 A 2.225+0.120 2.500 kN/m 2 = 100.840 2.618 1739.500 1.900 1.040 KN Transverse position Width of Track width of vehicle Clearance from kerb CG of loads from left end A Transverse eccentricity Transverse moment = = = = = = 0.225 0.330 KN 1804.910 KN ii) IRC 70R tracked and Class A loading Reaction due to Class 70R Tracked Vehicle Maximum Reaction on Abutment (STADD OUT PUT) Reaction due to Class A Vehicle Reaction due to Class A Loading 363.70*11.870 1.056 KN/m meter = 2.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Total width of bridge Span c/c of bearing skew Width of crash barrier at top Width of crash barrier at bottom Height of crash barrier Crash barrier load intensity (1.382 1.900 kN/m 2 kN/m 2 = 1530.2 12.400 22.20 0.000 11. 790 1.205 1.930 1.130 1.5 1.30 Transverse moment 1.333 kN 1.3333 kN 1.333333 kN 1.200 5.900 185.40 2.795 meter meter meter meter meter 2125.86 0.3333 1.465 kN 1.91 1112.800 12.5 0.333 kN 1.50 = 0.33 kN 0.50 1.400 185.20 0.150 1.880 4.80 12.26 1.300 .07 kN 1.03 778.5 A 2.026 175.00*0.00/2-5.700 0.30 1.50 1.70 185.20 0.21 1.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Transverse position Width of Wheel width of vehicle Clearance in vehicles Clearance from kerb CG of loads from left end A Transverse eccentricity Transverse moment 416.000 1739..50 0.50 0.700 778.15 185.20 0.500 1.300 0.79 416.91*1.Jaipur Slab Bridge Span 10.04 1183.3 0.700 185.800 0.000 KN 0.200 4.50 1.50 1.Design of Substructure CEG.86 0.Ltd.30 0.00/2-4.112.183.00 iv) Three lane of IRC Class A loading Total Reaction due to three lane of class A loading (STADD OUT PUT) Transverse position Width of Wheel width of vehicle Clearance in vehicles Clearance from kerb CG of loads from left end A Transverse eccentricity 12.5 1.000 Summary for different load conditions from superstructure Load Dead load IRC 70R tracked +class A IRC 70R Wheeled +class A Three lane of IRC A P ( KN ) 1804 1075.49 kN 175.2 = = = = = = = 12.800 1112.800 = = = = = = = 185.49 kN 0.200 1.00 meter meter meter meter meter meter meter Transvers M ( KN-m ) 0.860 2.30 0.53 2125. 3 191.15 2.5 2 10 HFL 13.7 188.Ltd.316 12 3.524 N/mm2 N/mm2 kN/m 3 kN/m 3 kN/m 3 kN/m 3 kN/m 3 kN/m 2 kN/m 2 meter Degree Radians Degree Radians .717 Bed 4 11 5 1.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ 0.000 18.7 1.1416 Angle of internal friction of soil for passive Earth pressure ( φ ) = = = = 3.335 6.524 30.15 Toe 37.698 30.20 68.000 18.000 Submerge weight of soil = 10.43 0.90 0.925 81.2 0.3 108.698 8 9 76.2 2.15 0.69 3 79.9 -9.76 15 7 14 3.019 Heel 13 c b 0.Design of Substructure CEG.Jaipur Slab Bridge Span 10.5 0.3 0.42 82.3 0.72 0.28 1.837 141.100 6.29 Grade of Concrete for sub Structure "M" Grade of Reinforcement for sub Structure "Fe" Unit weight of soil Unit weight of RCC Unit weight of PCC Density of back fill = = = = = = 20.455 -37.000 22.000 2.410 0.000 178.000 0.20 80.80 6.000 24.03 1 1.35 112.000 415..50 6 31.000 0.580 Net Safe bearing capacity of soil Gross Safe bearing capacity of soil Depth of foundation Angle of internal friction of soil for active Earth pressure ( φ ) (30/180*3.600 215. 000 0. of active earth pressure Coeff.335 76.000 deg.1017 Horizontal coefficient of Active earth pressure = vertical coefficient of Active earth pressure = Coeff.000 deg.000 deg.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Cross sectional detail Deck level Foundation level HFL at site Average bed level Width of dirt wall Thickness of slab Total Height of dirt wall Width of bearing including Exp joint Thickness of vertical wall at top Thickness of vertical wall at base Projection of PCC Thickness of PCC Front projection in foundation slab Back projection in foundation slab Thickness of Foundation slab at Junction Thickness of Abutment cap Thickness of toe slab at edge Thickness of heel slab at edge Total base width of PCC = = = = = = = = = = = = = = = = = = = 82..200 0.279 0.720 1.000 Radian Radian Radian Radian ka = 0.Jaipur Slab Bridge Span 10.925 1. θ = 0.000 0.900 1.524 0.500 6.000 0.000 deg.279 3.2794 Therefore.300 2.349 0.500 1.500 0.Design of Substructure CEG.698 n m m m m m .100 79.150 0.500 m m m m m m m m m m m m m m m 0.300 0.200 6.717 0.516 3. of passive earth pressure Kp = (1+sinφ)/(1-sinφ) Coefficient of friction between base of wall & soil (µ) Additional surcharge Height due to load on embankment Height of earth from heel of wall Equivalent height of Active pressure Equivalent height of Passive pressure Passive earth pressure & wt.420 0. Horizontal coefficient of Active earth pressure = KaCos(δ+θ) δ+θ) Kha = 0.2973 Therefore. to be considered or not (y/n) = = = = = = 0.102 m m m m m Earth Pressure Active earth pressure co-efficient as per coulomb's theory KA = COS2(φ −θ ) COS2 θ COS( δ+θ ) 1+ SIN(δ + φ ) SIN( φ − α ) 2 COS( δ + θ )COS( θ − α ) Where φ= θ= δ= α= Angle of internal friction between of soil Angle of inclination of back of wall with vertical Angle of internal friction between retaining wall & earth Angle of surcharge φ = 30.019 80. Vertical coefficient of Active earth pressure = KaSin(δ+θ) δ+θ) Kva = 0. α = 0.150 2.316 7.425 0.Ltd. δ = 20. = = = = 0.500 0. 826 17600.66 8.69*0.3 119.72*24 3.28*18.917 3.0 = 4.90*18.1416) Coeff.536 369.70*24 2.8 337.Jaipur Slab Bridge Span 10.55*0.409 450.8 283.50*0.2 3591.8 1661.653 3.86 13.17*0.7 82.5 5.0*0.98 20..35 19.86 13.9 0 0 0 Dead load moment of the Forces about toe S.00 Length 13.70*18.5 2.000 0.86 13.7 253.32 .000 5412.5 Load/m 6.5 5.50*18.683 3.674 92.69*0.41981 0.8 171.7 253.000 0.425 5.638 256.095 1490.00 0.0*0.925*24 0.70*24*0.090 2.7 883.0 1804.86 13.3 8151.0 2.011 304.9 0.00 0.70*18.32 5.15*22 6.100 6.03 meter 30 = 0.86 13.3 119.30*0.383 4.6 267.5 32.70*24*0.637 4.00 0.G of abutment structure from toe 3.409 3193.36 2.86 13.090 3.811 84.8 283.28*0.m) Over turning Transvers Moment e (kN.655 878.46 16.30*0.40 24.055 C.86 Load kN 92.64 63.m) moment (kN-m) A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Active earth pressure (surcharge) Active earth pressure Weight of dirt wall Weight of abutment cap weight of rectangular weight of Triangular weight of Triangular weight of rectangular weight of Triangular weight of rectangular weight of rectangular pcc Rectan of active earth weight of Triangular weight of rectangular rectan of passive earth rectangular of passive earth rectangular of passive earth Vertical load at bearing Total 457.86 13.90*0.0 0.5 230.0 2.65 18.30*2.0 = 31.417 2.0 3.90*0.28*0*18.075 0.2 3591.158 2.86 13.19 4637.100 3.27 259 0.30*0.5 32.7 82.86 13.20*0.933 2730.900 1.7 883. of active earth pressure Ka = Max height of active pressure Horizontal pressure at top Horizontal earth pressure at bottom 0.0 0.76 meter kN/m 2 kN/m 2 i) Earth pressure on abutment Angle of internal friction of soil for active Earth pressure ( f ) (30/180*3.28*24*0.6 267.381 1203.8 337.0 0.2794 Degree Radians = 6.52 = 0.86 13.78 12.5 230.32 = 0.146 1362.50*24 6.Design of Substructure CEG.86 13.0 2.86 13.15*18.no Part description vertical forces Horizontal force (kN ) Lever arm Resisting (m) Moment (kN.000 1444.90*0.990 32878.856 1482.5 0.Ltd.86 13.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Self wt of abutment wn Particular 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Weight of dirt wall Weight of abutment cap weight of rectangular weight of Triangular weight of Triangular weight of rectangular weight of Triangular weight of rectangular weight of rectangular pcc Rectan of active earth weight of Triangular weight of rectangular rectan of passive earth rectan of passive earth rectan of passive earth Description 0.8 171.46 0.300 3.15*18.86 13.72*24 3.00*6.300 0.844 453.12*2.590 1. 28*18.515 3303.91 37.2 70RW+A 1304 20% 5% 203.4 1.00*6.026 70RT 700 20% 5% 140 70RW 920 20% 5% 184 A 384 20% 5% 76.2 0.39 101.4 1.80 0.79 2.76 kN/m2 Total horizontal pressure 0.653 kN/m Ht meter Height of surcharge (As per IRC :78-1983.6 87.12 3.39 2. from slab Height of slab Reaction on abutment = 1183.859 3407.50 Live load from super structure Total vertical load at bearing Transverse moment due to live load Live load:-braking force Vertical force Braking 2 lane Braking 3rd-lane Braking force Force on each Abutment Force ht.39 value of vertical braking force value of horizontal braking force longitunal component of braking force Transverse component of braking force = = = = 37.0 kN/m2 Lateral earth pressure 31..8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ 0.32^2/2 Height of action of horizontal pressure (As per IRC :6-2000 cl 217.3049 5.29 101.2 0.20 13.Ltd.109 1840 104.2 0.93 17.3439 87.20 = 1.2 70 1.28*18. clu 714.788 273.2 0.87 0.00 1536.for Lever arm force (KN) ce kN (m) overturnin Resisting g moment moment(k (kN-m) N) 1183.76 92 1.85 38.Jaipur Slab Bridge Span 10.99 50.86 0 0.035 meter kN/m 2 2 6.39 5.2 = 6.93 29.86 0.8 3A 1152 20% 5% 96 70RT+A 1084 20% 5% 159.93 25.19 kN kN kN kN .79 1062.31 = 0.13 38.Design of Substructure CEG.80 Live load Moment about toe S.13 48 1.2 0.93 33.6 1.2 0.66 79.16 kN/m meter i) Check for the bottom of base slab Total width of base slab Total abutment base length Components due to skew cos (angle) sin(angle) = = = = meter meter 1.42 = 2.00 1221.8 2A 768 20% 5% 76.2 m Surcharge pressure 6.93 37.6 1.39 2.035 kN/m Total horizontal surcharge pressure Surcharge pressure act at distance from base = 38.00*1.93 14.3 138.no 1 2 3 4 5 6 Particular Live load Vertical Reaction due to Braking force horizontal Braking force Braking transverse Footpath live load Total Transverse moment (kNm) Vertical Horizo.414 2114.2 0.1) Total horizontal pressure act at distance from base = 100.91 = 2125.79 474.93 14.4) Surcharge horizontal pressure 0.99 50. 60 28.0 0.107 = 51.66 kN/m 2 kN/m 2 kN/m 2 = = = = 191.4) FS against sliding 3..88 2 (As per IRC:78-2000 clause 706.00 Live load 1221.80-0.00 4.27 -9.2) Pressure distribution at foundation P/A Mxx/Zxx Myy/Zyy = 130.30 87.5 (As per IRC:78-2000 clause 706.3.66-51.41 2114.42 32878.13 130.77 m2 m3 m3 Long.15*24 1.m) Resisting Moment (kN. base pressure (kN/m 2) 191.4 -37.Design of Substructure CEG.45 68.89 170.13 Net pressure at toe slab Downward wt of slab Downward wt of passive earth at toe at jn Net pressure at toe Net pressure at junction of toe & stem Net pressure at heel slab Downward wt of slab Downward wt of backfill at heel at jn Net pressure at heel Net pressure at junction of heel & stem 2 .3.3. (kN) force (kN) Loading S.32)/2.11-10.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Load combination Friction coefficient between concrete & soil ( µ ) Area of footing Section modulus of footing area about Transverse axis Zxx Section modulus of footing area about longitunal axis Zyy Vert.13 130.60 28.97*18.19 Total 11177.1.89-3.8 10.91 198.0 89.20*24.32)/3.2 1661.39-28.4) 100% 216 (As per IRC:78-2000 clause 706.00 = = = = = = 3. moment (kN.11+10.00 1.60-0.99 1536.64 68.06 4637.656 51.66+51.04 6174.00 68. base pressure (kN/m 2) 68.32+(191.20 1. moment (kN.00 5.86 3407.29 112.5 85.11+10.00 141.66-51.89-68.Ltd.0 191.7 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 kN/m2 at heel at jn 0.0 0.46-28.3) FS against overturning 5.99 108.89-(191.60-101.5 1749.32 kN/m 2 kN/m 2 kN/m 2 kN/m 2 191.m) 0.84 kN/m 2 kN/m 2 at toe at jn 0.13 130.32-3.13 130.89 Min.11-10.2 0.8 0.46 = 108. force Horiz.20*24 0.05 = 141.84-89.m) Trans.m) (DL+LL) dry condition Dead load 9956.0 188.19 4538.32 0 (As per IRC:78-2000 clause 706.28 36286 2114.8 102.Jaipur Slab Bridge Span 10.13 = 10.80 = = = = = = 3.4 kN/m kN/m2 kN/m2 2 kN/m kN/m2 2 kN/m Gross pressure intensity at foundation Maximum pressure at toe Maximum pressure at heel Minimum pressure at toe Minimum pressure at heel = = = = P/A+Myy/zyy+Mxx/Zxx P/A+Myy/zyy-Mxx/Zxx P/A-Myy/zyy+Mxx/Zxx P/A-Myy/zyy-Mxx/Zxx Max pressure at the junction of toe & stem wall Min pressure at the junction of toe & stem wall 130.66+51.89-68.67*18.15*24.107 Stress P/A or M/Zxx&M/Zyy (kN/m2 2) Calculated Permissible Max.40 88.58 89.no 1 = = = = Overturning Moment (kN. Jaipur Slab Bridge Span 10.5 cover 75mm Area of steel required (M/tjd) Minimum area of steel as per IRC Minimum area of steel required 1. However in refrence to clause 707.60 = 720 (0.1 mm2 Hence ok Distribution reinforcement Average depth Area of distribution reinforcement = 0.29-112.Design of Substructure CEG.92 0.4 Hence ok = 2110.8:of IRC 78-2000.3 6.92*1.98 dia spacing required spacing provided total area provided percentage of tensile reinf provided Bar2 0 0 190 0 There is no Tension below foundation . The requrement of reinforcement at top is folows.200.15 = 1672.764 = 751.446 = 1200 1115 > 751.00*1.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Design of toe slab Design for bending moment The forces acting acting on the toe slab are i) downward force due to weight of slab ii) upward soil pressure on cd B.20% mm2 > 2110.250*0.39 150 754 mm2 % mm2/m mm mm mm2/m .00-10.0-75.12 = 0.000 % m mm2 Hence ok Bar1 12 157 150 753.76*1000))^0.66*2.115.250/3 Q=1/2ck j 1/2*6.15/100*1.00 Spacing Required Provide Spacing Area of reinforcement provided = 754 = 0.12/100*600*1.25 0.30^2*2/3+112.35*1.2. Hence fondation will not Have Nagative Moment at top .13 = = = = = 250 12 452.M at the junction.66)*0.35*10^6/(0.5 KN-M mm mm mm mm mm2 % 2 mm = 2244 = 0.115.50 Constants c t m k =1/(1+t/mc) 1/(1+200/(10*6.000 Bar1 Provide reinf for bending dia 20 spacing required 149 spacing provided 140 total area provided 2244 percentage of tensile reinf provided Bar2 0 0 0 0 = = = = = = = 431.30^2*0.0 0.67*0.00 431. c = (188.67 200 10 0.Ltd.5*2.50)/2 0.000.000)\250.000/(200.13 = 0.67)) j=1-k/3 1-0.. Minimum steel reinforcement as per above Clause Dia of reinforcement (3.0*0.917) Depth required Total depth provided Effective Depth provided (431.142/4*144)*1.70+0. 00*10^6*0.115.30 = 140.30*1.2000 Angle between top & bottom face of base slab tan β 0.90*1.075-0.115.4 percentage of tensile reinf provided Bar2 0 0 0 0 105.29+140.35*2.545 = 0.2.00 105.Ltd.2000 Angle between top & bottom face of base slab tan β Base pressure intensity at distance d 112.27--9.35-(1.304/1.211 N/mm2 .1)*1000-0.000 Bar1 Provide reinf for bending dia 20 spacing required 188 spacing provided 150 total area provided 2094.764 KN Effective thickness of base slab at distance d 1.M at the junction Constants 0.917 0.55 1010.1 of IRC: 21.9^2*2/3+-9.250 0.1) Design shear stress (194.35)*2.250*0.27)\2*(2.57 = 0.55*1000-431.010.215 N/mm2 Hence ok Design of Heel slab Design for bending moment B.06 194.5 = 2094 = 0.010.372 kN/m2 Base pressure intensity at distance d -9.20 kN/m KN mm N/mm2 % Permissible Shear Stress = 1.7.8 of IRC :78.35/2.90-1.30-1.917) Depth required Total depth provided Effective Depth provided = = = = = = = (105.19 % Permissible Shear Stress = 1.0*1*1.57*1000) Percentage of tensile reinf.35)/2.8 N/mm 2 Effective thickness of base slab at distance d 1.5 c t m k =1/(1+t/mc) 1/(1+200/(10*6.37+-37.15 = 1672.250/3 Q=1/2ck j 1/2*6.19% mm mm mm mm mm2 mm2 mm2 mm > 515.055 mm N/mm2 Percentage of tensile reinf.67*0.57)/(1.Design of Substructure CEG.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Design for shear force As per clause 304.00*1.47 Hence ok 2 Provided distribution reinforcement same as in toe slab The requirement of reinforcement in reference to clause 707. Provided 0.200.8 N/mm 2 Design shear stress (48.12 Shear force at distance d per m width (-17.241 = -17.20 Shear force at distance d per m width (188.40 Hence ok = 515.35/2.00-10.90*1.90^2*0.55*1000) Check for shear stress for which the Reinforcement is not Required Stress = ΚτC K =1 τC from table 12B of IRC 21-2000 = 0.35-(1.7.35+(-37.30*1.37*10^6/(0.55)/(888.67)) j=1-k/3 1-0.Jaipur Slab Bridge Span 10.1)*1000-0.5*(-37. Provided = 0.15/100*1.5 cover 75mm Area of steel required (M/tjd) Minimum area of steel as per IRC Minimum area of steel required 1.241/888.1 of IRC: 21.010 Check for shear stress for which the Reinforcement is not Required Stress = ΚτC K τC from table 12B of IRC 21-2000 2 =1 = 0.010 888.27--9.4 6.06)\2*(2.064 = 0.2000 on opposite face (bottom) is same as for toe slab Design for shear force As per clause 304.66+(188.7 200 10 0.29-112.1) 48.075-0.47 = 0.35*10^6*0.66)/2.40 = 1200 1115 > 371.0) 0.764 = 371.37*10^6/(200.76*1000))^0..76*1000-1.0-75. 62 Longitudinal moment = 2533.383 2.03 Kn-m Span dislodged condition Vertical load = 1267.24 = 4255.191 Moment 949.54 Kn-m Transverse Moment = 2125.693 1584.86 Kn Longitudinal Moment = 3115.766 23.88 Transverse moment = 0.97 4.6 + Total vertical load Force 398.03 4.184 581. 0.54 2988. 25 φ 200 c/c 16 φ 200 c/c Horizontal reinforcement Lateral reinforcement on each face Thickness at base Area of reinforcement per meter height Diameter of bars Spacing of bars required Spacing of bars provided Connecting links of 10mm dia tor bars @ 200 c/c spacing shall be provided.Jaipur Slab Bridge Span 10.41 138.Ltd.Design of Substructure CEG.79 surcharge L.116 2 23.A 2.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Design of Abutment wall 6. The stresses in concrete and steel are well within permissible limits.66 3115.00 Reinforcement have been provided as follows and checked with separate programme.97 active earth pressure element 1 2 Ht Earth pressure 6.53 791.002 4.125 1000 1250 16 161 150 % mm mm2 mm mm mm .03 1 5..766 Horizantal force 1267. 14/4*12.93*0.77 25.00 kN 40.42 Max.94*0.00 5..00*1000 Provide reinf.00 8.Jaipur Slab Bridge Span 10.00^2*1000/450 spacing provided area provided 3. 6.94 5.14/4*12.120 2.00*0.03)*0.00^2*1000/200.33 200.90*244.90 9. for bending dia spacing required 3.77*10^6/(200.294 0.902 1.790 0.15/100*300.93/2+0.15 450 12 251 200 565 m kN/m kN/m KN-m KN-m N/mm 2 N/mm 2 mm mm mm mm mm mm 2 % mm 2 mm mm mm mm 2 .5 Total depth provided Clear cover Eff.00 kN 100 0.760 6.00 Area of steel required (M/tjd) 9.00/2 Effective thickness provided 300.93*0.87 KN-m 200.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Dirt wall Vertical reinforcement : inner base B.00 10.850 Total bending moment at base 5.00 0.94 6.11*1000))^0.03*0.5*(13.20-6.93*0.00+12.105 94 300 50 56 244 222 0.77*10^6/(1.00) Min % of steel Min area of steel required 0.90+3.M at base due to earth pressure (a) Vertical reinforcement : inner face BM at base due to earth pr.Ltd.00-56. live load that can come on dirt wall is due to bogie load Horizontal load @ 20% 100 3. cover 50.850 2.Design of Substructure CEG.87 Concrete grade for dirt wall "M" Constants : c t m k = 1/(1+t/mc) j = 1-k/3 Q = (1/2) c k j Thickness required (9.850 Total width of dispersion Horizontal load per meter width Horizontal load per meter width perpendicular to dirt wall BM at base due to horizontal load 6. 00^2*1000/750.00^2*1000/200. Reinforcement in each layer in each direction dia spacing required3.12% 300 360 10 218 200 393 Approach Slab Provide approach slab for a length Total minimum steel Thickness of approach slab Area of steel reinf.14/4*10.00^2*1000/225..Design of Substructure CEG.1 of IRC:78-1983 Total minimum steel Thickness of abutment cap Area of steel reinf.00 1. As per clause 716.00 3.00 225 10 349 200 393 mm 2/m mm mm mm mm 2 Horizontal reinforcement : Min % of steel Thickness of section Horizontal reinf.14/4*10.14/4*12. provide minimum reinforcement.00^2*1000/200.00% 300 3000 750 12 151 150 754 mm mm 2 mm 2 mm mm mm mm 2 mm mm 2 mm mm mm mm 2 m Abutment cap The abutment cap is resting on abutment through out.2.00 spacing provided area provided 3.00^2*1000/150.00^2*1000/360.8 (SQ) ______________________________________________________ ________________________________________________________________________________________________ Vertical reinforcement : outer face Minimum vertical reinforcement as above dia spacing required 3.Ltd.14/4*10. on each face dia spacing required3.00 spacing provided area provided 3.14/4*12.Jaipur Slab Bridge Span 10.00 spacing provided area provided 3. One layer at 20mm and other at 100mm below top of abutment cap shall be provided.14/4*12.00 spacing provided area provided 3.00 Also provide 8mm dia tor steel @ 100 mm c/c as mesh reinforcement in two layers.14/4*10.00% 300 3000 750 12 151 150 754 mm mm 2 mm 2 mm mm mm mm 2 1. Per m width Reinforcement in each layer in each direction dia spacing required3.00 0.00^2*1000/150.00^2*1000/750.14/4*12. . 75 β1 = 1.5 0.5 0.75 2.Ltd.246 β2 = 1.632 For a/b = 0.00 2.019 A' Y direction B' Width of Solid return wall (a) Width of Cantilever return wall Avg Height of Solid return wall (b) Height of Cantilever return at Tip Height of Cantilever return taper Height of Cantilever return at Root Thickness of Solid Return at farther end Thickness of Solid Return at Root Thickness of Solid Return at bottom Thickness of Solid Return at top Thickness of Cantilever return = = = = = = = = = = = 2.250 0.00 5.5 0.546 For a/b = 0.75 5.8 M t/m3 20 σcbc m σst k j = = 680 10 t/m2 = = = 20400 0.335 0.316 b X direction 77.75 2.Design of Substructure Slab Bridge Span 10..9 t/m2 Case (1) For uniformly distributed load over entire plate a/b a/b = = 0.631 β2 = 0.316 0.90 3.917 t/m2 R = 77.90 3.743 β2 = 0.186 β1 = 0.5 β1 = 0.733 .8 (SQ) CEG.5 Unit wt of Soil Grade of concrete = = 1.75 0.Jaipur ________________________________________________________________________________________________ ________________________________________________________________________ DESIGN OF RETURNWALL a 2.5 0.546 0.00 A B 82. 25 28.603504 x 0.8 (SQ) CEG.8 q x b2 x b2 t2 σamax = β2 x q t2 σbmax For 1000 Z = 0.5 β1 = 0.603504 x 0.041667 = 0.6274 t/m = 3 41666667 mm = 3 0.Ltd.537 β2 = 0.041667 m 2 x b x b2 2 t σamax = β2 x q 2 t σbmax For 1000 Z = 0.732879 x 0.316 = 2 2.8 q x 2 1.99681 x 0.041667 m = = 2.328 β2 = 0.213839 x 5.2794 β1 x x 1.25 2 mm of width = 1000 x 250000 6 3 Hence Moment /m width along Y direction MY /m width σamax For 1000 Z = 50.0832 t-m/m For a/b = 0.366057 β2 = 0.2794 β1 x x 1.111931 t-m/m 2 49.25 28.26 mm of width = 1000 x 250000 6 3 3 Hence Moment /m width along X direction MX /m width = 49.2 For a/b = 0.041667 Case (2) For Triangular loading due to earth pressure a/b a/b = = = 2.2 = 0.366057 x mm of width = 1000 x 250000 6 .68635 x 0.742986 x 0.26 = 50.Jaipur ________________________________________________________________________________________________ ________________________________________________________________________ Live Load Surcharge: q = σbmax = 0.545523 Earth pressure: q = σbmax = 0.545523 0.99681 t/m = 41666667 mm = 0.Design of Substructure Slab Bridge Span 10.75 β1 = 0..68635 t/m = 3 41666667 mm = 0.673523 t/m 2.041667 m 0.603504 t/m 28.673523 x 0.26 = 2 110.276 β1 = 0. 5 x 0.37 20400 x x x d2 2.11176 x 6.8 x R x b 77.8 x X 0.2794 x x 0.00 x Ast/m Provide 10 mm dia @ 200 mm c/c providing 393 Provide 8 mm dia @ 200 mm c/c providing 251 1.424 mm2 on earth face.2794 x 1.776 t-m/m Along X-direction 6..1362 mm /m 10^6 0.91667 x 6.8 (SQ) CEG.041667 m = 2. .26 0.692709 t-m/m = 2.2794 x + 1.444444 x 0.62502 x 0.213839 x = 4.37 t-m Design of cantilever Return: Assuming 50 mm cover and 12 mm dia bars.036826 + 0.00 0.041667 Total Moment in Solid Return /m height = Total Moment in Solid Return /m width = 4.50 dx x 3.62502 t/m = 41666667 mm = 0.6274 x 0.666667 x = 2.52075 t-m = 803.5625 x 3.8 x 0.A M = + 0.179776 = 38.75 x 0.Jaipur ________________________________________________________________________________________________ ________________________________________________________________________ Hence Moment /m width along Y direction MY /m width = 110.00 x dx x 3.5 x 1.721 t-m/m Along Y-direction Moment due to Cantilever Return: ' Moment due to earth pressure at face A .95 x 0. Along Horizantal direction.5 X - - mm 6= 424 X 0.Design of Substructure Slab Bridge Span 10.8 = = = 1.653796 x 4.75 + = 6.00 2 X x + 0.916667 x x 1.25 For 1000 Z mm of width = 1000 x 250000 6 3 3 Hence Moment /m width along X direction MX /m width = 64.636508 + 0.3745 mm = 2 292. Effective depth available = 50 20 500 M Ast x 1.041667 σamax = 0. mm2 on other face.2794 x 1.2 0.Ltd.673523 x 28.50 2 0.750 x 3.609475 t-m/m 2 64. 08 t-m = 817 mm2 = 817 mm2/m 0.1936 = 6.8 x 1.2794 x + 0. 500 50 R x b 77.74 t-m 10^6 0.5 x 0.91667 x x = 6.Design of Substructure Slab Bridge Span 10.5 x 1.2794 x 1.99 1.40 5.11176 x 32.Ltd.2 x 1.721407 x 20400 x 10^6 0- x 0.10 t-m/m 13.666667 x X = 5.653796 x 17.721407 t-m/m 440 mm 15.8 x 0. Along Horizantal direction.95 x 0.000 20 - t-m/m = 6. Along Vertical direction. mm2 on other face. mm2 on other face.10 20400 x x x d2 1. . 50 d2 1.316 Design of face B-B ' Moment in Solid Return /m height Assuming 50 mm cover and Effective depth available = M = = Ast = 20 mm dia bars.00 x 4.Jaipur ________________________________________________________________________________________________ ________________________________________________________________________ M Design of Solid Return: Moment due to Cantilever Return: ' Moment due to Earth pressure at face B-B = 0.916667 x Ast/m Provide 16 mm dia @ 150 mm c/c providing 1340 Provide 10 mm dia @ 150 mm c/c providing 524 2 0.2794 x 1.90 0.10 10 = Ast/m M = 10 = 0.90 x 5.444444 x 0.75 x + 0.8 (SQ) CEG..97469 + = 22. = 20 mm dia bars.8 x 0.2794 x 1.72 t-m/m = 9.40 x dx x + x dx 4.85 3.00 X2 x + 0.8 x 0.1764 = 16 mm dia @ Assuming 50 mm cover and Effective depth available = 420 x Provide Ast 9.916667 x = 1159 mm = 1159 mm2/m 150 mm c/c providing 1340 Provide 10 mm dia @ 150 mm c/c providing 524 2 mm on earth face.55 X - X t-m Moment in Solid Return /m height = Moment in Solid Return /m width = 4.000 = = R x b 77.91667 x 9.42 Design of face A ' -B ' Moment in Solid Return /m width 500 mm 0.98722 5.5625 x 3.775909 + 22.44 mm2 on earth face.867091 + 0. 65 Kg/cm^2 549.332 m Concrete Stress Governs Design Stress in Concrete due to Loads = Stress in Steel due to Loads = Percentage of Steel = 28.867 m : y axis : = .50 along depth-compression face.no of bar: 6 16 7.59 Kg/cm^2 .503 Tm Intercept of Neutral axis : X axis : = 103.case 2 10-03-07 Depth of Section Width of Section = = 1.50 tension face.34 % ABUT SHAFT .G Ltd.34 % .56 Kg/cm^2 719.50 Modular Ratio : Compression Modular Ratio : Tension Allowable Concrete Stress Allowable Steel Stress = = = = 10.860 m along width-compression face.50 tension face.no of bar: 6 Dia (mm) 16 Cover (cm) 7.0 68.0 10.00 Kg/cm^2 Axial Load Mxx Myy = = = 425.586 T 311.no of bar: 65 Dia (mm) 16 Cover (cm) 7.860 m Modular Ratio : Compression Modular Ratio : Tension Allowable Concrete Stress Allowable Steel Stress = = = = 10.000 m 13.221 m Steel Stress Governs Design Stress in Concrete due to Loads = Stress in Steel due to Loads = Percentage of Steel = 22.300 Tm .010 Tm Intercept of Neutral axis : X axis : = ******* m : y axis : = .00 Kg/cm^2 Axial Load Mxx Myy = = = 126.E. Jaipur ABUT SHAFT .case 1 10-03-07 Depth of Section Width of Section = = 1.01 Kg/cm^2 .000 m 13.00 Kg/cm^2 2000.no of bar: 65 25 7.700 T 253.0 10.0 68.554 Tm 212.00 Kg/cm^2 2000.Design of Substructure C.. 08 274.09 157 34 0 121.24 153 34 0 254.32 155 34 0 186.3 -11.91 152 34 0 -1.Ltd.64 331.Jaipur ________________________________________________ ________________________________________________________________________ Dead load Reaction From Super Structure (Stadd Output ) Node L/C Force-X kN 1 1 0 152 1 0 153 1 0 154 1 0 155 1 0 156 1 0 157 1 0 Total Dead Load Reaction in KN Force-Y kN 402.75 28.67 156 34 0 165.030 Force-Z kN Force-Z kN 0 0 0 0 0 0 0 Moment-X Moment-Y Moment-Z kNm kNm kNm Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Live load Reaction From Super Structure For Class 70RW withought A lane (Stadd Output Node L/C Force-X kN 1 98 0 152 98 0 153 98 0 154 98 0 155 98 0 156 98 0 157 98 0 Total Reaction with Impact in KN Force-Y kN 102.32 212.44 54.38 23.89 41.21 Force-Z kN 0 0 0 0 0 0 0 Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Super imposed Dead load Reaction From Super Structure (Stadd Output ) Node L/C Force-X kN 1 2 0 152 2 0 153 2 0 154 2 0 155 2 0 156 2 0 157 2 0 Total Dead Load Reaction in KN Force-Y kN 111.41 157.41 154 34 0 222.89 -2.6 19.28 1526.53 20.61 -6.04 231.98 Force-Z kN 0 0 0 0 0 0 0 Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .09 37.04 365.92 248.33 Force-Z kN 0 0 0 0 0 0 0 Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Live load Reaction From Super Structure For Class 3A Lane (Stadd Output ) Node L/C Force-X Force-Y kN kN Node L/C Force-X Force-Y kN kN 1 34 0 162.8 (SQ) CEG.87 Total Reaction with Impact in KN 1112..15 237.1 29.Design of Substructure Slab Bridge Span 10.44 832. 66 0 0 0 0 1.93 Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Live load Reaction From Super Structure For Class 70RT withought A lane (Stadd Output Node L/C Force-X kN 1 236 0 152 236 0 153 236 0 154 236 0 155 236 0 156 236 0 157 236 0 Total Reaction with Impact in KN Force-Y Force-Z Moment-X Moment-Y Moment-Z kNm kNm kNm kN kN -9.57 0 0 0 0 273.51 Total Reaction with Impact in KN Moment-X Moment-Y Moment-Z kNm kNm kNm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .74 0 153 314 0 19.82 0 0 0 0 392.29 0 157 174 0 5.13 0 153 174 0 20.3 0 156 174 0 145.Jaipur ________________________________________________ ________________________________________________________________________ Live load Reaction From Super Structure For Class A withought 70RW (Stadd Output ) Node L/C Force-X Force-Y Force-Z kN kN kN 1 174 0 10.36 0 Total Reaction with Impact in KN 350.35 0 0 0 0 -0.Ltd.73 0 0 0 0 92.6 0 152 174 0 -5.Design of Substructure Slab Bridge Span 10..94 0 155 174 0 142.05 0 0 0 0 -23.53 Live load Reaction From Super Structure For Class A withought 70RT (Stadd Output ) Node L/C Force-X Force-Y Force-Z kN kN kN 1 314 0 8.27 0 348.44 0 156 314 0 150.93 0 157 314 0 10.63 0 0 0 0 726.8 (SQ) CEG.83 0 154 314 0 29.84 0 155 314 0 134.57 0 154 174 0 31.94 0 152 314 0 -5. 3113 0 4. 198 6.3094 0 8.1547 0 2.562 0 6. 285 152 168.4641 0 6 11. MEMBER INCIDENCES 29. 306 165 166. INPUT WIDTH 79 6.39 0 2. 137 -6. 304 163 164. 213 3. 163 -0. 193 5.6226 0 0. 293 157 152 31. 255 136 1.7773 0 8. 164 -1. 311 165 155 34.6226 0 8.3094 0 10 16. 203 7. 169 -3. 324 173 177.STD 1. 1 1 0 0. 156 -3. 166 -4. 154 -1. 298 162 17. 170 -3.08 0 6 12. 197 6. 17 5. 188 1 0 12.55 0 0.9282 0 12. 218 11. 191 5. 210 3. 195 6.3113 0 6.6226 0 4. 173 -2. 295 159 160. 183 1 0 2. STAAD FLOOR 2. 172 -2.1547 0 8 17.2414 0 0. 299 153 183 32.7773 0 4.Ltd. 201 7. 314 168 170. 211 3. 8 12.77141 0 4 13. 1 1 210. 257 136 163. 328 175 180. 152 -5. 176 -1. 326 174 179. 286 1 153.3961 0 0.6188 0 12. END JOB INFORMATION 5. 190 5. 168 -4. 202 7.92611 0 6.1547 0 4.538002 0 0. 165 -2.39022 0 12 10. 307 166 167. 302 156 171. 310 166 156. 291 155 156.93 0 8. 223 6. 181 -0. 158 11. 187 1 0 10. 174 -1. 185 1 0 6.3094 0 4. 319 169 170. 220 9. 315 157 168. 303 157 169. 294 158 159. 200 7.77 0 10.2414 0 2. 194 5. 184 1 0 4. 329 174 175 . UNIT METER KN 8. 171 -2..932 0 2.4641 0 8. 221 8. 308 167 137. 292 156 157. 136 0. 214 3. 175 -1. 305 164 165 33. 290 154 155.3094 0 12.23552 0 10. 300 154 178. 296 160 161.712 0 4.3113 0 10.Jaipur INPUT FILE: 10. 288 8 158.8 SPAN 30 DEG SKEW.7773 0 0. 327 154 174.0867 0 2. 153 -0.6167 0 2.Design of Substructure Slab Bridge Span 10. 316 169 172. 178 -0.7735 0 10.932 0 0. 325 172 173.08081 0 8.3113 0 8 24.6188 0 8. 309 167 157.932 0 6. 179 -0. 205 9. ENGINEER DATE 09-DEC-06 4. 297 161 162. 212 3. 167 -5.7773 0 2. 160 9. 155 -2.3113 0 12. 318 170 173.3113 0 0 23.862 0 2 25. 189 5.4641 0 10 15. 199 6. 313 163 153. 301 155 174.262 0 10.6188 0 10. 196 6.1547 0 12. 321 155 171.0867 0 4.6226 0 2. 206 9. 208 10. ****************************************************************************** * 28. 182 -0. 186 1 0 8 18. 317 156 169 35. 287 137 152 30. 222 7. 320 171 175.3094 0 6. START JOB INFORMATION 3.932 0 4 21. 219 10. 209 11.7773 0 6 20. 216 3. 323 171 172 36.6226 0 6 19.3113 0 2.112 0 12 26.7735 0 12 14.24 0 4.6226 0 10. 177 -1. 289 153 154. PAGE LENGTH 1000 7. 207 10.412 0 8. 159 10.012 0 0. 161 7. 322 172 176. 312 164 154.1547 0 10.62 0 12. 217 13.4641 0 12. 192 5.1547 0 6.0867 0 0 22. ****************************************************************************** * 27.8 (SQ) CEG. 204 9. 157 -4. 215 3. 180 -0. 162 6. JOINT COORDINATES 9. 189 190 42. 392 207 158.31 361 363 365 367 PRIS YD 0.001 67.15 0. 204 205 47.. 373 196 197. 391 205 206. 73. 198 199 45. 218 52. 406 213 214. 69. 349 184 185. 369 162 195.001 IZ 315 317 319 321 323 325 327 329 377 379 381 383 385 387 389 391 400 402 404 406 408 410 PRIS YD 345 347 349 351 353 355 357 359 SUPPORTS 1 152 TO 157 PINNED 8 17 158 TO 162 FIXED BUT FX FZ 331 333 335 337 339 341 343 369 371 393 395 397 PRIS YD 0.5E+007 POISSON 0. 0. 215 189 50. 397 158 209. 72. 186 187 41. 348 62. 375 197 198. 362 192 197. 382 202 205. 421 160 220. 66. 401 212 402 211 212.8 (SQ) 37. 373 375 68. 54. 343 181 182. 377 378 200 160. 422 161 221. 371 372 197 201. 58. 340 181 187. 403 213 191. 192 193 43. 370 196 200. 419 158 420 159 219.385 MX MY MZ .85 ZD 1. 357 17 189. 341 342 182 188. 387 160 204. 195 196 44. 412 218 219. 334 178 184. 339 179 180. 60. 219 220 51. 381 200 201. 388 205 207. 55. 416 222 223. 351 185 186. 389 390 206 208. 399 211 193. 415 221 222.85 ZD 0.15 DENSITY 24 DAMP 7. 358 190 195. 201 202 46. 333 176 177. 71. 404 212 213. 184 40. 374 198 202. 59. 368 195 161. 350 186 214. 61. 337 178 179.001 IX 0. 331 175 176. 57. 344 183 211. 376 199 203. 53. 418 8 217. 332 177 182. 417 65. 192 49. 407 408 214 215. 411 217 218. 353 354 188 216.5 257 286 288 TO 298 304 TO 308 411 TO 416 PRIS AX 0. 355 187 188. 417 17 223. 410 215 216. 359 360 191 196. 379 161 200. 386 204 159. 365 366 194 199. 413 414 220 221. 207 208 48.Design of Substructure Slab Bridge Span 10. 346 184 212. 363 191 192.85 ZD 2. 405 214 190. 385 202 203. 380 201 204.90066E+033 END DEFINE MATERIAL MEMBER PROPERTY INDIAN 299 TO 303 309 TO 313 316 320 322 326 328 330 334 336 338 340 344 346 350 352 356 358 360 362 364 368 370 372 374 378 380 382 386 388 392 403 405 407 419 TO 423 PRIS YD 0. 394 208 209. 423 162 222 DEFINE MATERIAL START ISOTROPIC MATERIAL1 E 2. 56. 383 384 203 206. 338 180 186. 393 159 207. 153 178 38. 180 181 39. 347 183 348 185 213. 367 193 194. 409 216 17. 64. 400 210 211. 395 396 209 8. 70.85 ZD 1 1 255 285 287 314 318 324 332 342 354 366 376 384 390 394 396 398 409 418 PRIS YD 0. 364 193 198. 335 336 179 185.Ltd. 361 190 191. CEG. 345 1 183. 356 189 162. 398 210 194.85 ZD 1. 352 187 215.Jaipur 330 176 181. 399 401 63. 117.00 0.00 0.18 XINC 0.5 PERFORM ANALYSIS LOAD LIST 1 PRINT SUPPORT REACTION LIST 1 152 TO 157 SUPPORT REACTION LIST 1 SUPPORT REACTIONS -UNIT KN ----------------JOINT 1 152 153 154 METE STRUCTURE TYPE = FLOOR LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 1 1 1 1 0.457 0. 106.5 TYPE 1 -26 0 9.00 0.Ltd. 105. 91.00 0.5 ********************70R TRACKED TRAIN WITHOUGHT CLASS A LOAD GENERATION 65 TYPE 3 -15 0 4.74 XINC 0.00 0.457 0. 87. 104. 81. 90.37 3. 103.55 ZRANGE 0 13.4 XRANGE -6.1 3.86 LOAD 3 LIVE LOAD **************THREE LANE OF CLASS A LOAD GENERATION 75 TYPE 1 -26 0 2. CEG.93 TYPE 3 LOAD 35 35 35 35 35 35 35 35 35 35 DIST 0.457 WID 2. 109.00 0. 92. 97.00 0.00 0.2 1.3 3 3 3 WID 1. 113.7 XINC 0.5 *****************ONE LANE OF CLASS A WITHOUGHT 70R WHEELED LOAD GENERATION 75 TYPE 1 -26 0 7. 101.457 0. 116.00 0.. 79. 115. 95.13 1.7 XINC 0.00 0. 83.96 1.457 0. 417 93. 99. 88. 114.92822 13.457 0.06 LOAD 1 DEAD LOAD(SLAB LOAD) FLOOR LOAD YRANGE 0 0 FLOAD -20.92 248. 98.85 XINC 0. 94.00 402. 102.37 WID 1. 75.52 2.00 0.2 XINC 0.5 *******************70R WHEELED WITHOUGHT CLASS A LOAD GENERATION 65 TYPE 2 -20 0 4. 82.8 TYPE 2 LOAD 40 60 60 85 85 85 85 DIST 3.05 1. 96.00 0. 112. 80.8 (SQ) 74.5 13.Design of Substructure Slab Bridge Span 10.04 0.457 0. 108.5 57 57 34 34 34 34 DIST 1.457 0. 111.15 237. 100. 89.5 TYPE 1 -26 0 6.09 37.457 0.06 XINC 0.00 0.00 0. 85. 76.00 0. 107.00 0. 110.55 ZRANGE 0 12 LOAD 2 DEAD LOAD(SIDL) ************CRASH BARIEAR LOAD MEMBER LOAD 1 255 285 287 314 318 324 332 342 354 366 376 384 390 394 396 398 409 418 UNI GY -10 ****************WEARING COAT*2 FLOOR LOAD YRANGE 0 0 FLOAD -2 XRANGE -6.00 .2 4.00 0. 84.5 *****************ONE LANE OF CLASS A WITHOUGHT 70R TRACK LOAD GENERATION 75 TYPE 1 -26 0 7. 86.Jaipur CONSTANTS MATERIAL MATERIAL1 MEMB 1 255 257 285 TO 423 MEMBER RELEASE 417 TO 422 START FY MZ 255 287 309 TO 313 END MZ DEFINE MOVING LOAD TYPE 1 LOAD 13.00 0. 78. 77.92822 13. 00 0.00 0.00 0.00 0.18 97.00 0.00 290.00 -2.00 *PRINT SUPPORT REACTION LIST 8 17 158 TO 162 *********************THREE LANE OF CLASS A *LOAD LIST 2 TO 77 LOAD LIST 34 PRINT SUPPORT REACTION LIST 1 152 TO 157 SUPPORT REACTION LIST 1 34 34 34 34 34 34 34 0.00 0. 126.. 128.68 98 0.00 320.00 0.00 0.22 63.00 0. 121.75 103.00 0.00 0.00 0.Design of Substructure Slab Bridge Span 10.00 0.00 0.00 231.00 0.00 0.00 0.47 98 0. 129.00 0.00 0.00 0.00 0.00 0.00 148.00 0.00 0.00 0.8 (SQ) 155 156 157 118.00 0.00 -7. 130.00 0.77 98 0.00 0.00 CLASS A WITHOUGHT 70R WHEELED 0.00 0.00 0.00 0.54 20.00 0.00 0.41 0.00 0.76 171.00 0.00 0.00 0.00 0. 125.00 0.00 0.00 82.00 0.00 1 0.Jaipur 0.00 0.00 0.00 0.00 0.00 0. 122.00 0. 124.00 FORCE-Y 9.00 0.00 0.00 0.00 ********************70R TRACKED TRAIN WITHOUGHT CLASS A *LOAD LIST 218 TO 282 LOAD LIST 236 PRINT SUPPORT REACTION LIST 1 152 TO 157 MOM Z 0.24 3.00 0. 133. 1 152 153 154 155 156 157 127.23 127.00 0.00 0. 132.28 0.51 ******************ONE LANE OF *LOAD LIST 143 TO 217 LOAD LIST 174 PRINT SUPPORT REACTION LIST 1 SUPPORT REACTION LIST 1 LOAD 174 174 174 174 174 174 174 FORCE-X 0. 120.00 0.72 98 0.00 0.00 0.Ltd.00 0.00 152 TO 157 FORCE-Z 0. 98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 157.00 0.00 . 119.00 0.00 0.94 -2.00 0.00 MOM-Y 0.00 0.47 98 0.11 0.00 0.00 0.00 0.00 0.00 0.52 34.00 0.00 0.00 0.30 98 0.00 0.00 0. CEG.32 0.94 177.00 0.00 0.00 0.00 0.00 SUPPORT REACTIONS -UNIT KN METE STRUCTURE TYPE = FLOOR ----------------JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 1 152 153 154 155 156 157 1 0. 134.00 212. JOINT 1 152 153 154 155 156 157 131.00 0.00 0.00 0.00 39.00 91.00 -5.00 MOM-X 0.83 -3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 1 0.00 0.00 *****************70R WHEELED WITHOUGHT CLASS A *LOAD LIST 78 TO 142 LOAD LIST 98 PRINT SUPPORT REACTION LIST 1 152 TO 157 SUPPORT REACTION LIST 1 SUPPORT REACTIONS -UNIT KN METE STRUCTURE TYPE = FLOOR ----------------JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 123.00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 -22.00 MOM-Y 0.94 -0.00 0.61 5.00 0.00 0.00 0. JOINT 1 152 153 154 155 156 157 LOAD 236 236 236 236 236 236 236 CEG.00 0.00 0.00 MOM Z 0.64 1.00 MOM-X 0.49 246.96 32.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ******************ONE LANE OF CLASS A WITHOUGHT 70R TRACK *LOAD LIST 283 TO 357 LOAD LIST 314 PRINT SUPPORT REACTION LIST 1 152 TO 157 SUPPORT REACTION LIST 1 LOAD 314 314 314 314 314 314 314 139.00 0.00 0.00 0.84 91.84 19.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.Jaipur REACTION LIST FORCE-X 0.00 0.00 MOM-X 0.00 FORCE-Y 8.00 0.00 0.51 92.00 0..00 0.00 0.00 FORCE-Y -8.27 347.00 0.87 -3.Ltd.00 0.00 0.98 85.00 0. 136.00 MOM-Y 0.00 0.00 0.00 0.00 0.00 0.74 FORCE-Z 0.00 0.00 0.Design of Substructure Slab Bridge Span 10.00 0. FINISH FORCE-X 0.00 MOM Z 0. 138.70 1 FORCE-Z 0.00 0.00 0.00 0. 137.00 0.00 .00 0.00 0.00 0.8 (SQ) SUPPORT JOINT 1 152 153 154 155 156 157 135. CEG.Ltd.. Jaipur Bridge Design Report DESIGN OF SUPERSTRUCTURE Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project . C.C Solid slab superstructure (150 and 300 Skew) span 4. . No. SD/172.0 m to 10.0 m with a skew of 300 refer MOST STANDARD Drawing titled “STANDARD DRAWING FOR ROAD BRIDGES (R.For Design of Superstructure of solid slab 10.0 m 9With and without footpath)” Drg. CEG. Jaipur Bridge Design Report MINOR BRIDGE AT CH:29/500 Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project ..Ltd. .CEG. Jaipur Bridge Design Report DESIGN OF SUBSTRUCTURE Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project .Ltd. 000 m 2100 mm 56.000 m 13.Design of Substructure CEG.609 m 92.Jaipur ________________________________________________ ________________________________________________________________________ Design Data : For design purposes.L M.2000 3 IRC : 78 .2000 2 IRC : 21 .569 95.145 m 94.L Abutment cap top level Pile cap top level Depth of pile cap Pile cap bottom level Diameter of bored cast-in-situ piles Length of piles above rock level Length of piles below rock level Total length of pile Load carrying capacity of each pile Live Load (a) Class A three Lane (b) Class 70R wheeled + Class A single lane Bearing :Elastometric Seismic zone 1 IRC : 6 ..345 m 1200 mm 0.350 m 90.500 m 207 Tons = II .600 m 21.W.35 Fe .F.000 m 0.L.S. Grade of concrete Abutment Pile cap & Pile Grade of reinforcement steel Centre to Centre distance of A / Expansion joints Centre to Centre distance of Bearing Depth of superstructure Thickness of wearing coat Formation level along C of carriage way Height of bearing and Pedestal L.794 m 89.300 m 0.Ltd.30 M .2000 = = = = = = = = = = = = = = = = = = = = = M . H. following parameters have been considered.00 mm 98.145 m 1800 mm 87.415 21. 43 4 0.8625 x 2 = 0.15 6 x 3.3375 5 6 1 haunch 0.27 m2 2 bottom haunch 0.Ltd.025 .3 x 0.15 1.15 0.65 2.15 x 8 = 0.00 0.4285 x 4 = 5 slab 0.15 x 0.2688 x 12.3 x 3 x 1 2.43 x 2.Design of Substructure CEG.3 x 0.15 x 0.325 2.15 haunch 2 0.625 x 4 = 2 0.99 m3 intermediate cross gitder 1.625 m 2 1.200 0.65 0.Jaipur ______________________________________________________________________________________________ ____________________________________________________________________ 450 12.625 2.25 x 0.15 x 6 = 0.00 11.8625 1.25 3 0.65 2.44 m2 = 2.325 x 0.8571 m 4 web 0.00 x 1 = 1.18 m2 1 top haunch 3 bottom rect 0.2794 m = 6.325 x 1.23 m2 2 0.166 0..025 I cross sectional area at mid span 2. 43 x 2.2794 m 7.075 x 6 = 2 0.43 0.2688 x 12..4 0.65 2.65 2.00 11.3 x 2 = 3 5.4285 x 4 = 2 3.Jaipur ______________________________________________________________________________________________ ____________________________________________________________________ II cross sectional area at end section 450 12.5713 m 3 0.15 4 1 0.200 0.Ltd.625 x 1.166 0.15 4 x = 3.025 2.15 haunch 0.15 x 1.23 m2 2 0.625 2.025 .625 0.075 2 2.15 x 0.00 x 1 = 1.0675 m 2 web 0.8625 x 2 = 0.2069 m 2.14 m2 End cross girder 1.3375 haunch 0.65 I cross sectional area at end span 1 top haunch 0.15 x 0.025 x 3x 0.Design of Substructure CEG.8625 1.00 3 0. 144 t/m 16.Ltd.bothsides enter 2 .D. otherwise enter 0) RA Total DL + SIDL reaction = = 36.58 RA RB RA = 184.38 21 21.Jaipur ______________________________________________________________________________________________ ____________________________________________________________________ 12.3552 t/m 2 Crash barrier @ 1.Design of Substructure CEG.3552 t/m 2.497 t 7..71 t S.497 t 17.295 t/m 0.236 t 220.95 t = 2 = 1.L 1 Wearing Coat @ 1.000 t/m (provide one side enter 1.7 12.1739 t 15.00 3.9 18.I.36 t/m t/m .447 t/m 0. L 90.F.294 abutment shaft top level 12.6 73.65 2.00 89.000 94.145 1.65 2.345 0.350 0.145 12.8 50 mm 87.6 3.3 1..2 3.75 13.Ltd.65 2.5 95.5 1.Jaipur ______________________________________________________________________ _________________________________________________________ 12 2.61 GL H.845 .794 95.Design of Substructure CEG.6 3.025 2.025 0. 30 x 1..L Condition Rectangular Dirtwall a Approach slab x x x x 17.4 2.7854 x 17.5 x 1.50 x 1.00 x a Approach slab 12.6736 110.30 x 1.3 5 Weight due to Earth 12.20 x 2.2 1.3 x x 0.7 - 12 x 0.4 1.15 x 6.2 x 1.Design of Substructure CEG.3 x 8.4 2.46 0.75 x 2.7 4 Weight due to Earth 12.00 x 0.28 t t t t t t 3 Wt of Pile cap 12.154 0 0 133.00 x 2.4 = Dirtwall 12.2 0 0 x x x x 0.00 1 DRY Condition 0 0 1 Wt of abutment cap Rectangular 12.7854 x x x x 1.4 = = = 212.12 t 34.69 5.3 x 8.4 1 x 1 = 92.7 - 12 x 2.4 = = = 19.200 12.12 t 34.698 t H.1798 t 2 Wt of Abutment Shaft 12 12 0.283 t 2 Wt of Abutment Shaft 12 x 0.Ltd.4 = = = = = 23.509 t x 1.8 12 x x 1.Jaipur ______________________________________________________________________ _________________________________________________________ Loads from substructure 1.7854 0.75 x 2.3 1.F.20 x 2.7 x = 269.2 0 x x 6.61 t .206 0.8 = 462.4 1.4 = = = 19.3 x x 0.4 1.15 x 2.665 t x 8.0598 t 15.828 x 8.509 t 0 t 212.2 x x 1.206 0.0598 t 15.4 = 12 12 x x 2.4 2.1798 t 1.8 x 1 = 166.4 2.28 t 3 Wt of Pile cap 12.46 2.69 5. .75 0.3 0.7 0.3 0.15 3.6 1.Jaipur ______________________________________________________________________ _________________________________________________________ 2.Ltd.Design of Substructure CEG.2 8.6 .206 0.6 3. 61 5.08 t wt of returnwall ( H.F.46 89.3 0.75 2.155 H.F..L 94.45 m wt of returnwall (dry condition) = 46.Ltd.86 t t t .Design of Substructure CEG.L condition) = = = 12.91 23.67 9.75 98.16 m width of returnwall = 0.Jaipur ______________________________________________________________________ _________________________________________________________ Wt of Returnwall on pile cap 4.95 36.145 Height of returnwall = 9.00 3. 400 mm 2 Size of bearing = 500 x 250 x 50 mm Strain in bearing = 5.85 t 0.770 + 6.60 x 1000 = 5.1.850 + 6. 18.4 = 11. horizontal braking force Fh.108 x 1.358 t Total shear force = As per clause 214.358 2 For class 70R wheeled +class A 1 lane Longitudinal horizontal force = 22.77 t = 13.4 = 22.5.1 x 5.28 t Say.080 t For class 70R wheeled : Fh = 0.00 spandislodged = 20.2 x 100 + For class A 3 lane Longitudinal horizontal force = 13. Longitudinal translation due to creep.0 x 500 x 250 = 13500 N = Total shear force for 4 bearings ( with 5 % increase ) = 1.0005 Horizontal movement = 0.400 = 0.780 t Refer IRC : 6 clause 214.0005 x 21.2 of IRC:6.00 70R+class A 1lane 18.7 t Say.Design of Substructure CEG. for each span is: For Class A Single lane : Fh = 0.05 = 5.2 x 55.60 For span of m.000 t 0.108 50 Shear modulus = 1. 14.5.2 x 100 Fh = 0.05 x 55.0 Mpa Shear force per Bearing = 0.00 0..780 = 6. shrinkage & temperature = 0.05 x 55.4 = 13.0 t = 17.4 + For class A 3 lane For class 70R wheeled +class A 1 lane Fh = 0.Ltd.358 2 Summary of Longitudinal Forces : Longitudinal Load Case horizontal force (t) Class A 3 lane 14.376 x 4 x 1.JAIPUR _______________________________________________________________ ________________________________________________________________________ Longitudinal Force : 21. 10 % increase for variation in movement of span 1.376 t .0 t 1.2 x 55. JAIPUR _______________________________________________________________ ________________________________________________________________________ Moment in Transverse Direction Eccentricity of vertical load in transverse direction.00 18.39 0.03 SUMMARY OF LOAD ON ABUTMENT FROM SUPERSTRUCTURE Load Dead load SIDL Live Load class A 3lane 70RW + classA1lane Span dislodged condition Vertical Horizontal force Longitudinal moment Transverse moment load 184.Design of Substructure CEG.03 193.39 75.7 = 1.71 36.24 107.00 0.00 193.38 107.Ltd.00 .00 0.19 = 0.721 Longitudinal moment Transverse moment 0.00 14..19 112.00 75. (a) Class A 3 lane = (b) Class 70R + Class A 1 lane Live load Vertical load 70R+class A 1lane Class A 3 lane 112.00 0.00 0.38 0.00 0. Design of Substructure CEG.Ltd.,Jaipur ________________________________________________________________ _________________________________________________________________________________ Case-I(1) :DRY. condition with L.L: L.W.L. = 90.145 m Pile cap top level = 89.145 m Pile cap bottom level = 87.345 m Vertical load on Pile foundation; Load from superstructure S.I.D.L. + D.L. = 36.24 + Live load + 184.71 = 220.95 t = 112.38 t 333.33 t Say, 334.00 t Load from substructure & pile cap = 51.46 + 212.51 462.28 0 = 726.25 t Say, 728.00 t Abut cap Abut shaft pile cap earth Horizontal longitudinal force at bearing level for pier= 18.000 t Moment = 18.000 x 8.799 = 158.4 Total = 158.38 Say, 159 t-m Transverse moment due to eccentricity of live load class 70R wheeled; = 193.39 Say, 194.0 t-m Case-II(1) :H.F.L. case (Live load condition) : Pile cap top level = 89.145 m Pile cap bottom level = 87.345 m Load from superstructure: S.I.D.L. + D.L. = 36.24 Live load + 184.71 = 220.95 t = 112.38 t 333.33 t Say, 334.00 t Load from substructure & pile cap = 454.953 t Say, 454.95 t Moment in Transverse direction; Due to live load = 193.39 t-m Say, 194.00 t-m Total load = 788.95 t Moment in Longitudinal direction; Due to live load = 159.00 t-m Say, 159.00 t-m Design of Substructure CEG.Ltd.,Jaipur _________________________________________________________________ ________________________________________________________________________ Case-I(2) :DRY. case (Span dislodged condition) : Vertical load on Pile foundation; Load from superstructure S.I.D.L. + D.L. = 0.00 Live load + 0.00 = = 0.00 0.00 0.00 t t t Say, 0.00 t 0.00 t Load from substructure & pile cap = 726.252 t Say, 727.00 t Horizontal longitudinal force at bearing level for pier= 0.00 Moment = 0.00 x 8.799 = 0.000 t-m Total Transverse moment = 0.00 = 0.000 Say, Say, 0.0 t 0 t-m t-m Case-II(2) :H.F.L. case (Span dislodged condition) : Vertical load on Pile foundation; Load from superstructure S.I.D.L. + D.L. = 0.00 Live load + 0.00 = = 0.00 0.00 0.00 t t t Say, Load from substructure & pile cap = 454.953 t Say, 455.00 t Horizontal longitudinal force at bearing level for pier= 0.00 t Moment = 0.00 x 8.799 = 0.000 t-m 0 t-m Total = 0.000 Say, Design of Substructure CEG.Ltd.,Jaipur _________________________________________________________________ ________________________________________________________________________ Summary : P (t) 184.71 1 DL H (t) 0.00 36.24 2 SIDL 3 LL 70RW +Class A 112.38 4 Span dislodged 0.00 Substructure weight DRY 1 Abutment cap + Dirtwall 2 Abutment shaft 212.51 t 3 Pile cap 462.28 t ML (t-m) 0.00 MT (t-m) 0.00 0.00 0.00 0.00 18.00 159.00 193.39 0.00 0.00 0.00 51.46 t 726.25 t H.F.L 1 Abutment cap 51.46 t 2 Abutment shaft 133.83 t 3 Pile cap 269.67 t 4 Earth on pile cap 92.61 t 454.9529 t Earthpressure 1 Dry condition 442.33 t 2076.89 t-m 2 H.F.L 347.31 t 1511.64 t-m Wt and Moments due to earth & Returnwall at Pile Cap bottom 1 drycondition Returnwall 2 H.F.L Returnwall 760.094 46.078 806.172 558.472 36.857 595.330 t t t t t t 1881.23 114.04 - 1995.27 1382.22 91.22 - 1473.44 t-m t-m t-m t-m t-m t-m 75 0.8 28.F.6 3.8 0 0 0 0 y 5.6 3.39 0.6 3.62 193.62 81.Jaipur _________________________________________________________________ ________________________________________________________________________ Load Case Total Load P Longitudinal Moment Transverse Moment ML MT I DRY Condition 1 With L..75 4 12 5 3.75 0.6 3.8 1.68 ZL 28.6 11 3 6 3.61 1050.6 3.8 5.8 28.00 No of Piles = 12 0.L 2 Span dislodged 1865.75 8.6 3.4 1.8 28.20 38.3 .00 II H.4 ZT 36 108 108 36 36 108 108 36 36 108 108 36 12.8 5.6 0 0 0 0 103.4 1.6 10 2 7 3.Ltd.8 5.6 1 9 8 0.8 28.L Condition 1 With LL 2 Span dislodged 1383.8 1.20 193.75 3.75 1532.42 240.6 0.8 28.8 28.28 197.8 1.4 1.6 3.Design of Substructure CEG.6 3.8 28.39 0.4 5.4 5.4 194.6 3.7 Pile No 1 2 3 4 5 6 7 8 9 10 11 12 x 3. min = 1865.L Pmax.00 0.80 81.62 28.00 108.42 2 12 Pmax.00 .00 36.min = 1865.00 0.min = 1532.04 t P = 165.62 0.240.00 81.00 .80 81.240.00 36.62 0.80 + 240.54 t P = 130.75 3 12 Pmax.39 36.00 + 193.min = 1532.70 t P = 127.240.00 81.75 5 12 Pmax.42 8 12 Pmax.00 0.00 36.70 t P = 127.00 0.00 + 240.00 0.00 36.min = 1532.75 8 12 Pmax.min = 1865.75 12 P 2 max.min = 1532.62 28.00 + 193.80 .46 t P = 162.87 t P = 124.62 28.00 .42 9 12 Pmax.39 108.00 36.87 t P = 124.min = 1532.62 28.62 28.Ltd.193.80 81.00 + 240.00 108.69 t P = 150.42 6 12 Pmax.00 0.62 28.39 36.00 + 193.80 81.00 108.193.Design of Substructure CEG.Jaipur _________________________________________________________________ ________________________________________________________________________ Case I 1 1 DRY with L.80 + 240.240.00 0.62 t P = 169.54 t P = 127.39 108.92 t P = 145.42 3 12 Pmax.75 12 12 2 spandislodged DRY Pmax.62 28.193.193.70 t .min = 1532.27 t P = 153.00 + 193.42 1 12 Pmax.min = 1865.62 0.87 t P = 124.39 108.75 6 12 Pmax.39 36.00 0.min = 1532.00 81.42 12 P 12 max.min = 1532.00 0.75 12 Pmax.min = 1532.62 0.33 t P = 141.80 + 240.min = 1865.00 0.80 + 240.min = 1532.42 7 12 Pmax.00 .00 0.42 4 12 Pmax.62 0.00 P = 152.62 28.39 108.39 108.75 11 12 Pmax.80 81.80 .00 + 193.80 + 240.62 28.75 7 12 Pmax.39 108.62 0.min = 1532.00 36.min = 1532.54 t P = 130.62 28.min = 1865.75 10 12 Pmax.00 .min = 1865.80 81.87 t P = 130.39 36.193.80 81.00 108.min = 1865.00 + 240.75 4 12 Pmax.80 .193.42 10 12 P 11 max.42 12 .min = 1865.62 28.00 + 193..50 t P = 148.42 5 12 Pmax.54 t P = 130.62 28.62 0.21 t P = 160.00 - + + + + + + + + + 81.70 t P = 127.00 + + + + + - 0.75 t P = 158.min = 1865.62 28.62 28.00 108.85 t P = 157.75 9 12 Pmax.00 108.62 28.62 28.min = 1865.39 36.11 t P = 124.00 .39 36.62 0.80 81.min = 1865. 20 28.39 36.min = 1383.52 t P = 87.00 108.min = 1383.00 + 193.193.39 36.Jaipur _________________________________________________________________ ________________________________________________________________________ H.36 t P = 123.00 0.94 t P = 127.52 t P = 87.min = 1050.38.39 36.00 36.00 0.52 t P = 120.00 0.85 t P = 88.78 t P = 120.80 + 38.28 9 12 Pmax.52 t .85 t P = 88.80 .00 .193.38.28 1 12 Pmax.00 + 193.00 + 197.61 9 12 Pmax.67 t P = 117.00 108.min = 1383.Design of Substructure CEG.00 36.00 36.20 0.20 28.20 0.00 + 193.00 0.min = 1383.51 t P = 109.20 t P = 86.00 .00 + 197.20 0.61 11 12 Pmax.min = 1050.20 28.20 0.00 0.00 .00 108.24 t P = 106.28 6 12 Pmax.28 3 12 Pmax.80 + 197.20 0.min = 1050.39 108.61 3 12 Pmax.20 28.85 t P = 88.28 12 P 12 max.00 + 38.20 28.00 0.20 28.00 36.80 .00 0.20 0.00 + 193.80 + 38.20 28.39 108.28 4 12 Pmax.80 .min = 1383.00 + 38.min = 1383.61 12 P 2 max.20 t P = 86.08 t P = 116.20 t P = 86.20 28.197.39 108.00 P = 113.52 t P = 87..197.80 + 38.61 12 Pmax.00 36.min = 1383.00 .193.00 108.min = 1050.80 + 197.197.00 .F.38.80 + 197.00 + + + + + + - 0.20 28.80 + 38.61 7 12 Pmax.20 28.Ltd.80 + 197.00 + 193.20 28.80 .00 + 197.61 4 12 Pmax.20 0.min = 1383.min = 1383.193.61 5 12 Pmax.20 28.38.28 12 .61 12 12 2 spandislodged condition Pmax.39 108.80 .00 108.80 + 197.61 6 12 Pmax.00 0.F.83 t P = 110.39 36.min = 1383.20 28.20 t P = 88.28 5 12 Pmax.00 36.00 108.28 8 12 Pmax.00 0.28 10 12 P 11 max.min = 1050.L II 1 1 with L.193.20 28.80 + 38.61 8 12 Pmax.39 36.80 .85 t P = 87.193.min = 1050.28 7 12 Pmax.00 .66 t P = 103.L .min = 1050.00 + 193.min = 1050.00 0.93 t P = 86.39 36.00 H.39 108.39 108.00 + 38.00 0.min = 1050.L Pmax.20 0.61 10 12 Pmax.20 28.09 t P = 113.min = 1383.20 28.min = 1050.28 2 12 Pmax.min = 1050.min = 1050.min = 1383.197. 44263 t per pile = 347.00 + 442.35 = 87.Jaipur _________________________________________________________________ ________________________________________________________________________ DRY H.36104 t per pile = 442.20 E = 5000 x I = 3.78 = 0 Le = Embeded Length of pile L1 = Exposed Length = 87.42 cm 1350 cm cm 0 0 .Design of Substructure CEG.33 t = 38.F.87 t Pmax = 127.35 - L1 73.94263 t per pile + 347.845 87.L Condition Total horizantal force with L..00 + 347.33 t = 36.00 = 460.L Horizantal load per pile Dry Condition Total horizantal force with L.31 = 0.31 t = 30.21 t Pmin = 124.14 x 64 K1 610.Ltd.00 + 442.31 t = 28.31 Determination of Lteral Deflection of pile : T = E x I 5 R = K1 E x I 4 E = Youngs modulus kg/m2 K1 = Constant kg/cm3 K2 kg/cm2 4 I = moment of inertia of pile cross section cm K2 Dia of pile = 1.35 = = = T Lf = 2.L span dislodged condition H.73 120 35 2 = 301533 kg/cm 4 = 10178760 cm = 0.775 K2 = 0 T R = 330.52 t Pmin = 86.19 T Lf = 724.86104 t per pile = 18.L span dislodged condition Pmax = 169.20 t = 18.33 = 0.33 = 365.F. 396 cm 3.Ltd.Design of Substructure CEG.83 x 138..Jaipur _________________________________________________________________ ________________________________________________________________________ Pile Head deflection 3 y = Q L1 + Lf 12 E I = 38.96 mm = 138.42 12 x 301533 x 10178760 = = Maximum Moment MF = Q x M L1 + Lf 2 M = m x F = 0.95 t-m = 115.44 cm 180 mm c/c .33 t-m Reinforcement in pile: Provide Provide 25 mm 8 dia 28 nos mm Rings at 2 137.361 x 724.95 0. 178 -0. LOAD 1.139 0. ( in degree) AS=AREA OF STEEL (in sq.33 115.004 1.53 0.936 0.20 0.200 0. STRESS IN CONC.930 0.950 -0.512 0.000 10.156 1.185 0.040 0.001 30.A.93 137.125 1048 12793 1190 20400 -0.142*RI B=BD*PI/180 B1=COS(B) A=ALPHA ANGLE=ACOS (RO*B1/RI) RECOSB=RICOSA B2=SIN(B)^3 B3=SIN(4*B) B4=SIN(2*B) A=COS(A) A2=SIN(2*A) A3=SIN(A) NUM1=(PI-B)/8+B3/32+B1*B2/3 NUM2=2*(RO^3)/(1+B1) NUM3=(RI^3) *T/(RO+RI*A1) NUM4=(M-1) *PI+A-A2/2 NUM = NUMINATOR = NUM2*NUM1+NUM3*NUM4 DENM1=2*(RO^2)/(1+B1) DENM2=B2/3+(PI-B)*B1/2+B1*B4/4 DENM3=2*(RI^2) * T/ (RO+RI*A1) DENM4=(M-1) *PI*A1-A3+A*A1 DENM=DENOMINATOR=DENM1*DENM2+DENM3*DENM4 NORMAL CASE MAX.20 115.145 0. IN T/SQM=P/DENM TS=TENS.861 0.004 1.853 0.001 30.AXIS=RO*COS(B) NAD=DEPTH OF N.415 1.308 1.445 169.682 0.m) PERMISSIBLE TENSILE STRESS IN Steel (in t/sq.624 0.A FROM TOP=RO+NAC DE=EFFECTIVE DEPTH=D-C CC=COMP. Cm) P=VERTICAL LOAD ( in tonnes) BM=BENDING MOMENT (in t-m) SOLUTION RO=OUTER RADIUS=D/2 RI=RADIUS OF REINFORCEMENT RING=D/2-C T= THICK.586 -0.106 1.600 0.Jaipur _________________________________________________________________ ________________________________________________________________________ DESIGN OF PILE SECTION INPUT DATA D=DIA OF PILE ( in m) C=COVER FROM CENTRE OF BAR (in m) M=MODULAR RATIO (as per IRC:6) BD=BETA ANGLE FOR DEFINING N.884 -0.094 0.A.STRESS IN STEEL (T/SQM) PERMISSIBLE COMP.006 -11.075 10.750 0.727 -0.005 -6.33 0.075 0.Ltd.125 1075 18376 1190 20400 .338 CHECK FOR STRESSES NAC=DEPTH OF N.m) -0..21 86.308 -0.BELOW CENT.162 0.525 0.506 1.586 -0.110 0.56 0.525 0.099 0.445 137.352 -0.REINFORCEMENT RING = AS/2*3. LOAD MIN.STRESS IN Concrete (in t/sq.200 1.Design of Substructure CEG.984 0.682 1.600 0.659 0.964 0.080 CHECK FOR ECCENTRICITIES CALCULATED ECCENTRICITY EC = NUM/DENM ACTUAL ECCENTRICITY EC = M/P 0.320 1.000 98.97 107.223 0.351 0.33 0. 66 103.54 130.L with L.75 C Pier 3.85 88.59 116.L Load on individual Pile PILE 1 PILE 2 PILE 3 PILE 4 PL1 + PL2+PL3+PL4 113.50 148.52 Therefore. Critical load for bending in transverse direction = 488..24 106.54 Therefore.04 165.20 86.46 162.33 141.85 Therefore.F. Critical load for bending in transverse direction = 655.W.40 t Design of Pile cap in Longitudinal direction : 0.1125 1800 2.Jaipur _________________________________________________________________ ________________________________________________________________________ Design of Pile cap : I L.62 169. Critical load for bending in transverse direction = 522.21 Therefore.L spandislodged Load on individual Pile PILE 1 PILE 2 PILE 3 PILE 4 PL1 + PL2+PL3+PL4 124.34 t L.40 88.59 t H.92 145.Design of Substructure CEG.54 130.54 130.85 88.85 88.87 124.6 C Pile .08 PILE 5 PILE 6 PILE 7 PILE 8 433. Critical load for bending in transverse direction = 355.14 130.6375 2.L with L.78 120.94 127.87 PILE 5 PILE 6 PILE 7 PILE 8 499.F.L Load on individual Pile PILE 1 PILE 2 PILE 3 PILE 4 PL1 + PL2+PL3+PL4 152.87 124.14 t II H.60 SECTION M-M SECTION S-S 8.47 PL5+PL6+PL7+PL8 522.Ltd.6 C Pile 3.7 1.87 124.2375 1.81 PL5+PL6+PL7+PL8 488.L spandislodged condition Load on individual Pile PILE 1 PILE 2 PILE 3 PILE 4 PL1 + PL2+PL3+PL4 86.75 PILE 5 PILE 6 PILE 7 PILE 8 588.20 PILE 5 PILE 6 PILE 7 PILE 8 344.963 0.50 PL5+PL6+PL7+PL8 655.W.20 86.20 86.36 123.79 PL5+PL6+PL7+PL8 355.34 158.83 110.75 0. 60 . 656.0 mm 2 = 4514.750 2 = 373.40 = 199.34 t Say.600 = 3.00 .61 = 1594. 5026.00 t-m For.877 x 1637.61 t-m Therefore.00 t The critical section for bending moment is taken at the faceof Abutment whereas for S. Net Bending moment = 1968.00 x 3. M . The critical sections of bending moment & shear forces are shown in the figure above.75 = 1637. (required) = 1595. 160 mm c/c in bottom face..3 x 1. Lever arm from centre of pile to the face of abut =3.5 2 = 55522.00 t-m Self weight of pile cap upto critical section M-M = 0.000 = 1968.06 x 1800 x 1000 100 2 = 1080.0.Jaipur _________________________________________________________________ ________________________________________________________________________ Design for bending. 1595.5 mm 1. Maximum load on piles in a row = 655.4 t-m Say.000 x 12.877 R= 1.0 mm Minimum area of steel required on top face = 0.0 mm 2 2 Provide 16 O.67 m= 10 sst = 200 K= N/mm2 N/mm2 0.93 mm < 1637.F.26 x 3.00 x 10 = 985. 305.886 Depth of pile cap = 1800 mm Piles shall be embedded by 50 mm into pile cap & reinforcement shall be placed by giving a 75 mm cover above piles.26 t Bending moment due to self weight of pile cap = 199.00 x 10 200 x 0.75 + 3. d eff.Ltd.5 mm 2 7 d eff. 160 mm c/c in top face. 1256.415 scbc = 11.19 of 100 IRC :21-2000) 2 = 2160.5 mm > 4514.it istaken at a distance of effective depth from the face of the abutment. (available) = 1800 .368 j= 0.000 m Bending moment due to pile loads at the face of pier = 656.0 mm .886 x 8700 Safe 7 Area of steel required = 1595.0 mm /m width 2 2 Provide 32 O.373.Design of Substructure CEG.6 mm > 1080.12 x 1800 x 1000 (As per cl.80 x 2.75 .35 & Fe .0 mm /m width Minimum area of steel required = 0.50 . e.87 x fy = s Provide 0..87 x fy 2 Legged 10 @ 175 Design of Pile cap in Transverse direction : Minimum area of steel required = 0.Design of Substructure CEG.4 0.0 Provide 20 φ 130 mm c/c in bottom face.Ltd.627 mm /m 0.036 t-m Therefore.31 % 100 x 1.800 Effective depth at section S-S = 1. = 27.564 t-m Net shear force 'V' at section S-S = 543.250 Lever arm for bending moment due to weight = 1.6 mm > 2160.30 Percentage of reinforcement provided = 50.489 1800 x 1000 mm2/m width 2 2 2416.50 t/m Shear reinforcement required m m m m m t t-m t m Minimum Shear Reinforcement : Asw bxs Asw = 0.0 mm . at effective depth) Protion of Pile cap effective for shear = 2.750 t 2 Shear stress = 543.0 mm 2 2 1546.750 t Net bending moment at section S-S = 275.12 x 100 = 2160. Provide 16 φ 130 mm c/c in top face.6375 2 Permissible shear stress = 25.750 = 27 t/m 1.600 Weight of Pile cap upto section S-S = 112.Jaipur _________________________________________________________________ ________________________________________________________________________ Check for shear: Distance of the section S-S from face of Abutment = 1.6375 x 12.2000 Overall depth of Pile cap at section S-S = 1.000 Bending moment due to Pile loads = 393.6375 Shear force due to Pile loads = 656.6 mm > 1080.265 = 0.1125 Protion of Pile effective for shear = 1.4 x b 2 = 13.6375 (i. Net upward shear = 543.056 of Pile cap Bending moment due to weight of pile cap = 118. 1093.24 184.L With L.39 t-m Say.999 = t-m 0 = 1256.999 = 125.62 1382.00 t-m .00 t t t t t t Say. 194.71 t Live load = 112. 194.00 t-m 194.L 1 Vertical load S.I.Design of Substructure CEG.L..e( 96.46 t Abutment shaft = 212.98 t-m = 1092.00 t Dead load = 0.39 t-m Say.00 194.D.30 H.00 t-m = 193.D.000 x 6.98 t-m Due to Earth = 1256. = 0.24 t Dead load = 184. = Lever arm for Longitudinal forces = 6.62 t = 966.38 51.97 t Say.L.145 m Checking the section at R.828 518.00 t-m = 1381.00 t Abutment cap = 51.999 i.62 1093.507 t-m = 125.71 112. 518.00 1257.Ltd.L.D. = 36.38 t Abutment cap = 51.000 Due to earth x 6.49 t-m Say. 263.L.F. MOMENT 597.51 t Total load = 263. Dead load Live load Abutment cap Abutment shaft Total load 2 Longitudinal moment Due to earth Due to Longitudinal force Total moment 3 Transverse moment Due to Live load Total moment = = = = = = 36.89.145 ) DRY With L.00 t-m VERTICAL LOAD LONG. MOMENT TRANS.46 133.30 t Say.46 t Abutment shaft = 212. MOMENTTRANS.509 t Total load = 597.39 t-m = 193.I.00 DRY spandislodgedcondition 1 Vertical load S.99 t-m 3 Transverse moment Due to eccentricity of live load = 193.30 t 2 Longitudinal moment Due to Longitudinal force = 18.I.144 . 597.L 1 Vertical load S.97 t 2 Longitudinal moment Due to Longitudinal force = 0.00 t-m 1382. MOMENT 518.Jaipur _________________________________________________________________ ________________________________________________________________________ Design of Abutment shaft : Calculation of Forces at Abutment base (At Top of Pile cap) 89.00 t-m VERTICAL LOAD LONG.00 t-m = 1256. O.00 194.00 0.00 t-m VERTICAL LOAD LONG. MOMENT 263.97 ML 1382.29 t x 6.30 263.29 0.999 = 0 t-m = 966.L With L.57 mm Summary of Loads at Abutment Shaft bottom : 1 DRY condition With L. 0.00 H. MOMENT TRANS.I of section Igyy 4 = 1. = 0.L Span dislodged P 597.00 Say.00 967.29 1093.97 1257..73E+14 mm .46 Abutment shaft = 133.F.D.00 967. 185.Ltd.00 Dead load = 0.F.00 518.00 t-m VERTICAL LOAD LONG.00 60 120 two layers 1200 16 φ 25 φ 16 φ 8 no.I.I of section Igxx = 12000 mm = 1200 mm 2 mm = 14400000 4 = 1.62 185.00 Check for Cracked/Uncracked Section Length of section Width of section Ag Gross Area of section Gross M.00 t t t t t Say.L Span dislodged 2 H.51 t-m = 966.00 1257. MOMENT TRANS.000 Due to earth 0.L spandislodged condition 1 Vertical load S.51 t-m 967.73E+12 mm Gross M. MOMENT 185.L.Jaipur _________________________________________________________________ ________________________________________________________________________ 3 Transverse moment Due to eccentricity of live load = t-m 0.00 MT 194. both sides 12000 PLAN : ABUTMENT SHAFT 2 Reinforcement provided = 74185.O.Design of Substructure CEG.29 2 Longitudinal moment Due to Longitudinal force = 0.00 Abutment cap = 51.828 Total load = 185.00 0. 02303E+12 mm mm3 = 3.5 mm2 = 14325814 = 527.73E+12 mm 2 = 14400000 mm = 346.G of Steel placed on longer face C.Ityy = Igyy Zyy + 2 m - mm mm mm2 + 2 m - 2 1 As ay 4 = 1.Design of Substructure CEG.73819E+14 mm mm3 = 2.As Area of concrete C.5 = 5932 = 15067670 2 1 As ax mm2 Ac = Ag .4102 mm .Itxx d/2 Transformed M.G of Steel placed on shorter face Transformed Area of Section Atfm Transformed M.37E+09 = M.Itxx = Igxx Zxx 4 = 2.9E+10 = M.5152 % y 525 x x 5932 y Asx = 58905 mm2 Asy = 1608.Jaipur _________________________________________________________________ ________________________________________________________________________ y x x y 12000 Abutment section Transformed sectional properties of section: Adopting Modular ratio m = 10 Cover 72..Ltd.5 Dia of Bars = 25 No of bars in tension face (longer) = 120 No of bars in compression face = No of bars in shorter direction Total bars in section As Steel Area % of Steel 1200 68 16 60 8 = 196 = 2 = 74186 mm = 0.Ityy d/2 Permissible stresses Minimum Gross Moment of inertia Imin Area of section r 4 = 1. 728068 10 7.06696628 4.4.8% of area required 0..396409711 4.1) L Leff = 6.Design of Substructure CEG.Ltd.7 43200 43200 74185.00 t-m 3 MT -194.5 N/mm Tensile stress Permissible stresses : Steel σst S.09879899 -0.57 43200 74186 0.00 t-m 0.5 10 7.No 1 Item Loads and Moments P = 0.30 t Span dislodg 263.1 6371.00 t-m 2 ML 1382.cal P/Atfm ML/Zxx MT/Zyy 0.5 796396.cal σcbc.Jaipur _________________________________________________________________ ________________________________________________________________________ Effective length of Abutment shaft Abutment shaft height Effective length Slenderness ratio Type of member (IRC:21-2000 cl: 306.K < 1 O.3962 2 Check for Minimum steel areamm 10 Conc.K .169 43200 351959 2815.67 N/mm2 = 200 N/mm2 DRY Case L.cal σcbc.cal σcbc mm2 mm2 < 1 O.cal σcbc.cal σco + σcbc.L 597.175189 3.761 m = 31.2.97 t 1257.3% of Ag 12 13 Governing steel 14 Provided Steel area Check for safety of section σco.3) β = 1 Permissible stresses : concrete 2 σcbc = 10 N/mm 2 σco = 7.00 t-m Actual(calculated) Stresses 4 5 6 7 σco.2.Area Required for directstress (1)/(9) 11 0.728068 0 3.456038 0.064 = < 50 Shotr Column Stress reduction coefficient (IRC:21-2000 cl: 306.031832706 = 5+ 6 Permissible Stresses σcbc 8 σco 9 0.149 m = 10. 67 Section to be designed as Cracked S.cal ..5 691487.Purushothaman.17470325 0.cal -2.cal ML/Zxx 5 σ MT/Zyy 6 cbc.12297 2.57 43200 74186 0.635423 .830512 Permissible Basic tensile stress in concrete -0.cal = 5 + 6 7 Permissible Stresses σcbc 8 σco 9 0.4 43200 43200 74185. which is based on "Behaviour of columns and walls"in the book entitled "Reinforced Concrete Structural Elements" by P.cal σcbc < 1 O.σcbc.cal -3.553 -0.67 Cracked Note: The design for cracked section has been carried out as per computer programme .K Check for Cracked /Uncracked section σco.00 t-m Actual(calculated) Stresses σco.5 10 7.3032 2 Check for Minimum steel areamm 10 Conc.Area Required for directstress (1)/(9) 11 0.3 5531.29 t 967.8% of area required 0.cal σcbc.241669534 -0.67 Cracked DRY Case L.344190888 3. .363362 0.Ltd.3% of Ag 12 13 Governing steel 14 Provided Steel area Check for safety of section σco.62 t Span dislodg 185.Jaipur _________________________________________________________________ ________________________________________________________________________ Check for Cracked /Uncracked section σco.00 t-m 3 MT -194.745 -0.06696628 3.K < 1 O.00 t-m 0.898 43200 247050 1976.cal σco mm2 mm2 + σcbc.867973 0 2.Design of Substructure CEG.cal Permissible Basic tensile stress in concrete -0.00 t-m 2 ML 1093.cal P/Atfm 4 σcbc.L 518.867973 10 7.No 1 Item Loads and Moments P -3.σcbc.67 Section to be designed as Cracked -2. .975 x 3.26 t t 41.3 87.98 t/m2 2.609 7.345 P4 H. sin( φ − i)   sin α.3 3.Jaipur _________________________________________________________________ ________________________________________________________________________ EARTH PRESSURE CALCULATION Formation level Pilecap bottom level Low Water Level Highest flood level = = = = 98.09 2 1.Design of Substructure CEG.8 1.Ltd.2973 CALCULATION OF EARTH PRESSURE IN DRY CONDITION P1 = P2 = F1 = = M = = 0.8 x F5 P5 7.69 7.300 12 5.3 x 7.57 2 0.5 = 88.0 t/m 12 m sin sin 0.26 161.2973 F4 = 0.345 90.107 F5 = 0.2973 x 0.69 7.0 x x 3.145 94.8 1.3 x 2.69 t F4 94. F = = M = 41. sin( α − δ) 1 + sin( α − δ).0 5.96 = = x 98.345 P1 P2 CALCULATION OF EARTH PRESSURE IN FULL SUPPLY LEVEL CONDITION 98.45 F6 = 1.45 = 1162 1.26 ) 161.5 = 41.26 x 12 x cos 0.F.69 x 12 x cos 0.12 t 362.98 = 161.16 t/m2 x x 1. Surcharge angle Angle of wall face with horizontal Bulk density of earth Submerged density of earth Width of abutment Ka* = sin2 2.750 2.80 Total force.3 t 10.22 x x 30 o 20 o 0o 90 o 1. sin( α + i)   2 2 Here Angle of internal friction.8 t/m3 3 1.96 10.42 x x x 363 x 10.2973 x 0.26 x 12 x cos 0.52 1.57 x sin 1.863 say 0.26 2 87.107 + 291 t x ( 0.26 = = x 1.96 87.42 x 0.107 + 88.22 x 1 + sin * (value of angles in radian) = 0.45 x x + 3.2973 0.609 m m m m CALCULATION OF ACTIVE EARTH PRESSURE From Coulomb's theory of active earth pressure 2 sin (α + φ) Ka =  sin( φ + δ).300 P4 = P5 = 0.L .33 t-m 88.26 7.00 10.96 0.87 1.523 = sin sin φ δ i α γ γsub = = = = = = = 0.5 x 362.12 x 1666 t-m 1.16 x 7.80 + + F6 7.86 t/m2 0 t/m2 x cos 0. Angle of friction between soil and concrete. 300 CALCULATION OF LIVE LOAD SURCHARGE Dry P6 = 0.22 x 3..26 x M = 26.36 = 411 t-m 2 F7 10.69 7.729 x 9.2 x 1.6 = = = 26.Ltd.Design of Substructure CEG.3 x cos 0.96 x 12 x = 79 t M = 79 x 10.36 t/m2 cos 0.L P6 = F7 = = 0.345 P6 H.2973 x 1.3 87.3568 x 1.64 t/m2 cos 0.6422 x 0.0 12 12 = x 0.3 29.95318 = 349.72901 t 29.64 x 10.96 0.F.2 3.8 = F7 = 0.Jaipur _________________________________________________________________ ________________________________________________________________________ 98.63008 tm .2973 x 0.11 + x x 1.22417 t 55. 0 4.33 t-m 50.107 + 213 t x ( 0.2973 CALCULATION OF EARTH PRESSURE IN DRY CONDITION P1 = P2 = F1 = = M = = 0.46 5.3 9.145 P1 P2 CALCULATION OF EARTH PRESSURE IN FULL SUPPLY LEVEL CONDITION 98.09 Ka* = 2 sin 1.9 x 972 t-m 1.5 = 50.9 t 252.42 x 0.3 3.300 2 12 4.52 1.71 Total force.22 = = = = = = = x x 30 o 20 o 0o 90 o 3 1.5 x 252.16 x 0.0 t/m 12 m sin sin 0.05 F6 = 1.L .899 say 0.300 P4 = P5 = 0. sin( α + i)   2 2 Here Angle of internal friction.87 1.98 t/m 2 1.98 = 121.750 2.9 t/m 2 0 t/m x cos 0.107 + 50.107 F5 = 0.69 x 12 x cos 0.46 t 41.69 t t 94.3 x 1.46 x 12 x cos 0.16 89.69 5.05 = 711 2 1. sin( φ − i)   sin α.16 253 t x 9..71 89.625 x 5. Angle of friction between soil and concrete.Ltd.46 + + 5.145 x x 3.F.5 = 41.69 5.8 1.523 = φ δ i α γ γsub sin sin 0.57 x sin 1. Surcharge angle Angle of wall face with horizontal Bulk density of earth Submerged density of earth Width of abutment sin2 2.609 m m m m CALCULATION OF ACTIVE EARTH PRESSURE From Coulomb's theory of active earth pressure 2 sin (α + φ) Ka =  sin( φ + δ).2973 F4 = 0.609 5.16 = = x 98. sin( α − δ) 1 + sin( α − δ).Design of Substructure CEG.57 2 0.0 x x 3.145 90.42 x 9.2973 0.3 89.46 = = x 1.46 2 P4 H.975 x 3.3 x 5.Jaipur ________________________________________________________________________ _________________________________________________________________ EARTH PRESSURE CALCULATION Formation level Pilecap top level Low Water Level Highest flood level = = = = 98.05 + 121.46 ) 121.145 94.46 x 12 x cos 0.8 t/m 3 1. F = = M = 41.8 1.7 x P5 5.22 x 1 + * (value of angles in radian) = 0.2973 x 0.62 t/m x x 1.2973 x 0.00 x 9. 2973 x 0.F.31 + x x 9.7115 = 255.64 x 9.6422 x 0.16 2 0.43187 tm .3 89.L P6 = F7 = = 0.9825 t 48.3568 x 1.56 = 284 t-m 2 H.98 x 2.0 12 12 = x 0.729 x 7.Ltd.2973 x 1.300 CALCULATION OF LIVE LOAD SURCHARGE Dry P6 = 0.3 21.36 t/m cos 0.2 x 1.16 x 12 x = 66 t M = 66 x 8.64 t/m cos 0.2 3.Jaipur ________________________________________________________________________ _________________________________________________________________ 98.46 x M = 26.3 x cos 0.145 P6 2 1.7 = = = 26.72901 t 21..Design of Substructure CEG.69 5.8 = F7 = 0. Design of Substructure CEG.00 0.018 Quantity of steel to be provided in Longitudinal direction = 50 Assuming a clear cover of = 16 Assuming a dia of bar = 1.1 Length of bar = Volume of each stirrup = no of stirrups required for m/length Required Spacing Provide 16 mm dia bar 0.20 x 12 Volume of Abutment cap = x 3 7.9 m Length of bar = Area of steel required in Longitudinal direction 2 0. = 2010.61 mm = 11.Minimum thickness of the cap required as per cl: 710.100 1.018 1512.857 mm = mm c/c stirrups throught in length of abutment cap.018 m3 Quantity of steel to be provided in Longitudinal direction = 50 Assuming a clear cover of = mm 12.16 mm2 = = 140 m3 mm mm m .Ltd.20 0..8.5 1.036 m3 Quantity of steel to be provided at top = 0. 500 mm However the thickness of abutment cap is = 500 mm Assuming a cap thickness of = 0.00022 m3 7 nos 1000 7 142.072 m3 = 0.62 mm2 Transverse steel: 0.100 11.2 = m Quantity of steel = 1 % of volume = 1 x 7.036 m3 Quantity of steel to be provided at bottom = Top & bottom face: 0.Jaipur ________________________________________________________________________ _________________________________________________________________ Design of Abutment Cap: As the cap is fully supported on the abutment. 1436.2 of IRC:78-2000 is 200 mm.9 16 Provide 10 nos of bars mm dia at top & bottom face.2 100 0. 867417 t-m/m 2 204.891391 0.10 All faces provide minimum steel of Provide 10 mm dia bar 200 mm c/c as vertical steel at earth face. 2 565.6991 mm /m Distribution steel: As per IRC:21-200 cl:305.889 x 244 300 x 1000 = 360 mm2/m mm c/c as vertical steel at earth face.232713 t/m 12.75106 t 2 1.21 = = = = = = = 16.3773 mm = 2 666.232713 F2 = 17.10 All faces provide minimum steel of Provide 10 mm dia bar 200 mm c/c as vertical steel at earth face.891391 1.67056 t/m F1 Intensity for triangular portion = = 0.3 50 = = 12 244 1.889 x 238 as per IRC:21-200 cl:305.4867 mm /m Disrtibution steel on earth face: dia of steel bar Available effective depth = 0.6991 mm /m .4772 mm /m 1000 0.Ltd.Jaipur ________________________________________________________________________ _________________________________________________________________ Design of Dirt wall: Dirt wall designed as a vertical cantilever. 2 392.6991 mm /m Vertical steel on earth face As per IRC:21-200 cl:305.00 2.21 2.3 x 2.00 x 1. 2.3M Ast req Minimum steel = = 300 - 0. = 250 mm2/m 2 392.31619 M2 = M1+ M2 Total moment at base of dirt wall /m length Thickness of dirtwall Assuming a clear cover on either face Vertical steel on earth face: dia of steel bar 300 Available effective depth = effective depth req = Minimum steel Provide = 12 mm dia bar - 50 2.67056 x 0.11727 34.891391 0.2794 x 2.891391 200 x 0.Design of Substructure CEG.6967 2.12 100 200 x - 6 t t-m t-m t-m t-m/m m mm mm mm = 138.2794 x 12. = 250 mm2/m 2 392.51 x = Ast req x x x 2.21 = = 17.9837 mm /m = 250 mm2/m = 250 mm2/m mm c/c as vertical steel at earth face.867417 200 x 50 - 12 0.57942 15.10 Governing steel at earth face Provide 10 mm dia bar 200 = = = = 12 238 mm mm 0.00 x x 2.75106 M1 = 16.92652 2.00 x 1.31619 19.21 F1 F2 2 Intensity for rectangular portion = 0..2 = 0.10 0. 353 β2 = 0.75 4.67 3.00 A B 98..145 A ' Y direction ' B Width of Solid return wall (a) Width of Cantilever return wall Avg Height of Solid return wall (b) Height of Cantilever return at Tip Height of Cantilever return taper Height of Cantilever return at Root Thickness of Solid Return at farther end Thickness of Solid Return at Root Thickness of Solid Return at bottom Thickness of Solid Return at top Thickness of Cantilever return = = = = = = = = = = = 3.155 b X direction 89.5 0.300 0.5 0.631 β2 = 0.75 2.Ltd.42 9.398 0.4096122 0.889 t/m2 R = 151.155 0.00 9.8 M t/m3 30 σcbc m σst k j = = 1020 10 t/m2 = = = 20400 0.1 t/m2 Case (1) For uniformly distributed load over entire plate a/b a/b = = 0.632 .5 0.5 0.75 4.375 β1 β1 For a/b = 0.333 0.Design of Substructure CEG.4096122 For a/b = 0.75 3.5 β1 = 0.5 Unit wt of Soil Grade of concrete = = 1.42 0.429978 β2 = 0.462794 = = 0.Jaipur ________________________________________________________________________ _________________________________________________________________ DESIGN OF RETURNWALL a 3. 81 = 86.148 For a/b = 0.604233 t/m 4.041667 m = 3.603504 x 0.8232 t/m = 3 41666667 mm = 3 0.328 β2 = 0.Ltd.63639 t/m = 41666667 mm = 0.99668 t/m = 3 41666667 mm = 0.25 83.4096122 Earth pressure: q = σbmax = 0.155 = 2 4.162399 x 9.4299776 x 0.636389 x 0.603504 t/m 83.5 β1 = 0.624862 t-m/m 2 93.4096122 0.4627941 x 0.25 83.212 β2 = 0.375 β1 = 0.041667 m = = 3..81 = 2 376.2 = 0.25 2 mm of width = 1000 x 250000 6 3 Hence Moment /m width along Y direction MY /m width σamax 1000 For Z = 86.2794 β1 x 1.603504 x 0.8 q x 2 1.2441202 x mm of width = 1000 x 250000 6 .Jaipur ________________________________________________________________________ _________________________________________________________________ Live Load Surcharge: q = σbmax = 0.041667 m 0.041667 = 0.81 mm of width 1000 = 250000 x 6 3 3 Hence Moment /m width along X direction MX /m width = 93.24412 β2 = 0.2794 β1 x x 1.604233 x 0.041667 Case (2) For Triangular loading due to earth pressure a/b a/b = = For a/b = 0.8 x q x b2 x b2 t2 σamax = β2 x q t2 σbmax For 1000 Z = 0.99668 x 0.901516 t-m/m 2 x b x b2 2 t σamax = β2 x q 2 t σbmax For 1000 Z = 0.Design of Substructure CEG.200 β1 = 0. 179776 = 92..5 x 1.75 x x 0.25 For 1000 Z mm of width = 1000 x 250000 6 3 3 Hence Moment /m width along X direction MX /m width = 250.041667 m = 10.424 2 753.1623987 x = 15.417 4. 2 335.81768 t-m = 14.5 x 0.2794 x M Ast x 1.33333 + = = 14.82315 x 0.Design of Substructure CEG.00 dx x 4.2794 x 1.9822 mm on earth face.8 x 0.041667 σamax = 0.444444 x 0.2 0.888889 x = 1835.604233 x 83.00 x dx x 0.00 x x 2.1559 mm /m Ast/m Provide 12 mm dia @ 150 mm c/c providing Provide 8 mm dia @ 150 mm c/c providing 2 0.2794 x 1. Effective depth available = 500 50 20 = + 0.5625 x 4.041667 Total Moment in Solid Return /m height = Total Moment in Solid Return /m width = 14.Jaipur ________________________________________________________________________ _________________________________________________________________ Hence Moment /m width along Y direction MY /m width = 376.346 t-m/m Along X-direction 19.283 mm = 2 537.A M 0.00 X 4.11063 x 20400 x 10^6 0.81 0.653796 x 10. .8 1.1032 mm on other face.67814 x 0.Ltd.66667 - 6= 424 X mm = = R x b 151.326 t-m/m Along Y-direction Moment due to Cantilever Return: ' Moment due to earth pressure at face A .1111 x x x 0.621024 + 1.00 2 X x 0.70096 t-m/m 2 250. Along Horizantal direction.8 x X 3.8 x d2 3.2794 x + 0.11176 x 21.666667 x + 1.11063 t-m Design of cantilever Return: Assuming 50 mm cover and 12 mm dia bars.44492 t-m/m = 4.13157 + 0.6781 t/m = 41666667 mm = 0.95 x 0.00 2. 000 20 - 7.2794 x 0.32583 x 20400 x 10^6 0.888889 x = 2 2422.00 20 mm dia bars.Design of Substructure CEG.75 x + 0.547 mm on earth face.11176 x Moment in Solid Return /m height = Moment in Solid Return /m width = 101.155 M Ast 20 mm dia bars.8 x 0. 2 1058.98013 x 20400 x 10^6 0.8 x 1.1764 = 26. Along Horizantal direction.2794 x 1.187 mm /m Ast/m Provide 25 mm dia @ 190 mm c/c providing Provide 16 mm dia @ 190 mm c/c providing 29.1111 x x x 0.98013 t-m/m = 19.3333 + 14.8 x 0.5625 x 4.42 Design of face A ' -B ' Moment in Solid Return /m width Ast x 10 = Ast/m M 5..000 0- 10 = 19.66667 = 19.2794 x 1.Jaipur ________________________________________________________________________ _________________________________________________________________ M Design of Solid Return: Moment due to Cantilever Return: ' Moment due to Earth pressure at face B-B = x x 0.32583 t-m/m = 19.2 1.75 4.2532638 + 0.95 x 0.656 t-m = 19.34644 + x dx x x dx 51.8 0.666667 x X = 10.2794 x + 0.75 7. 2 628. .3185 mm on other face.5 x 1.187 mm = 2 2422.441 mm = 2 2623.98013 t-m/m 420 mm = = R x b 151.221 mm on other face.5 x 1.41044 + = 51.1936 = = 19.44 2 2583.653796 x Design of face B-B ' Moment in Solid Return /m height Assuming 50 mm cover and Effective depth available = x 5.441 mm /m Provide 25 mm dia @ 180 mm c/c providing Provide 12 mm dia @ 180 mm c/c providing 2 2727.1111 x x x 0. 500 50 d2 1.00 X2 x + 0. 50 d2 1.077 mm on earth face.444444 x 0.57643 t-m 3.25511 t-m 0.75 X - X 40.Ltd.75 0.888889 x = 2623. Along Vertical direction.32583 t-m/m 440 mm = = R x b 151.57643 9. = Assuming 50 mm cover and Effective depth available = 500 2 0. 959 27.K.150 m .184 15. H (FROM TOP) WIDTH OF RETURN AT THIS LEVEL FORCE DUE TO EARTH PRESSURE MOMENT DUE TO EARTH PRESSURE FORCE DUE TO L.000 m 0. SURCHARGE MOMENT DUE TO L. UNITS m m t tm t tm t 1 4.750 28.1 AREA OF STEEL PROVIDED CHECK FOR SHEAR STRESS SHEAR FORCE SHEAR STRESS Ast/bd x 100 PERMISSIBLE SHEAR STRESS PERMISSIBLE SHEAR STRESS Asv/sv t t/m2 % MPa t/m2 cm2/m 48.586 88.NO.Jaipur _________________________________________________________________ ________________________________________________________________________ DISTRIBUTION FACTOR Active earth pressure FOR NORMAL CASE.0 1. cm2 88.290 34.8 20 11.569 32 4 32. cover to reinforcement.199 0.669 54. FORCE FROM SUPERSTR.000 TOTAL MOMENT DESIGN MOMENT REQUIRED EFFECTIVE DEPTH EFF.600 13.40 0. FA unit wt of soil = = = = = = = = Ka γ δ clear span between return wall width of return wall Avg. DEPTH AVAILABLE AREA OF STEEL REQUIRED DIAMETER OF BAR PROVIDED TOTAL NO.586 1.L.279 1.500 m S..Design of Substructure CEG.211 3.45 0.075 0.20 20.L.17 O. 137.500 0.Ltd.500 3. (FOR 2-3 LAYERS) H (From formation level) = DESIGN FOR BENDING MOMENT 4.403 10.926 0. OF BARS tm tm m m cm2 mm no. SURCHARGE TOTAL HORI. 159.52 2.00 0..00 0. CEG.00 15.00 0.00 0. PRINT SUPPORT REACTIONS SUPPORT REACTION SUPPORT REACTIONS -UNIT MTON METE ----------------JOINT 32 62 92 122 44 74 104 134 STRUCTURE TYPE = SPACE LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 109 109 109 109 109 109 109 109 0.2 PERFORM ANALYSIS 163.00 0.00 0.37 3.9542 DIST 1.8 TYPE 2 LOAD 4.9542 3.00 0.00 0.00 0.63 3.35 9.57 6.00 0. FINISH .3 3 3 3 WID 1.00 0.Design of Substructure 152.00 0. 161.Ltd.9542 3. LOAD LIST 109 164.90 36.00 0.00 0.9542 3.96 1.35 DIST 3.00 0. 158.41 -1.00 ************** END OF LATEST ANALYSIS RESULT ************** 165.51 -1.00 0.14 0.57 1.00 0.00 0.00 0.61 0.2 1.37 WID 1.00 0.00 0. 160.41 7.00 0.1 3.00 0. 153.35 9.93 ***** OUTER GIRDER************ *******CLASS 70R 1 LANE LOAD GENERATION 175 TYPE 2 -13.00 0. 156.4 0 4.00 0.00 0.46 48.4 6.00 0.05 1.6 9.00 0. 154.6 6.00 0. 162.2 4.Jaipur DEFINE MOVING LOAD ****WITH IMPACT FACTOR TYPE 1 LOAD 1.06 XINC 0.00 0.00 0.00 0.00 0.00 0.63 6.00 0.00 0. 155.77 3.00 0.13 1.35 9.00 0. 157. 154.00 0.Ltd.00 0.8 0 6.00 0. 159.00 0.57 1.2 PERFORM ANALYSIS 163.01 16.00 ************** END OF LATEST ANALYSIS RESULT ************** 165.00 0.00 0.00 0.00 0.28 24.7 XINC 0.63 6.8 0 2.00 0.00 0.8 0 9.00 0.9542 DIST 1.88 35.00 0.00 0. 157.00 0. CEG. 155. LOAD LIST 74 164.00 0.1 3. PRINT SUPPORT REACTIONS SUPPORT REACTION SUPPORT REACTIONS -UNIT MTON METE ----------------JOINT 32 62 92 122 44 74 104 134 STRUCTURE TYPE = SPACE LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 74 74 74 74 74 74 74 74 0.00 0.7 XINC 0.2 4. 162. 161.00 0.00 0.00 0.9542 3.00 0.00 0. 156.88 8.9542 3.00 0.2 TYPE 1 -18..9542 3. 158.Design of Substructure 153.3 3 3 3 WID 1.00 0.00 0.00 47.2 XINC 0.69 21.00 0. 160.00 0.00 0.Jaipur DEFINE MOVING LOAD ****WITH IMPACT FACTOR TYPE 1 LOAD 1.00 0.00 0. FINISH .13 0.57 6.00 0.00 0.00 0.00 0.19 10.00 0.63 3.2 TYPE 1 -18.8 *******CLASS A 3 LANE LOAD GENERATION 202 TYPE 1 -18.00 0.00 0.00 0.41 10.00 0.2 1. case 1 dry 17-12-06 Depth of Section = 1.Design of Substructure CEG.37 Kg/cm^2 Stress in Steel due to Loads = 1842.0 Allowable Concrete Stress = 102.00 Kg/cm^2 Allowable Steel Stress = 2040.Ltd.no of bar: 60 tension face.52 % ABUTMENT SHAFT .350 m Steel Stress Governs Design Stress in Concrete due to Loads = 80.311 m Steel Stress Governs Design Stress in Concrete due to Loads = 70.000 m along width-compression face.200 m Width of Section = 12.51 Kg/cm^2 Percentage of Steel = .00 Kg/cm^2 Allowable Steel Stress = 2040.50 7.000 Tm Myy = .57 Kg/cm^2 Stress in Steel due to Loads = 1821.970 T Mxx = 1257.50 7.000 m Modular Ratio : Compression = 10..300 T Mxx = 1382.0 Modular Ratio : Tension = 10.52 % 17-12-06 .Jaipur ABUTMENT SHAFT .73 Kg/cm^2 Percentage of Steel = .790 m : y axis : = .no of bar: 120 Dia (mm) 16 25 Cover (cm) 7.50 along depth-compression face.no of bar: 8 tension face.200 m Width of Section = 12.0 Allowable Concrete Stress = 102.00 Kg/cm^2 Axial Load = 597.100 Tm Intercept of Neutral axis : X axis : = ******* m : y axis : = .000 Tm Myy = 194.50 Modular Ratio : Compression = 10.000 Tm Intercept of Neutral axis : X axis : = 243.no of bar: 8 Dia (mm) 16 16 Cover (cm) 7.case 1 dry span dislodged Depth of Section = 1.0 Modular Ratio : Tension = 10.00 Kg/cm^2 Axial Load = 263. Ltd.200 m Width of Section = 12.0 Modular Ratio : Tension = 10.361 m Steel Stress Governs Design Stress in Concrete due to Loads = 62.000 Tm Myy = 194.000 Tm Myy = .100 Tm Intercept of Neutral axis : X axis : = ******* m : y axis : = .50 along depth-compression face.no of bar: 60 tension face.802 m : y axis : = .00 Kg/cm^2 Allowable Steel Stress = 2040.48 Kg/cm^2 Stress in Steel due to Loads = 1360.0 Modular Ratio : Tension = 10.000 m Modular Ratio : Compression = 10.83 Kg/cm^2 Percentage of Steel = .f.Jaipur ABUTMENT SHAFT .00 Kg/cm^2 Axial Load = 185..no of bar: 8 Dia (mm) 16 16 Cover (cm) 7.50 Modular Ratio : Compression = 10.000 Tm Intercept of Neutral axis : X axis : = 192.0 Allowable Concrete Stress = 102.00 Kg/cm^2 Allowable Steel Stress = 2040.Design of Substructure CEG.0 Allowable Concrete Stress = 102.50 7.l 17-12-06 Depth of Section = 1.case 1 h.290 T Mxx = 935.52 % ABUTMENT SHAFT .200 m Width of Section = 12.000 m along width-compression face.52 % 17-12-06 .309 m Steel Stress Governs Design Stress in Concrete due to Loads = 52.00 Kg/cm^2 Axial Load = 518.no of bar: 8 tension face.no of bar: 120 Dia (mm) 16 25 Cover (cm) 7.47 Kg/cm^2 Percentage of Steel = .50 7.case 2 span dislodged Depth of Section = 1.29 Kg/cm^2 Stress in Steel due to Loads = 1378.620 T Mxx = 1061. 35.65.35.8 0 2. 23 10. 26 18.6375 0 2.6375 0 9.65 33.80 2.6 0 4.6 0 0.6375 0 8.575 0 6. 39 13.4125 0 0.35 0 9.025 0 1.025. 103 20. 79 1. 75 21.975.6 0 8.25 0 1.575 0 7.9 0 7. 144 13. 108 0. 104 21.975.6375 0 3. 28 20.7 0 3.. 120 21. 127 8.025.325.975 37. 1 0 0 0. 102 20 0 7. 20 2.6 0 3.025 0 9.35 0 6.35 0 3. 32 0.025.675. 97 8.025.7 0 0. ENGINEER DATE 15-SEP-06 4. 92 0.6 0 9. 134 21. 49 1. 60 21.675.6 0 4. 81 5.65.9625 0 6 26.9 0 0.6 0 8.575 0 0 9.025.65. 99 13.9875.6 0 9.25 0 3.9625 0 10. 135 21.4125 0 4.Ltd.6375 0 1.65. 16 0 0 1.9 0 2.025. 78 0.675 25. 52 8. 105 21.0125.13016. 106 0 0 8. 14 21.8 0 4.8 0 0. 101 18.65.675.65. 88 20.0125.575 0 1. 18 0.1875 0 10.025 17.65 35.Design of Substructure CEG. 69 13.1875 0 4.325 31.0125.025.35 0 1.Jaipur INPUT FILE: orissa21superDL.575 0 10.9 0 9. 95 2.6 0 10.6375 0 0 10.9625 0 3.4125 0 3.6 0 0.1875 0 8. 24 13. 90 21.9625 0 7.325. 126 5. 109 1.975. INPUT WIDTH 79 6. 25 16. 125 2.325.675. 67 8. 5 2. 19 1.65.025 15.9875 .65. 114 13.35 0 2. 71 18.9625 0 0. 33 0.STD 1. 123 0.4125 0 1.975. 128 10.325. 2 0. 113 10.25 0 6. 100 16.0125.25 0 7. 91 0 0 7. 89 21. 85 16. 142 8.975. 110 2.675. 117 20 0 8. 40 16. 11 18.325. 115 16. 22 8.975. 70 16. 38 10.0125.1875 0 2.1875 0 6.6 0 7. 83 10.325.35 0 4.0125. 66 5. END JOB INFORMATION 5.4125 0 8.7 0 1.025.0125. 4 1.325.675. 133 20.7 0 10. 9 13. 47 0. 34 1.65.325. 96 5. 13 20.7 0 9.35. 141 5. START JOB INFORMATION 3.8 0 10.35 0 10. 8 10.325. 119 21.975. 65 2.9875.9625 0 8. 48 0.025 0 7.025 0 6 27. 138 0.9 0 4.8 0 8. 94 1.77 0.9 0 3. STAAD SPACE 2. 76 0 0 6. 3 0. 64 1.0125 11.575 0 8.35. JOINT COORDINATES 8.575 0 4.65 34. 63 0.1875 0 1.325. 111 5.675.7 0 2.0125.9625 0 2.325 29.975 36.35 20. 17 0.675. 43 20. 15 21. 87 20 0 6.4125 0 2. 7 8.7 0 4.65. 45 21.975.25 0 4.25 0 8.575 0 3.35 0 8.0125.975 39.575 0 9.6375 0 4.35. 74 21.1875 0 7.9875 41.35 0 7.8 0 6.7 0 7. 98 10.675 23.675 22.025 0 0. 21 5.35 19. 84 13.025.1875 0 9. 58 20. 131 18.35. 55 16.4125 0 7.35 21.35.325. 72 20 0 4. 139 1. 132 20 0 9. 82 8.0125 13.0125. 44 21. 137 0.35.8 0 3.25 0 2.4125 0 10.9875.25 0 9. 61 0 0 4. 42 20 0 2.35. 6 5. 41 18.0125 12. 27 20 0 1.975.975. 31 0 0 2.575 0 2.025 0 3.9875.675 24.35.6 0 1. 12 20 0 0.975 38.4125 0 9. 46 0 0 3.6 0 1.9 0 1. 50 2.325 30.7 0 8. 122 0.6 0 2. 29 21. 59 21.975.0125 14.8 0 7.65 32.9 0 8. 136 0 0 10.9625 0 9. 51 5. 56 18. 129 13.1875 0 0. 10 16.025 16. UNIT METER MTON 7. 124 1. 35 2.9875 40.4125 0 6.025 0 2.0125. 37 8. 121 0 0 9. 93 0.9625 0 4. 116 18.35 0 0.025 0 4.6 0 6 28.25 0 0.9625 0 1.8 0 1.325. 36 5.025 0 8. 143 10. 140 2.7 0 6.35.9 0 6. 57 20 0 3.6375 0 6.025 18. 62 0.9875. 68 10.9875. 112 8.6 0 2.675. 118 20.1875 0 3.6 0 7. 53 10. 86 18.675.65. 107 0. 30 21.6 0 3.6 0 6.8 0 9.675.025.6375 0 7.025.35. 54 13. 73 20. 8 0 12. 38 40 41. 106 113 114. 157 8. *********************************************** 51. 57 61 62.025 0 12 46. 69 73 74. 53 56 57. 44 47 48. 31 33 34. 97 103 104 76. 104 111 112. 164 21. 82 87 88 74.6 0 10. 27 28 29. 30 32 33. 110 117 118. 32 34 35.9875 43. 109 116 117 78. 105 112 113.9 0 10.Design of Substructure CEG. 8 8 9. 7 7 8. 91 97 98. 62 66 67. 88 94 95. 152 0.. 119 127 128. 102 109 110. 68 72 73. 51 54 55. 29 31 32. 24 25 26. 84 89 90. 43 46 47. 162 20 0 12. 115 123 124 79. 3 3 4. 116 124 125. 58 62 63 71.9875. 112 119 120. 45 48 49. 156 5. 23 24 25.6 0 12. 95 101 102. *57 61 62 70 56. *85 91 92 98 58.9875. 40 42 43. 12 12 13.6375 0 10. 79 84 85. 65 69 70. 155 2. 96 102 103. 59 63 64. 34 36 37 68. 74 79 80 73. 149 21.9625 0 12. 146 18. 71 76 77. 98 104 105. 9 9 10. 76 81 82. 33 35 36. 14 14 15. 154 1. 17 18 19.9875. 60 64 65. 165 21. 89 95 96. *99 106 107 112 59.025 0 10. 36 38 39. 99 106 107. 147 20 0 10. 158 10. 66 70 71 72. 114 122 123. 160 16. 107 114 115.6375 0 12.PRO GENERATED COMMENT * 50.7 0 12. 81 86 87. 21 22 23.575 0 12 45. 75 80 81. 4 4 5. *141 151 152 154 62. 72 77 78.9875. 39 41 42. 87 93 94. 150 21. 54 57 58. 15 16 17.Ltd. 103 110 111 77. 101 108 109. 83 88 89. *127 136 137 140 61. 163 20. *29 31 32 42 54. 20 21 22. 120 128 129. 41 43 44. 46 49 50. MEMBER INCIDENCES 64.9875. 11 11 12. *15 16 17 28 53. 26 27 2 8 67. 73 78 79.Jaipur 42. 121 129 130 .25 0 10. 145 16. 50 53 54 70.18 19 20 66. 42 44 45 69.25 0 12. 90 96 97 75.4125 0 12. 86 92 93. *********************************************** 49. 52 55 56. *1 1 2 14 52. 78 83 84.1875 0 12. 113 121 122. * STAAD. 85 91 92. 80 85 86. 19 20 21. 111 118 119. 10 10 11 65. 94 100 101. 151 0 0 12 44. 48 51 52.6 0 12 48. 161 18. 35 37 38. 108 115 116. 6 6 7. 1 1 2. 70 74 75.9 0 12. 118 126 127. *43 46 47 56 55. 28 29 30. 49 52 53. 2 2 3. 77 82 83. 61 65 66. *71 76 77 84 57. 153 0. 64 68 69. 63 67 68. 92 98 99. 5 5 6. 55 58 59. 100 107 108. 37 39 40. 56 59 60. 13 13 14. 47 50 51. 25 26 27. 22 23 24. 159 13. *113 121 122 126 60. ************************************************ 63. 117 125 126. 93 99 100.35 0 12. 148 20. 16 17 18. 67 71 72. 253 130 145. DEFINE MATERIAL START 110.4 117. 160 76 91. 123 131 132. 257 41 56. 297 45 60. 240 84 99. 177 33 48. 197 35 50. ISOTROPIC MATERIAL2 114. 159 61 76. 189 64 79 91. 260 86 101. 156 84. 145 155 146 156 157. 172 107 122. 167 32 47. 298 60 75 108. 136 145 146. 299 75 90. 130 139 140. 223 127 142. 200 80 95. 273 132 147 104. 139 148 140 149 150. 188 49 64. 162 CEG. 234 143 158. 284 148 163. 250 85 100.Design of Substructure 80. 184 138 153. 238 54 69. 283 133 148. 243 129 144. 138 147 148. 179 63 78. 175 3 18. POISSON 0. 214 141 156. 127 136 128 137 138. 137 146 147. E 2. 137 81. 170 77 92 88. 201 95 110. 249 70 85. 288 59 74. 164 136 151. 142 152 153. 203 125 140. 158 46 61. 266 27 42. 162 106 121. 187 34 49. 132 141 142. 211 96 111. 150 160 161. 222 112 127 96. 180 78 93.Ltd. POISSON 0. 303 135 150.7386E+006 112.. 183 123 138. 152 162 163. 275 13 28. 186 19 34. 169 62 77. 295 15 30. 226 23 38. 157 31 46 86. 302 120 135. 293 134 149. 216 22 37. 209 66 81 94. 235 9 24 98. 129 138 139. 171 92 107. 255 11 26. 149 159 160. 185 4 19. 274 147 162. 277 43 58. 143 153 154. 213 126 141. 168 47 62. 294 149 164. 248 55 70 100. 280 88 103 105. 221 97 112. 267 42 57 103. 291 104 119. 270 87 102. 206 21 36. 218 52 67. 287 44 59. 286 29 44 106.15 116. 300 90 105. 174 137 152. DENSITY 2. 278 58 73. 215 7 22 95. 156 16 31. 181 93 108. 232 113 128. 141 151 152. 241 99 114. 155 1 16. E 2. 262 116 131. 228 53 68. 192 109 124. 210 81 96. 246 25 40. 261 101 116 102. 285 14 29. 258 56 71. 194 139 154. 269 72 87. 148 158 159. 231 98 113. 245 10 25. 131 140 141. 252 115 130. 265 12 27. 254 145 160 101.156297 113. 207 36 51.Jaipur 122 130 131. 124 132 133. END DEFINE MATERIAL 118. 205 6 21. 276 28 43. 244 144 159. 242 114 129 99. 161 91 106. 225 8 23. 173 122 137. 154 164 165. 281 103 118. 195 5 20 92. 237 39 54. 151 161 85. 230 83 98. 126 134 135. 198 50 65. 259 71 86. ISOTROPIC MATERIAL1 111. 272 117 132. 191 94 109. 125 133 134. 166 17 32. 224 142 157. 178 48 63. 227 38 53. 251 100 115. 212 111 126. 304 150 165 109. 182 108 123 90. MEMBER PROPERTY INDIAN . 135 144 145. 279 73 88. 263 131 146. 199 65 80. 165 2 17. 282 118 133. 239 69 84. 301 105 120. 193 124 139. 296 30 45. 204 140 155. 190 79 94. 289 74 89. 247 40 55. 163 121 136 87. 153 163 164. 264 146 161. 144 154 155. 217 37 52. 292 119 134 107. 149 83. 271 102 117.7386E+006 115. 256 26 41. 143 82. 133 142 134 143 144. 233 128 143. 196 20 35. 268 57 72. 202 110 125 93. 229 68 83 97. 236 24 39. 176 18 33 89. 290 89 104. 219 67 82. 208 51 66. 220 82 97. 147 157 158. 8439 IZ 0.0001 IY 0. 32 62 FY -1.0001 IZ 0.0001 IX 0.0001 IX 0.0001 IY 0.00 0.005176 IY 0. 31 40 115 124 PRIS AX 1.734 129.0001 IX 0. **** INNER GIRDER FLARING 126. 195 TO 204 255 TO 264 PRIS AX 0. 32 62 92 122 PINNED 147.3715 IZ 0. ****** TRANSVERSE MEMBERS 139.5264 156. 29 30 41 42 113 114 125 126 PRIS AX 2 IX 0.03 IZ 0.003402 142.4167 133.369 IX 0.7995 125.0068 IY 0. 205 TO 224 235 TO 254 PRIS AX 0.Jaipur 119. SELF Y -1 153.792 123.0001 IY 0.00 0. 57 58 69 70 85 86 97 98 PRIS AX 1. ****** END DIAPHRAGM 132. **** OUTER GIRDER FLARING 124.13 2. ****** NOMINAL LONGITUDINAL MEMBERS 136.1366 IZ 0.0258 161.00 0.Design of Substructure CEG.119 IY 0. ****** CROSS GIRDER 134. 32 TO 39 116 TO 123 PRIS AX 1. CONSTANTS 149.00 .283 IX 0.Ltd.0001 144. 44 74 104 134 PINNED 148.00 41. SUPPORTS 146.5975 IX 0.00 0..41 36. 227 TO 232 PRIS AX 0.955 IX 0. JOINT LOAD 155.0001 IZ 0.0001 138.00 0. 155 TO 166 173 TO 184 225 226 PRIS AX 0.654 IX 0.003 IY 0.00 0. **** INNER GIRDER MIDSPAN 130.0001 IZ 0. PERFORM ANALYSIS 162.0227 IY 0.77 IX 0.8189 IZ 0. 1 TO 28 43 TO 56 71 TO 84 PRIS AX 0. 62 92 FY -3.0001 IX 0.411 IZ 0.5437 IX 0.00 0.0001 145.4236 IZ 0.88 0.0245 IY 0. 68 98 FY -3.072 IY 0. 167 TO 172 287 TO 292 PRIS AX 0. 44 134 FY -1.5264 158. **** NOMINAL TRANSVERSEMEMBERS 143.653125 IX 0.0258 159.00 0. 60 TO 67 88 TO 95 PRIS AX 1. 59 68 87 96 PRIS AX 1.794 IZ 0. 233 234 275 TO 286 293 TO 304 PRIS AX 0.0001 137. **** INNER GIRDER UNIFORM 122.00 0. PRINT SUPPORT REACTIONS SUPPORT REACTION SUPPORT REACTIONS -UNIT MTON METE ----------------JOINT 32 62 STRUCTURE TYPE = SPACE LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM Z 1 2 1 0.117 IY 0.0258 157.06985 IY 0.001473 140. 38 128 FY -1.735 127.0001 IZ 0. LOAD 1 SELFWEIGHT 152.00 0.00 0.00 0.1636 IZ 0. MATERIAL MATERIAL1 MEMB 1 TO 28 43 TO 56 71 TO 84 99 TO 112 127 TO 304 150. **** OUTER GIRDER UNIFORM 120.826 IX 0.01877 IY 0.865 121. **** OUTER GIRDER MIDSPAN 128. 185 TO 194 265 TO 274 PRIS AX 0.0034 135. MATERIAL MATERIAL2 MEMB 29 TO 42 57 TO 70 85 TO 98 113 TO 126 151.678 131.5264 160.3984 IZ 0. 74 104 FY -3.006803 IY 0.002588 141. LOAD 2 154.4969 IX 0. 99 TO 112 127 TO 154 PRIS AX 0.0001 IY 0.3715 IZ 0.00 0. 00 0.00 0..00 0.00 0.00 0.Jaipur 5.00 0.00 0.00 0. FINISH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.Design of Substructure 92 122 44 74 104 134 2 1 2 1 2 1 2 1 2 1 2 1 2 0.00 0.88 4.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 4.00 0.00 0.00 0.00 0.41 41.00 0.00 0.00 0.00 0.00 0.00 0.41 36.00 0.00 0.00 0.00 0.00 ************** END OF LATEST ANALYSIS RESULT ************** 163.00 0.00 0.00 0.00 0.00 0.Ltd.88 4.00 0.41 41.94 36.00 0.00 .00 0.00 0.00 0.00 0.00 0.89 41.00 0.00 0.00 0.00 0.13 0.00 0.13 2.00 CEG.00 0.00 0.41 36.00 0.13 2. 32 -7. 156.00 0.00 0.00 0.26 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0. FINISH MOM Z 0.00 0.59 18.32 18.00 0.1878 PERFORM ANALYSIS 162.00 0.00 0.00 0.00 0. 161.00 0.26 9.53 1 TO 14 141 TO 154 UNI GY -0.46 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ************** END OF LATEST ANALYSIS RESULT ************** 163.00 0.00 0.00 0.0 29 TO 42 UMOM GX -2.00 0.00 0.59 0.00 0.00 0.00 0. 155.00 0. CEG.00 0..00 0.32 -7. 154. 152.00 0.00 0.00 0.00 0.00 0.00 0.46 4. 160.00 0.Jaipur *** CRASH BARRIER LOAD 1 CRASH MEMBER LOAD 29 TO 42 113 TO 126 UNI GY -1.00 0.00 0.00 0.00 0.00 0. 159.00 0.00 0.00 0.00 0. 153.00 0.46 4.00 0.59 -7.00 .00 0.00 0.32 18.Ltd.00 0.00 0.59 -7.00 0.00 0.00 0.26 9.00 0.00 0.00 0.00 0.00 0.Design of Substructure 150.46 4.00 18.570 57 TO 70 85 TO 98 UNI GY -0.00 0.00 0. 157.025 LOAD 2 WEARING COAT MEMBER LOAD 29 TO 42 113 TO 126 UNI GY -0.025 113 TO 126 UMOM GX 2. 158.00 0.00 0.00 0.00 0. 151. PRINT SUPPORT REACTIONS SUPPORT REACTION SUPPORT REACTIONS -UNIT MTON METE STRUCTURE TYPE = SPACE ----------------JOINT LOAD FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y 32 62 92 122 44 74 104 134 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0.00 0.00 0.00 0.26 9. 01 sec = 2.00 D 1000xF Where D is appropriate dead load of superstructure and Live load DL 184.24 t LL 112.0 t/m2 I 172.38 kN DL+SIDL+50% LL = F is horizantal force required to be applied at centre of mass of superstructure for 1mm Horizantal deflection at top of abutment along considered direction of motion Relation between deflection at x from free end of cantilever .50 Ah = 0.71 t SIDL 36.001 m 6.x/2)-(x3/6)-(L3/3) Modulus of elasticity of concrete E 27386.80 m4 y = 0.43 m Deflection at distance x from free end of cantilever Distance from fixed end of cantilever to point of application of load L = Distance of CG of super structure from deck slab top Distance of CG of super structure from free end of cantilever x Corresponding time period There fore 49 F = 72161.13 2793385.65 m 0.38 t 2771.075 .Seismic case Calculation of seismic coefficient Transverse direction As per modified clause for interim measures for seismic provisions of IRC:6-2000 Ah Z/2 x Sa/g Horizantal seismic coefficient = R/I Where Zone factor Z = 0. subjected to force 'F' at free end is given by = F E I y ( L2.10 Importance factor I = 1.50 Sa/g is average response acceleration coefficient for 5% damping depending upon fundamental period of vibration T T = 2.98 kN T Sa/g = 0.67 m = 1.50 Response reduction factor R = 2. 244 0.A Moment 9.654 8.145 Weight due to Concrete components component Area factor 1 Dirt wall 1 2 Abut cap 1 3 Abut shaft 1 Length 12.Longitudinal direction As per modified clause for interim measures for seismic provisions of IRC:6-2000 Z/2 x Sa/g Ah = Horizantal seismic coefficient R/I Where Zone factor Z 0.199 10.345 10.056 89.3 1.2 Lever arm for the loads from super structure Formation level Wearing coat Top of deck slab Distance of CG of super structure below deck slab top Pile cap bottom Lever arm for DL 50 98.228 Seismic Force 1.0 Width 0. subjected to force 'F' at free end is given by = F E I y 2 ( L .13 2793385.552 13.0 12.50 Ah = 0.346 16.00 D 1000xF Where D is appropriate dead load of superstructure and Live load For longitudinal direction.10 = Importance factor I 1.4 2. live load is not to be considered.296 13.0 t/m2 I 1.626 4.48 kN F is horizantal force required to be applied at centre of mass of superstructure for 1mm Horizantal deflection at top of abutment along considered direction of motion Relation between deflection at x from free end of cantilever .65 m Deflection at distance x from free end of cantilever Distance from fixed end of cantilever to point of application of load Top of abutment from free end of cantilever Corresponding time period There fore Ground level L = x = 1.73 m4 y = 0.001 m 6.875 65.x/2)-(x3/6)-(L3/3) Modulus of elasticity of concrete E 27386.4 90.149 Density 2.43 m F = 721.300 56 98.62 kn T Sa/g = 0.11 sec = 2.429 1.5 5.075 Height 2.50 Sa/g is average response acceleration coefficient for 5% damping depending upon fundamental period of vibration T T = 2.072 m mm m m m m L.50 = Response reduction factor R = 2. DL+SILL = 2209.206 0.671 87.4 2.2 1.336 .0 12. 05 Transverse direction Weight Force L.17 30.785 223.70 409.27 Summary seismic longitudinal case Total load on piles for normal case Additional horizantal force and moment due to seismic (Live load not to be considered for longitudinal moment) Reduction in longitudinal moment due to braking force Reduction in transverse moment due to live load P 1865.69 36.386 MT 193.214 12.61 -79.16 51.155 Load from Superstruture Longitudinal direction Weight Force L.31 .228 141.75 51 ML 240.72 11.274 m 11.71 13.62 261.36 56.75 seismic Transverse case Total load on piles for normal case 1865.24 2.00 240.19 4.Distance of CG of SIDL above deck slab top Level arm for SIDL 0.44 399.5 161.12 -96.23 141.36 Total DL SIDL LL 50% 16.69 SIDL 36.39 - -102.75 Additional horizantal force and moment due to seismic (Only 50%% live load is to be considered for transverse moment) Reduction in longitudinal moment due to braking force Reduction in transverse moment due to live load 1865.566 -193.718 11.24 2.39 312.A moment 184.62 - 193.57 172.85 10.22 Total 20.A moment DL 184.75 1865.173 m Distance of CG of live load above formation level Lever arm for live load 1.2 12.173 30.39 0.853 10.71 13. 8 5.12 409.8 1.6 3.57 0.75 0.8 28.Design of Substructure CEG.Jaipur _________________________________________________________________ ________________________________________________________________________ Load Case I 1 II 1 Total Load P Seismic Longitudinal direction 1865.6 0 0 0 0 103.8 5.6 3.00 161.3 .6 3 11 3.4 1.4 194.6 6 3.75 With LL No of Piles = Longitudinal Moment ML Transverse Moment MT 399.6 3.75 4 5 12 3.6 3.75 With L.75 0.7 Pile No 1 2 3 4 5 6 7 8 9 10 11 12 x 3.8 5.8 28.8 0 0 0 0 y 5.75 3.75 8.8 1.L Seismic Transverse direction 1865.6 2 10 7 3.8 28.8 28.8 28.8 28.4 1.6 3.8 28.6 3.68 ZL 28.31 12 0.8 1..4 52 ZT 36 108 108 36 36 108 108 36 36 108 108 36 12.4 1.6 3.Ltd.6 3.6 1 9 8 0.4 5.6 0.4 5. min = 1865.00 0.min = 1865.12 12 28.Ltd.75 + 161.409.75 + 161.75 + 161.48 t P = 155.80 6 Pmax.11 t Seismic LongitudinalPmax = 169.min = 1865.44 t .75 + 399..12 11 12 0.00 0.00 P = 141.57 12 28.75 .00 + 409.75 .48 t P = 155.00 .48 t P = 161.00 Pmax.75 + 161.67 t P = 146.00 36.min = 1865.min = 1865.80 9 Pmax.12 10 12 0.85 t P = 159.75 + 399.80 4 Pmax.min = 1865.52 t Permissible capacity of pile in normal case = 207 t Permissible capacity of pile in seismic case = 1.00 108.70 t P = 157.12 12 28.00 + 409.57 12 28.75 + 399.61 t P = 141.35 t P = 169.12 12 28.80 3 Pmax.min = 1865.57 12 28.min = 1865.00 36.Jaipur _________________________________________________________________ ________________________________________________________________________ Case I 1 1 Seismic Longitudinal direction Pmax.80 4 Pmax.00 36.min = 1865.409.00 0.75 + 399.00 0.min = 1865.80 8 Pmax.75 .25 t P = 153.80 5 Pmax.35 t P = 169.61 t Seismic Transverse Pmax = 172.31 36.12 12 28.00 Pmax.61 t P = 141.min = 1865.86 t P = 172.52 t P = 149.31 36.80 2 Pmax.80 7 Pmax.00 0.00 + 409.33 x 207 = 255.31 108.00 0.min = 1865.80 5 Pmax.min = 1865.75 .35 t P = 169.75 + 399.61 t P = 141.57 12 28.409.min = 1865.00 36.00 .min = 1865.44 t Pmin = 138.80 2 Pmax.min = 1865.00 108.80 7 Pmax.00 36.80 9 Pmax.00 + 409.Design of Substructure CEG.75 .min = 1865.61 t P = 169.12 12 0.399.min = 1865.161.75 .409.75 + 161.28 t P = 164.75 .00 II Seismic Transverse direction 1 1 Pmax.69 t P = 144.57 12 12 0.80 3 Pmax.31 108.57 12 0.min = 1865.75 + 399.31 108.00 Pmax.399.44 t P = 166.12 12 28.12 12 28.00 Pmax.00 Pmax.399.57 10 12 0.min = 1865.00 0.00 108.12 12 28.75 + 399.31 36.12 12 28.80 8 Pmax.80 6 Pmax.00 0.75 .399.00 Pmax.min = 1865.27 t P = 151.00 .00 .57 12 28.00 108.75 + 161.35 t Pmin = 141.161.31 108.75 + 161.75 + 399.10 t P = 138.409.00 108.57 11 12 0.57 12 28.00 .57 12 28.31 108.min = 1865.75 + 161.31 36.00 + 409.48 t P = 155.00 0.00 0.57 12 28.409.00 + 409.31 36.00 .35 t P = 155.161.31t t > Hence OK 53 172.00 0.31 36.00 108.12 12 12 0.min = 1865.min = 1865.00 36.161.31 108.00 + + + + + + - 0. 00 3.86 40.35 L1 = = = T Lf = 2.775 K2 = 0 T R = 330.35 141.19 T Lf = 724.07 39.20 = E = m 5000 x I = 3.78 0 = Le = Embeded Length of pile L1 = Exposed Length = 87.Ltd.L Number of Piles Horizantal force in Normal condition due to earth Therefore Total Horizantal force per pile Maximum Load on the Pile Minimum Load on the Pile = = 6.25 442.Design of Substructure CEG.57 t t = = = = = = = = = 16.14 x 64 K1 120 ^ 4 35 2 = 301533 kg/cm 4 = 10178760 cm = 0.36 16.33 36.35 = 87.11 169..Jaipur _________________________________________________________________ ________________________________________________________________________ Horizantal load per pile due to normal & seismic Seismic Longitudinal direction: Total horizantal force due to deck movement Horizantal seismic force due superstructure (DL+SIDL) (Live load not to be considered for longitudinal direction) Horizantal seismic force due to abutment avove G.845 87.61 t t t per pile t t per pile t per pile Determination of Lteral Deflection of pile : T = E x I 5 R = K1 E x I 4 E = Youngs modulus kg/m2 K1 = Constant kg/cm3 K2 kg/cm2 4 I = moment of inertia of pile cross section cm K2 Dia of pile 1.35 - 73.00 12.42 cm 54 1350 cm 0 cm 0 . 83 x 145.14 mm In seismic case as permissble increase in deflection is 33%..33 = Maximum Moment = 145.65 mm > 4.1402 mm Permissible deflection = 5 x 1. hence 6.59 t-m Reinforcement in pile: Provide Provide 25 mm 8 dia 2 137.414 cm = 4.29 = 120.Design of Substructure CEG.Jaipur _________________________________________________________________ ________________________________________________________________________ Pile Head deflection 3 y = Q L1 + Lf 12 E I = 40.Ltd.111 x 724.29 t-m MF = Q x L1 + Lf 2 M M = m x F = 0.44 cm 28 nos mm Rings at 180 mm c/c 55 .42 12 x 301533 x 10178760 = 0. 52 t per pile t t per pile t per pile Determination of Lteral Deflection of pile : T = E x I 5 R = K1 E x I 4 E = Youngs modulus kg/m2 K1 = Constant kg/cm3 K2 kg/cm2 4 I = moment of inertia of pile cross section cm K2 Dia of pile = 1.73 5000 x I = 3.071 442.35 L1 = = = T Lf = 2.845 87.14 x 64 K1 120 35 2 = 301533 kg/cm 4 = 10178760 cm = 0.99 172.Design of Substructure CEG.35 = 87.42 cm 56 1350 cm 0 cm 0 .35 - 73..571 4.19 T Lf = 724.20 E = 610.44 138.Jaipur _________________________________________________________________ ________________________________________________________________________ Horizantal load per pile due to normal & seismic Seismic Transverse direction: Total horizantal force due to deck movement Horizantal seismic force due superstructure (DL+SIDL) Horizantal seismic force due superstructure (LL) Horizantal force due to abutment avove G.775 K2 = 0 T R = 330.072 36.00 3.78 0 = Le = Embeded Length of pile L1 = Exposed Length = 87.86 12.33 37.Ltd.865 37.L = = = = = = = = = = = = Number of Piles Horizantal force in Normal condition due to earth Therefore Total Horizantal force per pile Maximum Load on the Pile Minimum Load on the Pile t t t t t 12.050 16.214 16. Ltd.65 mm > 3.44 cm 28 nos mm Rings at 180 mm c/c 57 .33 x 5 = 6.92 mm in seismic transverse case permissible increase in deflection = 1.Design of Substructure CEG.83 x 137.21 t-m Reinforcement in pile: Provide Provide 25 mm 8 dia 2 137.6 t-m = 114.99 x 724.392 cm = 3.6 = 137..Jaipur _________________________________________________________________ ________________________________________________________________________ Pile Head deflection 3 y = Q L1 + Lf 12 E I = 37.92 mm Maximum Moment MF = Q x M L1 + Lf 2 M = m x F = 0.42 12 x 301533 x 10178760 = 0. LOAD MIN.200 0. IN T/SQM=P/DENM TS=TENS.35 141.600 0.557 -0.AXIS=RO*COS(B) NAD=DEPTH OF N.18 0.740 0.Jaipur _________________________________________________________________ ________________________________________________________________________ DESIGN OF PILE SECTION INPUT DATA D=DIA OF PILE ( in m) C=COVER FROM CENTRE OF BAR (in m) M=MODULAR RATIO (as per IRC:6) BD=BETA ANGLE FOR DEFINING N.960 0.000 98.075 10.844 0.004 -6.005 -9.110 0.454 1.166 0.536 0.853 0.146 0.125 1021 12233 1785 30600 -0.200 1.445 169.A FROM TOP=RO+NAC DE=EFFECTIVE DEPTH=D-C CC=COMP.Design of Substructure CEG.817 -0.525 0.507 0.116 0.m) PERMISSIBLE TENSILE STRESS IN Steel 50% increase(in t/sq.117 0.968 0.125 1224 18115 1785 30600 . STRESS IN CONC.525 0. hence safe.004 1.229 0.BELOW CENT.REINFORCEMENT RING = AS/2*3.171 0.834 -0.666 0. ( in degree) AS=AREA OF STEEL (in sq.473 -0.147 1.571 0.718 -0.852 -0.512 1.291 -0..952 0.331 0.m) Hence stresses in conc and steel are within permissible limits. LOAD 1.912 0.STRESS IN STEEL (T/SQM) PERMISSIBLE COMP.142*RI B=BD*PI/180 B1=COS(B) A=ALPHA ANGLE=ACOS (RO*B1/RI) RECOSB=RICOSA B2=SIN(B)^3 B3=SIN(4*B) B4=SIN(2*B) A=COS(A) A2=SIN(2*A) A3=SIN(A) NUM1=(PI-B)/8+B3/32+B1*B2/3 NUM2=2*(RO^3)/(1+B1) NUM3=(RI^3) *T/(RO+RI*A1) NUM4=(M-1) *PI+A-A2/2 NUM = NUMINATOR = NUM2*NUM1+NUM3*NUM4 DENM1=2*(RO^2)/(1+B1) DENM2=B2/3+(PI-B)*B1/2+B1*B4/4 DENM3=2*(RI^2) * T/ (RO+RI*A1) DENM4=(M-1) *PI*A1-A3+A*A1 DENM=DENOMINATOR=DENM1*DENM2+DENM3*DENM4 CHECK FOR ECCENTRICITIES CALCULATED ECCENTRICITY EC = NUM/DENM ACTUAL ECCENTRICITY EC = M/P CHECK FOR STRESSES NAC=DEPTH OF N. 58 0.59 120.13 137.000 10.A.36 0.46 104.107 0.445 137.A.986 0.600 0. Case MAX.088 0.148 0.Ltd.279 -0. Cm) P=VERTICAL LOAD ( in tonnes) BM=BENDING MOMENT (in t-m) Seismic long.61 120.59 SOLUTION RO=OUTER RADIUS=D/2 RI=RADIUS OF REINFORCEMENT RING=D/2-C T= THICK.40 0.004 1.244 1.168 -0.STRESS IN Concrete 50% increase (in t/sq.929 0.075 0.712 0.03 0.001 30.001 30. Design of Substructure CEG.Ltd.,Jaipur _________________________________________________________________ ________________________________________________________________________ DESIGN OF PILE SECTION INPUT DATA D=DIA OF PILE ( in m) C=COVER FROM CENTRE OF BAR (in m) M=MODULAR RATIO (as per IRC:6) BD=BETA ANGLE FOR DEFINING N.A. ( in degree) AS=AREA OF STEEL (in sq. Cm) P=VERTICAL LOAD ( in tonnes) BM=BENDING MOMENT (in t-m) Seismic trans. Case MAX. LOAD MIN. LOAD 1.200 1.200 0.075 0.075 10.000 10.000 97.16 103.44 137.445 137.445 172.44 138.52 114.21 114.21 SOLUTION RO=OUTER RADIUS=D/2 RI=RADIUS OF REINFORCEMENT RING=D/2-C T= THICK.REINFORCEMENT RING = AS/2*3.142*RI B=BD*PI/180 B1=COS(B) A=ALPHA ANGLE=ACOS (RO*B1/RI) RECOSB=RICOSA B2=SIN(B)^3 B3=SIN(4*B) B4=SIN(2*B) A=COS(A) A2=SIN(2*A) A3=SIN(A) NUM1=(PI-B)/8+B3/32+B1*B2/3 NUM2=2*(RO^3)/(1+B1) NUM3=(RI^3) *T/(RO+RI*A1) NUM4=(M-1) *PI+A-A2/2 NUM = NUMINATOR = NUM2*NUM1+NUM3*NUM4 DENM1=2*(RO^2)/(1+B1) DENM2=B2/3+(PI-B)*B1/2+B1*B4/4 DENM3=2*(RI^2) * T/ (RO+RI*A1) DENM4=(M-1) *PI*A1-A3+A*A1 DENM=DENOMINATOR=DENM1*DENM2+DENM3*DENM4 CHECK FOR ECCENTRICITIES CALCULATED ECCENTRICITY EC = NUM/DENM ACTUAL ECCENTRICITY EC = M/P CHECK FOR STRESSES NAC=DEPTH OF N.A.BELOW CENT.AXIS=RO*COS(B) NAD=DEPTH OF N.A FROM TOP=RO+NAC DE=EFFECTIVE DEPTH=D-C CC=COMP. STRESS IN CONC. IN T/SQM=P/DENM TS=TENS.STRESS IN STEEL (T/SQM) PERMISSIBLE COMP.STRESS IN Concrete 50% increase (in t/sq.m) PERMISSIBLE TENSILE STRESS IN Steel 50% increase(in t/sq.m) Hence stresses in conc and steel are within permissible limits, hence safe. 59 0.600 0.525 0.004 1.696 -0.125 1.714 0.600 0.525 0.004 1.805 -0.232 1.840 0.977 0.479 -0.247 -0.142 -0.282 0.990 0.155 0.493 0.001 30.13 0.111 0.822 0.243 0.004 -5.26 0.177 0.920 0.807 -0.452 -0.266 -0.512 0.964 0.121 0.563 0.001 30.37 0.108 0.938 0.178 0.005 -8.96 0.122 0.628 0.662 0.884 0.825 -0.075 0.525 1.125 974 11120 1785 30600 -0.139 0.461 1.125 1136 16389 1785 30600 Seismic check for Abutment wall Seismic coefficient for longitudinal direction Seismic coefficient for transverse direction 0.075 0.075 Weight due to Concrete components above pile cap component Area factor 1 Dirt wall 1 2 Abut cap 1 3 Abut shaft 1 Length 12.0 12.0 12.0 Width 0.3 1.2 1.2 Height 2.206 0.50 5.149 Density 2.4 2.4 2.4 Lever arm for the loads from super structure for moment at base of abutment wall Formation level 98.300 Wearing coat 56 Top of deck slab 98.244 Distance of CG of super structure below deck slab top 0.671 Pile cap Top 89.145 Pile cap bottom 87.345 Lever arm for DL 8.428 Distance of CG of SIDL above deck slab top Level arm for SIDL Seismic Force 1.429 1.296 13.346 16.072 L.A Moment 7.752 11.081 6.399 8.293 3.075 41.033 60.407 m mm m m m m 0.274 m 9.373 m Distance of CG of live load above formation level Lever arm for live load 1.2 10.355 Load from Superstruture DL SIDL Longitudinal direction Weight Force L.A moment 184.71 13.85 8.428 116.75 36.24 2.72 9.373 25.47 Total DL SIDL LL 50% 16.57 142.22 Transverse direction Weight Force L.A moment 184.71 13.853 8.43 116.75 36.24 2.718 9.37 25.47 56.19 4.214 10.36 43.64 Total 20.785 185.86 Summary seismic longitudinal case Total load on abutment shaft for normal case Additional horizantal force and moment due to seismic (Live load not to be considered for longitudinal moment) Reduction in longitudinal moment due to braking force Reduction in transverse moment due to live load P 597.30 - 597.30 2 Stress in concrete due to loads = 87.29 kg/cm Stress in steel due to loads = 2015.78 The stresses are well within permissible limits. seismic Transverse case Total load on abutment shaft for normal case 597.30 Additional horizantal force and moment due to seismic (Only 50%% live load is to be considered for transverse moment) Reduction in longitudinal moment due to braking force Reduction in transverse moment due to live load 597.30 2 Stress in concrete due to loads = 80.16 kg/cm Stress in steel due to loads = 1745.81 The stresses are within permissible limits. 60 ML 1382.00 202.629 -102.44 1482.190 < < 1382.00 - MT 194.00 -194.00 0.00 2 153.00 kg/cm 2 3058.80 kg/cm 194.00 246.27 -84.340 1297.66 < < -96.70 343.57 2 153.00 kg/cm 2 3058.80 kg/cm CHECK FOR seismic longitudinal Depth of Section Width of Section = = 1.200 m 12.000 m along width-compression face- no of bar: 60 Dia (mm) 16 Cover (cm) 7.50 along depth-compression face- no of bar: 8 Dia (mm) 16 Cover (cm) 7.50 Modular Ratio : Compression Modular Ratio : Tension Allowable Concrete Stress Allowable Steel Stress = = = = Axial Load Mxx Myy = = = tension face- no of bar: 120 25 10.50 tension face- no of bar: 8 16 7.50 10.0 10.0 153.00 Kg/cm^2 3058.50 Kg/cm^2 597.300 T 1482.190 Tm .010 Tm Intercept of Neutral axis : X axis : = ******* m : y axis : = .331 m Steel Stress Governs Design Stress in Concrete due to Loads = 87.29 Kg/cm^2 Stress in Steel due to Loads = 2015.78 Kg/cm^2 Percentage of Steel = .52 % CHECK FOR seismic transverse Depth of Section Width of Section = = Modular Ratio : Compression Modular Ratio : Tension Allowable Concrete Stress Allowable Steel Stress = = = = Axial Load Mxx Myy = = = 1.200 m 12.000 m 10.0 10.0 153.00 Kg/cm^2 3058.50 Kg/cm^2 597.300 T 1297.660 Tm 343.570 Tm Intercept of Neutral axis : X axis : = 135.971 m : y axis : = .354 m Steel Stress Governs Design Stress in Concrete due to Loads = 80.16 Kg/cm^2 Stress in Steel due to Loads = 1745.81 Kg/cm^2 Percentage of Steel = .52 % 61 Ltd. Jaipur Bridge Design Report DESIGN OF SUPERSTRUCTURE Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project .CEG.. No. . SD/220 to SD/226.C.For Design of Superstructure of RCC girder 21 m span refer MOST STANDARD Drawing titled “STANDARD PLANS FOR HIGHWAY BRIDGES (R.C T-beam and slab superstructure)” Drg.
Copyright © 2025 DOKUMEN.SITE Inc.