Error Correction Scheme for Wireless Sensor Networks

March 22, 2018 | Author: Journal of Telecommunications | Category: Forward Error Correction, Error Detection And Correction, Error, Wireless Sensor Network, Applied Mathematics


Comments



Description

JOURNAL OF TELECOMMUNICATIONS, VOLUME 29, ISSUE 2, FEBRUARY 20154 Error Correction Scheme for Wireless Sensor Networks Abdulkareem A. Kadhim, Aya K. Al-Joudi, and Hamed Al-Raweshidy Abstract— Wireless Sensor Networks (WSNs) have gained high importance in recent years. Because they are very small and can easily be implemented in any place, they invoke a wide range of applications. In the last years, improvements of wireless sensor networks have been made by applying Error Control Coding (ECC) schemes. Usually two different error control schemes are used for WSNs which are Forward Error Correction (FEC) and Automatic Repeat on reQuest (ARQ). These codes work either separately or in a hybrid manner known as Hybrid Automatic Repeat on reQuest (HARQ) schemes. A proposed coding arrangement is presented here and tested, aiming to provide further performance improvement for different applications of WSNs. The arrangement is based on HARQ scheme which consists of two concatenated FEC codes together with ARQ. The concatenation here reduces errors and hence unnecessary retransmissions by ARQ are avoided, thus energy saving is obtained. WSN simulator is built and used to test the proposed coding arrangement performance. The proposed coding arrangement shows better error rate performance when tested over models of AWGN, flat fading and multipath fading channels. Improvements were gained also in throughput (packets/s) and energy saving as compared to other coding schemes normally used with WSNs. Index Terms— Automatic Repeat on reQuest, Energy Saving in Wireless Sensor Networks, Forward Error Correction, Hybrid Automatic Repeat on reQuest, Wireless Sensor Networks. —————————— u —————————— 1 INTRODUCTION T HE   importance   of   using   Wireless   Sensor   Networks   performance   measures   such   as   Packet   Error   Rate   (PER),   (WSNs)  in  many  applications  stems  from  the  fact  that   it   can   be   easily   and   effectively   deployed.     Sensors   can   reach   places   where   it   is   difficult   to   place   wires.     The   fact   that   WSNs   is   relatively   has   lower   cost   than   other   wired   networks  give  them  more  importance  [1].     Transmissions   over   wireless   channels   affect   the   transmitted  data.  Data  transmitted  over  wireless  channels   will  suffer  from  corruption  due  to  noise  and  fading.  Thus,   in   recent   years   the   focusing   is   on   improving   the   overall   transmission   for   these   channels   [2].     The   most   effective   way   to   protect   transmitted   data   is   the   cooperation   be-­‐‑ tween  the  transmitter  and  receiver  through  the  communi-­‐‑ cation.   This   can   be   done   using   Error   Control   Coding   (ECC)   schemes   [3].       ECC   schemes   for   WSNs   received   considerable   attention   in   recent   years   to   improve   their   performance.   Bit   Error   Rate   (BER)   performance   shows   that   using   FEC   codes,   especially   Reed   Solomon   (RS)   codes,  can  significantly  improve  performance  and  packet   loss  [4],  [5],  [6],  [7],  [8].       ARQ  codes  can  also  be  used  to  improve  the  perfor-­‐‑ mance   of   WSNs   but   on   the   expense   of   energy   consump-­‐‑ tion   [9].   Using   FEC   technique   combined   with   ARQ   is   a   promising   alternative.     Even   a   simple   repetition   is   more   efficient   than   an   ARQ   scheme   without   FEC   for   different   ———————————————— • A. Kadhim is with the Department of Networks Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq. • A. Al-Joudi is with the Department of Information and Communication Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq. • H. Al-Raweshidy is with the Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University London, U.K. BER,   throughput   and   energy   consumption   [1],   [10],   [11],   [12],  [13],  [14],  [15],  16],  [17],  [18].     In   the   present   work,   an   arrangement   of   FEC   and   ARQ   codes   is   proposed   to   improve   the   performance   of   WSNs,   while   trying   to   gain   an   advantage   in   the   con-­‐‑ sumed   energy.     The   proposed   coding   scheme   is   Hybrid   Automatic   Repeat   on   request   (HARQ)   where   two   differ-­‐‑ ent  FEC  codes  are  serially  concatenated  followed  by  ARQ   scheme.  The  two  concatenated  FEC  codes  are  RS  code  and   convolutional   code.     Such   arrangement   may   work   in   a   way  to  reserve  the  advantages  of  both  the  FEC  and  ARQ.     WSN  simulator  is  also  built  and  used  to  test  the  proposed   coding  arrangement.   The  remaining  sections  of  the  paper  are  organized  as   follows;  in  next  section  the  built  simulator  and  the  model   parameters   are   described,   while   Section-­‐‑3   gives   the   de-­‐‑ tails   of   the   proposed   coding   arrangement.   Section-­‐‑4   rep-­‐‑ resents   the   simulation   tests   and   results   of   the   proposed   coding  scheme.  Assessment  of  the  results  is  given  in  Sec-­‐‑ tion-­‐‑5  followed  by  the  conclusion  in  Section-­‐‑6.     2 WSN SIMULATOR AND MODEL PARAMETERS The   nature   of   WSNs   and   their   applications   make   them   vulnerable   to   different   channel   impairments.   These   in-­‐‑ clude   whether   and   other   factors   such   as   security,   cover-­‐‑ age   and   unreliable   communication   which   make   the   in-­‐‑ formation   sent   more   susceptible   to   errors.     In   the   built   WSNs   simulator,   there   is   a   need   to   specify;   network   to-­‐‑ pology,   network   area   dimensions,   channel   type   and   pa-­‐‑ rameters,  number  of  sensor  nodes  and  number  of  packets   to   be   transmitted   through   the   network,   the   presence   of   5 node   mobility…etc.     All   these   parameters   together   with   transmission   and   channel   specifications   have   made   the   need  for  a  universal  WSNs  simulator  an  important  issue.   The   simulator   here   deals   with   the   network   performance   measures   that   cover   error   rates,   throughput,   and   energy   consumption.    The  simulator  is  built  using  Matlab  and  is   now  subject  to  patent  application.    For  more  details  of  the   simulator,   its   main   stages   and   flow   chart   can   be   found   elsewhere  [19].      The   following   summarizes   the   main   features   of   the   used  WSNs  simulator;   a-­‐‑    Variety  of  network  area  dimensions.   b-­‐‑ Three  types  of  transmission  channel  models  namely;            i-­‐‑Additive  White  Gaussian  Noise  (AWGN)  Channel.   ii-­‐‑Flat  Fading  Channel.   iii-­‐‑Multipath  Frequency  Selective  Fading  Channel.   c-­‐‑ Different  number  of  clusters     d-­‐‑ Possible  mobility  of  sensor  nodes   e-­‐‑ Different  size  and  number  of  packets     f-­‐‑ Varaiety  in  coding  parameters   g-­‐‑ Different  performance  measures.       Signal-­‐‑to-­‐‑noise   power   ratio   (SNR)   is   varied   within   some   ranges   and   the   corresponding   performance   results   are  measured.    The  definition  of  SNR  is  given  by  ;   SNR = Eb / N o      (dB)                                                                                                                  (1)   Where   Eb   is   the   average   signal   energy   per   data   bit   and   N o   is   the   single   sided   power   spectral   density   (PSD)   of   noise   in   W/Hz.   Binary   Phase   Shift   Keying   (BPSK)   modulation  scheme  is  considered.     The   performace   results   can   be   seen   in   the   form   of   Packet   Error   Rate   (PER),   Bit   Error   Rate   (BER),   Throughput     (Thru)   in   terms   of   packet   per   seconds   and   bit   per   seconds,   and   the   total   remaining   energy.     PER   is   determinde   by   the   ratio   of   the   number   of   incorrect   packets   to   the   total   number   transmitted   packets.   BER   is   the   ratio   of   the   total   number   of   incorrect   bits   to   the   number  of  transmitted  bits.    The  packet  based  throughput   is   defined   as   the   number   of   correct   received   packets   divided  by  the  interval  of  the  whole  transmission.  Similar   division   will   go   for   the   bit   based   througput.   The   total   remaining   energy   for   the   over   all   network   can   be   calculated  by  the  difference  between  the  initial  energy  set   for   all   network   nodes   and   the   total   energy   consumed   by   transmission.     The   packet   size   and   the   distance   between   nodes   are   taken   into   account   when   calculating   the   energy   consumption   after   each   transmission   as   in   the   following   equation  [21];   (J/bit),   Emp is   the   amplifier   energy   (J/bit/m4),   and   d nb   is   the   distance   between   the   sending   and   receiving   nodes.     The   above   equation   is   for   the   transmission,   similar   equation   can   be   used   for   receiption   as   well   with   ETX   is   replaced  by   E RX  (the  energy  consumed  per  received  bit).     The   adopted   parameters   considered   in   the   model   for   simulation  tests  are;   1. Number  of  packets  (Np  )  =  10000  packets   2. Packet  size:  10000  bits   3. Transmission  bit  rate(  R)  =  1  Mbps   4. Number  of  sensor  nodes  (NN)  =  250  nodes   5. Area  dimension  (DX,DY)  =  (100,1000)  m   6. Number  of  clusters  (NC)  =  16  clusters   7. Mobility  percentage  (Mob%)=  25%  of  nodes  are  mobile   3 THE PROPOSED CODING ARRANGEMENT In   order   to   obtain   better   performance   in   WSN   environ-­‐‑ ment,   a   new   coding   arrangement   is   proposed   and   tested   here.    The  proposed  scheme  here  combines  three  different   coding  techniques  which  are  RS,  Convolutional  and  ARQ   codes.    RS  and  convolutional  codes  are  presented  as  seri-­‐‑ ally  concatenated  codes.    This  arrangement  provides  bet-­‐‑ ter  error  performance  when  combined  with  ARQ.  The  RS   code  is  used  as  the  outer  code  and  the  convolutional  code   as  the  inner  code  along  with  the  ARQ  scheme.    The  latter   provides   better   correction   capability   on   the   expense   of   more  consumed  energy,  thus  it  is  believed  that  using  the   three   codes   together   will   provide   better   error   perfor-­‐‑ mance  and  energy  tradeoff.    The  simulator  used  provides   different   parameter   settings   for   the   three   different   types   of  coding  schemes  mentioned.     1-­‐‑ The  Outer  Code  Parameters   Different   combinations   of   n   (codeword   length)   and   k   (the   data   block   length)   for   RS   code   are   provided   by   the   simulator.   For   each   combination   there   is   certain   error   correction  cabability   t  determined  by  the  relation  [20];   n − k = 2t                                                                                                                                                          (3)   2-­‐‑ The  Inner  Code  Parameters       Three   parameters   are   needed   for   the   inner   convolutional   code.   These   are   :   the   number   of   output   bits   n ,   the   number   of   input   bits   k ,   and   the   number   of   memory   stages   D .   3-­‐‑  The  ARQ  Parameter   The   only   parameter   needed   for   ARQ   scheme   is   the   number  of  retransmissions  N.   4 SIMULATION TESTS AND RESULTS Erem = EI − ((ETX + Emp ) × Packet size × (d nb ) 4 )                                (2)   Three   different   RS   codes   are   used   here   with   three   differ-­‐‑ where   E I   is   the   initial   energy   (Joule)   for   the   network   nodes,   ETX is   the   energy   consumed   per   transmitted   bit   ent  codewords  length  (n)  ;  255,  511,  and  1023.    These  are   also  tested  with  different  error  correction  capabilities  (and   hence  with  different  number  of  check  symbols)  to  investi-­‐‑ gate   the   effect   of   such   parameters   on   the   system   perfor-­‐‑ 6 mance.    Three  different  values  are  used  for  the  error  cor-­‐‑ rection  capabilities;  8,  16,  and  32,  resulting  in  three  differ-­‐‑ ent  lengths  for  check  symbols  of  16,  32,  and  64,  respective-­‐‑ ly.     ARQ   used   here   is   with   4   maximum   number   of   re-­‐‑ transmission,  while  the  convolutional  code  parameters  (n,   k,  D)  are  (3,1,3).         Simulation   test   results   are   shown   according   to   given   channel.    The  first  is  the  performance  of  different  coding   schemes   over   AWGN   channel   in   terms   of   PER,   BER,   Throughput,   and   the   remaining   energy.     Similarly,   the   second   and   third   parts   are   for   Flat   fading   and   Multipath   selective   fading   channels,   respectively.     These   perfor-­‐‑ mances   are   shown   for   three   different   error   correction   schemes  with  different  error  capabilities.       The  performance  of  the  proposed  coding  arrangement   is   shown   in   Figs.1-­‐‑5   for   AWGN   channel   with   the   coding   and  network  parameters  as  described  in  the  previous  sec-­‐‑ tion. Figs.6-­‐‑10   show   the   performance   of   the   proposed   coding   arrangement   over   flat   fading   channel   with   differ-­‐‑ ent  coding  and  network  parameters.  Similar  performance   is  also  shown  in  Figs.11-­‐‑15  for  frequency  selective  fading   channel  with  different  coding  and  network  parameters  as   described  in  the  previous  section. Fig. 2. Different coding schemes performance over AWGN Channel Fig.1. Different coding schemes performance over AWGN Channel Fig. 3. Different coding schemes performance over AWGN Channel 7     Fig. 6. Different coding schemes performance over flat fading channel Fig. 4. Different coding schemes performance over AWGN Channel Fig. 5.Remaining energy of coding schemes over AWGN Channel Fig. 7. Different coding schemes performance over flat fading channel 8 Fig. 10. Remaining energy of coding schemes over flat fading channel Fig. 8. Different coding schemes performance over flat fading channel Fig. 11. Different coding schemes performance over SUI-3 channel Fig. 9. Different coding schemes performance over flat fading channel 9 Fig. 12. Different coding schemes performance over SUI-3 channel Fig. 14. Different coding schemes performance over SUI-3 channel Fig. 15. Remaining energy of coding schemes over SUI-3 channel Fig. 13. Different coding schemes performance over SUI-3 channel 10 5 ASSESSMENT OF RESULTS Considering   the   test   results   of   the   previous   section   for   AWGN,   flat   fading,   and   frequency   selective   multipath   fading   channels   encourage   the   use   of   the   proposed   cod-­‐‑ ing  scheme  for  WSNs.                      The  performance  over  the  three  channels  considered   in   the   work   shows   that   the   coding   arrangement   with   RS   code  having  codeword  length  (n)  of  255  outperforms  oth-­‐‑ er   codeword   length   selections.   This   is   the   least   length   tested   in   the   work.     This   means   that   RS   code   with   small   codeword  length  is  a  preferred  selection  and  more  suita-­‐‑ ble  for  WSNs  applications.                      Packet   throughput   over   the   three   channels   shows   that   the   proposed   coding   arrangement   is   more   efficient   for  use  with  WSNs,  where  the  real  applications  of  WSNs   usually   rely   on   transmission   of   large   data   units   in   the   form  of  packets  rather  than  serial  bits.    Thus  the  most  im-­‐‑ portant  factor  here  is  to  obtain  better  throughput  in  terms   of  packets/sec.      Also,  the  results  of  BER  and  throughput   in  terms  of  bits  per  second  show  that  codes  with  higher  n   perform   better   than   others.     Clearly,   this   is   achieved   on   the  expense  of  more  processing  time  and  complexity.        Looking   at   the   performance   with   remaining   energy   using   different   RS   codes   for   the   proposed   arrangement   (Figs   5,   10,   and   15)   shows   that   as   long   as   the   codeword   length  is  the  same,  the  remaining  energy  is  unaffected.    In   general,   the   results   show   that   the   proposed   coding   ar-­‐‑ rangement   of   Hybrid-­‐‑ARQ   gives   an   improved   perfor-­‐‑ mance  for  WSNs  together  with  noticeable  energy  saving.     6 CONCLUSIONS Error  correction  schemes  can  improve  the  performance  of   WSNs   transmission   in   terms   of   PER,   BER   and   through-­‐‑ put.     Using   ARQ   code   alone   in   WSNs   consumes   more   energy   due   to   the   extra   transmissions   required.     Thus   more   energy   is   required   and   hence   powerful   coding   schemes  are  needed  for  WSNs  applications.  The  proposed   concatenated   and   hybrid   coding   arrangement   for   WSNs   reduces   the   number   of   retransmissions   of   ARQ   compo-­‐‑ nent   by   improving   the   correction   capability   of   the   FEC.   This   is   reflected   in   the   form   of   improved   throughput   measured  over  models  of  wireless  fading  channels  tested   in  the  work.      Thus  a  better  performance/  energy  trade-­‐‑off   is  provided  by  the  proposed  arrangement   REFERENCES [1] O.  Eriksson,  “Error  Control  in  Wireless  Sensor  Networks  A  Pro-­‐‑ cess   Control   Perspective”,   Master   Thesis,   Faculty   of   Science   and   Technology,  Uppsala  University,  Sweden,  2011.     [2] M.   Radi   ,   B.   Dezfouli,   K.   Abu   Bakar,   and   M.   Lee,   “Multipath   Routing   in   Wireless   Sensor   Networks:   Survey   and   Research   Challenges”,  Sensors  Journal,  Vol.12,  January  2012.   [3] S.  Howard,  C.  Schlegel,  and  K.  Iniewski,  “Error  Control  Coding   in  Low-­‐‑Power  Wireless  Sensor  Networks:When  Is  ECC  Energy-­‐‑ Efficient?”,   Eurasip   Journal   on   Wireless   Communications   and   Net-­‐‑ working,   Vol.2006,   Hindawi   Publishing   Corporation,   March   2006.   [4] J.   Jeong   and   C.   Ee,   “Forward   Error   Correction   in   Sensor   Net-­‐‑ works”,   International   Workshop   on   Wireless   Sensor   Networks   (IEEE  Sponsorship),  Morocco,  2003.   [5]  A.  Willig    and  R.  Mitschke,  “Results  of  Bit  Error  Measurements   with  Sensor      Nodes  and  Casuistic  Consequences  for  Design  of   Energy-­‐‑Efficient  Error  Control  Schemes”,  In  Proceeding  of  the  3rd   European  Workshop  on  Wireless  Sensor  Networks  (EWSN),  Switzer-­‐‑ land,  January  2006.   [6]  G.  Balakrishnan,  M.  Yang,  Y.    Jiang,  and  Y.  Kim,  “Performance   Analysis   of   Error   Control   Codes   for   Wireless   Sensor   Net-­‐‑ works”,  Fourth  International  Conference  on  Information  Technology   (ITNG  'ʹ07),  Nevada,  Las  Vegas,  USA,  April  2007.     [7]  M.  Islam,  “Error  Correction  Codes  in  Wireless  Sensor  Network:   An   Energy   Aware   Approach”,   International   Journal   of   Computer   and  Information  Engineering,  Vol.4,  2010.   [8]  A.   Angelin,   B.   Revathi,   T.   Gayathri   and   D.   Balakumaran,   “Channel   Coding   in   WSN   for   Energy   Optimization”,   Interna-­‐‑ tional   Journal   of   Advanced   Research   in   Electrical,   Electronics   and   Instrumentation  Engineering,  Vol.3,  March  2014.   [9] A.   Babiker,   M.   Nordin   and   B.   Zakaria,   “Energy   Efficiency   Analysis   of   Error   Correction   Techniques   in   Underwater   Wire-­‐‑ less   Sensor   Networks”,   Journal   of   Engineering   Science   and   Tech-­‐‑ nology,  Vol.  6,  2011.   [10]    D.   Schmidt,   M.   Berning,   and   N.   Wehn,   “Error   Correction   in   Single  Hop  Wireless  Sensor  Networks  -­‐‑  A  Case  Study”,  Proceed-­‐‑ ing   of   the   9th   International   Conference   of   Design,   Automation   and   Test  in  Europe  (DATE),  France,  April  2009.   [11] M.   Vuran   and   I.   Akyildiz,   “Error   Control   in   Wireless   Sensor   Networks:  A  Cross  Layer  Analysis”,  IEEE/ACM  Transactions  on   Networking,  Vol.17,  August  2009.   [12] M.  Jebarani  and  T.  Jayanthy,  “An  Analysis  of  Various  Parame-­‐‑ ters   in   Wireless   Sensor   Networks   Using   Adaptive   FEC   Tech-­‐‑ nique”,  International  Journal  of  Ad  hoc,  Sensor  &  Ubiquitous  Com-­‐‑ puting  (IJASUC)  Vol.1,  September  2010.   [13] Y.   Jin,   J.   Chang   and   D.   Le,   “A   High   Energy   Efficiency   Link   Layer   Adaptive   Error   Control   Mechanism   for   Wireless   Sensor   Networks”,   International   Conference   on   computational   Intelligence   and  Software  Engineering  (CiSE),  Wuhan,  December  2010.   [14] U.   Datta,   D.   Kumar,   A.   Ball   and   S.   Kundu,   “Performance   of   a   Hybrid  ARQ  Scheme  in  CDMA  Wireless  Sensor  Network”,  In-­‐‑ ternational   Journal   of   Energy,   Information   and   Communications,   Vol.  2,  August  2011.   [15] G.   AL-­‐‑Suhail,   K.   Louis   and   T.   Abdallah,   “Energy   Efficiency   Analysis   of   Adaptive   Error   Correction   in   Wireless   Sensor   Net-­‐‑ works”,   International   Journal   of   Computer   Science   Issues   (IJCSI),   Vol.  9,  July  2012.   [16] H.   Saraswat,   G.   Sharma,   S.   Mishra   and   Vishwajeet,   “Perfor-­‐‑ mance   Evaluation   and   Comparative   Analysis   of   Various   Con-­‐‑ catenated   Error   Correcting   Codes   Using   BPSK   Modulation   for   AWGN   Channel”,   International   Journal   of   Electronics   and   Com-­‐‑ munication  Engineering,  Vol.  5,  2012.   [17] B.   Manzoor,   N.   Javaid,   O.   Rehman,   S.   Bouk,   S.   Ahmed   and   D.   Kim,   “Energy   Aware   Error   Control   in   Cooperative   Communi-­‐‑ cation  in  Wireless  Sensor  Networks”,  International  Conference  of   ACM  Research  in  Adaptive  and  Convergent  Systems  (RACS),  Mon-­‐‑ treal,  Canada,  September  2013.   [18] C.   Cheah,   P.   Tan,   and   C.   Ho,   “Experimental   Investigation   of   Reed-­‐‑Solomon   Error   Correction   Technique   for   Wireless   Sensor   Network”,  International  Journal  of  Information  and  Electronics  En-­‐‑ gineering  (IJIEE),  Vol.4,  No.2,  March  2014.   11 [19] A.  K.  Al-­‐‑Joudi,  "ʺ  Error  Correction  Schemes  for  Wireless  Sensor   Networks"ʺ,   M.Sc.   Thesis   submitted   to   the   Department   of   Infor-­‐‑ mation   and   Communications   Engineering,   Al-­‐‑Nahrain   University,   Baghdad,  Iraq,  Jan.  2015.   [20]  S.   Wicker   and  V.   Bhargava,   “Reed-­‐‑Solomon   Codes   and   Their   Applications”,  John  Wiley  and  Sons,  New  York,  October  1999.   [21] W.   Heinzelman,   A.   Chandrakasan,   and   H.   Balakrishnan,   “An   Application-­‐‑Specific   Protocol   Architecture   for   Wireless   Mi-­‐‑ crosensor  Networks”,  IEEE  Transactions  on  Wireless  Communica-­‐‑ tions,  Vol.1,  No.4,  October  2002.  
Copyright © 2024 DOKUMEN.SITE Inc.