UNIVERSIDAD PERUANA UNIÓNFACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL CURSO: MECANICA DE FLUIDOS I TRABAJO ENCARGADO, Grupos 1, 2 y 3 FECHA PRESENTACIÓN: 29/09/2015 hasta 11:59 pm en la plataforma virtual 1. Texto: MECANICA DE FLUIDOS FUNDAMENTOS Y APLICACIONES Autor: Yunus A. Cengel, John M Cimbala Edición: Primera Ejercicios: 2-51, 2-54, 2-49, 2-60, 2-65, 2-76, 3-8, 3-10, 3-16, 3-20, 3-24, 3-29, 3-32, 3.36, 3-40, 3-43, 3-46, 3-47, 3-51, 3-60, 3.61, 3-64, 3-66, 3-68, 3-70, 3-71, 3-73, 3-75, 3-82, 3-84, 3-85, 3-88, 3-89, 3-94, 3-96, 3-97, 3-102, 3-104, 3-108, 3-111, 3-119, 3-123, 3-127, 3-135, 3-137, 3-139, 3-141, 3-145, 3-151. EJERCICIO 2-51 Se va a medir la viscosidad de un fluido con un viscosímetro construido de dos cilindros concéntricos de 75 cm de largo. El diámetro exterior del cilindro interior es de 15 cm y la brecha entre los dos cilindros es de 0.12 cm. Se hace girar el cilindro interior a 200 rpm y se mide que el par de torsión es de 0.8 N*m. Determine la viscosidad del fluido. Se les da el par y las revoluciones por minuto de un viscosímetro de doble cilindro. La viscosidad del fluido es ser determinado. Hipótesis El cilindro interior está completamente sumergidos en aceite. El efectos viscosos en los dos extremos del cilindro interior son insignificantes. El fluido es newtoniano. Análisis Sustituyendo los valores dados, la viscosidad del fluido es Determinada tal que: Tl (0.8 N∗m)(0.0012 m) μ= = =0.0231 N∗s /m2 4 π R3 nL 2 200 2 ( 4 π ( 0.075 m ) 3 ) 60 s−1 (0.75 m) Tenemos que aclarar que para diferentes temperaturas la viscosidad va cambiando. EJERCICIO 2-54 Repita el problema 2-53 para umáx =5 m/s. Respuesta: b) 0.942 N EJERCICIO 2.49 La viscosidad de algunos fluidos cambia cuando se aplica un fuerte campo eléctrico en ellos. Este fenómeno se conoce como efecto electrorreológico (ER) y los fluidos que muestran un comportamiento de este tipo se conocen como fluidos ER. El modelo del plástico de Bingham para el esfuerzo cortante, el cual se expresa como t = ty + m(du/dy) se usa con amplitud para describir el comportamiento de los Fluidos ER, debido a su sencillez. Una de las aplicaciones más promisorias de los fluidos ER es el embrague ER. Un embrague ER típico de discos múltiples consta de varios discos de acero igualmente espaciados de radio interior R1 y radio exterior R2, N de ellos sujetos a la flecha de entrada. La brecha h entre los discos paralelos se llena con un líquido viscoso. a) Encuentre una relación para el par de torsión generado por el embrague cuando la flecha de salida está estacionaria y b) calcule el par de torsión para un embrague 1 Pa * s.03 pulgadas en queroseno a 68°F.5 kPa.9 pulgadas de diámetro en mercurio. R2 = 200 mm. Determine el ascenso por capilaridad del queroseno en el tubo.65 pulgadas EJERCICIO 2-65 Contrario a lo que el lector podría esperar. EJERCICIO 2-76 Se inserta un tubo de vidrio de 0. si el fluido es SAE 10. con u = 0. una bola de acero sólido puede flotar sobre el agua debido al efecto de la tensión superficial.ER con N=11 para R1 = 50 mm. ty = 2. Determine el descenso por capilaridad del mercurio en el . el cual forma un ángulo de contacto de 140° con el vidrio. ¿Cuál sería su respuesta para una bola de aluminio? Tome la densidad de la bola de acero y de aluminio como 7 800 kg/m3 y 2 700 kg/m3. y h = 1. Respuesta: 0. Determine el diámetro máximo de una bola de acero que flotaría sobre agua a 20°C.2 mm. y n= 2 400 rpm. respectivamente. Respuesta: b) 2 060 N _ m EJERCICIO 2-60 Se introduce un tubo cuyo diámetro es de 0. El ángulo de contacto del queroseno con una superficie de vidrio es de 26°. Respuesta: 0.0175 pulgadas. Respuesta: 70. Suponga una densidad promedio del aire de 1. EJERCICIO 3-24 . Tome rHg _ 13 590 kg/m3.6 kPa EJERCICIO 3-20 Se puede usar un barómetro básico para medir la altura de un edificio. La presión atmosférica local es de 12. respectivamente. EJERCICIO 3-10 Determine la presión atmosférica en un lugar donde la lectura barométrica es de 750 mm Hg. Determine la presión absoluta en el tanque si el ramo del manómetro sujeto al tanque tiene el nivel del fluido a) más alto y b) más bajo que otro ramo.7 psia.tubo a 68°F. El fluido tiene una gravedad específica de 1.18 kg/m3.25 y la diferencia de alturas entre los dos ramos del manómetro es de 28 in. Determine la presión absoluta en el tanque. Si las lecturas barométricas en las partes superior e inferior del edificio son de 730 y 755 mm Hg. determine la altura del edificio. Tome la densidad del mercurio como 13 600 kg/m3. EJERCICIO 3-16 Un medidor de vacío está conectado a un tanque y da una lectura de 30 kPa en un lugar donde la lectura barométrica es de 755 mm Hg. EJERCICIO 3-8 Se usa un manómetro para medir la presión del aire en un tanque. . Se conecta a la vena un tubo vertical abierto a la atmósfera. Tome la densidad de la sangre como 1 050 kg/m3. Respuesta: 123.Un gas está contenido en un dispositivo de cilindro y émbolo en posición vertical. El émbolo tiene una masa de 4 kg y un área de la sección transversal de 35 cm2. b) Determine la presión absoluta en el ducto EJERCICIO 3-32 La presión sanguínea máxima en el antebrazo de una persona sana es de alrededor de 120 mm Hg. La diferencia en los niveles del manómetro es de 15 mm y la presión atmosférica es de 100 kPa. Un resorte comprimido arriba del émbolo ejerce una fuerza de 60 N sobre éste.4 kPa EJERCICIO 3-29 Un manómetro de mercurio (r _ 13 600 kg/m3) está conectado a un ducto de aire para medir la presión en el interior. a) Establezca un juicio con base en la figura P3-29 y determine si la presión en el ducto está por arriba o por abajo de la atmosférica. Determine la altura hasta la que ascenderá la sangre en el tubo. Si la presión atmosférica es de 95 kPa. determine la presión en el interior del cilindro. en el brazo de una persona. Determine la diferencia de presión entre las dos tuberías. y resulta ser de 65 kPa. Determine diferencia h en los niveles de mercurio. ¿Puede ignorarse la columna de aire en el análisis? EJERCICIO 3-40 Se mide la presión manométrica del aire que está en el tanque. .36 Agua dulce y agua de mar fluyen en tuberías horizontales paralelas.EJERCICIO 3. como se muestra en la figura P3-36. Tome la densidad del agua de mar en ese lugar como r _ 1035 kg/m3. las cuales están conectadas entre sí por un manómetro de tubo en U doble. como se muestra en la figura P3-40. Se invierte un vaso que está lleno por completo con agua y cubierto con un papel delgado. Determine la presión en el fondo del vaso y explique por qué no se derrama el agua. vertiendo aceite (r = 780 kg/m3) en un tubo delgado.EJERCICIO 3-43 Se va a levantar una carga de 500 kg que está sobre el elevador hidráulico que se muestra en la figura P3-43. . Determine cuál debe ser la altura h para empezar a levantar el peso. Calcule las presiones manométricas en las cámaras A y B. como se muestra en la figura P3-47. EJERCICIO 3-47 Dos cámaras con el mismo fluido en su base están separados por un émbolo cuyo peso es de 25 N. EJERCICIO 3-46 Durante mucho tiempo se ha utilizado un sencillo experimento para demostrar cómo la presión negativa impide que el agua se derrame de un vaso invertido. como se muestra en la figura P3-46. 1 m de altura y 0. Si la diferencia de presión entre los dos tanques es de 20 kPa. EJERCICIO 3-60 Considere un pesado automóvil sumergido en un lago con un fondo plano. La puerta del lado del conductor mide 1.9 m de ancho. y el borde superior de la misma está 8 m abajo de la superficie del agua. calcule a y u. como se muestra en la figura P3-51.61 .EJERCICIO 3-51 Dos tanques de agua están interconectados mediante un manómetro de mercurio con los tubos inclinados. EJERCICIO 3. Determine la fuerza neta que actúa sobre la puerta (normal a su superficie) y la ubicación del centro de presión si a) el automóvil está bien cerrado y contiene aire a presión atmosférica y b) el automóvil se llena con agua. EJERCICIO 3-64 Un cuarto en el nivel inferior de un barco para cruceros tiene una ventana circular de 30 cm de diámetro. 5. como se muestra en la figura P3-61I. y su apertura la restringe un borde fijo en el punto B. como una compuerta aautomática.025. la compuerta cilíndrica se abre girando en torno a la articulación en el punto A. como se muestra en la figura P3-66. Cuando el nivel del agua llega a 15 ft.Se usa un cilindro sólido largo de radio de 2 ft. Tome la gravedad específica del agua de mar como 1. . Determine a) la fuerza hidrostática que actúa sobre el cilindro y su línea de acción cuando la compuerta se abre. La placa está articulada en torno a un eje horizontal que está a lo largo de su borde superior y que pasa por un punto A.001 m EJERCICIO 3-66 Una placa rectangular de 4 m de altura y 5 m de ancho bloquea el extremo de un canal de agua dulce de 4 m de profundidad. y b) el peso del cilindro por ft de longitud del mismo. Respuesta: 3 554 N. determine la fuerza hidrostática que actúa sobre la ventana y el centro de presión. articulado en el punto A. Si el punto medio de la ventana está 5 m abajo de la superficie del agua. Determine la fuerza que se ejerce sobre la placa por el borde. EJERCICIO 3-68 El flujo de agua desde un recipiente se controla por una compuerta con forma de L y de 5 ft de ancho. Respuesta: 30. determine la masa del peso necesario W. como se muestra en la figura P3. como se muestra en la figura P3.900 lbm EJERCICIO 3-70 Una artesa de agua de sección transversal semicircular y con un radio de 5 m consta de dos partes simétricas articuladas entre sí en el fondo. Calcule la tensión en cada cable cuando la artesa está llena hasta el borde. Las dos partes se mantienen juntas por medio de cables y tensores colocados cada 3 m a lo largo de la longitud de la artesa. articulada en el punto A. EJERCICIO 3-71 .70. Si se desea que la compuerta se abra cuando la altura del agua sea de 12 ft.68I. en donde se encuentran.75 m de ancho y las dos partes se mantienen juntas mediante cables y tensores colocados cada 6 m a lo largo de la longitud de la artesa.2 m de ancho. Existe la preocupación de que los bloques de concreto puedan resbalarse o voltearse sobre el borde izquierdo inferior conforme suba el nivel del lodo.73. Calcule la tensión en cada cable cuando la artesa está llena hasta el borde. como se muestra en la figura P3. y la densidad del lodo es alrededor de 1 800 kg/m3. El coeficiente de fricción entre el suelo y los bloques es f = 0.3. donde está comprimida por un resorte. Determine la altura del lodo a la cual a) los bloques vencerán la fricción y empezarán a resbalar y b) los bloques se voltearán.75. EJERCICIO 3-75 Una compuerta de 4 m de largo con forma de un cuarto de círculo de radio 3 m y de peso despreciable está articulada alrededor de su borde superior A.Los dos costados de una artesa de agua con forma de V están articulados entre sí en el fondo. Determine la fuerza mínima necesaria del resorte para mantener cerrada la .8 m de altura y 0. como se muestra en la figura P3.71. Cada costado mide 0. formando ambos costados un ángulo de 45° respecto del suelo. como se muestra en la figura P3. La compuerta controla el flujo de agua sobre el reborde en B. Respuesta: 5510 N EJERCICIO 3-73 Se debe construir un muro de contención contra un derrumbe de lodo con bloques rectangulares de concreto (r = 2 700 kg/m3) de 0. EJERCICIO 3-84 Se deben determinar el volumen y la densidad promedio de un cuerpo de forma irregular usando una balanza de resorte. Si la altura de la marca para el agua es de 10 cm. El cuerpo pesa 7 200 N en el aire y 4 790 N en el agua. Si una parte de 10 cm de alto del bloque de hielo se extiende por encima de la superficie del . EJERCICIO 3-85 Considere un bloque cúbico grande de hielo que flota en el mar. se deja caer el hidrómetro en agua y se marca el nivel correspondiente a ésta.5 cm por arriba de la interfaz líquido-aire. Las gravedades específicas del hielo y del agua de mar son 0. Exprese sus suposiciones.025. Después se deja caer en el otro líquido y se observa que la marca para el agua ha ascendido 0. Determine el volumen y la densidad del cuerpo.92 y 1. respectivamente. Primero. determine la densidad del líquido.compuerta cuando el nivel del agua se eleva hasta A en el borde superior de la compuerta. EJERCICIO 3-82 Debe determinarse la densidad de un líquido mediante un hidrómetro viejo cilíndrico de 1 cm de diámetro cuyas marcas de división están borradas por completo. Trate todos los tejidos y huesos (que no son grasos) como músculos con una densidad equivalente rmúsculo. Se puede determinar la densidad promedio del cuerpo si se pesa a la persona en el aire y también cuando está sumergida en el agua en un tanque. EJERCICIO 3-89 El casco de un bote tiene un volumen de 150 m3 y la masa total del mismo cuando está vacío es de 8 560 kg. Determine cuánta carga puede transportar este bote sin hundirse a) en un lago y b) en agua de mar con gravedad específica de 1. determine la altura del bloque de hielo por abajo de la superficie. EJERCICIO 3-94 . cuanto mayor sea la densidad promedio del cuerpo. por tanto.03. y obtenga una relación para la fracción en volumen de la grasa del cuerpo xgrasa. Esto se basa en el principio de que el tejido muscular es más denso que el grasoso y. Respuesta: 87.agua. más alta es la fracción de tejido muscular.6 cm EJERCICIO 3-88 Uno de los procedimientos comunes en los programas de acondicionamiento físico es determinar la razón grasa a músculo del cuerpo. abierto a la atmósfera contiene agua hasta una altura de 1 ft. Determine la velocidad angular a la cual el fondo del tanque empezará a quedar expuesto. determine la altura máxima del agua en este momento.5 m/s2. Ahora se hace girar el tanque alrededor de la línea central y el nivel del agua desciende en el centro al mismo tiempo que se eleva en los bordes. EJERCICIO 3-102 Se transporta leche con una densidad de 1 020 kg/m3 sobre una carretera horizontal en un carro-tanque cilíndrico de 7 m de largo y 3 m de diámetro. El carro-tanque está completamente lleno con leche (no existe espacio de aire) y se acelera a 2. Determine el ángulo que la superficie libre del agua forma con la horizontal. ¿Cuál sería su respuesta si la dirección del movimiento fuera descendente sobre la misma carretera y con la misma aceleración? EJERCICIO 3-97 Un tanque cilíndrico vertical de 2 ft de diámetro. con una aceleración constante de 5 m/s2 en la dirección del movimiento. Asimismo. determine la presión máxima y su ubicación. EJERCICIO 3-96 Se está remolcando un tanque de agua sobre una cuesta de una carretera que forma 20° con la horizontal. .Un camión remolca un tanque de agua sobre una carretera horizontal y se mide que el ángulo que la superficie libre forma con la horizontal es de 15°. Si la presión mínima en el carro tanque es de 100 kPa. Determine la aceleración del camión. Un camión lo remolca sobre una carretera horizontal. El conductor aplica los frenos y el nivel del agua en el frente se eleva 0.EJERCICIO 3-104 Las distancias entre los centros de dos ramas de un tubo en U abierto a la atmósfera es de 25 cm y el tubo contiene alcohol hasta una altura de 20 cm en ambas ramas.2 rad/s. Ahora se hace girar el tubo alrededor de su rama izquierda a 4.5 ft por arriba del nivel inicial. abierto a la atmósfera. EJERCICIO 3-111 A menudo los globos se llenan con gas helio porque pesa sólo alrededor de un séptimo de lo que pesa el aire en condiciones . Determine la desaceleración del camión. inicialmente contiene agua hasta una altura de 3 ft. Determine la diferencia en la elevación entre las superficies del fluido en las dos ramas. EJERCICIO 3-108 Un tanque de 8 ft de largo. mayor será el gasto del fluido. como se muestra en la figura P3-119.8 m/s2 en ese lugar y tome la densidad del agua como 1 000 kg/m3. determine la presión sanguínea manométrica. en m. b) Si la presión manométrica del fluido a nivel del brazo es de 20 kPa para tener un gasto suficiente. determine hasta qué altura se elevará el agua en el tubo. Suponga g _ 9. y desprecie el peso de las cuerdas y la canastilla. Cuanto más alto se coloque la botella. de 70 kg cada una.16 kg/m3. . determine a qué altura debe colocarse la botella. determine la aceleración del globo cuando se acaba de liberar. Si éste mide 10 m de diámetro y transporta dos personas. la cual se puede expresar como Fb=rairegVglobo. impulsará al globo hacia arriba. EJERCICIO 3-119 Se sujeta un tubo de vidrio a un tubo de agua.idénticas. Si la presión del agua en el fondo del tubo es de 115 kPa y la presión atmosférica local es de 92 kPa. Tome la densidad del fluido como 1 020 kg/m3. a) Si se observa que se equilibran entre sí las presiones del fluido y la sanguínea cuando la botella está 1. Suponga que la densidad del aire es de r = 1. EJERCICIO 3-123 Las infusiones intravenosas suelen impulsarse por gravedad cuando se cuelga la botella de fluido a una altura suficiente para contrarrestar la presión sanguínea en la vena y forzar ese fluido hacia el interior del cuerpo.2 m arriba del nivel del brazo. La fuerza de flotación. como se muestra en la figura P3- 135. Para los valores dados. EJERCICIO 3-135 Se conectan entre sí una tubería de aceite y un tanque rígido de aire mediante un manómetro. . calcule la presión en el tubo. determine a) la presión absoluta en la tubería y b) el cambio en _h cuando la temperatura en el tanque desciende hasta 20°C. Suponga que la presión en la tubería de aceite permanece constante y que el volumen de aire en el manómetro es despreciable con relación al volumen del tanque.EJERCICIO 3-127 Se mide la presión del agua que fluye por un tubo mediante la disposición que se muestra en la figura. Si el tanque contiene 15 kg de aire a 80°C. está articulada en B y se apoya contra el piso en A. como se muestra en la figura P3-141I. La compuerta se va a abrir por su borde inferior por medio de la aplicación de una fuerza normal en su centro. Determine la fuerza hidrostática ejercida sobre la compuerta por el agua con 5 m de altura y la ubicación del centro de presión. . que se muestra en la figura P3-137. EJERCICIO 3-139 Una compuerta rectangular de 3 m de alto y 6 m de ancho está articulada en el borde superior en A y está restringida mediante un reborde en B. EJERCICIO 3-141 Se construirá un túnel semicircular de 30 ft de diámetro debajo de un lago de 150 ft de profundidad y 800 ft de largo. formando un ángulo de 45° con la horizontal.EJERCICIO 3-137 Una compuerta rectangular de 200 kg y 5 m de ancho. Determine la fuerza mínima F necesaria para abrir la compuerta. Determine la fuerza hidrostática total que actúa sobre el techo del túnel. . Ahora se hace girar el tanque alrededor de su eje vertical a razón de 90 rpm. mientras está siendo acelerado hacia arriba a 5 m/s2. EJERCICIO 3-151. Determine la diferencia de alturas h del manómetro y la fuerza F necesaria para mantenerlo en la posición en que se muestra. como se muestra en la figura P3-151. Determine a) la diferencia entre las presiones en los centros de las superficies del fondo y superior y b) la diferencia entre las presiones en el centro y el borde de la superficie del fondo. Un recipiente cilíndrico cuyo peso es de 79 N está invertido y metido hacia el agua.EJERCICIO 3-145 Un cilindro vertical de 1 m de diámetro y 2 m de alto está lleno con gasolina cuya densidad es 740 kg/m3. 3. 3. EJERCICIO1. 4. Texto: MECANICA DE FLUIDOS E HIDRAULICA Autor: Ronald V.750. Jack.26. 3. conteniendo aire el espacio sobre el aceite.30 U n depósito cerrado contiene 0.46. Si la presión manométrica en el fondo es de 276 kPa (man).2.30 ¿Qué diámetro mínimo tendrá un tubo de vidrio para que el ascenso debido a la capilaridad del agua a 20° C no supere 0.438 m de un aceite de densidad relativa 0.43. ¿qué fuerza se requiere para arrastrar una placa de muy poco espesor y 40 d m 2 de área a la velocidad constante de 32 cm /s si la placa dista 8 mm de una de las superficies? Solución: 2.9 mm? Solución: 33. 4.33. Evett. EJERCICIO 2.35.38 . 2. 3. 4.36 EJERCICIO 1. Cheng Liu Edición: Primera Ejercicios: 1. ¿cuál será la lectura manométrica en la parte superior del depósito? Solución: 161 kPa. B.23. 1. EJERCICIO 2. 1.1 mm.35 kp. 2.30. Giles. 3.30.610 m de mercurio.38.37.28. Suponiendo que el gradiente de velocidades es lineal.28 Dos superficies planas de grandes dimensiones están separadas 25 mm y el espacio entre ellas está lleno con un líquido cuya viscosidad absoluta es 0.524 m de agua y 2.10 kps/m 2. 33 En la Figura 3. EJERCICIO 3.800 por su lado derecho. El cilindro y el tubo mostrados en la Figura 2. Solución: 1.37 . ¿cuál es el peso total del pistón y la placa W? Solución: 62.816 kp y b) la fuerza horizontal debida al aceite y al agua si el nivel de aceite desciende 0.26. Determinar a) la fuerza normal en B si el cilindro pesa 1.26 el cilindro de 1.22m de longitud está sometido a la acción del agua por su lado izquierdo y de un aceite de densidad relativa 0.22 m y que la barra BD está articulada en ambos extremos. Para una lectura manométrica de 2.22 m de diámetro y 1. Solución: 536 kp.23 Determinar el valor de z (Figura 3.79 m. Contienen aceite de densidad relativa 0.305 m.20 kp/cm2.902.11 kp.20) de forma que la fuerza total sobre la barra BD no sobrepase los 8. – EJERCICIO 3.407 kp hacia la derecha. EJERCICIO 3.172 kp al suponer que la longitud en dirección perpendicular al dibujo es de 1. 1. 025 k p /m 3)? Solución: 16. ¿Qué peso mínimo . EJERCICIO 3. por metro de longitud del muro. 5.30.46 Con referencia a la Figura 3. una placa plana con un eje de giro en C tiene una Forma exterior dada por la ecuación. se origina por la exclusiva acción de los 3 m de profundidad del agua (y = 1. ¿qué momento respecto de A.0.200 m kp de sentido contrario a las agujas de un reloj.Determinar las componentes horizontal y vertical. la mitad de ella sumergida.682 kp. de la fuerza debida a la presión del agua sobre la compuerta del tipo Tainter mostrada en la Figura 3.05 k N /m 3).740 mkp. por metro de longitud. EJERCICIO 4.26 Una esfera de 122 cm de diámetro flota en agua salada (y = 10. EJERCICIO 3.644 kp y 1.34.43 En el muro de retención del agua del mar mostrado en la Figura 3. Solución: 4.v2 -i.37.80Ü kp. ¿Cuál es la fuerza del aceite sobre la placa y cuál es el momento respecto a C debido a la acción del agua? Solución: 3.v = I.5. será necesario para sumergir completamente la esfera? Solución: 8. Solución: Estable. ¿Será estable el cilindro si se coloca verticalmente en aceite (D r = 0. EJERCICIO 4. utilizado com o anclaje. calcular el momento adrizante en el agua cuando el ángulo de escora es de 10°. . 1.60.36 Un cilindro de madera sólido tiene 0.85)? Solución: No.220 m. La densidad relativa de la madera es 0.de cemento (y = 23.34 kN.728 mkp.35 La Figura 4. EJERCICIO 4. ¿Es estable el barco? Si el barco es estable.56 k N /m 3).610 m de diámetro y una altura de 1.12 muestra la sección de un barco cuyo casco es sólido.