Home
Login
Register
Search
Home
Ejercicio resuelto Sistemas eléctricos de potencia: Flujo de Potencia por método de gauss seidel
Ejercicio resuelto Sistemas eléctricos de potencia: Flujo de Potencia por método de gauss seidel
March 26, 2018 | Author: aens1990 | Category:
Electric Power
,
Voltage
,
Applied Mathematics
,
Physics
,
Physics & Mathematics
DOWNLOAD
Share
Report this link
Comments
Description
Universidad de Santiago de ChileFacultad de Ingeniería Departamento de Ingeniería Eléctrica Sistemas Eléctricos de Potencia Sistemas Eléctricos de Potencia Tarea 4: Flujo de Potencia por Método de Gauss Seidel Resolución de Ejercicio Alumno: Adrián Negrete Profesor: Humberto Verdejo Fecha de entrega: 26/10/2012 Sistemas Eléctricos de Potencia - Tarea 4: Flujo de Potencia - Método de Gauss Seidel 1 Tarea 4: Flujo de Potencia por el Método de Gauss Seidel Enunciado: Para el SEP de la Figura: Datos: ̇ [ [ ] ] ( ) ( ) [ [ ] ] [ [ ] [ ] ] () () 1. Calcular los voltajes de las Barras 2 y 3, para 10 iteraciones (K=9). 2. Graficar: - La magnitud del voltaje en la Barra 2 - La magnitud del voltaje en la Barra 3 - El ángulo del voltaje en la Barra 2 - El ángulo del voltaje en la Barra 3 - La potencia reactiva Q3 - La potencia reactiva QBC Sistemas Eléctricos de Potencia - Tarea 4: Flujo de Potencia - Método de Gauss Seidel 2 para la línea. dado que SBase = 100 MVA.Para llevar los parámetros del sistema a base común.Método de Gauss Seidel 3 . ̇ [ ̇ ] ̇ ̇ ̇ [ ̇ ̇ ̇ ] ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇ Sistemas Eléctricos de Potencia ..u) queda igual. la matriz admitancias de Barra quedará de 3x3. definimos que SB1 = 66 KV.Solución: 1. por tanto ZL (p.Tarea 4: Flujo de Potencia . ̇ ( ) ( ) ( ) [ ( ) ( ̇ ] [ ) ( ) ̇ [ ] [ ] [ ] ] ̇ ( ) ̇ [ ] Como existen 3 barras en el sistema. Tarea 4: Flujo de Potencia .̇ ( ) ( [ ) [ ] ̇ ] ̇ Finalmente la Matriz Admitancias de Barra nos queda: [ ̇ ] [ ] Ahora desarrollaremos el cuadro resumen del sistema: Barra 1 2 3 1 0 0 0 0 0 0 0 0.95 0 0 0 Tipos de Barras en este problema: Barra 1 2 3 Sistemas Eléctricos de Potencia .95 Y conociendo que: Entonces remplazando los valores nos queda: Barra 1 2 3 1 0.Método de Gauss Seidel 4 . Ahora debemos desarrollar la Ecuación de Gauss – Seidel. hay que trabajar con estas 2 ecuaciones: ( ̇ ) ( ( ) [( ̇ ) [( ̇ ̇ ( (∑ ̇ ) ( ̇ ) ̇ ( ) ∑ ̇ ) ̇ ) ( ∑ ̇ ) ∑ ̇ ̇ ( ) ̇ )] ( ) ] Para la Barra 2 (Barra PQ). así: ̇ ( ) ̇ [( ̇ ̇ ( ) ) ̇ ̇ ( ) ̇ ̇ ( ) ] Sistemas Eléctricos de Potencia .Método de Gauss Seidel 5 . para barras PQ como PV las Cuales Son: Para barras PQ: ( ̇ ) ̇ [( ̇ ( ) ̇ ∑ ̇ ) ( ̇ ) ∑ ̇ ̇ ( ) ] Cuando existen barras PV.Tarea 4: Flujo de Potencia . nos queda: ̇ ( ̇ ( ̇ ( ̇ ( ) ̇ ̇ [( ) ̇ ̇ [( ̇ ) ) ̇ ̇ ( ) ̇ [( ̇ ( ) ̇ [( ̇ ( ) ̇ ( ) ) ∑ ̇ ̇ ( ) ) ∑ ̇ ̇ ( ) ) ∑ ̇ ̇ ( ) ̇ ( ̇ ) ) ̇ ∑ ̇ ̇ ∑ ̇ ∑ ̇ ( ̇ ̇ ̇ ( ) ( ) ( ) ( ) ] ] ] )] Quedando la ecuación de voltajes en la Barra 2 para k iteraciones. Método de Gauss Seidel 6 .Tarea 4: Flujo de Potencia . así: ̇ ( ) ̇ [( ̇ ̇ ( ) ) ̇ ̇ ( ) ̇ ̇ ( ) ] Sistemas Eléctricos de Potencia .Para la Barra 3 (Barra PV). aquí necesitaremos el cálculo previo de Q: ( ) ( ( ) [( ̇ ) ( ) [( ̇ (∑ ̇ ) (∑ ̇ ) ( ̇ ) ( ̇ ∑ ̇ ) ( ) ∑ ̇ ̇ ̇ ( ) )] )] En este punto obtenemos la Potencia Reactiva que necesitamos: ( ) ( ) [( ̇ ( ̇ ) ( ̇ ) ̇ ̇ ( ) ̇ ̇ ( ) )] Ahora podemos desarrollar los voltajes de Barras según la primera ecuación: ̇ ( ̇ ( ̇ ( ) ̇ ̇ [( ) ̇ ̇ [( ̇ ) ̇ ( ) ̇ [( ̇ ( ) ̇ ( ) ) ∑ ̇ ̇ ( ) ) ∑ ̇ ̇ ( ) ) ( ̇ ̇ ( ̇ ∑ ̇ ) ∑ ̇ ̇ ̇ ̇ ( ) ( ) ( ) ] ] )] Quedando la ecuación de voltajes en la Barra 3 para k iteraciones. realizaremos 10 .Iniciaremos las iteraciones con iteraciones. nos queda: Y conociendo que: ( ) ( ) Desarrollaremos la iteración: ( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) [( ( ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) [( ) ( ) ( ) ( ) ( ( ) ̇ ) ( [( ̇ ( ) ) ) ) (∑ ̇ ) ( ̇ ( ( ̇ ̇ ) ( ) ( ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ] ) ( ̇ (∑ ̇ ( ( ) ̇ ( ) ̇ ̇ ) ( ( ) ( )] ̇ ̇ ( ) ) ( ) ( ) ( ( ) ∑ ̇ ( ) ̇ )] )] ) ( ) )] ) ( ( ) ) ∑ ̇ ) ( ( ) ̇ ( ) ̇ ̇ ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ( ) ̇ ( ) ̇ ̇ ) ̇ [( ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .Método de Gauss Seidel 7 . Para y llegaremos a . es decir.Tarea 4: Flujo de Potencia . ( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia .Método de Gauss Seidel 8 . Método de Gauss Seidel 9 . nos queda: ̇ ̇ ( ) ̇ ) ( ( ) ) ) ( ) ( ) ( ( ( ) ) ) ( ) ( ) Sistemas Eléctricos de Potencia .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) (∑ ̇ ) ( ̇ ) ( ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ( ) ̇ ( ) ∑ ̇ ( ) ̇ ] ] ] ) ( ) (∑ ̇ ∑ ̇ ̇ ) ( ) ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ∑ ̇ ̇ ( ) )] )] ̇ ( ̇ ( ) )] ) ( ) ( ) ( ))] ) ( ( ) ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( .Tarea 4: Flujo de Potencia . Método de Gauss Seidel 10 .Tarea 4: Flujo de Potencia .( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia . Método de Gauss Seidel 11 .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia . Tarea 4: Flujo de Potencia .( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Método de Gauss Seidel 12 . ( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia .Método de Gauss Seidel 13 . ( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Método de Gauss Seidel 14 .Tarea 4: Flujo de Potencia . Tarea 4: Flujo de Potencia . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( .Método de Gauss Seidel 15 . Método de Gauss Seidel 16 .( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia . Método de Gauss Seidel 17 . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( . Método de Gauss Seidel 18 .Tarea 4: Flujo de Potencia .( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( .Tarea 4: Flujo de Potencia .Método de Gauss Seidel 19 . Método de Gauss Seidel 20 .( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ( ) Sistemas Eléctricos de Potencia .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ( ) ∑ ̇ ( ) ̇ ] ] ) ( ) ) (∑ ̇ ( ) ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ) ) ) ( ) ( ( ( ) ̇ ( ) )] )] ) ( ( ∑ ̇ )] ̇ ( ( ( ) ̇ ] ∑ ̇ ) ( ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( .Método de Gauss Seidel 21 .Tarea 4: Flujo de Potencia . ( ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) [( ̇ ( ̇ ̇ ̇ ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ) ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ( ) ̇ ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia .Método de Gauss Seidel 22 . Método de Gauss Seidel 23 .( ) ̇ ( Para ( ) ̇ ( ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ̇ ( ) ̇ ̇ ( ) ) ̇ ∑ ̇ ) ̇ ) ̇ ( ) ̇ ( ) ( [( ̇ ( ) ( ) [( ̇ ( ) (∑ ̇ ) ( ̇ ) ( ( ) ( ) ) ) ( [( ̇ ̇ ( ) ̇ ( ( ) ( ̇ ) ( ) ) ) ) ∑ ̇ ( ) ̇ ] ] (∑ ̇ ( ) ̇ ) ( ) ( )] ̇ ( ) ̇ ( ) ( ) ) ( ( ̇ ( ) )] )] ) ( ) ∑ ̇ )] ̇ ( ( ( ) ( ) ( ( ) ̇ ) ( ̇ ] ∑ ̇ ( ( ) ( ) ̇ ̇ ̇ ) ) [( ( ) ( ) ) ) ( ( ) ∑ ̇ ) ∑ ̇ ( ) ̇ ̇ [( [( ( ( ) ( .Tarea 4: Flujo de Potencia . nos queda: ̇ ̇ ( ) ̇ ) ) ( ) ( ))] ) ( ) ) ( ) ( ) Sistemas Eléctricos de Potencia . ̇ ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ( ) ̇ ( ) ( ̇ ̇ ̇ ) ̇ [( ̇ ) ) ∑ ̇ ̇ ( ) ( ) ) ̇ ̇ ( ̇ ( ) ̇ [( ( ) ( ) ( ) ( ) [( ∑ ̇ ̇ ) ∑ ̇ ) ̇ ( ( ) ̇ ̇ ( ) ( ) ∑ ̇ ̇ ( ) ] ] ] ) ( ) ( )] Por lo tanto: ̇ ( ) ( ) Sistemas Eléctricos de Potencia .Tarea 4: Flujo de Potencia .Método de Gauss Seidel 24 . nos queda: ̇ ̇ ( ) ̇ ) ( ) ( ))] ) ( ) ) ( ) ( ) Sistemas Eléctricos de Potencia .Método de Gauss Seidel 25 .( ) ̇ ( Para ( ̇ ( ) ) [( ̇ ( ) ̇ ( ) ̇ [( ̇ ̇ ̇ ( ) ̇ ̇ ( ) ( ) ∑ ̇ ) ̇ ) ( ( ) ̇ ) ) ( ) [( ̇ ( ) ( ) [( ̇ ( ) ) ̇ ) ) ) ) (∑ ̇ ) ( ̇ ) ( ( ) ) ( [( ̇ ( ̇ ( ( ̇ ( ) ) ) ( ) ) ∑ ̇ ( ) ̇ ] ] ] ) ( ) (∑ ̇ ∑ ̇ ̇ ) ) ( ̇ ( ) ) ( ) ̇ ̇ ( ) ( ∑ ̇ ) ( )] ̇ ( ) ( ) ( ( ) ( ) )] )] ) ) ̇ )] ) ( ( ( ( ( ) ̇ ( ̇ ( ̇ ) ) ( ) ̇ ( ( ) ) [( ) ∑ ̇ ) ∑ ̇ [( ( ( ( ( ̇ ̇ ̇ [( ̇ ( ( ( .Tarea 4: Flujo de Potencia . La magnitud del voltaje en la Barra 3 .Tarea 4: Flujo de Potencia .La potencia reactiva QBC Sistemas Eléctricos de Potencia .Método de Gauss Seidel 26 .El ángulo del voltaje en la Barra 2 .( ̇ ̇ ( ̇ ( ) ̇ ) [( ̇ ̇ ( ) ̇ ( ) ( ( ̇ ( ̇ ̇ ̇ [( ̇ ̇ [( ) ( ) ̇ ) ) ) ∑ ̇ ) ( ) ) ̇ ( ̇ ̇ ( ) ) [( ∑ ̇ ) ( ) ) ̇ ∑ ̇ ̇ ̇ ( ( ) ̇ ) ( ) ( ) ∑ ̇ ̇ ( ) ] ] ] ( ) ( )] Por lo tanto: ̇ ( ) ( ) 2.El ángulo del voltaje en la Barra 3 .La magnitud del voltaje en la Barra 2 .La potencia reactiva Q3 . Graficar: . 9392 8 0.9550 0.9386 9 0.9380 2. Magnitud del voltaje en la Barra 3 (p.95 6 0.95 5 0.95 10 0.1.2 0 0 2 4 6 ITERACIONES 8 10 12 Iteración Voltaje Barra 3: Magnitud 1 0.9417 6 0.9400 0.Método de Gauss Seidel 27 .) Voltaje Barra 2: Magnitud 0.u.95 9 0.) Voltaje Barra 3: Magnitud 1 MAGNITUD 0.Tarea 4: Flujo de Potencia . Magnitud del voltaje en la Barra 2 (p.9600 0.95 3 0.9440 5 0.95 7 0.9650 MAGNITUD 0.9382 10 0.9500 0.u.9402 7 0.95 2 0.6 0.95 Sistemas Eléctricos de Potencia .95 4 0.4 0.9450 0.9476 4 0.8 0.95 8 0.9530 3 0.9350 0 5 10 15 ITERACIONES Iteración Voltaje Barra 2: Magnitud 1 0.9603 2 0. 5290 4.6995 -4.3748 -6.3.Método de Gauss Seidel 28 .0596 -5.1509 -5.7079 -6.0000 MAGNITUD -1.0000 -6.) Voltaje Barra 3: ángulo 0.7675 -9.6329 -5.0000 -7.3571 -2.0000 -5.0000 -6.2274 -6.0000 MAGNITUD -2.0000 ITERACIONES 8 10 12 Iteración 1 2 3 4 5 6 7 8 9 10 Voltaje Barra 3: ángulo -3.0000 -4. Ángulo del voltaje en la Barra 2 (p.3808 -9.) Voltaje Barra 2: ángulo 0.0000 0 2 4 6 -4.9251 Sistemas Eléctricos de Potencia .5078 -8.0000 -8.8638 -9.0471 -7.4278 -9.0000 ITERACIONES Voltaje Barra 2: ángulo -0.Tarea 4: Flujo de Potencia .u.9963 -6.0000 0 2 4 6 8 10 Iteración 1 2 3 4 5 6 7 8 9 10 12 -2.0000 -10.6169 -9.4689 -6.0000 -12.0000 -3.0105 -9. Ángulo del voltaje en la Barra 3 (p.u. 0587 6.0407 0.1000 0.0479 0.0800 MAGNITUD 0.0444 -0.1356 0.1677 0.2096 0.0000 0 2 4 6 ITERACIONES 8 10 12 Iteración 1 2 3 4 5 6 7 8 9 10 Potencia Reactiva QBC 0.2357 0.2387 Sistemas Eléctricos de Potencia .3000 MAGNITUD 0.0577 0.0123 0.2377 0.2500 0.Tarea 4: Flujo de Potencia .0200 0.1500 0.2328 0. Potencia reactiva Q3 (p.u.) Potencia Reactiva Q3 0.0400 -0.0126 0.1926 0.2207 0.0200 0 2 4 6 8 10 12 -0. La potencia reactiva QBC (p.u.2279 0.0296 0.0557 0.Método de Gauss Seidel 29 .) Potencia Reactiva QBC 0.0528 0.0600 ITERACIONES Iteración 1 2 3 4 5 6 7 8 9 10 Potencia Reactiva Q3 -0.0000 -0.5.0400 0.0600 0.2000 0.0500 0.
Report "Ejercicio resuelto Sistemas eléctricos de potencia: Flujo de Potencia por método de gauss seidel "
×
Please fill this form, we will try to respond as soon as possible.
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Copyright © 2024 DOKUMEN.SITE Inc.