DuraGal - Design Capacity Tables for Steel Hollow Sections

March 28, 2018 | Author: richardreddin | Category: Bending, Buckling, Engineering Tolerance, Strength Of Materials, Structural Steel


Comments



Description

Dur aGal design capacity tables for steel hollow sections MARCH 2002 DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS i  This publication, the DuraGal design capacity tables for hollow sections, is also available on CD, as part of the OneSteel Structural Products catalogue, and on our web site at www.onesteel.com Other OneSteel Pipe & Tube technical publications and design aids that are available are: • DuraGal design capacity tables for structural steel angles, channels & flats • Technical Information – DuraGal Profiles, angles, channels & flats, Technical Specification TS100 (There is no Australian Standard for these products, TS100 details technical requirements for manufacture & supply) • Technical Information – Structural Cold Formed Hollow Sections and Profiles (Product information, specifications, dimensions and properties and product availability) • CAD Files – DFX Format Files for OneSteel Market Mills Pipe & Tube structural steel sections, both hollows and profiles, available only from the web site (www.onesteel.com) • DuraGal Easy Welding Guide • DuraGal Easy Painting & Corrosion Protection Guide • DuraGal & Galtube Plus Powder Coating Guide • Product Guide (a list of all OneSteel Market Mills Pipe & Tube products) • DuraGal Flooring System (A bearer, joist and height adjustable pier system using DuraGal RHS) • DuraGal Mezzanine Flooring System for commercial storage and industrial applications. • DuraGal Post – The low maintenance steel verandah post • DuraGal Verandah beam spanning tables • DuraGal Plus for Lintels For further information contact OneSteel Direct: Freecall 1800 1 STEEL (1800 1 78335) Freefax 1800 101 141 E-mail [email protected] Or visit web site at www.onesteel.com and print and download the section you need. This publication has been prepared by OneSteel Market Mills an operating business group of which OneSteel Trading Pty Limited ABN 59 000 010 873 is a part of. Please note that the specifications and technical data are subject to change without notice and to ensure accuracy and adequacy users of this publication are requested to check the information to satisfy themselves and not to rely on the information without first doing so. Unless required by law, the company cannot accept any responsibility for any loss, damage or consequence resulting from the use of this publication. Photographs shown are representative only of typical applications, current at March 13 2002. This brochure is not an offer to trade and shall not form any part of the trading terms in any transaction. ©Copyright 2002. OneSteel Trading Pty Limited ABN 59 000 010 873   Registered Trademarks of OneSteel Trading Pty Limited ABN 59 000 010 873: DuraGal , Family of DuraGal Products Issue (6) March 2002. Printed March 13 2002 ii DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 CONTENTS Page Foreword ............................................................................................................................. iv Acknowledgements ............................................................................................................. iv Preface ................................................................................................................................. v INTRODUCTION ................................................................................................................ vi GRADE .............................................................................................................................. vii LIMIT STATES DESIGN USING THESE TABLES .............................................................. xi GENERAL NOTES ON THE TABLES ............................................................................... xii CONVERSION TO SAFE WORKING LOADS .................................................................. xiii LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES ................................................ xiv PART 1: SECTION PROPERTIES ............................................................................... D1-1 PART 2: Determination of DESIGN EFFECTS ........................................................... D2-1 PART 3: SECTION CAPACITIES ................................................................................. D3-1 PART 4: Members Subject to BENDING .................................................................... D4-1 PART 5: Members Subject to AXIAL COMPRESSION .............................................. D5-1 PART 6: Members Subject to AXIAL TENSION ......................................................... D6-1 PART 7: Members subject to COMBINED ACTIONS ................................................ D7-1 PART 8: MAXIMUM DESIGN LOADS for Beams ....................................................... D8-1 DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS iii To ensure that the designers intentions are met. Recognition and thanks are also due to: • AISC Technical Services staff in the calculation and compilation of the technical text and design capacity tables. it is recommended that a note to this effect is included on any design documentation. The calculations including product tolerances. ACKNOWLEDGMENTS OneSteel Market Mills Pipe & Tube wish to acknowledge the cooperation of the Australian Institute of Steel Construction in allowing some data from their publication “Design Capacity Tables for Structural Steel Hollow Sections” to be included in this publication.FOREWORD DuraGal C450L0 Rectangular Hollow Sections offer significant benefits in the design of tubular structures of all kinds. mechanical properties and chemical composition have been validated by testing using only OneSteel products. PREVIOUS ISSUES June 1994 June 1996 September 1999 September 2000 July 2001 (electronic format only) iv DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . The high strength characteristics of DuraGal make the product design efficient in terms of mass reduction and therefore improve the economy of tubular structures. Acknowledgment is also made of Standards of Australia permission to reprint a table from AS 4100-1998. It is strongly recommended that DuraGal hollow sections manufactured by OneSteel be specified for use when any of the design information in these design capacity tables are used. PREFACE DuraGal RHS is manufactured to meet the requirements of AS 1163 Grade C450L0. • Maximum design loads for continuous. • Elastic buckling loads (Nom) for various effective lengths. The companion is necessary as the DuraGal DCT’s include some research that was not available to The AISC and some design aids that were not incorparated in the AISC DCT’s. The Differences are :- • Dramatically increased segment length for full lateral restraint (FLR)[6]. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS v . fixed end and cantilever beams. 8 mm thick C450L0 material produced by OneSteel and are headed Non-Standard thickness. The research was partially funded by CIDECT.INTRODUCTION DESIGN CAP ACITY TABLES CAPACITY The DuraGal Design Capacity Tables have been prepared in accordance with AS 4100-1998 . has shown that plastic design methods can be used in the design of portal frames using DuraGal hollow sections. The program included DuraGal and also covered sections less than 3. and will eventually be incorporated in their series of design aids.2] to confirm the application of those member design rules in AS 4100 applicable to the design of coldformed sections for the determination of DuraGal Design Capacities. The results of the study are contained in [6] and show that the rules in AS 4100 give conservative values of FLR for RHS. The results of the analytical investigation have been confirmed by a testing program. 3 to AS 4100-1990 Steel Structures. The University of Sydney. where deflection due to design loads is not a critical limit state. The study was conducted as RHS sections rarely buckle laterally.3 and 2.6 to 6 mm are contained in tables headed Standard Thickness.Steel Structures. Civil Engineering. The University of Sydney. For more information ring Freecall 1800 1 STEEL (1800 1 78335) or Freefax on 1800 101 141. ie low rise portal frames such as those used in commercial/ industrial sheds. OneSteel Market Mills Pipe & Tube commissioned the Centre for Advanced Structural Engineering. to develop rules for the design of connections in cold-formed steel hollow sections manufactured by OneSteel. Design capacities for sizes in thicknesses 1. garages. The University of Sydney[1. The tables in this publication use the method recommended in [6] for calculating the segment length for full lateral restraint (FLR) of Rectangular Hollow Sections (RHS). etc. This increase can be of most benefit in rigid frames. Standards Australia. [8] Design capacity tables have been included for the 2. CONNECTIONS A research program[7] has been completed at the Centre for Advanced Structural Engineering.0 mm thick. Research was undertaken at the Centre for Advanced Structural Engineering. Amendment No. The University of Sydney to undertake an analytical study of the lateral buckling of RHS. an international committee for the development and study of tubular structures. farm buildings. Typically a 15% increase in strength design capacity can result. thinner than 3mm thick. These tables are provided to allow designers to select an equivalent capacity section when converting to a OneSteel standard DuraGal section. OneSteel is developing a range of proprietary fittings suitable for use in the above types of buildings. vi DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . yet AS 4100-1990 Steel Structures required a reduction in the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces. incorporated this research work and allowed the use of hollow sections to AS 1163. PLASTIC DESIGN Another research program[10] completed at the Centre for Advanced Structural Engineering. in section 10. in accordance with AS/NZS 4792:1999. SIZE RANGE DCTDHS/06 MARCH 2002 Square Rectangle 20 x 20 to 100 x 100 50 x 20 to 150 x 50 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS vii . applied by a continuous or a specialized process. Internal Black steel surface.3 microns thick. A surface conversion coating is applied to protect the galvanizing prior to fabrication. Hot-dip galvanized (zinc) coatings on ferrous hollow sections.oC t< 6 -30 SURFACE FINISH External In-line Hot dip galvanizes over a prepared metal surface to produce a fully bonded coating with a minimum average coating mass of 100 g/m2 or approximately 14.GRADE DuraGal RHS is manufactured by a unique cold forming process which ensures that it complies with the requirements of AS 1163 to both Grade C350L0 and Grade C450L0.mm Lowest One Day Mean Ambient Temperature . permits L0 grades to have the following minimum service temperature: Thickness .65√So 450 500 16 % L0 indicates that DuraGal has Charpy V-notch impact properties as specified in AS 1163-1991. AS4100 .1998 Steel Structures. Grade and Mechanical Properties Grade C350L0/C450L0 Minimum Yield Stress fy MPa Minimum Tensile Strength fu MPa Minimum elongation as a proportion of gauge length of 5. m Non-Standard Lengths* .m 20 x 20 to 30 x 30 6.0 4.05 1.Minimum order quantities and/or price extras may apply.5 to 8. CHEMISTRY Chemical Composition (Cast or Product). to determine the welding preheat required. TOLERANCES Cross Section Outside Dimension d or b mm Maximum permissible Variation from specified outside dimension (mm) < 50 > 50 Maximum permissible out-of-square at corners (degree) ± 0. % max.5 mm per metre of length DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 * Non-standard Lengths .Welding of steel structures.0 35 x 35 to 100 x 100 50 x 20 to 150 x 50 8.030 0.5 ± 0. C Si Mn P S Al CE 0.1:2000 Structural steel welding .10 0. Steels with CE of less than 0. do not require preheat.5 4.60 0.040 0.96 times nominal Straightness Specified length 500 Twist viii 2 mm plus 0. Size Standard Length .5 to 13.20 0.39 The carbon equivalent (CE) in the above is calculated for an actual composition using the following equation: CE = C + Mn Cr + Mo + V Ni + Cu + + 6 5 15 This value is used in AS/NZS 1554.39 in general.LENGTH RANGE DuraGal is stocked by distributors in the following lengths.01d or ± 0.01b 1 d = outside depth of section b = outside breadth of section Thickness ±10% of nominal Mass Not less than 0. X For more advice reference should be made to the DuraGal Easy Welding Guide available from OneSteel. and the result is a smooth attractive surface.5t 75ο 75o t = section thickness WELDING DuraGal is readily welded.0 + 25mm 35 x 35 to 100 x 100 50 x 20 to 150 x 50 .2 should be observed.0 + 50mm * Exact lengths.39 allows it to be welded without preheat. However. subject to enquiry. The grade designations of cold-formed hollow sections based on yield strength are also not affected by hot dip galvanising. July 1989 Table 17. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS ix . evenly applied galvanized coating ensures minimal welding fumes. Corner Radii Size Typical external corner radii Typical angle of arc t < 3mm t > 3mm 2. POWDER COATING A degrease and zinc phosphate pretreatment prior to applying the powder coating is recommended. Its thin.0t 2.Length Size Mill Cut Length Tolerance* 20 x 20 to 30 x 30 . Refer to the DuraGal Painting and Corrosion Protection Guide for more detailed information. in accordance with AS/NZS 1554. Mechanical dilution ventilation is advised for open work space and mechanical ventilation by local exhaust system for limited work space and confined space. DuraGal’s carbon equivalent of less than 0. Further research [5].1) W502X. PAINTING DuraGal’s unique surface preparation and protective coating means painting and powder coating are easy and economical. The following are recommended consumables.1) W502Y Flux-Cored Arc (AS 2203.Welding of steel structures.1:2000 Structural steel welding . Refer to the OneSteel Powder Coating Guide for more detailed recommendations. the ventilation recommendations given in WTIA (Welding Technology Institute of Australia) Technical Note 7. [7] has shown that the mechanical properties of cold-formed hollow sections are not reduced by a wide range of welding operations. Process Recommended Consumables Manual Metal-Arc (AS/NZS 1553.1) W502 Submerged Arc (AS 1858.1) E48XX (Grade 2) Gas-Metal-Arc (AS/NZS 2717. Investigation Report S916. N. Refer to the DuraGal Easy Painting Guide for information on the removal of white rust. [4] Key.W. Vol. “Behaviour of Cold-Formed Slender SHS Beam Columns”. Vol. “Column Behaviour of Cold-Formed Hollow Sections”. Copies of the painting guide can be obtained by contacting OneSteel Direct Freecall 1800 1 STEEL (1800 1 78335) Freefax 1800 101 141 E-mail onesteeldirect@onesteel. School of Civil and Mining Engineering.. “Lateral-BuckIing Tests of Cold-Formed RHS Beams”. [5] HERA. Hancock. CIDECT Project 2S-5-98..4 1989. [10] Centre for Advanced Structural Engineering. Investigation Report S941. this should be removed before painting.S. The University of Sydney. 121. “Tests to Determine the Reliability of Stub Columns of DuraGal RHS”. 11. [7] Centre For Advanced Structural Engineering. [2] Centre for Advanced Structural Engineering. Hancock. R707. [6] Centre For Advanced Structural Engineering. [3] Hasan. 1988. School of Civil and Mining Engineering. Final Report. The University of Sydney.W. August 1992. September 1995..J. Auckland Industrial Development Division Department of Scientific and Industrial Research.. 114. 2. Research Report No. Civil Engineering. No. 1987. “Plastic Design of Cold-Formed RHS”. 1995. “Investigation of the Brittle Fracture Resistance of Cold-Formed Rectangular Hollow section. August 1992. The University of Sydney.J. [8] Zhao. P. “Plastic Bending Tests of Cold-Formed Rectangular Hollow Sections”. AISC. PROTECTION OF WELD AFFECTED AREAS See the DuraGal Easy Painting & Corrosion Protection Guide for information. S. “Tests and Design of Butt Welds and Fillet Welds in DuraGal RHS Members”.W. Investigation Report S917. R702. The University of Sydney. Research Report No. The University of Sydney. “Inelastic Buckling Strength of RHS’s”. ASCE. Vol. Hancock. and Trahair. G. (Part 2)”.23.WHITE RUST If white rust is present. G. “Tests to Determine the Reliability of Beams of DuraGal RHS”. Journal of Structural Engineering.. x DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . ASCE. Hasan..J. G.com REFERENCES [1] Centre for Advanced Structural Engineering. Journal of Structural Engineering. School of Civil and Mining Engineering. The University of Sydney. Steel Construction. HERA Report R4-39. S. X-L. No.. No. [9] Centre for Advanced Structural Engineering. November 1994. May 1993. Ru is determined from Sections 5 to 8 as appropriate. Only two limit states for structural steel are considered in these tables . brittle fracture. Relevant limit states for structural steel include strength.g. These design actions/loads are identified by a superscript (*) after the appropriate action/load (e.4 of AS 4100.g.When a structure or part of a structure is rendered unfit for use it reaches a ‘limit state’. transverse loads on a beam) imposed upon the structure. The corresponding design action effect (S *) is the design bending moment (M *) which is determined by: where L = span of the beam In this case the design capacity (φRu) is equal to the design section moment capacity (φMs). and where applicable. Limit states design requires structural members and connections to be proportioned such that the design capacity effect (S *) resulting from the design action (W *). Australian Standard AS 4100-1998 Steel Structures introduced a limit states approach to structural steel design within Australia. is less than or equal to the design capacity (φRu) i.g. shear forces. Design action effects (S *) are the actions (e. design bending moments. serviceability.LIMIT ST ATES DESIGN USING STA THESE T ABLES TABLES Definition of limit states .strength limit state. multiplied by the appropriate load factors as specified in AS 1170. in AS 4100. fire and earthquake. The code follows a semi-probabilistic limit states basis presented in a deterministic format. which is given by: where φ = fy = Ze = DCTDHS/06 MARCH 2002 the capacity factor yield stress used in design effective section modulus DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS xi . stability. fatigue. Design capacity (fRu ) is the product of the nominal capacity (Ru) and the appropriate capacity factor (f) found in Table 3. axial loads) computed from the design actions or design loads using an acceptable method of analysis. In this state it ceases to perform the functions or to satisfy the conditions for which it was designed.g. W *L describes the design transverse load on a beam). consider the strength limit state design of a simply supported beam subject to a total transverse design load (W *L) distributed uniformly along the beam with full lateral restraint.e. serviceability limit state. For example. M * describes the design bending moment). S * < φRu Design action or design load (W*) is the combination of the nominal actions or loads (e. These effects are identified by a superscript (*) after the appropriate action effect (e. shear capacity.Strength Limit State (W *L) for Beams (PART 8) (PART 8) . GENERAL NOTES ON THE TABLES CONTENTS AND USAGE For the commonly available Australian structural steel hollow sections.Members Subject to Axial Compression (PART 5) . It should be noted that in this instance the bending capacity of the beam may not be the only criteria in the strength limit state which needs to be considered. The above recommendations apply to predominantly statically loaded structures but also in broad principle to dynamically loaded structures subject to moderate cyclic loads.Members Subject to Bending (PART 4) .To satisfy the requirement for strength limit state design the following relationship must be satisfied: M * < φMs The maximum design bending moment is therefore equal to the design section moment capacity (M * < φMs). bearing capacity). fixed end and cantilever beams) Acceptable methods of analysis for determining the design action effects are described in Section 4 of AS 4100 and PART 2 of this publication. fatigue) must also be considered by the designer. tables are provided for: (i) (ii) section dimensions and section properties. When using these tables. and the maximum design load is that design load (W *L) which corresponds to the maximum design bending moment. Information relevant to such methods of analysis is presented briefly in PART 7 of this publication. i.Section Capacities (PART 3) . Section 8 of the tables contains design aids for checking the serviceability limit state for some specific beam load and support configurations. xii DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .Properties for Fire Design (PART 1) .Members Subject to Axial Tension (PART 6) (iii) elastic buckling load (Nom) (PART 7) (iv) maximum design load (W *) for: .Serviceability Limit State (W *S) for Beams (simply supported.g. as specified in AS 4100 Section 1. the designer must determine the relevant strength limit state design action (W *) and/or the corresponding design action effects (S *) to ensure the strength limit state requirements of AS 4100 are satisfied. determined in accordance with AS 4100.Surface Areas (PART 1) . serviceability. Other limit states (e. (eg. where applicable. The DCTDHS gives values of design capacity (φRu) and maximum design load (W *).Dimensions and Properties (PART 1) .Telescoping Sections (PART 1) design capacity (φRu) for: . continuous.Properties for Assessing Section Capacity to AS 4100 (PART 1) . Fatigue.e: . and must be equal to or greater than the design action effect (eg. These design loads are not working loads.25 Coefficient of Thermal Expansion αT 11. shear force. bending moment. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS xiii .PROPERTIES OF STEEL The properties of steel adopted in these tables are listed below: Property Symbol Value Elastic Modulus E 200 x 103 MPa Shear Modulus G 80 x 103 MPa Density ρ 7850 kg/m3 Poisson’s Ratio ν 0. but are obtained by factoring the nominal (working) loads applied to the structure in accordance with the loading code AS 1170.7 x 10-6 per oC VALUES PUBLISHED IN TABLES The design capacities given in these tables are limit states design capacities calculated in accordance with AS 4100. axial force) resulting from the design loads. or nominal dead load I second moment of area of a cross-section Iw warping section constant Ix I about the cross-sectional major principal x-axis Iy I about the cross-sectional minor principal y-axis J torsional section constant ke member effective length factor kf form factor for members subject to axial compression kl load height effective length factor kr effective length factor for restraint against lateral rotation ksm exposed surface area to mass ratio kt correction factor for distribution of forces in a tension member. or effective length of a laterally unsupported flexural member Mb nominal member moment capacity Mbx Mb about major principal x-axis Mix nominal in-plane member moment capacity about major principal x-axis Miy nominal in-plane member moment capacity about minor principal y-axis Mo reference elastic buckling moment for a member subject to bending Moa amended elastic buckling moment for a member subject to bending Mox nominal out-of-plane member moment capacity about major principal x-axis Mrx Ms about major principal x-axis reduced by axial force xiv DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . bbw. bbf. bs bearing widths defined in Section D4.3.LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES Ae effective area of a cross-section Ag gross area of a cross-section An net area of a cross-section b width of a section be effective width of a plate element bb. or segment or sub-segment length Le effective length of a compression member. or twist restraint effective length factor L span or member length.2 C torsional section modulus Cm factor for unequal moments d depth of a section de effective outside diameter of a circular hollow section do outside diameter of a circular hollow section dw depth of web d1 clear depth between flanges E Young’s modulus of elasticity fu tensile strength used in design fy yield stress used in design f *va average design shear stress in the web f *vm maximum design shear stress in the web G shear modulus of elasticity. tensile or compressive P applied load Rb nominal bearing capacity of a web R bb nominal bearing buckling capacity Rby nominal bearing yield capacity Ru nominal capacity r radius of gyration rext external corner radius rx radius of gyration about major principal x-axis ry radius of gyration about minor principal y-axis R* design bearing force S plastic section modulus Sx S about major principal x-axis Sy S about minor principal y-axis S* design action effect t thickness of a section tf thickness of a flange tw thickness of a web DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS xv .Mry Ms about minor principal y-axis reduced by axial force Ms nominal section moment capacity Msx Ms about major principal x-axis Msy Ms about minor principal y-axis Mz nominal torsional moment section capacity M* design bending moment M *m maximum calculated design bending moment along the length of a member or in a segment M *x design bending moment about major principal x-axis M *y design bending moment about minor principal y-axis M *z design torsional moment Nc nominal member capacity in compression Ncx Nc for member buckling about major principal x-axis Ncy Nc for member buckling about minor principal y-axis Nom elastic flexural buckling load of a member Nomb Nom for a braced member Nomx Nomy π 2El x (k e L ) 2 π 2El x (k e L ) 2 Nom about major principal x-axis Nom about minor principal y-axis Ns nominal section capacity of a concentrically loaded compression member Nt nominal section capacity in tension N* design axial force. 14159) ρ density of a material φ capacity factor xvi DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .3.3 of AS 4100) π pi ( ≈ 3.Vu nominal shear capacity of a web with a uniform shear stress distribution Vv nominal shear capacity of a web Vvx Vv of a member in the major principal x-axis direction Vvy Vv of a member in the minor principal y-axis direction V* design shear force W applied load W* design action W *L strength limit state maximum design load W *S serviceability limit state maximum design load Z elastic section modulus Ze effective section modulus Zex Ze for bending about major principal x-axis Zey Ze for bending about minor principal y-axis Zn Z for bending about n-axis Zx Z for bending about major principal x-axis Zy Z for bending about minor principal y-axis aa compression member factor (as defined in Clause 6.3. taken as the greater of δb and δs δs moment amplification factor for a sway member η compression member imperfection factor (as defined in Clause 6.3.3 of AS 4100) θ angle of twist per unit length slenderness ratio λc elastic buckling load factor λe plate element slenderness λed plate element deformation slenderness limit λep plate element plasticity slenderness limit λey plate element yield slenderness limit λn modified compression member slenderness ν Poisson’s ratio ξ compression member factor (as defined in Clause 6.3 of AS 4100) ac compression member slenderness reduction factor am moment modification factor for bending α sh modified slenderness reduction factor αT coefficient of thermal expansion for steel βm ratio of smaller to larger bending moments at the ends of a member ∆ deflection of a member δb moment amplification factor for a braced member δm moment amplification factor.3 of AS 4100) ab compression member section constant (as defined in Clause 6.3. ......................................................3....2 Method ................................................................................................ D1-5 D1................................................................2 SECTION PROPERTY TABLES .. D1-5 D1.............................................................................................2...............................1 INTRODUCTION .................2.....1 Compactness .....2 Effective Section Modulus............2..............2-1 to D1............ D1-2 D1..................................................................................................2 Corner Radii ............................................................................................... D1-6 D1.......................................................1 Torsion Constants ......3..........................2-4 Dimensions and Properties/Properties for Assessing Section Capacity .............. D1-22 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES...............11 TABLES D1..............4-2 Telescoping Information ................... D1-8 TABLES TABLES D1...............1 Scope ..3............... D1-4 D1.................................2............................................................ D1-4 D1.............................................3 Form Factor .................... D1-4 D1.........................4 TELESCOPING SECTIONS ............................................. D1-3 D1........ D1-8 D1............1................................................2..................2...........................4..............................................................1 Dimensions and Properties ............3 PROPERTIES FOR FIRE DESIGN .........................................................................PART 1 SECTION PROPERTIES 1 1 PAGE D1.................. D1-7 D1..1......... D1........................................................................2.................................3-4 Properties for Fire Design .... D1-2 D1...3-1 to D1..................................................................2....3 Properties for Assessing Section Capacities .......................................2 Surface Areas ...............................4...................... D1-17 TABLES D1.................4-1 to D1.. D1-8 D1.................... DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-1 .... D1-2 D1.............................................................. The elastic section moduli are also used in the determination of elastic stresses where design for fatigue must be considered.PART 1 SECTION PROPERTIES D1. D1. The elastic and plastic section moduli for bending about the various axes are also tabulated. D1. The second moments of area are required for serviceability calculations and the radii of gyration are required for assessing member stability. or where the stress state at serviceability loads may need to be checked.1 INTRODUCTION The section property tables include all relevant section dimensions and properties necessary for assessing ‘DuraGal’ tubular steel structures in accordance with AS 4100 . The torsion constants are used in determining the torsional moment and angle of twist per unit length.1 Dimensions and Properties The tables give standard dimensions and properties for DuraGal structural steel hollow sections. These are utilised in an intermediate step to determine the effective section modulus for flexural design to AS 4100.2.1998. D1-2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2 SECTION PROPERTY TABLES For each group of structural hollow section the tables include: • Dimensions and Properties • Properties for Assessing Section Capacity to AS 4100. Part XIV : Hot-finished structural hollow sections .Rc2 (4 .D 1.2Rc(4 .t) . 1977. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-3 .1.1.1.Dimensions and sectional properties”.2.π) Ah = (b .2.1 Torsion Constants The torsional inertia constant (J) and the torsional modulus constant (C) for square and rectangular hollow sections are defined as follows:  h  J = t 3 + 2kAh   3   3 h  + 2kAh  t =  3  k   t +     t = Ro + Ri 2 h = 2[(b .2.1: Parameters for Calculation of Torsion Constants The information contained in Section D1.t)] . “Hot-rolled steel sections .1 Figure D1.1 was extracted from: • International Standard ISO 657/XIV.1.2.t) + (d .π) k = t = specified thickness of section b = width of section d = depth of section Ro = outer corner radius Ri = inner corner radius Rc = mean corner radius h = length of the mid-contour Ah = area enclosed by h k = integration constant where Rc and 2Aht h as shown in Figure D1.t)(d . 2. and the form factor are tabulated according to steel grade.2.1.1. D1-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2-1 to D1. However it should be noted that the actual corner geometry may vary from that shown.2-6 include values of external surface area per metre and external surface area per tonne. The effective section moduli. Tables D1.0 mm and less b) thickness greater than 3.3 Properties for Assessing Section Capacities These properties are necessary for calculating the section capacities of the structural hollow sections in accordance with AS 4100.2.2 Corner Radii The section properties presented in this publication are calculated in accordance with AS 1163.1.D 1. Figure D1.2: Corner Geometry for Determining Section Properties D1.2.2.2 Surface Areas Surface area data may be used in estimating quantities of protective coatings. a) thickness 3.0 mm Figure D1. D1. “compactness” of section.2 shows the corner radii detail used in determining section properties. of AS 4100 and is used in the calculation of the nominal section moment capacity (Ms) as defined in Clause 5.5 inclusive. In the interim.2.2 Effective Section Modulus Subsequent to the evaluation of “compactness” the effective section modulus (Ze) is also tabulated. It should be noted that the deformation limit (λed) is only exceeded for one of the hollow sections manufactured in accordance with AS 1163 and listed in this manual.1 Compactness In Clauses 5.3.SHS Element Residual Stresses Plasticity Limit λ ep Yield Limit λ ey Deformation Limit λ ed Compression Flange CF 30 40 90 Web CF 82 115 - Table D1.3.2-4.2.2. and 5.1 of AS 4100.0 product bent about the weak y-axis (λey = 97.2.5 of AS 4100.3.2 to 5.3.3. 5.2: Plate Element Slenderness Limits for Members Subject to Bending The CF residual stress classification is used as DuraGal is manufactured in Australia by the cold forming process. sections are described as compact.2.5 of AS 4100) or in using the provisions of Section 8 of AS 4100 for designing members subject to combined actions. Ze is determined by the requirements of Clauses 5. Table D1. non-compact or slender.4. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-5 .2. for details of the research in a case study phone OneSteel Direct on Freecall 1800 1 STEEL (1800 1 78335) or Freefax 1800 101 141.2.5 of AS 4100 does not currently permit plastic analysis when designing with structural hollow sections.2. Therefore noticeable deformations (local buckling) will not occur under service loadings except for 150x50x2. Section RHS. The tables include a column headed “compactness” where the compactness or otherwise of the sections is indicated for a given axis of bending as follows: C compact N non-compact S slender These terms are important with respect to selecting the methods of analysis that may be used to determine the design action effects (see Clause 4. Research has shown that most DuraGal hollow sections are suitable for design by plastic analysis and AS 4100 will be revised as soon as possible.D 1. D 1. Clause 4.2 gives values of plate element slenderness limits for structural hollow sections used in the determination of Ze in Tables D1.2-1 to D1.2.9).2. This type of categorisation provides a measure of the relative importance of yielding and local buckling on the effective section modulus. A knowledge of kf is also important when using the provisions of Section 8 of AS 4100 for designing members subject to combined actions.3) Table D1.2 of AS 4100 is given by: kf = where Ae Ag Ag = gross cross-sectional area Ae = effective area Ae was calculated by summing the effective areas of the individual elements whose effective widths are specified: for RHS and SHS by b be = b − 2t gFGH λλ IJK ≤ bb − 2t g ey e where be = effective width of section (Clause 6.D 1.1 of AS 4100.2.3.2.2.3. kf = 1.2.3. D1-6 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . SHS Residual Stresses CF Yield Slenderness Limit λ ey 40 Plate Element Slenderness λe bb − 2t g FG f IJ t H 250 K y kf must be known in order to determine the nominal section capacity of a concentrically loaded compression member (Ns) as defined in Clause 6.3: Plate Element Slenderness Limits for Members Subject to Axial Compression Section RHS.e.3 Form Factor The form factor (kf) determined in accordance with Clause 6.2.2.0 signifies a column section which will yield rather than buckle locally in a short or stub column test).4 of AS 4100) b = full width of section t = thickness of section λey = yield slenderness limit (see Table D1. The calculation of kf indicates the degree to which the column section will buckle locally before squashing (i.3) λe = plate element slenderness (see Table D1.2.3. J.and three. [2] Bennetts.. “Design of Single Storey Industrial Buildings for Fire Resistance”.. 1992. and Thomas. D. Szeto. [4] O’Meagher. Thomas.. I. Steel Construction.. Dayawansa.. the exposed surface area to mass ratio (E) may be taken as equivalent to ksm. Australian Institute of Steel Construction. Australian Institute of Steel Construction.. D.3 PROPERTIES FOR FIRE DESIGN To assist in the design of ‘DuraGal’ sections for fire resistance in accordance with Section 12 of AS 4100.D..R. Steel Construction. “Guidelines for Assessment of Fire Resistance of Structural Steel Members”.D and Proe. “Handbook of Fire Protection Materials for Structural Steel”. 25 mm Gap 4 = Top Flange Excluded. I. “Design of Steel Structures for Fire Resistance in Accordance with AS 4100”. I. Box-protected.. Proe.J. the “Handbook of Fire Protection Materials for Structural Steel” published by AISC [1] may be consulted to determine the thickness of proprietary materials required for a given value of ksm and Fire-Resistance Level (FRL). No Gap 6 = Top Flange Excluded.sided exposure should be taken as those corresponding to Cases 1 and 4 respectively.D1. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-7 .D. No Gap 3 = Total Perimeter.. Bennetts..R. I. Thomas.R. (See also references[3][4]) Figure D1. A. I. Australian Institute of Steel Construction. Box-protected. [3] Thomas. For unprotected structural hollow sections the values of ksm corresponding to four. 1990.D. No2.3: Cases for Calculation of Exposed Surface Area to Mass Ratio Cases of fire exposure considered: 1 = Profile-protected 2 = Total Perimeter. In the AISC Handbook. Vol 26. Box-protected. I. Australian Institute of Steel Construction.R Bennetts.H. I. D.. For members requiring the addition of fire protection materials. W. values of the exposed surface area to mass ratio (ksm) are tabulated for the various cases shown in Figure D1. 1992. I. 1987. Vol 26. 25 mm Gap Suggested references for Fire Design: [1] Proe. Box-protected. In these instances fire protection is necessary where a fire rating is required. Bennetts.T.J.3. No 3. Profile-protected 5 = Top Flange Excluded. P.J. 2 shows typical telescoping data required to select appropriate sections.4.4.0 mm are shown bold in the tables.1 Scope The tables of telescoping sections provided can be used to determine hollow sections which are suitable for telescoping.2 Method Total available clearance is tabulated to allow designers to select sections with suitable clearance for the type of fit required. D1-8 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . For tight fits. Typical corner geometry may differ from that used for calculation of section properties and reference should be made to individual manufacturers. additional clearance may be needed to allow for straightness of the section.4 TELESCOPING SECTIONS D1.D1. Telescoping of SHS and RHS where the female (outer) has a larger wall thickness requires careful consideration of corner clearances due to the larger corner radii of the thicker section.4. Figure D1. Sections with clearances less than 2. All calculations used in preparation of the tables are based on the nominal dimensions of hollow sections and manufacturing tolerances specified in AS 1163. Where telescoping over some length is required. D1. Owing to dimensional tolerances permitted within that standard actual clearances of sections manufactured to this specification will vary marginally from the values tabulated. varying corner radii and internal weld heights can affect telescoping of sections and it is recommended that some form of testing is carried out prior to committing material. 2: Telescoping Data DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-9 .4.Figure D1. [ BLANK ] D1-10 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . 6 30.53 1.6 30.279 0.2-1(1) DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness DIMENSIONS AND RATIOS Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b mm mm Mass per m t External Surface Area PROPERTIES b-2t d-2t t t mmkg/m m2/m Gross m2/t mm 2 About x-axis Section Area Ag per m per t PROPERTIES FOR DESIGN TO AS 4100 Ix Zx 106mm4 103mm 3 103mm3 Sx rx Iy mm 106mm4 103mm3 Zy Sy 103mm 3 Torsion Form Constant Modulus Factor Torsion About y-axis ry J C mm 106mm4 103mm3 kf About x-axis λex Compact.50 10.0 64.4 20.5 50.2 53.771 50.16 2.3 18.0 29.3 14.4 31.19 Notes: 1.856 0.0 2130 1810 1480 1140 959 774 5.4 26.50 1.00 10.526 0.9 52.33 8.4 51.5 19.0 574 60.5 44.30 1.1 20.8 45.2 C C C C C C N N 45.2 30.9 37.4 29.5 31.4 7.1 81.7 14.5 2130 1810 1480 1140 959 774 4.7 18.74 2.391 0.50 1.391 0.87 1.763 0.60 2.3 48.211 22.0 RHS 6.5 13.0 64. N = Non-compact Section.00 1.7 22.7 24.5 59.0 23.00 0.4 30.9 65.257 0.5 14.0 RHS 11.0 14.1 20.8 39.0 5.0 RHS 6.9 21.7 24.67 86.0 33.4 31.0 29.7 5.64 0.5 21.3 37.16 3.553 8.05 1.9 43.99 2.5 37.746 0.1 30.71 1.2 20.5 12.7 18.393 22.0 100 x 50 x 6.00 0.2 12.5 463 1.9 65.5 31.4 24.9 36.3 39.00 10.1 16. as defined in AS 4100.5 15.9 C C C C C N 91.8 25.1 42.7 24.383 0.5 RHS 7.383 0.2 21.8 35.6 3.9 29.616 0.3 56.0 32.0 64.3 45.4 77.4 43.9 39.7 24.43 2.1 18.9 39.4 81.5 21.4 20.83 3.0 23.4 46.511 0.2 51.3 28.0 35.3 8.9 26.293 0. D1-11 2.3 20.2 C C N N S S S S 27.8 33.9 2.0 RHS 16.1 14.N.43 27.0 RHS 12.2 49.3 30.860 0.50 10.283 0.33 5. 3.754 0.0 28.2 13.65 1.393 22.887 0.13 1.5 52.0 1310 23.379 0.7 1530 18.2 36. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100.49 3.7 14.7 10.5 34.9 43.750 0.5 9.8 23.6 32.942 0.2 19.1 17.6 42.0 RHS 10.5 19.1 23.33 19.8 23.6 RHS 3.7 24.5 42.0 23.2 64.01 0.0 12.3 40.96 2.3 39.7 20.7 60.2 25.96 2.07 0.390 0.9 10.967 0.291 0.1 30.4 33.0 84.9 16.886 0.5 16.8 22.1 35.7 1.06 0.4 20.6 3.5 RHS 7.43 2.7 60.4 17.6 59.3 63.5 18.5 30.0 49.8 33.64 125 x 75 x 6.6 47.1 46.6 959 31. fy = yield stress used in design.8 23.7 22.0 709 48.0 11.9 1.44 3.DCTDHS/06 MARCH 2002 TABLE D1.3 32.2 72.2 15.8 97.18 1.0 60.5 48.2 51.0 RHS 14.1 30.3 48.0 73.53 1.2 38.845 0.53 3.06 4.3 47.5 1.311 0.285 0.7 5.4 26.3 17.3 841 38.0 28.4 29.624 14.7 14.501 40.2 18.1 34.9 N N S S S S 40.0 RHS 4.5 35.8 48.2 78.7 48. C =Compact Section.3 14.00 0.9 35.1 50.3 4.4 0. S =Slender Section.9 40.379 0.0 58.53 2.0 35.7 18.0 16.0 6.661 8.7 91.0 1080 26.S) 150 x 50 x 6.4 10.69 66.3 1.5 RHS 5.9 37.912 0.6 58.1 21.7 21.4 81.0 21.00 1.31 1.0 43.5 51.04 64.2 4.2 22.6 18.6 C C C N N S 84.8 26.5 52.S) About y-axis λey Compactness Zey 103mm3 (C.0 29.6 32.7 24.7 18.2 44.0 21.5 17.6 35.28 1.0 51.7 49.0 27.765 0.452 0.613 34.9 27.7 29.4 65.633 0. as defined in AS 4100.713 0.7 20.5 19.07 0.0 RHS 14.3 46.00 1.0 RHS 16.2 28.9 36.6 21.00 1.4 1.4 46.4 43. For Grade C450L0 fy=450 MPa and fu =500 MPa.0 RHS 6.00 1.567 0.33 8.1 51.63 2.93 1.05 2.0 33.1 30.2 72.361 0.5 10.53 2.372 34.9 26.6 31.9 43.1 19.4 51.374 0.6 26.0 RHS 8.1 34.6 64.1 31.N.8 33.290 0.4 34.274 0.Z ex ness 103mm 3 (C.4 14.0 RHS 8.9 38. .4 12.441 0.56 2.6 26.44 3.7 20.2 78.00 1.374 0.9 37.35 1.8 27.07 1.9 33.64 3.0 RHS 8.9 7.2 4.39 1.4 22.6 16.11 0.3 39.5 25.9 35.400 0. fu = tensile strength used in design.7 14.2 75.5 RHS 7.54 2.295 22.7 6.2 C N N S S S 59.8 0.0 RHS 11.6 47.390 0.6 4.08 67.1 13.653 0. 1 26.7 14.9 C C N S 8.63 2.0 12.1 18.3 Gross 6.799 8.0 23.145 45.233 0.224 0.00 8.00 1.1 8.1 9.2 66.1 17.00 8.26 8.45 7.0 12.18 4.7 14.93 1. fu = tensile strength used in design.0 23.1 30.0964 0.9 13.8 16.89 8.07 13.03 6.6 RHS 2.0585 5.25 1.5 20.31 6.7 28.75 25.305 21.5 RHS 2.00 1.522 0.320 0.13 5.63 0.9 39. .0389 3.5 14.0993 7.07 2.33 8.88 2.00 1.81 5.0281 0.0 RHS 5.62 2.0 14.0487 0.3 391 334 274 223 0.0192 0.43 5.6 44.92 50 x 20 x 3.0367 0.40 18.0167 0.1 0.120 0.00 1.00 1.05 10.7 27.0414 0.00 1.0 9.8 881 23.6 47.2 C C N N 3.630 0.6 RHS m2/m m2/t 9.144 0.5 54.3 26.1 0.4 22.67 8.00 0.32 1.4 9.0 RHS 1.0843 0.90 3.56 3.9 12.00 0.6 60.0 RHS 1.421 0.86 5.86 5.6 47.0 30.63 2.505 0.01 0.0 RHS 2.6 14.8 Compact.3 About x-axis Section Area Ag per m per t PROPERTIES FOR DESIGN TO AS 4100 Ix Zx 106mm4 103mm 3 103mm3 10.50 10.00 1.9 11.0 9.335 0.2 40.1 30.3 C C C C 5.78 3.5 6.204 10.112 0.72 3.05 1.29 1.0 29.0848 0.05 2.0 RHS 3.1 14. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100.83 2.593 0.D1-12 TABLE D1.58 7.00 1.93 0.372 0.4 22.0 RHS 3.8 6.91 10.0 9.0 29.15 1.69 9.3 10.241 0.184 12.1 23.4 0.4 15.0 RHS 2.1 8.02 65 x 35 x 4.1 20.4 32.75 9.9 21.29 0.51 3.96 6. N = Non-compact Section.140 0.92 1.56 3.53 3.7 24.4 14.4 11.5 19.450 0.7 1.1 8.7 24.1 19.49 3.7 18.2 0.93 1.0 RHS 2.42 4.243 0.11 6.746 10.164 16. fy = yield stress used in design.878 0.06 7.95 4.55 1.2 52.31 2.5 20.9 459 374 303 0.75 0.9 39.45 7. DCTDHS/06 MARCH 2002 2.190 0.14 28.337 kf About x-axis λex 103mm 3 (C.328 0.12 2.65 7.25 3.0 584 35.7 0.58 7.0 RHS 5.00 1.67 6.1 18.60 2.5 35.2 27.06 13.199 0.6 16.62 2.60 7.00 2.5 27.5 474 44.985 9.14 6.414 0.56 21.51 3.N.8 C C C C 13.00 10.223 0.5 681 541 459 374 0.0 9.38 0.0 10.1 30.259 0.60 2.63 7.1 17.0 691 28.123 0.7 0.0466 0.5 RHS 2.01 75 x 25 x 2.6 11.39 2.14 16.5 10.88 3.9 17.26 3.9 37.11 5.191 0.17 9.52 6.1 C C C C 5.04 5. 3.1 26.53 16.04 5.4 0.78 3.6 RHS 3.5 1230 13.42 2.0 66.2 16.5 13.133 0.58 1.89 2.67 12.1 24.99 1.0 RHS 2. C =Compact Section.00 1.193 65.9 17.1 18.81 24.8 13.4 13.44 8.6 12.285 0.11 4.7 4.12 1.5 14.5 13.26 10.80 22.N.35 6.5 RHS 2.2 N S S 4.5 10.3 19. as defined in AS 4100.92 5.16 4.0550 0.0 29.07 5.2 17.891 0.0 9.726 0.245 mm 2 23.0951 0.00 1.93 2.0926 0.3 361 309 254 207 0.0702 4.11 4.12 2.2 14.7 24.8 16.00 10.5 30.0620 0.7 53.14 19.31 6.7 14.0723 0.42 1.3 0.5 RHS 2.5 RHS 3.62 2.143 0.0 RHS 1.8 23.1 10.91 8.106 0.183 0.33 8.0 RHS 2.78 4.2 C C N N 2.50 10.0212 0. S =Slender Section.62 1.135 45.2 C C C C C N N 28.S) 1.89 3.7 8.7 18.0 23.3 C C C 10.35 4.130 0.96 1.244 0.0 19.5 26.11 10.35 2.5 17.1 17.95 7.3 19.9 383 Sx rx Iy mm 106mm4 103mm3 Zy Sy 103mm 3 Torsion Form Constant Modulus Factor Torsion About y-axis ry J C mm 106mm4 103mm3 0.0 16.0989 0.0 15.6 RHS 2.67 7.197 7.2 C C C N N S S 21.754 0.7 18.278 0.7 18.8 8.904 0.1 65.53 19.80 19.240 0.8 82.S) 29.2 44.191 53.58 3.16 4.6 60.00 6.00 28.3 25.141 0.8 9.229 0.0778 7.8 54.238 0.1 24.37 50 x 25 x 3.47 3.81 3.0838 0.11 8.3 11.7 14.92 3.00 10.67 1.95 3.0 28.195 81.0142 2.5 14.1 14.26 3.36 5.3 11.32 1.29 4.1 18.193 34.44 Notes: 1.Z ex ness About y-axis λey Compactness Zey 103mm3 (C.26 14.81 37.800 0.240 0.0328 0.0237 2.384 0. For Grade C450L0 fy=450 MPa and fu =500 MPa.131 0.3 20.0347 3.6 82.9 21.2-1(2) DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness DIMENSIONS AND RATIOS Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b mm mm Mass per m t External Surface Area PROPERTIES b-2t d-2t t t mmkg/m 75 x 50 x 6.8 0.0706 0.7 24.0608 3.0 1060 16.0 22.60 3.281 0.4 81.77 3.9 15.00 1.7 44.0 20.28 13.7 65.4 33.01 0. as defined in AS 4100.10 7.00 0.1 10.0 RHS 4.4 16.60 6.9 25.9 39.5 0. 1 17.5 13.7 0.5 35.812 21.7 33.98 C C 4.4 8.242 57.469 17.2 70.7 36.8 0.0 0.8 30.3 RHS 4.92 9.91 4.140 48.2 57.2 S S 21. 2.848 20.3 41.6 27.2 0.6 S S 12.90 8.4 0.0205 0.8 RHS 5.6 27.875 27.5 C C 25. as defined in AS 4100.290 13.3 26.6 30.14 15.7 368 310 0.8 RHS 6.2 0.263 0.80 65 x 35 x 2.5 C C 2.0310 2.0 17.6 20.8 23.96 12.1 14.8 21.34 1.9 0.5 0.28 1.5 9.2 46.7 C C 10.0800 3.2 31.3 RHS 3.6 42.00 6.6 5.5 C C 3.1 31.70 19.8 15.0 46.S) 125 x 75 x 2.6 15.3 26.7 41.2-2 DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DIMENSIONS AND RATIOS Designation d b mm mm Mass per m t mmkg/m External Surface Area b-2t PROPERTIES d-2t t t m2/m Gross m2/t mm 2 About x-axis Section Area Ag per m per t PROPERTIES FOR DESIGN TO AS 4100 Ix Zx 106mm4 103mm 3 103mm3 Sx rx Iy mm 106mm4 103mm3 Zy 103mm 3 Sy Torsion Form Constant Modulus Factor Torsion About y-axis ry J C mm 106mm4 103mm3 kf About x-axis λex Compact.5 1.6 11.142 58.57 4.7 340 287 0.0 35.78 0.92 36.5 8.192 57.00 14.1 21. C =Compact Section.5 13.09 2.2 55.3 0.1 20.93 15.12 75 x 50 x 2.9 8.31 1.0869 5.699 23.81 28.493 0.834 0.0 0.4 2.99 2.101 0.23 16.8 30.6 33. fy = yield stress used in design.0 25.8 RHS 2.04 0.3 26.208 9.3 31.30 11.05 1.87 19.6 648 540 0.73 5.419 13.51 2.0594 2.1 N S 41.130 48.57 4.95 0.DCTDHS/06 MARCH 2002 TABLE D1.9 19.721 33.2 21.132 58.2 C N 6.1 100 x 50 x 2.3 RHS 5.00 1.3 26.0183 2.4 37.27 3.224 10.18 7.1 N S 11.32 50 x 25 x 2.2 11.0518 3. For Grade C450L0 fy=450 MPa and fu =500 MPa.82 2.922 0.5 788 655 1.267 0.8 RHS 2.34 0.20 4.00 9.6 1070 52.S) About y-axis λey Compactness Zey 103mm3 (C.83 2. S =Slender Section.8 RHS 3. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100.812 0.00 0.81 22.6 8.3 26.5 0.65 3.75 4.67 2.392 56.76 0.39 2.29 1.19 2.984 21.245 0.3 885 2.N.3 508 425 0.89 2.21 7.290 46.0917 10.5 C C 16.3 20.9 19. as defined in AS 4100.1 15.0 0.6 10.96 4.6 44.8 RHS 8.53 1.N.2 16.3 RHS 2.4 6.23 21.39 2.0931 4.0790 4.9 6.1 13.98 0.91 4.390 46. D1-13 .240 47.0352 0.9 C C 5.73 3.90 46.7 24.25 0.72 14.0912 0.04 10.4 8.3 0.1 0.0 20.Z ex ness 103mm 3 (C.292 56.14 0.48 3.4 14.39 2.3 41.3 RHS 6.8 30.73 5.3 RHS 2.00 1. N = Non-compact Section.92 8.0 45.44 0.8 1.0 0.1 17.00 1 .6 39.9 23.4 16.7 16.18 Notes: 1.4 24.1 21.24 0. 3. fu = tensile strength used in design.96 6.9 0.78 21.72 5.7 0.51 7.1 13.190 47.558 0.107 0.341 0.92 50 x 20 x 2.78 17.2 10.2 26.229 8.00 0. 0 9.350 0.2 31.4 26.0 53.6 49.79 2.0 14.2 34.6 35.5 26.0 12.7 19.0 28.2-3(1) DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness DIMENSIONS AND RATIOS Designation Mass per m External Surface Area PROPERTIES b-2t t Gross DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 b t per m per t Ag mm mm mm kg/m m2/m mm 2 16.0 64.0 33.265 21.7 53.9 28.4 68.91 93.2 45.4 30.00 1.9 27.3 8.and y-axis .29 5.5 SHS 14.1 14.706 0.1 25.0 SHS SHS SHS SHS 8.53 6.1 8.7 24.2 40.3 81.8 15.0 28.274 0.32 1.9 43.00 1.6 71.379 0.1 10. 2.0 2.4 65.624 28.0 31.7 0.0 21.00 1.6 28.6 33.0 22.6 57.0 48.6 16.06 0.283 0.3 1020 859 694 559 1.D1-14 TABLE D1.56 4.6 65.7 24.6 8.6 14.279 0.6 49.2 21.16 17.60 5. fu = tensile strength used in design.2 25.6 27.3 38.5 24.255 23.1 15. C =Compact Section. About x-.733 0.841 14.6 52.6 12.4 33.6 44.797 0.0 1.878 0.0 64.889 0.8 19.5 13. S =Slender Section.4 C C N 56.3 19.6 28.3 25.77 1.23 1.251 0.70 1.5 2.05 2.1 16.6 45.09 0.3 19.35 1.5 28.6 28.4 8.0 16.351 0.724 28.939 0.00 17.6 1290 1110 921 721 609 494 399 0.75 7.53 6.8 18.8 39.5 63.8 29.0 16.9 42.8 36.83 11.0 3.9 52.9 14.3 22.1 30.6 C C C C N N S 38.6 41. y.952 0.83 38.8 19.00 0.37 46.5 3.0 54.1 22.414 34.8 89 x 89 x 6. N = Non-compact Section.1 11.4 32.293 22.63 2. as defined in AS 4100.2 40.03 0.5 2.7 34.01 1.1 11.882 0.6 47.00 1.553 37.638 0.341 75 x 75 x 6.16 1.6 24.0 1.0 9.4 26.4 C C N S S S 73.51 1.0 35.5 24.5 21.0 2.978 0.8 N S S S 29.239 0.5 52.5 3.6 62.552 0.2 12.1 27.7 37.787 0.0 SHS SHS SHS SHS SHS SHS SHS 12.4 22.0 4.04 2.0 51.00 1.285 0.2 17.6 13.0 14.5 23.06 1.5 28.7 14.5 26.2 21.3 24.1 32.77 1.7 9.42 3.4 23.0 4.6 14.716 0.0 SHS 2.1 1.6 13.1 52.0 SHS PROPERTIES FOR DESIGN TO AS 4100 Ix Torsion Torsion Form Constant Modulus Factor kf λe Compactness Ze (C.6 Notes: 1.0 28.07 0.6 16.234 0.2 1.330 0. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100.8 17.0 43.00 0.4 13.1 30.88 3.3 20.00 1.00 1.5 25.0 2.243 0.0 3.2 11.3 35.291 0.00 1.5 SHS 2.13 90 x 90 x 3.94 27.96 7.7 38.8 For Grade C450L0 fy=450 MPa and fu =500 MPa.2 25.1 35.0 23.391 0.6 17.5 19.7 2.5 2.74 5.3 37.0 10.0 SHS 3.1 40.505 30.2 42.6 36.250 0.S) 103mm3 19.7 47.00 1.253 0.66 2.and n-axis Section Area d 100 x100 x 6.23 60.50 65 x 65 x 6.4 23.7 72.80 7.00 1.81 1. About x.27 1.9 24.6 25.6 32.12 42.1 64.624 0.6 20.509 0.8 23.0 18.0 34.5 26.15 4.0 30.391 0.48 1.N.12 0.6 39.1 26.5 33.2 19.03 Zx Zn Sx rx J C 106mm 4 103mm 3 103mm3 103mm3 mm 106mm4 103mm3 2130 1810 1480 1140 959 774 3.2 8.3 16. 3.8 27.7 24.49 7.7 18.2 1.2 33.790 48.5 33.00 1.774 11.5 36.8 15.614 0.7 30.6 81.5 38.9 36.3 31.4 23.4 39.4 29.0 SHS 5.3 37.39 0.3 33.3 11.2 30.374 0.1 36.6 SHS SHS SHS SHS SHS SHS SHS 10.355 43.1 20.1 44.2 1.8 73.00 1.00 1.3 38.7 14.23 5.00 0.334 0.2 29.9 12.9 37.696 0. as defined in AS 4100.15 0.9 5.6 35.27 1.91 7.0 5.3 22.5 52.24 0.5 24.5 63.0 12.4 1870 1590 1150 2.393 22.66 4.2 56.353 0.1 19.390 0.0 1.1 24.9 17.323 0.1 14.383 0.0 SHS 4.00 0.1 17.5 9.290 0.2 36.94 8.0 5.2 10.0 SHS 3.5 51.9 1.9 51.45 4.6 26.5 1530 1310 1080 959 841 709 574 1.04 1.9 43.971 0.38 1.5 35.9 34.01 6.54 3.2 29.0 SHS 5.78 3.3 20. fy = yield stress used in design.4 22.6 18.0 2.6 12.7 21.6 9.6 47.7 16.4 33.8 80.8 C C C C N S S 27.454 0.44 23. 24 9.00 10.00 1.0822 0.4 83.229 0.67 2.8 81.9 15.07 6.1 19.7 68.16 2.39 8.24 20 x 20 x 1.0741 0.0 3.37 35 x 35 x 3.18 4.07 6.99 9.1 30.0927 8.4 10.195 0.00 1.0745 85.09 4.84 25 x 25 x 2.6 0.2 19.5 0.9 34.00 10.1 18.09 2.72 4.7 C C C C 4.47 1.58 4.0694 0.0 16.00 1.8 18.5 SHS 2.191 0.16 2.0 SHS 3.117 10.3 13.2 44.36 1.90 4.5 13. as defined in AS 4100.00608 0.6 External Surface Area per m per t kg/m 2 m /m PROPERTIES b-2t t PROPERTIES FOR DESIGN TO AS 4100 Gross About x-. fy = yield stress used in design.190 0.5 C C 2.5 111 0.0 18.2 11.08 0.0253 0.02 1.143 0.1 8.9 39.82 2.51 7.9 45.11 3.00 17.0889 0.35 4.7 15.74 5.135 45.4 82.79 6.1 65.3 11.61 2.3 84.20 3.44 13.8 13.4 15.00 1.608 0.7 14.0 1.80 1.0 521 421 359 294 239 0.5 19.38 0.2 8.36 3.0914 0.0 29.0 2. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100.71 1. For Grade C450L0 fy=450 MPa and fu =500 MPa.15 7.39 0.3 19.2 11.00 10.38 0.3 14.64 1.0231 1.7 9.0454 0.35 1.51 7.7 53.00 11.30 2.179 0.15 6.41 14.8 26.40 3.9 361 309 254 207 0.136 0.0272 0.33 5.21 5.0 2.54 1.21 1.141 0.09 2.2 18.62 4.0 15.7 8.39 1.0 19.and n-axis Section Area Ag mm Ix 2 6 10 mm Zx 4 3 10 mm Zn 3 3 10 mm Sx 3 3 10 mm Torsion Torsion Form Constant Modulus Factor J C kf rx 3 6 mm 10 mm 4 3 10 mm About x.00 1.2-3(2) DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness DIMENSIONS AND RATIOS Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b mm mm Mass per m t mm 50 x 50 x 5.26 1. N = Non-compact Section. D1-15 2.2 66.00 1.N.00 1.42 1.89 3.39 5.275 0.474 0.0212 2.151 0.3 14.115 67.DCTDHS/06 MARCH 2002 TABLE D1.133 0.54 1.169 0.69 3.131 0.780 1.321 0.926 0.158 0.1 20.21 1.74 5.403 0.74 40 x 40 x 4.07 6.00 1.and y-axis λe 3 Compactness Ze (C. S =Slender Section.00 1.S) 103mm3 SHS SHS SHS SHS SHS SHS 6.0931 0.0 SHS 1.00 1.83 2.7 66.99 1.58 2.8 82.61 3.5 2.0379 3.193 0.26 4.751 7.6 SHS 0.0579 5.13 3.1 C 0.95 1. C =Compact Section.46 17.0 SHS 2.105 0.113 0. y.6 SHS 4.3 9.0128 1.5 0.23 4.00 1.3 53.3 814 681 541 459 374 303 0.183 0.4 9.58 3.8 10.0297 0.102 0.226 0.7 18.69 3.1 15.130 0.25 3.09 3.00 10.4 22.0945 55.0169 0.07 1.0377 2.5 SHS 2.00 1.0 23.3 11.0 SHS 1.78 5.66 4.75 2.8 24.97 4.88 0.5 2.13 2.4 9.32 1.8 54. 3.23 3.257 0.5 14.36 1.72 4.3 C C C 1.00 1.0451 0.0 1.5 19. fu = tensile strength used in design.00 1.31 1.67 12.03 1.84 11.02 2.19 1.0 4.00 10.0148 0.6 0.57 12.23 3.6 SHS SHS SHS SHS 2. as defined in AS 4100.0103 0.1 30.7 24.0 23.2 14.33 1.0611 5.0 SHS 1.47 1.3 13.63 0.68 1.924 1.66 5.47 2.3 8.2 C C C C N N 13.81 1.185 16.9 C C C C N 6.33 7.6 209 174 143 0.92 5. .155 34.195 27.68 8.192 0.113 0.0529 0.71 1.150 0.93 2.44 0.0595 0.873 0.6 SHS 1.751 Notes: 1.13 3.39 8.57 30 x 30 x 2.153 0.12 0.60 2.1 13.0932 0.97 4.66 4.469 0.00 14.6 SHS 1.7 14.8 214 175 0.00 1.24 8.0 16.00 13. 3 11.3 38.08 0.87 7.74 5.721 45. as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. fy = yield stress used in design. C =Compact Section.152 48.95 0.27 For Grade C450L0 fy=450 MPa and fu =500 MPa.2 0.7 2.3 27.149 0.900 27. y.67 2.9 1.2 21.8 58.40 6.9 24.39 6.4 396 333 0. as defined in AS 4100.8 SHS 2.7 41.00 14.32 1.7 508 425 0.0 65 x 65 x 2.40 33.3 SHS 6.62 0.6 S S 31.3 39.93 5.159 7.9 56.7 32.303 0.571 18.14 0.392 46. 3.7 57.43 4.86 3.87 7.2 13.2 N 12.5 20.7 29.0890 0.8 SHS 2.02 3.3 SHS 2.2 340 287 0.390 0.46 Notes: 1.0970 0.0831 4.3 0.579 16.26 2.132 48.N.3 29.1 17.and y-axis λe Compactness Ze (C.0499 3.D1-16 TABLE D1.5 13.85 2.11 2.8 SHS 2.34 5.55 1.34 0.83 1.42 0.974 33. 8.8 SHS 2.292 46.52 40 x 40 x 2.190 0.5 1070 885 1.19 5.52 19.00 21.74 8.5 C C 8.0 15.0570 0.3 SHS 3.and n-axis Section Area d b t per m per t Ag mm mm mm kg/m m2/m mm 2 Ix 106mm 4 Torsion Torsion Form Constant Modulus Factor kf Zx Zn Sx rx J C 103mm 3 103mm3 103mm3 mm 106mm4 103mm3 About x.54 2. DCTDHS/06 MARCH 2002 .3 58.192 47.5 1.00 35.7 C C 4.886 0.00 1.5 39.6 15. fu = tensile strength used in design.0 23.9 19.0 41.00 1.1 15.3 41.3 15.61 2.1 N S 20.3 SHS 8.252 57.8 30.3 SHS 3.364 11.19 4.1 50 x 50 x 2.2 9.185 0.9 1.127 6.45 3.256 11.0 26.6 C C 5.6 788 655 0.9 13.S) 103mm3 100 x 100 x 2.00 0.5 56.1 12.2 13.00 1.4 33.4 20.6 10.8 24.2-4 DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DIMENSIONS AND RATIOS Designation Mass per m External Surface Area PROPERTIES b-2t t PROPERTIES FOR DESIGN TO AS 4100 Gross About x-. 2.1 75 x 75 x 2.9 0.1 19.1 25.46 12.43 4.2 0.3 563 0.0 15.0773 4.150 0.2 55.99 3.3 SHS 4.130 0.67 1. S =Slender Section.2 17.676 0.95 4.290 0.43 2.60 4.25 0.17 50. N = Non-compact Section.1 22.64 15.00 16.4 0.02 3.8 SHS 2.64 35 x 35 x 2.3 26. 93 2.58 3.2 49.4 26.2 36.9 28.4 80.07 22.8 42.2 53.2 27.5 RHS 2. BOX-PROTECTED.7 14.0 60.6 8.1 65.0 RHS 3.6 29.6 82.0 RHS 4.07 22.6 62.1 65.9 57.2 44.0 62.4 33.4 26.01 23.3 93.0 RHS 5.9 55.4 53.5 RHS 2.1 83.35 4.7 98.0 RHS 3.5 RHS 2.5 57.1 35.7 73.7 23.3 65.9 45.1 60. PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED.4 75.6 82. NO GAP 3 = TOTAL PERIMETER.0 64.7 47.0 RHS 2.0 RHS 5.8 56.2 66.3 75 x 50 x 6.9 44.8 19.9 36.7 23.5 68.4 73.5 RHS 2.6 90.2 84.5 70.3 73.0 RHS 5.92 5.4 29.53 6.5 54.60 2.9 24.0 RHS 1.5 RHS 2.5 25.2 37.1 45.3 8.1 46. PROFILE-PROTECTED 2 = TOTAL PERIMETER.60 5.0 RHS 2.96 7.83 2.8 24.8 82.4 29.1 46.6 32.9 66.72 3.7 110 135 See page D1-7 for details of the cases of fire exposure considered.6 30.1 28. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-17 .5 33.1 24.2 121 150 21.9 41.0 RHS 3.9 36.0 RHS 4.1 46.7 116 65 x 35 x 4.49 7. NO GAP 6 = TOP FLANGE EXCLUDED.9 52.0 24.5 RHS 3.5 76.9 43.8 33.9 28.50 3.8 111 138 21.4 81.1 54.62 2.0 RHS 1.35 6.8 27.42 1.56 4. 25mm GAP Designation d b t mm mm mm Mass per m 1 2 3 4 5 6 kg/m 150 x 50 x 6.9 66.7 75 x 25 x 2.0 RHS 5.1 66.3 46.8 94.5 52.4 39.25 3.0 111 136 168 49.6 67.8 54.4 22.6 RHS 9.5 43.3 46.3 48.1 33.4 55.7 23.9 29.0 50.1 39.1 125 x 75 x 6.5 53.5 68.75 45.8 30.0 RHS 2.4 44.0 79.8 29.4 39.0 64.0 RHS 16.0 RHS 1. BOX-PROTECTED.8 77.7 19.8 21.0 35.2 43.0 100 x 50 x 6.4 65.6 RHS 3.1 51.9 77.9 65.9 40.7 55.7 57.5 60.2 52.7 99.3 43.4 57.8 89.9 38.6 53.6 67.1 81.8 20.6 47.5 52.9 43. BOX PROTECTED.4 73.5 67.4 44.6 RHS 12.3 39.96 7.2 83.2 29.9 43.8 37.3 85.7 98.0 RHS 2.8 74.4 49.93 34.0 10.8 105 128 50 x 20 x 3.1 24.64 22.1 120 140 171 209 43.7 44.07 2.3 86.5 48.2 11.4 47.8 66.5 68. BOX-PROTECTED.0 RHS 1.8 28.8 69.7 49.2 58.53 6.6 59.5 38.99 1.0 79.63 45.2 69.7 53.7 53.7 50.67 8.3-1(A) FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis 1 = TOTAL PERIMETER.1 55.7 70.2 71.8 20.6 RHS 3.TABLE D1.9 48.1 34.7 53.6 32.9 28.1 34.3 42.3 50 x 25 x 3.8 74.0 73.53 6.9 45.6 8.8 81.2 111 136 31.5 RHS 2.8 36.5 RHS 2.6 48.1 51.7 23.7 14.5 41.0 RHS 1.0 66.2 46.1 65. 25mm GAP 4 = TOP FLANGE EXCLUDED.5 31.8 42.2 56.7 90.6 26.0 RHS 4.8 85.9 31.2 24.9 43.1 65.3 25.0 98.6 38.9 43.7 71.7 58.7 96.9 35.9 35.0 RHS 3.2 74.5 53.0 RHS 5.6 RHS 2.0 20.0 RHS 3 0 RHS 2.5 RHS 2.0 RHS 16.0 33.3 37.42 4.0 36.5 53.8 29.3 37.0 RHS 2.7 65.2 55.5 58.6 30.5 56.0 RHS 4.60 2.6 114 134 163 200 41.2 11.9 54.15 1.2 59.0 RHS 2.38 53. TABLE D1.3-1(B) FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis 1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP Designation d b t mm mm mm Mass per m 1 2 3 4 5 6 kg/m 150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 16.7 14.2 11.6 8.96 7.53 6.07 22.4 26.6 32.9 43.5 52.0 64.7 23.9 28.1 34.4 44.7 53.1 65.9 35.8 42.1 51.6 67.0 79.7 98.8 15.2 17.8 21.7 28.1 33.4 41.3 14.9 17.6 21.5 27.9 33.2 41.2 20.9 24.6 30.1 39.1 46.5 57.6 125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 16.7 14.2 11.6 8.96 7.53 6.07 22.4 26.6 32.9 43.5 52.0 64.7 23.9 28.1 34.4 44.7 53.1 65.9 35.8 42.1 51.6 67.0 79.7 98.8 16.7 19.6 23.9 30.9 36.7 45.5 16.4 19.3 23.7 30.7 36.5 45.3 22.4 26.3 32.3 41.9 49.8 61.7 100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64 22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0 24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5 41.6 48.5 58.9 66.4 75.8 89.8 111 138 17.0 19.7 23.9 26.9 30.6 36.2 44.7 55.3 16.6 19.4 23.6 26.6 30.3 35.9 44.4 55.0 24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5 75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 9.67 8.35 6.92 5.42 4.58 3.72 3.01 23.2 27.4 33.7 44.2 52.7 65.4 81.3 25.8 29.9 36.1 46.1 54.5 67.2 83.1 46.5 53.9 65.1 83.0 98.2 121 150 18.5 21.4 25.7 32.6 38.5 47.4 58.5 18.1 20.9 25.3 32.3 38.2 47.1 58.2 28.4 32.9 39.8 50.7 60.0 74.0 91.4 75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS 3.60 2.93 2.38 53.1 65.8 81.7 55.5 68.2 84.0 111 136 168 35.1 43.0 52.9 34.7 42.6 52.5 62.5 76.7 94.5 65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 5.35 4.25 3.60 2.93 34.2 44.7 53.1 65.8 37.4 47.1 55.5 68.2 74.8 94.2 111 136 25.8 32.2 37.9 46.4 25.3 31.8 37.5 46.0 44.0 55.4 65.2 80.1 50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 3.07 2.62 2.15 1.75 45.5 54.0 66.6 82.5 48.9 57.2 69.8 85.6 114 134 163 200 33.1 38.7 47.1 57.6 32.6 38.2 46.5 57.1 65.2 76.3 93.1 114 50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 2.83 2.42 1.99 1.63 45.8 54.2 66.8 82.7 49.4 57.7 70.3 86.1 120 140 171 209 32.4 37.7 45.8 55.9 31.8 37.1 45.2 55.3 67.1 78.4 95.4 117 See page D1-7 for details of the cases of fire exposure considered. D1-18 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 TABLE D1.3-2(A) FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis 1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP Designation d b t Mass per m mm kg/m mm mm 1 2 3 4 5 6 125 x 75 x 2.8 RHS 2.3 RHS 8.39 6.95 46.5 56.4 47.7 57.6 71.5 86.3 38.9 47.0 38.7 46.8 50.7 61.2 100 x 50 x 2.8 RHS 2.3 RHS 6.19 5.14 46.9 56.8 48.5 58.3 80.8 97.2 40.6 48.9 40.4 48.6 56.5 68.0 75 x 50 x 2.8 RHS 2.3 RHS 5.09 4.24 47.2 57.1 49.1 59.0 88.4 106 39.6 47.5 39.3 47.2 58.9 70.7 65 x 35 x 2.8 RHS 2.3 RHS 3.99 3.34 47.7 57.6 50.1 59.9 100 120 41.7 49.8 41.3 49.4 66.4 79.4 50 x 25 x 2.8 RHS 2.3 RHS 2.89 2.44 48.5 58.4 51.9 61.6 121 144 43.8 51.9 43.2 51.3 77.8 92.4 50 x 20 x 2.8 RHS 2.3 RHS 2.67 2.25 48.8 58.6 52.4 62.1 127 151 45.5 53.8 44.9 53.2 82.3 97.6 See page D1-7 for details of the cases of fire exposure considered. TABLE D1.3-2(B) FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis 1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP Designation d b t Mass per m mm kg/m mm mm 1 2 3 4 5 6 125 x 75 x 2.8 RHS 2.3 RHS 8.39 6.95 46.5 56.4 47.7 57.6 71.5 86.3 33.0 39.8 32.8 39.6 44.7 54.0 100 x 50 x 2.8 RHS 2.3 RHS 6.19 5.14 46.9 56.8 48.5 58.3 80.8 97.2 32.6 39.1 32.3 38.9 48.5 58.3 75 x 50 x 2.8 RHS 2.3 RHS 5.09 4.24 47.2 57.1 49.1 59.0 88.4 106 34.7 41.6 34.4 41.3 54.0 64.8 65 x 35 x 2.8 RHS 2.3 RHS 3.99 3.34 47.7 57.6 50.1 59.9 100 120 34.2 40.8 33.8 40.4 58.9 70.4 50 x 25 x 2.8 RHS 2.3 RHS 2.89 2.44 48.5 58.4 51.9 61.6 121 144 35.1 41.6 34.6 41.1 69.1 82.1 50 x 20 x 2.8 RHS 2.3 RHS 2.67 2.25 48.8 58.6 52.4 62.1 127 151 34.3 40.5 33.7 39.9 71.1 84.3 See page D1-7 for details of the cases of fire exposure considered. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-19 TABLE D1.3-3 FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis 1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP Designation d b t mm mm Mass per m mm 1 2 3 4 5 6 kg/m 100 x 100 x 6.0 5.0 4.0 3.0 2.5 2.0 SHS SHS SHS SHS SHS SHS 16.7 14.2 11.6 8.96 7.53 6.07 22.4 26.6 32.9 43.5 52.0 64.7 23.9 28.1 34.4 44.7 53.1 65.9 35.8 42.1 51.6 67.0 79.7 98.8 18.2 21.3 26.0 33.7 40.0 49.6 17.9 21.1 25.8 33.5 39.9 49.4 23.9 28.1 34.4 44.7 53.1 65.9 90 x 90 x 3.0 2.5 2.0 1.6 SHS SHS SHS SHS 8.01 6.74 5.45 4.39 43.6 52.1 64.8 80.8 44.9 53.4 66.1 82.0 69.9 83.1 103 128 33.9 40.3 49.8 61.7 33.7 40.0 49.6 61.5 46.2 54.9 67.9 84.3 89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS 14.6 12.5 9.06 22.5 26.7 37.6 24.3 28.5 39.3 37.9 44.5 61.4 18.5 21.6 29.7 18.2 21.3 29.5 25.0 29.3 40.5 75 x 75 x 6.0 5.0 4.0 3.5 3.0 2.5 2.0 SHS SHS SHS SHS SHS SHS SHS 12.0 10.3 8.49 7.53 6.60 5.56 4.50 22.8 27.0 33.3 37.9 43.9 52.4 65.1 24.9 29.1 35.4 39.9 45.5 53.9 66.6 41.6 48.5 58.9 66.4 75.8 89.8 111 19.1 22.2 26.8 30.2 34.3 40.7 50.2 18.7 21.8 26.5 29.9 34.1 40.4 50.0 27.0 31.5 38.3 43.2 49.2 58.4 72.2 65 x 65 x 6.0 5.0 4.0 3.0 2.5 2.0 1.6 SHS SHS SHS SHS SHS SHS SHS 10.1 8.75 7.23 5.66 4.78 3.88 3.13 23.1 27.3 33.6 44.1 52.6 65.3 81.2 25.6 29.7 36.0 45.9 54.4 67.1 83.0 45.3 52.6 63.6 81.3 96.2 119 147 19.6 22.7 27.4 34.8 41.1 50.6 62.5 19.2 22.3 27.0 34.5 40.8 50.3 62.2 29.1 33.7 40.8 52.1 61.7 76.1 94.1 50 x 50 x 5.0 4.0 3.0 2.5 2.0 1.6 SHS SHS SHS SHS SHS SHS 6.39 5.35 4.25 3.60 2.93 2.38 27.9 34.2 44.7 53.1 65.8 81.7 31.3 37.4 47.1 55.5 68.2 84.0 62.6 74.8 94.2 111 136 168 24.0 28.6 35.7 42.0 51.5 63.4 23.5 28.1 35.3 41.6 51.1 63.0 39.1 46.8 58.9 69.4 85.2 105 40 x 40 x 4.0 3.0 2.5 2.0 1.6 SHS SHS SHS SHS SHS 4.09 3.30 2.82 2.31 1.88 34.9 45.3 53.7 66.4 82.3 39.1 48.4 56.8 69.4 85.2 88.0 109 128 156 192 30.0 36.8 43.1 52.5 64.4 29.3 36.3 42.6 52.0 63.9 53.8 66.6 78.1 95.4 117 35 x 35 x 3.0 2.5 2.0 1.6 SHS SHS SHS SHS 2.83 2.42 1.99 1.63 45.8 54.2 66.8 82.7 49.4 57.7 70.3 86.1 120 140 171 209 37.7 43.9 53.3 65.1 37.1 43.3 52.7 64.6 72.4 84.5 103 126 30 x 30 x 2.0 SHS 1.6 SHS 1.68 1.38 67.4 83.3 71.5 87.3 191 233 54.3 66.1 53.7 65.5 113 138 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 1.64 1.36 1.12 55.7 68.3 84.1 61.0 73.3 89.0 183 220 267 46.6 55.8 67.5 45.7 55.0 66.7 107 128 156 20 x 20 x 1.6 SHS 0.873 85.4 91.7 321 69.8 68.8 183 See page D1-7 for details of the cases of fire exposure considered. D1-20 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 99 3.4 62.8 43.3 SHS 4.62 48.0 43.and y-axis 1 = TOTAL PERIMETER.1 59.4 44. NO GAP 3 = TOTAL PERIMETER.6 50.9 47.34 47.4 38.1 66.0 58.6 76.4 43. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-21 .6 75 x 75 x 2.1 51.3 SHS 3.8 104 44.6 44.19 5.7 90.25 48.3 58.7 50 x 50 x 2.6 52.11 2. NO GAP 6 = TOP FLANGE EXCLUDED.8 SHS 2.8 48.0 36.4 61.7 84.8 SHS 2.8 SHS 2.3 46. BOX-PROTECTED.8 97.9 See page D1-7 for details of the cases of fire exposure considered.2 65 x 65 x 2.9 56.2 36.1 39.3 SHS 6.6 74.7 57.3 80.1 35 x 35 x 2.6 44.7 52.1 127 151 39.8 SHS 2.4 47.3 SHS 8.8 58.6 71.3 37.7 57.2 116 138 39.1 46.42 57.6 45.TABLE D1. BOX-PROTECTED. PROFILE-PROTECTED 2 = TOTAL PERIMETER.3 36.5 58.14 46.5 63.3 SHS 3.3-4 FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x. BOX PROTECTED. PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED. 25mm GAP Designation d b t Mass per m mm kg/m mm mm 1 2 3 4 5 6 100 x 100 x 2. BOX-PROTECTED.5 56.95 46.4 35.5 86.9 100 120 38.0 45.39 6. 25mm GAP 4 = TOP FLANGE EXCLUDED.8 SHS 2.7 57.3 SHS 2.9 40 x 40 x 2.9 62.9 70.67 2.2 47. 0 20.0 29.0 5.6 23. additional allowance may be needed for straightness. Select the size of Female (or outer) member closest to your requirements from the left hand column.5 2.4 11. 2.0 9. may vary marginally.6 NO SECTION AVAILABLE 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 6.0 1.0 2.0 18.8* 2.0 5.3* 2.0 21.0 20.4 11.0 4.0 3.8 75 75 75 75 75 75 75 75 75 75 25 25 25 25 25 25 25 25 25 25 50 50 50 50 50 20 20 20 20 20 3.0 9.8 13.4 10.8 50 65 65 65 65 65 65 65 65 25 35 35 35 35 35 35 35 35 * Non-Standard thickness Note: RHS is not a precision tube and all dimensions in this chart.8* 2.4 10.0 2.4 5.5 2.0 18.8 50 50 50 20 20 20 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 6.0 5.0 4.0 9.0 1.0 1.0 2.0 10. RHS has the obvious advantage that its shape prevents rotation of the section.5 2.8 0.0 1.0 15. Where two telescoping sections are being used.3* 2.4 21.5 2. Members may need to slide freely inside each other.8* 2.0 5.5 2.8 13.0 4. 5.0 20. thickness should be similar and will be determined by normal structural requirements.0 4.0 27.0 1. although in accordance with the specifications. 4. Where telescoping over some length is required.6 20. while for others the tightest fit possible may be more appropriate. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required.0 17.0 1.0 4.0 25.8 65 65 65 65 65 65 65 65 65 65 35 35 35 35 35 35 35 35 35 35 65 65 65 65 65 65 35 35 35 35 35 35 4.0 8.8 3.0 19. 6.5 2.3* 2. not the gap on both sides. Having selected the most suitable clearance for your application.0 9.0 3.0 2. eg.0 17. For tight fits it is recommended that some form of testing is carried out prior to committing material.0 9.0 65 x 35 Note that the clearance is total available difference between member dimensions.0 19.0 6.0 10.3* 2.0 11.0 3.0 4.TABLE D1. spot welded or fixed with wedges.0 15.0 mm ARE SHOWN BOLDER IN THE CHARTS.0 19.0 13.0 17.0 4.8* 2. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel.0 2.0 7.0 4.0 5.0 may occasionally require press fit.8* 2.3* 2. Depending on the application select the clearance required between the two members.0 21.0 2.4 20.0 13. a 'sloppy' fit may be suitable.5 2.4 20.0 7. or be locked with a pin. in some cases.6 13.4 20.0 11.0 10.0 19.0 0.0 17.4 30.4 11.0 x 9.0 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 75 75 75 25 25 25 2.4 20.0 20.5 3.0 3.0 19.8* 2. Sizes where clearance is shown as 0.0 5.0 5. Female Section Clearance (outer) mm Male Section (inner) 75 x 50 x 3.3* 2.4 21.4 31.5 2.4 5.0 2.0 29.0 30.4-1 DuraGal TELESCOPING INFORMATION RECTANGULAR HOLLOW SECTIONS Female (outer) Nominal Clearance Male (inner) Female (outer) Nominal Clearance Male (inner) d mm b mm t mm Top mm Side mm d mm b mm d mm b mm t mm Top mm Side mm d mm b mm 125 125 125 125 125 125 125 125 75 75 75 75 75 75 75 75 6. D1-22 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 2.0 19.0 2.6 13.4 6.0 21.0 5.0 4.4 21.0 3.3* 2.0 NO SECTION AVAILABLE 75 75 75 75 75 75 75 75 75 50 50 50 50 50 50 50 50 50 6. HOW TO USE THIS CHART 1.4 21. SIZES WITH A CLEARANCE LESS THAN 2.0 19.0 19. If a third section is to be used consideration of both clearance and thickness within the size list available may be required.8* 2.4 10. This means.4 6.0 50 50 50 50 50 50 25 25 25 25 25 25 50 50 50 50 50 50 25 25 25 25 25 25 3.0 7.0 1.0 15.0 21. 3. take the appropriate size of the Male (inner) section from the right hand column.0 28.0 9.0 31.0 15.5 3. 0 9.5 2.0 2.5 2. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel.8 9.0 13.0 3.4 6.0 4.4 1.3* 2.0 15.0 5.0 2.4 1.0 3.TABLE D1.0 0.3* 2. For tight fits it is recommended that some form of testing is carried out prior to committing material.0 1.0 3.0 3.0 1.0 4.5 2. 5.0 4. Select the size of Female (or outer) member closest to your requirements from the left hand column.6 9. Where telescoping over some length is required.0 1.8 0.0 13.0 1.0 2.0 4.0 19.8 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 * Non-Standard thickness Note: RHS is not a precision tube and all dimensions in this chart.6 0.0 2.4 5.0 7.0 9.0 2.4 5.0 1.0 11.0 1.4 1.0 4.8* 2. 3.0 3.4 6. take the appropriate size of the Male (inner) section from the right hand column. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D1-23 .0 5.0 1. while for others the tightest fit possible may be more appropriate.0 1.0 5.9 6.0 1.8* 2.6 1.0 3.0 1.0 11.4 0.5 2.0 4. Where two telescoping sections are being used.8 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 6.8 4. additional allowance may be needed for straightness. HOW TO USE THIS CHART 1.8 25 25 30 30 30 30 25 25 30 30 30 30 30 30 30 30 2. SIZES WITH A CLEARANCE LESS THAN 2.4 11. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required.6 0.4 5.0 5.9 75 75 75 75 75 75 35 35 35 35 35 35 35 35 35 35 35 35 3.3* 2.8* 2.0 1. spot welded or fixed with wedges.0 0. although in accordance with the specifications.8 15 15 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 6.0 1.5 1.5 2.0 17. Having selected the most suitable clearance for your application.0 4.0 4.0 13.4 5.3* 2.0 10.4-2 DuraGal TELESCOPING INFORMATION SQUARE HOLLOW SECTIONS Female (outer) Nominal Clearance Male (inner) Female (outer) Nominal Clearance Male (inner) b mm d mm b mm t mm Top mm Side mm d mm b mm d mm b mm t mm Top mm Side mm d mm 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 6.0 10.5 2.6 2.0 5.3* 2. RHS has the obvious advantage that its shape prevents rotation of the section. Members may need to slide freely inside each other.5 2.8 3.0 11.5 3. 4.0 13.0 19.0 20.0 2.0 2.0 4. or be locked with a pin. 2.0 19.0 50 65 65 65 65 65 65 65 65 50 65 65 65 65 65 65 65 65 25 25 25 25 25 25 2.4 0.4 0.8* 2.0 3.0 13. eg.0 mm ARE SHOWN BOLDER IN THE CHARTS.0 1.0 4.6 1.3* 2.0 5.8 75 75 75 75 75 75 75 75 89 89 89 89 89 89 6.0 4. Female Section Clearance (outer) mm Male Section (inner) 75 x 75 x 3.0 4.8 30 30 30 35 35 35 35 30 30 30 35 35 35 35 90 90 90 90 90 90 90 90 3.0 0.8 20 20 20 20 20 20 20 20 1.9 3.0 0.4 5.0 20.0 2.0 4.8 1. not the gap on both sides.0 0.0 3. Sizes where clearance is shown as 0.0 2.0 13. 6. may vary marginally.9 3.0 10.0 1.0 3.8 1.0 x 4.0 11.0 10.0 5.0 0.4 20.0 4.0 1.0 6.9 1.0 4.0 10.8 2.0 2.8 0.0 4.0 5. This means. in some cases.8 25 25 25 25 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 6.0 6.0 5.0 1.0 2.0 4.0 4.0 4.0 3.4 0.0 4.4 21.8* 2.0 3.4 6.9 6.0 7.0 2.4 20.4 5.0 5.4 1.0 5. thickness should be similar and will be determined by normal structural requirements. If a third section is to be used consideration of both clearance and thickness within the size list available may be required.0 0.0 2.0 11.0 17.6 3.0 11.0 2.0 5.0 4.4 21.0 65 x 65 Note that the clearance is total available difference between member dimensions.0 5.4 6.0 4.0 15.4 6.0 10.5 2.0 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5. Depending on the application select the clearance required between the two members.0 1.0 may occasionally require press fit. a 'sloppy' fit may be suitable.5 2.0 0.3* 2.0 19.0 75 90 90 90 90 90 90 90 75 90 90 90 90 90 90 90 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4.6 4.4 6.8* 2.4 11. [ BLANK ] D1-24 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . 2 First-Order Elastic Analysis with Moment Amplification ..3 Second-Order Elastic Analysis in Accordance with Appendix E of AS 4100 ........................................................................................................................................................1 METHODS OF ANALYSIS....................4... D2-3 D2..... D2-2 D2......................4............. D2-2 D2...2 SECOND-ORDER EFFECTS .............1 First-Order Elastic Analysis .. D2-3 D2................................ D2-2 D2...................................4...................................................................PART 2 DETERMINATION OF DESIGN ACTION EFFECTS 2 PAGE D2.........................................................................3 USE OF TABLES ........................... D2-4 DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D2-1 .........4 USE OF ANALYSIS METHODS ....... D2-4 D2.................................................. Second-order bending moments are often classified as P∆ which arise from the relative end displacements (∆). although research [1] has already been performed to establish the suitability of square and rectangular hollow sections. School of Civil and Mining Engineering. In braced frames the relative member end displacements (δ) are small. D2-2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . D2. 5 and 6 may be used for design in those cases where second-order effects: • can be neglected • are accounted for using moment amplification factors in conjunction with a first-order elastic analysis • are accounted for in a second-order elastic analysis ______________________ [1] Centre for Advanced Structural Engineering. or as Pδ which arise from the member deflecting (δ) from a straight line joining the member’s ends (Figure D2.2 of AS 4100) c) Second-order elastic analysis in accordance with Appendix E of AS 4100 Plastic analysis is currently not permitted by AS 4100 for structural steel hollow sections.1 METHODS OF ANALYSIS The methods of structural analysis that are recognised in AS 4100 and most likely to be used for structural hollow sections are: a) First-order elastic analysis b) First-order elastic analysis with moment amplification (Clause 4. SECOND-ORDER EFFECTS must be considered. In sway frames the P∆ effects are often more significant than the Pd effects. Final Report.PART 2 DETERMINATION OF DESIGN ACTION EFFECTS D2.2 SECOND-ORDER EFFECTS When combined bending and axial compression forces are present in members.2). “Plastic Design of Cold-Formed RHS”. CIDECT Project 2S-5-98.3 USE OF TABLES The tabulated values in PARTS 4. The University of Sydney. D2.4. and consideration is only given to the Pδ effects. They are members with: • bending moments only • axial tension force only • combined bending moments and tension force DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D2-3 .Figure D2.4.2: First-order Analysis and Second-order Behaviour D2.4 USE OF ANALYSIS METHODS D2.1 First-order Elastic Analysis This method can be used to analyse members which do not have second-order effects. e.3 of AS 4100) are less than 1.3 Second-order Elastic Analysis in Accordance with Appendix E of AS 4100 This method can be used to analyse members with combined bending and axial compression and must be used when the moment amplification factors δb or δs are greater than 1.2. See PART 7.4 (i.4 (i. is multiplied by the moment amplification factor δb or δs. D2. A suitable computer analysis program is normally used due to the iterative nature of this analysis. The maximum moment in the member M*m as determined by the first-order elastic analysis.4.3(1) and D7.D2.2 and 4.4.4. when second-order effects are less than 40%). D2-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . Figures D7.3(2) for the determination of δb and δs respectively.2.e. when second-order effects are greater than 40%).4.2 First-order Elastic Analysis with Moment Amplification This method can be used to analyse members with combined bending and axial compression and when the moment amplification factors δb or δs (see Clauses 4. ............... D3-6 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES..5 Design Torsional Moment Section Capacity ....................................... D3-2 D3........................................ D3-4 D3.........2....... D3-2 D3........................................PART 3 SECTION CAPACITIES 3 PAGE D3................ φMz) ... D3-4 D3.........................................................................................................................1-4 Design Section Capacities (φNt..... φVv....2 Design Section Capacity for Axial Compression .........................................................2............. D3-4 TABLES TABLES D3..............5.....2....2................................2.....................................................2............................... D3-3 D3.4 Design Shear Capacity of a Web .........................1 Introduction .........................3 Design Moment Section Capacity ............................................................1 SCOPE ...............1 Design Section Capacity for Axial Tension ....... DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D3-1 ..................1-1 to D3......................... D3-3 D3................................5... D3-2 D3........................... φMs.......2 Method .......2.2 METHOD .......................................... D3-2 D3............................................................................................ φNs....................... 2 of AS 4100 as the lesser of: φNt = φ Ag fy and where φ Ag fy Kt An = = = = = = = fu = φNt = φ 0. shear (φVv) and torsional moment (φMz). axial compression (φNs).1 Design Section Capacity for Axial Tension The design section capacity for axial tension (φNt) is determined from Clauses 7.2 Design Section Capacity for Axial Compression The design section capacity for axial compression (φNs) is determined from Clauses 6.2.2.2.1 and 6. PART 3 of the Tables contains design section capacities whilst PART 4 to PART 6 contain design member capacities.1-1 to D3.2-1 to D1.4 of AS 4100) Ae / Ag (see section D1.2.2-4) net section area Ag gross cross-sectional area (assuming no penetrations or holes) yield stress used in design DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .1-4) is detailed in Sections D3.5.0 net section area Ag gross cross-sectional area (assuming full perimeter welded connections with no penetrations or holes) tensile strength used in design D3.1 SCOPE The following tables give values of design section capacities for axial tension (φNt).85 Kt An fu 0.PART 3 SECTION CAPACITIES D3.2 METHOD The determination of each of the design section capacities (Tables D3.1 and 7.4 of AS 4100) gross cross-sectional area yield stress used in design 1. Section capacities give the maximum capacity of a section subjected to design action effects.3. Member capacities are determined by reducing the section capacities by factors accounting for restraints and loading conditions.2 of AS 4100 as: φNs = φ kf An fy where φ = kf = An = = = fy = D3-2 0. D3.9 (Table 3.1 to D3.2. moment (φMs).9 (Table 3.3 and Tables D1. D3. 2 and Tables D1. “Thin Walls Beams”.2.or y-axis. R.6 φ fy (d .Q.3 and 5. 15. Non-uniform shear stress governs when d / b > 0.3 of AS 4100) 0.4 Design Shear Capacity of a Web The design shear capacity of a web (φVv) is determined from Clauses 5.4 of AS 4100) (Clause 5..D3.4 of AS 4100) yield stress used in design effective section modulus (see Section D1. For calculating the web area.4 of AS 4100) yield stress used in design full depth thickness of section 0.2-1 to D1.4 of AS 4100. b and d are interchanged in the calculation of the maximum to average design web shear stress ratio.2.9 +  vm   f ∗va  (Clause 5.9 (Table 3.2t) 2t φVv = and φ fy d t Vu f *va f *vm where = = = = = = = 2φVu f∗  0.6 fy (d-2t) 2t average design shear stress in the web maximum design shear stress in the web The ratio of maximum to average design shear stress in the web (f *vm /f *va) for bending about the x-axis is calculated [1] using: b b f *vm 3 2b + d = f * va 2 3b + d where d = b = g g full depth of section full width of section Note: for bending about the y-axis. Vol. For members which are fully restrained against flexural buckling the design member moment capacity equals the full section moment capacity (φMs).75.3 Design Moment Section Capacity The design moment section capacity (φMs) is determined from Clauses 5. 1981. It should be noted that the design member capacity in the minor principal y-axis is the design section capacity (φMs). No.S. Steel Construction. the web depth has been taken as the clear depth between flanges (d1) for RHS and SHS. D3.11.1.2.1 of AS 4100 as: φ Ms = φ fy Ze where φ = fy = Ze = 0. N. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D3-3 .9 (Table 3.11.11.1 and 5.2-4). Trahair.3. AISC. for RHS and SHS and as the lesser of:φVv = 0.11.2.. Values of the design section moment capacity (φMs) can be found in the tables for members bent about either principal x. [1] Bridge. 2.2.5.5. Chapman and Hall. London..2.. such as when the torsional load is applied midspan between rigid supports or when the free warping of the sections is restricted. N.1.2.2. However in the case of hollow sections the contribution of non-uniform torsion is negligible and sections can be treated as subject to uniform torsion without any significant loss of precision. D 3.S.2. An explanation of torsional effects is provided in the references listed in Section D3. torsional actions can be considered using the following formulae: M *z < φMz φM *z = φ 0. Hollow sections perform particularly well in torsion and their behaviour under torsional loading is readily analysed by simple procedures. Section C8. M.Bradford.2.9 (Table 3. then the torsional load is shared between uniform and non-uniform torsion or warping.5 Design Torsional Moment Section Capacity The design torsional moment section capacity (φMz ) is determined in accordance with Sections D3. 1998.6 fy C M *z = design torsional moment φ = 0.5.5. The general theory of torsion established by Saint-Venant is based on uniform torsion.1 Introduction Although AS 4100 makes no provision for the design of members subject to torsion it is nevertheless considered appropriate to supply torsional capabilities for hollow sections in the tables. D 3.1. When the torsional moment that is applied is non-uniform.5.A. [2] Trahair. D3-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .1 and D3.2 Method For hollow sections.D3. Suggested references for design for torsion: [1] “AS 4100 Supplement 1-1990: Steel Structures Commentary (Supplementary to AS 4100-1990)”. Standards Australia.2.5. The theory assumes that all cross-sections rotate as a body around the centre of torsion. “The Behaviour and Design of Steel Structures”. 2nd ed..2.4 of AS 4100) φM z = design torsional moment section capacity fy = yield stress used in design C = torsional section modulus Note: The angle of twist per unit length θ (radians) can be determined using the following formula: where φ = where M ∗z GJ M *z = design torsional moment for serviceability limit state G = 80 x 103 MPa J = torsional section constant The method for determining the torsion sections constants C and J is detailed in Section D1. [ BLANK ] DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D3-5 . 27 1.11.3 36.0 RHS 3.31 3.26 1.1 N 64.62 2.55 125 x 75 x 6.2 N N N N 20.35 4.96 7.8 14.34 8.5 RHS 2.0 RHS 5.05 11.6 64.7 36.36 100 x 50 x 6.816 79.1 of AS 4100) f y Ze (Clause 5.9 26.2.6 RHS 3.17 4.42 1. 4.39 5.938 0.0 RHS 2.6 fy C (See Section D3.88 2.783 0.800 50 x 20 x 3.9 71.0 RHS 2.3 20.2.60 5.0 RHS 3.91 4.0 RHS 4.5 15. Design shear capacity calculated in accordance with clause 5.17 0.5 24.5 N N N N N B 111 97.83 2.6 73.4 U U U U U U U 7.67 8.0 RHS 16.777 61.2 9.10 374 316 257 195 164 92.27 317 269 219 167 140 113 N N N N N N 184 158 130 101 85.1 9.0 RHS 4.1-1 DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x.0 34.2 54.4 18.TABLE D3.37 2.5 RHS 2.1 10.4 18.6 RHS 2.58 6.6 4.619 Notes : 1.0 RHS 5.3 20.5 RHS 2.0 RHS 2.77 3.0 RHS 1.7 9.0 RHS 5. 2.23 6.44 1.85 3.1 29.92 5.43 1.83 1.7 44.21 1.63 138 118 97.19 2.2 81.6 13.22 4.7 N N N N N N N N 111 97.2 54.50 3.75 149 128 105 85.53 6.6 RHS 9.2 of AS 4100) 0.0 79.1 42.5 RHS 2.4 of AS 4100.2 F F F F 146 125 103 83.60 2.3 12.0 RHS 5.07 3.38 4.60 2.2 of AS 4100) kf Ag fy (Clause 6.7 14.9 + (f *vm / f *va)) ≤ Vu shear bulckling failure mode.07 2.5 of AS 4100.9 9.4 2.41 1.18 7.1 64.47 5.64 1.53 75 x 50 x 6.8 17.47 1.0 RHS 16. Vv = Vu = Vw = 0.1 U U U U 3.952 0.5) approximately uniform shear stress distribution.2 8.0 10.0 RHS 5.0 U U U 1.53 1.4 12.38 176 143 116 F F F 186 133 91.9 A g fy indicated by suffix Y (Clause 7.73 1.942 0.6 13.0 U U U U U U 21.9 20.12 0. 5.9 N 24.0 RHS 2.0 10.61 6.52 4.97 2.85 Ag fu indicated by suffix F (Clause 7.1 52.0 RHS 2.89 4.54 2.06 0.7 56.40 3.5 RHS 2.2.11. 3.19 5.5 20.85 6.07 1.5 RHS 2.0 N N N N N N N 111 97.0 RHS 1.8 54.582 60.0 RHS 1. 6.2 15.87 7.48 2.7 U U U U U U 15. Vv = Vb = αvVw ≤ Vw DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 RHS 3.6 fy Aw non-uniform shear stress distribution.7 14.42 4.03 178 153 126 97.92 5.0 18.36 2.49 7.56 6.1 8.7 N N N N 27.2 N 51.6 RHS 3.2 11.63 4.86 2.9 31.1 13.56 7.25 3.15 1.10 244 208 170 151 131 110 88.4 42.730 0.8 11.35 6.53 6.7 44.3 51.47 3.30 7.6 64.5 RHS 2.16 3.01 471 407 337 264 223 181 147 F F F F F F F 499 431 357 280 236 173 124 11.9 2.4 17.4 82.4 16.3 69.0 RHS 2.6 8.5 RHS 3. Design shear capacity calculated in accordance with clause 5.64 586 503 414 367 322 271 219 177 F F F F F F F F 621 532 438 388 329 246 173 124 18.7 24.45 3.0 RHS 4.7 36.5 30.11.37 5.0 U U U U 1.8 9.09 1.3 of AS 4100.80 7.8 16.6 8.88 8.94 8.05 2. D3-6 φ Nt Nt Ns Ms Mz U = = = = = = = N = B = kN kNm 0.4 10.23 65 x 35 x 4.4 17.4 U U U U U U U U 9.58 3.847 0.76 1.73 1.92 5.83 3.2 81.4 F F F F 158 135 111 90.1 69.03 2.0 23.and y-axis Designation d b Mass Axial Axial per m Tension Compression x-axis y-axis x-axis φNt φNs φMsx φMsy φVvx t Bending Shear Torsion y-axis φVvy φMz mm mm mm kg/m kN kN kNm kNm kN 150 x 50 x 6. Design shear capacity calculated in accordance with clause 5.0 RHS 3.7 N N N N 52.07 816 694 567 436 367 296 F F F F F F 864 735 526 329 246 173 36.11 6.3 8.2 54.0 RHS 1.62 75 x 25 x 2.07 816 694 567 436 367 296 F F F F F F 864 735 600 390 296 196 34.08 5.6 RHS 12.0 RHS 2.6 34.22 2.2 11.0 RHS 1.96 7.05 0. Vv = 2Vu / (0.2 81.5 12.1 10.5 42.0 RHS 4.41 5.7 44.72 3.0 RHS 3.26 1.6 12.56 4.53 6.3 15.97 6.93 2.3 66.1 U U U U 0.5 RHS 2.85 50 x 25 x 3.93 261 207 176 143 F F F F 276 219 186 149 5.1 of AS 4100) 0.77 106 82.99 1. 2 N N N N N N 22.30 2.93 2. 2.91 65 x 65 x 6.07 816 694 567 436 367 296 F F F F F F 864 735 600 440 305 196 29.6 47. 5.84 153 132 109 85.2.67 1.39 5.6 13.0 SHS 4.893 0. DCTDHS/06 MARCH 2002 φ Nt Nt Ns Ms Mz U = = = = = = = N = 0.9 11.0 SHS 3.2 16.6 fy C (See Section D3.4 54.0 SHS 3.TABLE D3.4 of AS 4100.95 3.0 SHS 5.92 96.9 2.6 11.47 2.5 SHS 14.49 7.5 12.13 494 426 352 276 233 189 153 F F F F F F F 523 451 373 292 247 196 125 11.50 1.0 SHS 2.6 SHS 2.6 8.5 221 189 138 N N N 17.0 SHS 2.31 1.6 N N 0.25 3.375 20 x 20 x 1. Vv = Vu = Vw = 0.70 121 102 82.0 42.11 0.98 4.06 35 x 35 x 3.66 1.0 SHS 1.90 4.86 2.68 1.2 F F F F 146 125 103 83.0 SHS 1.63 253 216 177 135 114 92.0 SHS 5.48 4.85 Ag fu indicated by suffix F (Clause 7.88 3.12 79.4 54.564 25 x 25 x 2.694 0.9 A g fy indicated by suffix Y (Clause 7.34 6.5 SHS 2.9 66.0 SHS 2.09 3.2 of AS 4100) 0.9 19.73 2.0 SHS 1.96 7.38 311 261 207 176 143 116 F F F F F F 330 276 219 186 151 123 5.99 1.5 F 45.438 0.0 10.0 13.7 19.224 d mm b t mm mm Notes : 1.88 199 161 137 112 91.0 SHS 3.6 SHS 6.9 1.3 58.6 63.7 N N N 0.78 7.36 61.0 44.5 SHS 2.11.5 N N N N N N N 8.6 SHS 8.0 SHS 3.99 6.667 0.71 1.63 138 118 97.6 SHS 4.7 10.51 1.0 79.85 8.40 3. 3.594 0.5 SHS 2.39 390 329 265 214 F F F F 413 305 196 125 11.38 81.04 41.6 28.3 of AS 4100.0 SHS 12.2 N N N N N N N 11.4 10.7 14.07 1.2 8.4 75 x 75 x 6.33 4.5 SHS 2.0 SHS 1.0 SHS 4.0 20.9 14.4 N N N N 1.6 SHS 10.31 7.5 SHS 2.5 F F F F F 211 170 145 119 96.0 SHS 1.3 N N N N N 2.36 5.0 58.5 SHS 2.8 16.8 25.03 6.74 5.80 3. Design shear capacity calculated in accordance with clause 5.06 714 609 441 F F F 756 645 467 22.87 89 x 89 x 6.9 N N N N N N 3.5 SHS 2.36 1.9 + (f *vm / f *va)) ≤ Vu DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D3-7 .5) approximately uniform shear stress distribution.5 70.0 SHS 2.90 6. 6.4 8.6 SHS 1.83 2.48 2.53 6.60 2.7 67.1 8.54 3.71 40 x 40 x 4.0 SHS 1.9 10.7 N N N N 10.80 7.6 70.0 SHS 4.0 8.27 2.72 1.9 N 0.78 3.8 24.6 12.5 SHS 2.0 SHS 3.64 1.0 SHS 5.63 2.0 SHS 2.6 SHS 1.0 SHS 4.6 7.11.98 50 x 50 x 5.32 2.304 12.6 fy Aw non-uniform shear stress distribution.792 30 x 30 x 2.873 42. 4.0 F F 86.43 6.0 20.11 4.0 34.26 1.0 0. Vv = 2Vu / (0.7 21.42 1.45 4.6 66.3 8.746 25.23 5.945 0.50 586 503 414 367 322 271 219 F F F F F F F 621 532 438 388 341 287 196 15.4 15.1 of AS 4100) 0.0 29.500 24.82 2.27 1.2.20 5.2 11.01 6.35 4.25 1.8 36.01 1.3 8.0 SHS 2.0 SHS 16.1 9.9 0.8 F F F 84.5 9.61 3.98 5.0 SHS 1.71 5.1-2 DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Designation Mass Axial Axial per m Tension Compression Bending Shear Torsion φNt φNs φMs φVv φMz kg/m kN kN kNm kN kNm 100 x 100 x 6.0 SHS 2.4 49.91 181 156 129 114 99.2 35.0 SHS 5.0 0.6 SHS 0.9 9.0 SHS 3.2 11.2.0 72.53 6.0 80.56 4.2 of AS 4100) kf Ag fy (Clause 6.97 90 x 90 x 3.75 7.1 of AS 4100) f y Ze (Clause 5. Design shear capacity calculated in accordance with clause 5.60 5.5 SHS 3.66 4.97 2.02 1.4 84.0 68.503 0. 18 57.7 N N 19. 3.3 SHS 6. 4.8 RHS 2.2 of AS 4100) kf Ag fy (Clause 6.88 46.95 409 339 F F 383 259 12.80 6.3 RHS 5.7 U U 5.11.52 5.02 0.5 9.49 4.4 50.11 2.14 302 251 F F 319 259 8.86 75 x 50 x 2.3 SHS 2.7 N 4.2 39.6 fy Aw non-uniform shear stress distribution.74 4.05 3.23 3.8 RHS 2.7 50.3 of AS 4100.67 2.71 2.64 1.07 50 x 25 x 2.2 10.8 SHS 2.05 50 x 20 x 2.39 6.907 0.50 156 129 N N 94.14 302 251 F F 295 215 10.3 SHS 8.71 1.4 76.99 3.63 1.56 65 x 65 x 2.1 of AS 4100) f y Ze (Clause 5.8 47.8 SHS 2.3 N N 26.72 2.71 3.0 U U 2.39 6.89 2.1 N N 1.3 RHS 2.8 RHS 2.4 50.3 9.3 SHS 3.8 U U 1.4 78.94 1.19 5.99 3. Vv = 2Vu / (0.21 1.4 of AS 4100.05 N N 12.2 of AS 4100) 0.42 35 x 35 x 2.25 130 110 F F 138 116 1.24 248 207 F F 263 215 6.3 64.2. 5.16 77.0 34. Design shear capacity calculated in accordance with clause 5.2 N N 60.07 93. 2.3 SHS 4.8 SHS 2. Vv = Vu = Vw = 0.26 1.8 RHS 2.37 1.62 152 127 F F 161 135 2.1-3 D3-8 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2 U U 0.10 50 x 50 x 2. Design shear capacity calculated in accordance with clause 5.4 22.3 77.99 1.11.91 66.6 17.3 SHS 3.20 1.9 + (f *vm / f *va)) ≤ Vu TABLE D3.and y-axis Designation d b Mass Axial Axial per m Tension Compression x-axis y-axis x-axis φNt φNs φMsx φMsy φVvx t mm mm mm Bending Shear Torsion y-axis φVvy φMz kg/m kN kN kNm kNm kN 125 x 75 x 2.3 8.19 5.59 3.6 fy C (See Section D3.8 RHS 2.52 5.TABLE D3.9 12.70 122 102 N N 60.8 SHS 2.2 8.21 3.3 RHS 3.16 6.67 2.8 SHS 2.41 2.1-3 DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x.2 Notes : Refer to TABLE D3.09 4.40 39.5 33.85 Ag fu indicated by suffix F (Clause 7.1 N N 2.32 40 x 40 x 2.95 409 339 F F 351 259 16.59 5.7 U U 11.20 1.44 141 119 F F 149 126 2.7 U U 4.34 194 163 F F 206 172 4. φ Nt Nt Ns Ms Mz U = = = = = = = N = kN kNm 0.3 RHS 8.1 of AS 4100) 0.25 130 110 F F 138 116 1.57 2. 6.42 215 F 228 4.5) approximately uniform shear stress distribution.9 A g fy indicated by suffix Y (Clause 7.2.3 RHS 2.1-2 DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Designation d mm b Mass Axial Axial per m Tension Compression φNt t mm mm Bending Shear Torsion φNs φMs φVv φM z kg/m kN kN kNm kN 100 x 100 x 2.5 48.35 127 105 kNm 75 x 75 x 2.05 59.7 N N 6.2.56 91.8 RHS 2.6 N N 1.803 Notes : 1.50 100 x 50 x 2.882 56.3 RHS 6.59 65 x 35 x 2.6 N N 40.34 194 163 F F 206 172 3. ..... φRby/bb................ D4-13 D4...1 Method ..... D4-3 D4...............................................3....... φVv) ................................................1-2 Design Moment Capacities for Members Without Full Lateral Restraint (φMb) ....................................................................................................................................................... D4-6 D4.......3 DESIGN WEB BEARING CAPACITY .........5 Other Loading and Restraint Conditions ......................................1..............5 CALCULATION OF BEAM DEFLECTIONS ...................................3 Example ..........................................................................4........ D4-3 D4.................................................................................................................................... D4-8 D4................................................2........................ D4-8 D4..................................4 BENDING AND BEARING INTERACTION .............................1 Scope ...............1 Scope ......8 D4............................................................2 Method ....................................................2 Method ............... D4-8 D4......... DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-1 .............................................................3-1 to D4.....6 Examples ...................................... D4-15 TABLES TABLES D4.....4.1..2 DESIGN SHEAR CAPACITY ...........................................................................................................................................3..... D4-10 D4..1...3 Segment Length for Full Lateral Restraint .1-1 to D4.. D4-10 D4................... D4-12 D4.........................................................................2.......1 DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT ................................................................. D4.....................3 Interaction of Shearing and Bending ................. D4-19 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES..............................3-4 Design Web Capacities of Beams (φRbb/bb......................2 Method ............... D4-10 D4........................................................................1..........2.......1 Scope ............................... D4-13 D4. D4-8 D4............................................................................................................................................ D4-16 TABLES D4.................................................................................................................................... D4-2 D4..............2 Example .......................................1....................................................................................................................... D4-2 D4....................................3..... D4-14 D4.......................PART 4 MEMBERS SUBECT TO BENDING 4 PAGE D4...........................4 Examples .......2..................................... D4-2 D4...................4 Effective Length .................. D4-4 D4............1..... SHS are not included in these tables as they are not susceptible to lateral buckling.1 and Tables D1.6.6.2. except for the extreme case when the load acts far above the shear centre (Clause C5.6. “Inelastic Buckling Strength of RHS’s”. without full lateral restraint.3) (see Section D3.1.2.2.2 Method The values of design moment capacity (φMb) are determined in accordance with AS 4100 and [1] as: φMb = φ αm αsh Ms φ where = αm = 0.4 of AS 4100) 1.2-1 to D1.1.1 of AS 4100 corresponding to the case of uniform moment over the effective length (Le)) for Le £ FLR αsh = (FLR = maximum segment length for full lateral restraint as determined in Section D4.9 (Table 3.1.2-1 to D1.3) 1.1.3 and Tables D3. The University of Sydney.2 and Tables D1.2-4) G = 80 X 103 MPa J = torsional section constant Le = effective length Ms = fy Ze (see Section D1.6.1.0 (Table 5.1 Scope These tables for RHS bending about the x-axis.4 of the Commentary to AS 4100).1-4 fy = yield stress used in design Ze = effective section modulus (see Section D1.1-1 to D3. May 1993.1 DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT D4. Values of design moment capacity (φMb) are given for various values of effective length (Le).1-4 for SHS.1-2 to D3. Investigation Report S941.1.7 M px = Myz = Msx Moa .7 − Mpx / M yz UV W αsh = 0.D4.1.1. Civil Engineering.reference buckling moment from [1] (Clause 5. as given in Tables D3.3.0 for Le > FLR RSL dM TMN h 2 OP Q + 2.2-1 to D1.1(3) of AS 4100) 2 = y 2 e E [1] = 200 x 103 MPa ly = second moment of area about the minor principal y-axis (Tables D1.2-4) Centre For Advanced Structural Engineering. D4-2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . The design member moment capacity (φMb) always equals the design section moment capacity (φMs).1(a)(iv) of AS 4100) F π El I GJ GH L JK (Equation 5.2-4) (see Section D4. have been prepared in accordance with Section 5 of AS 4100 and [1].amended elastic buckling moment for a member subject to bending = px / M yz Mo . D4. 3 Segment Length for Full Lateral Restraint FLR is the length of a member between braces for which: Mbx = Msx OneSteel Pipe & Tube commissioned the Centre for Advanced Structural Engineering. to undertake an analytical study of the lateral buckling of Rectangular Hollow Sections (RHS).1-1(1)(A) to D8.3.LL.4 required reductions to be made below the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces.1. D4.4-4(A) have been calculated using the above approach.1. FLR = FM I GH M JK yz where Msx = π 2 El yGJ sx FLR 2 M sx nominal section moment capacity about major principal x-axis (Msx/Myz)FLR = see Table D4.PU 1.4 and 5.1. The University of Sydney. which depends on the restraint against twisting and lateral rotation.1-1(2) and Tables D8. 200 x 103 MPa Iy = second moment of area about the cross-section minor principal y-axis G shear modulus of elasticity. Le is determined in accordance with Clause 5. in clauses 5. (kt) FF. Civil Engineering.FL.4(2)) kr = lateral rotation restraint factor (Table D4.1-1(1) to D4.FU FP. incorporating Amendment 2.4(1)) (Table D4. 80 x 103 MPa = The FLR values listed in Tables D4. yet AS 4100-1990 Steel Structures.1.4(3)) L = length of segment Table D4.6. and the load height.PL. The results of the study are contained in [1] which recommends the following method for calculating the FLR values for RHS members loaded through their shear centre.3 of AS 4100 and given by: Le = kt kl kr L where k t = kl = twist restraint factor load height factor (Table D4.2.4 Effective Length Before using these tables it is necessary to determine the effective length (Le).1.5(1) E = Young’s modulus of elasticity.1.0 LMF d I F t MNGH L JK GH 2t 1+ 1 IJ K f w 3 OP PQ IJ K 3 nw PP LM F d I F t MN2GH L JK GH 2t 1+ 1 f w OP PQ nw DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-3 .1.D4.1.4(1): Twist Restraint Factors (kt) Restraint Arrangement Factor. The study was conducted although RHS sections rarely buckle laterally.6. 0 2. FL. FP. FP.0).1. PU FF.0 • • generally αm ≤ 1. PU 1.70 FU.0 At segment end FF.1. D4. LL FU.85 0.0 1. D4-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 1. PU 1.Table D4.4(2): Load Height Factors (kl) for Gravity Loads Longitudinal load position Restraint arrangement Load height position Shear Top Flange Within segment FF.1-1 to D3. The design moment capacity (φMb) can then be determined as the lesser of: φMsx = φ Ze fy φMbx = φ αm αsh Ze fy and where φ φMsx φM bx αm = = = = ≤ αsh = 0. PP.0 for RHS. PL.4(3): Lateral Rotation Restraint Factors(kr) Restraint arrangement Ends with lateral rotation restraints Factor (kr) Any None One Both 1. P.1-2 moment modification factor 1 α sh slenderness reduction factor (see Section D4. U are used to indicate the conditions at the ends of the segment. Restraint requirements are detailed in Clause 5.1.1.5 Other Loading and Restraint Conditions The design moment capacities presented in these tables can be used for other restraints and loading conditions.1. PP. FL. LL FU.0 1.0 Table D4. PP FF.1-1 to D4. LL FF. PP. FP.1(a) of AS 4100 and [1] .9 (Table 3. as these sections (with the exception of 150 x 50 and 75 x 25) are only susceptible to lateral buckling at larger spans (ie.6. αsh < 1. FP. PL.4 2.0 1. For these situations the effective length (Le) corresponding to the relevant conditions must be assessed and the relevant value of αm determined in accordance with Clause 5.3 of AS 4100.2) It should be noted that: αm ≤ 1. L. PP where d1 = clear depth between flanges ignoring fillets or welds nw = number of webs =thickness of critical flange tf =thickness of web tw F ≡fully restrained L ≡laterally restrained P ≡partially restrained U ≡unrestrained and two of the symbols F.4.0 0. FP. FL.0 for SHS as they are not susceptible to lateral buckling and αsh = 1.4 of AS 4100) the design section moment capacity (Tables D3. PL.1-4) αm times the value of (φMb = φ αs Ze fy) given in Tables D4.0 1. Table D4.5(1) Values of (Msx/Myz)FLR DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-5 .1. 0 = 2.1.1.0 (Table D4.0 x 1.7 x 4.0 (Table D4.4(3)) = 1.6 Examples 1.1.4(1)) Load Height Factor k I = 1. The calculated design load at each point is 9 kN.4(2)) (For loading at segment end and top flange loading) Lateral rotation restraint factor kr = 0.8 m D4-6 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .7 ∴ Effective length Le = kt kI kr L (Table D4.1.D4. A simply supported beam shown below has two concentrated loads applied in such a way that full restraint is provided at the location of the loads. What size beam is required to support these loads? Bending Moment Diagram Design Data: Design bending moment M * = 18 kNm Solution: For beam segment 2: End restraint condition = FF (fully restrained at both ends of the segment) Twist restraint factor k t = 1.0 x 0. 66 kNm > M * (Table D3. αm = 1.1-2) (Table D3.0 DuraGal SHS Grade C450L0 (2. 2.96 kg/m) φMb = 18.8 kNm > M * (Table D4.8 m).3) (Section D4.0 DuraGal RHS Grade C450L0 (8.0 DuraGal SHS Grade C450L0 (4.5) if it is critical for this type of application DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-7 . What size SHS is required? Bending Moment Diagram Design Data: Design bending moment M * = 2.1-1(1) for a uniform bending moment of 18 kNm on segment 2 with an effective length (Le = 2.1-1)(1) As both sections have the same mass select the stronger 150 x 50 x 3.The alternatives are: 40 x 40 x 4.0 DuraGal RHS Grade C450L0 (8.1-2) Based on mass select 50 x 50 x 2.5) Beam segments 1 and 3 do not have to be checked because they have the same design bending moment and end restraints with a shorter effective length.09 kg/m) φMs = 2.2) (Section D4.0 DuraGal SHS Grade C450L0 (2.1-1)(1) 125 x 75 x 3.0 DuraGal RHS Grade C450L0 (8.3) Bearing and Bending Interaction (Section D4.96 kg/m).96 kg/m) φMb = 20.2) Interaction of Shear and Bending (Section D4. The extra depth will provide increased stiffness which may be important. As a uniform bending moment is applied to segment 2.4 kNm Solution: The appropriate size of SHS may be selected from the section capacity tables in PART 3. A free standing sign post which is securely concreted into the ground is required to resist a calculated horizontal design force of 0.1 of AS 4100). Thus alternatives can be read directly from Table D4.6.3) Bearing (Section D4.2.4) Deflection (Section D4.8 kN at a height of 3 m. They are: 150 x 50 x 3.0 (Table 5. Additional design checks which should be performed are: • • • • • • Additional design bending moment due to self-weight Shear (Section D4.93 kg/m) φMs = 2.2. Additional design checks which should be performed are: • • • Shear Interaction of Shear and Bending Deflection DCTDHS/06 MARCH 2002 (Section D4.73 kNm > M * 50 x 50 x 2.93 kg/m).8 kNm > M * (Table D4.A rectangular hollow section is the most efficient and most practical hollow section for this application. 1-4) include values of design web shear capacity for bending about the x.12.4.2 Method The design shear capacity of a web (φVv) is determined from the lesser of Clauses 5.2. D4. Examples Check the shear capacity of the 150 x 50 x 3.and y-axis.11.2.2. D4-8 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .75 φMs   16 . D4.3) Note: If V * < 0.1-1 to D3.2.6 φVv or if M * < 0.4 of AS 4100 for RHS and SHS as described in Section D3.1-1) >V* Therefore the 150 x 50 x 3.2.2.75 φMs ≤ M * ≤ φMs where φ V v = design web shear capacity M* = design moment capacity φMs = design section moment capacity (Section D4.6. The reduced shear capacity (φVvm) is determined in accordance with Clause 5.2.11. M∗  φVv 2.2) (Section D3.0 DuraGal RHS Grade C450L0 is satisfactory.3 of AS 4100 as follows: φVvm = or = φV v for M * ≤ 0.2 −     φM s   for 0.75 φMs then no check on the interaction of shear and bending is necessary.3 and 5.1 Scope The section capacity tables (Tables D3.4 1.2.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4. Design Data: Design shear force V * = 9 kN Solution: Design shear capacity of the section φVvx = 195 kN (Table D3.1.2 DESIGN SHEAR CAPACITY D4.2 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. D4.3 Interaction of Shear and Bending The design web shear capacity determined in Section D4.D4. 8 kN Solution: Design shear capacity of the section φV v = > 44. Design Data: V* = Design shear force Design shear capacity Design bending moment Design member moment capacity 9 kN φV vx = 195 kN M* = 18 kNm φMsx = (Table D3.75 φMsx   16 .8 K Q 9 kN < φVvm =159 kN Therefore the 150 x 50 x 3.2 − = 159 kN therefore V * = FG 16.1-1) Solution: 0.6.1-2) Therefore the 50 x 50 x 2.0 DuraGal RHS Grade C450L0 is satisfactory. Check the shear capacity of the 50 x 50 x 2.6 for the interaction of shear and bending.75 x 20.1-1) 20.8 = 15.2 kN V* (Table D3.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4.0 DuraGal SHS Grade C450L0 is satisfactory. Check the 150 x 50 x 3.1.0 DuraGal SHS Grade C450L0 beam in Example 2 from Section D4. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-9 .1. x18 IJ OP H 20. 3. Design Data: Design shear force V * = 0.2 −     φM sx   LM N = 195 2.75 φMsx = then M * > therefore φVvm = 0. M∗  φVv 2.6 kNm 0.8 kNm (Table D3.2. 0 and αb = 0.4 of AS 4100) φR bb = design web bearing buckling capacity (Clause 5.5 d5/t) DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .5 + ks k v ks = 2rext −1 t kv = d5 t αc = D4-10 iFGH d i I OP JK PQ member slenderness reduction factor determined in accordance with Section D5.interior bearing.2(b)) d5 = flat width of web (see Figure D4.end bearing.3 of these Tables using kf = 1.5 k 0. D4.9 (Table 3.25 2 2 1 + 1 − α pm 1 + s − 1 − α pm ky ks k v2 LM MN d α pm = 1 0.13.4 of AS 4100) φR by = design web bearing yield capacity (Clause 5. and .13. and modified slenderness ratio (Le/r = 3.3.D4.3.2(a)) rext = outside corner radius αp = 0.3 DESIGN WEB BEARING CAPACITY D4.3.5.2 Method The design web bearing capacity (φRb) has been determined from Clause 5. and taken as the lesser of: φRby = φ 2 αp bb t fy and φRbb = φ 2 αc bb t fy where φ = 0.3 of AS 4100) t = fy = thickness of section yield stress used in design Interior bearing for bd > 1.5d5 bb = bs + 5rext + d5 bs = actual length of bearing (see Figure D4.13 of AS 4100.1 Scope The tables give values of design web bearing capacity per unit length (φRby/bb) and the design web bearing buckling per unit length (φRbb/bb) for SHS and RHS for .3. 5rext + αp = 2 + k s2 − k s αc = d5 2 member slenderness reduction factor determined in accordance with Section D5.8 d5/t) Figure D4.0 and αb = 0.5d5 bb = bs + 2. Radius and Web DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-11 .5. and modified slenderness ratio (Le/r = 3.3 of these Tables using kf = 1.End bearing for bd < 1.2: Dispersions of Force Through Flange.3. 357 x 218 = 77. Design Data: Design bearing force R* = Stiff bearing length 9 kN bs = 5rext = bbw = 50 mm 30.0) = 218 mm The web bearing capacity (φRb) is the lesser of φRby and φRbb From Table D4. D4-12 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .3 Example 1.6 is applied over the full width of the RHS and for a length of 50 mm along the RHS. Check the bearing capacity of the beam.0 DuraGal RHS Grade C450L0 is satisfactory.0 mm bbf = bs + 5rext = = 50 + 30.3-1(A)) (Table D4.1.3-1(A)) Solution: Bearing length at the edge of the corner radius Bearing length at the centre of the web = 80 + (2 x 69.8 kN (> R*) Therefore the 150 x 50 x 3.785 kN/mm = 0.3-1(A): φRby Design web yield capacity bb φRbb bb Design web buckling capacity = 0. The design concentrated force of 9 kN on the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 of Section D4.D4. Design web bearing capacity φRb = φR bb = 0.0 80 mm bb = bbf + 2bbw (Table D4.3.357 kN/mm φRby bb > φRbb bb Therefore web buckling will govern.0 mm 69. 4 of AS 4100) φR b = design web bearing capacity M* = maximum design bending moment φMs = design section moment capacity Note: these formulae only apply to bearing across the full width of section. No.D4. The effect of this interaction of bending and bearing force in hollow sections is not addressed by AS 4100. The interaction equation for bs/b > 1. Tokyo.J.L. G. 1992. Vol 118. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-13 ..4 BENDING AND BEARING INTERACTION D4. X.0 and (d1/t) < 30 is: FG R * IJ + FG M * IJ ≤ 15. [1] Zhao. [1]. Hancock.J. but suitable interaction equations have been developed from research.. H φR K H φM K 12 .[2] The bending and bearing interaction is dependent on the ratio of bearing length to the width of bearing bs/b and the web slenderness (d1/t).8 FG R * IJ + FG M * IJ ≤ 10. ASCE. Design aids have not been produced for this interaction because of the numerous bearing lengths which may occur for each section size.L..1 Method The design web bearing capacity determined in Section D4. 1992. Third Pacific Structural Steel Conference. pp 648-668.4. X. “Square and Rectangular Hollow Sections Subject to Combined Actions”. Proceedings. b s or 0. “Design Formulae for Web Crippling of Rectangular Hollow Sections”.3. Japan..3 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. [2] Zhao. 3. G. Journal of Structural Engineering. Hancock. H φR K H φM K b where bs = b = (d1/t) = d1 = t = R* = φ = stiff bearing length Otherwise s (see Figure D4.9 (Table 3.2) width of section web slenderness clear depth between flanges thickness of section maximum design bearing force 0. 0 > 1.8 +  ≤ 1.8  0.6) 20.0 DuraGal RHS Grade C450L0 beam.8   20.3 the interaction of bending and bearing is checked for the 150 x 50 x 3.6) φR b = 77.4.1.958  77.3) M* = 18 kNm (Section D4.8  ≤ 1.8 kN (Section D4.3) 48 (Table D1. Design Data: R* = Design bearing force Design web bearing capacity Design bending moment Design section moment capacity Stiff bearing length Web slenderness 9 kN (Section D4.8 + = 0.2-1 (1)) φMs = bs = d1/t = Solution: bs b = 50 50 = 1.3.8 kNm (Table D3.0  φRb   φMs  9   1. Considering further Example 1 of Section D4.1-1) 50 mm (Section D4.0 DuraGal RHS Grade C450L0 is satisfactory D4-14 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 d1/t = > 48 30 ∴ the interaction equation is  R*   M *  0.D4.6 and Example 1 of Section D4.0 Therefore the 150 x 50 x 3.1.3.1.3.2 Example 1. Table D4. a more comprehensive set of beam deflection formulae are published in the AISC technical journal “Steel Construction”. 1 (February 1992). finite elements) Table D4. Volume 26 No.5 CALCULATION OF BEAM DEFLECTIONS Common methods for calculating the elastic deflection of a beam include: (i) (ii) (iii) (iv) (v) integration of M/EI diagram moment area slope deflection published solutions for particular cases approximate or numerical methods (eg.D4.5 gives the more commonly used beam deflection formulae. Due to the large range of loading configurations and support conditions considered for beams in design.5: Beam Deflection Formulae Where: ∆ W L E I DCTDHS/06 MARCH 2002 = = = = = maximum deflection total load on beam span of beam Young’s modulus of elasticity second moment of area of cross-section DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-15 . 0 RHS 16.6 12.5 12.8 27.18 6.2 13.8 23.60 8.91 8.1 15.8 9.9 13.1 10.8 14.56 4.4 33.0 34. 3.1 12.86 4.5 14.7))0.3 15.6 9.5 12.1.7 12.31 4.0 7.37 6.2 22.1 10.05 18.1 13.4 11.43 3.26 8.7 14.6 8.9 26.3 22.0 3.07 34.1 13.52 4.2 13.4 11.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint.1 29.53 6.5 24.0 8.9 16.4 18.96 7.54 8.50 3.37 3.7 13.5 24.1 10.48 24.4 16.0 RHS 2.7 21.35 4.4 16.8 14.4 9. 4.37 5.3 10.7 14.4 17.5 .3 12.4 18.0 20.0 6.8 17.25 5.2 9.99 7.8 14.01 125 x 75 x 6.4 28.5 24.4 16.0 9.7 12.61 4.1 9.0 2.53 6.7 10.0 9.34 4.05 18.32 4.3 12.8 9.8 24.26 4.1 29.3 16.5 9.99 7.5 14.5 30.5 20.8 13.2 12.4 9.96 16.5 24.0 34.8 14.0 34.93 6.03 4.8 36.1 29.0 5.8 14.79 25. 5.1 10.0 RHS 3.50 3.9 10.1 10.46 5.18 7.05 17.3 9.5 20.05 18.0 32.0 13.3 24.9 FLR .19 3.3 10.7 25.0 19.75 7.2 29.7 13.8 17.8 14.18 7.0 RHS 3.96 7.2 21.02 7.5 13.6 22.5 20.7 14.4 18.8 9.5 27.3 23.6 21.15 13.5 24.8 15.Ms/Moa ) (See Section D4.99 6.84 8.04 7.4 21.0 8.6 12.05 17.4 18.95 31.81 4.3 22. 2.1 18.5 RHS 3.99 7.69 4.1 10.1 10.6 26.9 10.36 14.6 8.7 13.3 8.6 16.7 23.2 8.7 20.9 31.71 15.0 RHS 16.0 RHS 5.1 29.46 6.5 (See Section D4. FLR = 0.0 31.6 17.23 5.6 RHS 12.9 14.0 4.37 5.2 11.6 9.2 of these tables for explanation) αm = 1.8 9.3 26.9 26.4 25.2 23.49 7.9 11.7 13.0 RHS 2.0 9.0 10.6 12.8 17.4 16.3 17.60 5.8 11.5 12.7 9.2 17.8 10.3 10.8 10. αsh = 0.1 28.0 RHS 5.5 12.64 18.6 12.1 17.1 10.80 30.0 12.7 19.53 6.7 16.5 10.8 16.71 7.8 9.0 10.17 9.0 11.9 19.56 4. φ = 0.2 14.18 7.2 11.2 11.2 13.9 26.4 11.8 14.4 11.0 34.5 12.32 100 x 50 x6.8 12.7 22.D4-16 TABLE D4.5 27.1 29.3 12.0 DCTDHS/06 MARCH 2002 .5 RHS 2.08 7.1-1(1) DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d b Design Moment Capacities φMb (kNm) Mass per m t FLR Effective Length (Le) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 1.9 24.49 7.59 15.5 RHS 2.03 4.9 31.1 13.4 18.5 14.8 36.18 8.1 10.04 4.51 29.segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment.31 7.1 18.0 31.22 4.1 12.1 29.8 36.37 5.41 4.0 33.7(((Msx / Moa)2 + 2.4 18.1 29.8 28.0 RHS 4.6 10.0 11.18 7.0 RHS 1.1 27.0 32.0 RHS 4.37 5.0 12.9 15.32 Notes: 1.07 36.0 9.44 6.6 8.9 26.5 RHS 2.82 5.53 3.0 10.8 14.83 16.5 24.1 26.19 4.2 17.1.0 RHS 2.9 31.69 6.4 16.0 25.2 26.8 28.0 34.2 15.1 10.1 10.47 14.23 7.0 14.8 9.0 RHS 3.0 18.8 11.2 13.2 10.5 18.0 18.6 30.5 24.0 RHS 4.0 34.25 13.231 (π2 E /y G J / Msx2)0.0 RHS 5.4 18.1 9.65 30.1 10.1 13.02 5.0 m 150 x 50 x 6.8 34. 77 3.1 10.37 2.73 1.60 2.56 4.8 9.89 5.5 12.13 50 x 25 x 3.0 RHS 3.91 4.92 5.99 7.07 2.16 50 x 20 x 3.8 9.40 2.07 3.6 RHS 2.69 1.75 1.0 m 100 x 50 x 6.4 16.92 5.45 3.73 8.27 2.05 18.97 3.18 7.1.23 3.36 5.16 1.73 1.91 4.72 3.0 RHS 5. αsh = 0.98 1.06 3.4 16.72 1.52 2.863 1.4 16.4 16.18 7.0 3. 1.6 RHS 9.38 4.16 5.76 65 x 35 x 4.25 1.0 RHS 1. FLR = 0.09 1.07 1.19 4.32 3.18 7.07 1.03 4.91 4.90 2.27 3.31 4.0 8.07 3.71 1.25 1.5 RHS 2.0 RHS 1.2 of these tables .7(((Msx / Moa) + 2.77 1.5 12.53 1.83 3.45 3.22 1.34 11.35 6.8 9.16 2.56 6.02 1.63 1.05 17.1 10.Ms/Moa ) (See Section D4.3 15.8 9.83 3.73 1.1 10.37 5.0 RHS 1.11 5.60 2.9 15.58 1.35 4.15 2.64 18.1 8.99 1.12 0.35 4.37 5.52 6.0 RHS 2.34 11.4 10.07 3.1 8.18 7.1 10.73 4.83 3.9 10.32 75 x 50 x 6.37 2.8 9.45 3.25 2.5 12.34 11.71 3.35 2.1 10.37 5.38 4.1 13.0 RHS 2.1 13.34 1.22 1.92 5.66 1.76 3.1 8.36 2.36 2.07 3.7)) for explanation) 5.1 10.02 1.74 1.4 10.77 3.83 1.37 5.77 3.46 5.37 2.5 RHS 2.5 12.1 8.52 2.1 10.37 5.53 mm mm mm DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-17 Notes: φ = 0.1 13.8 9.4 10.43 2.18 7.05 18.05 18.76 4.5 12.76 4.92 5.3 8.6 RHS 3.38 1.27 2.56 6.04 2.23 1.15 4.71 7.0 10.34 11.93 5.37 2.5 0.4 16.73 1.16 5.45 3.13 2.09 1.72 4.0 RHS 5.91 4.47 1.14 7.07 1.1 13.83 1.92 5.34 11.1 8.43 2.5 5.53 1.01 11.07 1.91 4.27 2.64 3.53 1.34 11.83 1.38 2.5 3.92 2.51 1.10 3.05 18.42 4.84 1.32 4.4 16.1 10.75 2.13 2.0 13.16 5.75 2.36 2.4 10.10 2.05 18.05 17.84 4.12 2.69 5.45 3.56 6.63 2.92 5.9 FLR .41 3.5 1.45 3.68 3.91 4.05 18.8 9.1 8.92 5.1 13.53 6.0 RHS 2.43 2.61 2.38 4.32 1.53 1.05 18.0 RHS 1.91 4.53 1.29 2.37 5.1-1(2) DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d b Design Moment Capacities φMb (kNm) Mass per m t FLR Effective Length (L e) in metres kg/m 0.07 1.76 4.56 6.43 2.82 1.43 2.37 2.81 3.43 2.1 13.42 1.15 1.03 0.83 3.83 2.DCTDHS/06 MARCH 2002 TABLE D4.4 16.77 3.83 3.64 1.37 5.77 3.37 5.92 5.07 1.33 4.93 2.83 3.50 1.66 3.5 12.46 1.26 4.83 1.5 RHS 2.16 5.50 1.83 3.77 3.45 3.89 1.0 .5 12.18 7. Values to the left of the solid line are segment lengths with full lateral restraint.00 1.0 RHS 1.57 1.38 4.4 10.37 3.70 1.6 8.37 2.4 10.38 4.34 11.34 10.0 6.977 1.60 5.34 11.95 1.18 7.77 3.16 5.45 3.77 3.31 2.4 10.58 1.83 3.89 4.91 4.56 6.38 4.23 1.25 3.28 6.2 16.5 RHS 2.77 3.11 1.80 1.0 RHS 4.91 4.49 7.92 5.87 4.83 1.96 4.37 5.34 11.78 3.2 11.7 9.1 10.08 1.8 11.62 2.50 3.18 7.56 6.92 5.81 2.25 5.31 2.0 1.16 5.73 1.4 16.5 4.7 13.0 RHS 2.91 4.6 RHS 3.77 3.4 10.76 4.5 RHS 2.38 4.35 1.71 2.22 1.8 9.5 (See Section D4.0 2. 2 0.73 1.6 RHS 12.42 2.36 2.37 2.05 18.45 1.16 5.1 8.4 16.27 2.1 10.3 of these tables for explanation) 3.50 1.07 1.4 12. 2.37 5.50 3.60 3.36 2.5 RHS 3.17 3.83 3.4 10.56 6.44 1.92 5.37 2.34 11.37 1.03 4.1 13.5 12.0 RHS 2.5 12.56 6.27 2.34 11.43 2.05 3.231 (π2 E /y G J / Msx2)0.2 8.16 1.58 3.3 10.01 1.44 1.91 4.1.18 7.2 12.07 3.56 6.0 RHS 5.4 10.1 8.77 3.92 5.5 RHS 2.8 9.56 6.37 5.09 1.19 1.97 4.1 13.1 13.1 8.1 8.97 5.77 3.27 2.segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment.4 10.73 1.16 5.28 1.5 4.05 18.96 1.5 12.5 10.61 1.04 5.8 9.07 1.4 10.08 3.937 1.34 4.03 1.56 6.07 3.16 5.85 4.78 1.90 3.5 12.1 10.0 4.38 4.92 4.4 16.45 3.1 8.8 9.07 2.05 18.34 11.4 16.36 2.38 4.38 4.73 1.18 7.0 RHS 3.1 8.79 4.09 1.92 5.17 0.89 1.0 RHS 3.48 1.09 1.71 3.18 7.53 1.1 13.91 4.80 75 x 25 x 2. αm= 1.77 3.91 4.56 6.05 18.0 RHS 4.1 10.60 2.76 4.1 13.67 8.76 3.9 9.40 1.27 4. 9 12.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint.2 8.D4-18 TABLE D4.63 1.71 1.21 3.9 12.34 4.21 3.34 9.21 3.67 1.08 2.34 4.52 5.3 16.1.57 4.63 8.67 2.75 1.09 4.52 5.56 1.2 8.9 12.2 8.3 RHS 2.9 12.25 1.43 1.50 1.99 1.231 (π2 E /y G J / Msx2)0.21 3.08 4.3 16.9 12.98 1.49 6.52 10.57 4.57 4.3 16.5 0.8 RHS 2.1-2 DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis Designation d b Design Moment Capacities φMb (kNm) Mass per m t FLR Effective Length (L e) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS kg/m 0.0 1.50 4.8 RHS 2.04 3.0 2.9 12.39 6.24 6.57 1.3 RHS 5.49 6.7(((Msx / Moa)2 + 2.0 4.61 1.71 1.2 8.3 16.2 8.9 12.7))0.2 8.25 1.Ms/Moa ) (See Section D4.0 3.43 3.3 16.3 16.3 16.5 (See Section D4.52 5.69 3.71 1.9 12.14 3.57 4.31 5.49 6.28 3.69 100 x 50 x 2.0 DCTDHS/06 MARCH 2002 .66 1.5 3.99 1.3 RHS 2.51 2.94 2.3 RHS 3.9 FLR .88 65 x 35 x 2.94 2.89 1.26 1.57 4.8 RHS 2.9 12.71 1.48 mm mm mm Notes: 1.75 1.52 10.2 8.19 1.26 1.21 3.2 of these tables for explanation) αm = 1.94 2.3 16.45 1.49 6.94 2.49 6.8 RHS 2.77 1.9 12.52 5. 5.3 16.92 1.95 16.52 5.2 8.5 5.49 1.52 10.86 3.35 3. 4.86 1.32 4.80 1.57 4.49 6.52 5.2 8.52 5.2 8.37 75 x 50 x 2.49 6.1 8.49 5.85 4.89 2.95 3.3 RHS 8.99 1.21 3.8 RHS 2.99 1.49 6.52 10.3 RHS 6.89 2.9 12.99 3.26 1.94 2.49 6.47 6.5 .segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment.52 5.72 1.83 2.57 4.52 5.71 1.26 1.21 3.52 10.52 10.52 10.3 7.31 1.26 1.2 8.64 1.52 5.49 6.1.9 12.52 5.15 1.52 10. αsh = 0. FLR = 0.3 16.12 1.11 50 x 25 x 2.0 6.11 50 x 20 x 2.94 8.8 RHS 2.3 16.21 3.3 16.5 4.51 8.52 5.42 1.26 1.99 1.52 10.3 16.21 3.26 1. φ = 0.44 2.52 10.36 1.57 4.57 4. 2. 3.05 1.94 2.52 10.08 3.75 2.48 9.13 3.19 5.30 1.0 m 125 x 75 x 2.94 2.49 6.49 6.9 12.25 1.71 1.5 1.93 1.9 12.14 10. 6 RHS φRby φRbb bb bb End Bearing Useful Parameters 5rext bbw Le/r φRby φRbb bb bb bbw L e/r mm mm mm kN/mm kN/mm mm mm mm N N N N N B 1.0 62.238 0.18 0.506 0.0 25.3 25.32 1.906 0.513 2.0 21.8 127 163 75 x 25 x 2.685 0.5 RHS 3.3 98.828 0.0 21.0 70.5 27.0 RHS 1.0 16.5 28.0 RHS 5.34 2.56 1.0 62.0 21.0 RHS 2.8 48.769 0.186 12.654 0.3 57.0 71.00 32.5 25.5 of AS 4100.92 1.0 30.0 16.513 0.0918 37.0 20.64 244 208 170 151 131 110 88.0 62.3 56.758 0.528 0.738 0.5 34.0 RHS 3.5 d5 /t for interior bearing or Le/r = 3.4 0.0 22.5 50.5 50.8 77.82 1.0 20.0 47. Design shear capacity calculated in accordance with clause 5.92 5.399 15.5 31.8 143 175 222 12.5 26.58 3.1 60.20 0.5 RHS 2.8 30.0 69.0 73.0 20.5 57.4 82.0 RHS 5.64 2.358 0.786 0.3 69.5 27.5 38.56 4.0 20.0 82. Design shear capacity calculated in accordance with clause 5.5 34.8 44.0 45.0 37.5 50.786 0.0 69.83 2.1 73.31 0.0 62.6 RHS 3.3 66.0 19.67 8.0 12.44 0. 4.5 10.769 0.2 11.186 37.44 1.0 46.0 N N N N N N N 1.0 35.513 0.5rext = 0.0 124 175 213 270 317 269 219 167 140 113 N N N N N N 1.0 RHS 2.0 30.5 33.60 2.672 0.670 0.0 37.7 N N N N 0.3 44.107 75.1 60.3 35.3 of AS 4100.8 79.358 0.0 76.8 104 50 x 20 x 3. 2.75 61.0 25. Vv = Vb = αvVw ≤ Vw DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-19 .426 1.96 7.25 2.38 79.7 14.5 50.95 1.0 25.179 0.651 0.74 1.7 56.3 79.11.132 37.396 0.641 0.0 27.5 10.410 0.0 10.0 12.399 15.0 12.TABLE D4.20 1.0 8.3 8.35 1.723 0.0 15.0 RHS 1.5 31.854 0.0 70.5 70.53 6.11 1.0 15.756 0.5 40.800 0.528 50.5 32.5 58.33 0.6 8.22 0.0 99.0 12.11.0 RHS 3.0 30.0 21.8 79.0 89.74 1.3 26.0 20.11.641 0.3 25.5 103 126 161 205 1.2 51.07 100 x 50 x 6.0 99. φ Le/r φRby φRbb αb kf U N B DCTDHS/06 MARCH 2002 kN/mm kN/mm Useful Parameters 2.0 = approximately uniform shear stress distribution.0 RHS 2.0 RHS 4.0 RHS 2.0 21.417 3.5 56.308 0.00 19.4 42.0 30.5 RHS 2.18 0.685 0.452 30.836 0.4 61.0 52.5 RHS 2.25 3. 7.5 91.6 108 50 x 25 x 3.47 1.5 50.5 40.62 2.01 178 153 126 97.884 0.0 15.0 RHS 1.641 0. 3.786 0.0 87. 6.0 47.54 1.0 46.524 0.53 6.54 1.8 44.8 0.4 of AS 4100.0 34.69 1.28 1.0 20.5 25.539 0.5 42.0 62.8 40.123 75.0 20.5 31.5 58.0 52.5 10.0 16.0 RHS 5.0 60.0 RHS 16.0 25.410 1.983 0.0 62.0 RHS 4.0 32.82 1.2 11.5 60.5 26.0 RHS 16.5 RHS 2.5 RHS 2.641 0.0 46.208 0.641 0.60 0.15 0.6 111 137 175 222 75 x 50 x 6.5 39.5 = 1.6 RHS 3.216 25.8 67.0 48.72 3.0 12.0 52.5 95.0 12.42 0.35 6.8 48.850 0.8 54.00 22.3-1(A) DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis Interior Bearing Designation d b Mass per m t mm mm mm φVv kg/m kN 150 x 50 x 6.5 65.410 0.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.513 0.797 0.0 27.0 8.0 RHS 4.5 31.3 51.0 21.410 1.0 21.0 20.257 0.5 28.6 RHS 9.0 41.7 N N N N N N N N 1.752 0.07 2.667 0.25 3.769 0.216 75.410 4.0 91.539 0.4 0.0 41.3 25.50 3.513 2.5 33.5 10.9 + (f *vm/f *va)) ≤ Vu = shear buckling failure mode.9 71. Design shear capacity calculated in accordance with clause 5.0 76.42 1.58 1.420 4.3 91.79 2.5 114 161 196 249 1.836 0.0 RHS 2.0 22.3 44.5 34.983 0.0 8.0 60.9 15.5 10.0 RHS 2.6 RHS 2.5 57.06 0.6 8.723 0.5 33.21 0.3 28.0 20.521 3.60 2.0 RHS 1.5 32.8 52.667 0.9 132 161 205 1.809 0.0 45.74 1.05 0.31 0.2 76.769 0.93 2.63 60.08 0.99 1.528 0.0 16.769 0.5 95.0 19.0 RHS 1.8 127 163 65 x 35 x 4.9 N N N 0. 5.8 44.5 RHS 2.3 56.0 15.0 RHS 5.0 20.42 4.10 0.519 2.15 1.790 0.0 21.688 0.2 N N N N 0.53 6.7 14.0 22.7 N N N N 0.0 RHS 3.439 0.420 0.0 21.0 8.786 0.756 0.5 34.5 10.33 3.1 83.18 0.667 0.0 25.5 125 x 75 x 6.0 20.983 0.22 0.3 25.5 RHS 2.0 25.641 0.08 0.298 0.465 25.410 3.18 0.426 1.0 20.5 33.5 56.455 0.1 64.0 46.769 0.0 71.786 0.60 5.0 RHS 4.5 10.07 0.07 374 316 257 195 164 92.8 104 Notes : 1.410 0.0 43.641 0.1 42.983 0.670 0.4 70.513 2.0 12.96 7.0 117 150 0.5 RHS 2.532 2.00 35.0 RHS 2.0 25.5 65.19 0.00 19.154 75.860 0.513 0.16 2.9 = 3.817 0.659 0.785 0.106 37.49 7.0 RHS 3.5 31.769 0.205 0.5 55.0 95.945 0.30 1.31 1.838 0.8 98.452 30.6 34.93 106 82.0 117 150 1.0 70.0 16.0 8.6 fy Aw = non-uniform shear stress distribution.357 0. Vv = Vu = Vw = 0.0 73.5 10.5 31.35 4.641 0.0 RHS 5.513 0.5 50.0 RHS 3.1 52. Vv = 2Vu / (0.800 0. 1 U U U U 1.3 19.8 79.5 28.723 0. Vv = 2Vu / (0.0 10.5 26.82 1.0 16.0 12.30 16.18 0.399 37.0 20.0 20.8 125 x 75 x 6.5 15.769 0.99 1.786 0.83 1.513 0.410 4.60 2.8 98.5 12.0 28.6 73.5 RHS 2.18 0.0 RHS 5.5 RHS 2.88 1.00 6.18 0.0 29.37 0.786 0.5 42.44 1.0 117 1.3 29.37 0.5 15.8 35. 7.983 0.0 RHS 16.0 30.8 32.5 32.35 1.30 0.0 29.15 1.0 15.77 3.410 2.0 19.0 15.43 1.0 12.48 1.50 7.30 0.00 7.5 RHS 2.0 RHS 1.513 4.5 = 1.7 44.0 20.4 18.1 69.7 36.410 2.0 20.5 10.0 RHS 1.34 2.0 RHS 4.3 25.0 15.0 12.3 8.6 13.0 73.25 3.30 0.81 2.836 0.20 0.3-1(B) DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis Interior Bearing Designation d b Mass per m t mm mm mm kg/m φVv kN φRby φR bb bb bb End Bearing φRby φRbb 5rext b bw L e/r bb bb Useful Parameters Useful Parameters 2.0 8.60 2.6 64.1 15.00 6.410 75.5 22.50 7.3 32.7 44.88 1.4 1.30 15.0 RHS 1.0 73. 3.0 20.0 21.7 36.0 RHS 2.0 10.30 21. Vv = Vu = Vw = 0.25 3.18 0.0 52.2 81.62 2.20 1.8 0.769 0.83 1.0 4.43 1.5 31.80 9.31 0.07 2.0 16.667 0.0 = approximately uniform shear stress distribution.5 RHS 2.TABLE D4.641 0.5 31.11 1.711 0.641 0.9 = 3.00 10.426 4.0 12.0 U U U U 0.5 50.8 12.0 62.0 RHS 5.0 51.50 8.00 5.0 21.93 2. φ Le/r φRby φRbb αb kf U N D4-20 = 0.96 7.5 50.0 27. Design shear capacity calculated in accordance with clause 5.8 11.2 65 x 35 x 4.25 2.449 1.6 64.5 10.2 50 x 20 x 3.5 10.0 28.5 26.8 104 75 x 50 x 6.3 79.801 0.410 4.31 0.67 1.8 79.754 0.88 1.64 111 97.0 20.0 25.11.7 44.8 79.7 U U U U U U 1.33 14.0 19.85 1.2 54.02 0.0 12.5 1.7 19.0 28.50 9.8 11.5 RHS 2.3 20.2 54.0 RHS 2.82 1.81 2.42 1. 2.22 0.641 0.5 12.6 RHS 3.50 9.92 5.5 d5/t for interior bearing or Le/r = 3.769 0.1 U U U U 1.449 2.0 15.0 16.769 0.0 20.769 0.0 7.513 0.513 0.1 60.5 35.00 4.53 6.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.0 RHS 2.81 2.973 12.2 22.50 3.95 1.769 0.0 RHS 5.786 0.7 17.4 1.5 26.0 20.426 4.809 0.670 0.5 95.2 54.0 RHS 3.7 19.0 20.6 fy Aw = non-uniform shear stress distribution.5 50.0 20.800 75.0 16.8 104 75 x 25 x 2.3 0.0 RHS 4.5 48.85 1.0 U U U 0.0 43.0 12.5 10. 5.0 29.72 3.35 4.0 RHS 16.50 8.0 RHS 3.962 0.0 20.0 16.1 26.74 1.0 10.0 RHS 1.0 12.0 10.58 3.38 24.11.3 20.578 0.5 RHS 2.0 RHS 3.5 15.15 2.15 0.00 6.50 8.5 RHS 2.5 10.0 47.7 19.0 25.8 12.6 RHS 3.33 1.01 25.6 RHS 9.836 0.0 RHS 3.81 3.3 44.9 15.641 0.0 RHS 2.3 44.0 48.0 12.0 12.5 95.1 60.452 75.3 36.72 1.0 8.756 0.67 8.5 15.8 32.72 1.00 10.0 12.0 RHS 2.786 0.96 7.962 0.513 4.513 0.0 12.641 0.6 RHS 2.685 0.0 30.15 1.3 25.22 0.0 20.539 0.5 31.0 8.5 15.53 6.5 13.01 111 97.8 40.0 20.0 21.7 0.5 31.3 Notes : 1.8 40.641 0.5 38.5 RHS 2.40 1.513 3.685 0.07 184 158 130 101 85.50 11.983 0.5 15.7 0.32 1.3 56.5 RHS 3.81 3.33 3.5 33.0 73.688 0.2 21.82 1.6 RHS 12.83 2.5 10.0 22.22 0.0 7.93 52.513 0.39 1.1 64.2 81.0 10.77 3.1 73.0 21.800 0.11 0.0 RHS 3.5 50.0 21.2 15.554 3.3 of AS 4100.6 8.539 0.50 11.3 19.836 0.01 30.30 22.17 2.33 1.7 14.0 22.0 12.0 RHS 5.641 0.9 56.723 37.0 8.0 62.5 44.0 19.3 48.85 2.754 0.7 17.8 30.5 91.56 4.4 17.983 0.0 21.10 15.0 21.7 24.42 4.5 31.973 15.80 10.0 25.0 RHS 1.5 26.72 1. Design shear capacity calculated in accordance with clause 5.0 30.603 0.358 37.452 75.0 11.5 14.4 17.60 5.0 30.12 30.4 U U U U U U U 1.00 5.7 17.0 12.0 25.539 4.3 56.5 32.0 6.9 + (f *vm /f *va)) ≤ Vu DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .3 43.0 RHS 2.11 25.00 6.50 9.0 U U U U U U 1.410 1.88 2.0 16.77 3.0 RHS 4.4 of AS 4100.8 32.8 127 100 x 50 x 6.2 81.07 111 97.40 1.53 6.878 0.0 21.685 0.74 1.463 2.814 0.0 RHS 2.1 60.0 25.0 7.3 50 x 25 x 3.0 21.63 20.0 RHS 4.5 25.0 62.0 21.5 48.578 0.7 14.62 1.528 4.00 6.3 25.723 0.983 0.0 RHS 5.35 6.08 0.5 10.5 31.0 62.786 0.0 12.0 19.0 25.75 27.1 38.0 16.2 11.0 27.5 33.949 0.0 25. 4.74 1.5 13.962 0.88 1.6 8.5 25.49 7.0 21.31 0.3 44.0 21.641 0.85 2.0 20.97 1.50 1.2 11.50 8.83 2.5 13.50 9.399 37.800 0.0 8.3 35.884 0.81 3.5rext b bw Le/r kN/mm kN/mm mm mm mm kN/mm kN/mm mm mm mm 150 x 50 x 6. 6.4 U U U U U U U U 1.5 30.17 50.3 25.85 2.769 0.5 10. 9 32. 7.9 = 3.6 17.4 50.4 20.01 14.0 34.532 14.53 1.611 1.5rext = 0.718 0.718 0.96 1.9 57.0 19.718 0.8 RHS 2.590 0. kN 156 129 122 102 φRby End Bearing = 0.77 14. 5.69 28.932 0.5 31.6 N N 0.0 4.3 RHS 5.4 48.3 RHS 2.0 11.09 4.9 + (f *vm/f *va)) ≤ Vu TABLE D4.14 60.775 0.4 52.1 0.67 2. 2.590 1. 2.3 24.24 65 x 35 x 2.4 20.95 6.682 2.7 N N 0.24 0.14 75 x 50 x 2.5 26.40 5.44 57.0 19.4 65 x 35 x 2. Vv = 2Vu / (0.5 19.9 12.0 23. Vv = 2Vu / (0.4 20.590 1.44 26.11. Design shear capacity calculated in accordance with clause 5.78 28.735 0.233 0.0 23.8 RHS 2.3 RHS kg/m 8.758 0.626 0.9 86.2 U U 0.0 11.414 0.01 14.92 1.10 28. Vv = Vu = Vw = 0.01 0.0 11.611 1.775 0.0 31.8 100 0.9 32.6 50 x 25 x 2.9 86.9 44.14 1.90 7.0 23.66 14.5 mm 56.0 = approximately uniform shear stress distribution.7 U U 0.0 11.42 14. 7.718 0.40 5.19 5.2 50 x 25 x 2.4 20.0 11.4 75 x 50 x 2. 6.5 = 1.89 2.590 2.TABLE D4.8 39.34 77.0 11.766 28.626 1. Design shear capacity calculated in accordance with clause 5.2 N N 0.5 19.8 RHS 2.626 1.62 1.8 RHS 2.9 32.0 11.4 mm 154 191 121 150 kN/mm 0.8 100 0.532 14.683 14.4 52.5rext N N N N Notes : 1.718 0.4 of AS 4100.9 57.34 40.10 28.4 52.8 U U 0.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.0 23.5 31.89 2. 4.8 RHS 2.9 + (f *vm /f *va)) ≤ Vu DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-21 .0 16.53 1.9 79.718 0.8 RHS 2.7 26.62 1.0 23. 6.4 45.9 44.5 = 1.5 4.8 RHS 2.5 6.4 50 x 20 x 2.647 1.9 27.8 RHS 2.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.4 mm 142 176 111 138 91.0 11.0 19.626 1.8 RHS 2.3 RHS 2.5 d5 /t for interior bearing or Le/r = 3.604 28.5 48.90 7.0 23.9 73.9 17.4 50.6 109 3.9 67.99 3.0 11.358 mm 28.0 11.3-2(B) DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis Interior Bearing Designation d b Mass per m t φVv φRby φRbb bb bb End Bearing Useful Parameters 5rext bbw Le/r φRby φRbb bb bb bbw L e/r mm mm mm kg/m kN kN/mm kN/mm mm mm mm mm mm mm 125 x 75 x 2.01 14.62 1.48 28.718 0.16 1.3 RHS 6.590 2.3 0.7 67.4 22.3 RHS 5.590 1.3 RHS 2.0 23.605 kN/mm 0.1 50 x 20 x 2.25 19.0 23.775 0.0 11.10 28.741 0. 4.1 0.19 5.908 0.5 11.4 76.0 28.6 109 100 x 50 x 2.25 1.3 RHS 2.0 11. 3.5 62.4 78.9 32.6 fy Aw = non-uniform shear stress distribution.99 3.4 20.3-2(A) DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis Interior Bearing Designation d b Mass per m t mm mm mm 125 x 75 x 2.752 0.0 6.3 64.7 67.719 2.01 14.7 67.90 18.5 19.718 0.6 fy Aw = non-uniform shear stress distribution.3 of AS 4100.9 27.67 2.10 28.39 6.609 28.752 0.40 11.718 0.8 47.62 1.53 1.908 0.0 mm 56.4 φ Le/r φRby φRbb αb kf U N kN/mm kN/mm 0.0 19. Design shear capacity calculated in accordance with clause 5.5 19.590 0.1 0.4 of AS 4100.1 0.3 N N 0.601 0.8 RHS 2.3 of AS 4100.5 62. Vv = Vu = Vw = 0.90 17.4 20.11.4 0.590 0.9 = 3. 5.590 1.0 92.590 1.25 56.9 32.0 31.95 94.3 84.09 4.7 67.5 62.11.4 20.8 RHS 2.3 RHS φVv φRbb bb bb Useful Parameters 5rext bbw Le/r φRby φRbb bb bb bbw L e/r mm 14.359 0.5 14.0 0. Design shear capacity calculated in accordance with clause 5. 3.3 RHS 8.310 Useful Parameters 2.0 26.616 1.7 U U 0.4 45.548 0.3 RHS 100 x 50 x 2.53 1.200 0.626 1.810 0.3 RHS 3.0 11.0 23.8 Notes : 1.9 79.13 0.5 d5/t for interior bearing or Le/r = 3.590 0.869 0.4 20.7 U U 0.0 23.4 52.718 0.590 1.9 12.0 U U 0.0 23.01 0.9 0.4 48.718 0.24 60.718 0.39 6.8 RHS 2.9 29.4 48.775 0.40 11.5 62.3 42.4 48.24 1.0 23.0 = approximately uniform shear stress distribution.11. φ Le/r φRby φRbb αb kf U N DCTDHS/06 MARCH 2002 kN/mm kN/mm Useful Parameters 2. 3 56.99 1.0 8.6 SHS 8.0 41.0 80.983 0.20 0.0 46.9 + (f *vm/f *va)) ≤ Vu DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .31 37.0 72.672 0. Vv = 2Vu / (0.513 3.18 0. 6.0 16.0 30.9 30 x 30 x 2.51 1.8 79.0 22. 7.6 SHS 10.00 11.0 103 126 161 1.0 7.0 39.5 10.06 221 189 138 N N N 1.89 1.8 32.6 SHS 1.0 25.809 0.58 1.23 5.0 8.5 20.7 71. 5.00 6.463 1.3 Notes : 1.80 32.5 28.8 40.50 8.513 0.525 0.5 14.9 29.0 11.0 62.0 25.78 3.6 SHS 6.0 15. Design shear capacity calculated in accordance with clause 5.0 21.8 17.10 8.0 16.46 3.79 1.05 2.08 0.93 2.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.0 SHS 1.5 73.548 0.5 50.0 30.0 10.6 63.2 16.82 1.0 SHS 3.859 0.2 30.0 44.0 16.0 62.0 40.0 SHS 16.205 37.5 43.17 0.85 1.1 60. 4.0 35.283 75.38 25.551 0.47 1.3 48.746 4.670 0.66 1.04 0.18 0.0 SHS 2.6 fy Aw = non-uniform shear stress distribution.0 SHS 1.578 0.5 SHS 2.0 51.5 25.0 20.44 1.3 21.5 13.962 0.25 0.5 28.564 0.0 111 137 175 121 102 82.5 31.8 98.0 16.800 0.410 0.5 50.449 1.5 51.0 58.42 1.8 31.804 0.0 22.3 of AS 4100.15 0.35 4.0 44.45 75.50 9.6 47.0 12.6 12.44 0.482 0.5 95.60 2.50 8.8 98.0 27.0 34.0 40.0 29.513 0.5 32.88 1.0 SHS 2.3 25.81 2.0 28.0 SHS 1.and y-axis Interior Bearing Designation d b Mass per m t mm mm mm φVv kg/m kN 100 x 100 x 6.8 17.513 0.4 61.0 SHS 5.5 75 x 75 x 6.0 20.0 12.3 25.0 47.0 16.11.8 19.74 1.62 1.0 SHS 2.00 10.983 0.5 31.30 21.850 0.0 41.8 77.0 SHS 3.5 20.7 42.5 40.0 16.9 15.975 0.0 SHS 4.699 15.4 of AS 4100.60 5.5 31.0 41.399 31.0 = approximately uniform shear stress distribution.422 4.435 2.0 SHS 3.4 N N N N 0.5 48.0 SHS 5.769 0.410 2.56 1.0 37.983 0.69 0.5 12.0 68.64 2.667 0.5 26.0 15.5 50.37 0.88 61.79 2.700 0.873 12.74 5.83 1.4 42.711 0.7 N N N N 0.6 SHS 1.6 77.49 7.0 SHS 2.769 0.3 44.2 N N N N N N N 1.5 10.00 1.0 20.5 0.33 3.688 0.6 0.5 29.4 0.0 25.0 35.40 1.760 30. 2.410 3.410 75.5rext b bw Le/r kN/mm kN/mm mm mm mm kN/mm kN/mm mm mm mm N N N N N N 1.0 56.20 1.836 10.0 73.39 5.4 28.3 8.0 48.0 99.769 0.12 16.0 73.8 31.01 25.0 20.6 8.907 0.4 44.0 20.05 0.5 91.0 20.93 2.8 24.5 25.754 0.0 30.410 3.5 28.786 0. Vv = Vu = Vw = 0.641 0.252 0.0 44.0 16.0 62.7 N N N 0.5 29.10 0.3 62.0 19.7 37.45 4.786 0.5 10.641 0.662 0.641 0.5 SHS 2.3 22.25 3.8 29.05 1.0 42.8 91.758 0.0 SHS 4.56 4.973 12.55 2.8 30.0 21.0 41.0 SHS 4.723 0.9 N N N N N N 1.63 41.0 44.5 26.0 SHS 2.426 3.01 6.09 3.888 20.0 12.39 89 x 89 x 6.0 SHS 1.0 SHS 3.5 28.50 181 156 129 114 99.1 8.0 14.30 0.83 2.52 3.64 1.TABLE D4.528 4.5 40.4 49. Design shear capacity calculated in accordance with clause 5.5 = 1.29 0.5 9.640 50.0 12.9 = 3.5 32.0 SHS 2.455 0.34 2.756 0.6 0.15 1.0 11.854 0.760 0.00 11.96 7.0 21.2 90 x 90 x 3.25 2.0 14.8 38.5 13.1 38.667 0.25 3.3 44.31 1.5 32.0 45.0 SHS 2.11 0.396 0.54 0.50 9.410 1.0 25.6 N N 0.513 0.5 N N N N N N N 1.0 SHS 4.8 52.5 45.0 15.0 15.0 SHS 3.66 4.56 1.00 12.641 0.5 SHS 2.00 7.5 33.5 32.0 25.5 31.18 0.513 0.50 0.1 83.8 128 1.8 104 40 x 40 x 4.0 8.0 10.0 16.9 N 0.3 57.441 1.2 11.5 26.3 20.0 17.6 60.0 SHS 1.53 6.8 35 x 35 x 3.3 29.3 25.5 27.8 122 156 199 14.246 37.5 SHS 2.0 SHS 3.0 46.5 SHS 2.8 127 65 x 65 x 6.130 15.836 0.452 62.85 2.0 112 144 183 0.532 0.04 3.513 4.6 28.11 1.983 0.68 1.0 35.3 62.0 35.5 SHS φRby φR bb bb bb End Bearing φRby φRbb 5rext b bw L e/r bb bb Useful Parameters Useful Parameters 2.0 6.67 1.0 16.641 0.8 0.7 0.5 15.528 0.00 17.0 12.0 21.0 SHS 1.5 15.0 SHS 5.07 253 216 177 135 114 92.38 96.641 0.0 20.31 0.0 SHS 12.5 70.5 26.8 67.0 12.291 0. 3.6 SHS 0.0 76.8 79.878 0.0 8.0 52.0 11.0 37.641 0.0 25.8 41.817 0.4 1.32 1.983 0.769 0.8 36.0 8.5 SHS 2.5 27.53 6.4 84.769 0.11 0.5 28.7 34.5 33.410 1.659 0.641 0.30 2. φ Le/r φRby φRbb αb kf U N D4-22 = 0.418 0.431 3.1 57.5 14.2 35.945 0.1 25 x 25 x 2.0 30.0 22.5 38.5 12.238 75.6 108 139 50 x 50 x 5.0 62.02 1.5 10.19 0.0 25.13 153 132 109 85.2 20 x 20 x 1.906 0.88 1.5 10.6 SHS 2.3-3 DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x.0 20.88 3.38 1.3 35.4 79.685 0.0 20.524 3.0 20.465 0.82 2.410 4.5 50.0 21.48 2.5 10.786 0.0 19.35 1.8 56.0 SHS 1.410 1.3 67.8 35.3 25.0 29.884 0.5 SHS 2.75 7.22 0.151 30.554 0.8 19.0 27.80 29.0 11.11.0 16.4 54.769 0.0 12.74 1.0 35.7 14.18 0.0 15.769 0.0 12.5 10.513 0.3 N N N N N 1.00 39.0 39.5 SHS 2.5 10.578 25.800 0.6 66.0 22.0 45.539 0.0 8.08 2.5 d5 /t for interior bearing or Le/r = 3.33 0.513 0.797 0.786 0.688 3.5 SHS 3.786 0.0 40.0 20.3 26.12 24.0 117 1.30 22.0 20.6 SHS 4.0 16.0 SHS 5.358 37.0 15.0 43.36 1.0 8.5 32. 604 28.4 of AS 4100. Design shear capacity calculated in accordance with clause 5.4 15.25 39.5 62.99 3.5 11.14 65 x 65 x 2.9 79.7 50.3 77.590 1.3 SHS 8.741 0.62 1.718 0.1 50.9 32.0 23.53 1.5 31.10 28.4 20.611 1.5 44.8 SHS 2.2 3.8 39. 7. = Vu = Vw = 0. 6.9 12.0 11.95 127 105 75 x 75 x 2.0 27. 5.1 0.6 N N 0.19 5.775 0.8 SHS 2.4 45.9 86.9 84.96 1.0 19.11.42 14.590 0.01 0.and y-axis Interior Bearing Designation d b Mass per m t mm mm mm φVv kg/m kN 100 x 100 x 2.5 1.0 11.683 11.358 28.01 14.0 approximately uniform shear stress distribution.810 0.718 0.7 N N 0.8 SHS 2.4 36.3 SHS 35 x 35 x 2.4 39.0 11.9 92.4 111 138 0.3 SHS 40 x 40 x 2.42 66.9 12.5 14.3 SHS 50 x 50 x 2.11.3-4 DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x.6 109 4.766 23.5rext bbw L e/r kN/mm kN/mm mm mm mm mm N N 0.0 23.9 0.4 121 150 mm 93.9 3.0 31.548 0.TABLE D4.908 0.5 33.626 1.0 11.4 3. Design shear capacity calculated in accordance with clause 5.6 fy Aw non-uniform shear stress distribution.0 23.718 0.3 of AS 4100.638 1.0 46.6 0. 2.39 6.9 29. φ Le/r φRby φRbb αb kf U N DCTDHS/06 MARCH 2002 = = = = = = = Vv = φRby φRbb bb bb End Bearing Useful Parameters 5rext bbw Le/r mm φRby φRbb bb bb kN/mm kN/mm Useful Parameters 2.3 0.9 0.5 27.1 N N 0.9 32.0 11.48 28.4 48.7 N 0. 4.3 SHS Notes : 1. Vv = 2Vu / (0.310 14.0 11.8 SHS 2.4 15.590 0.36 28.29 14.3 SHS 6.8 100 0.0 23.7 67.92 1.1 N N 0.5 19.0 44.616 0.4 52.11 2.590 0.626 0.590 1.0 23.9 32.752 0.9 + (f *vm/f *va)) ≤ Vu DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D4-23 .532 14.8 d5/t for end bearing 2φ αp bb t fy 2φ αc bb t fy 0.3 42.8 SHS 2.67 2.4 20.62 46.5 d5/t for interior bearing or Le/r = 3.80 1.590 1.9 2.4 45.34 59.86 1.718 0.718 0.0 14.794 0.647 1. 3.605 0.2 39. [ BLANK ] D4-24 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . ....................................4 EFFECTIVE LENGTH ........................... D5-2 D5................................................................................................................5 MODES OF BUCKLING ............. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-1 ................2 DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION .....1 SCOPE .................................................................................... D5-8 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES........................................................................... D5-2 D5.............2-1 to D5.................. D5-2 D5.................................................................... D5-4 D5............................3 METHOD .PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION 5 PAGE D5....................................................................... D5-6 TABLES TABLES D5......6 EXAMPLE .............................. D5-6 D5........................................2-4 Design Capacities for Members Subject to Axial Compression (φNc) Buckling About Principal Axis ................... g.3 of AS 4100 and is given by: φNc = φ αc Ns ≤ φNs where φ φN s kf An fy αc D5-2 = = = = = = = = 0.g.or y-axis.4 of AS 4100) φ kf An fy (see Section D3.2-1(1)(A)) for the member buckling about the x-axis. The (A) series tables are immediately followed by the (B) series tables.PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION D5.2.2-4. The tables in this section have been grouped into two series for rectangular hollow sections: • the (A) series (e. and • the (B) series (e.2. are given in Tables D5.3. Table D5.2-1 to D5.2 of AS 4100) net section area Ag gross cross-sectional area (assumed no penetrations or holes) yield stress used in design member slenderness reduction factor DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .9 (Table 3.2-1(1)(B)) for the member buckling about the y-axis. D5.2.2 DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION Values of the design capacity for axial compression (φNc) for buckling about both principal axes. D5.2 and Tables D3. based on the appropriate effective length (Le).1-1 to D3.3 and Clause 6.1-4) Ae /Ag (see Section D1. Table D5. All loads are assumed to be applied through the centroid of the section and the column capacity is assumed to be associated with flexural buckling about either the x.3 METHOD The design axial compression member capacity is obtained from Clauses 6.1 SCOPE The following tables give values of design axial compression capacity for various effective lengths and have been determined using Section 6 of AS 4100. The residual stress classification used in determining kf is shown in Table D5. SHS DCTDHS/06 MARCH 2002 Residual Yield Slenderness Stresses Limit CF αb λey kf = 1.3.0 kf < 1. The member slenderness reduction factor (αc) is determined from Clause 6.4) radius of gyration (see Tables D1.2-1 to D1.5 FG L IJ HrK e Le r kf fy y e (Table D5.3 and Tables D1.2.3.5) >0 λn = αa = FG L IJ bk g FG f IJ HrK H 250 K 2100bλ − 13 . Table D5.0.5g f λ n 2 − 15 .2-4) yield stress used in design Note that the member capacity equals the section capacity (φNc = φNs ) when the effective length Le = 0.3λ n + 2050 α a = -0.3 of AS 4100.2.According to Clause 6.0.0 40 .3 and is described in Section D1.3 of the Tables.3.3.2-1 to D1.5 .3 Section RHS.3) = geometrical slenderness ratio = = = = effective length of a compression member (see Section D5.00326(λ -13.2-4) form factor (see Section D1. αc depends on the modified slenderness reduction factor (λn) and the member section constant (αb).3 of AS 4100 and taken as: R| S| T αc = ξ 1− LM1 − F 90 I MN GH ξλ JK 2 OP U| PQ V|W FG λ IJ + 1 + η H 90 K FλI 2G J H 90 K 2 ξ where = 2 λ = λn + αa αb η = 0.5 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-3 . For members with idealised end restraints ke is given in Table D5.4 EFFECTIVE LENGTH Before using these tables and graphs it is necessary to determine the effective length.D5.7 of AS 4100. Information relevant to assessing ke.4. Table D5. which depends on the rotational and translational restraints at the ends of the member and is determined using the following formula: Le = ke L The member effective length factor (ke) (Clause 6.3. but suitable equations have been developed in [1].2 of AS 4100) can be determined using Clause 4. Advice on the determination of effective lengths of members in trusses and girders is not covered in AS 4100.6 of AS 4100. for members in frames using Clause 4. The following equations are applicable for: • welded joints with gap or partial overlap • bracing members welded along the full perimeter • no cropping or flattening of the ends of the bracings D5-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .3 of AS 4100 or by a rational frame buckling analysis as described in Clause 4.4: Effective Length Factors for Members for Idealised Conditions of End Restraint Note: This table reproduced from AS 4100 -1998 by kind permission of Standards Australia.6. is reproduced in Part 7 of this publication. In all cases Le / L > 0. Transaction of The Institution of Engineers Australia. D..75 effective length of a compression member distance between intersection points of chord and web centre lines (see Figure D5.75 square square Le where Le L d1 bo b1 0 ..4 [1] Rondal. Figure D5. Vol. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-5 . 1986. No. Civil Engineering. “Stability of Pitched Roof Frames”. J.25 ≤ 0. 1.25 0. [2] Fraser. 1990. CIDECT Report 3 K . “Effective Lengths of Tubular Lattice Girder Members Statistical Tests”.5 (i) Chord: Bracing: square circular  d12  Le = 2. University of Liege.J.30 1   Lb o  L   = = = = = ≤ 0.35  L  Lbo  (ii) Chord: Bracing:  2 b = 2.90/3 Final Report. CE28.4) outside diameter of a circular bracing member external width of a square chord member external width of a square bracing member The effective length of members in a pitched roof can be determined from the reference[2] below. 6 1. Design Data: N* = 250 kN Solution: From Section 5.4 Le L bI Le L Trial Le For Le L bo = Fb I 2.113 x 4 .75 For SHS chord and bracing 0 = bo For same size chord and bracing 0 .0 m ≤ 0. with chord and web members being the same size DuraGal SHS.25 = 0.0 m 3.Selecting the DuraGal section with the least mass from Table D5.30G H Lb JK 2 1 0 .25 = Fb I 2. EXAMPLE A compression member in a truss.30 FG 100 IJ H 4000 K φNc = 265 > N* (Table D5.75 x 4.2-3(1)) ∴ section is satisfactory 0 .75 o (Section D5.30G J HLK = = 0.75L was correct D5-6 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .25 ≤ 0.113 L = 45 mm = 0. End connections are full perimeter welded gap joints.D5.75 = 0.2-3(1): 100 x 100 x 3.914 > 0.4) = 0. shown below. D5.5 MODES OF BUCKLING Although it is also possible for some doubly symmetric sections to buckle in a torsional mode.75 ∴ The assumption that Le = 0.0 SHS Grade C450L0 (8. this is not the governing buckling mode for hollow sections.96 kg/m) As bo Le L = 100 mm > 45 mm = 2. is to resist a concentrically applied axial compression force of 250 kN. [ BLANK ] DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-7 D5-8 TABLE D5.2-1(1)(A) DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 16.7 14.2 11.6 8.96 7.53 6.07 864 735 526 329 246 173 841 716 515 324 243 172 808 689 499 316 237 168 764 653 476 305 230 164 704 604 447 291 221 158 629 541 410 273 209 151 542 469 364 251 195 143 455 396 316 226 178 133 318 278 228 172 141 109 228 200 166 129 107 85.1 171 150 125 98.1 82.4 66.1 125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 16.7 14.2 11.6 8.96 7.53 6.07 864 735 600 390 296 196 835 711 581 381 290 192 796 679 556 367 280 187 741 634 520 348 268 180 668 573 471 323 251 171 576 497 411 291 229 160 479 415 345 253 203 147 392 341 285 215 176 131 267 233 195 151 126 98.7 190 166 139 109 91.9 73.3 100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64 621 532 438 388 329 246 173 124 583 502 414 367 313 235 167 120 534 461 382 340 291 221 158 115 462 402 335 299 258 200 146 107 371 326 274 246 216 172 129 96.6 286 253 214 193 171 141 109 83.7 220 196 167 150 134 112 89.0 69.9 173 154 131 119 106 89.6 72.1 57.5 114 101 86.5 78.1 70.2 59.7 48.5 39.2 80.0 71.4 61.0 55.1 49.5 42.2 34.5 28.0 0.9 φ αc Ns - 0.5 (Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100) Notes : 1. 2. 3. φ φ Nc αb = = = 10.0 12.0 132 116 97.0 76.5 64.6 52.1 85.9 75.4 63.1 50.0 42.3 34.3 60.3 52.9 44.3 35.1 29.8 24.2 142 124 104 81.8 69.1 55.6 110 95.8 80.3 63.4 53.6 43.3 71.1 62.1 52.1 41.2 34.9 28.3 49.8 43.5 36.5 28.9 24.5 19.9 59.3 53.0 45.3 40.9 36.8 31.4 25.7 20.9 45.7 40.8 34.9 31.5 28.4 24.2 19.8 16.1 29.6 26.4 22.6 20.4 18.4 15.7 12.8 10.5 20.7 18.5 15.8 14.3 12.8 11.0 8.99 7.33 DCTDHS/06 MARCH 2002 DCTDHS/06 MARCH 2002 TABLE D5.2-1(2)(A) DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Buckling about x-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-9 mm mm mm kg/m 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 5.0 100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64 621 532 438 388 329 246 173 124 621 532 438 388 329 246 173 124 614 527 434 385 327 244 173 124 600 516 425 377 321 240 170 122 583 502 414 367 313 235 167 120 561 484 399 355 303 228 163 117 534 461 382 340 291 221 158 115 501 434 360 321 276 211 153 111 462 402 335 299 258 200 146 107 371 326 274 246 216 172 129 96.6 286 253 214 193 171 141 109 83.7 220 196 167 150 134 112 89.0 69.9 173 154 131 119 106 89.6 72.1 57.5 114 101 86.5 78.1 70.2 59.7 48.5 39.2 75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 9.67 8.35 6.92 5.42 4.58 3.72 3.01 499 431 357 280 236 173 124 499 431 357 280 236 173 124 487 421 349 274 232 171 122 470 407 338 266 225 166 119 447 388 323 255 216 160 116 416 362 303 240 203 152 111 376 330 277 221 188 142 105 329 291 247 198 169 130 97.0 280 250 213 173 148 116 88.2 198 179 154 126 108 87.1 68.8 143 130 112 92.3 79.4 64.7 52.0 108 97.4 84.3 69.5 59.8 49.0 39.8 83.4 75.5 65.4 54.0 46.5 38.2 31.1 54.2 49.1 42.6 35.2 30.3 24.9 20.4 75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS 3.60 2.93 2.38 186 133 91.6 186 133 91.6 181 130 90.1 175 126 87.7 165 120 84.4 153 113 80.3 138 104 75.1 120 92.5 68.6 101 80.2 61.2 71.2 58.1 46.2 51.3 42.3 34.3 38.4 31.9 26.0 29.8 24.7 20.3 19.4 16.1 13.2 65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 5.35 4.25 3.60 2.93 276 219 186 149 275 219 186 149 267 212 180 145 254 203 173 139 236 190 162 131 212 173 147 120 183 151 129 106 152 127 109 89.8 124 105 90.5 74.8 84.3 71.7 62.2 51.7 60.0 51.2 44.5 37.0 44.8 38.2 33.2 27.7 34.6 29.5 25.7 21.4 22.4 19.2 16.7 13.9 50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 3.07 2.62 2.15 1.75 158 135 111 90.4 157 134 110 89.6 149 128 105 85.6 137 118 96.9 79.3 119 103 85.2 70.0 96.0 83.7 70.0 57.9 74.3 65.2 54.9 45.6 57.4 50.6 42.7 35.6 45.1 39.8 33.7 28.1 29.7 26.2 22.2 18.6 20.9 18.5 15.6 13.1 15.5 13.7 11.6 9.71 12.0 10.6 8.95 7.49 7.73 6.83 5.79 4.84 50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 2.83 2.42 1.99 1.63 146 125 103 83.9 144 124 102 83.0 137 117 96.7 79.1 125 107 88.8 72.8 106 92.5 77.0 63.5 84.2 74.0 62.2 51.7 64.3 56.8 48.1 40.2 49.3 43.8 37.2 31.1 38.7 34.3 29.2 24.5 25.4 22.5 19.2 16.1 17.8 15.9 13.5 11.4 13.2 11.8 10.0 8.43 10.2 9.08 7.74 6.50 6.59 5.87 5.00 4.20 Notes : 1. 2. 3. φ φ Nc αb = = = 0.9 φ αc Ns - 0.5 (Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100) 1 13.3 88.0 1.05 7.7 28.4 11.D5-10 TABLE D5.2-1(1)(B) DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (L e) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.0 41.3 73.5 (Clause 6.96 7.7 14.5 48.3 29.9 9.0 RHS 5.3 32.0 10.4 51.0 RHS 3.97 5.9 49.2 25.2 17.1 16.8 105 94.5 27.3 56.4 44.0 RHS 4.6 26.52 125 x 75 x 6.8 66.96 7.3 12.1 72.6 28.6 35.53 6.3 14.0 7.5 3.84 8.49 3.0 RHS 4.5 44.3 49.9 21.2 50.8 13.4 14.57 Notes : 1.3 36.0 9.9 φ αc Ns .6 25.0 35.76 7.07 864 735 600 390 296 196 797 680 556 367 281 187 709 608 500 337 261 177 579 501 415 293 231 161 438 382 319 237 192 141 326 285 239 184 152 116 247 217 182 142 119 93.9 46.2 223 200 171 155 138 116 92.01 7.4 32.5 2.2 46.4 149 133 115 104 93.6 78.5 81.7 14.27 100 x 50 x 6.40 8.0 16.29 5.42 4.53 6.1 20.4 57.5 RHS 2.2 11.2 126 110 92.43 5.2 11.7 14.0 52.4 38.0 64.98 6.5 50.0 2.1 91.5 30.3 13.68 6.0 20.0 1.0 RHS 1.0 12.3 27.0 8.2 12.0 RHS 5.2 17.7 193 169 142 112 94.4 17.7 26.3 42.45 4.6 24.1 30.5 9.53 6.92 4.8 14.0 21.34 5.0 68.7 42.0.0 RHS 4.5 80.07 864 735 526 329 246 173 714 614 454 295 223 160 517 452 356 248 193 142 335 296 245 185 151 116 224 199 167 131 110 87.8 20.0 RHS 2.56 4.5 14.8 13.2 10. 2.45 6.3 37.5 65.4 24.3 24.5 RHS 2.0 10.3.3 64.2 23.6 65.0 RHS 16.60 5.0 3.3 51.49 7.41 15.5 RHS 3.2 18.2 34.64 621 532 438 388 329 246 173 124 503 437 363 324 278 213 154 112 352 311 264 237 209 168 127 95.8 73.3 of AS 4100) DCTDHS/06 MARCH 2002 .3 60.0 6.50 3.7 54.8 38.3 37.9 39.2 19.2 75.3 11.0 RHS 16.43 3.6 46.4 38.47 10.5 25.0 RHS 5.7 30.9 70.0 15.2 60.0 5.1 32.5 15.88 6.2 22.7 31.0 RHS 2.1 70.5 54.05 6.5 4.6 9.0 9.7 43.3 59.0 12.0 23.6 8.3 of AS 4100) (Table 6.70 10.6 21.2 10.00 6.0 RHS 2.1 18.0 RHS 3.3 8.9 35. φ φ Nc αb = = = 0.4 9.14 2.1 19.3 77.0 150 x 50 x 6.81 3.5 20.3 54.8 12.0 RHS 3.2 27. 3.5 RHS 2.20 7.7 21.5 11.8 118 105 88.3 79.6 RHS 12.4 62.2 15.8 60.6 8.9 17.0 10.3.50 4.1 81.2 159 141 119 94. 4 151 130 106 86.1 32. φ φ Nc αb = = = 0.6 RHS 9.9 49.90 2.5 1.1 23.1 70.6 RHS 3.4 14.DCTDHS/06 MARCH 2002 TABLE D5.60 5.1 22.0 RHS 1.3 11.5 29.7 62.62 3.3 54.50 3.3 56.5 13.4 87.0 2.5 24. 2.5 (Clause 6.9 27.0 RHS 2.0 38.9 .0 RHS 2.1 167 152 131 108 93.7 6.5 14.51 1.9 74.2 62.3 37.2 280 250 213 192 171 141 109 84.13 8.35 6.9 136 117 96.98 8.06 6.9 57.3 of AS 4100) 9.9 50 x 25 x 3.3 79.0 RHS 4.42 4.3 60.75 1.0 RHS 2.1 223 200 171 155 138 116 92.7 35.7 17.32 4.6 11.50 7.38 186 133 91.2 24.0 35.0 17.91 5.5 20.2 78.5 45.33 4.59 2.56 4.73 3.3 44.1 32.07 2.4 27.90 5.3 73.7 38.3 75 x 50 x 6.5 52.75 Notes : 1.0 RHS 5.4 25.94 4.0 75.3 41.2 49.0 14.75 2.76 3.2 34.0 58.9 40.0 0.1 62.9 46.5 65.2 29.58 3.4 34.36 1.92 5.0 26.4 14.15 1.7 28.4 149 133 115 104 93.85 4.0 RHS 5.01 3.43 13.84 1.89 5.7 42.59 3.4 51.2 27.2 17.2 25.9 129 111 92.01 17.50 3.6 36.0 10.2 60.91 6.7 11.3 115 90.38 8.67 3.1 38.5 3.39 2.25 7.6 27.0 RHS 4.2 20.0 RHS 1.45 5.09 9.4 24.0 RHS 2.41 5.15 6.2 75 x 25 x 2.8 31.01 499 431 357 280 236 173 124 495 428 355 278 235 173 124 475 411 341 268 227 167 120 443 385 321 253 214 159 115 396 347 291 231 196 148 108 334 296 251 202 172 132 98.3 64.18 1.01 7.35 7.6 46.2 75.3 14.5 RHS 2.5 42.2 43.4 65.5 268 240 206 167 143 113 86.7 22.71 6.3 44.9 21.6 111 101 87.3 42.0.2 29.07 2.0 26.31 1.25 1.31 5.4 21.2 32.5 RHS 2.3.2 51.0 33.60 2.7 78.3 72.12 3.7 26.59 7.59 2.93 2.55 50 x 20 x 3.0 RHS 1.7 9.83 2.4 38.4 211 190 164 135 116 93.2 52.3.2 18.0 49.7 51.6 78.9 39.56 1.75 158 135 111 90.43 2.3 20.25 3.2 155 115 81.1 16.1 41.1 120 102 88.3 36.35 4.40 4.0 RHS 5.0 RHS 2.3 11.34 2.0 51.8 30.6 179 129 89.1 55.03 2.42 65 x 35 x 4.5 50.1 72.8 101 88.6 67.5 10.0 10.0 100 x 50 x 6.0 15.7 38.1 9.4 12.9 11.93 276 219 186 149 270 215 183 147 250 200 170 137 215 175 149 121 166 138 119 98.8 15.6 RHS 3.67 8.37 6.5 4.0 RHS 3.5 79.5 RHS 2.6 17.8 13.6 90.5 0.2 28.4 51.4 9.5 54.6 RHS 12.5 13.8 10.8 66.8 56.72 3.4 13.04 2.5 RHS 2.9 20.0 RHS 1.1 16.4 23.75 2.23 2.7 20.5 74.0 67.6 13.3 34.0 10.5 75.22 4.2 22.7 21.1 30.0 3.1 43.60 2.0 19.2 46.37 4.5 RHS 3.5 29.3 9.5 72.49 7.2-1(2)(B) DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (L e) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D5-11 mm mm mm kg/m 0.3 of AS 4100) (Table 6.0 17.3 73.0 RHS 3.5 18.0 54.5 81.8 35. 3.8 105 94.53 6.5 RHS 2.28 7.7 20.98 1.0 5.62 2.99 3.5 RHS 2.5 17.42 1.99 1.0 RHS 1.90 5.3 8.2 24.6 RHS 2.64 621 532 438 388 329 246 173 124 617 529 436 387 328 245 173 124 593 510 420 373 317 238 169 121 556 480 397 353 301 227 162 117 503 437 363 324 278 213 154 112 432 378 317 284 247 193 142 104 352 311 264 237 209 168 127 95.0 1.8 58.12 1.9 10.3 62.1 34.66 3.25 0.60 23.0 73.9 φ αc Ns .8 60.0 15.0 RHS 3.63 146 125 103 83. 3 of AS 4100) 8.4 17.2 49.43 47.3 26.45 1.7 51.8 RHS 2.89 2.6 75 x 50 x 2.4 70.3 36.0 2.0 3.3 33.9 91.3 RHS 5.0 1.8 32.34 206 172 206 172 200 167 191 160 179 150 163 137 142 120 120 102 50 x 25 x 2.07 3.0 15.3 87.3 17.7 20.25 1.30 .8 RHS 2.89 2.4 61.9 53.96 5.25 138 116 128 109 mm mm mm DCTDHS/06 MARCH 2002 Notes : 1.4 50 x 25 x 2.0 0.3 RHS 2.0 58.39 6.94 2.1 86.8 21.25 0.0 2.99 3.2 41.5 15.62 2.2 65 x 35 x 2.0 4.3 RHS 2.9 60.0 54.57 6.2-2(B) buckling about y-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres kg/m 0.48 2.5 62.8 RHS 2.4 74.1 84.3 RHS 3.37 7.9 19.77 8.0.7 66.5 mm mm mm DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Notes : 1.44 149 126 143 120 122 104 50 x 20 x 2.4 24.0 32.1 9.5 1.84 3.95 7.9 2. φ = 0.7 82.4 10. φ = 0.51 6.6 39.5 43.5 46.3 RHS 5.4 14.6 36.6 35.69 5.24 263 215 261 214 252 207 238 196 217 180 190 158 158 132 127 107 102 86.5 0.7 27.4 82.9 23.8 RHS 2.75 1.67 2.2 73.8 RHS 2.4 9.9 13.5 1.5 (Table 6.8 RHS 2.4 53.3 RHS 6.67 2. αb = .3 28.0 12. φ Nc = φ αc Ns 96.1 28.78 5.6 83.09 4.3 36.5 125 x 75 x 2.3 19.0 56.9 9.8 65.25 138 116 136 115 129 109 118 100 101 86.7 33.3 69.8 12.2 48.0 1.9 69.2 (Clause 6.1 48.99 3.3.8 61.5 52.75 1.25 0.8 RHS 2.19 5.54 (Table 6.1 12.68 8.8 47.9 2.3 31.0 24.3 RHS 8.8 73.3 RHS 2.3 78.0.0 17.5 96.95 351 259 348 259 348 257 341 252 332 246 320 239 306 229 289 219 268 205 219 173 100 x 50 x 2.80 7.5 0.8 RHS 2.14 295 215 295 215 292 214 287 211 280 206 272 201 262 195 249 187 235 178 198 155 159 128 126 103 75 x 50 x 2.6 70.54 2.14 295 215 294 215 284 209 271 200 251 188 225 172 192 151 159 128 130 107 87.8 RHS 2.9 11.85 3.0 30.39 6.8 RHS 2.5 58.01 6.2 50 x 20 x 2.6 46.98 3.3 of AS 4100) 3. φ Nc = φ αc Ns (Clause 6.4 19.34 206 172 202 169 188 158 165 139 131 111 27.0 105 86.0 16.3.3 RHS 2.5 125 x 75 x 2.95 351 259 351 259 351 259 348 256 343 253 338 250 331 246 324 241 315 235 293 221 266 204 233 183 100 x 50 x 2.4 14.0 141 116 99.3 of AS 4100) 3.7 11.3 of AS 4100) TABLE D5.4 24.5 68.1 41.1 55.41 3.75 2.0 0.6 99.32 5.39 6.1 23.3.7 11.7 68.4 23.4 36.5 133 109 9.09 4.1 37. αb = .75 2.05 171 139 3.8 RHS 2.24 263 215 263 215 258 211 250 205 239 197 225 186 208 172 187 155 163 136 119 100 65 x 35 x 2.26 2.1 43.0 199 159 5.7 18.2-2(A) buckling about x-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres kg/m 0.D5-12 DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D5.1 22.9 19.5 28.4 13.8 55.8 RHS 2.01 1.3 RHS 8.1 30.3.8 55.01 4.6 41.5 29.2 37.2 10.0 57.3 RHS 3.1 15.5 41.0 5.3 21.5 3.39 2.5 80.25 1.44 149 126 148 124 141 119 129 109 113 95.19 5.2 18.9 14.19 5.5 4.3 RHS 6.2 15.7 48. 0 SHS 5.0 7.6 8.6 31.1 10.4 76.9 23.0 23.0 21.8 41.0 26.5 SHS 2.0 8.0 SHS 1.7 65.2 73.1 12.9 36.6 SHS 8.0 SHS 5.7 81.74 5.7 32.4 25.5 76.7 8.46 6.6 8.0 SHS 4.56 4.2 71.75 14.7 24.39 413 305 196 125 391 291 189 122 362 273 179 117 319 246 166 110 264 210 148 102 207 170 126 90.60 5.3 23.0 10.7 51.6 10.5 13.and y-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.3 78.6 32.8 21.3 of AS 4100) Notes : 1.4 13.0 SHS 4.3 18.3 30.5 SHS 2.3 27.2 46.3 24.7 70.1 96.9 φ αc Ns .7 15.6 59.6 48. 3.7 9.3 16.6 54.1 69.9 39.4 62.5 120 107 91.4 84.0 SHS 3.0 100 x 100 x 6.0 SHS 5.0.1 71.4 80.2 33.3.6 59.DCTDHS/06 MARCH 2002 TABLE D5.3 15.0 3.0 1.5 141 123 103 81.7 14.3 41.7 35.4 13.5 34.5 4.9 128 107 84.2 11.6 75 x 75 x 6.2-3(1) DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x.3.5 3.5 SHS 2.9 23.0 6.0 SHS 2.7 60.8 21.0 2.07 864 735 600 440 305 196 823 701 573 422 296 191 770 658 539 399 282 184 693 594 488 365 263 175 590 508 420 319 238 162 477 413 344 265 206 146 377 328 274 214 172 128 300 262 219 172 141 108 199 174 146 115 96.5 2.0 5.5 10.9 16.0 SHS 2.5 SHS 3.7 38. 2.4 53.6 31.3 of AS 4100) (Table 6.3 50.8 47.0 10.2 30.6 55.7 20.0 15.6 32.5 59.0 37.70 8.9 21.5 SHS 14.0 65.3 8.2 105 91.6 12.7 63.2 84.0 18.1 51.6 90 x 90 x 3.0 82.1 52.2 57.2 12.0 SHS 16.3 40.0 1.3 45.3 45.6 36.12 0.7 40.6 162 135 104 77. φ φ Nc αb = = = D5-13 .7 44.5 19.0 48.50 621 532 438 388 341 287 196 565 486 401 357 313 265 183 490 425 353 315 278 235 166 384 337 283 253 225 191 142 280 248 210 189 169 144 112 205 182 155 140 125 107 85.0 14.0 SHS 12.06 756 645 467 710 607 441 649 557 406 559 483 356 448 390 290 344 301 226 265 233 176 208 183 138 137 120 91.9 12.49 7.8 55.7 68.8 29.7 64.45 4.01 6.8 48.5 (Clause 6.53 6.0 SHS 2.4 17.5 20.6 33.4 36.62 89 x 89 x 6.4 18.5 9.1 41.0 SHS 3.4 30.9 27.0 28.96 7.71 7.0 12.53 6.7 37.2 18.4 154 137 117 106 94.0 SHS 3.9 25.9 22. 7 13.2 33.46 9.5 61.6 SHS 2.8 47.0 15.66 4.0 8.0 SHS 4.6 43.6 15.0 30.91 1.2 52.6 48.85 3.6 69.1 14.9 143 122 101 82.0 10.7 58.48 5.60 2.9 52.68 1.4 74.9 49.8 23.5 SHS 2.6 SHS 4.42 1.35 4.3.3 10.0 3.4 37.26 2.83 7.25 1.1 31.8 46.0 SHS 1.5 1.88 3.40 1.1 44.9 72.1 170 140 120 99.6 SHS 1.6 SHS 0.8 14.5 16.872 0.71 4.0 76.9 57.9 64.0 SHS 1.5 SHS 2.9 49.3 103 91.5 193 157 135 110 90.0 SHS 5.64 30 x 30 x 2.21 6.0 SHS 2.32 6.5 SHS 2.2 17.8 61.15 2.9 17.68 8.72 8.0 SHS 5.63 1.and y-axis Designation d b t Design Capacities for Axial Compression φNc (kN) Mass per m Effective Length (L e) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.5 30.6 52.4 11.5 57.0 SHS 3.0 SHS 2.26 2.7 73.8 12.9 55.0 82.0 SHS 3.4 40.8 86.9 42.8 33.3 8.0 65.5 4.0 27.31 1.1 41.82 2.6 11.22 7.2-3(2) D5-14 DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x.432 Notes : 1.6 27.1 69.30 2.85 1.5 82.5 SHS 2.83 2.88 211 170 145 119 96.5 11.0 76.6 83.8 67.0 41.99 1.4 154 137 117 106 94.39 5.05 0.7 55.41 3.25 3.6 SHS 10.7 82.0 SHS 1.2 21.2 95.70 7.60 5.6 70.44 5.7 15.1 20.6 81.1 43.38 86.2 73.5 31.23 5.7 55.69 1.0 SHS 12.56 4.2 10.8 68.3 10.09 3.58 3.3 of AS 4100) .16 3.52 (Table 6.0 12.0 SHS 2.51 3.2 260 232 198 161 137 112 83.96 2.5 9.6 35.9 4.7 63.4 23.66 4.6 47.873 45.0 75 x 75 x 6. αb = .46 2.7 16.5 36.09 4.8 15.75 1.7 15.08 11.5 SHS 3.0 63.2 66.TABLE D5.6 68.6 20.75 7.1 66.5 21.13 523 451 373 292 247 196 125 523 451 373 292 247 196 125 508 439 363 285 241 191 123 487 421 349 274 232 184 120 458 397 330 260 220 176 115 418 365 305 241 205 164 109 368 324 273 217 185 149 102 313 277 235 189 162 131 93.0 80.70 3.6 37.42 4.1 51.6 SHS 1.6 26.5 120 107 91.1 8.5 19.03 7.63 146 125 103 83.3 12.5 30.50 621 532 438 388 341 287 196 621 532 438 388 341 287 196 608 522 430 382 335 282 193 590 507 418 371 326 275 189 565 486 401 357 313 265 183 532 459 380 338 298 252 176 490 425 353 315 278 235 166 440 383 320 286 253 215 155 384 337 283 253 225 191 142 280 248 210 189 169 144 112 205 182 155 140 125 107 85.3 27.7 18.0 0.2 24.49 7.4 26.1 10.62 1.7 9. φ Nc = φ αc Ns (Clause 6.0 23.5 0.51 1.3 48.4 30.1 40.62 25 x 25 x 2.1 36.6 37.900 20 x 20 x 1.30 5.0 18.0 11.3 66.82 1.3 43.9 66.4 24.8 61.33 6.7 47.3 81.43 6.0 22.8 46.0 179 161 138 113 97.0 SHS 1.12 84.5 19.09 3.1 44.2 135 115 99.4 17.0 18.0 28.19 7.9 79.8 13.0 1.0 9.2 79.0 SHS 1.1 111 95.7 32.5 SHS 2.9 60.46 6.6 65 x 65 x 6.0 5.8 62.43 6.7 65.9 207 168 143 117 95.3 25.9 42.4 53.32 5.9 2.3 of AS 4100) 9.9 17.1 100 87.0 167 146 122 105 87.41 2.11 1.8 74.3 128 116 99.4 35. φ = 0.25 0.6 SHS 6.7 81.7 34.8 32.2 51.3 19.72 4.671 0.5 6.3 78.1 26.37 7.0 SHS 4.34 8.19 1.5 45.0 71.5 70.3 58.9 58.0 SHS 4.33 5.0 74.3.8 23.5 38.4 37.3 33.7 56.38 330 276 219 186 151 123 327 274 218 185 150 122 312 262 209 178 145 118 289 244 196 167 136 111 256 218 176 151 123 101 212 183 150 129 106 87.7 70.02 35 x 35 x 3.4 24.8 39.8 26.2 11.8 22.7 28.2 57.93 2.4 20.64 1.1 16.5 9.2 36.2 50.4 12.0 2.0 8.5 130 115 96.18 0.99 3.1 43.0 SHS 2.5 SHS 2.9 14.7 28.8 50 x 50 x 5.9 16.36 1.0 SHS 1.5 13.1 55.86 2.78 3.53 6.0.9 83.9 76.87 4.75 2.1 27.6 59.2 131 113 92.55 7.82 4.0 SHS 2.0 SHS 3.9 32.6 15.04 40 x 40 x 4.21 4.40 2.5 43.5 3.18 8.0 SHS 3.6 13. 7 16.4 49.8 19.8 SHS 2.3 29.1 91.42 228 228 223 215 204 190 172 150 128 90.75 2.5 21.2 61.49 D5-15 .5 78.50 0.25 138 116 135 114 124 105 105 89.8 SHS 2.8 9.3 SHS 3.3.7 71.6 30.8 SHS 2.67 2.9 82.5 41.2-4 DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x.14 319 259 319 259 314 255 305 248 294 239 279 228 261 213 238 195 212 175 159 133 118 99.8 35 x 35 x 2.6 36.and y-axis Designation d b Design Capacities for Axial Compression φNc (kN) Mass per m t Effective Length (Le) in metres DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS kg/m 0.62 161 135 158 133 148 125 133 112 109 92.8 35.31 6.3 RHS 8.8 12.3 9.7 50 x 50 x 2.2 8.8 SHS 2.3 SHS 3.0 24.5 1.1 73.3 SHS 6.4 38.0 100 x 100 x 2.5 31.3 46.3 56.47 mm mm mm Notes : 1.25 1.7 20.8 14.DCTDHS/06 MARCH 2002 TABLE D5.3 SHS 4.11 2.9 40 x 40 x 2.0 62.7 16.39 6.75 1.5 3.3 SHS 2. φ φ Nc αb = = = 0.5 65.0 40.6 5.8 SHS 2.4 25.4 10.6 26.0 38.6 58.01 4.0 160 128 69.95 383 259 383 259 382 258 376 255 369 251 360 246 350 241 337 234 323 226 286 207 242 182 75 x 75 x 2.98 3.9 20.19 5.8 23.25 0.3 of AS 4100) (Table 6.40 3.37 6.9 40.7 53.4 48.19 5.6 79.0.7 23.5 (Clause 6.0 65 x 65 x 2.5 198 155 89. 2.6 45.58 8.5 10.3 75.0 108 88. 3.0 2.01 7.34 206 172 205 171 197 165 184 154 166 140 142 120 115 98.3 49.5 34.0 68.0 1.3.9 φ αc Ns .17 5.8 15.99 3.4 13.5 12.7 10.3 of AS 4100) 3.0 0. [ BLANK ] D5-16 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . ............................................................... D6-3 TABLES TABLES D6............................... DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D6-1 ...3 EXAMPLE ....... D6-2 D6.............................................................................................................1 SCOPE ..................................................2 METHOD ..................................... D6-4 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.......PART 6 MEMBERS SUBJECT TO AXIAL TENSION 6 PAGE D6........1-4 Design Capacities for Members Subject to Axial Tension (φNt) .................... D6-2 D6.................................1-1 to D6.................................... The tables give values of design capacity for DuraGal structural steel hollow sections with full perimeter welded connections.1 of AS 4100) The lesser value of φNt = φ Ag fy and φNt = φ (0.PART 6 MEMBERS SUBJECT TO AXIAL TENSION D6.1-4. D6.9 (Table 3.0 (Clause 7.1-4 give values of design section capacity for axial tension determined in accordance with Section 7 of AS 4100. the value of φNt can be determined from the tables as the lesser value of: and where An = φN t = φ Ag fy φN t = φ (0. D6-2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2 of AS 4100 and taken as the lesser o : φNt = φ Ag fy φNt = φ (0.85) Ag fu is the lesser value of φNt. φNt = φ (0. Note: for Grade C450L0 For sections reduced by penetrations or holes.2 METHOD The design section capacity for axial tension (φNt) has been determined from Clause 7.1-4 assume kt = 1.85) Ag fu is highlighted in bold type in the tables.3.1-1 to D6.0.85) Ag fu (An / Ag) net section area Values of Ag are tabulated in Tables D6.1-1 to D6.1-1 to D6.85) kt An fu and φ where = fy = An = 0.1 SCOPE Tables D6. Note that all the values in Tables D6.4 of AS 4100) yield stress used in design net section area = Ag = gross cross-sectional area (for full perimeter welded connections) fu = ultimate strength used in design kt = tension correction factor = 1. Design a suitable DuraGal RHS tension member.60 kg/m) φNt = 176 > N* 65 x 65 x 1.D6.5 DuraGal RHS Grade C450L0 (3. The alternatives are: 65 x 35 x 2.3 1. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D6-3 . EXAMPLE A tension member with a full perimeter welded connection is subjected to an axial tension force of 150 kN.1-1 and D6.1-3.0 (for a full perimeter welded connection) Solution: Select a suitable DuraGal member from Tables D6.6 DuraGal SHS Grade C450L0 (3. Design Data: N* = 150 kN kt = 1.13 kg/m) φNt = 153 > N* Choose 65 x 65 x 1.13 kg/m) because it is more economical based on mass.6 RHS Grade C450L0 (3. 2 of AS 4100) φ 0.6 RHS 3.01 499 431 357 280 236 192 155 471 407 337 264 223 181 147 1230 1060 881 691 584 474 383 75 x 25 x 2.49 7.9 138 118 97.25 3.15 1.0 RHS 2. 2.6 8.35 4.6 RHS 2.5 RHS 2.0 RHS 3.5 RHS 2.93 2.53 6.56 4.0 RHS 5.0 RHS 1.14 319 265 302 251 788 655 75 x 50 x 2.0 RHS 5.0 10.0 RHS 3.8 RHS 2.0 79.1-2 DESIGN CAPACITIES FOR MEMBERS DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION SUBJECT TO AXIAL TENSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Mass per m Designation d b t Axial Tension φ Nt φNt (1) φ Nt (2) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness Gross Section Area Ag d b t Axial Tension φN t φ Nt (1) φNt (2) Gross Section Area Ag mm mm mm kg/m kN kN mm mm mm mm kg/m kN kN mm2 150 x 50 x 6 0 RHS 5 0 RHS 4. φ Nt (2) = D6-4 = = 2 Mass per m Designation 0.64 621 532 438 388 341 287 232 188 586 503 414 367 322 271 219 177 1530 1310 1080 959 841 709 574 463 75 x 50 x 6.3 RHS 5.0 RHS 4.19 5.9 φ Ag fy (Clause 7. φ φ Nt (1) 3.5 RHS 2.24 263 219 248 207 648 540 125 x 75 x 6.7 14.0 RHS 2.60 2.99 3.07 864 735 600 462 388 313 816 694 567 436 367 296 2130 1810 1480 1140 959 774 125 x 75 x 2.89 2. φ Nt (2) = = = 0.0 RHS 2.58 3.3 RHS 6.1-1 TABLE D6.3 RHS 2.67 2.5 RHS 2.96 7.75 158 135 111 90.0 RHS 4.3 RHS 3.TABLE D6.5 RHS 2.0 RHS 16.93 276 219 186 151 261 207 176 143 681 541 459 374 50 x 25 x 3.0 RHS 2.7 14.53 6.50 3.35 6.8 RHS 2.5 RHS 2.4 391 334 274 223 50 x 20 x 3.3 RHS 2.8 RHS 2.07 864 735 600 462 388 313 816 694 567 436 367 296 2130 1810 1480 1140 959 774 65 x 35 x 2.62 2.0 RHS 2.8 RHS 2.8 RHS 2.5 RHS 3.2 of AS 4100) φ 0.5 RHS 2.2 361 309 254 207 Notes: 1.2 11.3 8. 2.6 RHS 9.53 6.07 2.6 RHS 3.44 149 126 141 119 368 310 50 x 20 x 2.4 149 128 105 85.2 of AS 4100) DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 RHS 1.09 4.60 2.92 5.0 RHS 3.0 RHS 1.34 206 172 194 163 508 425 50 x 25 x 2.0 RHS 5.72 3.0 RHS 2.6 8.99 1.63 146 125 103 83.85 Ag fu (Clause 7.8 RHS 2.95 433 359 409 339 1070 885 100 x 50 x 2.83 2.0 RHS 16.42 1.6 RHS 12.25 138 116 130 110 340 287 100 x 50 x 6. φ φ Nt (1) 3.0 RHS 4.2 11.42 4.0 RHS 3.60 5.0 RHS 3.38 186 151 123 176 143 116 459 374 303 65 x 35 x 4.96 7.39 6.67 8.9 φ Ag fy (Clause 7.3 RHS 8.0 RHS 2.0 RHS 5.5 RHS 2.0 RHS 1.2 of AS 4100) Notes: 1.85 Ag fu (Clause 7.0 RHS 1. 1-3 TABLE D6.09 3.88 3.14 319 265 302 251 788 655 65 x 65 x 2.11 2.9 138 118 97.1 8.56 4.0 SHS 4.0 214 175 25 x 25 x 2.0 SHS 12.5 9.5 SHS 2.0 SHS 2.5 SHS 2.99 1.2 of AS 4100) DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D6-5 .2 361 309 254 207 30 x 30 x 2.0 SHS 16.0 SHS 3.6 70.6 SHS 4.50 621 532 438 388 341 287 232 586 503 414 367 322 271 219 1530 1310 1080 959 841 709 574 65 x 65 x 6. φ Nt (2) = φ 0.5 SHS 2.4 54. φ Nt (1) = φ Ag fy (Clause 7.0 SHS 3.6 8.6 SHS 6.2 11.53 6.36 1.68 1.3 8.5 SHS 2.3 SHS 6.45 4.9 199 161 137 112 91.9 2.0 SHS 5.85 Ag fu (Clause 7.0 SHS 5. φ Nt (1) = φ Ag fy (Clause 7.39 413 348 281 226 390 329 265 214 1020 859 694 559 50 x 50 x 2.8 SHS 2.67 2.3 RHS 8.8 SHS 2.12 84.0 SHS 4.96 7.39 5.83 2.5 111 Notes: 2 Mass per m Designation 1.5 SHS 3.6 12.0 SHS 1.0 SHS 2.TABLE D6.9 2.0 SHS 5.3 58.5 SHS 2.66 4.9 81.6 SHS 1.3 SHS 4.8 SHS 2.6 SHS 2.38 330 276 219 186 151 123 311 261 207 176 143 116 814 681 541 459 374 303 40 x 40 x 4.88 211 170 145 119 96.42 1.2 of AS 4100) 3.6 SHS 1.5 70.01 6.0 SHS 4.13 523 451 373 292 247 200 162 494 426 352 276 233 189 153 1290 1110 921 721 609 494 399 50 x 50 x 5.8 SHS 2.25 138 116 130 110 340 287 75 x 75 x 6.0 SHS 1.5 521 421 359 294 239 35 x 35 x 3.93 2.30 2.75 7.0 SHS 3.60 2.2 of AS 4100) DCTDHS/06 MARCH 2002 Notes: 1.8 SHS 2.99 3.6 SHS 10.8 209 174 143 20 x 20 x 1.0 SHS 1.0 79.9 66.35 4.7 14.5 SHS 2.0 SHS 3.60 5.07 864 735 600 462 388 313 816 694 567 436 367 296 2130 1810 1480 1140 959 774 100 x l00 x 2.63 146 125 103 83.0 SHS 3. φ = 0.5 SHS 2.0 SHS 5.38 86.0 SHS 2.0 SHS 1.0 42.5 SHS 14.85 Ag fu (Clause 7.0 SHS 4.3 SHS 2.3 SHS 3.78 3.34 206 172 194 163 508 425 40 x 40 x 2.0 79.23 5.1-4 DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness Mass per m Designation d b t Axial Tension φN t φNt (1) φNt (2) Gross Section Area Ag d b t Axial Tension φ Nt φNt (1) φ Nt (2) Gross Section Area Ag mm mm mm kg/m kN kN mm mm mm mm kg/m kN kN mm2 100 x 100 x 6.3 SHS 3.95 433 359 409 339 1070 885 75 x 75 x 2.7 67.39 6.0 10.64 1.0 SHS 2.82 2.25 3. φ Nt (2) = φ 0.53 6.62 161 135 152 127 396 333 89 x 89 x 6.2 of AS 4100) 3.0 SHS 1.06 756 645 467 714 609 441 1870 1590 1150 35 x 35 x 2.5 SHS 2.0 SHS 2.31 1.6 SHS 8.6 SHS 0.873 45.0 SHS 2. φ = 0.49 7.42 228 215 563 90 x 90 x 3.74 5.0 SHS 3.19 5.0 SHS 2.0 SHS 1.0 SHS 1. [ BLANK ] D6-6 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . ....... D7-3 Elastic Buckling Load .....1....................................................................................6 BIAXIAL BENDING ....... D7-15 D7.............................1 SCOPE .........................................4..4..2 Uniaxial Bending ............ D7-9 Member Capacity .....2............................................................................1 D7..5..........................................................................................................4............1 D7...........................About the Major Principal x-axis ................................3............... D7-12 D7.....About the Minor Principal y-axis .......... D7-23 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.......................................................5..............................2 D7........4.. D7-8 D7..............................................3 MOMENT AMPLIFICATION .. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-1 .....................6......................................................1 D7.....................................2 Uniaxial Bending ...........2 Biaxial Bending...........................2 METHOD .... D7-7 D7........................................ D7-14 D7.................................... D7-15 Member Capacity ....2................ D7-12 Member Capacity ............3......... D7-13 D7...........................................................................2-4 Elastic Buckling Loads (Nom) ..................... D7-7 Section Capacity.......................................................1 D7.....................................................................................4..................3...5.......................... D7-2 D7.......1 Section Capacity .......................1.....2 Values of cm ................6.2 Section Capacity ...................................................3..........................................................................2 Uniaxial Bending ..........1 D7........ 7 PAGE D7......................................1 D7.........................................................3. D7-2 D7................................... D7-11 D7....5....................................5............. D7-10 D7......................................PART 7 MEMBERS SUBJECT TO COMBINED ACTIONS ............3 D7...................................................2-1 to D7.................. D7-16 TABLES TABLES D7.......5............................................................................................................................................................ D7-7 Member Capacity .....3..................................................................................... D7-10 Section Capacity ...........................................3.............1 D7..4............4 COMBINED BENDING AND AXIAL COMPRESSION ........4..........................7 EXAMPLES ......................................2................... D7-15 D7...................................................... D7-11 D7.....................1.......................2 Uniaxial Bending ...................................................3...... D7-10 Member Capacity .........................................4................About the Major Principal x-axis ............................5.............................................................................. D7-9 Section Capacity .................................................................... D7-3 D7...................................................About the Minor Principal y-axis ........... D7-13 Section Capacity .............1 D7....................1 D7..............................................5.. D7-13 Member Capacity ........................... D7-11 Section Capacity ................................... D7-12 D7........2 Biaxial Bending................ D7-2 D7..................3 D7.....................1..4........................................................5 COMBINED BENDING AND AXIAL TENSION ......... 3.axis (RHS) φVv for bending about y.2-1 to D7.2 Description Elastic flexural buckling load of a member.1-3 Table D3.4.3.1-4 Tables D3.1-3 Tables D3.axis Nominal member capacity in compression Design section capacity in axial compression Design section capacity in axial tension Design section moment capacity (SHS) φMs about x.1-1 to D3. irrespective of whether that member is an isolated statically determinate member or part of a statically indeterminate frame the bending moments will be amplified by the presence of axial compression force. Design Capacity Nomx Nomy φNc φNs φNt φMs φMsx.4 and D7.1 Section D7.4.1-2 Table D3.4.1 MEMBERS SUBJECT TO COMBINED ACTIONS SCOPE This part of the Tables contains the interaction formulae which must be used to design members subject to combined actions in accordance with Section 8 of AS 4100.axis (RHS) Design torsional section moment capacity Reference Tables 7.1.1. a second order elastic analysis must be carried out (see Appendix E of AS 4100).1-2 & D3.5 give the interaction formulae for combined bending and axial compression and combined bending and axial tension respectively. and for biaxial bending.The table below provides the location of design capacities and reference points within this publication for checking interaction effects on member capacities.5.2 of AS 4100) must be used to amplify the design action effects between the ends of the member. Each section describes the method for uniaxial bending about the major principal x-axis. about the principal x.2-4 Tables D3. for uniaxial bending about the minor principal y-axis.2. However.1 & D7.1 Tables D4.axes (RHS) φMsx reduced by axial compression force (RHS) φMsx reduced by axial tension force (RHS) φMsy reduced by axial force (RHS) φMs about a principal axis reduced by axial compression force φMs about a principal axis reduced by axial tension force Design moment capacity (RHS) Design shear capacity of a web (SHS) φVv for bending about x.1-4 Tables D3.1.axis Elastic flexural buckling load of a member.1-4 METHOD Section D7. If a first order elastic analysis is conducted then δb (Clause 4.2-4 Tables D5.5.3 MOMENT AMPLIFICATION For a member subjected to combined bending and axial compression force.1 Section D7.1-1 & D3. Braced Member .1-1 to D3.3.1.1-1 & D3. about the principal y.1-4 Table D3. The elastic buckling load required for combined bending and axial compression when the moment is amplified by the moment amplification factors δb and δ s. Such amplification can be accounted for by a variety of means and these are now considered in relation to braced and sway members. Sections D7.PART 7 D7.1 Section D7. when the moment amplification factor is greater than 1.2.5.1-4 Tables D3.1-1 & D3.2-4 Tables 7.2-1(A) to D5. In every case both the section capacity and the member capacity must be checked.the member is braced such that its ends cannot move relative to one another.6 gives the interaction formulae for biaxial bending without axial forces. D7.4.3.4. φMsy φMrx (comp) φMrx (tens) φMry φMr (comp) φMr (tens) φMb φVv φVvx φVvy φMz D7.1-1 to D3.1-1 to D3.and y.1 Section D7.2.2-1 to D7.3 describes the use and determination of moment amplification factors and the determination of the elastic buckling load for braced or sway members. Section D7.1-3 Section D7.1-1 to D4. D7-2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . 4. If this is not the situation.6. Table D7. then the design action effects obtained from the second order elastic analysis may need to be modified using δb. then there is no need to modify the design action effects in the member using δb. taken as positive when the member is bent in reverse curvature.2(a).0.4.2.4.3(2).2. However. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-3 . Where the member is subjected to transverse loading. βm may be taken as described in Clauses 4.If an appropriate second order elastic analysis is carried out.3. a second order elastic analysis must be carried out (see Appendix E of AS 4100).3(1).3(1) and D7.4 of these tables) "Nom x-axis" indicates Nom for the member buckling about the x-axis.4 βm ≤ 1. such that the design action effects at a sufficient number of locations along the length of the member are determined. D7.3.3. D7. If an appropriate second order elastic analysis is carried out. Sway Member . when the moment amplification factor is greater than 1.2-4.6 .2 of AS 4100 as: π 2 EI Nom = where E = I = ke L = bk L g 2 e 200 x 103 MPa second moment of area effective length (Section 5. such that the design action effects at sufficient number of locations between the ends of the member are determined. which is the greater of δb and δs (see Clause 4.2 of AS 4100 as: cm = 0.2-1 to D7. then there is no need to modify the design action effects using δm. as described in Appendix E of AS 4100. The moment amplification factor (δb) must be calculated using the procedure shown in Figure D7. (b) and (c) of AS 4100. If a first order elastic analysis is carried out then the design action effects must be modified using the moment amplification factor (δm).2 Elastic Buckling Load Values of elastic buckling load (Nom) for various effective lengths (Le) are given in Tables D7.3 of AS 4100).2.the ends of the member are permitted to move relative to one another.0 where βm is the ratio of the smaller to the larger bending moments at the ends of the member.3.3. Nom values are determined in accordance with Clause 4.1 Values of cm The value of cm is specified in Clause 4. "Nom y-axis" indicates Nom for the member buckling about the y-axis.4.1 gives values of cm for a range of βm values for single and reverse curvature bending. The moment amplification factors (δb and δs) must be calculated using the procedure shown in Figures D7. 6. Clause 4. Clauses 4.6.2 of AS 4100 or Table D5.G H N JK omb Figure D7.6.2 of AS 4100 or Tables D7.6.6.3.3.6.2 of AS 4100 or Table D7.3 of AS 4100 Calculate Member Effective Length keL.3.4 of this publication Calculate Member Effective Length keL.1 of this publication δb = cm ≥1 F N* I 1.6.3. Clause 4.Determination of δb Members with Idealised End Restraints.3.3.2-1 to D7.2 of AS 4100 Members in Frames.3(a) of AS 4100 Compute Nomb from Clause 4.3(1): Flow Chart for Determination of δb D7-4 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . Figure 4.3.3.3.2-4 of this publication Compute cm from Clause 4.2.4 and Figure 4. 4.3.6. 4.Determination of δs Members with Idealised End Restraints.2-1 to D7.2-4 of this publication Non-Rectangular Frames.2 of AS 4100 δs = 1 1 1−    λms  Figure D7. Figure 4.2 of AS 4100 or Tables D7.3.2.6. 4.6.3 of AS 4100 Rectangular Frames with Negligible Axial Forces in the Beams.6. Clause 4.4.2.3(a)(i) of AS 4100 1 δs = 1- FG ∆ Hh s s ΣN * ΣV * IJ K Calculate λc from Rational Buckling Analysis 1 δs = 1- FG 1 IJ Hλ K c Compute λms from Clause 4.2.2.3.2 of AS 4100 Members in Frames. Clause 4.6.3.3(2): Flow Chart for Determination of δs DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-5 .4 of this publication Calculate Member Effective Length keL.3.4 and Figure 4.4.3.3.7.2 of AS 4100 or Table D5. Clause 4.3.3(b) of AS4100 “P-δ” Analysis.3.6. Clause 4.6. Clause 4. 4.3(b) of AS 4100 Compute Nomb from Clause 4.3(a) of AS4100 Calculate Member Effective Length keL.3.6. 32 -0.58 +0.48 +0.35 0.45 0.85 0.36 -0.96 -0.72 +0.00 0.30 0.05 0.05 0.38 -0.86 -0.80 0.92 -0.00 -0.34 -0.85 0.60 β m is negative for single curvature bending: D7-6 βm is positive for reverse curvature bending: DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .40 0.50 +0.88 -0.50 0.00 1.68 +0.82 -0.70 0.26 -0.52 +0.60 0.35 0.25 0.20 0.75 0.70 0.42 +0.20 0.95 0.65 0.62 +0.78 +0.90 0.10 0.30 0.64 +0.56 +0.94 -0.76 +0.3.46 +0.45 0.80 +0.44 +0.40 +1.90 0.15 0.55 0.20 0.65 0.22 -0.28 -0.30 -0.24 -0.00 0.70 +0.55 0.75 0.84 -0.95 0.98 -0.25 0.1: Values of cm for Braced Members βm cm βm cm βm cm βm cm -1.74 +0.50 0.15 0.40 0.90 -0.60 0.10 0.66 +0.80 0.Table D7.54 +0. 1.2(b)) D 7. buckling about the y-axis (see Section D5.1 Uniaxial Bending .4.1.axis.2(a)) φMox = design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis (see Section D7.0 for In the determination of φNcx and φ both braced and sway members unless a lower value is calculated for braced members.2 of AS 4100) Note: N * ≤ φNs Alternatively.3.1-1 to D3.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value used to satisfy Section D7.1-4) φMsy = design section moment capacity for bending about the minor principal y-axis (see Section D3. which are compact about the x.90 (Table 3.4.4.3 and Tables D5.2-4) φNy the effective length factor (ke) should equal 1.9 (Table 3. φMix .D7.1.3 and Tables D5.1-4) N* = φN s = design axial compressive force design section capacity of a compression member (see Section D3.4.2.2-1 to D5.1-1 to D3.2-1 to D5.1.4 of AS 4100) M *x = design bending moment about the major principal x-axis φMrx = design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see Section D7. φMrx may be calculated by one of the following: DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-7 .2.about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial compression.4.3 and Tables D3.4 COMBINED BENDING AND AXIAL COMPRESSION In this section: φ = 0.1-1 to D3. φMox] 0.2 and Tables D3. φMrx = F GH φMsx 1− N* φNs I JK (Clause 8.4 of AS 4100) φMsx = design section moment capacity for bending about the major principal x-axis (see Section D3.1-4) φN cx = design member capacity in compression. the following condition must be satisfied: M *x ≤ where φ = min. For RHS & SHS to AS 1163. buckling about the x-axis (see Section D5.2-4) φN cy = design member capacity in compression.2.1.3 and Tables D3.[φMrx .4. Note: D7.1) φMix = design in-plane member moment capacity (φMi) for bending about the major principal x-axis (see Section D7. unless a lower value of (kex) is calculated for braced members (Clause 4.1.2 need to be satisfied.1. 18    82 − λ   ≤ φMsx  φN s    wy    λ w = λ e for the element slenderness of the web where = d − 2t t (Clause 8.2.2 of AS 4100 for members with transverse load.2 Member Capacity This section only applies to members analysed using an elastic method of analysis.2.4 of AS 4100) D 7. then both the in-plane and out-of-plane requirements of Sections D7. = the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.4. 1  1−     φNcx   ≤ φM rx  2   2    φNcx     Where βm Mrx D7-8 = the ratio of the smaller to the larger end bearing moment.1 and D7.0.4.2.2.2 of AS 4100.0 for braced and sway members. 3    1 + βm  3    N *   N*   1 + βm  + − 1 18 φMix = φMsx  1 −  .2 of AS 4100) Note: N * ≤ φNcx where φNcx is determined in accordance with Clause 6.18 F GH φMsx 1− N* φNs I JK ≤ Msx (Clause 8.3.4.3 of AS 4100) Alternatively. or the value determined in accordance with Clause 4.2.2.3 of AS 4100) fy 250 λ wy = 40 for DuraGal RHS and SHS (Table 6.2 is unity. taken as positive when the member is = bent in reverse curvature for members without transverse load. (a) In-plane capacity φMix = FG H φMsx 1− N* φNcx IJ K (Clause 8.1 and D7.4.3 of AS 4100. which are compact as defined in Clause 5.3.6.4. DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .1.2 of AS 4100) (Clause 6.0.1.4. For RHS & SHS to AS 1163.2. and where the form factor (kf) determined in accordance with Clause 6.4. with an effective length factor (kex) taken as 1. subject to bending  82 − λ w    N*   φMrx = φMsx 1 − 1 + 0 . only the in-plane requirements of Sections D7. Where there is sufficient restraint to prevent lateral buckling.2 need to be satisfied.2 of AS 4100) For compression members where k f is < 1.1. φMix may be calculated as per Clause 8.4.3 of AS 4100. If there is insufficient restraint to prevent lateral buckling.(a) For compression members where k f = 1. subject to bending φMrx (b) = 1.3 for buckling about the same principal axis. 3 of AS 4100) DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-9 .2) D 7. for RHS and SHS to AS 1163.1 Section Capacity The value of φMry must be determined at all points along the member and the minimum value is used to satisfy Section D7.2.3 of AS 4100) Note: N * ≤ φNs Alternatively.about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial compression.1 of AS 4100) design member moment capacity for bending about the major principal x-axis (see Section D4. the following condition must be satisfied: M *y ≤ min.3. F GH φMry = φMsy 1− N* φNs I JK (Clause 8.1.1-2) N * ≤ φNcy D7.2.4.2.4. which are compact about the y-axis subject to bending and compression:  N*  φMry = 118 .1-1 to D4. φMsy 1 −  ≤ φMsy  φN s  DCTDHS/06 MARCH 2002 (Clause 8.4 of AS 4100) φMry = design section moment capacity (φMs) about the minor principal y-axis reduced by axial force (see Section D7.2.[φMry .4.4.(b) Out-of-plane capacity φMox where φMbx = Note: =  N*  φMbx 1 − φNcy   (Clause 8.4.1) φMiy = nominal in-plane member moment capacity (φMi) about the minor principal y-axis (see Section D7.2 Uniaxial Bending .4.4.2 and Tables D4.3.9 (Table 3. φMiy ] where M *y = φ = design bending moment about the minor principal y-axis 0. 4. or = the value determined in accordance with Clause 4.1 Section Capacity N* M *x M *y + + ≤1 φNs φM sx φM sy (Clause 8.2 must be satisfied. and where the form factor (kf) determined in accordance with Clause 6.2.2.4.3.4.2 of AS 4100) Note: N * ≤ φNcy φNcy is determined in accordance with Clause 6. 3    1 + βmy  3   N*  N *    1 + βmy   − − + φMiy = φMsy  1 −  1 1 .3.2 Member Capacity This section applies only to members analysed using an elastic method of analysis. with an effective length factor (key) taken as 1. unless a lower value of (key) is calculated for braced members (refer 4.3 for buckling about the same principal axis.6.3 Biaxial Bending and Axial Compression For a member subject to biaxial bending and axial compression.4.3. which are compact as defined in Clause 5.3.3. In-plane capacity φMiy =  N*  φMsy  1−   φN cy  (Clause 8.1 and D7.4.axes: γ γ  M x*   M y*  ≤1   +  φMrx   φMry  (Clause 8. taken as positive when the member is bent in reverse curvature for members without transverse load.3.4.and y.2 and 8.4 of AS 4100) where  N*  γ = 1.3 of AS 4100) where Alternatively.3 of AS 4100. 18 1    2   φNcy   ≤ φM ry       2    φNcy   Where βm = the ratio of the smaller to the larger end bearing moment.D7. For bending about the minor principal y-axis only the in-plane requirements need to be satisfied.0  φN s  where φMrx and φMry are calculated in accordance with Clauses 8.4. which are compact about both the x.2.3.4 of AS 4100) Alternatively.2 of AS 4100 for members with transverse load.2.3 of AS 4100 D7-10 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . both the conditions defined in Sections D7. for RHS and SHS to AS 1163. D7.2 of AS 4100. For RHS & SHS to AS 1163.4 +   ≤ 2. D 7.2. Mry = the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.0 for braced and sway members.2 is unity.4.3 of AS 4100. φMiy may be calculated as per Clause 8.2. the following condition must be satisfied: M *x ≤ min.3.1) φMox = design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis(see section D7.1 Uniaxial Bending .3 and Tables D3.4.2 and Tables D6.5.1. φMox] where φ = 0.5.D 7. 4 ≤1 (Clause 8.4 of AS 4100) M *x = design bending moment about the major principal x-axis φMrx = design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see section D7.1-4) D7.4.4.2. 4  M y*  +   φMiy  1.5.1.1.[φMrx .2.4. determined in accordance with Sections D7.1-4) N* = design axial compressive force φNt = design member capacity in tension (see Section D6.9 (Table D3.3 and Tables D3.1-1 to D6.9 (Table 3.5 COMBINED BENDING AND AXIAL TENSION In this section: φ = 0.1 of AS 4100) design bending moment about the major principal x-axis lesser of the design in-plane member moment capacity (φMix) and the design out-ofplane member moment capacity (φMox) for bending about the major principal x-axis.about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial tension.1-4) φMsy = design section moment capacity for bending about the minor principal y-axis(see Section 3.1-1 to D3.4 of AS 4100) φMsx = design section moment capacity for bending about the major principal x-axis (see Section 3.5.2(a) and (b) respectively M *y = design bending moment about the minor principal y-axis φMiy = design in-plane member moment capacity determined in accordance with Section D7.2) DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-11 .2 Member Capacity  M x*     φMcx  where M *x = φMcx = 1.2 Note: M *x ≤ φMcx M *y ≤ φMiy D7.2.1-1 to D3. 3.5.2. φMrx where φN t = = FG H φMsx 1− N* φN t IJ K (Clause 8.1-4) N * ≤ φNt Note: Alternatively. φMsx 1 −  ≤ φMsx  φNt  (Clause 8.1-4) N * ≤ φNt Note: D7.2 Uniaxial Bending .5.5.about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial tension.1.3. for RHS and SHS to AS 1163.1 and Tables D3.4. the following condition must be satisfied: M *y < φMry where φ = 0.2 of AS 4100) D 7.2 of AS 4100) t where φMbx = φN t = design member moment capacity for bending about the major principal x-axis (see Section D4.2 and Tables D4.1-2) design member capacity in tension (see Section D6.1.2 and Tables D6.1.1-1 to D4. which are compact about the x-axis subject to bending and tension:  N*  φMrx = 118 .1-1 to D6.2 Member Capacity This section only applies to members analysed using an elastic method of analysis.1.9 (Table 3.4 of AS 4100) M *y = design bending moment about the minor principal y-axis φMry = design section moment capacity (φMs) for bending about the minor principal y-axis reduced by axial force D7-12 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .1-1 to D3.4. Only the out-of-plane capacity needs to be considered.D 7.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value is used to satisfy Section D7.2 of AS 4100) design section capacity in tension (see Section D3. Out-of-plane capacity φMox = φMbx FG1 + N * IJ H φN K ≤ φMrx (Clause 8.5. D 7.5.2.1 Section Capacity For The value of φMry must be determined at all points along the member and the following condition must be satisfied: φMry = φMsy FG1 − N * IJ H φN K (Clause 8.3.3 of AS 4100) t φN t = Note: design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4) N * ≤ φNt Alternatively, for RHS and SHS to AS 1163, which are compact about the y-axis subject to bending and tension:  N * . φMsy1 − φMry = 118  ≤ φMsy  φNt  D7.5.3 (Clause 8.3.3 of AS 4100) Biaxial Bending and Axial Tension For a member subject to biaxial bending and axial tension both the conditions defined in Sections D7.5.3.1 and D7.5.3.2 must be satisfied. D 7.5.3.1 Section Capacity N * M * x M *y + + ≤1 φNt φM sx φM sy where φN t = (Clause 8.3.4 of AS 4100) design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4) M *x = design bending moment about the major principal x-axis M *y = design bending moment about the minor principal y-axis Note: N * M *x M *y ≤ ≤ ≤ φN t φM sx φM sy Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes: γ γ  M x*   M y*  ≤1   +  φMrx   φMry  where  N*  γ = 1.4 +   ≤ 2.0  φNt  where φMrx and φMry are calculated using the alternatives presented in Section 8.4.1.1 and 8.4.2.1 of AS 4100. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-13 D 7.5.3.2 Member Capacity  M x*     φMtx  where M *x = φMtx = M *y = φMry = Note: M *x M *y D7-14 ≤ ≤ 1. 4  M y*  +   φMry  1. 4 ≤1 (Clause 8.4.5.2 of AS 4100) design bending moment about the major principal x-axis lesser of the design section moment capacity (φMrx) reduced by axial tension and the design out-of-plane member moment capacity (φMox) for bending about the major principal x-axis, determined in accordance with Sections D7.5.1.1 and D7.5.1.2 respectively design bending moment about the minor principal y-axis design section moment capacity reduced by axial tension, determined in accordance with Section D7.5.2 φM tx φMry DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 D7.6 BIAXIAL BENDING For a member subject to biaxial bending without any axial force both the conditions defined in Sections D7.6.1 and D7.6.2 must be satisfied. D7.6.1 Section Capacity M y* M x* + ≤ 1.0 φMsx φMsy where M *x = φ = φMsx = M *y = φMsy = Note: M *x M *y ≤ ≤ (Clause 8.3.4 of AS 4100) design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φM sx φM sy Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes:  M x*     φMsx  1. 4  M y*  +   φMsy  1. 4 ≤1 (Clause 8.3.4 of AS 4100) ≤1 (Clause 8.4.5 of AS 4100) D7.6.2 Member Capacity FG M * IJ H φM K x bx where M *x = φ = φMbx = M *y = φMsy = Note: M *x M *y DCTDHS/06 MARCH 2002 ≤ ≤ 1.4 + F M* I GH φM JK y 1.4 sy design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φMbx φM sy DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-15 The purpose of this example is to illustrate the calculation of design moments using the amplification factor (δb).3.0 m Nomby = 171 kN from Table D7.0 kNm maximum at Ends A and B βmx = 0 βmy -1 = cmx = 0.3.0 m 1.1 for βmx = 0 cmy = 1.2-1(1)(A) for Lex = 4.0 D7-16 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .0 m Flexural buckling (y-axis) = 4.2-1(1)(B) for Ley = 4.0 m M *x = 15 kNm maximum at End A M *y = 2. Solution: N* = 40 kN Nombx = 377 kN from Table D7.0 DuraGal RHS Grade C450L0 steel Effective lengths: Flexural buckling (x-axis) = 4. Braced Beam Column Design Data: Section: 125 x 75 x 4.60 from Table D7.D7.7 EXAMPLES Exampe A.3.3.1 for βmy = -1. This factor is relevant for calculating the design moments as the member is braced against sway.00 from Table D7. 2.1 should be used .K. in the span M*y = = 1.1 = 0.4 kNm φMsy = 15.4 of AS 4100.axis.31 x 2. (< 1) (> 1 and < 1. the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.0 ∴ O.4 15.0 m Design action effects: N* = 40 kN M *x = 15 kNm M *y = Solution: (i) 2. ie. Design Data: Section: 125 x 75 x 4.31 Maximum moment occurs between the ends.) Note: This interaction formula was used as the section in this example is non-compact about the principal y.4.2 of AS 4100.0 DuraGal RHS Grade C450L0 Effective lengths: Flexural buckling (x-axis) = 4.0 m Flexural buckling (y-axis) = 4.62 kNm The example involves biaxial bending and axial compression as defined in Section D7.3 of these Tables.4.and y.0 2.1) From Table D3. the interaction equation given in section D7.1-1 we obtain: φN s = 600 kN φMsx = 24. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-17 . which are compact about both the x.7).3(1) the moment amplification factor (δb) is given by: δb = ∴ ∴ Cm ≥ 1. N* M *x M *y 40 15 2.3 and 8.62 + + = + + φNs φM sx φM sy 600 24. ie.axes. Section Capacity Check (Section D7.0 m Lateral buckling = 6.62 kNm 2. For RHS and SHS to AS 1163.4) Considering further Example 1 (Section D7.671 Maximum moment occurs at the ends.1 kNm Thus.3.4.0  N*  1−    Nomb  Considering flexural buckling about x-axis: δ bx = 0.From Figure D7. at End A M*x = 15 kNm Considering flexural buckling about y-axis: δ by = 1.855 (< 1.3. as defined by Clause 5. 5 kNm φM iy = φMsy F1− N * I GH φN JK FG1 − 40 IJ H 142 K cy = 15.0 (φMsx = Mbx) φM ox = 1.Table D4.0 x 24.2 of AS 4100) cx = 24. therefore: therefore: φM bx = φ αm αs Msx ≤ φMsx αs = 1. φM ox) φMix (a) φM ox (b) φMsx = FG1 − N * IJ H φN K FG1 − 40 IJ H 285 K (Clause 8. Thus: x y cx iy 14 .1 = 10.4 = 21.3. 17.5 kNm FG1 − 40 IJ H 142K φM cx = = lesser of (21.4.1 kNm (Table D3.1 of AS 4100.2) FG M * IJ H φM K 1.1-1) φMcx = lesser of (φMix.75 in Table 5.2-1(1)(A)) φN cy = 142 kN (Table D5.(ii) Member Capacity Check (Section D7.4.2-1(1)(B)) φMbx = 24.4.4 ≤1 y (Clause 8.4 (<1. φN cx = 285 kN (Table D5.4 14 .1-1(1)) φMsy = 15.5 K H 10.0 ∴ O.1-1(1)) αm = 1.0 kNm = φMbx F1 − N * I GH φN JK cy (Clause 8.62IJ H φM K GH φM JK H 17. = 0.4 x cx FM* I +G H φM JK 1.0 (Le (lateral buckling) < FLR ie. 6 < 7.5 of AS 4100) iy From the Tables we obtain: Calculate.K.4 = 17.5 kNm) 17.0 kNm.08 .8 kNm FG M * IJ + F M * I = FG 15 IJ + FG 2.1 of AS 4100) Although αm is given as 1.4.8K 1.944 D7-18 1. φ αm αs Msx must be less than or equal to φMsx.4 kNm (Table D4.) DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2.4.6. 0 Braced Beam Column Design Data: Section: 125 x 75 x 6.0 m (1).1 for βmy = -1.1 and D7.0 DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-19 .2-1(1)(B) for Ley = 4.1 for βmx = 0 cmy = 1.60 from Table D7.3. Solution: N* = 50 kN Nombx = 513 kN from Table D7.D7.3.3.0 kNm maximum at Ends A and B βmx = βmy 0 = -1 cmx = 0. The purpose of this second example is to illustrate the calculation of design moments using the amplification factor (δb).00 from Table D7.2.4.0 DuraGal RHS Grade C450L0 Effective lengths: Flexural buckling (x-axis) = 4.4.0 m Nomby = 231 kN from Table D7.7 EXAMPLES Example 2. This factor is relevant for calculating the design moments as the member is braced against sway.0 m Flexural buckling (y-axis) = 4.3.3.2-1(1)(A) for Lex = 4.0 m Lateral buckling = 6. and the alternative methods for calculating Member and Section capacities for Compact Sections as described in Sections D7.3.0 m M *x = 22 kNm maximum at End A M *y = 4. From Figure D7. Design Data: Section: 125 x 75 x 6. the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.12 kNm The example involves biaxial bending and axial compression as defined in Section D7. in the span M*y = = 1.4) Considering further Example 1 (Section D7.1-1 we obtain: φN s = 864 kN φMsx = 34. ie.0 m Design action effects: N* = 50 kN M *x = 22 kNm M *y = Solution: (i) 5. (< 1) (> 1 and < 1.1) From Table D3. at End A M*x = 22 kNm Considering flexural buckling about y-axis: δ by = 1.1 kNm φMsy = 23.0 m Flexural buckling (y-axis) = 4.3.0 Then γ γ  M x*   M y*  ≤1   +  φMrx   φMry  (Clause 8.0 5.0  N*  1−    Nomb  Considering flexural buckling about x-axis: δ bx = 0.4 of AS AS 4100) where  N*  γ = 1.9 kNm As 127 x 75 x 6.0 DuraGal RHS Grade C450L0 steel Effective lengths: Flexural buckling (x-axis) = 4.0 DuraGal RHS is compact about the x.28 x 4.4.12 kNm (2).0 m Lateral buckling = 6.and y.665 Maximum moment occurs at the ends. ie.7). and kf = 1.28 Maximum moment occurs between the ends.3 and 8. Section Capacity Check (Section D7.axis.3(1) the moment amplification factor (δb) is given by: δb = ∴ ∴ Cm ≥ 1.3 of these Tables.3.4.0  φNt  D7-20 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .4 of AS 4100.4 +   ≤ 2. 46 .0 γ = 1.2-1(1)(A)) φN cy = 193 kN (Table D5.2-1(1)(B)) φM bx = 34.4 +   864   22   34.4.1kNm DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-21 . 46 ≤1 = 0. × 23.11 −  864  = 34.9  γ = 1. φN cx = 392 kN (Table D5.3 of AS 4100) 50  ≤ 23.1 1. 1     2    φNcx   ≤ φM rx    2    φNcx   3 3  1 + 0   50   1 + 0  1 − 50   ≤ 34.2.3.1-1(1)) φMcx = lesser of (φMix.633 < 1.9 φMry = 118 .7 kNm ≤ φMrx = 34. φMsx 1 −  ≤ φMsx  φN s  (Clause 8.11 −  − 118 .1 kNm (Table D4. φMsy 1 −  ≤ φMsy  φN s  (Clause 8.3.4.2 of AS 4100) 3    1 + βm  3    N *   N*   1 + βm  − + − 1 1 18 φMix = φMsx  1 −  .2) From the Tables we obtain: Calculate.9 kNm Then 50  ≤ 2.91 −  864  = 23.3.1 φMrx = 118 .46 1. × 34. φMox) (a) (Clause 8.  510 +  23.Then  N*  φMrx = 118 .1 kNm and  N*  φMry = 118 .0 Member Capacity Check (Section D7.   2   392     2   392   ∴ φMix = 30.1kNm 1 + φMix = 34.2 of AS 4100) 50  ≤ 34. 18 1    2   φNcy   ≤ φM ry       2    φNcy   3 3  1 + ( −1)   50   1 + ( −1)  1 − 50   ≤ 17.   2   193     2   193   ∴ φMiy = 17.7 kNm ≤ φMry = 23.7  = 0.7kNm 1 + 118 φMiy = 23.1 of AS 4100) 1.2 of AS 4100) 3    1 + βmy  3   N*  N *    1 + βmy   − − + φMiy = φMsy  1 −  1 1 .1 of AS 4100) cy  50  φMox = 34.9 kNm Then  M x*     φMcx   22   25.3 kNm therefore: lesser of (φMix. 4 1.4.4. 4 ≤1 (Clause 8.4.4.5.3 kNm (Clause 8. φMox) φMcx = = 25.2.F1− N * I GH φN JK φMox =φMbx (b) (Clause 8. 4 ≤1 Therefore OK DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .998 < 1 D7-22 1.  512 +  17.3  1.11 −   193  = 25. 4  M y*  +   Miy  .91 −  − . 64 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3.716 0.0648 0.288 0.0247 0.3 8.913 0.277 0.246 0.583 0.0333 0.241 0.167 0.99 8.07 ∞ ∞ ∞ ∞ ∞ ∞ 8.49 7.0784 0.0410 0.513 0.33 3.0 RHS 16.0737 0.0499 0.754 0.2-1(1)(A) ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b Elastic Buckling Loads Nom (MN) Mass per m Effective Length (Le) in metres t mm mm mm kg/m 0.335 0.139 0.0476 0.0 RHS 3.79 4.205 0.0 RHS 3.0234 0.0125 0.0302 0.DCTDHS/06 MARCH 2002 TABLE D7.147 0.832 100 x 50 x 6.208 0.0 RHS 2.15 0.0942 0.146 0.0999 0.113 0.200 0.645 0.19 2.201 0.19 1.15 1.50 2.0 RHS 4.481 0.172 0.0409 0.532 0.163 0.0 RHS 5.0411 0.0584 0.04 0.08 3.334 0.409 0.0302 0.0258 0.0502 0.115 0.934 0.244 0.5 3.40 1.0348 0.0749 0.0720 0.2 11.62 2.02 2.0925 0.0 RHS 4.65 3.0756 0.31 1. Nom = π2 EI / Le2 (Clause 4.368 0.587 0.0526 0.0146 0.0821 0.0719 0.6 8.0609 0.533 0.844 0.0937 0.2 of AS 4100) 3.287 0.133 0.943 0.0209 0.449 0.391 0.90 3.0 2.0484 7.156 0.3.0471 0.300 0.602 0.333 0.0527 0.0 RHS 5.168 0.11 0.0589 0.655 125 x 75 x 6.135 0.50 3.204 0.02 0.0640 0.0520 0.671 0.0978 0.147 0.0103 0.03 4.655 0.0 RHS 2.0337 0.50 1.624 0.0717 0.00840 D7-23 .20 1.0603 0.0180 0.287 0.68 2.5 RHS 2.0 1.450 0.7 14.483 0.10 4.0 RHS 16.0283 0.373 0.10 1.272 0.37 5.658 0.0924 0.80 1.0231 0.0838 0.0615 0.131 0.255 0.60 1.53 6.121 0.23 1.0429 0.89 5.53 6.121 0.0988 0.0 1.259 0.802 0.0637 0.164 0.179 0.329 0.0 10.19 6.0367 0.5 4.211 0.461 0.0403 0.02 1.377 0.5 RHS 2.0 10.56 4.123 0.670 0.0284 0.37 3.6.7 14.0419 0.0 RHS 5.161 0.0570 0.0689 0.819 0.302 Note: 1.114 1.0162 0.0328 0.103 0.0841 0.0500 0.275 0.6 RHS 12.453 0.0592 0.0231 0.0189 0.113 0.0479 0.0 RHS 4.399 0.82 2.137 0.47 1.120 0.0694 0.0 RHS 2.13 1.0210 0.128 0.548 0.0 0.112 0.233 0.0364 0.0679 0.0 6.237 0.190 0.96 7.228 0.375 0.652 0.0336 0.0 1.44 3.351 0.5 2.0 150 x 50 x 6.34 1.336 0.25 1.767 0.557 0.48 1.188 0.0877 0.0 RHS 1.5 RHS 3.370 0.236 0.413 0.0836 0.0 8.07 ∞ ∞ ∞ ∞ ∞ ∞ 9.21 1.0148 0.492 0.05 1.0512 0.0333 0.60 5.53 6.194 0.133 0.0 12.151 0.48 2.77 7.798 0.58 2.0121 0.18 0.102 0.0408 0.0933 0.964 0.0233 0.6 8.80 1.200 0.974 0.5 RHS 2.455 0.525 0.0179 0.134 0.815 0.21 7.02 4.0921 0.0832 0.370 0.164 0.211 0.33 2.800 0.0281 0.164 0.313 0.81 1.84 1.96 7.192 0.540 0.538 0.295 0.28 2.0 5.256 0.51 1.0 RHS 3.2 11. 5 RHS 2.0 RHS 5.50 7.9 41.8 83.2 19.4 63.60 2.2 of AS 4100) .56 4.6 RHS 3.62 5.0 RHS 4.0 3.0 RHS 2.2 48.0 86.75 2.2 46.99 1.60 5.5 22.8 19.0 RHS 2.3 8.1 75 x 25 x 2.0 DCTDHS/06 MARCH 2002 0.5 11.7 98.0 1.3 8.81 6.5 74.1 48.2 35.6 RHS 12.9 22.5 52.3 62.8 12.2 55.3 43.4 24.7 30.63 ∞ ∞ ∞ ∞ 3000 2680 2280 1920 751 669 571 480 334 297 254 213 188 167 143 120 120 107 91.0 RHS 5.9 45.1 72.5 3.0 2.6 46.3 62.9 13.4 90.92 7.6 RHS 2.0 63.0 26.3 54.6 65 x 35 x 4.3 49.7 54.5 34.6 63.2 24.7 73.25 3.3 84.80 11.2 25.5 4.6 RHS 3.0 RHS 1.1 72.75 1.3 46.53 6.3 15.0 RHS 3.4 53.60 2.5 0.4 59.71 4.4 175 159 138 114 98. Nom = π2 EI / Le2 (Clause 4.7 10.42 4.0 RHS 3.6 RHS 9.3 13.5 18.72 3.25 0.2 57.6 39.7 9.8 77.1 50 x 25 x 3.7 41.4 18.82 7.8 15.9 211 188 161 146 131 113 92.5 21.0 RHS 1.5 RHS 3.6 15.8 22.8 41.9 129 117 102 84.38 ∞ ∞ ∞ 9010 7530 6230 2250 1880 1560 1000 836 693 563 471 390 360 301 249 250 209 173 184 154 127 141 118 97.0 15.6 72.67 8.8 35.3 61.6 135 121 103 93.5 75.4 55.D7-24 TABLE D7.3.92 5.2 10.3 76.2 25.83 2.5 8.0 100 x 50 x 6.7 64.5 RHS 2.0 RHS 5.7 89.0 10.42 1.0 59.1 75.6 81.62 2.7 30.49 7.35 4.4 34.6 53.0 45.0 RHS 1.69 5.2 64.0 38.4 32.50 3.5 29.93 ∞ ∞ ∞ ∞ 10400 8880 7720 6440 2590 2220 1930 1610 1150 986 858 716 648 555 483 403 415 355 309 258 288 247 214 179 212 181 158 131 162 139 121 101 104 88.0 RHS 1.2 26.6 44.0 RHS 2.3 22.0 RHS 2.5 61.3 39.6 35.3 16.3 24.6.4 72.66 8.5 45.9 49.54 50 x 20 x 3.0 RHS 4.5 RHS 2.0 RHS 2.7 18.07 2.2 29.0 RHS 3.35 6.3 13.5 RHS 2.2 98.25 1.01 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 25300 22900 19900 16500 14200 11700 9640 6320 5730 4970 4120 3550 2930 2410 2810 2550 2210 1830 1580 1300 1070 1580 1430 1240 1030 887 734 602 1010 917 796 659 568 469 385 702 637 553 458 394 326 268 516 468 406 336 290 240 197 395 358 311 257 222 183 151 253 229 199 165 142 117 96.5 RHS 2.58 3.5 RHS 2.4 15.64 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 54000 48300 41300 37300 33600 28800 23700 19400 13500 12100 10300 9330 8410 7200 5920 4840 6000 5360 4590 4140 3740 3200 2630 2150 3370 3020 2580 2330 2100 1800 1480 1210 2160 1930 1650 1490 1340 1150 947 774 1500 1340 1150 1040 934 800 658 538 1100 985 842 761 686 588 483 395 844 754 645 583 525 450 370 302 540 483 413 373 336 288 237 194 375 335 287 259 233 200 164 134 275 246 211 190 172 147 121 98.51 6.80 Note: 1.0 30.5 66.7 11.2-1(2)(A) ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis Designation d b Elastic Buckling Loads Nom (kN) Mass per m Effective Length (Le) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.93 2.0 61.9 13.9 40.3 31.0 5.8 37.8 35.75 ∞ ∞ ∞ ∞ 3530 3120 2650 2220 882 781 662 554 392 347 294 246 221 195 165 139 141 125 106 88.9 18.5 1.0 RHS 1.7 52.4 31.4 75 x 50 x 6.6 77.15 1.2 20. 49 7.44 6.0229 0.0158 0.0878 0.64 1.0115 0.56 4.153 0.0358 0.0219 0.139 0.712 0.0428 0.0212 0.0178 0.22 0.52 1.242 0.0944 0.53 6.0152 0.892 0.0416 0.139 0.754 0.0125 0.0404 0.73 7.00613 0.0 0.6 8.16 2.0710 0.0263 0.0111 0.00892 0.265 0.184 0.0952 0.0508 0.0161 0.207 0.0285 0.96 7.0 RHS 2 5 RHS 2.0873 0.53 6.0370 0.0578 0.12 1.224 0.0462 0.124 0.0341 0.827 0.223 0.197 0.7 14.178 0.0650 0.2-1(1)(B) ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b Elastic Buckling Loads Nom (MN) Mass per m Effective Length (Le) in metres t mm mm mm kg/m 0.6.304 0.0679 0.0981 0.0517 0.260 0.272 0.0201 0.298 0.114 0.66 1.18 1.0423 0.0755 0.0 RHS 3.0609 0.0811 0.0139 0.0848 0.00958 0.507 0.326 0.3.2 11. 1.00507 0.0204 0.103 0.7 14.0631 0.0274 0.0242 0.116 0.00849 0.0291 0.684 0.106 0.0 RHS 4.0700 0.0 RHS 16.573 0.0206 0.0308 0.00734 0.0 RHS 4.0348 0.0123 0.242 0.0346 0.381 0.0559 0.03 1.0166 0.671 0.117 0.0203 0.0471 0.0162 0.316 0.169 0.0 RHS 5.0289 0.0 RHS 5.86 1.0 0.29 1.16 4.351 0.0198 0.302 0.161 0.168 0.0459 0.0 RHS 3.96 7.0 8.60 5.0445 0.0 RHS 4.218 0.51 1.0991 0.0 150 x 50 x 6.0280 0.545 0.206 0.6 8.5 2.0170 0.0559 0.0 RHS 16.0806 0.0516 0.74 2.5 RHS 3.0294 0.0311 0.44 1.378 0.136 0.94 125 x 75 x 6.5 RHS 2.322 0.0728 0.0967 0.0236 0.0816 14.143 0.0581 0.0663 0.361 0.104 0.00870 0.0325 0.462 0.179 0.85 2.0 RHS 5.0182 0.00416 D7-25 .411 0.70 3.04 3.0791 0.0175 0.0316 0.0 10.520 0.25 2.171 0.123 0.438 0.252 0.124 0.01 0.0136 0.272 0.5 1.0761 0.0 11.8 13.5 4.166 0.0 10.0420 0.45 2.0445 0.498 0.0265 0.5 RHS 2.790 0.185 0.0903 0.07 ∞ ∞ ∞ ∞ ∞ ∞ 100 x 50 x 6.396 0.0500 0.0238 0.0218 0.53 6.424 0.0 6.448 0.0557 0.0383 0.189 0.0 RHS 1.0914 0.0245 0.244 4.64 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Note: 1.0 8.00650 0.0 3.0 RHS 2.48 4.0824 0.70 1.0112 0.0101 0.0150 0.50 3.6 RHS 12.0186 0.0494 0.0414 0.04 5.0103 0.870 0.130 0.178 0.0380 0.0260 0.0311 0.0357 0.0129 0.152 0.0 7.00792 0.0170 0.0666 Nom = π2 EI / Le2 (Clause 4.110 0.465 0.00790 0.592 0.112 0.57 2.0645 0.127 0.0744 0.0606 0.0340 0.0 5.0 2.225 0.0544 0.0317 0.416 0.349 0.0151 0.DCTDHS/06 MARCH 2002 TABLE D7.677 0.734 0.280 0.09 3.0141 0.0104 0.48 3.3 8.0 RHS 2.0116 0.2 11.970 0.0248 0.812 0.5 1.115 0.143 0.387 0.0681 0.00712 0.148 0.126 0.0563 0.07 ∞ ∞ ∞ ∞ ∞ ∞ 6.0604 0.0 RHS 3.105 0.79 6.925 0.16 3.0448 0.231 0.613 0.203 0.04 0.0145 0.2 of AS 4100) 3. 2 20.6 RHS 2.66 5.5 RHS 2.62 2.22 1.4 24.25 1.91 5.0 47.0 RHS 2.6 27.0 10.75 1.7 75.68 1.29 2.50 3.3 26.9 28.3 108 92.5 3.14 5.63 ∞ ∞ ∞ ∞ 670 607 527 449 168 152 132 112 74.61 155 134 117 98.0 10.17 10.1 18.8 46.1 72.2 28.3 29.5 24.3 21.1 54.6 12.7 11.0 RHS 4.0 DCTDHS/06 MARCH 2002 0.59 6.9 75 x 25 x 2.27 4.06 1.7 9.28 3.2 33.1 81.16 5.7 55.8 79.9 14.66 3.0 14.8 42.4 21.6 24.5 9.0 2.0 RHS 5.3 41.0 RHS 2.42 3.4 17.8 17.1 68.74 15.7 52.2 73.6 RHS 3.1 15.60 5.23 7.7 32.2 50 x 20 x 3.6 28.4 60.22 3.56 4.7 87.69 2.3 16.49 8.4 64.6 16.2 of AS 4100) 96.4 44.7 22.1 56.83 2.37 2.5 RHS 2.8 40.0 RHS 1.3 80.49 8.5 67.9 37.5 61.04 3.6 RHS 9.99 1.5 58.0 15.3 18.6 RHS 12.42 1.4 35.47 2.70 6.2 79.9 19.1 60.0 RHS 5.01 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13300 12100 10600 8770 7580 6290 5180 3330 3030 2640 2190 1900 1570 1290 1480 1350 1170 974 842 699 575 832 758 661 548 474 393 324 532 485 423 351 303 252 207 370 337 294 244 211 175 144 272 248 216 179 155 128 106 208 189 165 137 118 98.9 11.82 4.07 7.5 0.0 32.6 68.60 2.9 12.3 68.87 7.5 RHS 2.60 9.2 43.28 4.6 43.8 23.12 243 209 183 154 7.0 RHS 2.0 RHS 1.1 16.10 2.8 9.5 20.0 100 x 50 x 6.5 13.0 3.4 10.67 8.0 44.7 12.20 41.1 11.D7-26 TABLE D7.7 12.1 81.7 36.75 1.1 26.4 38.6 83.84 6.53 3.4 9.8 24.35 6.15 1.84 3.42 4.49 4.3 17.64 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 17900 16100 13900 12600 11400 9810 8110 6660 4480 4040 3480 3160 2850 2450 2030 1660 1990 1790 1550 1400 1270 1090 901 740 1120 1010 870 790 712 613 507 416 717 646 557 506 456 392 324 266 498 448 387 351 316 272 225 185 366 329 284 258 232 200 165 136 280 252 218 197 178 153 127 104 179 161 139 126 114 98.7 38.4 13.5 38. Nom = π2 EI / Le2 (Clause 4.4 49.87 3.4 34.19 6.4 84.52 1.92 5.0 RHS 1.5 .5 1.5 RHS 3.9 Note: 1.12 19.9 44.4 34.31 6.02 6.0 67.6 75 x 50 x 6.3 30.8 24.0 RHS 2.1 15.1(2)(B) ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d b Elastic Buckling Loads Nom (kN) Mass per m Effective Length (Le) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.7 26.2 24.8 31.93 ∞ ∞ ∞ ∞ 3890 3340 2920 2460 972 835 731 614 432 371 325 273 50 x 25 x 3.0 RHS 1.7 50.35 4.00 5.2 91.3 31.7 38.9 33.4 8.07 2.90 2.72 8.0 41.25 0.1 59.9 133 121 106 87.6 21.6 RHS 3.7 81.0 23.5 RHS 2.5 58.4 71.53 6.2 13.5 30.3 30.2 45.0 RHS 4.6 10.0 RHS 3.4 82.3 34.35 7.7 36.3 8.5 4.0 18.5 52.8 92.1 26.5 46.0 64.0 RHS 2.66 4.4 26.9 61.3 46.38 ∞ ∞ ∞ 1540 1310 1100 384 326 274 171 145 122 65 x 35 x 4.1 66.62 2.04 7.4 31.5 RHS 2.0 RHS 3.25 3.6.75 2.4 52.8 62.9 52.93 2.10 4.0 1.07 5.0 70.2 68.60 2.58 3.0 RHS 5.0 RHS 3.0 20.4 29.6 124 112 96.9 51.2 13.0 11.59 2.0 63.26 2.5 RHS 2.49 7.1 50.9 32.1 18.93 2.6 20.32 1.0 RHS 1.9 53.5 49.4 41.6 20.0 5.3.75 ∞ ∞ ∞ ∞ 1160 1040 887 749 290 259 222 187 129 115 98.52 4.72 3. 0 17.8 63.5 39.0 2.0 1.2 11.3.7 49.67 5.25 1.0 70.3 58.8 RHS 2.2 22.01 3.47 5.9 79.77 4.3 RHS 8.35 50 x 20 x 2.5 55.3 76.9 56.4 74.34 ∞ ∞ 3180 2740 795 686 353 305 199 171 127 110 22.00 4.2 64.6 14.02 6.39 6.75 1.7 39.2 of AS 4100) 71.8 RHS 2.2-2(A) buckling about x-axis Designation d b Elastic Buckling Loads Nom (kN) Mass per m Effective Length (Le) in metres t mm mm mm kg/m 0.3 RHS 2.9 23.78 2.0 0.8 RHS 2.8 27.0 kg/m 0.75 2.67 2.2 of AS 4100) Designation d b TABLE D7.8 RHS 2.7 81.3 RHS 2.62 1.0 12.2 69.3 RHS 5.0 36.7 46.6.8 RHS 2.9 51.0 3.4 15.0 33.0 1.1 70.5 67.3 RHS 3.1 50 x 25 x 2.3 RHS 2.7 50 x 25 x 2.44 ∞ ∞ 3370 2940 844 735 375 327 211 184 135 118 93.99 3.8 10.1 18.25 1.0 13.4 36.1 42.3 RHS 6.2 43.0 0.5 4.3 RHS 6.8 RHS 2.3 RHS 5.44 ∞ ∞ 1110 979 278 245 124 109 50 x 20 x 2.34 ∞ ∞ 8430 7230 2110 1810 937 803 527 452 337 289 234 201 172 147 132 113 84.39 6.5 1. Nom = π2 EI / Le2 (Clause 4.4 20.7 12.79 7.44 .8 RHS 2.5 3.8 RHS 2.1 9.89 2.4 10.44 7.9 32.87 7.4 7.95 ∞ ∞ 72200 60500 18000 15100 8020 6720 4510 3780 2890 2420 2000 1680 1470 1230 1130 945 722 605 501 420 368 309 282 236 100 x 50 x 2.3 20.75 1.89 2.95 6.14 ∞ ∞ 31700 26800 7930 6700 3530 2980 1980 1670 1270 1070 881 744 648 547 496 419 317 268 220 186 162 137 124 105 75 x 50 x 2.94 2.0 16.9 28.9 27.1 35.9 31.2 44.25 1.1 65 x 35 x 2.3 11.3 RHS 2.7 29.19 5.19 5.7 20.0 5.8 25.6.5 1.5 3.4 17.5 4.0 46.0 13.0 228 192 168 141 128 108 82.95 ∞ ∞ 32900 27600 8220 6910 3650 3070 2060 1730 1320 1110 913 768 671 564 514 432 329 276 100 x 50 x 2.3 RHS 8.2 14.9 75 x 50 x 2.9 22.3.25 ∞ ∞ 647 577 162 144 Note: 1.2 15.8 RHS 2.3 RHS 3.80 5.2 30.5 8.3 67.25 0 .8 51.25 0 .0 52.6 20.86 69.14 ∞ ∞ 10800 9140 2690 2290 1200 1020 673 571 431 366 299 254 220 187 168 143 108 91.9 64.8 57.4 23.9 11.6 45.25 ∞ ∞ 2880 2530 720 632 320 281 180 158 115 101 80.8 RHS 2.5 28.3 72.ELASTIC BUCKLING LOADS DCTDHS/06 MARCH 2002 DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D7.67 2.9 60.8 17.5 0.09 4.8 RHS 2.0 180 151 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS 125 x 75 x 2.45 40.09 4.5 61.49 4.3 9.1 88.0 5.7 42.72 6.0 33.83 2.2 11.4 27.24 ∞ ∞ 15600 13200 3900 3310 1730 1470 974 827 623 529 433 368 318 270 244 207 156 132 108 91.1 18.1 19.34 3.2 21.0 2.0 3.2-2(B) buckling about y-axis Elastic Buckling Loads Nom (kN) Mass per m Effective Length (Le) in metres t mm mm mm 79.75 2.0 39.24 ∞ ∞ 8310 7080 2080 1770 923 786 519 442 332 283 231 197 169 144 130 111 83.20 6.2 58. Nom = π2 EI / Le2 (Clause 4.0 17.1 9.5 50.1 16.7 68.1 D7-27 125 x 75 x 2.7 26.5 0.0 49.7 65 x 35 x 2.4 36.1 32.99 3.30 2.5 60.7 42.8 RHS 2.53 2.32 Note: 1.1 25. 162 0.0397 0.699 0.194 0.194 0.74 1.186 0.628 0.0595 0.0828 0.0634 0.443 0.107 0.281 0.229 0.D7-28 TABLE D7.0274 0.0204 0.0 6.57 1.0513 0.435 0.100 0.0379 0.110 0.0629 0.0141 0.143 0.0 2.0 1.122 0.55 1.0 SHS 3.434 0.0546 0.0149 0.80 1.51 2.292 0.0984 0.53 6.00992 0.0247 0.0440 0.43 1.39 ∞ ∞ ∞ ∞ 2.117 0.780 0.159 0.10 0.0 SHS 1.0554 0.628 0.04 1.02 0.00692 DCTDHS/06 MARCH 2002 .0272 0.143 0.56 4.0174 0.0243 0.175 0.328 0.218 0.0349 0.243 0.40 3.0355 0.704 0.0 10.0174 0.0697 0.649 0.997 1.97 2.254 0.0937 0.07 ∞ ∞ ∞ ∞ ∞ ∞ 5.6.678 0.41 1.359 0.0487 0.99 5.0 0.66 2.32 1.115 0.0319 0.0713 0.0702 0.0169 0.5 SHS 2.571 0.187 0.06 ∞ ∞ ∞ 4.0206 0.122 0. Nom = π2 EI / Le2 (Clause 4.0277 0.53 6.0 SHS 2.3.0321 0.210 0.489 0.0 SHS 4.0357 0.146 0.75 1.270 0.536 0.175 0.0159 0.0 SHS 16.49 2.0175 0.0698 0.5 SHS 2.2 11.0335 0.29 2.221 0.227 0.60 5.0243 0.343 0.402 0.0 SHS 5.128 0.74 5.134 0.0757 0.0229 0.58 2.0337 0.06 3.388 0.583 0.249 0.0221 0.0416 0.0971 0.0189 0.111 0.0 SHS 2.5 9.157 0.275 0.0297 0.00997 0.0559 0.5 SHS 2.14 1.0993 0.0572 89 x 89 x 6.0121 0.31 1.510 0.0393 0.5 4.7 14.743 0.0496 0.0730 0.152 0.894 0.205 0.357 0.166 0.375 0.0 8.0687 0.0306 0.476 0.0814 0.0251 0.428 0.0143 0.0566 0.0 SHS 2.113 0.874 0.2 of AS 4100) 7.393 0.198 0.539 0.0754 0.0358 0.0156 0.839 0.157 0.0466 0.176 0.12 0.109 0.0 SHS 12.0815 0.0989 0.21 1.0416 0.0399 0.167 0.331 0.279 0.00982 0.0271 0.0282 0.0203 0.330 0.5 3.0674 90 x 90 x 3.572 0.71 1.0142 0.252 0.0898 0.303 0.0 100 x 100 x 6.952 0.0971 0.279 0.135 0.0524 0.451 0.33 1.0364 0.00841 0.366 0.238 0.0914 0.6 12.0437 0.0122 0.170 75 x 75 x 6.0 1.0623 Note: 1.6 SHS 8.96 7.49 7.0 SHS 5.326 0.0188 0.0 12.24 4.0485 0.285 0.0223 0.and y-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b Elastic Buckling Loads Nom (MN) Mass per m Effective Length (Le) in metres t mm mm mm kg/m 0.301 0.0214 0.906 0.0358 0.50 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2.388 0.119 0.3 8.0157 0.559 0.223 0.21 0.635 0.489 0.0465 0.254 0.0406 0.959 0.0 3.0 SHS 4.01 6.439 0.0599 0.0 SHS 5.5 SHS 3.0826 0.143 0.140 0.353 0.109 0.0 10.45 4.0437 0.43 2.96 1.666 0.0424 0.159 0.607 0.01 0.0248 0.0289 0.0 SHS 3.0292 0.0246 0.0607 0.0121 0.5 SHS 14.839 0.0 SHS 3.0565 0.6 8.379 0.0857 0.240 0.2-3(1) ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x.0884 0.774 0.0109 0.59 1.5 2.50 1.0819 0.0 5.0393 0.142 0.226 0.0635 0.08 1.0484 0.127 0.195 0. 25 36600 32600 27900 25200 22600 19400 15900 22300 20200 17400 14300 12400 10200 8370 8110 7220 6150 5350 4470 3700 3320 2940 2590 2190 1830 1880 1670 1420 1200 860 729 534 469 403 192 0.5 SHS 2.0 16.2 66.72 2.34 7.3 25.0 SHS 2.39 3.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.05 1.4 25.2 9.75 4060 3620 3100 2800 2510 2150 1770 2480 2240 1940 1590 1370 1130 931 902 803 683 595 496 411 369 327 288 244 203 209 186 158 133 95.4 31.1 44.8 50.8 53.3 21.0 SHS 1.5 SHS 2.1 83.1 20.22 3.88 2.4 98.31 5.1 52.3.93 2.9 33.29 5.4 29.0 SHS 2.9 39.83 2.92 571 510 435 393 353 303 249 349 315 272 224 193 159 131 127 113 96.1 22.50 10.71 3.5 20.5 39.9 29.2 12.7 23.5 81.2 28.6 SHS 50 x 50 x 5.36 3.1 53.0 SHS 3.979 0.2 7.08 2.480 .2 31.2 42.7 45.92 254 227 194 175 157 135 111 155 140 121 99.7 81.53 7.8 16.3 18.25 2.56 8.7 60. 0.83 2.56 9.9 30.3 8.38 1.9 46.97 5.99 1.78 3.25 1.60 7.01 0.0 SHS 2.6 SHS 35 x 35 x 3.52 6.13 6.88 3.0 27.23 5.0 SHS 2.12 0.2 20.26 5.42 1.60 5.85 2.18 3.49 5.56 6.9 25.4 13.72 2.34 8.5 SHS 2.7 37.6 69.3 52.6 33.6 SHS 20 x 20 x 1.8 60.9 18.0 13.0 Nom = π2 EI / Le2 (Clause 4.873 Note: Elastic Buckling Loads Nom (kN) Mass per m 1.7 36.8 57.5 13.4 56.5 SHS 2.5 69.15 1.69 4.2 8.5 44.4 81.4 8.2 56.4 11.75 2.38 4.6 85.6 SHS 40 x 40 x 4.3 18.82 1.58 7.0 59.4 67.66 4.2 56.8 46.0 SHS 65 x 65 x 6.57 0.0 3.5 48.7 32.6 SHS 12.5 4.0 SHS 5.8 75.9 20.5 SHS 3.7 21.0 74.99 2.2 34.33 187 143 166 127 142 109 128 98.0 40.0 91.36 6.0 SHS 4.9 42.0 SHS 2.5 47.6.9 10.5 14.82 2.4 11.9 14.4 115 88.64 1.0 SHS 1.5 9140 8150 6970 6290 5650 4850 3990 5580 5040 4360 3590 3090 2550 2090 2030 1810 1540 1340 1120 924 831 736 649 548 458 470 418 356 299 215 182 133 117 101 48.1 87.0 SHS 3.2 50.2-3(2) ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x.3 14.9 58.8 104 72.9 75.7 37.4 18.4 24.5 34.56 4.2 61.2 12.8 70.0 SHS 5.0 SHS 3.17 1.7 13.03 1.3 20.7 13.31 1.58 4.9 68.2 12.1 24.0 11.33 1.7 62.0 33.0 63.8 17.00 366 326 279 252 226 194 159 223 202 174 143 124 102 83.5 18.5 SHS 2.2 18.7 13.0 2290 2040 1740 1570 1410 1210 997 1390 1260 1090 896 772 638 523 507 451 384 334 279 231 208 184 162 137 114 117 104 89.70 4.6 29.2 of AS 4100) 0.3 118 81.67 4.56 2.9 21.3 34.5 3.0 746 666 569 514 462 396 325 455 411 356 293 252 208 171 166 147 125 109 91.6 SHS 25 x 25 x 2.89 8.15 9.0 SHS 1.4 62.9 22.1 8.63 1.3 50.9 28.9 56.6 35.24 8.68 1.4 23.7 41.68 5.3 38.2 10.39 5.0 48.750 5.0 1.34 7.5 SHS 2.7 37.9 55.8 18.35 4.9 73.0 44.53 6.4 26.1 103 78.2 75.30 2.80 1.7 88.29 3.7 81.49 7.06 3.33 1.0 2.4 17.1 73.3 14.36 1.2 29.0 15.1 11.6 9.1 15.0 SHS 1.0 25.1 11.31 7.39 1.9 9.6 SHS 30 x 30 x 2.2 52.4 43.0 10.32 6.0 8.0 SHS 1.5 1460 1020 1300 906 1110 774 1010 699 905 628 775 539 638 443 892 620 806 560 697 484 574 398 494 343 408 283 335 233 325 225 289 201 246 171 214 149 179 124 148 103 133 92.0 SHS 4.2 31.0 11.DCTDHS/06 MARCH 2002 TABLE D7.25 3.34 4.48 4.09 3.0 SHS 3.4 17.10 4.1 39.0 SHS 4.75 7.8 51.1 29.and y-axis Designation d b Effective Length (Le) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-29 mm mm mm kg/m 75 x 75 x 6.3 1.0 15.1 72.60 2.0 SHS 1.3 114 87.5 53. 3 SHS 3.99 3.8 SHS 2.3 SHS 6.9 7.8 12.D7-30 TABLE D7.8 SHS 2.0 15.1 67.62 ∞ ∞ 2810 2440 703 610 312 271 176 152 112 97.1 65 x 65 x 2.5 10.3 SHS 3.5 57.0 3.4 11.19 5.67 2.5 0.94 9.4 50.0 5.6.2 78.53 7.0 63.50 3.2 28.34 ∞ ∞ 5840 5010 1460 1250 649 557 365 313 234 200 162 139 119 102 40 x 40 x 2.0 83.5 4.8 25.75 2.9 14.10 36.75 1.6 14.1 24.0 206 172 132 110 100 x 100 x 2. Nom = π2 EI / Le2 (Clause 4.6 78.6 18.8 43.8 Note: 1.3.8 SHS 2.6 12.1 40.4 49.5 3.3 SHS 4.95 ∞ ∞ 52600 44100 13200 11000 5850 4900 3290 2760 2100 1770 1460 1230 1070 901 822 690 526 441 365 306 268 225 75 x 75 x 2.0 9.03 6.39 6.7 45.03 6.9 38.8 29.1 50.25 ∞ ∞ 1800 1580 450 394 200 175 112 98.and y-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b Elastic Buckling Loads Nom (kN) Mass per m Effective Length (Le) in metres t mm mm mm kg/m 0.7 32.25 0.04 DCTDHS/06 MARCH 2002 .42 ∞ 11500 2880 1280 719 460 320 235 180 115 50 x 50 x 2.11 2.5 1.5 16.0 43.0 1.1 28.16 4.8 35 x 35 x 2.5 53.6 34.8 SHS 2.2-4 ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x.3 58.2 of AS 4100) 79.25 1.8 SHS 2.4 45.9 58.8 19.4 19.4 70.0 2.0 28.18 8.8 91.3 12.14 ∞ ∞ 21400 18000 5340 4510 2370 2000 1330 1130 854 721 593 501 436 368 334 282 214 180 148 125 109 92.6 22.0 0.5 72.3 SHS 8.3 SHS 2.1 24. [ BLANK ] DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D7-31 . ........2...................Deflection Limited .................With Full Lateral Restraint .............3-1 to D8.................4 ADDITIONAL DESIGN CHECKS ...2.................................................................. D8-34 TABLES D8........................................................ D8-22 TABLES D8............................Based on Shear Moment Capacity .......................................................................... Two Span............Deflection Limited .....2-4 Maximum Design Loads for Continuous.................................1...............................2 METHOD ...... Simply Supported Beams ........... D8-2 D8....2 W *L2 .................1 SCOPE ............................................................................................. Fixed End Beams .......2.................................................................. D8-6 D8.....1 Strength Limit State Design .......................... D8-6 TABLES TABLES D8....Based on Design Moment Capacity ....................1...........With Full Lateral Restraint .... D8-2 D8...........2........................ D8-2 D8........... D8-10 TABLES D8..................................................................... D8-5 D8.... D8-46 NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES............................................................................6 EXAMPLES ............ D8-4 D8...................5 OTHER LOAD CONDITIONS ...........................4-4 Maximum Design Loads for Cantilever Beams ............................. D8-5 D8.......................With Full Lateral Restraint ............1-1 to D8. Simply Supported Beams .............................................1-4 Maximum Design Loads for Single Span................................. D8-3 D8....................3 BEAMS WITH FULL LATERAL RESTRAINT ......4-1 to D8.........2 Serviceability Limit State Design .............................. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-1 ..........1 W *L1 ....... D8-3 D8........PART 8 MAXIMUM DESIGN LOADS FOR BEAMS 8 PAGE D8......................................................................................................Deflection Limited ..........With Full Lateral Restraint ........3-4 Maximum Design Loads for Single Span.......................Deflection Limited ..........2-1 to D8......................................................... 1-1 (A)) for the strength limit state • the (B) series (e. D8. fixed end beams Tables D8.2.2 METHOD The maximum design load is the lesser of the strength limit state design load given in the (A) series tables determined in accordance with Section D8.6 φ Otherwise reference should be made to Section D8. two span. φVv or if M * < 0.2.1 Strength Limit State Design The value of the maximum design load (W *L) given in the tables is the lesser of the maximum design load (W *L1) associated with the design section moment capacity (φMsx) and the maximum design load (W*L2) associated with the design shear capacity (φVvx).2.1-1 (B)) for the serviceability limit state For each group of tables. the (A) series tables are immediately followed by the (B) series tables. Note: D8-2 the interaction of shear and bending has not been included in the tables.1 SCOPE PART 8 gives values of maximum design loads distributed uniformly along the length of the beam with full lateral restraint for different beam support conditions.BEAM SELF WEIGHT: For all tables. D8.g.1 for the case of a simply supported beam. the self weight of the beam has NOT been deducted.3 for single span. NOTE . W *L2 ] The method is illustrated in Section D8.1.4 for cantilever beams Each group of tables is separated into two series: • the (A) series (e. [W *L1 . DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .2. simply supported beams Tables D8. and the serviceability limit state design load given in the (B) series tables determined and adjusted if necessary in accordance with Section D8.1 for single span. Table D8. W *L = Min.2 for continuous. If V * < 0.PART 8 MAXIMUM DESIGN LOADS FOR BEAMS D8. Tables D8.2.1.4. simply supported beams Tables D8.75 φMs then no interaction check is necessary.g. Table D8. The design load (W * = total design load) is assumed to be uniformly distributed and applied through the shear centre in the direction of the principal y-axis. The designer must include the self weight as part of the dead load when determining the maximum design load W *L or W *S. 2.9 (Table 3. For a simply supported beam subject to uniformly distributed loading. the maximum shear force (Vmax) is given by: Vmax = where W = W 2 total uniformly distributed load Therefore. substituting the design shear capacity (φVvx) for the maximum shear force (Vmax) and rearranging the equation gives: Maximum Design Load (W *L2) based on the design bending capacity of the beam bending about the x-axis W *L2 = 2φVvx The equations for the other support conditions are given in Table D8. the design section moment capacity (φMsx) is used.2 W * L2 .4 of AS 4100) effective section modulus (see Section D1. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-3 . substituting the design moment capacity (φMsx) for beams with full lateral restraint for the maximum bending moment (Mmax) and rearranging the equation gives: Maximum Design Load (W *L1) based on the design moment capacity of the beam bending about the x-axis 8φM sx W * L1 = L The equations for the other support conditions are given in Table D8.2) yield stress used in design For a simply supported beam subject to uniformly distributed loading.1 W * L1 .2.Based on Design Shear Capacity (simply supported beam) The design shear capacity (φVvx) is given in Section D4.2.1.D 8.1.3. the maximum bending moment (Mmax) is given by: M max = WL 8 where W = total uniformly distributed load L = length of the beam Therefore. D 8.2.Based on Design Moment Capacity (simply supported beam) For a beam with full lateral restraint. which for bending about the x-axis is given by: φMsx = φ Zex fy where φ = Zex = fy = 0.2.2 of the Tables. g.2 Serviceability Limit State Design The value of serviceability load (W *S) given in the tables is the maximum design load which will achieve a calculated total elastic deflection of L/250 (where L is the span of the beam). For deflection limits other than span/250. the value of W *S2 for the alternative deflection limit may be calculated from the tabulated value W *S1 using the formula: W * S2 = where D = 250W *S1 D the denominator value in the deflection limit incorporating the span term (e. substituting ∆max = L/250 and rearranging the equation gives the serviceability limit state maximum design load (W *S): W *S = D8-4 384El x 1250 L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .based on a Deflection Limit of L/250 (simply supported beam) For a simply supported beam subject to a uniformly distributed load. D = 500 for the L/500 deflection limit) For sections with a high shape factor (ratio of plastic moment to the yield moment of a beam) it may be possible for the maximum stresses in a member to reach the yield stress at serviceability loads without exceeding the strength limit state. However it has been found that for the hollow sections contained in these tables.2.D8. using the load factors in AS 1170 and AS 4100. This will invalidate the deflection calculations based on the assumption of elastic behaviour. the maximum deflection (∆max) is given by : 5WL3 ∆ max = 384 El x where W = total uniformly distributed load L = length of span E 200 x 103 MPa = /x = second moment of area about the major principal x-axis Therefore. the strength limit state will always be exceeded before first yield occurs. Therefore values of the load at which first yield occurs have not been included in the tables. W *S1 . The method is illustrated below for the case of a simply supported beam. DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-5 . or b) full or partial restraint provided at sufficient locations along the beam.3-4 may be used to assist with any such assessment.3.4 a) ADDITIONAL DESIGN CHECKS Interaction of Shear and Bending Where large shear forces are coincident with large bending moments the interaction of shear and bending may govern the design. The distance between these locations is termed the segment length and the maximum values of segment length to ensure full lateral restraint are tabulated for each section in the (A) series tables under the column “FLR”. These values of maximum segment length are determined in accordance with the method outlined in section D4.3 BEAMS WITH FULL LATERAL RESTRAINT Full lateral restraint may be achieved for a member by: a) continuous lateral restraint. D8.6 φVv) or if M * > 0. b) Compressive Bearing Action Where loads are transmitted into the webs at supports or at load points.1. FLR values are not given for SHS as they are not susceptible to lateral buckling. Tables D4.3-1 to D4.3 of these tables.2: Summary of Equations for Maximum Design Loads D8.75 φMs. the capacity of the web to resist such forces should be checked in accordance with Section D4.Table D8. However for the case of simply supported beams with uniformly distributed loads interaction of shear and bending will not be critical. An interaction check needs to be done if the design shear is greater than 60% of the design shear capacity (V * > 0. 5 OTHER LOAD CONDITIONS The values given in Tables D8.5. 4) Check that the section selected in 2) has an adequate maximum design load (W *L2) associated with the design shear capacity to resist W *EV.7Q (short term live load) = 8. 7) Check that the section selected in 4) has an adequate maximum serviceability design load (W *S1) to resist W *ES. A check is not necessary if the design shear is less than 60% of the design shear capacity (V * < 0. using the equivalent uniform design loads given in Table D8.D8.5 kN Serviceability limit state W *S = G + 0.5Q = 15.1-1(A) to D8. the information presented in these tables may be used for other loading situations for beams with full lateral restraint and αm = 1. The total deflection of the beam under serviceability loads must not exceed L/250.2. If not. 5) Check shear and bending interaction in accordance with Section D4. D8. simply supported beams subject to uniformly distributed loads.5. 6) Calculate equivalent uniformly distributed serviceability load (W *ES) using Table D8. select a new section size which can resist W *EV. Solution: (a) Calculation of maximum design loads: Strength limit state W *L = 1.5.1-1 to D8.5 and in conjunction with the following procedure: 1) Calculate equivalent uniformly distributed maximum design load for moment (W *EM) using Table D8.3. 2) Based on W *EM select a section with an adequate maximum design load (W *L1) associated with the design shear capacity from Tables D8.6 φVv) or if M * < 0. 3) Calculate equivalent uniformly distributed maximum design load for shear (W *EV) using Table D8. However.25G + 1. select a new section size which can resist W *ES.0.90 kN D8-6 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . If not.6 1.75 φMs. EXAMPLES A simply supported beam of 4 metres is subjected to uniformly distributed loads of: G (Dead Load) = 4 kN (total load) Q (Live Load) = 7 kN (total load) The beam has continuous lateral support.1-4(A).1-4 are for single span. 5: Table of Equivalent Uniformly Distributed Loads DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-7 .Table D8. based on mass. a 100 x 50 x 2. select 150 x 50 x 2.5 = 5.4 kN (> 15.0 kN and 2. 2.0 + 1.5 x 2.5 x 2. the maximum design loads are: W *L1 = 18.5 kN) Therefore.5) = 10 kN Based on W *EM select the least mass section with an adequate maximum design load (W *L1) based on design moment capacity. The alternative sections which satisfy the above strength and serviceability limit states are listed below: 150 x 50 x 2. Solution: (i) Calculate equivalent uniformly distributed maximum design load for moment (W *EM) From Table D8.0 kN D8-8 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 . From Table D8.0 DuraGal RHS Grade C450L0 100 x 100 x 5.0 metres with full lateral restraint.90 kN) The most efficient and practical hollow sections for this application are RHS and SHS.5 the equivalent uniform moment load is: W *EV = P = 1.5 DuraGal RHS Grade C450L0.Select a section with the least mass from the Tables such that the maximum design loads W *L1 and W *L2 are greater than or equal to WL.2 kN).1-1(1)(A). Serviceability Limit State .53 kg/m mass per metre = 8.0 DuraGal SHS Grade C450L0 mass per metre = 7.5 DuraGal RHS Grade C450L0. The beam is subjected to nominal central dead and short term live loads of 1. From Table D8.76 kN (> 8. It can be seen from Table D8. a 100 x 50 x 2.5 DuraGal RHS Grade C450L0 125 x 75 x 3.96 kg/m mass per metre = 14. Design a suitable DuraGal RHS in Grade C450L0 steel with no limit on deflection.25 x 1.25 x 1. (iii) Calculate equivalent uniformly distributed maximum design load for shear (W *EV).4 kN W *L2 = 220 kN ∴ W *L = 18.(b) Use of the Tables: Strength Limit State .5 DuraGal RHS Grade C450L0.5 DuraGal RHS Grade C450L0 has adequate maximum design load (W *L1 = 12.5 (W *EM) associated with the central dead and live loads is: W *EM (ii) = 2P = 2 (1.5 DuraGal RHS has adequate strength.5 kN respectively.1-1(1)(B) it can be seen that for a 150 x 50 x 2. the serviceability load is: W *S = 9.2kg/m Therefore.0 + 1.From Table D8. A beam which is simply supported has a span of 6.1-1(2)(A) that for a 100 x 50 x 2. From Table D8.5 DuraGal RHS.10 kN) to resist W *ES. [2] “Steel Structures .0 DuraGal RHS is the least mass section with adequate maximum serviceability design load (W *S1 = 5. Standards Australia.0 DuraGal Grade C450L0 section. 1990.(iv) Check that the section selected in Step 2 has an adequate maximum design load W *L2 based on shear capacity.1-1(1)(A).6 x 110 66 kN 5.2. Bridge... The calculation should be repeated to include self weight if significant.4 kN From Table D8.6 φVv = = = > 2 φVv 220 2 110 kN 0.1-1(1)(A). From Table D8. R. a 100 x 50 x 2. M.0 + 0. From Table D8.A. (vi) Calculate equivalent uniformly distributed serviceability load (W *ES). “Worked Examples for Steel Members”. Australian Institute of Steel Construction. ∴ Adopt a 150 x 50 x 3..5 DuraGal RHS has adequate maximum design load (W *L2 = 220 kN). DCTDHS/06 MARCH 2002 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-9 . 1990.1-1(1)(B). Note: In this example the self weight of the beam is not taken into consideration.3 is necessary. W *L2 = φV v = 0.2.0 kN (V * = W *EV) Therefore no shear and bending interaction check in accordance with Section D4.3 is necessary.Q. (v) Check if a shear and bending interaction check in accordance with Section D4. References: [1] Bradford.5 W *ES for the central dead and live loads is: W *ES = (vii) 8P 5 = 8 (1.Commentary (Supplement to AS 4100-1990)”.5) 5 = 4.7 x 2.S. Trahair. W *L2 = 220 kN for a 100 x 50 x 2. a 150 x 50 x 3. N. 7 19.6 9.5 25.31 22. DCTDHS/06 MARCH 2002 2.53 6.35 6.6 100 x 50 x 6.5 25.92 8.1 54.2 11.4 33.6 16.8 23.18 19. 5.4 73.6 18.1 30.0 1.1 42.33 7.7 32.4 17.89 21.53 6.96 7.7 12.5 34.0 34.7 13.5 21.3 13.3 70.93 27.5 (See Section D4.3 9.9 12.5 8.36 3.0 6.4 17.32 749 633 514 391 328 264 6.5 47.12 4.2 10.5 12.8 12.8 24.0 RHS 5.92 3.8 9.2 22. FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 0.60 8.7 19.0 3.55 4.66 6.3 23.9 10.54 3.60 6.3 14.04 13.91 8.65 4.1 15.37 5.73 6.0 2.8 8.1 11.6 8.2 27.32 24.2 38.1 7.64 5.5 RHS 2.83 6.7 16.1 10.9 10.3 10.0 RHS 5.5 17.5 39.9 36.6 8.4 23.4 12.3 28.1.0 RHS 4.93 6.5 16.41 10.68 5. 4.7 55.16 6.1 51.7 9.1-1(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t mm mm mm kg/m 1.5 36.3 17.56 4.6 15.1 42.6 19.2 58.2 42.19 8.6 RHS 12.7 11.7 35.4 14.6 12.2 49.3 12.0 42.6 47.4 56.0 13.5 16.54 22.1 14.0 4.0 kN m 150 x 50 x 6.3 98.3 14.0 33.0 RHS 2.5 20.1 45. 3.20 7.72 7.1 32.64 147 129 108 97.0 86.2 21.49 7.7 14.38 6.4 29.37 11.0 7.4 13.7 28.3 27.43 5.0 14.4 17.9 1.7 29.96 7.0 RHS 4.3 23.64 7.8 9.6 75.3 25.77 18.0 RHS 16.8 32.8 9.70 8.3 12.2 11.3 8.4 16.5 30.5 15.8 17.5 RHS 2.5 8.4 15.03 8.0 12.5 20.4 11.46 6.7 14.8 68.0 RHS 2.0 11.2 36.1 39.1 50.6 18.1 10.4 85.22 8.35 5.5 43.0 30.436 (π2 E Iy G J / M2SX)0.5 13.2 14.5 24.0 10.70 21.3 32.89 489 417 341 301 261 220 178 143 7.2 91.50 3.8 23.05 16.2 9.0 41.5 16.8 37.0 RHS 3.0 RHS 5.5 51.8 13.82 7.0 RHS 4.8 8.4 39.3 15.1 11.0 8 φ Ms/L 2 φ Vv .1 18.2 19.2 16.07 273 236 195 151 113 80.3 28.D8-10 TABLE D8.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.66 6.7 27.5 RHS 3.4 25.8 9.04 5.21 2.0 40.4 136 118 97.0 9.6 21.9 53.6 36.6 65.9 10.8 13.49 14.8 20.2 13.07 295 256 212 167 141 103 148 128 106 83.16 8.5 26.17 5.2 21.2 7.1 20.0 78.8 63.90 4.14 8.3 12.2 73.1 48.1 13.9 11.3 37.8 28.53 6.3 26.0 8.6 21.5 64.7 11.4 73.0 16.7 10.1 12.04 24.1 11.8 21.11 10.0 18.5 59.08 24.5 RHS 2.0 18.8 13.60 5.85 6.0 RHS 3.0 RHS 3.1 29.02 8.8 8.4 54.7 9.20 6.5 15.9 48.0 RHS 2.48 6.1 24.3 8.67 12.8 10.6 8.6 59.8 7.8 21.5 9.58 125 x 75 x 6.1 10.84 8.0 10.74 634 538 438 334 281 226 13.5 18.6 35.73 21.4 18.2 20.7 10.2 70.25 4.08 7.1 29.9 26.1 18. 6.7 14.3 40.18 7.9 31.3 26.0 5.5 49.0 RHS 16.0 10.9 21.3 15.0 11.0 RHS 1.5 19.0 Notes: 1.6 19.7 13.7 16.8 14. 54 6.883 0.0 12.541 0.16 2.30 1.52 1.28 1.9 28.2 11.885 1.0 150 x 50 x 6.0 RHS 1.273 0.0 RHS 4.5 30.387 0.5 9.10 6.5 20.1-1(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 1.0 4.78 1.0 7.34 5.729 0.22 4.06 7.719 1.62 3.32 1.4 24.97 12.7 25.10 4.6 65.0 RHS 4.9 9.84 3.53 6.939 0.9 20.334 0.26 3.26 1.27 1.14 1.54 4.52 2.0 9.14 0.454 0.7 14.0 RHS 16.0 8.11 3.3 8.9 46.24 1.30 1.6 8.286 0.26 1.569 0.0 RHS 5.991 0.0 RHS 3.47 1.14 0.0 RHS 5.769 1.32 1.05 2.37 2.0 10.92 1.3 31.479 0.761 0.64 105 93.50 3.0 11.14 3.7 14.08 0.528 100 x 50 x 6.647 0.11 1.84 1.720 0.83 2.2 8.19 2.5 RHS 2.27 6.61 2.20 3.0 3.74 3.803 0.60 5.868 0.311 0.98 1.55 1.504 0.49 7.84 1.6 8.56 3.4 56.7 26.7 9.47 10.0 RHS 3.856 1.9 80.0 RHS 2.14 7.429 0.21 4.57 3.55 1.692 0.92 2.44 1.0 10.59 1.0 11.53 6.64 1.56 1.28 2.51 1.654 0.0 RHS 4.4 10.4 45.389 0.5 16.223 0.86 4.5 RHS 2.87 2.4 17.881 0.93 2.558 0.97 5.3 23.0 5.99 3.24 1. Serviceabilty Load W *S1 = 384EI / [5(250L2)] D8-11 .6 RHS 12.90 1.88 1.92 8.4 14.95 7.235 0.02 1.29 1.23 1.76 7.39 1.60 4.59 1.09 3.28 2.622 0.9 55.0 11.652 0.651 125 x 75 x 6.56 4.DCTDHS/06 MARCH 2002 TABLE D8.68 3.34 3.63 7.0 14.85 1.0 RHS 3.59 2.600 0.73 2.38 5.957 0.82 1.83 1.05 0.0 6.3 11.8 16.08 4.5 9.4 8.1 18.50 2.56 5.05 2.33 1.83 3.57 4.75 3.02 4.0 46.88 2.07 256 224 188 149 127 104 63.21 2.35 4.84 1.7 10.12 4.25 1.49 1.3 14.0 RHS 5.33 7.475 0.7 68.87 5.776 0.555 0.10 8.463 0.588 1.27 1.370 0.23 5.34 6.9 39.56 2.940 0.461 0.381 0.3 72.30 1.726 0.876 0.11 2.5 RHS 2.41 11.465 1.02 0.0 31.23 2.924 0.664 0.536 0.377 0.58 6.0 2.88 5.16 0.3 25.96 7.64 1.2 57.807 0.6 14.33 1.09 0.5 20.07 311 273 230 183 156 128 77.57 1.0 13.1 37.90 2.30 1.896 0.62 2.320 0.754 1.560 0.61 1.18 6.0 RHS 16.332 0.192 Note: 1.16 1.53 6.93 1.24 5.0 14.11 0.2 11.18 7.04 2.51 2.50 2.21 5.0 RHS 2.13 1.262 0.99 3.4 17.93 6.04 0.76 2.1 16.57 2.48 1.1 11.751 0.89 1.36 1.2 19.96 7.05 2.59 2.613 1.56 1.50 5.796 0.05 0.936 0.410 0.0 RHS 2.9 37.17 0.1 14.5 RHS 3.9 34. 4 49.91 6.1 26.9 10.0 19.4 14.33 5.0 4.15 9.5 36.79 2.3 8.13 5.90 4.45 7.2 43.3 27.6 30.4 23.98 29.0 RHS 1.2 13.3 37.0 RHS 2.4 60.0 RHS 2.8 24.5 54.68 5.45 2.76 2.1.60 3.88 6.3 10.4 32.62 8.66 6.75 4.9 15.0 RHS 2.0 RHS 5.5 RHS 2.67 8.22 3.91 6.9 80.0 10.72 2.0 RHS 4.7 23.20 3.8 12.75 38.71 2.6 RHS 12.5 21.5 16.19 9.4 73.21 212 165 139 113 5.0 42.77 4.81 5.4 11.35 15.05 9.25 1.62 5.1 32.8 9.3 3.3 10.90 122 104 85.7 23.D8-12 TABLE D8.6 RHS 9.9 85.0 71.6 15.44 2.54 6.3 19.0 6.77 2.9 72.36 9.31 7.4 12.91 50 x 25 x 3.1 32.3 38.1 24.03 8.83 10.4 47.5 40.6 77.4 2.4 21.76 2.3 45.9 73.50 2.35 6.6 22.71 7.5 RHS 3. 5.8 44.2 17.26 4.27 3.7 57.1 68.9 27.9 55.38 4.2 61.5 19.1 48.2 32.57 4.08 6.4 22.4 12.7 20.8 18.1 21.0 RHS 4.8 25.83 2.73 5.0 21.07 2.2 16.39 4.69 121 103 84.89 6.91 4.14 8.1 39.61 10.05 7.52 7.8 45.60 5.6 20.0 33.6 28.8 8.3 14.80 3.42 12.5 43.07 2.6 17.99 1.6 19.36 7.2 11.5 57.60 2.17 2.1 13.2 16.01 182 161 137 111 94.92 26.43 4.0 2.26 3.75 7.5 4.0 4.31 2.4 47.92 5.9 29.5 17.9 14.92 2.6 RHS 2.90 3.4 17.7 29.5 RHS 2.5 RHS 2.9 = 1.4 15.35 7.52 5.5 25.68 158 128 104 3.1 9.2 14.5 RHS 2.7 90.0 3.6 RHS 3.8 51.4 16.3 11.8 30.4 118 103 86.5 15.5 10.13 11.5 43.9 9.46 7.89 mm mm mm DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 Notes: 1.6 26.75 2.5 24.84 2.0 16.5 29.90 7.6 69.7 8.85 4.3 34.8 8.5 64.0 RHS 1.9 36.3 28.7 23.2 26.1 58.6 12.1 13.56 4.81 5.80 8.2 69.6 16.4 28.6 RHS 3.6 16.7 68.0 9.32 65 x 35 x 4.9 78.31 6.3 10.5 11.0 75 x 50 x 6.07 5.30 1.7 43.8 11. 2.2 36.3 97.95 18.76 5.87 4.95 3.7 18.436 (π2 E I y G J / M2SX)0.3 26.5 35.49 3.18 3.94 5.1 9.2 9.22 8.28 3.0 16.1-1(2)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness W * = Maximum Design Load based on Design Moment Capacity W * = Maximum Design Load based on Design Shear Capacity bending about x-axis Maximum Design Load W * is LESSER of W * and W * L1 L2 L Designation d b L1 L2 W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t 0.72 3.08 3.38 11.43 4.0 10.83 6.0 RHS 3.53 6.46 356 306 252 195 165 134 108 8.50 3.17 5.80 5.03 2.42 5.68 3.0 50.7 11.7 21.1 31.5 20.56 7.7 13.16 8.75 1.4 15.14 9.4 36.0 RHS 3.18 3.50 8.3 50.51 4.9 83.31 8.2 17.0 kN 100 x 50 x 6.9 35.0 1.1 18.4 9.5 (See Section D4.85 5.0 35.6 53.2 14.2 28.3 13.60 2.1 14.5 40.81 8.6 25.8 33.1 27.6 15.8 11.3 10.45 2.4 25.7 64.8 47.0 RHS 1.96 4.2 8.02 4.5 8.06 2.8 196 172 144 129 115 97.92 8.4 42.41 10.71 3.04 1.0 RHS 2. 6.8 30.6 76.65 22.3 26.69 6.60 7.6 19.9 8.7 32.0 75 x 25 x 2.8 15.5 13.3 10.38 65.0 8 φ Ms /L 2 φ Vv m . αs W*L1 W*L2 = = = 1.9 22.5 59.86 4.0 9.0 RHS 1.2 64.6 53.49 7.3 22.9 7.8 44.8 52.0 13.0 86.1 73.2 19.8 34.9 11.6 27.52 4.8 63.5 14.0 RHS 5.2 49.5 20.1 8.3 13.5 20.5 RHS 2.5 3.3 22.0 RHS 5.55 8.10 4.25 2.7 36.5 21.78 9.6 19.0 RHS 1.36 4.93 2.73 3.9 31.8 13.65 3.6 49. 3.0 23.14 3.0 16.9 22.8 24.64 5.7 10.7 21.42 1.5 0.97 7.23 7.4 32.2 21.7 14.5 18.1 13.12 6.3 12.7 17.98 4.2 53.2 13.93 86.7 30.8 15.13 5.2 13.0 40.5 55.15 6.5 RHS 2.3 27.2 8.2 27. FLR FLR φ αm kg/m = 0.64 294 258 216 194 173 147 118 80.5 17.6 16.5 5.27 6.17 6.69 20.7 11.2 12.4 29.0 39.21 7.3 13.8 72.7 9.08 24.3 34.1 18.9 147 129 108 97.9 15.34 2.0 46.25 3.73 489 417 341 301 261 220 178 143 7.5 42.3 38.93 9.0 36.6 61.0 RHS 3.7 20.4 11.48 5.1 21.2 24.0 RHS 2.60 6.24 5.53 9.32 9.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.07 50 x 20 x 3.62 2.6 18.58 3.63 33.19 8.7 24.7 11.15 1.3 73.54 3.3 17.5 121 108 91.6 24.4 54.8 8.5 1.2 58.14 12.0 33.5 17.54 3.57 6.91 5.42 4.2 12.22 10.00 5.8 21.4 53.35 4.74 8. DCTDHS/06 MARCH 2002 TABLE D8.1-1(2)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-13 kg/m 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64 420 375 321 290 262 224 184 151 187 167 143 129 116 99.6 81.9 66.9 105 93.9 80.3 72.6 65.4 56.0 46.1 37.7 67.2 60.1 51.4 46.4 41.9 35.9 29.5 24.1 46.7 41.7 35.7 32.3 29.1 24.9 20.5 16.7 34.3 30.6 26.2 23.7 21.4 18.3 15.0 12.3 26.3 23.5 20.1 18.1 16.4 14.0 11.5 9.41 16.8 15.0 12.8 11.6 10.5 8.97 7.37 6.03 11.7 10.4 8.92 8.06 7.27 6.23 5.12 4.18 8.57 7.66 6.55 5.92 5.34 4.57 3.76 3.07 6.56 5.87 5.02 4.54 4.09 3.50 2.88 2.35 5.19 4.64 3.96 3.58 3.23 2.77 2.27 1.86 4.20 3.75 3.21 2.90 2.62 2.24 1.84 1.51 2.92 2.61 2.23 2.02 1.82 1.56 1.28 1.05 75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 9.67 8.35 6.92 5.42 4.58 3.72 3.01 197 178 155 128 110 91.3 75.0 87.4 79.3 68.8 57.0 49.1 40.6 33.3 49.1 44.6 38.7 32.1 27.6 22.8 18.7 31.5 28.5 24.8 20.5 17.7 14.6 12.0 21.8 19.8 17.2 14.2 12.3 10.1 8.33 16.0 14.6 12.6 10.5 9.02 7.46 6.12 12.3 11.2 9.68 8.01 6.90 5.71 4.69 7.86 7.14 6.19 5.13 4.42 3.65 3.00 5.46 4.96 4.30 3.56 3.07 2.54 2.08 4.01 3.64 3.16 2.62 2.25 1.86 1.53 3.07 2.79 2.42 2.00 1.73 1.43 1.17 2.43 2.20 1.91 1.58 1.36 1.13 0.926 1.97 1.78 1.55 1.28 1.10 0.913 0.750 1.37 1.24 1.08 0.890 0.767 0.634 0.521 75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS 3.60 2.93 2.38 70.1 58.6 48.5 31.1 26.0 21.6 17.5 14.6 12.1 11.2 9.37 7.76 7.79 6.51 5.39 5.72 4.78 3.96 4.38 3.66 3.03 2.80 2.34 1.94 1.95 1.63 1.35 1.43 1.20 0.990 1.10 0.915 0.758 0.865 0.723 0.599 0.701 0.586 0.485 0.487 0.407 0.337 65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 5.35 4.25 3.60 2.93 80.7 69.1 60.1 50.1 35.8 30.7 26.7 22.3 20.2 17.3 15.0 12.5 12.9 11.1 9.61 8.02 8.96 7.67 6.68 5.57 6.58 5.64 4.90 4.09 5.04 4.32 3.76 3.13 3.23 2.76 2.40 2.01 2.24 1.92 1.67 1.39 1.65 1.41 1.23 1.02 1.26 1.08 0.939 0.783 0.996 0.853 0.742 0.619 0.807 0.691 0.601 0.501 0.560 0.480 0.417 0.348 50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 3.07 2.62 2.15 1.75 27.5 24.3 20.6 17.2 12.2 10.8 9.16 7.67 6.86 6.07 5.15 4.31 4.39 3.89 3.30 2.76 3.05 2.70 2.29 1.92 2.24 1.98 1.68 1.41 1.72 1.52 1.29 1.08 1.10 0.972 0.824 0.690 0.763 0.675 0.572 0.479 0.560 0.496 0.420 0.352 0.429 0.380 0.322 0.269 0.339 0.300 0.254 0.213 0.275 0.243 0.206 0.172 0.191 0.169 0.143 0.120 50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS 2.83 2.42 1.99 1.63 23.4 20.8 17.8 14.9 10.4 9.26 7.90 6.64 5.84 5.21 4.44 3.74 3.74 3.33 2.84 2.39 2.60 2.31 1.97 1.66 1.91 1.70 1.45 1.22 1.46 1.30 1.11 0.934 0.935 0.833 0.711 0.598 0.649 0.579 0.494 0.415 0.477 0.425 0.363 0.305 0.365 0.325 0.278 0.234 0.289 0.257 0.219 0.184 0.234 0.208 0.178 0.149 0.162 0.145 0.123 0.104 mm mm mm Note: 1. Serviceabilty Load W *S1 = 384EI / [5(250L2)] D8-14 TABLE D8.1-2(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t kg/m 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 kN m 125 x 75 x 2.8 RHS 2.3 RHS 8.39 6.95 271 196 181 131 136 98.0 108 78.4 90.4 65.3 77.4 56.0 67.8 49.0 54.2 39.2 45.2 32.7 38.7 28.0 33.9 24.5 30.1 21.8 27.1 19.6 22.6 16.3 313 259 14.2 16.4 100 x 50 x 2.8 RHS 2.3 RHS 6.19 5.14 163 136 108 90.8 81.3 68.1 65.0 54.5 54.2 45.4 46.4 38.9 40.6 34.1 32.5 27.3 27.1 22.7 23.2 19.5 20.3 17.0 18.1 15.1 16.3 13.6 13.5 11.4 245 203 8.18 8.24 75 x 50 x 2.8 RHS 2.3 RHS 5.09 4.24 104 87.8 69.6 58.6 52.2 43.9 41.7 35.1 34.8 29.3 29.8 25.1 26.1 22.0 20.9 17.6 17.4 14.6 14.9 12.5 13.0 11.0 11.6 9.76 10.4 8.78 8.70 7.32 183 152 9.16 9.21 65 x 35 x 2.8 RHS 2.3 RHS 3.99 3.34 67.3 57.1 44.9 38.0 33.7 28.5 26.9 22.8 22.4 19.0 19.2 16.3 16.8 14.3 13.5 11.4 11.2 9.51 9.62 8.15 8.42 7.13 7.48 6.34 6.73 5.71 5.61 4.76 155 129 5.82 5.88 50 x 25 x 2.8 RHS 2.3 RHS 2.89 2.44 36.1 31.0 24.1 20.6 18.0 15.5 14.4 12.4 12.0 10.3 10.3 8.85 9.02 7.74 7.22 6.19 6.02 5.16 5.16 4.42 4.51 3.87 4.01 3.44 3.61 3.10 3.01 2.58 115 96.7 3.93 3.99 50 x 20 x 2.8 RHS 2.3 RHS 2.67 2.25 31.8 27.4 21.2 18.3 15.9 13.7 12.7 11.0 10.6 9.14 9.09 7.83 7.95 6.85 6.36 5.48 5.30 4.57 4.54 3.92 3.98 3.43 3.53 3.05 3.18 2.74 2.65 2.28 114 95.4 2.74 2.80 mm mm mm Notes: 1. 2. 3. 4. 5. 6. FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 0.436 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 2 φ Vv DCTDHS/06 MARCH 2002 DCTDHS/06 MARCH 2002 TABLE D8.1-2(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 125 x 75 x 2.8 RHS 2.3 RHS 8.39 6.95 562 471 250 209 140 118 89.9 75.3 62.4 52.3 45.8 38.4 35.1 29.4 22.5 18.8 15.6 13.1 11.5 9.61 8.77 7.35 6.93 5.81 5.62 4.71 3.90 3.27 100 x 50 x 2.8 RHS 2.3 RHS 6.19 5.14 247 208 110 92.7 61.7 52.1 39.5 33.4 27.4 23.2 20.2 17.0 15.4 13.0 75 x 50 x 2.8 RHS 2.3 RHS 5.09 4.24 121 103 53.9 45.8 30.3 25.7 19.4 16.5 13.5 11.4 65 x 35 x 2.8 RHS 2.3 RHS 3.99 3.34 65.6 56.2 29.2 25.0 16.4 14.1 10.5 9.00 50 x 25 x 2.8 RHS 2.3 RHS 2.89 2.44 26.3 22.9 11.7 10.2 6.56 5.72 50 x 20 x 2.8 RHS 2.3 RHS 2.67 2.25 22.4 19.7 5.60 4.92 Note: 1. 9.96 8.74 Serviceabilty Load W *S1 = 384EI / [5(250L2)] 9.88 8.34 6.86 5.79 5.04 4.25 3.86 3.26 3.05 2.57 2.47 2.08 1.71 1.45 9.90 8.41 7.58 6.44 4.85 4.12 3.37 2.86 2.48 2.10 1.89 1.61 1.50 1.27 1.21 1.03 0.842 0.715 7.29 6.25 5.35 4.59 4.10 3.51 2.62 2.25 1.82 1.56 1.34 1.15 1.02 0.878 0.810 0.694 0.656 0.562 0.455 0.390 4.20 3.66 2.92 2.54 2.14 1.87 1.64 1.43 1.05 0.915 0.729 0.636 0.536 0.467 0.410 0.358 0.324 0.283 0.263 0.229 0.182 0.159 3.59 3.15 2.49 2.19 1.83 1.61 1.40 1.23 0.897 0.787 0.623 0.546 0.458 0.401 0.350 0.307 0.277 0.243 0.224 0.197 0.156 0.137 D8-15 56 3.32 7.5 32.9 39.1 119 103 84.0 8.70 12.2 33.0 7.1 11.02 363 312 257 228 199 168 136 Notes: DCTDHS/06 MARCH 2002 1.99 4.1 31.5 53.0 2.2 10.63 7.64 13.0 14.1 8.0 7.07 6.7 10.2 4.3 8.49 4. 4.0 SHS 2. 3.7 59.54 7.8 79.94 3.08 7.5 91.1 27.92 19.6 11.6 116 159 183 57.1 60.4 13.70 11.31 5.4 10.25 7.9 1.0 61.99 6.96 2.3 23.3 15.54 5.32 7.2 13.0 8 φ Ms/L 2 φ Vv .53 3.6 51.6 8.2 14.47 20.5 45.6 19.8 18.1-3(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 100 x 100 x 6.7 16.4 14.4 8.54 5.1 30.7 13.6 24.9 17.0 8.5 14.3 4.98 10.9 9.0 9.25 6.99 4.9 22.65 507 432 353 271 228 184 95.3 10.7 26.90 5.01 17.7 5.60 2.6 21.93 5.0 39.3 30.20 7.59 6.30 29.7 21.42 18.8 36.27 3.5 39.8 23.19 5.2 8.1 31.02 3.3 24.4 10.29 13.2 13.1 275 379 443 75 x 75 x 6.2 54.53 9.6 13.3 62.95 6.3 26.5 82.9 9.5 19.5 3.91 8.8 41.6 13.58 5.2 42.0 SHS 11.3 21.5 22.1 22.0 18.3 15.0 kN 238 206 168 120 91.5 SHS 14.04 6.5 SHS 7.3 13.4 11.39 1.1 45.26 8.9 20.20 7.55 3.0 8.5 13.14 3. 2.5 16.05 3.79 5.8 10.9 31.23 11.99 6.1 15.5 27.6 11.8 12.63 6.8 20.5 22.1 7.7 20.0 10.5 SHS 2.0 5.01 6.3 7.0 SHS 4.4 14.49 3.0 9.0 14.0 20.0 SHS 8.8 17.89 6.05 15.0 15.8 25.79 6.0 11.0 65.97 19.3 9.6 SHS 8.2 41. φ αm αs W *L1 W *L2 = = = = = 0.0 1.81 5.0 SHS 6.0 27.9 13.86 5.0 36.0 5.1 40.74 6.2 14.74 5.8 26.8 19.56 2.6 16.0 9.07 90 x 90 x 3.1 10.3 47.3 10.9 18.8 15.0 10.13 4.10 6.0 9.3 28.63 3.1 7.2 15.9 9.0 SHS 1.0 SHS 12.0 SHS 12.4 10.4 9.3 22.08 5.11 7.65 13.4 24.27 5.5 SHS 7.51 21.9 55.17 4.6 38.67 7.0 SHS 10.06 17.9 18.65 6.50 4.57 8.8 19.5 30.9 55.0 3.7 12.83 5.1 14.7 15.52 4.9 47.1 18.0 12.9 21.4 77.6 11.6 56.9 27.7 18.0 SHS 8.0 4.13 26.45 6.25 3.5 36.1 30.60 3.89 12.0 6.5 79.85 242 204 165 133 89 x 89 x 6.0 18.23 23.96 2.53 4.0 17.5 13.26 11.4 42.0 11.85 10.5 16.0 SHS 16.0 SHS 6.5 SHS 5.89 7.0 15.7 18.6 15.43 9.7 41.0 9.0 SHS 14.2 9.45 4.0 29.0 71.39 7.8 12.7 12.00 5.7 9.4 68.8 34. 5.50 124 109 91.8 45.99 8.53 2.6 3.0 13.9 12.9 9.9 8.8 12.6 24.7 38.06 5.0 SHS 9.0 13.98 15.5 18.1 7.D8-16 TABLE D8.1 28.34 5.15 8.3 16.7 34.4 11.94 4. 405 0.0 SHS 12.605 0.485 0.847 0.17 1.45 5.74 5.698 0.0 7.441 0.55 2.756 1.05 2.309 0.0 SHS 4.37 1.22 1.472 0.32 1.26 0.466 0.05 0.588 0.00 0.555 0.5 75.0 11.53 3.375 0.782 0.2 12.34 1.80 3.494 0.14 1.0 SHS 6.0 Serviceabilty Load W *S1 = 384EI / [5(250L2)] 12.89 4.6 12.36 1.76 1.6 9.877 0.5 19.0 4.13 0.770 0.965 0.431 0.81 3.667 0.312 0.440 0.78 2.364 0.30 2.78 3.45 1.383 mm mm mm kg/m 100 x 100 x 6.340 0.3 4.448 0.658 0.3 8.44 4.1 8.60 1.699 0.898 0.225 0.89 4.643 0.279 0.18 1.0 SHS 12.542 0.310 0.13 2.02 1.17 3.2 27.524 0.9 13.7 5.56 6.0 3.46 6.158 .445 89 x 89 x 6.5 SHS 5.4 111 126 21.908 1.0 5.39 78.54 2.0 9.543 0.10 0.0 9.551 0.765 0.0 1.02 5.70 1.0 187 163 137 109 92.57 2.67 2.49 3.09 0.669 0.60 2.184 0.6 3.773 0.862 1.260 0.76 7.321 0.1-3(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t 2.95 7.2 8.97 3.227 0.833 0.395 0.625 8.38 4.41 2.94 2.37 1.50 71.79 2.525 1.8 15.548 0.6 SHS D8-17 Note: 1.04 0.10 3.644 0.45 3.11 0.30 1.0 37.635 0.376 0.695 0.7 18.0 SHS 9.0 5.263 0.22 1.9 20.06 5.223 0.54 2.30 1.36 1.02 2.755 0.377 0.192 0.6 84.451 0.810 0.4 14.53 2.75 2.78 4.6 40.6 44.500 0.2 49.27 2.0 8.5 SHS 7.747 0.19 3.256 0.920 1.0 10.6 46.2 23.7 54.90 7.0 5.02 5.72 7.45 4.14 0.87 1.421 0.45 4.85 1.490 0. 1.1 18.262 0.0 SHS 2.56 2.56 75 x 75 x 6.7 13.96 2.51 1.35 1.646 0.5 SHS 2.933 1.8 34.DCTDHS/06 MARCH 2002 TABLE D8.41 6.0 SHS 14.951 0.04 0.1 10.04 1.568 0.28 6.38 12.323 0.6 11.53 5.33 2.765 0.549 0.853 0.35 3.215 0.2 66.22 1.878 0.543 0.379 0.92 2.48 4.966 0.992 0.05 6.925 0.0 SHS 1.80 5.7 10.17 1.386 0.11 1.952 0.01 6.0 6.340 0.363 0.54 1.35 3.546 0.96 1.52 1.2 11.76 1.250 0.69 7.0 SHS 8.85 2.40 11.51 1.463 0.0 SHS 11.1 27.89 1.5 54.674 0.399 0.39 3.0 SHS 6.8 31.368 0.0 SHS 16.644 0.53 3.11 0.290 0.899 0.306 0.6 16.844 1.11 1.688 0.07 90 x 90 x 3.5 SHS 7.0 13.24 1.0 17.711 0.69 1.463 0.324 0.89 3.586 0.2 4.5 3.5 SHS 14.1 15.18 4.18 2.63 1.06 2.783 0.45 1.0 SHS 10.823 0.0 44.09 3.07 4.589 0.7 31.36 1.74 1.97 1.0 SHS 8.43 7.447 0.72 2.1 63.633 1.70 3.0 14.24 1.51 1.13 0.277 0.94 4.98 1.58 1. 6 87.38 2.00 1.5 0.7 9.8 52.58 1.66 1.59 1. αm = 1.8 27.71 2.2 17.86 2.36 1.81 4.82 2.7 43.19 6.7 61.82 2.5 48.3 17.1 11.79 4.35 4.0 SHS 3.39 1.23 4.23 7.0 38.6 19.0 8.0 13.60 6.27 8.3 18.47 6.4 14.64 1.0 20.3 16.9 13.66 2.9 9.7 8.5 12.3 8.0 9.4 30.78 7.0 9.5 3.18 2.1 62.39 5.99 5.1 13.57 3.2 15.29 1.34 3.84 5.4 71.20 7.88 2.99 3.60 5.1 27.4 21.41 3.8 26.74 19.4 13.13 7.3 8.68 10.95 83.4 26.3 18.0 71.50 10.68 5.9 84.1 8.5 SHS 3.0 35.31 7.8 41.5 27.49 1.3 10.0 12.4 85.72 4.3 33.17 2.6 37.98 2.62 71.6 59.98 6.38 6.3 24.30 4.7 12.9 2.33 5.4 24.58 8.20 6. φ = 0.7 44.6 30.0 SHS 2.4 20.85 1.51 2.5 45.8 18.5 SHS 2.1 14.0 10.86 17.6 57.6 32.39 6.83 6.4 21.15 5.55 2.811 35.0 SHS 1.9 9.2 39.67 1.34 2.3 89.8 21.0 40.0 71.5 SHS 2.8 10.8 18.47 8.59 1.3 15.0 SHS 4.7 16.1 23.3 19.4 15.42 6.5 15.4 18.7 13.38 1.40 6.TABLE D8.24 124 109 91. αs = 1.1 56.6 52.8 49.19 1.5 44.5 SHS 2.2 26.9 55.2 59.667 0.1 16.08 6.0 27.76 5.55 4.8 22.38 1.8 15.5 29.27 9.2 10.79 1.925 0.00 2.65 5.5 14.22 1.9 11.6 SHS 50 x 50 x 5.5 SHS 2.98 3.2 15.08 1.0 69.2 12.2 10.5 45.39 2.85 4.04 2.4 11.96 5.6 178 158 133 107 88.99 1.2 14.70 1.8 13.63 1.3 22.1 10.9 41.0 SHS 3.9 13.68 1.405 kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.8 41.93 7.2 54. W *L2 = 2 φ Vv 4.22 2.99 2.74 2.57 14.8 43.0 SHS 1.41 4.8 11.1 53.05 9.75 2.0 SHS 4.53 7.54 5.2 21.0 13.6 SHS 40 x 40 x 4.4 11.01 4.29 3.2 40.540 5.3 18.4 20.0 SHS 5.14 0.3 10.8 12.60 0.8 11.46 3.1 15.11 0.33 0.68 2.4 26.38 2.7 35.2 15.53 7.14 8.0 SHS 1.0 24.6 63.890 0.3 17.01 1.0 SHS 3.86 2.4 52.9 192 161 127 108 88.95 7.36 4.60 2.0 SHS 2.75 7.8 28.8 12.9 17.00 0.5 44.39 62.0 59.2 13.0 7.93 2.77 4.42 3.9 20.3 11.69 7.6 36.23 5.5 16.9 30.4 10.5 50.1 29.4 23.54 8.1 32.73 4.2 34.36 3.88 3.9 73.5 25.01 4.39 1.12 0.43 1.19 0.57 2.2 25.5 14.3 46.0 3.5 17.02 6.08 3.6 20.8 66.8 9.58 2.09 4.6 7.5 25.1-3(2)(A) D8-18 STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.3 71.43 2.70 5.08 17.7 44.10 6.5 1.8 22.7 42.5 83.5 4.7 18.26 3.75 1.54 4.1 31.78 12.45 6.5 19.73 11.8 .83 2.71 3.33 3.65 6.35 2.6 SHS 35 x 35 x 3.68 2.23 1.91 3.24 5.486 6.2 16.7 12.695 31.4 119 105 89.6 SHS 12.01 3.18 5.9 21.1 9.0 SHS 4.85 1.5 18.7 9.17 2.0 10.5 24.2 48.73 7.0 72.83 22.973 41.09 2.3 30.3 52.0 3.0 4.7 9.1 78.0 SHS 2.73 3.85 7.6 34.5 35.0 SHS 3.12 3.4 10.6 SHS 20 x 20 x 1.6 SHS 30 x 30 x 2.35 4.7 8.5 72.02 3.86 166 145 122 109 95.98 2.67 1.608 Notes: 1.9 12.76 3.36 1.60 3.7 21.64 4.68 10.1 17.2 20.19 1.3 20.5 18.33 1.3 12.5 8.06 5.09 3.23 1.7 31.84 5.50 8.49 12.80 3.53 6.13 6.1 28.9 36.9 123 97.08 5.77 2.28 2.22 49.2 31.73 3.4 11.0 24.15 5.4 33.56 4.0 SHS 5.06 0.8 60.7 26.42 1.38 4.0 SHS 1.8 17.950 0.20 1.0 SHS 2.5 21.0 SHS 65 x 65 x 6.90 1.0 36.46 4.3 63.5 17.4 14.5 22. W *L1 = 8 φ Ms/L 5.3 42.7 47.0 1.6 14.0 SHS 2.36 4.2 65.6 31.48 4.7 21.5 SHS 2.5 27.792 0.86 6.05 6.83 3.3 16.9 11.33 2.39 5.00 1.1 8.1 30.23 1.3 73.8 29.56 3.9 10.39 2.72 7.3 13.2 73.7 8.04 1.5 22.0 18.30 2.99 1.4 14.8 49.9 28.07 4.4 21.25 1.49 7.6 SHS 25 x 25 x 2.801 0.85 5.1 8.5 36.873 249 218 183 164 144 110 78.1 9.3 22.3 56.6 36.27 6.5 26.4 43.994 0.2 13.0 2.9 14.07 4.31 1.75 4.2 10.77 2.12 7.7 12.6 9.10 5.0 54.7 7.70 3.44 5.1 26.1 42.5 10.9 20.2 8.66 4.52 6.64 4.1 29.12 3.42 2.22 7.7 24.0 SHS 1.9 45.36 3.7 53.0 75 x 75 x 6.6 39.1 24.3 31.94 5.1 7.25 3.9 14.36 5.95 7.5 SHS 2.7 25.64 3.44 3.75 4.0 12.0 SHS 1.1 15.5 82.8 22.78 3.55 14.16 3.43 99.5 8. 348 0.09 3.26 3.06 0.7 79.0184 2.1 12.358 0.5 75 x 75 x 6.3 112 49.93 2.9 16.49 0.0 71.582 0.39 1.5 SHS 2.17 1.3 28.85 2.718 0.5 3.412 0.355 0.0233 3.6 28.8 12.0450 0.84 4.58 1.226 0.34 2.01 3.87 1.83 2.4 8.694 0.0 SHS 3.6 SHS 30 x 30 x 2.0 124 55.63 3.917 1.0 10.115 0.58 14.50 13.51 1.88 2.09 0.02 0.63 1.171 0.743 0.75 7.25 5.140 0.166 23.0 3.45 2.50 10.283 0.56 3.51 2.8 11.1 4.07 0.13 2.0 43.3 10.808 1.48 5.812 0.223 0.2 13.0 SHS 2.0887 0.15 0.256 0.81 1.43 6.298 0.1 28.24 1.43 0.438 0.6 8.12 0.2 8.474 0.0 5.355 0.878 0.0149 1.142 0.0365 0.775 0.631 0.81 5.443 0.664 Note: 1.0513 0.0 SHS 4.227 0.2 6.0826 0.794 0.60 1.97 17.84 11.5 54.461 0.202 0.73 2.405 0.54 2.630 0.760 0.0744 0.08 2.64 1.06 2.49 7.5 SHS 2.332 0.8 6.21 1.76 1.05 0.2 29.96 1.6 34.4 12.90 7.36 1.76 4.239 31.348 0.96 3.23 1.228 0.7 31.0 SHS 1.0305 4.53 6.0640 0.57 1.4 10.211 0.0 47.0490 0.390 0.0 4.5 SHS 2.259 0.39 1.528 0.20 2.9 15.5 40.664 0.748 0.0 SHS 4.0 SHS 3.21 1.8 13.0 SHS 1.14 1.8 25.0415 0.636 0.03 1.0870 0.416 0.265 0.8 11.14 3.453 0.259 0.692 0.56 4.200 0.463 0.18 4.25 2.74 1.11 1.228 0.99 1.85 6.9 11.13 1.65 1.42 2.0931 0.241 0.105 0.77 3.587 0.45 4.85 3.87 2.2 33.288 0.36 1.60 5.15 1.8 15.62 1.86 3.180 0.3 17.77 2.0415 5.0 19.0313 0.2 7.53 3.91 3.97 5.31 1.667 0.02 5.7 16.101 0.0 SHS 3.783 0.319 0.6 SHS 40 x 40 x 4.95 2.6 SHS 25 x 25 x 2.32 5.67 1.429 0.0394 0.92 9.0933 0.13 6.0 7.3 65.180 0.5 5.05 4.249 0.25 1.04 9.0387 0.08 1.4 39.0253 0.33 1.74 1.24 7.5 SHS 2.115 0.1 8.0649 0.10 2.96 10.2 151 67.51 1.55 2.8 25.43 4.1 9.682 0.52 4.961 0.0 SHS 4.12 0.1 174 77.54 3.40 2.2 25.1 7.0 6.166 0.19 3.36 1.7 17.51 3.976 0.5 28.67 2.4 10.38 1.583 0.5 SHS 3.98 1.65 6.551 0.19 6.118 0.44 4.9 10.7 136 60.59 3.44 1.23 2.69 2.56 1.80 6.07 2.71 2.96 1.15 1.0 SHS 2.03 7.6 6.7 31.942 0.4 196 87.67 2.561 0.23 5.1 157 69.36 1.82 7.0 SHS 1.1 19.8 14.46 6.5 34.6 16.298 0.25 2.16 1.0 SHS 65 x 65 x 6.78 3.3 15.0 63.42 1.0 7.418 0.514 0.00 3.267 0.850 0.0 10.1-3(2)(B) DCTDHS/06 MARCH 2002 SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-19 mm mm mm kg/m 0.02 6.122 17.17 1.75 1.59 3.11 7.404 0.82 2.5 SHS 2.12 1.39 5.203 0.229 0.137 0.19 1.904 0.0 SHS 1.68 2.39 3.9 27.268 0.94 1.33 14.8 19.45 3.3 41.160 0.862 1.7 17.4 15.94 2.372 0.102 0.29 1.35 2.65 1.361 0.90 1.2 24.9 24.84 2.61 3.308 0.60 2.4 15.22 1.873 285 126 254 113 217 96.68 1.449 0.1 12.7 10.0701 0.99 7.80 1.91 2.36 3.16 0.94 9.31 4.0903 0.396 0.652 0.914 0.75 2.05 6.546 0.0465 0.145 0.75 1.562 0.289 0.24 1.5 SHS 2.39 1.14 6.0570 0.4 35.73 5.543 0.2 20.373 45.137 0.0 1.78 11.32 4.9 27.0288 0.176 0.69 7.89 4.1 21.260 0.6 SHS 12.0 SHS 5.130 0.173 0.53 2.0 SHS 5.99 1.77 1.159 0.2 12.76 1.911 0.04 0.2 24.67 12.75 2.6 18.62 1.20 2.908 0.291 0.1 8.5 22.62 1.62 3.0 SHS 2.1 14.97 3.77 2.3 8.0 SHS 2.0848 0.0769 0.0 SHS 1.82 4.88 3.651 0.966 0.0 SHS 2.5 4.0 37.339 0.24 1.19 0.0104 .146 0.56 4.49 1.116 0.35 4.520 0.1 21.111 0.1 56.6 SHS 20 x 20 x 1.186 0.315 0.190 0.86 1.0597 Serviceabilty Load W *S1 = 384EI / [5(250L2)] 2.60 4.890 0.65 3.38 4.570 0.125 0.1 63.146 0.196 0.348 0.27 8.468 0.591 0.28 1.66 4.0647 0.42 6.799 0.0 14.1 42.2 49.8 19.2 20.6 SHS 35 x 35 x 3.50 1.987 0.6 96.18 4.7 8.47 5.53 3.980 0. 0.501 0.26 0.67 3.66 5.5 1.158 0.30 2.9 10.710 0.406 0.38 1.4 12.0 SHS 3.0989 0.478 0.25 3.0 44.6 SHS 50 x 50 x 5.67 2.42 1.TABLE D8.15 4.07 0.0567 0.585 0.28 2.67 1.805 0.0218 0.780 0.17 1.33 1.48 5.98 4.0669 0.03 0.8 21.33 1.0 SHS 1.1 176 78. 72 3.9 33.1 11. 4.4 8.0 64.7 50.9 49.17 1.0 11.5 19.1 22.39 5.1 9.09 6.8 24.80 7.1 18.3 SHS 4.62 35.58 8.26 2.21 3.1 23.7 22.5 48.3 27.51 92.86 5.04 6.7 100 74.0 8 φ Ms/L 2 φ Vv 8.87 79.34 57.67 2.5 10.3 42.4 15.06 119 100 40 x 40 x 2.7 21.19 5.1 17.0 11.30 4.8 SHS 2.0 4.5 5.8 SHS 2.0 13.5 9.4 21.6 15.0 10.82 8.3 12.7 32.34 3.4 26.0 1.8 SHS 2.D8-20 TABLE D8.5 78.1 12. 5.52 3.2 38.0 1.71 10.1 87.5 0.2 9.25 26.01 2.2 30.0 6.2 11.75 2.60 8.5 20.0 kN 100 x 100 x 2.55 133 50 x 50 x 2.8 SHS 2.86 6.2 10.4 23.09 187 155 65 x 65 x 2.93 2.0 3.45 6.39 6.3 26.0 2.75 4.8 66.41 6.34 3.75 1.2 22.4 40.9 14.3 31.7 13.0 19.5 32.42 5.76 3.7 12.5 28.0 14.79 4.1 15.6 52.03 4.9 8.98 7.74 3.9 28.61 5.6 52. φ αm αs W *L1 W *L2 = = = = = 0.12 8.48 DCTDHS/06 MARCH 2002 .95 201 150 134 99.25 1.3 48.61 2.2 16.3 16.4 25.3 32.4 37.4 39.2 59.6 13.1 8.5 254 211 75 x 75 x 2.73 7. 3.9 16.7 38.5 1.5 19.4 17.8 13.87 4.19 6.21 6.4 12.5 4.1 19.14 131 97.1 37.0 16.2 35 x 35 x 2.2 16.99 3.96 7.1 29.8 SHS 2.01 5.52 5.1 14.02 5.5 3.42 78.1-4(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 0.49 2.69 7.4 24.11 2.0 67.3 SHS 3.75 9.91 3. 2.90 2.3 SHS 2.7 10.3 SHS 8.52 7.8 16.6 20.80 2.8 57.2 18.40 3.9 1.7 65.21 4.4 13.6 24.49 4.3 SHS 6.24 2.6 15.8 43.1 Notes: 1.3 SHS 3.8 80. 19 5.0 12.896 0.60 2.7 11.4 9.8 SHS 2.5 38.5 15.387 0.24 1.33 3.8 SHS 2.42 50 x 50 x 2.390 0.36 1.44 5.82 1.40 1.3 SHS 3.75 2.08 0.50 3.975 89.39 6.270 0.0 102 85.9 45.0973 0.5 10.8 62.4 41.1-4(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 0.6 22.622 45.8 SHS 2.05 4.8 SHS 2.0 4.3 SHS 2.759 0.75 1.234 0.11 2.173 0.4 39.86 2.3 SHS 8.4 9.19 2.0 6.4 28.316 0.0 20.37 5.84 2.40 1.286 0.95 409 343 182 153 75 x 75 x 2.22 5.73 1.24 5.875 0.61 3.31 5.527 0.07 2.2 33.710 0.0 25.06 4.6 11.43 2.27 6.24 4.192 0.5 3.47 4.8 65.5 0.39 2.54 8.4 13.446 0.67 2.875 0.795 0.75 3.560 0.99 3.454 0.61 4.5 4.1 26.271 9.04 2.3 SHS 4.11 0.44 1.40 5.25 1.38 73.14 1.56 1.19 0.15 0.DCTDHS/06 MARCH 2002 TABLE D8.8 SHS 2.5 18.297 0.34 40 x 40 x 2.219 0.152 0.49 1.18 2.5 16.4 14.140 0.219 0.79 1.481 0.58 2.56 1.0852 Serviceabilty Load W *S1 = 384EI / [5(250L2)] D8-21 .123 0.14 166 140 65 x 65 x 2.3 SHS 6.132 6.66 1.50 3. 1.0 2.55 1.341 0.5 1.3 11.36 7.11 1.60 3.26 1.0 100 x 100 x 2.74 7.71 3.0 35 x 35 x 2.83 1.72 8.0 3.43 2.6 39.95 7.5 54.84 2.5 35.9 19.767 0.3 Note: 1.37 1.25 14.77 6.01 6.6 13.05 1.3 9.151 0.389 0.90 3.561 0.491 0.65 5.608 0.4 8.250 0.6 21.5 5.00 0.342 0.3 SHS 3.45 3.62 21.2 17.96 1.09 3.190 0.927 0.8 22.609 0. 0 30.7 55.8 17.6 59.5 16.5 56.7 12.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.0 RHS 2.8 12.32 24.4 73.2 9.5 51.6 RHS 12.1 30.5 24.0 3.2 19. 6.8 14.9 34.1 55.1 7.2 49.5 RHS 2.1 15.0 2.5 RHS 2.64 147 129 108 97.3 23.0 RHS 3.3 26.8 28.53 6.89 391 333 273 241 209 176 142 115 32.04 5.5 RHS 2.4 11.5 12.1 10.0 9.4 85.07 273 236 195 151 113 80.9 27.8 8.20 6.5 15.91 8.3 12.1 42.8 20.18 7.7 55.4 17.0 100 x 50 x 6.5 (See Section D4.07 295 256 212 167 141 103 148 128 106 83.5 25.1 50.8 33.2 27.4 29.3 40.1 20.0 18.8 9.2 64.0 kN m 150 x 50 x 6.55 4.2 58.83 6.8 8.7 19.4 16.1 18.0 6.33 7.73 6.3 9.60 8.4 12.1 24.7 13.9 12.68 5.6 21.0 42.0 RHS 4.0 8.2-1(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t mm mm mm kg/m 1.0 78.5 16.3 23.25 4.0 73.93 6.1 39.0 10.1 11.0 10.1 54.2 11.11 10.3 8.7 14.1 10.6 21.84 8.7 16.4 125 x 75 x 6.8 21.5 25. 5.70 8.9 10.5 16.4 27. 4.5 8.53 6.4 26.0 18.0 RHS 5.6 18.2 11.0 34.0 RHS 5.8 9.8 23.0 33.7 11.1 51.8 21.0 16.2 14.9 31.5 RHS 3.3 17.0 RHS 2.D8-22 TABLE D8.6 9.1 13.2 21.89 21.5 15.8 9.6 19.4 39.05 16.5 49.1 14.08 24.7 16.43 5.8 63. DCTDHS/06 MARCH 2002 2.0 8 φ Ms/L 1.2 36.3 70.21 2.2 7.66 6.2 21.49 14.3 14.18 19.3 37.6 12.17 5.4 33.4 54.809 (π2 E Iy G J / M2SX)0.5 8.1 11.2 20.85 6.16 6.7 14.0 13.49 7.5 13.3 33.9 1.37 11.8 34.3 10.2 16.3 8.0 5.7 29.60 5.7 9.82 7.2 22.6 27.0 7.96 7.9 48.0 RHS 2.5 43.0 12.0 14.2 10.53 6.8 24.5 26.1 29.1 32.0 RHS 16.3 12.4 25.67 12.0 1.4 23.1 11.4 73.5 19.0 RHS 3.1 48.1 18.7 10.77 18.5 47.8 32.1 42.0 10.5 9.93 27.6 18.7 27.9 31.6 8.5 64.96 7.2 91.0 11.46 6.92 3.7 28.6 36.1 10.8 8.6 35.70 21.4 17.7 32.54 22.0 4. FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 1.1 45.5 20.9 10.6 8.1 29.1 12.0 RHS 16.3 28.36 3.04 13.5 18.4 136 118 97.6 19.56 4.3 15.0 RHS 1.38 6.0 33.4 14.31 22.9 53.04 24.3 12.50 3.02 8.54 3.08 7.0 RHS 3.7 14.32 599 506 411 312 262 211 26.0 41.6 8.3 26.9 21.74 507 430 350 267 224 181 54.90 4.0 RHS 4.8 68.3 25.7 13.6 47.7 11.5 20.8 13.0 86.5 17.5 59.2 73.7 10.3 15.8 13.0 40.8 7.6 φ Vv .12 4.5 39.8 23.4 18.5 36.9 36.6 75.0 RHS 4.8 9.4 56.3 28.0 RHS 5.0 11.3 27.5 34.3 14.9 41.20 7. 3.37 5.6 65.7 35.3 32.8 13.2 36.65 4.6 Notes: 1.5 30.8 10.1.9 11.35 5.5 21.73 21.7 19.2 70.1 34.7 9.3 98.64 7.64 5.9 10.8 37.4 15.6 16.9 26.2 42. 3 8.3 10.4 8.3 56.07 749 657 553 442 376 307 187 164 138 110 94.7 38.28 3.4 62.7 22.14 1.1 46.50 2.53 6.0 3.73 3.76 1.630 1.37 4.53 4.5 RHS 2.49 6.90 5.4 12.02 2.06 5.87 1.95 1.43 4.1 21.75 2.932 0.67 6.2 11.2 22.83 1.64 6.44 3.3 13.0 27.52 3.12 2.61 2.45 3.57 24.0 14.771 0.31 1.0 9.1 12.1 15.58 4.0 13.56 1.02 7.0 9.85 3.2 11.53 6.0 RHS 3.DCTDHS/06 MARCH 2002 TABLE D8.4 68.95 3.26 1.0 8.62 8.0 12.7 39.2 30.48 3.0 12.57 5.8 34.11 6.8 83.2 73.90 7.0 RHS 2.50 3.04 7.0 2.8 14.75 2.750 1.0 76.5 19.9 9.7 15.53 15.4 17.57 1.08 6.0 RHS 5.94 5.892 0.30 5.81 1.78 3.09 9.2 9.50 1.64 3.95 3.6 9.0 RHS 5.6 RHS 12.1 41.7 63.3 10.1 15.937 0.0 10.29 1.98 17.6 27.61 3.65 5.57 3.21 1.83 5.19 5.40 4.0 RHS 3.7 14. Serviceabilty Load W *S1 = 185El/(250L2) 7.6 18.73 1.57 3.82 2.39 4.0 61.92 1.12 2.07 2.0 12.1 10.77 3.46 2.74 6.63 7.0 RHS 16.86 4.28 5.799 0.7 28.0 RHS 2.8 41.75 1.64 253 226 193 175 158 135 111 90.38 3.13 4.24 5.5 48.11 2.9 50.3 125 x 75 x 6.987 0.7 28.4 59.45 4.0 10.689 0.0 26.42 7.12 0.4 43.61 2.0 RHS 16.76 3.74 2.49 7.537 1.24 8.4 49.44 1.27 11.0 RHS 4.7 10.5 RHS 3.93 1.37 1.03 6.27 2.56 3.06 2.07 6.16 5.44 6.1 17.07 616 539 452 359 306 249 154 135 113 89.53 2.93 12.0 RHS 1.35 1.12 1.0 RHS 4.1 9.79 2.5 RHS 2.54 5.06 4.23 1.0 11.88 4.15 0.7 14.22 2.98 8.34 1.5 19.49 6.14 2.26 1.6 11.0 RHS 3.09 4.25 1.9 34.5 15.89 3.0 4.30 1.20 4.8 18.03 0.52 5.49 5.16 1.65 3.73 2.4 33.0 150 x 50 x 6.53 6.64 3.67 2.0 12.97 2.34 1.53 3.6 8.0 20.804 0.6 100 x 50 x 6.42 3.58 1.08 2.2-1(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 1.79 7.60 1.39 2.09 0.80 9.75 3.59 3.43 3.657 0.11 0.6 23.22 7.16 4.1 14.6 21.27 10.53 2.60 5.0 RHS 4.84 3.6 8.0 RHS 5.42 3.1 15.99 6.44 3.96 7.67 D8-23 Note: 1.4 12.62 4.917 0.67 1.96 7.5 19.1 25.82 3.33 6.3 22.3 15.0 6.13 1.74 3.907 2.3 8.82 3.2 39.5 RHS 2.0 5.0 RHS 2.5 33.463 .4 11.85 8.9 76.14 2.11 1.60 6.7 27.566 0.3 9.09 1.1 34.19 2.35 2.56 4. 93 86.0 RHS 3.0 1.75 7.1 18.1 27.0 RHS 4.35 4.1 48.5 11.8 44.31 6.50 2.5 13.3 10.9 85.3 12.0 37.5 20.03 2.9 22.07 2.8 34.3 45.7 32.9 31.6 15.4 21.9 38.69 6.01 182 161 137 111 94.35 7.3 28.3 97.5 8.0 19.7 23.8 15.7 21.71 7.22 10.2 11.0 35.3 10.3 13.5 RHS 3.57 6.3 10.0 10.6 61.8 45.62 8.6 53.1 31.5 25.7 20.2 19.7 17.7 90.8 83.9 35.5 RHS 2.89 6.1 58.6 16.4 16.15 1.0 RHS 5.9 78.26 4.6 12.4 16.36 7.0 RHS 1.90 97.1 13.9 27.54 3.42 5.5 42.60 6.6 16.5 13.5 RHS 2.93 2.7 68. 3.8 8.94 5.42 1.9 34.1 32. 2.57 4.6 18.5 43.2-1(2)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.5 16.54 6.8 30.809 (π2 E I y G J / M2SX)0.26 3.32 9.4 47.3 54.31 8.6 75 x 50 x 6.4 75 x 25 x 2.81 5.81 5.8 33.07 5.8 65 x 35 x 4.0 50.44 2.2 8.31 7.1 14.6 RHS 3.56 7.81 8.2 28.4 12.9 72.72 3.17 5.71 3.5 29.7 23.36 9.35 15.9 45.7 11.95 18.0 RHS 3.2 64.85 4.65 3.3 33.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.5 57.08 3.72 2.2 9.2 13.5 15.0 33.90 4.73 391 333 273 241 209 176 142 115 32.3 27.55 8.51 4.5 35.5 121 108 91.0 36.2 16.68 5.4 11.6 69.8 52.3 13.2 36.6 147 129 108 97.5 17.0 4.0 13.31 2.5 20.4 15.8 24.5 24.80 3.5 82.5 5.66 6.5 RHS 2.46 7.13 5.9 41.23 7.1 24.05 7.48 5.92 5.99 1.9 29.0 3.04 1.7 30.2 11.9 8.5 RHS 2.3 27.4 9.8 12.60 7.2 67.60 3.6 16.8 30.0 RHS 1.4 54.52 5.8 8.13 5.8 8.0 RHS 3.63 33.0 RHS 2.38 65.39 4. 5.0 RHS 2.17 6.0 RHS 5.7 13.75 4.8 51.0 23.0 RHS 5.00 5.5 19.14 3.5 17.56 4.2 58.0 2.49 7.9 9.6 20.13 11.7 24.6 77.60 5.3 50.92 2.77 4.3 13.8 196 172 144 129 115 97.0 RHS 2.07 2.87 4.9 83.5 RHS 2.3 37.4 60.8 9.2 43.53 6.18 3.25 1.62 5.0 RHS 4.9 = 1.83 6.1 38.8 47.9 15.6 RHS 9.5 36.54 3.18 3.43 4.45 7.80 8.1 13.9 80.96 29.3 38.8 13.0 RHS 1.5 59.2 24.38 4.50 8.0 RHS 1.90 7.46 284 245 202 156 132 107 86.86 4.8 11.2 49.91 6.27 6.1 8.50 3.2 32.3 10.0 RHS 2.3 13.4 11.8 33.7 43.08 6.92 26.4 36.4 42.6 15.0 10.9 36.0 33.60 2.5 18.1 24.3 73.2 21.4 17.43 4.5 1.3 8.2 12.6 19.5 3.75 38.8 18.25 2.52 4.42 12.7 64.6 27.0 16.64 294 258 216 194 173 147 118 80.5 20.98 4.4 23.1 26.49 3.0 33.9 11.7 21.4 73.6 25.8 11.62 2.2 26.2 14.5 64.91 4.58 3.21 7.35 6.3 26.30 1.42 4.68 3.8 15.60 2.78 9.7 11.1 9.2 61.06 2.15 6.2 13.28 3.1 55.7 23.0 71.45 2.1 39.75 1.9 24.6 17. 6.0 6.74 8.1 21.61 10.7 23.83 10.3 34.6 RHS 3.5 10.7 36.91 5.83 2.3 10.79 2.21 170 132 112 90.67 8.1 32. FLR FLR φ αm = 1.69 20.4 25.6 49.6 22.76 2.6 76.0 RHS 2.3 11.6 24.8 12.0 40.2 12.7 57.3 24.95 3.52 7.1 13.5 17.9 73.73 3.7 16.53 9.76 2.9 55.75 2.5 21.7 20.0 8 φ Ms /L 1.6 RHS 2.7 14.45 2.6 19.4 15.17 2.5 38.1 34.8 72.69 96.2 8.9 15.D8-24 TABLE D8.2 13.3 26.4 53.5 14.8 25.8 63.5 21.14 12.5 43.7 11.0 16.4 28.2 16.6 53.1 9.3 68.4 118 103 86.2 17.4 49.0 46.88 6.0 4.7 11.3 19.34 2.3 14.0 RHS 1.5 (See Section D4.8 21.9 22.5 RHS 2.1 18.4 14.68 127 103 83.73 5.1 73.8 44.0 Notes: 1.9 50 x 20 x 3.6 19.5 50 x 25 x 3.5 55.4 47.3 22. αs W *L1 W *L2 = = = 1.5 40.36 4.4 12.10 4.1.9 10.7 18.0 9.0 kN m DCTDHS/06 MARCH 2002 100 x 50 x 6.7 8.25 3.7 9.3 22.24 5.6 φ Vv .0 16.33 5.5 16.08 24.97 7.6 RHS 12.6 26.6 30.5 11.2 27.4 22.64 5.1 37.8 24.3 34.5 4.7 10.2 16.12 6.1 21.5 54.65 22.0 42.4 29.8 34.2 14.9 7.22 3.0 86.0 39.5 0.3 17.2 17.6 28.3 38.7 29.91 6.4 32.2 53.4 32.0 21.5 40.4 37.9 14.0 9.1 13. 5 16.46 3.6 RHS 3.5 RHS 2.35 3.01 1.4 20.0 13.94 5.2 57.40 4.5 15.1 12.99 6.7 18.0 RHS 2.00 1.0 22.4 44.72 5.01 8.6 26.0 60.8 9.6 23.68 2.83 4.5 29.5 49.2 27.2 42.1 25.62 5.4 26.5 RHS 2.360 0.59 2.5 10.8 36.0 RHS 4.45 2.86 12.04 7.78 6.53 6.02 0.2 21.0 100 x 50 x 6.00 9.980 0.6 9.01 0.40 4.63 7.0 10.44 6.15 1.9 13.69 1.02 3.2-1(2)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS kg/m 0.85 5.03 6.839 50 x 25 x 3.6 41.5 5.35 1.26 5.67 5.8 15.76 6.2 75.42 1.8 63.7 18.55 7.3 16.661 0.6 63.85 1.30 6.85 8.5 RHS 2.65 7.4 15.7 40.31 4.9 17.6 35.76 4.7 162 145 124 112 101 86.0 RHS 2.82 5.16 3.69 3.34 1.73 3.55 8.72 3.5 RHS 3.0 RHS 5.415 0.0 25.4 9.289 50 x 20 x 3.3 118 107 93.50 3.69 7.0 62.38 2.2 28.30 3.92 3.35 1.0 25.99 1.7 35.0 RHS 1.38 1.8 11.2 9.1 36.60 2.37 4.0 RHS 2.75 1.6 18.0 RHS 3.6 RHS 3.2 21.15 1.DCTDHS/06 MARCH 2002 TABLE D8.75 5.38 3.8 80.08 1.81 3.5 36.65 5.669 0.1 51.7 22.94 6.9 12.649 0.67 4.60 2.74 6.528 0.53 1.41 15.80 7.4 43.30 5.89 2.29 2.6 13.64 4.63 56.19 1.58 7.1 38.92 5.9 11.25 1.8 14.0 RHS 5.85 5.40 2.6 41.428 0.74 4.0 3.75 2.1 30.406 0.66 2.14 2.7 48.17 0.2 14.915 0.5 4.60 4.4 25.348 0.0 RHS 5.3 19. Serviceabilty Load W *S1 =185EI / (250L2) .8 59.6 RHS 2.67 12.0 58.16 1.25 3.17 1.0 RHS 2.6 8.56 4.3 10.77 7.35 4.874 0.0 9.9 64.6 73.6 17.2 30.79 4.6 RHS 9.2 11.7 70.65 2.25 75 x 25 x 2.8 68.7 18.9 28.43 4.3 40.2 35.3 8.444 0.1 12.496 0.28 5.6 18.82 7.4 33.77 6.58 3.13 3.5 14.40 6.2 19.1 21.784 0.502 0.5 19.4 71.0 RHS 1.585 0.5 11.2 31.61 3.0 RHS 4.3 50.3 18.02 9.4 34.7 51.848 1.75 66.0 22.563 0.66 1.4 10.0 77.3 19.94 1.52 75 x 50 x 6.6 12.0 4.613 0.88 2.5 1.6 36.619 0.735 0.66 1.08 2.75 3.48 4.11 5.15 1.7 27.74 1.63 7.297 0.25 2.40 4.5 16.93 194 166 145 121 86.3 29.79 1.67 8.72 2.6 RHS 12.86 4.44 1.0 2.09 2.0 16.0 45.57 4.00 4.83 5.93 2.8 11.30 5.4 17.84 1.60 5.0 14.811 65 x 35 x 4.1 13.06 7.5 RHS 2.513 0.9 52.6 24.9 23.3 82.01 474 430 373 309 266 220 181 210 191 166 137 118 97.0 12.05 1.56 1.0 22.391 0.4 73.64 1010 904 774 699 630 540 444 363 450 402 344 311 280 240 197 161 253 226 193 175 158 135 111 90.0 RHS 1.5 RHS 2.49 7.45 1.8 41.49 1.3 77.78 4.61 6.52 3.03 0.6 47.2 66.35 6.54 10.49 2.51 4.3 53.459 0.880 0.95 2.0 1.05 7.35 6.98 2.26 1.5 3.01 0.3 29.40 2.3 21.1 18.8 14.23 13.1 10.9 10.1 26.19 1.7 29.83 2.60 2.7 49.4 8.81 3.695 0.10 2.0 RHS 2.0 49.1 20.10 3.2 30.5 D8-25 0.723 0.25 2.5 28.20 1.66 8.29 2.9 9.20 1.25 3.5 48.14 1.49 3.1 9.04 2.7 39.1 10.99 1.775 0.07 2.48 10.63 1.0 6.83 4.64 2.4 42.39 6.03 6.1 112 100 86.97 3.94 3.36 7.71 1.44 3.250 mm mm mm Note: 1.44 2.3 12.3 56.0 RHS 3.7 13.1 58.562 0.42 4.5 9.345 0.39 4.05 3.38 169 141 117 75.62 2.6 8.9 42.4 10.8 14.5 RHS 2.6 11.50 5.0 RHS 3.23 4.44 1.817 0.66 3.21 1.5 15.0 RHS 1.62 4.0 14.60 2.0 RHS 1.7 9.5 55.41 1.83 2.2 29.4 10.39 1. 02 5.02 7.7 38.2 18. 5.18 2.1 34.3 16.6 1.2 67.809 (π2 E Iy G J / M2SX)0.5 1.87 4.57 4.1.95 6.0 2. 3.54 3.22 6.44 36.8 RHS 2.0 54.0 33. 4.14 163 136 108 90.0 100 x 50 x 2.6 16.8 27.7 28.13 7.85 6.85 9.5 26.8 RHS 2.5 3.14 9.65 2.99 3.5 4.9 41.4 12.74 2.34 6.71 5.0 6.7 12.7 23.4 8.3 27.78 8.28 90.58 92.2 39.0 10.1 16.3 8.30 4.2 43.3 RHS 3.2-2(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m kg/m 0.3 RHS 8.53 3.8 75 x 50 x 2.6 φ Vv .5 5.25 31.43 3.4 196 162 34.3 16.83 7.05 3.89 2.2 69.5 13. FLR Span of Beam (L) in metres t mm mm mm Notes: W*L2 FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 1. DCTDHS/06 MARCH 2002 2.8 29.3 68.3 57.39 6.8 68.9 24.75 2.0 kN m 108 78.5 11.1 32.16 5.4 12.8 RHS 2.5 (See Section D4.92 3.6 34.9 40.1 24.3 RHS 50 x 20 x 2.0 1.9 17.61 3.3 11.1 81.75 1.9 22.70 7.8 14.3 16.9 1.48 5.42 7.3 15.1 15. 6.5 2.0 18.4 56.0 33.8 27.01 3.0 15.32 146 122 38.6 14.9 38.98 3.8 25.5 30.76 124 103 24.8 RHS 2.19 5.16 4.62 8.3 11.1 21.4 46.3 17.2 32.6 9.8 22.0 54.10 3.2 19.3 29.09 7.6 13.9 76.6 22.5 20.0 11.1 26.6 52.0 11.4 19.25 1.1 44.95 271 196 181 131 136 98.6 17.D8-26 TABLE D8.0 34.1 31.42 4.74 7.1 22.51 3.0 8 φ Ms/L 1.3 RHS 5.5 0.4 14.15 8.2 45.0 67.6 18.9 12.9 13.4 2.1 19.34 50 x 25 x 2.3 77.44 3.1 22.3 13.61 4.3 RHS 1.76 10.2 9.1 77.3 13.4 38.8 65 x 35 x 2.0 19.51 9.24 104 87.73 5.7 28.3 10.5 11.67 2.4 90.7 35.5 14.01 2.4 21.09 4.0 10.0 3.0 125 x 75 x 2.5 54.0 4.36 5.3 RHS 6.5 27.19 6.48 6.0 38.0 24.0 20.1 20.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.6 58.8 49.4 65.2 45.2 16.6 9.8 RHS 2.3 250 207 58.8 RHS 2.4 11.1 65.7 11. 8 RHS 2.06 2.5 4.47 2.5 5.87 3.4 66.8 RHS 2.0 47.39 3.0 12.1 9.42 63.99 3.20 5.2 55.44 50 x 20 x 2.1 10.21 1.6 31.88 3.8 RHS 2.4 23.92 8.90 1.9 25.13 5.16 4.0 46.29 7.585 0.34 158 135 50 x 25 x 2.6 23.89 2.09 4.7 39.0 12.1 73.5 14.0 4.3 15.34 6.5 70.67 2.06 4.76 3.8 8.8 20.5 11.00 5.329 D8-27 .6 84.03 1.5 0.56 3.375 0.58 6.1 28.7 9.8 20.95 3.7 32.16 1.82 7.740 0.7 14.75 1.49 5.1 21.39 6.0 2.45 54.0 13.26 4.8 13.13 0.474 0.988 0.1 13.0 125 x 75 x 2.3 RHS 8.41 3.383 2.50 1.5 1.8 10.861 0.5 11.9 54.8 RHS 2.12 1.39 7.8 RHS 2.96 Serviceabilty Load W *S1 = 185EI / (250L2) 9.6 41.0 21.2 31.58 1.3 9.12 6.1 24.48 2.5 27.25 Note: 1.1 17.3 RHS 5.5 11.540 0.4 24.32 1.53 2.632 0.667 0.7 17.5 3.10 0.72 4.50 3.0 1.967 0.92 2.6 15.19 5.0 6. 95.89 70.0 62.0 37.46 6.95 1.67 1.9 11.13 3.76 1.940 2.2 75 x 50 x 2.2-2(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 0.1 8.85 7.2 39.DCTDHS/06 MARCH 2002 TABLE D8.8 48.439 0.10 0.5 27.3 RHS 2.75 2.95 1350 1130 601 504 338 283 216 181 150 126 110 92.32 5.3 21.1 45.61 3.64 7.8 RHS 2.87 8.2 80.2 60.781 0.95 5.29 1.4 37.22 2.03 6.25 1.7 16.76 2.35 1.3 RHS 6.02 4.24 292 248 130 110 65 x 35 x 2.5 15.844 0.14 595 502 264 223 149 126 16.38 2.0 3.551 0.53 1.96 5.5 33.87 100 x 50 x 2.3 RHS 3.3 RHS 2.681 0.1 55.6 23.3 18. 5 30.0 9.89 7.0 13.2 13.6 51.0 5.99 4.7 21.47 20.8 36.3 21.6 116 159 183 57.6 11.5 13.98 10.57 8.79 5.4 11.67 7.43 9.89 6.3 22.6 15.4 11.65 406 346 283 217 182 147 95.02 3.1 10.97 19.0 3.25 3.0 10.39 7.63 6.5 22.5 27.7 34.5 18.0 SHS 8.53 3.23 23.99 6.6 24.4 24.4 14.63 7.2 14.3 10.1 119 103 84.99 6.54 5.9 18.5 SHS 5.81 5.65 6.9 9.6 φ Vv . 3.0 9.8 12.0 17.0 SHS 12.3 4.3 28.5 13.7 13.4 14.93 5.7 26.0 9.45 6.9 21.86 5.0 SHS 10.01 6.6 SHS 8.0 SHS 14.3 13.0 6.0 kN 238 206 168 120 91.0 2.6 56.4 8.91 8.5 79.7 16.0 29.9 27.0 14.1 27.5 19.5 SHS 14.9 18.99 4.96 2.5 32.9 47.0 4.5 36.14 3.0 15.60 2.0 8.7 20.6 21.4 13.0 8.2 14.0 13.1 15.26 8.3 9.8 10.1 14.3 23.26 11.2 9.13 26.65 13.7 59.8 41.1 7.74 5.0 SHS 6.1 11.4 42.8 34.0 20. 5.0 SHS 4.74 6.9 8.3 8.1 28.53 2.15 8.08 5.9 9.0 SHS 9.70 12.3 24.6 11.8 15.9 9.58 5. 4.01 17.7 15.64 13.5 SHS 2.96 2.0 8.30 29.9 9.2 41.0 61.7 41.4 10.0 SHS 2.3 26. 2.98 15.8 17.8 12.7 12.04 6.0 71.8 79.94 3.1 60.5 16.0 SHS 6.85 10.0 39.9 39.2 4.00 5.4 10.3 7.49 4.32 7.5 3.2-3(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 100 x 100 x 6.13 4.3 15.31 5.6 3.7 18.06 5.7 9.0 15.5 14.9 31.1 30.0 11.8 20.05 15.9 1. φ αm αs W *L1 W *L2 = = = = = 0.20 7.29 13.5 39.0 14.2 13.8 23.0 5.0 SHS 11.5 53.07 90 x 90 x 3.7 12.17 4.0 36.8 19.11 7.5 91.63 3.05 3.5 16.0 7.3 10.1 7.0 1.83 5.1 45.0 9.7 10.32 7.54 7.0 27.4 77.52 4.53 4.1 30.0 SHS 1.70 11.53 9.99 8.2 8.10 6.6 11.9 12.2 15.2 42.49 3.85 194 163 132 107 89 x 89 x 6.6 13.9 55.8 `45.5 SHS 7.54 5.6 13.50 4.92 19.56 3.7 18.9 55.19 5.4 10.25 7.5 45.1 22.0 SHS 8.2 54.1 31.0 18.0 10.3 16.5 SHS 7.6 38.3 62.6 24.90 5.1 40.4 9.0 7.45 4.07 6.8 19.0 8 φ Ms/L 1.9 13.20 7.55 3.1 31.02 290 250 206 183 159 134 109 Notes: DCTDHS/06 MARCH 2002 1.6 19.0 11.56 2.0 9.50 124 109 91.9 17.D8-28 TABLE D8.9 20.0 SHS 16.0 12.1 7.27 5.3 47.89 12.9 22.42 18.2 10.0 18.1 8.95 6.3 15.25 6.5 22.8 26.8 25.2 33.39 1.51 21.94 4.60 3.3 30.4 68.8 12.6 8.6 16.8 18.0 SHS 12.7 38.59 6.5 82.34 5.23 11.27 3.1 18.1 220 303 354 75 x 75 x 6.0 65.79 6.08 7.06 17.7 5. 06 5.0 11.0 SHS 12.84 1.8 20.70 7.22 2.94 2.30 10.94 2.23 4.68 4.6 11.75 2.06 0.1 24.17 2.02 6.33 1.84 5.35 4.45 8.0 5.9 9.31 1.47 6.6 203 268 304 50.04 1.671 0.68 3.18 1.51 3.9 89 x 89 x 6.06 9.31 1.45 4.68 2.820 0.63 2.32 1.22 4.773 0.62 2.53 3.85 4.11 0.45 4.71 3.55 8.75 2.0 13.0 SHS 11.99 4.68 2.0 8.5 SHS 2.547 22.7 36.0 17.74 5.60 2.82 3.42 1.12 2.04 1.736 0.8 10.09 0.913 0.33 1.52 2.62 1.43 5.85 1.908 0.0 3.49 3.37 1.2 5.48 2.1 8.25 3.12 0.744 1.780 0.33 1.3 4.627 0.50 3. Serviceabilty Load W *S1 = 185EI / (250L2) 6.0 10.7 45.08 3.14 5.20 1.96 2.68 1.4 8.7 16.0 2.5 SHS 7.9 26.37 6.0 76.0 SHS 2.23 2.0 SHS 14.76 4.84 1.634 0.5 26.0 SHS 16.32 1.14 10.55 1.15 4.0 SHS 6.5 65.55 3.876 0.24 3.2 32.631 0.1 24.1 40.11 1.5 SHS 5.0 SHS 4.0 SHS 9.80 1.50 171 153 131 118 106 90.0 SHS 8.904 0.52 2.0 18.4 13.7 9.8 67.923 1.41 2.12 1.698 0.28 2.16 1.46 1.61 1.46 3.0 4.0 5.26 4.55 4.28 6.9 17.1 11.85 6.8 38.17 1.65 2.32 1.86 2.5 22.0 SHS 10.82 1.5 49.0 SHS 1.63 3.53 1.51 1.54 6.89 1.538 0.7 18.09 3.6 29.08 2.3 82.02 6.0 8.463 0.12 2.26 2.907 0.DCTDHS/06 MARCH 2002 TABLE D8.72 4.519 1.0 SHS 12.19 2.0 SHS 6.42 1.6 29.88 1.01 1.73 5.73 2.18 4.16 7.08 0.17 8.19 1.25 2.51 2.874 0.56 1.53 2.03 2.68 2.56 2.7 5.8 74.6 SHS D8-29 Note: 1.6 16.67 2.0 SHS 8.39 2.751 0.885 1.0 14.07 1.65 7.8 20.5 55.9 43.67 2.67 6.8 19.819 0.11 5.93 3.16 7.0 8.0 14.2-3(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t kg/m 1.19 5.778 0.15 5.01 0.2 32.29 5.747 1.62 5.602 0.98 3.5 SHS 7.39 188 161 132 107 47.442 0.541 0.05 1.07 3.66 1.7 29.31 1.49 3.95 1.84 3.98 1.23 1.26 1.55 1.8 33.8 10.8 12.0 9.0 100 x 100 x 6.5 3.381 .9 14.22 6.06 0.2 10.5 10.41 1.5 13.929 11.0 15.34 1.6 3.14 0.28 2.29 2.1 75 x 75 x 6.618 1.0 12.666 0.2 4.7 12.975 0.66 2.59 1.7 13.9 11.29 1.961 0.19 4.07 449 393 330 262 223 182 112 98.50 3.7 mm mm mm 90 x 90 x 3.76 2.0 7.73 2.92 7.55 19.30 2.01 6.951 0.72 7.12 0.04 1.28 12.25 4.31 3.6 20.7 42.21 3.5 SHS 14.61 1.5 8.2 28.71 1. 2 10.36 3.55 4.44 3.7 12.0 36.6 31.5 14.50 10.33 3.38 6.3 11.1 78.68 5.0 SHS 1.0 24.3 17.1 13.1 11.5 8.33 2.1 24.75 1.83 3.60 0.6 SHS 40 x 40 x 4.5 19.9 45.2 10.1 30.68 10.15 5.7 9.43 99.05 9.73 7.67 1.28 2.4 20.0 SHS 5.9 21.22 2.2 39.1 42.5 22.26 3.9 154 129 101 86.0 4.8 18.8 18.3 13.29 1.40 6.6 87.8 17.1 14.65 6.53 6.6 SHS 25 x 25 x 2.7 21.3 22.811 35.8 11.19 1.3 18.08 17.22 1.23 1.3 78.0 9.4 14. W *L2 = 1.8 9.98 3.7 61.83 22.3 89.2 73.34 2.8 52.3 10.35 4.08 3.0 54.2 10.6 SHS 35 x 35 x 3.8 66.0 27.19 6.7 42.77 2.78 3.7 57.6 52.5 10.75 4.4 14.02 3.8 49.2 59.29 3.0 SHS 2.70 3.55 2.77 4.69 7.42 3.83 2.0 SHS 2.9 13.39 1.78 12.3 24.99 1.93 2.30 2.9 14.0 SHS 4.33 0.42 6.0 24.24 124 109 91.16 3.12 7.85 1.6 20.0 SHS 3.6 9.6 φ Vv 4.42 2.86 6.4 11.7 75.5 SHS 2.4 26.0 75 x 75 x 6.00 0.86 2.4 13.8 21.59 1.04 2.27 8.0 SHS 1.1 29.53 7.72 4.86 166 145 122 109 95.17 2.7 44.7 43.8 27.10 5.84 5.0 7.6 59.9 28.48 4.3 8.5 22.7 35.25 1.27 6.5 45.5 27.9 73.50 8.0 3.98 2.5 12.8 60.45 6.9 13.994 0.0 10.95 7.36 1.0 SHS 2.1 31.6 39.2 55.73 3.7 12.7 9.2 15.12 0.0 71.3 20.3 8.75 2.25 3.81 4.67 1.7 18.6 178 158 133 107 88.73 11.0 2.5 SHS 2.2 40.8 28.0 13.0 SHS 1.39 1.83 6.94 5.02 6.7 24. αm = 1.74 19.405 kN 290 250 206 183 159 134 109 244 211 175 136 115 93.09 3.3 17.1 17.1 27.8 13.0 SHS 3.5 16.9 10.56 3.12 3.667 0.792 0.36 3.36 1.1 29.59 1.79 1.5 1.3 56.5 SHS 2.873 249 218 183 164 144 110 78.85 5.2 15.80 3.75 7.57 2.2 8.3 12.74 2.08 6.68 2.5 98.7 44.95 7.99 5.36 4.06 5.38 4.3 16.6 37.01 3.0 SHS 5.9 36. W *L1 = 8 φ Ms/L 5.6 .2 26.38 2.6 SHS 30 x 30 x 2.973 41.8 43.7 7.2 13.4 26.60 5.95 83.8 11.5 27.85 1.0 12.9 11.47 8.5 8.2 14.6 63.5 44.31 1.3 30.01 4.9 12.4 43.33 5.49 7.64 4.0 1.6 34.1 28.1 8.75 4.65 5.6 36.0 72.1 16.3 10.55 14.4 30.3 19.2 31.0 SHS 4.4 20.66 1.54 8.06 0.890 0.950 0.20 6.38 2.6 SHS 50 x 50 x 5.22 7.5 21.23 1.5 44.5 35.9 20.3 31.46 4.56 4.5 SHS 2.23 7. αs = 1.64 4.7 8.8 12.5 SHS 3.76 3.31 7.09 4.9 9.38 1.00 1.7 53.0 SHS 65 x 65 x 6.44 5.08 1.68 1.2 25.7 21.9 17.70 1.3 67.66 2.6 SHS 12.2 16.0 12.9 30.96 5.41 4.34 3.00 2.98 2.62 71.76 5.8 22.7 16.99 2.12 3.6 19.6 SHS 20 x 20 x 1.39 5.3 26.1 9.14 8.4 70.9 9.5 15.1 7.5 36.43 2.4 85.4 15.7 9.39 5.22 49.36 4.6 57.58 2.3 52.0 SHS 1.3 45.8 10.5 14.49 1. φ = 0.24 5.0 20.36 5.9 14.801 0.0 SHS 3.39 6.84 5.1 15.4 21.5 4.01 4.5 SHS 2.4 10.33 1.10 6.4 11.30 4.540 5.1 10.71 3.486 6.00 1.70 5.4 119 105 89.82 2.0 SHS 1.86 2.608 Notes: 1.4 10.07 4.1 26.90 1.49 12.0 71.98 6.52 6.4 21.8 22.5 3.8 20.1 32.58 8.5 0.05 6.11 0.86 17.7 13.39 2.4 33.0 10.19 0.7 47.41 3.8 57.47 6.91 3.TABLE D8.695 31.0 38.9 2.3 18.1 8.0 SHS 2.2 17.6 32.6 30.5 24.9 55.15 5.60 3.0 SHS 4.2 20.57 3.6 36.88 2.5 18.3 16.54 5.66 4.79 4.4 23.60 6.73 4.2 12.7 8.0 18.1 53.39 62.54 4.46 3.14 0.99 3.53 7.5 18.8 41.4 52.4 11.4 21.8 12.5 45.09 2.63 1.7 8.2 15.6 14.2-3(2)(A) D8-30 STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.64 3.2 21.2 54.7 12.18 2.2 66.71 2.19 1.39 2.1 15.68 2.5 17.7 26.4 18.0 SHS 3.4 32.8 41.5 50.01 1.5 82.27 9.3 46.85 4.8 26.07 4.4 14.1 39.2 13.20 1.23 4.43 1.04 1.0 3.0 9.9 20.08 5.5 29.1 9.5 17.3 63.5 25.5 26.23 5.57 14.0 13.68 10.0 8.58 1.7 31.35 2.60 2.9 32.64 1.9 11.20 7.5 SHS 2.3 42.13 6.9 38.2 34.8 29.78 7.8 15.6 7.8 22.73 3.3 22.3 73.85 7.6 47.13 7.88 3.72 7.1 8.4 24.3 15.6 39.4 71.38 1.7 25.17 2.82 2.93 7.23 1.0 SHS 1.0 35.77 2.35 4.1 23.18 5.3 18.42 1.1 62.2 65.0 SHS 2.51 2.99 1.925 0. 89 3.0695 0.156 0.16 6.20 1.2 44.55 6.329 0.245 0.49 7.08 2.97 3.424 0.60 5.62 2.978 0.0 1.5 SHS 2.0734 0.2 15.35 1.108 0.4 11.5 10.0999 0.10 4.68 1.66 4.383 0.79 2.42 4.8 14.0 3.75 56.547 0.26 7.9 15.6 SHS 20 x 20 x 1.83 7.0878 0.953 0.35 2.973 1.2-3(2)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-31 mm mm mm kg/m 0.73 1.0 SHS 4.90 9.23 5.1 47.90 2.07 4.0 42.3 55.6 41.57 3.9 15.817 0.8 26.5 4.25 3.0 SHS 3.42 5.433 0.5 SHS 2.5 67.7 18.899 110 97.69 2.3 35.717 0.92 1.9 25.3 62.76 4.22 4.1 10.387 0.5 27.35 2.63 5.4 34.0 SHS 3.14 0.0 8.5 20.2 31.2 10.99 1.67 1.49 4.4 24.549 0.0 SHS 2.01 0.0 SHS 2.6 12.11 5.9 9.27 3.0 SHS 1.5 SHS 2.112 0.5 7.75 7.63 3.20 1.5 81.71 1.42 1.2 38.1 13.3 17.870 0.88 3.0 69.65 6.94 2.8 8.2 48.1 20.4 11.6 25.343 0.855 0.04 2.9 17.60 305 272 232 210 188 162 133 186 168 145 119 103 85.0949 0.78 3.0360 4.38 1.481 0.66 4.87 1.65 6.90 2.08 1.23 4.0 SHS 1.40 1.278 0.60 2.719 0.5 12.99 4.100 0.51 3.4 16.0444 6.08 5.550 0.576 76.0 SHS 4.6 8.97 7.19 1.5 75 x 75 x 6.89 0.52 1.0250 .53 6.0 SHS 1.351 0.32 2.69 5.5 22.27 1.68 8.56 4.53 10.800 0.05 1.458 0.8 74.79 1.70 6.0 30.50 2.45 5.30 6.217 0.07 0.6 SHS 40 x 40 x 4.0 SHS 1.4 16.7 24.59 2.82 2.7 13.27 5.64 1.36 1.23 4.137 0.45 4.38 3.6 37.2 57.681 0.0 12.8 27.642 0.6 20.41 1.5 SHS 3.5 SHS 2.4 16.8 83.1 40.49 3.1 9.238 0.78 7.27 2.279 0.31 1.61 4.536 0.199 0.07 6.625 0.45 3.0 49.352 0.15 1.36 3.760 1.6 60.7 21.72 4.37 1.5 26.400 Note: 1.645 0.20 6.01 3.33 1.1 34.77 2.0932 0.46 7.97 8.49 1.12 0.20 6.472 0.41 8.214 0.7 17.61 4.10 2.6 75.8 11.53 1.71 5.210 0.3 43.21 1.435 0.3 29.92 6.2 67.329 0.0 SHS 5.0 SHS 5.57 2.60 1.0524 0.19 6.0 SHS 3.51 8.1 23.976 0.417 0.154 0.50 10.63 2.0 12.13 0.5 SHS 2.91 1.693 0.20 2.1 13.31 7.87 2.0 16.24 3.91 3.53 6.03 3.179 0.0 SHS 65 x 65 x 6.8 58.21 0.58 8.33 3.448 0.1 7.6 SHS 50 x 50 x 5.7 15.862 1.0 52.8 39.35 0.33 1.839 0.3 15.01 4.88 2.0610 0.58 2.36 1.31 3.0 6.5 5.80 2.41 1.42 2.552 0.03 3.6 SHS 30 x 30 x 2.3 26.4 47.48 2.5 12.72 3.93 2.0755 0.700 0.838 0.62 10.63 1.80 7.0 9.09 4.697 0.40 4.6 29.267 0.9 58.99 4.84 5.32 1.6 38.838 0.8 12.49 5.67 5.0 19.76 2.4 16.24 1.32 1.0 SHS 2.277 0.6 13.41 1.302 0.80 2.0 SHS 1.16 13.46 7.88 1.252 0.350 0.0 37.36 1.90 3. Serviceabilty Load W *S1 = 185EI / (250L2) 1.3 21.12 0.582 0.1 8.294 2.9 18.5 34.156 0.2 32.0 SHS 2.11 0.37 11.09 3.8 9.169 0.185 0.35 4.1 9.8 69.225 2.75 1.18 1.8 12.06 0.5 21.993 0.0 14.78 6.45 3.49 2.0 SHS 3.2 30.204 0.8 25.0 SHS 1.7 10.83 1.0 13.DCTDHS/06 MARCH 2002 TABLE D8.507 0.7 8.137 0.52 1.8 66.64 1.03 0.67 5.27 0.161 0.85 6.1 30.42 1.0 33.769 0.28 2.86 2.8 38.28 6.3 15.76 2.9 11.0 SHS 4.338 0.400 0.6 SHS 35 x 35 x 3.124 0.9 18.55 14.09 1.10 7.55 3.4 52.38 4.83 6.67 1.14 2.9 17.81 9.39 5.0 8.244 0.5 42.56 2.224 0.25 1.52 2.741 0.96 1.30 2.22 3.67 11.5 SHS 2.2 46.0 14.489 0.13 5.0 10.63 7.623 0.95 1.9 42.285 0.25 1.57 1.854 0.25 3.7 67.81 3.380 0.62 5.6 SHS 12.1 9.873 685 611 522 472 424 363 299 418 378 327 269 232 191 157 152 135 115 100 83.7 18.411 0.13 6.1 9.6 SHS 25 x 25 x 2.6 18.313 0.7 21.5 9.94 1.57 5.0 SHS 2.6 29.60 171 153 131 118 106 90.31 1.20 2.83 2.7 22.8 28.00 0.7 24.66 5.4 33.623 0.940 0.43 4.96 2.78 3.639 0.0 10.545 0.118 0.9 60.3 8.9 47.897 0.616 0.12 3.47 5.16 4.18 3.7 26.3 8.61 1.0562 4.83 5.0 36.8 67.144 3.35 1.7 105 94.57 2.600 0.486 0.5 0.2 51.1 24. 01 5. 4.4 37.4 15.8 SHS 2.7 65.14 131 97.D8-32 TABLE D8.52 3.8 24.1 37.25 1.5 4.95 201 150 134 99.7 32.25 26.90 2.2 40 x 40 x 2.4 39.8 57.1 12.2 59.4 25.52 5.6 24.4 17.75 4.7 38.17 1.71 10.91 3.8 80.6 20.55 50 x 50 x 2.24 2.3 SHS 3.74 3.7 9.8 SHS 2.80 2.0 kN 100 x 100 x 2.5 20.0 11.2 11.3 26.3 32.5 48.42 78.6 φ Vv 8. 3.6 13.1 9.0 14.51 74.2 22.9 14.82 8.8 43.0 11.86 6.58 8.4 26.4 13.40 3.9 16.34 3.1 18.6 52.96 7.11 2.5 5.3 31.2 10.87 63.5 19.0 8 φ Ms/L 1.75 2. 5.4 8.7 50.4 24. φ αm αs W *L1 W *L2 = = = = = 0.3 SHS 3.87 4.2 30.1 15.49 2.8 16.3 SHS 6.09 6.7 Notes: 1.61 2.30 4.61 5.8 66.34 57.39 5.4 23.09 149 124 13.7 21.5 0.06 95.1 14.49 4.0 3.3 16.21 6.3 SHS 2.8 SHS 2.99 3.1 22.3 SHS 4. 2.2 16.0 6.9 33.21 3.01 2.03 4.02 5.52 7.8 13.98 7.3 12.73 7.0 19.2-4(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 0.0 13.2 38.60 8.5 19.34 3.1 8.39 6.26 2.42 5.0 10.2 16.75 1.41 6.8 SHS 2.93 2.2 18.45 6.3 42.5 80.0 64.0 62.8 SHS 2.1 19.0 1.1 17.7 22.21 4.5 32.04 6.86 5.5 1.7 12.2 107 65 x 65 x 2.2 53.62 35.6 15.5 203 169 75 x 75 x 2.6 52.80 7.9 28.5 10.3 48.4 21.6 15.0 16.0 4.5 35 x 35 x 2.19 5.9 8.79 4.9 49.0 1.7 100 74.12 8.4 40.4 12.67 2.5 9.48 DCTDHS/06 MARCH 2002 .1 23.3 27.75 9.3 SHS 8.1 29.19 6.72 3.0 2.1 11.1 87.69 7.9 1.7 10.5 28.5 3.76 3. 63 5.5 61.2-4(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beams (L) in metres t kg/m 0.0 13.5 37.2 10.4 23.0 13.40 3.42 216 95.66 2.337 0.87 4.11 2.4 40 x 40 x 2.603 0.8 SHS 2.821 0.73 3.417 0.99 4.5 15.29 2.1 27.0 100 x 100 x 2.76 3.25 5.234 0.5 24.27 1.9 48.17 6.39 6.1 9.73 3.43 7.61 2.3 SHS 6.9 80.0 21.823 0.937 0.0 17.689 0.67 2.3 SHS 3.3 13.7 45.28 2.527 0.939 0.7 23.09 0.99 3.4 12.1 mm Note: mm mm 1.565 0.23 1.85 5.11 1.366 0.2 11.30 3.650 0.1 16.527 0.11 1.16 1.41 2.18 0.25 33.84 5.75 2.86 2.35 1.652 8.74 75 x 75 x 2.3 SHS 8.0 3.0 54.62 52.83 1.08 4.7 27.92 1.8 SHS 2.2 10.6 15.5 11.DCTDHS/06 MARCH 2002 TABLE D8.4 35 x 35 x 2.17 4.318 5.1 16.6 13.7 51.0 20.27 6.0 12.760 0.1 44.6 32.4 20.715 0.5 64.0 6.7 39.3 SHS 2.78 2.28 4.5 67.50 8.94 4.933 0.16 1.5 0.5 5.9 15.9 53.0 4.35 65 x 65 x 2.04 2.46 1.90 6.85 5.00 3. Serviceabilty Load W *S1 = 185EI / (250L2) 8.5 50 x 50 x 2.0 1.25 1.66 6.3 SHS 4.19 5.43 7.5 3.9 12.75 2.94 7.14 400 338 178 150 100 84.5 1.08 0.35 1.3 SHS 3.39 8.7 27.85 1.75 1.47 1.0 2.5 17.6 41.457 0.38 2.365 0.37 2.462 0.9 34.7 29.5 33.8 SHS 2.32 5.38 3.5 4.75 3.40 4.34 109 93.8 SHS 2.39 8.71 1.296 0.86 8.205 D8-33 .6 25.95 986 827 438 368 247 207 158 132 110 91.2 9.8 SHS 2.4 23. 3 111 95.2 36.6 36.28 29.5 100 x 50 x 6.7 28.1 25.3 29.2 15.2 27.6 8.2 11.7 12.0 60.3 31.7 19.3 70.D8-34 TABLE D8.3 22.3 136 118 97.04 5.6 18.7 29.1 26.87 6.8 23.5 52.4 40.0 9.5 15.6 27.8 13.5 11.4 35.3 38.970 (π2 E Iy G J / M2SX)0.0 5.0 1.5 20.1 18.1 81.2 11.5 17.9 148 128 106 83.0 12 φ Ms/L 2 φ Vv . DCTDHS/06 MARCH 2002 2.53 6.0 17.8 11.4 61.8 13.07 443 383 318 250 212 154 221 192 159 125 106 76.1 44.5 64.7 63.8 14.9 53. FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 1.7 14.0 RHS 1.0 19.1 45.0 RHS 4.97 8.6 81.2 69.0 RHS 4.4 14.0 55.49 7.1 31.1 30.0 8.4 34.0 RHS 16.5 51.5 29.8 24.51 18.8 17.6 50.06 20.3 54.4 18.7 32.1 29.7 64.1 38.8 9.3 25.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.2 12.48 6.5 42.7 30.1 44.5 43.2 42.2 20.5 RHS 2.6 28.5 19.0 42.05 17.8 28.0 41.0 RHS 5.3-1(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t mm mm mm kg/m 1.5 39.85 6.2 9.1 15.8 45.9 37.0 31.4 13.8 18.7 29.1 15.96 7.2 102 88.1 10.2 14.8 79.5 62.3 40.9 15.6 32.6 23.0 RHS 5.9 12.0 RHS 2.0 10.73 22.3 32.1 38.2 16.0 RHS 2. 3.0 17.50 3.3 24.5 27.5 60.33 489 417 341 301 261 220 178 143 35.4 9.4 60.6 76.7 14.4 19.1 24.7 17.9 39.2 13.2 30.25 7.64 220 193 162 145 130 110 88.5 27.9 12.3 40.9 26.5 RHS 2.56 4.32 4.4 16.2 72.2 25.5 18.4 47.0 45.1 48.5 41.2 30.5 25.53 6.0 12.2 49.2 55.0 4.6 20.1 20.6 35.7 35.2 125 x 75 x 6.0 3.0 10.2 16.2 44.3 18.5 (See Section D4.5 20.1 7.2 33.2 11.6 12.4 22.2 32.4 54.0 21.5 13.1 29.2 14.0 RHS 3.6 10.3 21.2 20.4 56.60 5.0 RHS 4.18 7.7 58.8 55.1 36.0 6.2 26.96 7.0 2.0 36.1 11.3 Notes: 1.6 75.4 29.9 70.8 37.3 8.6 110 96.6 15.9 16.6 RHS 12.9 35. 6.6 63.81 4.0 16.6 8.2 58.7 12.3 36.8 36.6 60.0 11.6 14.8 30.4 27.1 48.5 RHS 2.5 RHS 3.5 24.2 9. 4.0 8.0 749 633 514 391 328 264 28.5 17.8 31.0 7.8 37.1.3 11.37 5.6 45.58 24.0 RHS 16.5 12.66 27.1 8.7 13.6 16.1 17.5 22.9 48.0 RHS 3.4 12.2 44.53 6.3 34.8 11.0 RHS 5.8 10.4 40.0 13.1 10.7 10. 5.8 25.0 9.0 34.2 56.8 63.0 8.6 8.9 1.8 73.3 30.0 36.61 634 538 438 334 281 226 59.8 31.0 11.0 14.0 RHS 3.1 58.8 32.5 21.7 79.5 24.0 RHS 2.3 20.2 36.0 kN m 150 x 50 x 6.9 22.3 27.1 37.3 11.9 22.66 15.9 38.2 14.4 73.83 6.3 16.4 88.2 21.4 32.5 24.1 68.2 22.9 31.5 50.0 14.2 22.07 409 354 293 226 169 121 205 177 146 113 84.8 34.1 13.3 73.2 51. 60 2.2 54.1 Serviceabilty Load W *S1 = 384El/(250L2) D8-35 .0 RHS 3.94 1.40 5.1 14.5 14.20 8.96 7.46 2.47 7.48 5.07 6.961 131 117 100 90.79 3.0 RHS 4.05 1.2 9.5 14.56 3.96 5.8 16.00 2.51 5.62 3.06 6.0 RHS 2.6 11.7 27.7 57.77 7.77 6.2 37.5 13.4 26.5 RHS 2.8 25.6 45.6 8.9 36.0 5.11 2.1 11.5 31.62 5.6 8.1 22.0 RHS 3.49 7.45 5.30 1.43 4.1 25.1 44.8 11.8 23.90 1.0 150 x 50 x 6.43 1. 3.17 5.75 6.98 3.4 11.55 4.67 5.88 4.2 10.0 RHS 5.96 19.1 85.17 7.0 14.8 39.0 RHS 16.3 9.64 7.0 RHS 1.5 57.1 22.0 RHS 5.6 13.0 12.6 RHS 12.3 8.75 3.38 3.1 15.79 4.7 14.24 2.25 320 280 235 187 159 129 142 124 104 82.0 389 341 287 229 195 159 173 152 128 102 86.0 RHS 2.27 2.8 70.27 1.25 4.3 31.71 4.80 2.79 5.0 57.69 4.34 5.87 15.3-1(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 1.83 6.1 26.60 7.2 11.0 RHS 16.18 10.7 15.50 3.1 44.81 3.81 6.24 7.09 15.8 19.43 9.53 6.70 2.3 9.4 18.5 9.0 4.85 1.6 20.5 RHS 2.53 14.8 62.53 6.0 RHS 2.5 13.65 3.70 3.8 97.38 2.0 7.4 20.21 7.8 9.4 17.1 9.46 6.7 37.32 1.60 5.21 7.11 2.8 11.53 6.86 4.9 25.0 RHS 4.58 6.31 3.2 16.9 70.66 1.6 46.7 81.18 4.0 11.5 43.6 39.5 RHS 3.07 1550 1360 1150 917 781 638 125 x 75 x 6.9 13.7 9.34 3.72 4.0 2.3 71.97 6.28 8.DCTDHS/06 MARCH 2002 TABLE D8.84 8.0 RHS 5.2 11.3 36.32 5.7 31.96 4.9 58.56 6.68 2.0 10.32 3.2 12.8 14.9 31.6 20.9 14.0 10.2 9.91 8.7 17.0 11.37 5.3 17.0 RHS 4.2 11.7 20.60 1.6 9.79 2.27 10.84 2.5 21.95 1.04 3.52 5.0 24.7 32.0 8.3 48.7 14.93 6.26 2.19 7.3 12.5 29.41 3.0 RHS 3.36 1.07 1280 1120 938 746 634 518 100 x 50 x 6.6 14.67 1.78 6.9 32.21 7.67 5.7 31.27 5.63 3.33 6.38 7.1 20.4 51.5 RHS 2.5 79.49 7.88 7.9 10.64 58.3 25.48 4.52 2.0 9.96 7.58 8.42 4.7 70.39 12.94 6.39 2.88 3.7 35.8 13.2 9.64 525 469 401 363 327 280 230 188 Note: 1.24 4.7 9.01 3.38 12.0 18.6 40.68 3.4 52.8 11.9 69.78 2.41 3.08 7.2 25.6 9.8 21.3 21.0 6.40 6.7 11.11 4.15 1.18 0.6 47.56 4.8 29.0 17.7 17.23 10.0 13. 0 19.6 18.8 86.4 22.2 48.7 10.58 10.5 51.75 2.6 RHS 9.4 26.1 77.62 8.7 22.8 44.67 8.27 6.4 24.9 37.9 37.1 54.5 20.0 kN m 126 110 92.1 25.0 30.8 30.2 16.1 36.6 19.9 16.90 7.5 13.08 7.5 60.8 220 193 162 145 130 110 88.18 4.1 45.5 Notes: 1.01 273 242 206 166 142 115 80.6 26.1 48.8 11.65 3.6 37.72 3.2 14.7 14.92 4.0 RHS 5.75 4.0 RHS 2.91 5.8 66.2 69.73 5.4 18.7 19.5 35.4 34.0 40.1 13.35 6.3 17.0 RHS 2.5 22.8 16.09 5.8 19.6 RHS 12.0 RHS 5.4 75 x 50 x 6.9 40.81 5.8 37.7 20.5 4.3 16.32 212 165 139 113 26.8 20.2 21.0 25.7 13.3 21.9 10.5 19.06 2.5 RHS 2.2 65.3 13.7 12.4 56.3 28.0 70.2 21.6 81. 6.60 5.39 3.3 34.2 73.0 RHS 3.1 48.7 12.35 6.2 16.1 38.2 24.86 122 104 85.5 43.7 45.51 4.4 27.83 2.1 21.3 12.0 RHS 2.1 13.4 8.78 8.4 14.1 8.63 50.0 RHS 1.4 15.5 64.75 57.2 25.1 27.0 45.9 24.2 26.6 22.29 6.1 30.8 16.4 41.42 12. FLR Span of Beam (L) in metres t FLR FLR φ αm 1.3 36.5 59.5 32.8 21.0 55.28 6.5 147 129 108 97.1 10.60 2.93 129 107 91.3 50 x 20 x 3.07 2.5 17.5 42.1.0 9.25 4.08 6.0 RHS 4.9 8.20 5.6 36.4 47.6 20.1 32.0 33.8 8.2 26.90 7.0 35.0 50.3 20.6 16.8 17.2 51.9 41.10 8.3 90.1 43.4 16.1 489 417 341 301 261 220 178 143 35.3 55.5 11.2 12.4 39.0 86.9 57.0 31.7 20.1 32.2 16.4 54.7 9.4 9.4 33.4 49.5 0.56 4.1 22.0 12 φ Ms/L 2 φ Vv .28 10.0 6.2 46.3 14.7 14.2 61.1 65 x 35 x 4.25 1.5 8.3 25.42 4.1 38. 3.60 2.53 6.3 8.3 41.2 30.8 13.19 7. 5.39 5.6 19.4 40.48 4.8 24.2 72.3 38.0 2.2 36.4 45.D8-36 TABLE D8.6 13.54 6.0 11.3 26.0 RHS 2.9 36.5 26.5 14.4 10.3 26.8 15.2 60.5 1.5 10.0 14.9 58.87 4.1 18.0 100 x 50 x 6.0 3.1 74.0 RHS 3.0 4.2 8.36 7.8 55.0 17.0 42.1 109 96.7 23.0 RHS 1.970 (π2 E I y G J / M2SX)0.8 18.3-1(2)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.1 68.0 34.1 27.2 11.69 356 306 252 195 165 134 108 40.6 RHS 3.6 25.6 110 96.2 20.5 136 121 103 83.3 40.6 14.8 48.96 4.6 76.12 6.5 15.1 24.7 68.3 36.4 12.2 49.16 6.50 8.5 53.6 RHS 2.0 RHS 1.5 29.9 69.14 7.27 5.0 RHS 5.2 28.1 44.1 35.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.99 1.3 88.63 10.2 18.5 28.0 16.3 10.48 14.5 5.9 22.0 49.0 RHS 1.3 40.6 48.7 17.3 50.9 18.5 20.5 RHS 2.0 RHS 4.8 9.8 11.75 1.50 3.5 34.3 27.5 (See Section D4.71 8.4 33.8 32.03 22.1 17.0 64.5 32.4 40.4 73.92 8.79 14.2 17.5 RHS 2.58 3.1 58.2 12.4 11.36 9.7 8.0 4.7 32.4 32.31 6.4 41.4 11.68 3.0 = 1.5 11.0 10.3 13.92 27.9 51.8 80.9 22.52 158 128 104 14.8 15. 2.85 9.2 11.0 26.2 27.45 2.5 55.54 121 103 84.8 9.4 53.5 3.7 36.5 9.6 41.8 77.49 7.2 10.92 5.7 23.14 3.7 20.0 71.0 63.57 11.14 3.57 4.19 7.0 8.6 34.8 44.9 75.72 12.46 12.97 7.2 63.70 4.15 1.43 4.38 97.4 20.5 12.6 16.4 23.18 3.35 4.36 6.8 36.6 29.26 5.5 44.6 12.6 176 155 130 116 104 88.5 14.5 RHS 2.2 66.15 6.93 2.60 3.5 39.05 4. αs W *L1 W *L2 = = = 1.9 30.7 38.3 182 161 137 111 94.42 1.3 24.2 13.6 17.6 30.3 12.7 32.7 64.3 10.6 18.0 RHS 3.1 75 x 25 x 2.62 2.9 68.4 15.60 3.5 RHS 2.66 6.0 RHS 2.9 18.13 5.5 25.9 22.1 70.1 15.9 80.8 82.1 33.4 29.8 12.6 42.4 15.33 5.8 83.77 7.3 43.5 50 x 25 x 3.64 441 386 325 291 259 220 177 121 294 258 216 194 173 147 118 80.5 40.9 = 1.6 32.5 RHS 2.5 RHS 3.3 64.3 17.8 30.25 3.7 47.5 8.01 4.5 9.3 26.1 13.81 5.08 3.2 53.6 RHS 3.9 36.5 24.0 36.3 11.3 41.8 28.4 41.0 RHS 1.9 23.7 29.9 10. 0 71.25 6.3 9.93 403 345 300 251 179 153 134 111 101 86.81 1.5 RHS 3.1 11.55 2.13 5.2 52.715 0.56 7.5 13.4 39.1 44.5 1.1 64.4 27.1 62.49 4.09 1.4 55.3 36.71 3.27 1.08 2.51 2.12 6.73 8.0 RHS 2.84 3.2 58.3 15.38 4.9 30.53 6.7 52.0 22.35 1.10 7.64 2100 1880 1610 1450 1310 1120 921 753 934 834 714 645 581 498 409 335 525 469 401 363 327 280 230 188 336 300 257 232 209 179 147 121 233 209 178 161 145 125 102 83.32 7.79 4.41 5.39 5.1 84.25 1.2 61.3 24.75 2.06 1.0 RHS 5.75 137 121 103 86.3 34.0 1.1 10.8 21.58 3.40 2.45 3.83 2.9 23.59 6.01 983 892 774 641 552 457 375 437 397 344 285 245 203 167 246 223 194 160 138 114 93.98 4.44 5.9 74.5 RHS 2.7 64.69 1.0 45.8 38.0 109 99.6 56.4 9.3 31.2 19.2 10.4 9.49 7.39 2.87 8.3 45.DCTDHS/06 MARCH 2002 TABLE D8.55 4.0 100 x 50 x 6.93 2.47 2.31 6.9 28.09 4.2 18.72 3.4 32.25 3.4 11.5 RHS 2.70 9.38 350 293 243 156 130 108 87.6 RHS 12.0 11.2 24.599 50 x 20 x 3.0 9.2 60.96 8.7 9.3 44.56 4.812 0.1 14.15 1.63 7.3 32.30 5.5 RHS 2.3 39.8 17.60 2.9 38.90 1.63 117 104 88.89 2.862 0.80 2.0 6.91 6.50 2.82 5.7 157 143 124 103 88.75 6.4 16.889 0.17 1.67 4.6 RHS 2.04 0.7 10.5 5.0 54.92 7.7 16.37 2.5 33.3 75.0 2.8 29.3 35.0 10.41 7.50 3.65 15.0 11.8 36.8 12.8 38.4 33.9 16.5 3.17 1.2 9.23 7.83 8.52 4.5 RHS 2.40 2.6 40.14 6.7 41.9 32.7 16.33 3.26 3.03 1.0 4.8 15.2 14.29 1.58 3.1 22.747 0.39 1.35 4.98 4.5 20.1 11.2 29.9 32.51 5.5 4.3 8.1 18.8 63.54 8.99 3.5 28.58 7.50 1.3 21.86 2.3 48.3 30.92 4.40 5.52 1.75 1.8 70.61 1.10 1.0 11.05 6.43 2.48 4.6 23.21 7.57 3.0 3.2 72.2 61.81 3.922 1.9 12.43 2.2 9.93 2.5 RHS 2.3 30.7 81.4 52.78 6.17 3.30 9.40 4.0 75.0 19.1 86.0 RHS 2.62 2.3 13.5 13.2 26.4 17.95 5.8 16.7 80.7 20.60 2.80 2.9 18.6 13.4 20.17 2.1 9.7 171 153 131 118 107 91.8 15.953 0.60 75 x 25 x 2.20 5.7 22.25 2.8 25.1 13.68 4.7 14.5 75.5 26.0 RHS 5.7 31.1 37.07 2.59 8.0 18.0 RHS 1.8 15.64 4.6 47.0 RHS 5.5 14.63 1.0 27.45 3.53 14.2 21.9 18.83 6.0 RHS 2.8 13.5 23.83 1.03 0.2 9.0 46.4 13.1 58. Serviceabilty Load W *S1 =384EI / (250L2) .48 2.1 46.9 28.68 65 x 35 x 4.0 RHS 4.5 25.617 0.0 RHS 3.13 1.8 21.0 13.3-1(2)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS kg/m 0.6 22.37 1.5 D8-37 0.15 5.7 18.4 40.1 25.00 2.3 12.8 15.74 50 x 25 x 3.5 131 117 100 90.67 8.76 2.8 48.1 44.35 6.0 RHS 3.63 9.1 13.9 42.0 RHS 3.6 18.1 11.86 12.74 7.2 15.6 9.62 2.723 0.1 60.58 11.0 RHS 1.1 40.0 RHS 1.4 25.6 22.0 57.0 10.0 RHS 2.21 1.1 34.6 61.2 12.6 73.8 21.15 1.5 55.44 1.9 19.74 6.5 11.2 61.92 8.45 3.6 26.0 RHS 1.0 RHS 2.0 11.42 1.0 RHS 1.3 15.844 0.14 5.35 6.50 7.6 RHS 9.6 RHS 3.8 11.9 38.60 5.23 75 x 50 x 6.04 8.6 20.1 18.5 17.99 1.69 3.8 29.6 RHS 3.86 4.5 RHS 2.08 7.10 0.12 3.519 mm mm mm Note: 1.4 50.0 8.0 25.92 5.4 73.42 4.03 3.3 25.0 RHS 4.8 38.99 3.1 52. 3 68.8 45.14 5.25 47.0 1.6 Notes: 1.1 23.5 0.8 18.7 24.9 62.16 5.5 50 x 25 x 2.7 41. 5.3 65.5 313 259 64.4 14.2 12.8 RHS 2.9 13.8 RHS 2.1 69.8 36.6 19.3 RHS 6.9 31.4 36.4 12.8 9.54 8.6 11.1 8.2 9.0 3.1 32.1 50.9 20.2 21.5 17.6 65 x 35 x 2.99 3.970 (π2 E Iy G J / M2SX)0.34 101 85.3 RHS 2.0 50.6 10.1 74.3 57.1 34.19 5.7 11.1 16.7 28.0 2.9 44.3 58.0 22. 4.29 9.39 6.5 15.1 31.2 43.0 4.8 RHS 2.0 kN m 125 x 75 x 2.87 5.5 81.9 10.6 34.7 58.5 4.44 54.89 2.3 RHS 8.0 183 152 41.8 19.6 15.8 RHS 2.8 78.85 6.0 15.1 22.02 7.41 4. 6. DCTDHS/06 MARCH 2002 FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 1.7 13.0 58.3 14.1 42.25 1.9 40.0 6.67 2.82 5.7 13.9 24.4 20.8 27.3 RHS 3.5 25.75 2.5 28.51 10.6 10.3 26.5 27.3-2(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t mm mm mm kg/m 0.1 48.3 RHS 5.7 18.1 46.1.4 61.77 5.4 34.09 4.1 22.9 1.4 18.42 7.0 102 73.2 13.96 5.56 8.7 52.4 12.74 7.4 23.1 16.7 40.5 81.2 30.8 29.11 3.3 13.1 100 x 50 x 2.7 37.64 4.8 RHS 2.5 1.5 (See Section D4.0 50 x 20 x 2.14 244 204 163 136 122 102 97.2 33.6 52.5 25.4 41.3 RHS 2.5 3.5 11.0 27.1 31.6 39.3 26.51 3.77 4.6 16.5 5.02 5.43 114 95.0 116 84.8 RHS 2.7 11.2 32.8 67.9 24.98 3.0 51.57 4.8 81.4 20.7 17.0 1.8 40.87 115 96.5 13.6 18.95 6.30 4.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.2 17.6 67.2 75 x 50 x 2.24 157 132 104 87.0 37.4 33.13 155 129 26.64 6.22 7.0 12 φ Ms/L 2 φ Vv .4 20. 2.3 17.0 11.81 6.4 12.D8-38 TABLE D8.2 21.8 40.5 42.0 245 203 37.73 6.95 407 294 271 196 203 147 163 118 136 98.75 1.3 9. 3.8 14.7 29.4 15.4 26.8 49. 5 5.44 131 114 50 x 20 x 2.57 7.6 17.75 2.3 RHS 2.0 82.0 37.3 12.39 6.24 606 515 270 229 152 129 16.4 75 x 50 x 2.9 9.4 67.95 2810 2350 1250 1050 702 588 449 377 312 261 229 192 175 147 112 94.47 8.9 15.2 24.683 D8-39 .4 31.38 1.36 6.06 5.89 2.3 14.15 8.5 3.2 26.25 1.31 1.5 65 x 35 x 2.7 9.18 2.2 12.6 12.34 328 281 146 125 50 x 25 x 2.9 12.3 RHS 3.58 9.6 21.99 3.3 Note: 1.983 0.12 0.1 23.5 4.8 RHS 2.6 82.3 15.7 28.24 9.09 4.79 1.12 4.05 1.2 49.62 1.7 10.DCTDHS/06 MARCH 2002 TABLE D8.47 3.28 1.3 RHS 6.0 43.4 10.0 36.0 1.3 100 x 50 x 2. 97.5 17.8 RHS 2.8 RHS 2.0 25.8 34.0 4.3 19.8 22.9 32.5 10.0 65.7 12.0 2.4 41.01 1.21 3.34 8.9 32.54 1.20 7.49 6.0 3.4 57.95 5.15 4.8 28.15 49.7 29.19 5.795 4.14 1230 1040 549 463 309 261 198 167 137 116 101 85.778 0.5 1.25 4.3 10.3 RHS 2.8 14.5 16.3 29.14 0.2 58.81 2.01 6.58 3.11 7.0 70.93 3.2 65.8 RHS 2.11 2.29 2.75 1.6 13.2 21.69 5.5 45.3 20.03 7.0 24.41 1.912 0.5 0.4 57.9 36.05 3.34 2.3 RHS 8.1 78.48 3.7 34.0 18.3 RHS 5.1 11.65 3.0 125 x 75 x 2.3 50.05 7.3 52.8 RHS 2.5 42.39 4.67 2.74 5.9 20.3 48.0 6.75 1.2 49.8 RHS 2.3-2(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 0.28 2.25 112 98.73 2.3 16.1 28.68 2.21 1.5 19.15 Serviceabilty Load W *S1 = 384EI / (250L2) 8.8 43.1 77.81 6. 0 SHS 8.01 6.2 68.0 10.4 77.4 16.1 60.6 11.6 10.9 47.7 9.0 25.5 Notes: DCTDHS/06 MARCH 2002 1.3 18.94 20.1 12.0 14.7 12.5 61.8 62.0 SHS 6.5 10.90 5.3 22.0 13.3 21.3 26.1 39.0 14.8 79.9 14.6 23.5 SHS 7.7 11.7 16.1 22.8 68.4 31.5 24.7 47.7 38.34 5.4 10.74 5.7 15.0 12 φ Ms/L 2.45 4.0 9.9 22.0 5.5 22.7 34.4 19.5 13.7 30.0 2.56 2.96 2.2 9.7 23.6 21.0 3.9 27.0 357 309 252 180 136 97.5 28. 4.9 20. φ αm αs W *L1 W *L2 = = = = = 0.76 32.4 11.6 61.0 SHS 14.97 507 432 353 271 228 184 17.5 45.0 SHS 10.5 89.5 22.0 19.5 19.3 32.3 4.28 6.0 15.48 15.7 55.0 SHS 12.6 9.3 28.1 27.4 17.0 SHS 1.3 11.6 3.0 9.4 71.0 SHS 6.25 6.4 13.9 9.3 30.0 36.8 19.7 29.5 23.53 2.9 1.0 13.5 7.5 11.0 12.8 63.6 179 154 126 90.0 SHS 4.39 1.7 31.2 48.78 7.6 7.6 275 379 443 26.4 13.0 φ Vv 10.8 41.5 13.9 8.8 19.2 8.0 8.3 20.0 20.7 5.2 63.60 10.8 34.6 17.4 16.5 59.8 35.6 10.53 5.6 17.44 11.8 9.51 25.2 8.70 5.1 45.8 15.9 10.6 31.0 11.65 14.4 41.5 15.8 25.95 4.0 SHS 16.6 12.0 12.D8-40 TABLE D8.0 7.30 6.74 6.8 119 103 84.6 29.9 37.6 15.3 23.5 36.4 12.4 21.89 13.99 6.20 7.2 20.4 19.9 27.27 242 204 165 133 24.6 51.2 15.0 SHS 11.2 18.2 54.7 50.0 9.54 363 312 257 228 199 168 136 .9 25.3 10.3 51.9 34.7 34.0 20.0 18.5 30.5 18.2 4.4 17.46 8.29 14.80 8.5 SHS 14.9 39.7 27.6 SHS 8.9 13.2 143 117 83.06 18.2 46.8 93.4 59.8 71.7 8.49 3.98 11.7 40.1 44.37 4.9 35.7 12.99 6.7 12.77 15.5 58.06 5.9 9.6 16.8 8.4 8.0 6.91 4.0 11.40 4.6 43.9 13.8 10.0 14.1 27.3 59.9 9.4 7.0 1.9 12.3 11.7 19.6 13.5 3.0 23.3 19.0 8.6 21.0 SHS 9.5 SHS 2.13 27.1 45.5 53.1 22.50 187 164 137 123 108 82.5 SHS 7.4 13.9 41.0 SHS 12.3-3(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 100 x 100 x 6.4 8.1 24.57 5.6 89 x 89 x 6.07 23.33 5.3 81.7 21. 2.7 18.1 36.0 kN 39.0 4. 3.5 SHS 5.9 16.2 10.97 20.87 29.5 17.4 7.0 27.0 15.2 15.0 SHS 2.7 119 137 57.7 16.6 173 239 275 75 x 75 x 6.5 32.7 25.0 SHS 8.8 45.0 28.6 68. 5.1 12.55 86.8 19.98 13.0 28.94 4.8 29.60 2.9 44.1 34.0 13.53 3.4 42.8 34.7 38.7 27.81 7.4 12.35 17.07 90 x 90 x 3.0 5.75 6.5 91.6 9.8 21.3 13.1 30. 26 6.71 2.1 9.97 1.8 11.962 0.02 1.35 3.48 5.0 3.5 8.90 1.3 24.9 9.30 1.42 4.56 2.94 2.74 5.45 4.0 SHS 14.8 10.91 3.2 4.0 14.38 1.75 5.18 7.54 2.72 2.8 17.60 1.2 19.85 5.0 SHS 2.49 3.62 2.0 4.99 1.88 1.66 4.31 1.24 4.39 1.0 12.0 SHS 12.0 SHS 12.54 6.0 7.52 4.31 3.7 14.0 6.0 SHS 8.7 5.1 25.22 75 x 75 x 6.17 2.62 1.1 38.80 8.32 1.0 42.5 SHS 7.80 7.92 3.17 5.85 3.4 20.791 mm mm mm 90 x 90 x 3.26 1.70 1.83 3.86 4.98 6.0 100 x 100 x 6.1 13.29 3.6 13.71 6.DCTDHS/06 MARCH 2002 TABLE D8.53 5.0 28.6 37.9 22.39 2.5 SHS 2.2 55.63 3.5 3.82 1.47 4.50 356 317 271 245 220 189 155 39.77 2.45 1.0 SHS 1.28 2.60 2.07 933 816 685 544 463 378 233 204 171 136 116 94.60 5.3 67.37 2.2 12.5 16.0 SHS 16.54 6.96 2.9 15.0 11.74 2.49 2.55 2.23 2.16 3.0 8.72 2.0 15.7 8.5 SHS 5.56 6. 106 139 158 88.00 4.4 51.48 5.5 SHS 7.0 58.7 76.76 2.53 3.0 10.8 Serviceabilty Load W *S1 = 384EI / (250L2) 9.0 SHS 8.33 1.2 22.22 5.82 3.6 422 556 631 46.08 2.1 8.3 32.6 27.12 6.62 11.0 9.70 1.73 2.56 1.53 6.21 2.49 3.2 55.8 18.01 6.8 9.0 SHS 4.90 11.1 12.25 1.76 3.84 2.10 1.8 16.0 SHS 9.93 3.0 SHS 10.33 2.4 68.39 391 333 273 222 97.11 5.67 9.78 3.88 1.8 9.96 4.3 13.1 60.7 24.9 61.3 11.20 1.31 1.13 89 x 89 x 6.20 1.2 26.16 6.26 7.8 39.87 7.0 11.49 4.22 3.83 4.5 SHS 14.1 30.918 1.87 5.76 4.0 17.24 4.7 10.24 3.74 2.44 4.0 5.58 6.67 4.45 2.7 19.22 2.24 2.5 15.81 1.84 3.49 3.9 23.47 2.80 6.6 12.6 43.12 0.71 5.6 3.5 17.44 2.53 2.4 34.7 15.32 1.0 13.5 10.50 7.44 7.8 83.62 1.56 4.56 3.9 79.90 10.75 3.02 2.83 4.23 5.4 21.60 8.39 3.3-3(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t kg/m 1.0 SHS 6.88 8.4 12.31 .8 34.9 6.5 19.36 1.71 14.3 25.05 3.2 24.3 30.9 22.50 3.21 4.1 27.3 4.33 8.53 1.80 4.12 3.8 61.4 21.81 5.9 15.4 42.4 37.3 51.0 SHS 11.5 104 90.22 2.45 6.3 10.11 5.91 3.0 47.15 2.9 10.0 2.0 16.12 0.57 4.81 7.93 8.95 2.69 9.6 SHS D8-41 Note: 1.06 5.8 70.69 14.89 1.62 5.9 8.5 35.71 4.0 SHS 6.20 7.78 7.21 6.27 3.0 5. 99 5.40 1.3 8.16 6.0 SHS 3.7 23.3 9.8 11.1 64.15 5.5 25.60 5.76 3.9 30.4 26.6 7.01 4.9 41.0 11.6 47.53 6.2 32.50 8.5 SHS 2.13 6.0 13.6 18.2 9.35 2.83 4.0 1.24 2.2 44.2 78.76 8.0 SHS 1.9 123 97.1 16.25 3.72 1.82 2.3 40.2 38.6 19.7 10.0 SHS 1.8 10.12 7.8 17.2 15.5 36.6 25.13 4.5 45.0 23.5 9.9 13.51 2.8 9.95 6.4 13.9 20.22 53.4 54.5 83.3 15.7 22.6 22.99 5.27 4.79 1.0 27.7 8.3 30.94 5.65 149 131 110 98.6 14.2 22.1 13.3 19.7 76.1 10.3 22.5 4.5 31.5 SHS 2.6 SHS 35 x 35 x 3.1 78.6 9.68 1.1 20.35 7.3 31.11 4.34 2.5 66.09 5.66 1.7 15.9 16. W *L1 = 12 φ Ms/L 4.46 62.2 107 94.1 50.9 84.5 3.3 12.75 4.5 1.1 23.08 93.57 7.75 7.2 54.1 65.7 65.06 2.0 SHS 4.31 1.04 46.5 48.30 3.60 6.6 178 158 133 107 88.3 46.6 SHS 12.9 192 161 127 108 88.5 55.9 20.4 13.4 18.9 9.43 2.8 38.43 1.3 71.2 26.0 59.16 3.19 1.64 1.99 4.0 SHS 5.80 2.8 .0 13.46 3.9 11.912 5.0 SHS 65 x 65 x 6.58 1.TABLE D8.8 49.0 SHS 4.6 21.1 9.7 42.3 32.35 4.7 43.01 2.6 48.0 27.39 4.9 46.5 SHS 2.6 SHS 50 x 50 x 5.6 SHS 25 x 25 x 2.0 18.38 2.0 9.5 82.5 75 x 75 x 6.7 44.0 SHS 4.0 20.7 13.4 85.25 1.2 15.7 7.47 4.9 55.0 SHS 5.51 16.04 1.0 SHS 3.8 11.6 14.4 78.57 2.13 6.11 3.56 3.6 80.08 1.02 3.01 3.22 13.0 SHS 1.0 32.08 1.36 1. αs = 1.83 22.9 41.8 19.14 1.70 4.6 SHS 30 x 30 x 2.7 27.0 20.1 9.6 SHS 20 x 20 x 1.3 89.6 61.5 SHS 2. W *L2 = 2 φ Vv 3.7 44.4 20.50 10.0 7.7 41.59 7.0 69.9 14.3 40.0 SHS 1.2 33.7 16.64 4.9 12.9 21.4 26.7 26.24 5.5 36.2 26.22 7.27 6.2 47.1 22.6 53.3 13.8 23.78 3.98 8.88 3.10 5.9 13.3 15.1 33.0 1.5 SHS 2.85 2.1 27.4 29.95 8.4 21.1 27.5 72.4 21.46 4.39 5.0 27.0 SHS 3.53 6.0 SHS 2.8 18.86 = 1.0 13.3-3(2)(A) D8-42 STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.0 SHS 2.1 7.36 4.4 33.5 47.1 32.56 4.8 52.68 10.9 34.3 11.77 2.18 5.95 6.1 9.6 18.8 68.1 8.7 12.3 61.12 0.6 63.0 10.38 2.9 55.5 63.09 3.00 2.2 43.76 4.56 4.0 SHS 2.55 4.0 37.1 18.77 2.0 8.8 9.38 4.2 23.99 3.50 0.45 6.5 45.3 8.98 2.18 6.9 49.1 40.6 26.8 59.7 27.75 2.33 2. 0.16 3.6 30.66 8.3 68.8 22.85 1.2 48.2 51.2 17. φ = 0.4 29.4 9.85 6.4 25.0 19.68 2.4 11.6 57.72 7.1 13.4 86.92 124 109 91.64 4.14 4.36 4.3 10.0 2.57 3.8 13.1 63.56 2.6 23.0 38.1 24.7 16.5 10.0 71.4 53.85 5.2 32.2 46.23 5.30 Notes: 1.66 5.73 18.1 30.8 27.00 1.83 2.8 11.04 6.78 1.02 4.608 kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.7 27.7 12.12 7.00 0.6 11.9 8.79 1.3 73.60 2.90 5.68 5.70 5.99 1.6 34.0 134 118 100 80.52 6.7 33.87 5.0 SHS 2.5 66.3 19.0 10.1 16.5 31.9 2.1 29.49 3.1 16.0 32.3 81.4 15.35 11.7 14.2 39.5 53.5 41.56 3.3 30.6 36.42 1.0 12.873 373 327 275 246 216 166 118 267 236 200 161 133 95.01 4.2 21.3 24.8 60.9 11.82 74.5 SHS 2.81 12.4 23.5 24.32 7.7 53.4 12.6 11.43 2.29 3.8 26.6 16.2 19.4 26.00 1.8 24.30 2.2 35.12 2.13 6.5 SHS 3.0 16.0 SHS 3.3 66.49 2.3 42.3 36.2 12.61 6.7 39.81 7.5 27.99 2.0 15.5 18.4 67.3 33.58 9.0 36.3 33.6 39.57 14.4 10.6 39.1 8.6 19.0 40.66 4.0 187 164 137 123 108 82.22 7.2 18.2 13.05 6.1 13.0 SHS 1.1 13.8 22.12 5.55 8.3 45.3 22.0 SHS 1.1 11.88 2.4 14.0 32.93 2.1 16.7 40.63 1.98 7.4 70.0 11.8 28.84 5.6 37.54 5.3 8.0 SHS 2.75 αm 249 218 183 164 144 110 78.43 107 93.8 66.18 10.73 3.59 3.1 128 111 91.1 10.3 33.38 1.9 30.33 0.74 4.38 1.6 20.8 59.6 16.03 5.02 4.58 3.0 31.49 1.49 7.811 5.02 3.27 8.3 16.6 25.730 6.5 16.1 35.3 18.96 5.39 1.20 0.1 56.8 41.31 7.18 6.13 6.4 17.8 21.7 9.0 8.33 3.99 1.0 4.07 3.55 5.0 3.5 47.68 10.6 SHS 40 x 40 x 4.5 16. 35 4.2 8.19 158 116 141 104 120 88.19 4.80 9.9 12.0 SHS 3.3 27.5 13.9 15.34 1.865 0.592 0.57 8.0 11.3 59.82 2.6 SHS 25 x 25 x 2.63 1.5 29.13 0.0 12.5 SHS 3.523 0.1 8.92 2.88 3.8 12.6 96.4 10.15 1.5 SHS 2.727 0.0 17.81 1.157 0.712 0.95 2.2 15.60 2.75 1.1 9.57 2.9 63.76 2.65 6.30 1.6 SHS 35 x 35 x 3.731 0.0 SHS 1.9 57.5 SHS 2.8 23.73 3.0 25.48 6.14 0.6 25.33 6.5 SHS 2.8 11.35 11.84 8.8 87.6 12.64 1.2 22.0 SHS 2.4 46.90 3.77 1.05 0.0 39.03 1.5 52.4 36.80 2.4 27.11 5.21 0.92 2.7 9.33 1.69 13.0 SHS 2.8 9.3 11.98 2.2 49.10 6.6 68.0 32.71 3.8 43.49 7.9 31.02 1.0 15.39 3.207 3.66 4.75 5.6 SHS 30 x 30 x 2.0 18.25 3.6 8.77 7.929 0.5 632 564 482 435 391 335 276 386 349 301 248 214 176 145 140 125 106 92.9 70.34 2.49 1.796 0.8 18.5 SHS 2.72 2.74 1.1 50.334 0.4 39.0 20.26 3.0 97.0 13.22 1.33 1.3-3(2)(B) DCTDHS/06 MARCH 2002 SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-43 mm mm mm kg/m 75 x 75 x 6.12 0.2 24.05 8.58 5.20 5.56 4.66 6.45 4.72 2.8 52.1 38.2 21.5 1420 1270 1080 980 880 754 620 868 784 678 558 481 397 326 316 281 239 208 174 144 129 115 101 85.6 53.44 1.7 17.683 0.91 5.9 24.0 SHS 2.24 9.8 71.853 0.6 15.1 17.23 8.9 8.02 0.6 20.950 0.5 SHS 2.193 0.74 3.182 0.25 3.01 1.78 6.09 1.650 0.8 11.78 1.54 3.45 1.0 22.3 71.88 8.3 67.0 1.0 47.5 77.86 7.06 1.284 0.3 10.68 9.610 Serviceabilty Load W *S1 = 384EI / (250L2) 1.75 2.0 SHS 65 x 65 x 6.22 5.88 3.8 54.58 4.3 17.4 10.99 8.4 28.1 43.0 10.88 2.8 31.788 0.0 9.59 3.23 5.0 SHS 1.1 32.57 4.6 32.80 10.6 35.0 SHS 2.684 0.16 6.2 24.7 8.0 10.0 SHS 1.2 15.8 34.6 14.80 3.78 4.9 50.729 0.109 0.7 13.11 1.90 3.0 SHS 4.443 0.4 21.30 2.3 63.8 18.58 1.36 1.60 1.08 7.41 2.93 4.0 13.81 7.42 1.7 12.3 13.53 6.1 64.0 SHS 4.7 18.385 0.31 6.7 7.3 55.0519 .17 3.2 16.13 6.467 2.508 0.9 79.208 0.0 19.413 0.74 4.09 3.577 0.4 19.323 0.7 31.0 42.18 2.15 4.2 30.41 1.9 8.9 22.5 23.506 0.7 14.9 37.99 1.9 13.51 1.39 5.3 28.3 30.7 17.26 2.5 SHS 2.92 1.45 5.95 1.8 61.80 6.04 3.6 SHS 40 x 40 x 4.0 SHS 1.6 11.575 0.81 2.0 SHS 3.60 5.09 4.979 0.902 0.8 20.2 35.350 0.53 6.6 SHS 12.4 12.97 7.24 4.2 15.74 1.701 0.28 0.8 11.09 5.0 SHS 3.12 5.02 3.56 3.7 14.1 21.47 0.81 8.0 SHS 2.6 12.197 0.10 6. 0.3 8.0 45.35 4.8 15.25 2.879 0.68 1.3 33.0 SHS 1.802 0.81 4.25 1.51 6.00 3.47 2.81 6.5 35.31 7.91 2.50 10.60 2.74 1.15 1.1 22.4 70.0 38.52 5.232 0.5 78.466 0.7 16.2 55.33 4.0 75.225 0.0 17.32 2.372 0.5 36.0 SHS 5.15 2.4 9.9 30.64 2.20 10.5 109 80.2 13.579 0.44 5.88 4.2 73.0 SHS 1.554 0.70 2.999 0.46 2.2 26.81 8.2 44.4 20.36 7.29 1.5 28.45 1.38 4.3 16.285 0.3 19.16 3.324 0.32 356 317 271 245 220 189 155 217 196 170 140 120 99.83 4.256 0.830 0.68 7.32 2.64 5.5 50.54 1.4 11.3 81.49 1.83 2.55 2.1 27.4 34.17 4.3 14.0922 0.96 7.6 33.0 SHS 5.14 1.13 0.1 65.1 25.93 4.8 18.39 2.85 2.435 0.6 8.87 228 203 173 157 141 121 99.9 26.2 9.4 8.2 19.5 5.627 0.54 7.6 SHS 20 x 20 x 1.06 3.9 44.0 88.79 1.0747 6.97 4.3 62.7 10.6 11.31 1.2 13.152 4.08 2.6 9.37 6.TABLE D8.6 SHS 50 x 50 x 5.9 50.31 5.898 0.38 1.127 0.0 55.1 20.45 4.89 5.5 56.86 1.8 83.75 7.494 0.25 2.8 16.78 3.03 5.0 SHS 3.19 1.144 0.72 7.0 24.3 16.3 76.29 0.03 1.451 0.25 1.299 3.8 61.95 5.66 1.831 0.96 3.873 Note: W*S1 (kN) Mass per m 1.37 1.93 2.31 6.245 0.0 SHS 4.424 0.31 1.4 39.320 0.2 24.34 2.6 19.94 2.5 45.0 9.3 139 125 108 89.117 4. 19 6.25 1.5 4.28 4.8 16.67 2.64 5.3 33.6 19.9 30.9 36.3 48.1 97.9 1.34 3. φ αm αs W *L1 W *L2 = = = = = 0.9 41.0 20.4 25.3 14.6 21.1 Notes: 1.41 DCTDHS/06 MARCH 2002 .34 86.80 7.2 56.1 33.3 SHS 4.89 4.9 72.1 75.4 24.6 16.8 45.0 4.6 16.9 21.76 92.86 5.25 39.80 79.5 18.4 39.6 28.5 0.11 2.3 SHS 3.54 6.6 24.8 SHS 2.82 133 50 x 50 x 2.0 11.3 10.5 5.2 11.61 5.3 73.8 SHS 2.59 4.09 119 100 40 x 40 x 2.4 19.8 SHS 2.1 11.0 67.2 39.4 24.4 12.3 SHS 3.52 7.40 3.74 3. 3.5 29.62 52.75 1.6 48.3 12.0 12 φ Ms/L 2 φ Vv 9.5 13.14 196 146 131 97.1 187 155 118 13.7 29.7 100 74.6 9.6 13.6 20.0 1.52 5.2 35 x 35 x 2.60 5.0 37.1 22.9 47.82 6.0 33.4 22.1 35.3 17.8 24.3 28.8 SHS 2.0 1.2 29.2 28.3-4(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W*L is LESSER of W*L1 and W*L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t mm mm mm kg/m 0.2 12.14 9.37 3.1 57.8 9.2 21.3 65.1 17.42 78.5 23.7 26.3 58.8 86.0 6.81 4. 4.6 58.2 44. 2.1 60.0 kN 100 x 100 x 2.5 1.2 11.63 7.0 3.1 18.99 3.0 2.12 8.1 37.91 3.7 9.78 8.5 78.21 4.1 12.1 22.9 50.19 5.6 16.8 SHS 2.D8-44 TABLE D8.0 15. 5.73 6.1 26.3 10.6 55.4 43.8 14.03 8.1 36.1 32.39 6.45 6.8 65 x 65 x 2.51 4.7 43.8 24.9 13.26 2.1 18.6 14.75 2.5 3.0 64.3 SHS 8.3 SHS 2.6 34.58 8.2 9.6 14.8 15.6 18.6 15.3 SHS 6.8 78.0 32.4 10.5 48.62 7.2 19.7 254 211 75 x 75 x 2.2 30.31 7.95 301 224 201 150 150 112 120 89.01 5. 2 20.3 SHS 6.3 31.78 6.5 15.2 9.48 1.958 0.11 2.83 2.6 28.7 18.9 33.8 SHS 2.94 1.75 6.5 17.9 75 x 75 x 2.5 15.3 11.14 7.7 41.27 1.55 3.1 23.0 1.41 2.75 2.2 40 x 40 x 2.8 SHS 2.70 1.3 SHS 4.00 5.43 1.2 28.95 1.6 42.80 2.0 4.3 21.8 SHS 2.19 5.93 4.0 100 x 100 x 2.95 1.81 Note: 1.77 4.2 11.17 1.7 49.5 35 x 35 x 2.0 10.0 50 x 50 x 2.8 35.613 0.3-4(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t kg/m 0.3 SHS 8.11 9.45 1.31 5.35 1.09 0.71 1.3 17.0 3.3 SHS 2.2 12.53 4.0 2.0 61.9 47.0 67.659 5.37 3.1 19.3 13.5 15.80 2.02 5.6 56.79 6.3 51.0 6.42 448 199 71.39 6.35 8.5 3.04 2.8 57.486 0.949 0.58 1.8 SHS 2.1 27. Serviceabilty Load W *S1 = 384EI / (250L2) 7.83 5.2 21.5 1.8 SHS 2.25 1.3 23.3 78.31 7.72 5.0 26.5 4.865 0.25 1.0 11.7 56.9 14.757 0.4 31.2 27.64 3.9 12.87 112 mm mm mm 92.64 2.41 4.8 36.759 0.93 7.14 831 702 369 312 208 175 133 112 17.3 SHS 3.426 D8-45 .48 3.2 14.01 4.5 5.9 68.2 10.2 25.23 1.9 48.700 0.2 12.5 0.25 70.62 109 94.82 9.8 48.4 65 x 65 x 2.3 SHS 3.5 17.99 3.98 3.09 0.34 227 195 101 86.9 43.3 8.09 7.8 25.7 36.38 3.7 17.0 14.0 32.04 2.80 3.DCTDHS/06 MARCH 2002 TABLE D8.66 8.75 1.67 2.95 2050 1720 910 763 512 429 328 275 227 191 167 140 128 107 81. 842 2. 3.9 27.0 2.93 2.25 4.2 64.02 1.0 RHS 5.809 (π2 E Iy G J / M2SX)0.07 68.54 18.12 3.44 5.2 11.5 RHS 3.23 6.0 4.3 8.7 14.918 3.0 14.95 2.41 1.05 6.7 9.56 4.42 3.4 9.6 8.97 5.46 3.91 4.85 4.59 3.54 5.0 RHS 16.03 5.76 7.0 33.01 3.31 1.6 8.85 7.5 RHS 2.6 18.16 1.13 0.58 3.63 3.20 2.52 2.34 2.0 RHS 3.5 56.721 244 208 170 151 131 110 88.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.5 (See Section D4.8 9.55 4.69 2.9 1.5 24.92 2.1 55.9 26.5 RHS 2.6 RHS 12.66 9.46 2.53 3.0 RHS 3.2 58.75 8.04 3.63 4.1 14.7 28.4 16.9 41.0 RHS 2.77 2.49 7.06 2.88 3.79 2.76 2.08 1.2 27.7 13.3 10.08 2.70 17.7 55.8 14.19 3.38 6.96 7.0 5.0 RHS 2.36 4.4 8.1.53 6.49 2.0 12.30 1.69 3.23 0.0 kN m 8.1 29.53 1.56 6.63 5.6 27.21 3.38 3.10 5.1 20.35 9.87 7.17 3.25 4.04 1.53 6.51 7.81 4.21 4.67 1.3 17.6 21.20 2.69 2.84 1.2 10.42 4.8 63.53 Notes: 1.66 1.11 1.81 6.82 3.33 7.0 1.4 26.0 RHS 5.0 10.1 10.6 9.87 4.96 1.64 36.4 27.8 34.53 2.01 6.41 4.64 1.15 5.83 374 316 257 195 164 132 26.71 5.14 6.9 11.93 1.0 RHS 1.8 24.0 22.79 3.43 2.0 41.0 6.3 12.6 36.23 7.92 3.13 2.87 1.13 7.7 14.4 18.5 12.08 3.98 6.62 2.84 1.20 7.02 100 x 50 x 6.57 5. 4.34 0.20 6.8 37.12 4.71 3.1 18.8 17.2 11.46 1.48 2.37 4.27 4.83 4.0 3.67 3.32 3.47 2.6 12.2 21.9 31.53 7.97 5.32 4.7 12.59 4.1 24. 6.68 2.8 9.5 RHS 2.02 11.28 4.D8-46 TABLE D8.0 2 φ Ms/L φ Vv 10.87 3.73 1.41 14.58 6.0 12.81 2.08 3.6 11.3 10.18 8.67 2.7 10.7 32.39 5.07 3.42 6.6 16.38 6.42 7.0 13. W*L2 FLR Span of Beam (L) in metres t FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 7.9 53.68 4.1 34.89 4.60 3.8 8.27 10.14 2.89 4.9 71.71 1.40 2.94 2.9 34.5 20.47 1.42 2.82 8.95 5.90 2.96 7.77 6. DCTDHS/06 MARCH 2002 2.02 6.67 5.41 3.0 RHS 4.04 3.56 3.1 34.9 48.16 1.37 5.07 73.8 33.6 8.7 19.20 5.01 1.5 9.02 8.7 35.68 4.4-1(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*L1 (kN) Mass per m mm mm mm kg/m 1.4 14.0 RHS 4.40 4.4 8.20 1.83 6.44 317 269 219 167 140 113 54.30 1.91 4.37 9.6 8.03 3.62 2.51 4.26 4.0 8.44 3.1 10.0 9.10 4.8 12.60 3.71 2.13 125 x 75 x 6.37 6.0 RHS 3.60 5.70 2.05 5.06 2.08 7.7 32.83 2.3 33.35 6.26 2.2 9.06 5.68 5.0 13.0 73.0 150 x 50 x 6.69 2.94 5.01 2.0 RHS 16.05 12.1 13.80 1.34 1.0 11.05 0.14 5.22 2.03 2. 5.20 13.54 1.02 2.82 5.50 3.53 6.777 2.55 5.30 4.0 RHS 4.83 5.18 7.56 1.8 10.6 .3 25.0 RHS 2.0 4.12 5.0 RHS 5.98 2.52 1.5 16.38 4.33 6.9 31.44 1. 162 0.374 0.119 0.07 26.0922 0.0403 0.390 0.0 10.0579 0.220 0.0793 0.674 1.0836 0.239 0.02 0.0333 0.46 1.0 2.0912 0.154 0.431 0.138 0.07 0.243 0.09 0.56 4.649 0.0200 Note: 1.11 5.0678 125 x 75 x 6.84 4.74 2.0674 0.416 0.533 0.661 0.0348 0.0272 0.764 0.20 0.108 0.47 1.220 0.971 0.139 0.6 RHS 12.30 2.5 13.0 14.12 1.7 14.266 0.0 13.0679 0.271 0.78 1.02 1.96 7.07 32.365 0.0904 0.133 0.270 0.44 2.1 16.0 RHS 4.0 5.66 5.0392 0.0808 0.830 1.0 RHS 3.3 19.185 0.929 0.304 0.163 0.0550 100 x 50 x 6.225 0.171 0.0997 0.0 8.400 0.169 0.0324 0.0721 0.790 0.80 3.128 0.351 0.60 5.0232 0.0482 0.4 23.391 0.295 0.09 1.0525 0.30 1.DCTDHS/06 MARCH 2002 TABLE D8.96 7.0 RHS 5.0786 0.432 0.8 6.133 0.472 0.757 0.0495 0.0 10.192 0.529 0.10 7.299 0.109 0.70 1.0284 0.0841 0.53 6.369 0.531 0.0 RHS 4.0681 0.324 0.0918 0.0 4.329 0.0638 0.664 0.0 3.192 0.0979 0.0245 0.0 9.0484 0.0473 0.166 0.0 12.0592 0.2 11.0 RHS 16.78 8.335 0.241 0.6 8.171 0.53 6.0 150 x 50 x 6.118 0.0584 0.233 0.73 1.0397 0.0 RHS 5.155 0.0 RHS 3.9 9.0 RHS 16.899 0.48 2.0427 0.840 0.96 2.0581 0.53 6.0613 0.0298 0.103 0.0563 0.133 0.426 0.506 0.163 0.98 4.49 1.66 2.0830 0.5 RHS 2.826 0.5 15.0 6.200 0.300 0.740 0.3 8.364 0.444 0.60 3.207 0.189 0.647 0.0480 0.56 6.19 1.109 0.110 0.4-1(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 1.932 0.162 0.6 23.3 13.245 0.436 0.0499 0.272 0.317 0.6 8.0933 0.89 3.0 RHS 5.81 5.141 0.622 0.4 28.684 0.145 0.121 0.113 0.07 3.158 0.0691 0.0345 0.399 0.192 0.162 0.300 0.236 0.119 0.523 0.0760 0.164 0.0801 0.0558 0.531 0.0978 0.268 0.135 0.235 0.134 0.2 10.64 10.9 19.650 0.254 0.580 0.476 0.5 RHS 2.208 0.193 0.70 2.7 14.59 2.89 1.22 1.197 0.0 RHS 2.201 0.0962 0.191 0.0750 0.83 4.0405 0.782 0.17 1.488 0.122 0.367 0.438 0.0892 0.0756 0.109 0.106 0.168 0.116 0.232 0.0920 0.956 0.0386 0.0782 0.133 0.0 RHS 2.452 0.332 0.284 0.136 0.81 1.0 RHS 3.78 4.0 7.5 RHS 3.0 RHS 1.113 0.0 RHS 2.302 0.132 0. Serviceabilty Load W *S1 = 8El/(250L2) D8-47 .210 0.46 1.157 0.288 0.20 1.89 3.223 0.153 0.2 11.158 0.50 3.233 0.195 0.136 0.273 0.92 2.544 0.0625 0.5 RHS 2.22 0.0647 0.0 11.66 1.16 2.543 0.305 0.49 7.14 0.198 0.0447 0.165 0.981 1.0975 0.32 3.108 0.0 RHS 4.3 8.131 0.0749 0.611 0.36 7. 76 4.92 1.14 3.92 5.89 3.35 1.691 0.16 4.09 1.75 1.39 2.81 4.35 15.0 2 φ Ms /L φ Vv .9 = 1.85 5.04 1.0 10.07 2.1 29.28 2.97 7.65 3.58 2.49 4.08 7. 2.01 5.24 1.1 13.25 1.0 RHS 1.1 42.3 13.2 10.23 1.09 1.08 24.3 69.8 15.60 3.33 5.76 2.0 kN m 12.5 40.424 60.50 8.32 8.65 1.39 1.42 1.565 0.9 38.36 2.05 7.56 6.6 RHS 2.6 RHS 12.36 1.45 3.93 21.61 5.7 12.58 6.6 18.95 3.4 25.5 RHS 2.61 3.59 3.36 7.06 2.635 0.7 16.6 34.11 178 153 126 97.43 2.31 6.04 0. 5.7 8.98 1.18 8.76 2.69 2.06 0.82 2.85 4.9 36.02 8.94 5.91 1.5 36.9 22.46 1.60 3.83 1.81 3.91 5.42 10.1 24.5 19.73 1.714 1.35 6.07 1.9 8.92 3.0 11.39 1.5 17.89 9.23 7.51 4.73 21.37 2.97 1.5 9.83 3.70 8.8 34.875 0.16 6.06 2.3 10. αs W *L1 W *L2 = = = 1.2 16.72 2.17 5.12 6.7 9.09 8.9 34.0 RHS 2.5 11.5 RHS 3.71 2.7 20.0 = 1.5 5.43 5.71 4.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.8 12.726 1.1 10.56 3.36 2.7 10.68 4.83 2.59 1.33 1.20 7.75 1.3 34.0 1.73 5.1 8.0 RHS 5.39 1.2 13.85 2.4 16.82 11.37 10.84 2.609 0.35 4.35 5.827 0.32 3.79 1.38 3.5 8.0 RHS 2.54 6.2 11.2 49.02 0.7 11.48 1.08 2.30 1.45 2.38 16.15 0.1 13.58 3.53 8.50 3.0 RHS 4.36 4.7 32. 3.34 75 x 25 x 2.37 5.5 4.952 1.4 30.77 3.55 2.0 RHS 1.5 12.04 0.0 RHS 1.0 42.02 1.986 0.0 16.9 12.95 2.70 1.4 4.3 27.7 23.18 3.0 RHS 3.4 9.613 0.914 0.18 0.60 2.44 5.9 2.25 4.24 7.1 34.91 5.07 6. FLR Span of Beam (L) in metres t FLR FLR φ αm 3.8 6.836 0.3 14.9 41.49 3.68 1.766 0.45 2.0 18.6 14.23 1.25 3.2 36.76 3.5 64.3 8.6 RHS 3.0 RHS 2.6 RHS 9.7 23.1 32.40 2.03 Notes: 1.38 1.59 2.92 22.0 RHS 1.36 1.18 7.31 1.1 37.5 43.20 6.571 0.731 0.8 21.60 2.2 27.94 3.51 4.66 3.91 6.4-1(2)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity W *L1 W *L2 Maximum Design Load W*L is LESSER of W*L1 and W*L2 Designation d b W*L1 (kN) Mass per m W*L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.04 1.90 4.28 50 x 20 x 3.67 2.67 5.0 RHS 2.63 2.36 8.38 1.9 24.72 3.38 4.26 2.919 0.66 6.34 3.97 1.6 19.60 7.5 21.12 0.50 1.06 5.53 3.2 9.75 9.0 4.54 4.5 RHS 2.2 8.476 61.46 2.08 3.4 16.88 6.847 1.8 8.63 2.67 8.2 51.16 7.04 75 x 50 x 6.19 1.3 11.15 1.53 6.06 2.07 2.8 54.0 RHS 1.8 9.5 13.58 2.689 0.36 1.928 0.9 13.42 4.49 7.73 3.05 6.69 2.0 RHS 3.64 5.92 5.34 2.69 18.1 48.11 3.7 11.635 0.809 (π2 E I y G J / M2SX)0.5 3.46 1.91 4.15 65 x 35 x 4.5 13.13 5.80 3.6 19.83 6.41 4.575 0.35 6.21 50 x 25 x 3.69 2.73 1.8 9.12 4.80 4.1 64.72 5.21 2.8 11.56 4.40 4.95 2.920 79.13 5.75 2.62 2.68 244 208 170 151 131 110 88.49 5.8 24.950 0.696 0.3 24.39 4.3 26.0 RHS 2.46 7.5 1.04 4.4 54.0 10.5 20.97 2.5 0.81 2.77 18.0 RHS 5.3 13.0 34.05 4.6 RHS 3.90 2.27 6.69 2.78 1.44 2.52 6.64 73.1 24.2 21.77 2.4 14.53 1.38 2.12 5.4 15.0 4.10 4.5 RHS 2.0 33.15 6.93 6.53 1.2 14.87 4.38 1.71 6.05 106 82.9 71.0 RHS 3.27 1.14 1.68 5.2 11.791 0. 6.05 14.511 0.2 16.79 3.1.9 10.36 1.79 7.7 29.19 1.01 45.75 4.3 12.15 5.43 4.2 17.8 33.03 3.63 8.19 1.3 51.0 6.08 5.3 28.42 5.4 12.7 13.08 3.4 42.767 0.93 2.0 RHS 5.02 6.23 6.22 1.5 11.10 1.26 1.54 3.816 1.04 3.15 1.4 10.9 45.23 1.58 1.31 2.863 0.39 4.9 10.4 11.30 3.8 12.812 0.4 82.681 0.5 RHS 2.63 1.73 6.0 RHS 4.91 1.1 13.12 1.48 3.7 32.86 3.67 1.8 8.79 2.5 RHS 2.1 9.21 2.3 33.5 18.D8-48 TABLE D8.37 4.45 2.38 4.28 1.0 100 x 50 x 6.81 1.5 9.07 3.90 1.43 1.17 5.8 18.77 6.8 9.5 15.57 4.1 38.64 7.55 4.45 3.18 2.85 3.75 5.52 5.28 3.03 0.0 37.7 16.46 13.54 2.99 1.1 13.6 9.5 3.4 17.5 38.17 2.68 7.0 2.92 2.60 5.0 37.7 56.508 0.90 7.5 (See Section D4.09 4.3 66.1 52.5 RHS 2. 71 2.97 2.312 0.51 4.17 5.743 0.115 0.678 0.0268 0.0351 65 x 35 x 4.0719 0.300 0.83 1.52 1.0703 0.0 RHS 2.75 2.0596 0.62 2.596 0.0 RHS 2.112 0.715 0.22 1.200 0.78 8.8 39.929 0.104 0.799 0.835 0.34 2.389 0.107 0.5 30.80 1.145 0.129 0.21 1.122 0.0514 0.78 2.540 0.381 0.0951 0.304 0.85 1.173 0.3 23.808 0.5 18.70 1.0339 0.5 RHS 2.74 3.0243 0.456 0.09 0.0108 Note: 1.611 0.133 0.6 RHS 12.4 11.0381 0.162 0.320 0.1 10.51 7.52 1.151 0.40 7.0335 0.0773 0.19 2.533 0.0610 0.0901 0.64 43.60 2.38 1.0169 0.56 4.0353 0.07 2.26 1.436 0.157 0.426 0.347 0.84 4.93 8.472 0.5 RHS 2.14 1.206 0.5 5.253 0.0286 0.273 0.405 0.35 4.0265 0.134 0.46 1.0507 0.170 0.0 RHS 2.0624 0.245 0.34 1.5 4.10 5.5 1.241 0.88 2.47 2.36 7.35 4.174 0.73 2.74 3.798 0.511 0.28 2.127 0.0180 0.757 0.695 0.00 6.373 0.587 0.0 2.0799 0.0 RHS 1.460 0.22 1.179 0.56 1.84 4.0253 0.4 8.692 0.0217 0.0888 0.0626 0.13 1.287 0.1 13.0 RHS 1.0 RHS 2.0500 0.233 0.537 0.0 1.203 0.0 D8-49 100x 50 x 6.316 0.0149 0.426 0.476 0.103 0.0289 0.0584 0.136 0.292 0.438 0.38 7.48 1.448 0.391 0.0281 0.229 0.67 8.125 0.93 2.116 0.934 0.719 0.209 0.26 5.15 1.288 0.24 2.2 27.232 0.217 0.0740 0.81 5.9 9.0 RHS 2.0432 0.534 0.0645 0.101 0. Serviceabilty Load W *S1 =8EI / (250L2) .365 0.0 3.35 3.649 0.0789 0.53 6.36 3.03 2.3 19.60 2.72 3.80 1.35 6.171 0.823 0.0522 0.0 RHS 5.28 1.0435 0.561 0.488 0.63 2.0 RHS 1.556 0.06 0.4 14.463 0.9 13.5 RHS 2.36 3.47 5.0676 0.42 1.0974 0.523 0.86 2.DCTDHS/06 MARCH 2002 TABLE D8.95 3.0964 0.6 RHS 2.954 0.5 17.16 1.288 0.0781 0.192 0.336 0.25 1.336 0.335 0.5 RHS 3.0312 0.371 0.840 0.5 9.189 0.34 1.158 0.83 2.0753 0.114 0.53 6.0858 0.249 0.159 0.6 RHS 9.542 0.264 0.0499 0.0953 0.799 0.252 0.67 1.49 7.131 0.617 0.0816 0.26 7.58 2.0868 0.458 0.75 1.142 0.134 0.5 RHS 2.147 0.296 0.609 0.302 0.0 RHS 5.44 2.28 2.320 0.180 0.628 1.0840 0.27 1.0 RHS 4.12 0.200 0.84 1.149 0.964 0.60 5.199 0.23 3.0 RHS 3.56 1.0156 0.271 0.25 1.128 0.0719 0.205 0.683 0.56 1.645 0.57 3.97 10.6 RHS 3.5 0.516 0.44 2.244 0.209 0.10 8.0603 0.194 0.42 4.0447 0.15 1.0794 0.00 0.81 9.868 1.165 0.01 0.1 33.26 5.53 1.0 4.57 1.32 2.4 12.75 1.202 0.149 0.10 1.92 7.819 0.25 2.109 75 x 50 x 6.28 2.09 1.684 0.0978 0.0 RHS 3.0318 0.272 0.01 20.569 0.638 1.250 0.0 RHS 4.768 0.53 2.0424 0.893 0.525 0.976 0.233 0.194 0.483 0.0185 0.05 3.117 0.412 0.0927 0.207 0.0 RHS 3.686 0.498 0.0 RHS 5.318 0.6 16.25 3.5 RHS 2.5 3.0367 0.0517 0.56 6.31 1.32 1.450 0.233 0.5 RHS 2.449 0.343 0.175 0.152 0.17 0.290 0.09 0.934 0.0583 0.147 0.86 4.161 0.418 0.114 0.2 15.0443 0.0151 0.391 0.381 0.580 0.80 3.413 0.392 0.0730 0.20 0.237 0.07 2.0 RHS 1.4-1(2)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS mm mm mm kg/m 0.0199 0.7 19.112 0.09 0.65 4.0363 50 x 25 x 3.59 2.91 1.140 0.595 0.0301 0.0497 0.981 1.0 6.112 0.0229 0.20 2.142 0.07 1.15 1.03 3.0176 0.0661 0.0395 0.0973 0.0125 50 x 20 x 3.92 5.58 3.28 1.836 0.939 0.0438 0.30 6.75 2.326 0.22 3.0 10.94 5.72 3.186 0.379 0.777 0.11 4.0129 0.320 0.73 3.0505 0.12 4.99 1.281 0.177 0.0542 75 x 25 x 2.329 0.238 0.0215 0.390 0.0222 0.0 RHS 1.0623 0.6 RHS 3.0244 0.235 0.273 0.74 2.210 0.633 0.50 3.199 0.17 1.0192 0.3 8.08 0.79 1.0378 0.811 0.89 1.19 6. 685 0.8 RHS 2.61 3.8 47.774 0.6 22.0 2 φ Ms/L φ Vv . 5.04 2.26 4.83 91.59 1.61 4.0 4.3 RHS 6.3 RHS 8.0 3.01 2.3 11.08 156 129 58.8 49.73 5.1.3 13.65 4.994 0.9 24.3 RHS 5.24 26.77 5.84 122 102 34.73 10.4 14.6 9.8 68.902 0.22 4.74 6.16 4.0 2.10 1.2 8.3 16.85 2.90 5.74 2.98 3.41 3.55 1.29 1.81 4.6 Notes: 1.80 11.78 8.14 3.14 1.25 7.81 6.5 4. 4.5 (See Section D4.51 3.57 3.4-2(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 FLR Span of Beam (L) in metres t mm mm mm kg/m 0.21 3.35 3.68 1.8 RHS 2.979 0.4 11.3 19.1 19.57 3.67 2.1 100 x 50 x 2.1 22.21 2.2 9. FLR FLR φ αm αs W *L1 W *L2 = = = = = = = 1.27 6.95 6.0 6. 6.39 6.75 1.58 2.08 4.0 kN m 125 x 75 x 2.58 2.13 7.06 3.3 RHS 3.0 45.80 1.40 1.43 1.49 5.5 0.0 16.4 8.09 4.5 1.968 1.02 7.44 9.53 5.1 22.10 3.78 4.27 1.18 2.9 1.00 0.14 0.8 RHS 2.51 8.6 13.809 (π2 E Iy G J / M2SX)0.7 20.30 4.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.4 50 x 25 x 2.89 2.29 1.8 14.0 1. 3.0 11.19 77.87 5.13 0.13 6.78 4.761 0.645 57.5 3.752 0.42 7.2 65 x 35 x 2.39 4.3 64.860 0.3 11.4 14.13 6.6 13.D8-50 TABLE D8.74 2.0 10.37 1.4 76.1 24.81 4.3 17.17 9.5 50 x 20 x 2.5 48.857 0.8 RHS 2.66 3.0 1.52 3.45 6.20 2.0 17.6 24.76 4.8 RHS 2.75 2.8 RHS 2.663 0.3 RHS 2.2 75 x 50 x 2.3 13.44 2.3 RHS 2.39 2.87 1.6 9.37 2.7 11.68 7.5 27.571 56.52 8.3 16.1 27.26 2.9 12.17 1.68 5.884 0.96 1.14 40.5 11.52 5.71 1.65 2.59 1.02 5.71 5.3 8.2 32.95 67.25 1.81 2.0 16.90 2. DCTDHS/06 MARCH 2002 2.34 16.38 2.40 2.19 5.50 1.85 5.11 1.32 7.73 3.0 34.08 4.6 16.70 7.94 1.99 3.26 1.87 3.33 1.6 34.5 5.2 38.795 0.61 2.47 6.00 8.99 1.28 2.7 33.78 1.44 6.0 38.43 3. 0190 0.3 100 x 50 x 2.128 0.00 0.25 2.168 0.505 0.5 3.790 0.6 10.366 0. 1.34 1.273 0.96 1.67 2.126 0.146 0.89 2.25 1.268 0.0649 0.722 0.151 5.41 2.65 75 x 50 x 2.914 0.167 0.7 11.478 0.72 1.0338 0.0662 0.0 21.0273 0.714 0.22 1.223 0.156 0.99 3.5 49.759 0.381 0.3 RHS Note: 1.0427 0.0372 0.68 2.438 0.406 0.0 4.328 0.171 0.259 0.5 5.3 RHS 3.139 0.0320 0.109 0.0760 0.05 1.3 RHS 6.86 2.603 0.78 4.77 3.3 RHS 50 x 20 x 2.132 0.7 21.19 1.47 2.0166 2.04 2.318 0.5 4.02 1.8 RHS 2.490 0.36 7.0 D8-51 .3 RHS 5.8 RHS 2.0418 0.5 1.66 3.0569 0.0877 0.06 0.24 12.86 3.0234 0.0 3.0407 2.03 0.71 1.0586 0.525 0.75 2.219 0.4 9.217 0.107 0.5 0.43 4.340 6.00 3.0954 0.8 RHS 2.8 RHS 2.19 1.0 26.0294 0.304 0.45 4.585 0.197 0.61 1.03 0.190 0.339 0.584 0.0487 0.60 1.234 0.19 5.298 0.605 0.8 RHS 2.84 6.36 1.DCTDHS/06 MARCH 2002 TABLE D8.937 0.0723 0.73 2.429 0.257 0.120 0.596 0.43 5.0162 0.512 0.179 0.40 1.876 0.258 0.8 RHS 2.351 0.36 1.0365 0.34 2.195 0.09 0.83 5.0 2.4-2(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm mm kg/m 0.191 0.228 0.38 1.149 0.670 0.911 0.8 14.0819 0.0934 0.3 RHS 8.163 0.06 2.39 6.265 0.402 0.12 3.0683 0.443 0.651 0.50 5.77 1.34 50 x 25 x 2.46 1.684 0.0205 0.10 1.95 58.0 125 x 75 x 2.374 0.869 0.04 0.107 0.0474 0.558 0.0238 0.766 0.44 2.0288 0.62 1.427 0.0142 Serviceabilty Load W *S1 =8EI / (250L2) 6.75 1.0558 0.0915 0.0477 0.16 2.09 4.7 65 x 35 x 2.14 25.0 9.0253 0.61 4.0843 0.0745 6.6 12. 63 1.5 18.0 SHS 8.62 4.22 1.13 19.60 2.74 6.63 1.07 0.95 1.98 2.55 3.7 5.41 6.61 4.25 3.0 68.63 6.991 0.0 SHS 8.74 5.76 2.53 7.14 4.0 6.71 8.42 5.0 SHS 1.77 3.997 2.42 4.56 2.84 3.31 1.0 11.63 3.28 2.08 7.43 1.06 5.25 0.66 3.6 13.4 9.26 0.80 1.96 2.0 12.29 2.9 17.25 1.03 6.86 2.29 10.9 22. 5.84 2.54 2.53 3.83 1. 3.0 SHS 12.79 2.882 2.49 4.8 25.53 2.43 5.63 3.831 1.91 1.32 5.15 1.22 3.0 7.65 2.96 3.1 27.59 2.01 6.0 SHS 10.69 4.97 1.34 2.0 7.42 3.58 2.51 3.97 3.21 3.58 4.6 51.39 0.41 2.5 13.23 2.50 1.27 2.08 1.97 5.57 7.5 19.9 20.01 5.98 7.63 4.89 3.48 4.2 23.5 SHS 5.0 1.73 2.5 7.45 2.39 0.18 3.906 1.73 3.98 4.50 1.27 1.6 11.25 2.96 4.39 2.0 SHS 6.2 mm mm mm kg/m 100 x 100 x 6.5 3.12 4.72 4.46 1.0 13.00 1.93 2.0 8.58 1.67 3.68 6.38 1.0 SHS 6.49 3.5 SHS 2.3 15.09 2.6 15.96 4.6 28.06 3.4 42.25 9.56 2.54 3.77 1.71 1.76 4.00 2.89 3.65 6.94 11.1 30.6 66.76 1.962 2.95 1.30 1.3 7.89 3.25 4.53 1. φ αm αs W *L1 W *L2 = = = = = 8.25 2.87 3.01 4.0 SHS 2.6 3.41 2.83 2.82 2.9 12.07 1.8 19.11 2.0 11.16 0.6 SHS Notes: DCTDHS/06 MARCH 2002 1.5 SHS 7.16 253 216 177 135 114 92.0 5.0 9.05 1.95 6.48 2.07 90 x 90 x 3.68 3.9 1.0 SHS 14.28 0.45 6.3 4.9 9.13 5.756 181 156 129 114 99.9 9.3 29.53 1.07 11.4 10.06 0.0 10.0 SHS 4.62 1. 2.81 3.16 4.7 89 x 89 x 6.46 3.38 1.1 14.54 1.4-3(1)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t 1.90 1.8 45.63 5.58 5.54 3.0 SHS 12.5 SHS 14.86 1.31 1.01 2.2 8.00 2.60 3.0 13.51 7.75 1.4 8.83 5.78 6.9 10.51 1.89 2.82 6.99 3.12 5.50 2.16 2.64 13.5 5.17 1.986 0.30 3.78 1.95 9.7 16.01 4.45 4.5 SHS 7.27 138 189 221 75 x 75 x 6.94 4.90 5.36 4.0 SHS 16.98 1.47 2.3 8.22 5.0 kN 59.0 2 φ Ms/L φ Vv .3 22.15 0.52 5.57 1.70 1.8 10.21 4.16 1.63 7.62 5.97 11.01 3.45 4.8 14.0 14.32 7.99 6.767 1.06 2.0 2.D8-52 TABLE D8.0 SHS 11.96 5.0 10.42 14.19 4.814 2.10 3.0 4.03 2.41 3.72 5.73 1.25 2.99 4.4 84.10 1.58 3.73 2.9 9.26 3.81 5.49 4.76 2.93 8.67 3.712 121 102 82.42 2.0 15.78 7.0 SHS 9.49 3.82 2.0 5.44 3. 4.27 1.9 39.0 3.31 3.2 4.9 10.06 2.62 1.29 3.73 1.99 1.1 22.11 2.23 9.7 21.38 1.78 1.50 31.60 2.35 6.52 2.32 3.81 5.39 0. 2 4.183 0.286 0.0467 0.49 3.26 1.0395 0.109 0.0844 0.0 11.875 1.0572 0.296 0.724 0.0379 0.5 SHS 14.244 0.322 0.436 0.227 0.0232 0.680 0.0 13.5 SHS 7.772 0.0 SHS 14.472 0.0 9.223 0.0322 0.0787 0.06 0.23 1.0 5.326 0.0787 0.822 0.118 0.509 0.359 0.823 0.5 SHS 7.0630 0.0958 0.6 13.0 7.0482 0.0392 0.290 0.63 2.4-3(1)(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d mm b W*S1 (kN) Mass per m Span of Beam (L) in metres t mm mm kg/m 100 x 100 x 6.0354 0.0224 0.127 0.347 0.60 2.184 0.177 0.0741 0.0574 0.0337 0.89 1.50 7.0378 0.603 0.264 0.0 4.0815 0.142 0.0520 0.0797 0.0510 0.0578 0.04 1.116 0.83 2.0612 0.0 SHS 12.115 0.982 0.2 2.0972 0.892 0.0651 0.97 2.140 0.0697 0.210 0.74 5.355 0.397 0.29 1.176 0.0816 0.162 0.56 2.7 5.143 0.550 0.0288 0.0302 0.268 0.0992 0.515 0.0273 0.64 7.396 0.0 2.151 0.118 0.103 0.304 0.226 0.115 0.0611 0.219 0.3 4.0566 0.567 0.170 0.0935 0.74 1.101 0.0868 0.0482 0.5 3.464 0.161 0.101 0.0463 0.0670 0.905 0.0669 0.15 6. Serviceabilty Load W *S1 =8EI / (250L2) .0661 0.463 0.0880 0.41 1.90 3.266 0.0290 0.16 0.386 0.161 0.0165 90 x 90 x 3.0 SHS 12.0325 0.0470 0.0416 0.0727 0.413 0.0323 0.278 0.166 0.0805 0.0716 0.185 0.109 0.0 SHS 10.0399 0.5 SHS 5.0 10.0898 0.0946 0.0 14.86 4.0 SHS 11.01 6.5 SHS 2.509 0.0569 0.0274 0.0858 0.0383 0.526 0.0191 0.0 SHS 6.3 9.0459 0.61 5.0546 0.132 0.6 8.0334 0.69 4.708 0.0 SHS 16.632 0.0492 0.0591 0.0 SHS 8.540 0.0422 0.0260 0.29 0.0354 0.319 0.06 5.45 4.116 0.0505 0.0614 0.93 3.226 0.231 0.151 0.352 0.0438 0.365 0.0 SHS 9.0547 0.193 0.0 3.0673 0.0 12.0702 0.353 0.0 SHS 4.6 SHS D8-53 Note: 1.96 2.4 17.0 SHS 2.627 0.777 0.6 3.0802 0.59 1.0566 0.0570 0.28 1.0458 0.0 19.58 3.46 0.135 0.0728 0.268 0.181 0.237 0.39 8.95 5.0 8.137 0.127 0.119 0.315 0.0914 0.0695 0.135 0.204 0.194 0.0391 0.85 1.141 0.53 2.291 0.109 0.246 0.21 1.492 0.0565 0.53 3.0 6.104 0.434 0.197 0.0234 0.65 1.0 14.20 2.116 0.0671 75 x 75 x 6.0778 0.0797 0.0236 89 x 89 x 6.180 0.113 0.315 0.0882 0.0 SHS 8.0 SHS 1.158 0.0515 0.734 0.07 1.0 SHS 6.123 0.0 5.0724 0.0659 0.157 0.0200 0.41 6.07 0.240 0.42 1.0402 8.80 11.DCTDHS/06 MARCH 2002 TABLE D8.571 0.129 0.206 0.202 0.0936 0.0686 0.0915 0.0485 0.129 0.143 0.0271 0.41 1.0466 0.16 1.0889 0.109 0.57 2.0267 0.206 0.0318 0.0411 0.0393 0.453 0.3 11.157 0.87 4.142 0.0964 0.15 0.808 0.25 3.65 5.0337 0.10 4.977 1.0449 0.0991 0. 02 3.62 3.56 1.98 2.946 1.54 2.72 5.16 1.66 1.347 5.85 5.49 3.82 2.75 7.20 1.135 6.62 12.67 1.78 6.64 4.19 1.6 SHS 50 x 50 x 5.545 0.45 1.0 SHS 2.18 2.7 12.801 0.00 3.71 1.277 0.80 3.24 1.82 1.09 1.27 4.9 14.768 1.304 2.152 6.93 4.46 3.62 2.56 1.19 1.99 6.99 1.83 5.7 9.60 5.1 8.43 1.0 3.4 49.01 0.455 0.91 11.334 0.85 1.5 96.78 1.405 Notes: 1.3 10.54 3.837 0.10 3.8 15.TABLE D8.571 0.88 3.98 2.4 26.38 4.69 2.08 1.43 6.998 0.8 22.26 3.97 4.3 8.53 7.0 kN 12.31 1.90 1.1 10.23 1.66 2.58 1.856 0.0 36.59 1.34 6.200 0.84 5.68 10.2 35.462 0.47 3.5 SHS 2.0 72.9 9.6 47.5 36.99 2.75 17.596 0.14 2.0 7.26 2.75 1.45 4.957 0.07 2.32 1.4 11.264 0.50 1.0 42.15 8.0 SHS 4.55 1.83 2.81 3.23 4.73 3.6 SHS 40 x 40 x 4.93 8.71 3.6 24.56 4.92 2.5 5.04 2.30 1.2 16.19 4.298 0.52 1.1 11.0 18.63 1.2 17.19 0.8 36.3 19.63 4.679 0.00 1.79 1.3 22.37 2.852 0.54 1.39 5.07 4.27 6.397 0.167 0.39 1.89 3.4 14.0 9.122 5.85 1.0 80.57 2.693 0.26 3.65 1.6 SHS 30 x 30 x 2.0 58.9 .2 13.0 SHS 2.27 2.773 0.76 1.93 2.0 1.38 1.34 1.33 0.55 14.497 0.53 2.68 2.0 SHS 5.5 SHS 2.99 1.25 1.4-3(2)(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS D8-54 CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 mm mm mm kg/m 0.28 7.746 0.09 0.63 1.3 10.67 5.19 3.86 17.55 3.0 SHS 3.36 1.36 2.60 2.4 15.71 5.33 4.0 SHS 1.5 75 x 75 x 6.27 8.22 1.793 0.88 2.09 0.501 0.685 0.748 0.3 16.99 3.10 1.357 0.0 SHS 5.22 41.222 0.1 11.35 2.0 SHS 4.950 0.08 4.46 5.346 0.74 3.250 0.4 84.51 2.38 6.68 2.811 31.29 3.14 3.00 0.37 5.87 1.2 12.1 29.855 0.9 11.8 10.0 SHS 1.12 7.60 6.0 34.888 0.6 SHS 12.78 2.3 30.84 5.32 2.67 6.761 0.7 18.475 0.38 1.3 7.99 5.02 0.853 1.805 0.97 2.555 0.0 SHS 2.01 4.243 10.297 0.4 10.54 3.66 1.694 0.78 1.7 26.27 1.71 2.0 20.01 1. φ = 0.13 1.3 13.71 1.00 1.28 1.3 41.0 SHS 1.68 10.96 1.4 54.1 8.91 7.6 39.84 1.30 2.77 2.18 1.6 13.95 7.33 0.28 2.57 3.9 2.91 6.4 25.606 0.5 SHS 2.670 0.9 20.101 181 156 129 114 99.12 0.608 24.65 2.52 3.558 0.85 1.6 63.46 1.9 9.07 2.18 1.0 15.5 SHS 2.909 0.0 3.99 1.45 2.07 4.0 SHS 2.400 0.5 27.486 20.5 SHS 2.25 3.22 5.594 0.49 1.499 0.37 1.45 6.36 4.12 2.13 1.6 7.30 1.203 8.55 2.10 5.42 1.17 2.91 1.2 153 132 109 85.0 SHS 1.510 0.7 44.39 2.22 2.39 5.00 2.37 4.2 15.35 4.52 1.671 0.12 0.909 1.0 10.56 4.36 3.640 0.6 28.836 0.17 1.0 68.64 1.339 0.42 2.30 1.67 1.0 SHS 2.83 22.0 SHS 3.35 4.927 0.9 21.792 0.38 2.0 SHS 3.8 24.69 3.46 4.4 10.418 0.89 7.19 1.174 7.35 3.09 2.77 3.32 0.20 7.2 8.1 9.24 6.893 0.17 3.64 4.78 7.77 2.8 41.09 5.54 3.22 7.18 2.33 3.520 0.05 1.373 0.64 3.84 3.2 15.04 2.56 3. W *L2 = φ Vv 2.72 7.716 0.00 0.3 24.4 11.331 0.18 5.60 2.1 27.04 0.78 3.0 SHS 65 x 65 x 6.09 3.3 9.5 SHS 3.0 20.11 0.7 11.08 7.5 18.64 3.447 0.0 SHS 1.7 12.57 14.416 0.7 10.16 3.0 44.744 0.15 0.88 6.06 5.77 1.53 7.0 SHS 3.249 0.27 4.68 1.8 9.58 4.68 2. αs = 1.66 4.99 4. W *L1 = 2 φ Ms/L 1.90 4.6 19.557 0.25 1.15 5.0 29.0 4.63 2.12 4. α m = 1.715 0.89 5.21 1.9 61.831 0.599 0.54 5.7 8.8 18.665 0.43 2.6 SHS 35 x 35 x 3.85 8.6 SHS 25 x 25 x 2.76 1.6 13.0 13.53 6.994 0.396 0.49 7.298 0.8 13.79 6.0 27.36 3.61 1.94 5.5 3.308 0.7 16.20 6.31 1.50 10.18 4.14 0.33 4.4 21.682 0.04 2.27 1.57 4.1 7.19 5.18 0.6 11.03 0.231 0.95 4.667 0.894 0.71 3.60 3.426 0.0 4.500 0.94 2.960 1.57 5.54 8.05 6.2 54.238 0.34 2.572 0.34 1.4 9.38 3.34 2.43 3.0 SHS 1.86 6.0 SHS 4.6 SHS 20 x 20 x 1.69 1.7 7.73 2.5 0.61 3.3 18.07 0.396 0.9 13.36 1.46 3.5 45.70 5.198 0.779 0.01 1.86 5.7 13.925 0.82 2.5 4.94 3.55 4.0 6.28 2.873 62.3 22.39 1.81 6.979 0.286 0.74 2.36 1.81 5.4 13.347 0.4 33.08 5.54 5.462 0.43 1.8 15.13 6.63 6.594 0.10 6.5 SHS 2.1 8.595 0.627 0.23 5.42 3. 0353 0.5 SHS 3.0167 0.0807 0.192 0.15 15.627 0.0346 0.0657 0.629 0.157 0.172 0.69 1.07 1.50 1.0436 0.402 0.60 1.91 2.431 0.651 0.949 0.0208 0.148 0.00227 0.263 0.333 0.323 0.75 7.465 0.88 2.194 0.06 0.08 3.64 1.88 3.189 0.29 2.60 4.444 0.513 0.1 8.263 0.0946 0.935 1.694 0.579 0.382 0.21 4.27 2.145 0.0389 4.0 SHS 1.482 0.0235 0.417 0.0142 0.169 0.234 0.0 SHS 1.00860 0.99 1.0779 0.0178 0.279 0.0373 0.407 0.25 3.0131 0.354 0.60 5.0232 0.0 0.106 0.00907 0.0841 0.0363 0.0180 0.0 20.15 0.41 6.336 0.0586 0.816 0.431 0.50 2.0120 0.0 SHS 2.754 0.0 SHS 4.0152 0.16 1.311 0.333 0.526 0.0 SHS 1.237 0.0266 0.184 0.0407 0.29 1.93 3.120 0.41 1.111 0.00972 2.0462 0.09 1.111 0.174 0.79 3.380 0.26 14.597 0.108 0.0152 0.6 SHS 35 x 35 x 3.53 6.131 0.0 SHS 3.10 0.0 SHS 4.264 0.42 1.0915 0.245 0.0429 0.5 5.433 0.0127 2.27 2.246 0.0370 0.0550 0.202 0.0 1.0270 0.0468 0.0198 0.883 0.0 4.00264 0.187 0.0135 0.3 7.0152 0.15 0.204 0.436 0.00924 0.102 0.85 1.30 2.128 0.790 1.169 0.284 0.288 0.174 0.286 0.0723 0.0838 0.204 0.0269 0.0120 0.0321 0.0146 0.28 1.0301 0.797 0.111 0.5 SHS 2.0457 0.0 SHS 4.113 0.100 0.98 2.0310 0.221 0.25 1.6 10.00622 3.0329 0.5 SHS 2.3 8.0376 0.07 2.0498 0.202 0.33 2.5 1.226 0.0927 0.23 4.78 3.0 SHS 2.121 0.56 4.102 0.82 2.626 0.52 4.74 18.0955 0.48 0.0 0.0487 0.0109 0.0481 0.223 0.271 0.296 0.674 0.0584 0.697 0.5 SHS 2.20 2.381 0.52 0.0238 0.00940 0.0412 0.0679 0.237 0.08 0.75 Serviceabilty Load W *S1 = 8EI / (250L2) 1.0 0.94 2.02 6.0311 0.0115 0.424 0.129 0.00484 0.0252 0.0249 3.61 2.42 2.157 0.98 12.0236 0.6 SHS 25 x 25 x 2.517 0.04 1.0 SHS 5.50 10.5 0.4 11.0423 0.0606 0.61 3.0471 0.84 1.0609 0.00410 0.0447 0.00108 .272 0.67 1.0300 0.06 1.38 4.5 SHS 2.0106 0.565 0.5 1.220 0.89 2.0434 0.163 0.00 1.723 0.109 0. 0.05 0.00317 4.283 0.93 3.183 0.463 0.0711 0.817 0.39 5.124 0.217 0.36 1.0421 0.873 29.0569 0.234 0.6 SHS 40 x 40 x 4.339 0.61 3.5 SHS 2.00300 0.8 22.808 1.6 SHS 30 x 30 x 2.0303 0.731 0.0 10.00801 0.68 6.0363 0.108 0.937 0.00676 0.0173 0.00534 0.369 0.366 0.904 0.93 2.83 2.0812 0.00192 0.0816 0.0 SHS 5.0494 0.567 0.155 0.0295 0.502 0.0827 0.101 0.0164 0.66 4.733 0.1 6.120 0.0276 0.12 0.299 0.264 0.00510 0.00326 0.35 4.0832 0.0237 0.230 0.0 SHS 1.0774 0.413 0.38 1.27 3.92 5.129 0.0212 0.517 0.00433 0.0952 0.0566 0.156 0.0678 0.0269 0.0 1.75 7.0 SHS 1.00883 0.35 0.145 0.11 0.10 4.28 1.183 0.0885 0.6 SHS 20 x 20 x 1.2 26.400 0.TABLE D8.86 1.33 1.150 0.0658 0.00432 3.34 1.58 3.0219 0.53 2.0721 0.32 1.919 0.366 0.554 0.156 0.0388 0.0522 0.82 1.139 0.265 0.68 1.01 1.0 SHS 2.78 0.591 0.165 0.371 0.4-3(2)(B) DCTDHS/06 MARCH 2002 SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS D8-55 mm mm mm kg/m 0.0362 0.6 SHS 12.26 1.126 0.0981 0.64 1.0792 0.0 0.65 1.0 SHS 65 x 65 x 6.00593 0.145 0.48 1.04 16.0194 0.0482 0.319 0.07 18.331 0.09 3.00243 4.06 2.124 0.479 0.195 0.734 0.0105 0.0612 0.00674 0.199 0.103 0.138 0.25 1.242 0.6 5.461 0.353 0.296 0.602 1.62 1.0187 0.0536 0.244 0.61 5.51 2.39 1.0279 0.65 5.0333 0.0369 0.0695 0.23 3.0663 0.58 2.0691 Note: 1.0 SHS 2.44 2.23 5.7 6.5 75 x 75 x 6.74 4.116 0.675 0.509 0.252 0.15 0.0 SHS 3.0142 0.00469 0.9 5.0574 0.0615 0.823 0.727 0.142 0.982 0.411 0.226 0.454 0.0898 0.374 0.0542 0.00730 0.93 2.554 0.359 0.0260 0.17 10.185 0.605 0.321 0.00156 6.13 1.0278 0.197 0.0739 0.174 0.00775 0.31 1.57 1.0148 0.00403 0.5 SHS 2.0748 0.970 0.45 8.0422 0.0 SHS 2.478 0.226 0.1 8.255 0.0692 0.278 0.0173 2.13 6.0123 0.3 8.02 0.00666 0.134 0.326 0.0 SHS 1.0183 0.00970 0.392 0.144 0.0188 0.63 1.0 SHS 3.86 2.0846 0.28 11.0593 0.0608 0.4 9.0949 0.310 0.0204 0.206 0.288 0.905 0.119 0.0121 0.163 0.6 13.149 0.677 1.0942 0.6 SHS 50 x 50 x 5.108 0.537 0.46 1.654 0.00380 0.182 0.540 0.127 0.0166 0.0210 0.00591 0.19 1.51 2.169 0.160 0.75 1.49 7.0 SHS 3.141 0.168 0.0239 0.70 1.00697 0.181 0.326 0.60 2.659 1.0103 0.749 0. 16 6.40 3. 3.52 1.623 0.88 2.724 0.15 2.70 3.9 1.19 6.0 kN 100 x 100 x 2.02 93.53 4.5 4.42 19.2 39.19 5.8 16.44 1.52 5.44 2.51 2.03 3.652 0.940 0.48 3.95 50.01 2.05 1.7 50.80 1.931 0.14 32.7 12.74 1.3 SHS 8.9 25.1 9.67 2.76 1.82 7.1 13.26 2.543 0.11 3.96 1.7 12.74 3. 5.1 65 x 65 x 2.467 39.36 6.47 1.26 2. 4.71 10.1 37.7 9.7 20.26 1.1 18.99 3.08 3.701 0.07 6.27 4.11 127 105 75 x 75 x 2.32 6.0 1.20 1.40 2.34 14. 2.3 SHS 3.39 6.94 8.55 5.3 10.76 3.3 21.24 2.8 SHS 2.15 5.7 13.05 2.01 4.12 1.1 8.40 1.0 2 φ Ms/L φ Vv 9.10 0.87 4.61 2.74 4.D8-56 TABLE D8.11 2.8 SHS 2.627 46.58 8.88 1.93 3.17 1.18 3.47 4.06 4.8 SHS 2.01 3.48 8.1 6. φ αm αs W *L1 W *L2 = = = = = 0.02 59.05 4.733 0.8 SHS 2.16 5.52 3.03 2.79 4.815 0.0 6.59 3.1 15.25 Notes: 1.3 SHS 2.752 0.3 SHS 4.3 77.35 1.60 1.5 3.5 9.23 7.2 16.66 3.91 3.8 SHS 2.18 1.34 10.75 1.61 4.4 24.25 1.75 4.5 5.86 1.12 7.4 12.34 6.63 2.6 24.6 DCTDHS/06 MARCH 2002 .0 2.9 8.51 2.6 50 x 50 x 2.935 0.4 33.75 2.0 16.64 66.0 4.61 4.3 12.63 1.62 35 x 35 x 2.93 2.0 1.836 0.81 2.46 2.07 1.4-4(A) STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2 Designation d b W*L1 (kN) Mass per m W*L2 Span of Beams (L) in metres t mm mm mm kg/m 0.80 2.5 33.27 2.30 1.880 0.86 5.86 6.0 3.561 0.50 1.22 1.72 2.20 1.57 4.60 1.3 SHS 3.5 0.09 0.801 0.87 1.25 1.09 9.67 5.5 14.3 SHS 6.52 5.86 5.977 0.44 4.43 2.5 1.80 7.34 3.09 5.0 7.2 40 x 40 x 2. 142 0.124 0.386 0.8 SHS 2.0 15.879 0.75 1.39 6.08 0.131 0.526 0.527 0.62 1.559 75 x 75 x 2.9 10.18 0.0244 0.331 0.0356 0.253 0.0912 0.74 3.8 SHS 2.762 0.0511 0.3 SHS 4.233 0.204 0.97 3.82 5.3 14.34 4.0966 0.146 0.0 1.692 0.161 0.0281 0.71 1.296 0.8 SHS 2.41 1.95 42.481 0.189 0.319 0.0200 0.220 0.62 2.75 2.0406 0.0180 0.92 2.0404 0.214 0.14 17.5 3.186 0.0633 0.666 0.0 6.0355 0.757 0.80 1.67 2.0799 0.11 2.5 100 x 100 x 2.296 0.190 0.270 0.4-4(B) SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS Designation d b W*S1 (kN) Mass per m Span of Beam (L) in metres t kg/m 0.48 2.583 0.0584 0.99 3.28 1.259 0.0158 0.0146 0.67 2.0228 0.28 0.316 0.0740 0.7 35.3 SHS 2.0473 0.0198 0.994 0.173 0.0 2.50 4.228 mm mm mm 5.0 0.0282 40 x 40 x 2.77 2.33 4.650 0.120 0.0634 0.0128 0.25 1.46 1.0309 0.353 0.115 0.0 4.65 2.914 0.142 0.0228 0.0791 0.298 0.568 0.98 1.0584 0.570 0.15 2.33 3.5 0.451 0.248 0.24 1.162 0.34 1.0648 50 x 50 x 2.69 6.73 4.33 1.180 0.0158 0.42 9.8 19.730 0.19 1.8 SHS 2.254 0.119 0.01 0.3 SHS 8.19 5.871 0.5 4.365 0.146 0.94 6.162 0.585 0.494 0.3 SHS 3.8 SHS 2.104 0.0501 0.25 1.0405 0.7 8.0261 0.113 0.365 0.43 1.5 1.0329 0.18 1.0465 0.DCTDHS/06 MARCH 2002 TABLE D8.427 0. Serviceabilty Load W *S1 = 8EI / (250L2) D8-57 .00887 Note: 1.72 4.04 0.6 7.0549 0.49 1.648 0.3 SHS 6.06 2.3 SHS 3.442 0.0 3.373 0.92 1.01 0.358 0.10 1.102 65 x 65 x 2.0829 0.406 0.0101 0.0911 0.0933 0.0298 0.0137 35 x 35 x 2. [ BLANK ] D8-58 DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002 .
Copyright © 2024 DOKUMEN.SITE Inc.