Distribucion Normal

March 24, 2018 | Author: Pato Aguirre | Category: Normal Distribution, Probability Distribution, Probability, Statistical Theory, Probability Theory


Comments



Description

DISTRIBUCION NORMALNombre: Wilson Guanoluisa INTRODUCCIÓN: La distribución normal es una de las más importantes de las distribuciones, por la frecuencia que se la encuentra y por las aplicaciones teóricas, esta también es llamada distribución GUASSIANA, La aplicación de esta distribución es muy alta como caracteres morfológicos de individuos, animales plantas, de su especie como talla, peso, diámetro, perímetro, etc. También a caracteres sociológicos como el consumo de ciertos productos por un grupo de individuos, otro ejemplo aplicativo en la teoría de errores por ejemplo los errores que cometemos cuando medimos algunas magnitudes. La distribución normal fue reconocida por primera vez por el francés Abraham de Moivre (16671754). Posteriormente, Carl Friedrich Gauss (1777-1855) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se la conozca, más comúnmente, como la "campana de Gauss". La distribución de una variable normal está completamente determinada por dos parámetros, su media y su desviación estándar, denotadas generalmente por µ y . Con esta notación, la densidad de la normal viene dada por la ecuación:  Donde: = desviación estándar µ= media X= variable Que determina la curva en forma de campana que tan bien conocemos (figura 1): Ec. 1 Figura 1. Gráfica de una distribución normal y significado del área bajo la curva Así, se dice que una característica X sigue una distribución normal de media µ y varianza denota como X = N (µ , ), si su función de densidad viene dada por la Ecuación 1. , y se En resumen se podría decir que una distribución normal está basada en su media y su desviación estándar, es decir se define a través de ellas. La distribución de probabilidad normal presenta las siguientes características:  Tiene una única moda, que coincide con su media y su mediana.  La curva normal es asintótica al eje de abscisas. Por ello, cualquier valor entre  y+ es teóricamente posible. El área total bajo la curva es, por tanto, igual a 1. Es simétrica con respecto a su media µ. Según esto, para este tipo de variables existe una probabilidad de un 50% de observar un dato mayor que la media, y un 50% de observar un dato menor. La distancia entre la línea trazada en la media y el punto de inflexión de la curva es igual a una desviación típica ( ). Cuanto mayor sea , más aplanada será la curva de la densidad. El área bajo la curva comprendida entre los valores situados aproximadamente a dos desviaciones estándar de la media es igual a 0.95. En concreto, existe un 95% de posibilidades de observar un valor comprendido en el intervalo (µ -1.96 ; µ + 1.96 ). La forma de la campana de Gauss depende de los parámetros µ y ( Figura 2). La media indica la posición de la campana, de modo que para diferentes valores de µ la gráfica es desplazada a lo largo del eje horizontal. Por otra parte, la desviación estándar determina el grado de apuntamiento de la curva. Cuanto mayor sea el valor de , más se dispersarán los datos en torno a la media y la curva será más plana. Un valor pequeño de este parámetro indica, por tanto, una gran probabilidad de obtener datos cercanos al valor medio de la distribución.   Figura 2. Ejemplos de distribuciones normales con diferentes parámetros. (a) Distribución normal con distinta Desviación estándar e igual media (b) Distribución normal con diferentes medias e igual desviación estándar Como se deduce de este último apartado, no existe una única distribución normal, sino una familia de distribuciones con una forma común, diferenciadas por los valores de su media y su varianza. De entre todas ellas, la más utilizada es la distribución normal estándar, que corresponde a una distribución de media 0 y varianza 1. Así, la expresión que define su densidad se puede obtener de la Ec. 1 Es importante conocer que, a partir de cualquier variable X que siga una distribución N (µ , ), se puede obtener otra característica Z con una distribución normal estándar, sin más que efectuar la transformación:  Donde: Ec.2 X= El valor de cualquier observación o medición en particular µ= Es la media de la distribución = Es la deviación estándar de la distribución Un valor de Z expresa la distancia o diferencia entre un valor particular de X y la media aritmética en unidades de desviación estándar. Una vez que se estandarizan las observaciones normalmente distribuidas, los valor Z tienen una distribución normal con una media de 0 y una desviación estándar de 1. OBS. La probabilidad de que ocurra un evento se encuentra con tablas y el valor de Z calculado. Ejm 1: El siguiente problema: supongamos que se sabe que el peso de los sujetos de una determinada población sigue una distribución aproximadamente normal, con una media de 80 Kg y una desviación estándar de 10 Kg. ¿Podremos saber cuál es la probabilidad de que una persona, elegida al azar, tenga un peso superior a 100 Kg? Denotando por X a la variable que representa el peso de los individuos en esa población, ésta sigue una distribución N(80,10). Si su distribución fuese la de una normal estándar podríamos utilizar la tabla del APÉNDICE D (ESTADISTICA APLINADA A LOS NEGOCIOS Y A LA ECONOMIA 12va EDICION, Douglas A. Lind, Samuel A. Wathen, Pag. 720) para calcular la probabilidad que nos interesa. Como éste no es el caso, resultará entonces útil transformar esta característica según la Ec. 1, y obtener la variable   es decir. Sin embargo. . entonces el intervalo:  (Media ± S) contiene aproximadamente al 68 % de las observaciones. se sabe que .9772-0. Wathen.9544. sin embargo. Por lo tanto. podemos deducir que: Por el ejemplo previo. tomando a=-2 y b=2. Así. Samuel A. se tiene que: Finalmente. Para la segunda probabilidad.0228=0.  (Media ± 2S) contiene aproximadamente el 95% de las observaciones. la probabilidad buscada de que una persona elegida aleatoriamente de esa población tenga un peso mayor de 100 Kg . haciendo uso de la simetría de la distribución normal. podemos obtener la probabilidad de que el peso de un sujeto esté entre 60 y 100 Kg: De la Figura 1. LA REGLA EMPÍRICA Dada una distribución de las observaciones con forma aproximadamente campanada.Para poder utilizar dicha tabla. resultando ser .. se puede deducir que: Esta última probabilidad puede ser fácilmente obtenida a partir tabla del APENDICE D (ESTADISTICA APLINADA A LOS NEGOCIOS Y A LA ECONOMIA 12va EDICION. De modo análogo.  (Media ± 3S) contiene casi todas las observaciones.9772=0. Lind. 720). aproximadamente de un 2. Pag. encontramos el problema de que las tablas estándar no proporcionan el valor de para valores negativos de la variable. es de 1 0. aproximadamente de un 95%.0228. la probabilidad buscada de que una persona elegida al azar tenga un peso entre 60 y 100 Kg. Douglas A. la probabilidad que se desea calcular será: Como el área total bajo la curva es igual a 1.3%. es de 0. es decir. 4 .Figura 2. la forma que se va adoptando es más parecida a la curva normal. LA APROXIMACIÓN DE LA DISTRIBUCIÓN NORMAL A LA BINOMIAL Aunque la distribución normal es continua. resulta interesante hacer notar que algunas veces puede utilizarse para aproximar distribuciones discretas. los siguientes gráficos corresponden a distribuciones binomiales con p = 0. Por ejemplo. Distribución de las observaciones La importancia de la regla empírica consiste en su utilidad para describir adecuadamente la variación de un gran número de datos. La aproximación normal a la distribución binomial nos permite resolver problemas sin tener que consultar grandes tablas de la distribución binomial tomando µ = np Ec. 3 y = Ec.5 y distintos valores de tamaños de muestras: n=2 n=5 n=10 A medida que n aumenta. use el área por encima de (X 0.7 u 8 caras. utilice el área por arriba de (X + 0. podemos notar que se necesita tener algo de cuidado al utilizar la aproximación ya que la misma es bastante buena siempre y cuando se cumpla:   FACTOR DE CORRECCIÓN DE CONTINUIDAD El factor de corrección de continuidad es el ajuste de media unidad de medida para mejorar la exactitud cuando a una distribución discreta se le aplica una distribución continua. EJEMPLO: Suponga que una moneda se lanza 10 veces y que deseamos calcular la probabilidad de obtener 5. Samuel A. emplee el área situada por debajo de (X 0.5).6 .5). 4) Para la de que menos de X sucedan. aplique el área por debajo de (X + 0.5).5). Pag. 2) Para la de que más de X sucedan.Donde: n= número de veces que se realiza el experimento aleatorio p= Probabilidad de éxito (95%) q= probabilidad de fracaso (5%) Sin embargo. Casos que pueden surgir: 1) Para la probabilidad de que por lo menos X ocurran. Lind. 3) Para la de que X o menos ocurran. Douglas A. Wathen. al aplicar el factor de corrección y utilizando que  Calculamos entonces: Obs: Representa la búsqueda del área con el valor de Z en cualquier tabla que se esté manejando (APÉNDICE D ESTADISTICA APLINADA A LOS NEGOCIOS Y A LA ECONOMIA 12va EDICION. 720) . Debemos calcular: P(5 X 8) . 0.74 P( -0. Dada una distribución normal estándar con = 30 y = 6.89 P(Z > -0.154 = 0.8997 k = 1.0. encuentre: a) P(Z<k)= 0.65 P( -2.39) = ( -1. EJERCICIOS EJERCICIOS RESUELTOS Nota: el símbolo (Z) se interpreta como buscar en tablas (APÉNDICE D) el área a la izquierda del valor de Z que se está manejando.16 y z = -0.96) = 1 ( 1.5.48 <Z< 1.43 ) = 0.7054 k =0.16 <Z< -0.43) = ( 1.89) = 1.3156 2.9591 0.7235 + (-0. Dada una distribución normal estándar.74 ) (-0.65) = ( -2. así que observamos que los resultados son muy parecidos. 1.9750 = 0.8133 c) entre z = -2.16 ) (-0.2946 ( k ) = 1. encuentre .2643 0.0427 k = -1.54 c) P(-0.0427 ( k ) = 0.0250 f) entre z = -0.7235 ( k ) = 0.2946 = 0.1867 = 0.0823 e) a la derecha de z = 1.48) = 0.39 P(Z <-1.Si hubiésemos aplicado la fórmula de la distribución de la binomial hubiésemos obtenido que la probabilidad es de 0.9236 b) a la derecha de z = -0.93<Z<k)= 0. Dada la variable X normalmente distribuida con media 18 y desviación estándar 2. encuentre el área bajo la curva que está a) a la izquierda de z = 1.39 ) = 0.74) = ( 1.93 ) = 0.96 P(Z > 1.48 y z = 1.2490 d) a la izquierda de z = -1. lo que refleja la bondad de la estimación en al cálculo de la probabilidad buscada.96) = 1 0.65) = 0.89) = 1 ( -0.6123.28 3.72 b) P(Z>k)= 0.43 P(Z < 1. 8979 b) menos de 28 meses P(X <28) = [28 40)/6.0284 c) entre 37 y 49 meses P(37 < X < 49) = = [49 40)/6.5 ] = [-1. Suponga que las vidas de tales ratones se distribuyen normalmente con una desviación estándar de 6. encuentre la probabilidad de que un ratón dado viva.91 k=Z + = (0.28 d) P(17<X<21) P(17 < X < 21) = = [(21 18)/2.3 meses.3 ] = 1 [-1.40 ] = 0.76)(2.5 ] [1.18)/2.2236 Z = -0.5 ] [-0. Si la cantidad de bebida se distribuye normalmente con una desviación estándar igual a 15 mililitros.1814 ( Z )= 0. Un investigador científico reporta que unos ratones vivirán un promedio de 40 meses cuando sus dietas se restringen drásticamente y después se enriquecen con vitaminas y proteínas. = 200 y = 15 .8186 Z = 0.a) P(X<15)= P(X < 15) = [(15 .6065 5.3 a) más de 32 meses P(X > 32) = 1 [(32 40)/6.43 ] [(37 40)/6.3 ] [1.5404 4.1814 1( Z ) = 0.48 ] = 0.3] = [-1. = 40 y = 6.3 ] [-0.5) + 18 = 20.20 ] = 0.1021 = 0.2236 ( Z ) = 0.1151 b) El valor de k tal que P(X < k)= 0.3170 = 0. Se regula una máquina despachadora de refresco para que sirva un promedio de 200 mililitro por vaso.20 ] [(17 18)/2.9234 0.8849 0.3446 =0.5) + 18 = 16.91)(2.90] = 0.76 k=Z + = (-0.10 c) El valor de k tal que P(X > k)= 0.27 ] = 1 0. 00 ] = 1 0. El tiempo promedio para un viaje de ida es 24 minutos.60 ] [(191 200)/15 ] [-0.58 ] = 1 0. con una desviación estándar de 3.9452 = 0.9428 = 0.0089 = 0.0548 b) ¿cuál es la probabilidad de que un vaso contenga entre 191 y 209 mililitros? P(191 < X < 209) = = [209 200)/15 ] [0.9911 c) Si sale de su casa a las 8:35 am y el café se sirve en la oficina de 8:50 a 9:00 am.67 = (-0. Suponga que la distribución de los tiempos de viaje está distribuida normalmente.8 a) ¿cuál es la probabilidad de que un viaje tome al menos ½ hora? P(X > 30) = 1 [(30 24)/3.9772 = 0.a) ¿qué fracción de los vasos contendrán más de 224 mililitros? P(X > 224) = 1 [(224 200)/15 ] = 1 [1.0228 Total de vasos 1000*0.60 ] = 0.4514 c) ¿cuántos vasos probablemente se derramarán si se utilizan vasos de 230 mililitros para las siguientes 1000 bebidas? P(X > 230) = 1 - [(230 200)/15 ] = 1 - [2. ¿qué porcentaje de las veces llega tarde al trabajo? P(X > 15) = 1 [(15 24)/3. ¿cuál es la probabilidad de que pierda el café? . = 24 y = 3.8 aproximadamente 23 d) ¿por debajo de qué valor obtendremos 25% de las bebidas más pequeñas? P25 K = 25 Área = 0.0228 = 22.25 x=Z + ( Z ) = 0.8 ] = 1 [-2.2743 =0.88 6. Un abogado va todos los días de su casa en los suburbios a su oficina en el centro de la ciudad.25 Z = -0.67)(15) + 200 = 189.8 minutos.8 ] = 1 [1.7257 0.37 ] = 1 0.0572 b) Si la oficina abre a las 9:00 am y él sale diario de su casa a las 8:45 am.60 ] = 1 0. 22 15.8) + 24 = 27.0578 P(Y = 2) = 3C2(0.04)(3. ¿de qué duración debe ser la garantía que ofrezca? Suponga que la duración de un motor sigue una distribución normal.5 ] [0.43] = 0.22 inclusive por hora? P(13.75 y $16. El fabricante reemplaza gratis todos los motores que fallen dentro del tiempo de garantía.50.04 x=Z + = (1.15 ( Z )= 0.90 y = 1. 1( Z ) = 0.90)/1.24 8.90)/1. Si está dispuesto a reemplazar sólo 3% de los motores que fallan. = 10 y =2 ( Z ) = 0.5 a) ¿qué porcentaje de los trabajadores reciben salarios entre $13.90 por hora con una desviación estándar de $1.94 e) Encuentre la probabilidad de que dos de los siguientes tres viajes tomen al menos ½ hora Del inciso a) p = 0.26 ] = 1 0.85 Z = 1.3962 d) Encuentre la longitud de tiempo por arriba de la cual encontramos el 15% de los viajes más lentos.88)(2) + 10 = 6.P(X > 25) = 1 - [(25 24)/3.5086 b) ¿ el 5% más alto de los salarios por hora de los empleados es mayor a qué cantidad? . La vida promedio de cierto tipo de motor pequeño es 10 años con una desviación estándar de dos años. una compañía paga a sus empleados un salario promedio de $15.21 ] [(13.03 Z = -1.5 ] [.9428) = 0.6038 = 0. Si los salarios se distribuyen aproximadamente de forma normal y se pagan al centavo más próximo = 15.8 ] = 1 - [0.0759 = 0.1.88 P3 Área = 0.22) = = [16.00925 7.5845 0.75 15.75 < X < 16.03 x=Z + = (-1.0572)2(0. 0244 10.95 x=Z + ( Z ) = 0.25] - [-2.5) + 15.000 kilogramos por centímetro cuadrado y una desviación estándar de 100 kilogramos por centímetro cuadrado.645)(1.37 9.9756 = 0.9756 Proporción de descarte = 1 0. Los CI de 600 aspirantes de cierta universidad se distribuyen aproximadamente de forma normal con una media de 115 y una desviación estándar de 12.9878 0. La resistencia a la tracción de cierto componente de metal se distribuye normalmente con una media de 10. Las mediciones se registran a los 50 kilogramos por centímetro cuadrado más cercanos.200 kilogramos por centímetro cuadrado inclusive.75] = 1 0. a) ¿Qué proporción de estos componentes excede 10.9599 = 0.645 = (1.25] = 0.90 y = 1. ¿qué proporción de piezas esperaría que se descartará? Proporción de descarte = 1 P(9800 < X < 10200) P(9800 < X < 10200) = P(9775 < X < 10225) = [ (10225 10000)/100] - [ (9775 10000)/100] = [2. Si la universidad requiere un CI de .90 = 18.0122 = 0.5 unidades = 50 e= + 25 P(X > 10150) = P(X > 10175) = 1 =1[ (10175 10000)/100] [1.P95 Área = 0.0401 b) Si las especificaciones requieren de todos los componentes tengan resistencia a la tracción entre 9800 y 10.95 Z = 1.150 kilogramos por centímetro cuadrado de resistencia a la tracción ? = 15. 0478 Número de estudiantes rechazados = 600*0.0 y 70.3594 c) Calcule la probabilidad de un valor localizado entre 55.0 p(75 x 90) z 10   = 0. Una población normal tiene una media de 80 una desviación estándar de 14. ¿cuántos de estos estudiantes serán rechazados sobre esta base sin importar sus otras calificaciones? P(X < 95) = [(95 115)/12]= [-1.67] = 0.0 µ = 80 = 14 90  75  z x  a) Calcule la probabilidad de un valor localizado entre 75.0387 .3594 p(75 x 90) = 0.0 y 90.al menos 95.3594  0.0478 = 28.2389 z 25 =0.4017 b) Calcule la probabilidad de un valor de 75. p(x 75) z 75  5 p(x 75) = 0.0 ó menor.68 o 29 11.7611 z 5 = 0.7611 0.3594 = 0.0 p(55 x 70) 70  55  10 z = 0. 000 x 80.2022 12.6915  z 5 000 =0. una media de $70.000 y $80.4013 = 0. ¿Cuál es la probabilidad de que: a) El monto solicitado sea de $80. Los montos de dinero que se piden en las solicitudes de préstamos en Down River Federal Savings tiene una distribución normal.2902 c) El monto solicitado sea de $65.3085 b) El monto solicitado oscile entre $65.000) 80 000  65 000  z 10 000  = 0.000) 80 000  z 10 000 = 0.p(55 x 70) = 0. Esta mañana se recibió una solicitud de préstamo.6915 p(x 80.4013 .000) z 65 000  5 000 = 0. p(x 65.000) = 0.000 x 80.6915 0.000.000 o superior? p(x 80.4013 p(65.000 o superior.0367= 0.6915= 0.000 y una desviación estándar de $20.2389 0.000? p(65.000) = 1 0. 00 = $20.000) = 1 0.000 habitantes. Suponga que la µ = $70. El x  tiempo de viaje más largo pertenece a la ciudad de Nueva York. donde el tiempo medio es de 38.00 z distribución de los tiempos de viaje en la ciudad de Nueva York tiene una distribución de probabilidad normal y la desviación estándar es de 7. Entre las ciudades de Estados Unidos con una población de más de 250.35% b) ¿Qué porcentaje de viajes consumen entre 30 y 35 minutos? p(30 x 35) 35  30  z 33 75 8 3  =0.1335 = 13.4013 = 0.p(x 65.3 minutos.1335 p( x 30) = 0. a) ¿Qué porcentaje de viajes en la ciudad de Nueva York consumen menos de 30 minutos? p( x 30) 30  8 3 z =0.3300 =0.1965 = 19.1335 z p(30 x 35) = 0.5987 13.3300 0. la media del tiempo de viaje de ida al trabajo es de 24.3 minutos.5 minutos.1335 = 0.65% . ¿Dónde se deben establecer los niveles de inventario? 1 .75% 14.5910 0. tiene una distribución normal.200 y una desviación estándar de $225.0.65 x  225 š  x = 1.4575 = 45.5910  =0.1335 x 40) = 0. Las ventas mensuales de silenciadores en el área de Richmond. Virginia.25  š š  .1335= 0. µ = 1.65 z x  1.c) ¿Qué porcentaje de viajes consumen entre 30 y 40 minutos? p(30 x 40) 40  17  75 83 75 z z p(30 30   =0.571. con una media de $1.9500 Valor z = 1.0500 z x  Al fabricante le gustaría establecer niveles de inventario de manera que solo haya 5% de probabilidad de que se agoten las existencias.0500 = 0.200 = 225 5% = . En 2004 y 2005.01 .200 x  = 820 distribución de páginas impresas por z cartucho se aproxima a la 99% = .15. ¿Cuántas páginas debe indicar el fabricante por cartucho si desea obtener 99% de µ = 20.200. La µ = 12.500 95% = .99 = 0. El fabricante de una impresora láser informa que la cantidad media de páginas que imprime un cartucho antes de reemplazarlo es de 12.082.082 certeza en todo momento? = 4. El fabricante desea proporcionar lineamientos a los posibles clientes sobre el tiempo que deben esperar que les dure un cartucho.500. 16.9900 distribución de probabilidad normal y la desviación estándar es de 820 páginas. El 95% de los estudiantes de universidades privadas paga menos de ¿Qué cantidad? 1. el costo medio anual para asistir a una universidad privada en Estados Unidos era de $20.64 x  4 500 š  š š x = 27.462. Suponga que la distribución de los costos anuales se rigen por una distribución de probabilidad normal y que la desviación estándar es de $4.9500 = 1 64 1 -0. 2.4 17. con media 23° y desviación típica 5°.2.33 820 š  š š   x = 10. Entre 60 kg y 65 kg. Calcular el número de días del mes en los que se espera alcanzar máximas entre 21° y 27°.  . Suponiendo que los pesos se distribuyen normalmente. La media de los pesos de 500 estudiantes de un colegio es 70 kg y la desviación típica 3 kg. hallar cuántos estudiantes pesan: 1. En una ciudad se estima que la temperatura máxima en el mes de junio sigue una distribución normal.Valor z = .33 x  . 18.289. Menos de 64 kg.Más de 90 kg. Calcular la proporción de estudiantes que tienen puntuaciones que exceden por lo menos en cinco puntos de la puntuación que marca la frontera entre el Apto y el No-Apto (son declarados No-Aptos el 25% de los estudiantes que obtuvieron las puntuaciones más bajas).   . Se pide: ¿Cuál es obtenga una calificación superior a 72? la probabilidad de que una persona que se presenta el examen 20. Se supone que los resultados de un examen siguen una distribución normal con media 78 y varianza 36.2. 19. 3.     21. emplean una temperatura de -4°C con una desviación t ípica de 1. Se calculó que el promedio de enf riamiento de todas las neveras para una línea de cierta compañía. ¿Cuál es la probabilidad de que una nevera salga con una temperatura menor a 5. Varios test de inteligencia dieron una puntuación que sigue una ley normal con media 100 y desviación típica 15. ¿Cuál es la probabilidad de que una nevera salga con una temperatura superior a 3°C? b.2°C.5°C? . Determinar el porcentaje de población que obtendría un coeficiente entre 95 y 110. a. 22. 8.3944=10.5-0. Z=0.a.88% La probabilidad de que una nevera salga con una temperatura superior a -3°C es de 20.2% c.25 P=0.83 P=0.5-0. ” b.2967=20. ” ” . ”  ”   ” ”  = 2.56% La probabilidad de que una nevera salga con una temperatura menor a . 23.5.6 y desviación típica 0.56%.5°C es de 10. Las calificaciones en un examen siguen una distribución Normal de media 5. P(x<-55°C) Z=1.33% b. a) ¿Qué proporción de alumnos tendrá puntuaciones inferiores o iguales a 4? b) ¿Qué proporción de alumnos aprobará? c) ¿Qué proporción de alumnos obtendrá Notable o Sobresaliente? a. 1251 25.50 (dólares). Supóngase que los salarios iniciales siguen una distribución normal con desviación estándar $3300. a. Entre $35000 y $40000 A1 = 0. Superior a $40000     c. En la primavera de 2000 el salario inicial medio de los recién egresados de la escuela era $ 31280. Que porcentaje de los egresados tiene un salario inicial medio.4959-0. Un estudio reciente de los sueldos por hora del personal de mantenimiento en aerolíneas importantes mostró que el salario medio por hora era $16. .3708 AP = 0. Entre $30000 y $3500 µ=31280 =3300        b.4959 AP = 0.3708 A2 = 0.24. 5 = 3. Si se eligen al azar 90 familias. Menos de $15 por hora. DATOS: n=90 p=1/3 q=2/3 . Más de 20 por hora.con una desviación estándar de $3. Entre $16.50.5 y $20 por hora.5       b. cuál es la probabilidad de que gane: a. calcular la probabilidad de que entre ellas haya por lo menos 30 tengan teléfono. Si se selecciona al azar un elemento de la tripulación.     EJERCICOS DE APROXIMACION DE DE LA DISTRIBUCION NORMAL A LA BINOMIAL 1. En una ciudad una de cada tres familias posee teléfono. c. µ = 16. si el 50% de los productos normalmente sale defectuoso.97%.La p r o b a b i l i d ad d e q u e probabilidad de que entre ellas haya por lo menos 30 tengan teléfono es del 50% 2. Un estudio realizado por el club de acondicionamiento físico Taurus Health club. 3. De 31 productos cuál es la probabilidad de que 20 salgan defectuosos. DATOS: n=31 P=50% Q=50%    La probabilidad de que 20 productos salgan defectuosos es de 3. . revelo que 30% de sus socios nuevos tienen sobrepeso considerable. Una promoción para membrecías en la zona metropolitana dio como resultado la descripción de 500 socios nuevo. 3 n=500 µ = 500 x 0. ¿Se puede calificar este problema como binomial? Explique su respuesta. La empresa de asuntos fiscales Theresa Tax Service se especializala elaboración de declaraciones de impuestos de clientesprofesionales (médicos. porque existen dos resultados posibles el uno que tienen sobrepeso y el otro que no tienen sobrepeso.84 % 4. Más de 6 declaraciones? DATOS: X = 6 + 0.5 = 6.Una auditoria reciente de las declaraciones indicó que 5% de las declaraciones del año anterior preparadas por la empresa tenían algún error. Sí. Suponiendo que la tasa continúe en este año.69 . b) ¿Cuál es la probabilidad de que 175 o más de los socios nuevos tengan sobrepeso? c) d) e) La probabilidad de que 175 o más de los socios nuevos tengan sobrepeso es de 0. cuál es la probabilidad de que cometa algún error en: a. y la empresa elaboró 60 declaraciones. dentistas. contadores. abogados).3 = 150 a) Se ha planteado utilizar la aproximación normal a la binomial para determinar la probabilidad de que 175 o más de los miembros nuevos tengan sobrepeso considerable.DATOS: = 0.5 µ=3 = 1. 6 % c.5 = 5.La probabilidad de que cometa algún error en Más de 6 declaraciones es del 1.92 % b.69 La probabilidad de que cometa algún error de al menos 6 declaraciones es del 9.69 . Exactamente 6 declaraciones? DATOS: X = 6 0. Al menos 6 declaraciones? DATOS: X = 6 0.5 = 5.5 µ=3 = 1.5 µ=3 = 1. La probabilidad de que cometa algún error de exactamente 6 declaraciones es del 5 % EJERCICOS PROPUESTOS 5. Una distribución uniforme se define a lo largo del intervalo 2 a 5 a) ¿Cuál son los valores para ay b? . 5 d) Demuestre que la área total es 1? Área= e) Encuentre la probabilidad de un valor mayor que 2. Según el Insurance Instituto Of América.6)= 6.a=2 b=5 b) ¿Cuál es la media de distribución uniforme? c) Cuál es la desviación estándar? =0.9y 3.9 X 2.6 P(x>2. una familia de 4 miedros gasta entre 400$ y 3800$ al año en todo tipo de seguros. Suponga que el dinero gastado tiene una distribución uniforme entre estas cantidades a) ¿Cuál es el monto medio gastado en seguros? b) ¿Cuál es la desviación estándar del monto gastado? .6)= f) Encuentre la probabilidad de un valor entre 2.7 P(2. la desviación estándar es 5 ? a) ¿Alrededor de que porcentajes de las observaciones se encuentran entre 55 y 65? 55 y 65. La media de distribución de probabilidad normal es de 60. X=Q=M coinciden en la campana de gauss Las curvas asimétricas y simétricas no topan al eje horizontal La ubicación de una distribución normal atreves de la media la dispersión o extensión de la distribución por medio de la desviación estándar Es simétrica con respecto a la media Cae ligeramente fuera en cualquier sentido con respecto al valor central 8. calculados 60±(5) b) ¿Alrededor de que porcentajes de las observaciones se encuentran entre 50 y 70? 50 y 70.c) =5070000 d) Si escogemos una familia al azar. calculados 60± (10) . Enumere las características más importantes de una distribución de probabilidad normal. ¿Cuál es la probabilidad de que gaste menos de $2000 al año en seguros? P(x<2000) = e) ¿Cuál es la probabilidad de que una familia gaste más de 3000$ al año? P(x>3000) = 7. 2 y 14. Monte`s plumbing y Heqating servicies terminaron de reparar la bomba esta mañana.0?? . Una población normal tiene una media de 12. El costo de mano de obra para la primera fue 75$ y para la segunda fue de $100.299 c) ¿Qué proporción de la población es menor que 10.2 y una desviación estándar de 2. Calcule los valores de z para cada caso y comente sus hallasgos? 10. Un artículo reciente que apareció en el Cincinati Enquirer informo que el costo medio de la mano de obra para reparar una bomba de calefacción es de 90$ con una desviación estándar de 22$.c) ¿Alrededor de que porcentajes de las observaciones se encuentran entre 45 y 75? 45 y 75.5 a) Calcule el valor de z relacionado con 14. calculados 60± (15) 9.3  6.3 b) ¿Qué valor de proporción de la población está entre 12. 1915 c) ¿Cuál es la probabilidad de seleccionar un valor al azar y descubrir que tiene un valor menor de 395 libras? 12.4332 b) ¿Cuál es el valor del área entre la media y 395 libras?  Valor de área= 0. z=0.2611 Area Total=0. Una distribución normal tiene una media de 80 y una desviación estándar de 14 a) Calcule la probabilidad de un valor entre 75 y 90 Area1=0. La media de la distribución normal es 400 libras.3106 11.1368 Area2=0. La desviación estándar es 10 libras a) ¿Cuál es el valor del área entre 415 libras y la media de 400 libras?  Valor de área= 0.3979 . 4625 Area Total=0. ¿Cuál es l probabilidad: a) De que monto solicitado sea $80000 o más? Area1=0.esta mañana se recibió una solicitud de préstamo.b) Calcule la probabilidad de un valor de 75 o menos Area=0.2611 13.301 b) De que monto solicitado este entre $65000 y $80000 o más? .0199 Área total=0.2014 Area2=0. Los montos de dinero que se piden en las solicitudes de préstamo caseros en Dowm River Federal Savings siguen la distribución normal con una media de $70000 y una desviación estándar de $20000 .1368 c) Calcule la probabilidad de un valor entre 55 y 70 Area1=0. html http://www. Douglas A.4013 Area2=0.es/uca/dpto/C146/pag_personal/f_alvarez/documentos/CC%20Trabajo% 20Tema%205. Lind.vitutor. Wathen.pdf .uca. Samuel A.udem.0987 Area total=0.htm http://www. http://www.Area1=0.edu.vadenumeros.0199 Area Total=0.pdf http://ocw.0987 EJERCICOS APLICADDOS AL AREA ELECTROMECANICA BIBLIOGRAFIA ESTADISTICA APLINADA A LOS NEGOCIOS Y A LA ECONOMIA 12va EDICION.mx/cursos-de-posgrado/tutorial-de estadistica/Modulos/Modulo02/EJERES07.1186 Area2=0.es/sociales/aproximacion-binomial-normal.0987 c) De que monto solicitado sea $65000 o más? Area=0.com/pro/5/a_g.
Copyright © 2024 DOKUMEN.SITE Inc.