Differential-Equations-by-Zill-3rd-Edition-Solutions-Manual(ciitbooks.blogspot.com)_text.pdf

March 26, 2018 | Author: carlos | Category: Nonlinear System, Mass, Equations, Elementary Mathematics, Force


Comments



Description

1Introduction to Differential Equations Exercises 1.1 1. Second-order; linear. 2. Third-order; nonlinear because of (dy/dx) 4 3. First-order; nonlinear because of yy'. 4. First-order; linear. 5. Fourth-order; linear. . 6. Second-order; nonlinear because of sin y. (Sy/dx2^ 7. Second-order; nonbnear because of 8. 2 Second-order; nonlinear because of 1/r 9. Third-order; linear. . . 2 10. First-order, nonlinear because of y x /2 11. From y = e~ 12. From y = 8 we obtain y 13. From y = we obtain y' 1 e 3* + lOe 2* = 0, = -\e~ x l 2 6 6 5 5 . + y= ~e~ x l 2 + e~^ 2 = + 4(8) = 32. Then 2y' we obtain dyjdx From y = - — -e -20i we obtain $+ (3e = 20j, 31 = <&//<i( 0. + iy = = 3e 3r + 20e 2a\ Then so that y' ^ - 2» = 14. . + 20^) - 2 20t 24e 24e- , 20t (e 31 + lOe 21 ) = e 3r so that 2 0(g-^- 20£ )=24. at 15. From y = 5tan5x we obtain y' — 25sec 2 5i. Then 2 y = 25sec 5z = 25 1 16. From y = (y/x + ci) 2 we obtain y' = 2 (l .+ tan 2 (./c + 5ar) ci) = 25 + (5tan5x) 2 = 25 + 2 j/ . /2y^, so that (^ + Cl) \ 17. From j/ = - sin x — ^cosx 2 + lOe x we obtain ?/ = -cosi + 2 y' + y — ^cosx + 2 ^ sin -1 x — lOe ^ + ^ sinz — lOe *. Then 2 ^ sins — ^ cosi + 10e -1 ^ = sinx. — 1 Exercises 1. 18. First write the differential equation in the form 2xy 2 x y 19. 20. + V2 = 1 we obtain 2xy + {x + ci First write the differential equation in the so that ~2y/x From y = + x = 2x~ % = 21. Implicitly differentiating i/ = = y' = 2 j/ + (x ci {x 2 —x ^ (y') + xy' = 3 ifx>0 „ Smce if*<o' = xlnx we obtain P= 24. Differentiating y' we obtain y x > ~~ (l + + = + x — c\/2y. Then 4y (2x , = see that ifx>0 if ,<o, } {-2., Then \y\ at ) ?/ a 2 ae at - 1+bae*' 2 —— 25. Implicitly differentiating In (2 - 26. Differentiating y W = e - x = x 2 , -co < x < itiBaPP-ent that v — —y = cc, and f-~ , =VM- 1. ab Cl e at acje at 1 ln(2 — x) + „. h [ bcK** —r 1 — ln(l — x) = f we ^ (3lj£. obtain ct^C — 1- i). edt + c^e x we obtain X 2 - e-^V - Ixer 3? [ Jo y' = we obtain fccie"') bCl e we y f»(l+fci^)-^j ^= , y. ifx<0 , = 1 + lnx. ac\e at / (l dp Then 2x~ 3 C V + y(y'f= -^ + ^ = -=y. if * l 1 c ij ' From y Implicitly differentiating 0. = —l/x 2 we obtain y' = —2y/x. From y V 23. — 1 y 0. form so that 1, 2xy' r— (x, vlfl't-x, + 2y} y'. we obtain 1 — 2yj y' (x 2 + e t2 dt - 2c-l XfT x* - 1 - 2xe~^ [' e^dt - 2cixe~ x2 - Jo Substituting into the differential equation, we have 1 y + 2xy = 1 - 2xe~ x * f e^dt - 2c xe" x' l + 2xe~ x * Jo -x - y — — 2 27. First write the differential equation in the form y —+ — x ^ z (x m y) 2 and + 2c\xe~ x% = 1. 2 . xy Tfj/1 -r dt j JO implicit differentiation gives 2ci (x + y)(l + y') Then cAx + = v/x xv' , xe 2 y) —V „ — xe y ' x implies + ev I ' x . Solving Exercises we obtain for y' y + y)- 2c\ (x 2s e<J/z FVom y + y' - y" 29. = FVom y that y" c,??1 = \2y = Sx e -6y' + c2 e~ ix we obtain y = we obtain + = 13y From y - e^+se 21 we obtain 31. From j/ = coshx 32. From y = C\ 33. From y = 35. + From y = ci we obtain c\ + I 3e ix cos 2x = ^ = 3e y' 2t — 2e 3x +2ic 3ir and = y' = — 5ci sinhi ix = and y" 2x and y" sin cosx + -1 x + tan 2). we obtain x 9cie — From 3/ = that x 2 y" 37. From y 38. 39. From y = — — 9ci y'» _ y" - +2X 2 From u* = From y = + 3y" cos 3s c2 9c 2 cos 9y = In 3y' — = -2bc\ cos 5s, so that y" {x + c-iY , = — 1 + sins ln( sec x + + y = tanx. and y" = 2c2S -3 , 1 f0, < , = - sin(lnx) + cos(lnx) and — 0. = 0. iy') 2 tan x) and x^-^ so that y" + 25y = + so that y" y. j! = + 2^OX 0. —- cos(hix) — — sin(lnx), so 3a: = + 2s In £ 3s and y" = 5 + 21ns so that x 2 y" r + 4e we obtain y' = 3ci cos 3s — 3c 2 sin 3s + 4e + 4e s and y'" = — 27ci cos 3x + 27c2 sin 3s + 4e^, — 3xy' + 4y = 0. x , so that , 0. dx j/ +V x<0 ' „ 2 sin 2x, so = x 2 ex + 2xe x y" = x2ex , + 4xe x 2e x and , y'" = xV + Sse 1 + 6e x , so -y = 0. X (-x 2 Vie1* 4"|-4— +4y - 0. + sinhs = coshx obtain y' Then y" y' s + 4x 2 we obtain dx 2 ( y' obtain — sin 3a; + 9j/ _ From y = c\x dx* 42. + 3s ci sin — 0. From y = x 2 e x we obtain 1 41. + 2y = xy' — x 2 + x 2 In x we y" that y'" 40. scos(lns) we obtain - lGcae- 4 *, so that + so that (fcr 36. 2x 5e 31 cos 2x Se^+tee 2 * and y" + cj = — cis -2 y' + coshx —-— and y" = 1 + tans) we ^= sin5x and y" we obtain y = c2 ln(sec cox y' we obtain cos x ln(secs = tans + y" + sinh x cos 5s From y — — 4c-2 e~ 0. 30. 34. 3ci<! ' x 2 - xy ^ 0. cos 2x In Is - ix 1 _ +y x 28. 1. x > s<0 = y' + c\ c.\ in x + 8s, y" = cis -1 + 8, and y'" = — C\X~ 2 2 we obtain y , = f-2s, x > 1 2s, we obtain y , ' = so that a;<0 f0, < x<0 i so that .. 3 , (y xy ,,9 V— —2y = f°/ 0. x<0 , so that Exercises 1.1 43. = From y y' = + cx c2 we obtain 2kx so that xy' + (y y' = 2 1 ) — c so that xy' + (y') 2 = cx + 4k) — 2 y implies that x k(l — + Then 0. = — 1/4 A: = From y V- fcx 2 we obtain produces a singular solution. 44. From y = cx y' = 4- \/l 4- e2 -xjy. Then 1 we obtain y # for y xy' 0, = r + c so that xy' — = -x + (y') + ^/l + 2 45. + y2 — implied by x 2 By = —1 inspection, y is ^ together with y 1 a singular = 2 From x 2 + y 2 y. = 1 we obtain 2 w — =!/. 1 + -7= = 2 y is (y') vy 2 The condition -1 < x < 1 " 0. Note that solution. this is the "solution" obtained by computing the limit as c approaches infinity of the one-parameter family of solutions. 46. The = function y f 47. 48. right = From y hand -V4 - limit is we obtain x —2,) and hence = me" 11 y' — 0. does not exist at x =m and y" 2 mx Then y" e . m = 2 and m = — for all x, From y = e™ we obtain for all not continuous at j/ = — (the left hand limit is 2 0<x<2 , (m _ 2 )(m - > ml > y' x2 m 2 e mx _ 5me mz + fe m* = Since e mx Since e -2 < x < is I and the s/T^, i Thus y 3. mi and rae = y" m 2 e m;E e . 2x and y Then y" 5y' 3)e = e + ml 3x = implies 0. are solutions. 4- lOj/ 4- m 2 e mx + IQme™ + 25e mi = (m + 5) 2 e mi = x, m = Thus, y = e 51 a solution. 5. = 6y 25y = implies 0. is m~ l = mx and y" = m(m— l)x m_2 and substituting into the differential equation we obtain m m m(m - l)x - x = (m 2 - m - l) x m = 0. Solving ro 2 - m - 1 = we obtain m = (l ± i/o") /2. 49. Using y' Thus, two solutions of the differential equation on the interval 50. Using j/ + 4y and y" . m(m Thus, y 51. — m= x~* and y It is easily y?, —4, - arO+v^)/^ = m(m— l)x m ~ 2 and substituting into the differential equation we obtain = [m(m — 1) + 6m + 4]x m The right side will be zero provided m satisfies = mx"1-1 x 2 y" + Sxy' 0<z<ooarey = 1) —1 and two = x _i shown that 2c!X4-3c2 x 2 and + 6m + 4 = m 2 + 5m + 4 = (m + 4)(m solutions of the differential equation 4- 1) = 0. on the interval < x< 00 are . y\ 3/3' = x 2 and j/2 = x 3 arc = 2a + 6c 2 x so that solutions. If x 2 t/3' - 4xy'3 are solutions. 4 4- y3 6y3 = cjyi + c2 y2 = cix 2 4- c2 x 3 then = 0. Hence cxj/i, c2 y2, and yi 4-3/2 Exercises 1.2 52. shown that easily It is = y\ x 2 and = 5/2 x 3 are solutions. If = y = ciyi 2cix + 2ci — 1 then y 2c\ so 2 (uM + 2U- = that zy' + 2c\^y 2c x x 2 = ~x + 2 y' 53. (a) y ~~ + so that = ~^-x 2 ji ? and for c 2 / and + —^— = so that xy' + 2^y. = The sum on the body of the forces acting , , mo — , second law we have s , kv mg — is from g „ Using , = k/R 2 = , , (b) a „ „ , , we m— = find k = gR 2 gR 2 dv dr — , dr dt 4. (a) = 3/ ;/i cm , t The sum of the forces acting ma — — kv m -t-t at 1 d^r k dr dt 2 m (b) Letting 1 6. By = is on the kv where k k or —kv 2 — mv 1 dt &= _ a is — + = 1 then 2 are solutions. 1/ 2 — —1 or y a constant of proportionality, From a. 3, a = = k ^= gR 2 dr rl = ma — SR 2 gR ___ = 2 d2 r or . 0. kv, so by Newton's second law, ^5-. Thus, using v l = ~. r and r — = kv t1 dt v, the equation is part (b) becomes Problem = m ^Xr2 or dt mv = a, which is the 100, and 1. = + dt* equation 1 dt E(t). at we obtain R^- + ^-q = is + Ri = we obtain E(t) dt ~=— dt g j/ 1/1 + r2 and ^ dt differential and 2x 2 Kirchoff's second law The = -x 2 /2 + = -c 2 x + mg. dv satellite is C at 7. i/2 (c) dv „ = 0oru- From Problem . _ gR dt R = equation i + (-C2/2)a: a then y' c2 y2, dt 5. Since - . <^r J t > u -^j and part (a) we obtain Part (b) becomes (c) c 2 y2 acts in a direction opposite to the motion. dv m— = from Newton's second law we obtain (a) If 1. = j, ° 1 dt 3. ^ c2 dt 2. If 1. Thus, none of and the minus sign indicates that the resistance „ Newton c, (b) no real solution Exercises 1. y for C] Aw E(t). J2gh. Using .4o = jt ('-—') \ ' = 127 32 this becomes dh dt - 0.6tt/36 ' 100 8nVh rvr-— 64/t = - --„„,- - - —- Vh tt 6000 750 . — 36 , ^= 10 2 = ' Exercises 1.2 8. The differential equation and 5 = is ^=_ 0.6j4o ^f— 0.6tt/576 dt= The differential equation — = — —A—w — To 32. find Aw we x solve 2 0.6(8) = - \l2gh : is "4(576} We . v at and g tt = = 7r(2) 2 = 47r, + (5 — h) 1 — have An = 2 A^ ^ "480 ^- 25 where a: - VlO/i ft 2 we obtain dft 0.6^/144 _ A A w = ir(10/i - ir(10A - /i /l /g^r 2 ^= 1 = - 30A(H> ) 10. The differential equation is A'(t) = kA(t) where k 11. The differential equation is x'{t) = r 12. Equating Newton's law with the net forces fcx(i) 144 represents the is From h. Thus ). 2 - — (——] \12/ iv radius of the circular area of the surface of the water whose depth x = f^r) 32 this becomes <to 9. A§ = /^ft. Using > 31>A (10 - ' h) 0. > where in 1 A) 0. — the x- and ^-directions gives and 2 d y m— j = — 13. respectively- Prom Newton's second law in the x-direction we have 2 d x m— dt2 md 2 y A 15. To = respectively, and k > 0, see from the figure that tan20 = , , Id 11 r- . rfi is Ady k(a~x)(j3—x) where a and rfi = 20, tan <j> 1 —^ = 2tan0 - tan-^ x x L down -, so - = j/ y —- 2ldx/dy) 1 f 7T I L-~~ and i (dx dy) 2 6 ^ ~dt are the given — — tan — — 9 \2 ax , dy lcl to the x-axis. x dy — — and y = 1 . better understand the problem extend the line tan?i dx —dx = — — v dt , x'(t) differential equation and B, , = ~ mg ksm0a = ~ m9 ~ k = ~ mg ~ ~ vTt -k¥ The , we have In the y-direction 14. „ —kcos6 — —k - 2 ) = amounts of chemicals Then we cot G. Now 'V y — (dx\ „ ( dx\ = +2y \dy ) \dyj — L i. Exercises 1.2 16. We have from Archimedes' principle upward It force of water on barrel then follows from Newton's second law that = weight of water displaced = (62.4) = (62.4)7r(s/2) y x (volume of water displaced) 2 —^-^ = —15. 6tts g dt 1 g 17. = w 32 and ~ &i ' m gives Dividing by 2 15.67rs y. 2 or i( dt 2 w iere ' ^-f 4 dt M the mass of the earth and k\ is = --4£ of motion with his law of gravitation, k\M = gR j/B is , 3 = w q wnere where k , = k\M. The constant k = gR 2 or k . we obtain a constant of proportionality. is is R is the gR 2 where , y the earth. This follows from the fact that on the surface of the earth y 2 15.67T8 + the weight of the barrel in pounds. is By combining Newton's second law m ^f" = = = If t is =R radius of ^" = m9< so that ^l - the time at which burnout occurs, then y(0) the distance from the earth's surface to the rocket at the time of burnout, = R + yg, where and y'(0) — Vg is the corresponding velocity at that time. 18. Substituting into the differential equation we obtain —(mo — at)g = du — at)— + M—a) (mo or dt i (mo dv — at)— = i , ab — m^g + agt. at 19. By the Pythagorean Theorem the slope of the tangent line is y' ^ — . 2 20. (a) We have M r = \l» M •So 3 -dr and = ^SR 3 Then . r , M r where The 3 w2 = differential = is 2 part (a) we have d r — m —-^ at 4 dA — = k(M — dA — = ki(M - A) A). dt 22. The differential equation is dt -^ and 3 k-^j- equation r Mm/R _ 2 d r . From rr = ma = m-pr and at* 21. T it Mm_ (b) M 3 - y2 k^A. —k mM mM _ r R Aa <Pr or — ^ dt* — kM = 2 r —w r R6 , Chapter Review Exercises 1 Chapter Review Exercises 1 2 1. First-order; ordinary; nonlinear because of y 2. Third-order; ordinary; nonlinear because of tAnxy. 3. Second-order; partial. 4. Second-order; ordinary; linear. 5. From y = x + tunx we obtain y' + 2xy From y = c\ have 6. = 2+x +y 2 2 so that x y" 7. + From y — cie y'" = cje and x xy' +y= + - c2 eT — sm2x + 1 sec 2 x tan obtain = — [c2Cos(lnx) %c i e 2x we obtain so that y'" = cosh2x we obtain = y' - cye x — -y' 2y" + C2B~ X y = x2 10. y = e 11. y = \x 2 12. y = 2 13. y = e* p 14. = V* 15. y = sinx, y 17. For all x2 - x 18. If is 19. \x\ — - < 1 > -1. That 2 and \y\ also true for The differential > \x\ 2, > 2 Aw ff 16. y > 2y is, x —1. Avoiding < or x > 2 < then (dyfdx) and equation r corresponding to is \y\ < 2 x we ci sin(lnx)j and c\ sinflna;)] left- y" — , c\e x + c 2 &~ x + Ac^e 2*, — 16 cosh 2x so that — e \Qy = 0. 5x x and right-hand derivatives, we then must have 1. and the ^~ — —^-\/2gh. dt Aw v satisfies + 2<?3e 2x differential equation has no real solutions. This 2. r = dh dt 20. 16 sin 2x = values of y, y 2 sec + 2y = 6. 9. = + tan 2 x = 1 0. + cosx, y — + C2 sinflnx) + ci cos(ln x) — From = Using x cos(lnx) [ci y' 8. y x. . + Qe* x + 3 x = and y" 2 — —j C2e~ x x = 1 + sec 2 x, + C2sin(lni) we cosfrnz) y" y' . rr- _ " From Newton's second law we obtain Thus We r have An = -. 4 To y— _ _25y^S 9 1/4 = \mg — 2 Aw we note that the radius Then " loir/* 3 / 2 u— mi 2 8 find ^ and A w = —^r-- 4^/25 V at — = or at 16 f1 > — VSu). ' For /(i. For f(x. Thus the solution in the entire plane. y) = y/xy we have = — we ^ region where x 4. 2 2 . For f(x. 10.1 = —-2x y (x 2 ^ . = 2. Thus ay 2 j/) For f(x. (Also. and y = and y = which is 2 3 x 2 = e^ ^ dy ^ \ 1-1 *. . 3. For fix. For f(x.2 First-Order Differential Equations Exercises 1. For f(x. + y we x ™= solution in any region where y 6.) . differential equation will have a unique - —1.? cosy we have x ha ~2x (y-x) 2 . y) in y 2 ^ we have df — = —y~^. The solution is y = 0. Thus the - differential equation will have a unique + y2 f solution in any region not containing (0. Thus the differential equation will have a unique differential equation will have a unique x. u) = have ~=- For f(x. — -3xV —— 9/ — = j or y 2. For /fx.y) — df — dy = where y < x 3 a.y) = (x - l)e v/l' x ~ l) we have unique solution in any region where x 11. where y > or df — = —x dy 2 siny. 3/ = dy 9/ we have 7— jx^ + y dy — Thus the -r- solution in any region where y For f(x. 8. any constant multiple of x 2 unique by Theorem 2. y) — 5. ^ 0. r 5 2 ^ Thus the 1. . Two solutions are y = = 12. . Two solutions are y 13. we have ^ 7 < equation will have a unique solution equation will have a unique solution in any equation will have a unique solution in differential 2 2x y * Thus the . the differential equation will have a unique solution i any rectangular region of the plane where y 2. > 2.y) = . is a solution. Thus the = have 2 7. Thus the . we have s 4-y 2 —x— —y differential differential . y) —+—Xy = we have y-x solution in any region 9.0).1. Thus the differential equation will have a .y) 0.y2 ) —2 < y < equation will have a unique differential (4 —2. - 9 and and that df/dy is df/dy = y 2 /\Jy 2 . For y c. Exercises 2.4). —3). — 15. 2 + 1 value problem on the interval — 1 < x < is Theorem = 0.y) = not continuous at y cx we have cx a solution since 16. its partial the differential equation f(x. The differential equation is not guaranteed to have a unique solution at (5. 1). dx we obtain y o = \{x + l) 3 + c. 10 This yields = x c\e^ \ \g{y)\ = \g(y)\ e^ +e = f(x) + c. < 1. df/dy continuous. 18. Since (a) 1 -\-y 2 = y' it is and c. is not a solution on the a solution of the is initial 1. y = tana: y — tana: initial condition.3). The differential equation has a unique solution at (1.9 discontinuous for \y\ < 3. 3. 2. Letting c\ From dy = sin 5a: da: From dy = (x + l) 2 encounter an expression of the form In will sides of the equation. y for all values of piecewise defined function is not 0. y = tana. we we exponentiate both — ±e e^ c T '. satisfies the differential tt/2.y) Theorem 1 a solution of xy The 2. different iable is so Although 1. = 2 yjy a.-e -31 dx we obtain y = \e~ + c. — ±e c we we obtain y obtain g(y) = —-cos 5a.1. has a unique solution through every point in the plane.1 — does not apply. We • We further note that then apply 2.1 Exercises 14. The differential equation is not guaranteed to have a unique solution at 20. = y is derivative with respect to y are continuous everywhere in the plane.y) = — \y — 1| is is is All of these solutions satisfy the initial condition y(0) = 0. from which we see that y not different iable at x — (tanx) = ax (b) Since equation and the sec 2 Since (d) Since tanx x = and tan x tanO discontinuous for \y\ < 3 = undefined for x is and continuous on — 1 < For Problems 17-20 we identify f(x. (2. (c) = 1. o 3x From dy . —2 < tt/2 < 2 and tanx interval -2 < x < 2. A function satisfying the differential equation and the initial condition }{x.2 In many of the following problems solve for g(y) implies g(y) 1. + c. 19. The differential equation is not guaranteed to have a unique solution at (-1. 17. 2. To = e c e^ which . 2 From —^— dy = .2 4. = smxdx we dy 2y^j or y 2 k dr = obtain 2 \-y . From (~K2 Vy From 19.dx we obtain y+i x In \y c.P| = kt . \y\ = In \y\ 4 In = |x| +c or y = cjx 4 2 +c or y = Cie —a: .+ we obtain y — xl x +6 + x 5 In + II c. or 2 + y2 = ci (4 + x 2 ).y + In U |y (4x + az 2y a 2y + = fcf + ln|y| IWI = 3 — 4x + +c or 2 dx we obtain we obtain 5 = = —. \y\ y ) 11 From From + obtain In obtain 3e~ = j—pdx l\ dy +2+ (2y 21.dy yj » ) -r* dy y + 3) + 2e 3x = dx we obtain ye - —+—x^ 1 iy In +1= + y 2 = — cosx + c. I c. dj/ 2 dy \* 20. 17.Exercises 2. = — 2xe~ x + 2e~ x + c.+ 13. (e~ x ) y { = + From 2y dy 18.-x 3 9 1 1 1 3 1| = — — + c\. + e~ x + ^e~ 3x = ey + y2 = In |4 | —+ + x2 + c y — tan"" — In |x + 1| + c. From y 2 dy = ( —x£ + —~\ dx we obtain -y3 — . 2/ 9. \- x y* 10. 5 kT'. x -dx = + x —. | 1 x c. (+c so that In j^—p = *+c . From y 31 e~ * — 2 — — dx we = X ~ dS = we obtain <ix ln|2 +c Ixl = —3 + 3xln Ixl + cix. — x From —= dy — —rz dx we obtain y~ 2 — + = 11 In Ixl +c — 11. From ^. From ^ 2 16. From 23. obtain In |Q + j^Tp) Solving for 3 i ^= we have - 70| weobtain P= 11 In Q . + c. From or dQ = kdt we p ^ p2 ——= = dP = cie'. \dx From dy = = From dy = / 1 5 + \ 2xe~ x dx we obtain y From dy 7. From e -2 "^ = e^dx we 14.dy 4 = — dx 8. J 1 22.+ c or 2 ^y - 3 + 2 -—-^ 2 5) 1| 2 2 x lnxdx we obtain ^- — — + = - 1 y + In |y + X — ln|x| . xy 3 or c. _:c . From . From — dy — —2x dx we obtain II In we obtain =x+ dx we obtain y i + 1/ \ 1 6.+ \x 3 x x) 12. 5. y obtain y 2 = x ~h 1 = \dx we l\ . + c.70 = cie |P|-ln |1-. From ye"dy 15'. we obtain C\x. + c. = xdy 2 - 6 sin lj = = — tan 3x sec 2 3xda: we From tan ydy = xcosx dx we obtain (e^ 3 = -cos 2 xdx = --(1 + cos2x) dx we 4 cosy or 28. From 25.+ ' l) ln|y+l| 32..2 24. t+2 + c. 2 2 x-3 / . From — ^ (2cos-! cot 36. = . dx we obtain j.—— — - Exercises 2. = sin x cos « 4.-51n|y-3| 34. = In \N\ x cos y — cos x sin y esc 2j/ dy = cos x dx. Fromey — y. 2 j/ - e" + 21n|y-l|=x + 51nlx-3| + c - c. = } ^ — cos^y-l dy x'y .sin 2x + c 26. ) + c. dx or cosx From 30. dy sec y— obtain = — . + (e* = dy e + sin2x + c\. From <fy - From y — -dx From 2y dy — 33. ——+ ie'+ 2 . obtain 2 1 +4 t ^ we obtain - = - 1) . dx cosx 2 cos x 31. 2x 2 sin x cosx = 29. dx we obtain y 2 dx or ? ? 2 ' (l V sin x dx or cos-'y dx we obtain = or dx we + —^—] 3/ 2. y From —- ^-r j/ = — cos x + 1) — I- sin dx dy 2 sin y cos y — „\ = -2sinxdx we obtain ye y )dy ' In sec y | = | xsinx (e y + cosx 4- I)" = 1 * + c.sec 2 3x + c.cosy = -ix . + ^-y = ^ln|l+x|-iln|l-xl + c.esc 2 ydy = sin xdx we obtain c. (e l 1 + l)" (l+y 2 )^ = dx or f —j— . From — (2x + 3 = - \dy +3 y 1 From y^tl dy y - = 1 y 35. + [ 1 + 4/ V = x-51n|x + 4|+c f 1 H = (l ] dx we obtain + x + c. From ^dN = (te t+2 - —^— dy = 5— dx or sint/di/ x sec-1 esc j/ we obtain l) df From = — 2i/dy — r^r~ dx cos" ix e 2y 27.cos x sin y we Then - In | esc 2y 2 12 — cot 2y| find sec ydy = sin x + c. obtain g ~ or cie cie'~». ^— ) dy = ^ 5— dy = dj/ ^— \dy=(l [l ^ dx or ) + c. = 2 sin y cos x t .— = a: 2 ?/-3y + 1/2 2 a. -~-dy = + ye~ y + e~ y = 2x . From + cos x 1 (1 is e~ y + e")(l + cosx) = (l + e M )(l + cosi) 1 42. Then 2udu = dx and x. The 4.2 37. +1= 2x 2 + \/2' c or y yV + 1 2 <Jy =t— -t 2 + -1 = x tan -1 dx or ^ (—^— 2\y-l - + 4y x — y = ~ + c. = find ci tan'^ + tan" 43. !2 = 2x 2 + c. . from rfw {e x make r = / — — / r- +c y — or y + y2 — sin -1 sin .„ 2 1 = dx ^— ^ f 2Vx-l x + find c find 2 /2. i/ the substitution 2udu = -j— — = 1 r / u2 = —2du— = dx we obtain . = 3e -(t-i) we x = tan ^4y — we 3 2 cie'""' ^ Using x(7r/4) = J 1) ci. = ^. . = 4idi we — = 3e The c obtain i)df we obtain is . + 2 In (. FVom l + . 2 —— 1 ttt 1 tan -1 e x + c. To integrate dx/ {x -Jx) dx r ——— Thus. 4y is Using y(0) = y = 3e — or = is '-' 2 find c = V2.„ = (2{/) we €^ = we * 2 + FVom -dy = (1 2y = = — —1 tan _1 7r/4. FVom dy we obtain -x . The — dx we obtain lJ we . 21n y . — dy . From tan or 2 -1 ' 2 solution of the initial-value problem _! *j x + J/ c + c or dx we obtain solution of the initial-value problem 44. 1 solution of the initial-value problem = 4dy we 2y solution of the initial-value problem In solution of the initial-value problem 46. Irtfl (z8) I find Ci dy . = — 3tt/4. x sin 41. — \ / u+1 +c = 21n(^+l) + c. FVom — lnfl + cosx) = obtain e" 4.+ 1 dx we obtain Y+ ci 1- f ) c. ^ = 2. From dx 2 obtain tan * y2 - dy 1 = - x2 — 1 -l is + _1 9 tan = a.— sin dx we obtain J^ . From xdx = 38.Exercises 2. = From —zdy + ex jr dx e~ x + 40. The * 45. lie ^ = dy . 1 = 1 Using y(0) — tan Using y{l) 1 —x l —+ — dy we dy — - + c\. y/4-x* + 39.The Using y(l) = 3 1 /2-i/2 = 1 .75 = 1) 2 In (\/x~ + l) +c or + e y )' y/y+l=ci (v^+l). = 0theny = solution y obtain y y 3 \y- 1 x solution of the initial-value problem -~ + -^—) dy = dx we y-3) | — I -4. - In |i = ~—y~ ^ = (it. Setting c - 100 l^tan The lOy 5 In and y -1 10(y — 1) = 1 + c = 1 + — tan — \ solution - 11 = is x y and + c. = 1 satisfies we obtain 1. 6x ce . + = — 01 1 is 14 dx. \ + -^.(0) From The . —+ = x . we obtain C ^ 56.— . 3 then » 1 -I- . 3 Iy — 1 1 — = lnlyl In +c la:] = or y — 1-cix Another . = l/2theny = |a. Separating variables — tan X + the initial-value problem.(0) = (c) Ify(l/2) In - |1 2 _ 2 + 3 e 1 theny = 1. -. 1 = —— — \y\ x. x 1 —+ = i <£r we y / 1 y = = ltheny = Ify(l/3) is + 2 = + c. Separating variables . = l\ solution of the initial-value problem — 1) = —1 we 48. By inspection a singular solution is y = 0. Using y{2) I r 51. 0. — = = 2y| obtain In y y = i is = or y 1 efa „ a inspection a singular solution and y In 1 + 61 " 2 By — x = 2 we find c = 0. The singular solution 54. ^. The 55. Exercises 2. +c 1| we obtain ~) ~~ f ~~2 (a) (c) 50. 52. = c = Then x + c —— —— X ^ ^ we obtain = y — 1 el1 0. 1 49.2 \y-l\~ In The 47. e c\e~ l ^ x Using .| = + % ^ - - c or 1 - is 1 2y is xy x = 2y c or c\e~'* = -Ae~ 2x . In \y From - From 1 From \ dy — = find ci . \y + 1 = - y y is —+ or - solution of the initial-value problem ~ dx we obtain iy Ifi. xy = = -1-1 ^. — dy ] = (a) If 3/(0) - (b) If 2. Setting z we obtain ^ = y - solution = 1)^+ and y ^— Then 1) we obtain c — —100.01 1 - -rs = dx. (y + In T 1. Setting x X — .In \x + 1| find ci = = e _1 The 3 (b) If 1/(0) = 3. Using y(0) = 5/2 we 2x + - or y = 2e~ . 53. Separating variables t. then y = 0. Let u 1 tan 58.y). i 4. 2. Since f(tx.Exercises 2. cos-' tanii 4. . du/dx du/dx so that = 1 tan(x a. Since f(tx.1 5 In is cfa/x. = (txV jt.. 2. Multiplying u . the function is homogeneous homogeneous. Exercises ° 1. Thus 1. Let we obtain 1 dy/dx - 1 = 1 + e" or e~ v du = c.2x .ty) = 5. Then — + dx </u or -^= du = dx. Thus \u2 dx.ty) — Since f(tx. Then ^+2 =2+ 1. y).) 2 t2 f& V)< the function the function is homogeneous of degree homogeneous of degree is 3/2. = +c x 2 ti and 2(x + dy/dx. x = du/dx ™ — dx du u — dy/dx du/dx dy 3 so that 5 so that and — + c\ and 2\/w . ty) = sjtx + ty (4tx + 3ty) = 3 2 t ^ f(x.y).tan it sec u) du 2 v + + sin u 1 = Thus dx. Then + y) — sec(x +3= = udu — 2 tan « or cos 2 + y) = sin2(x + ci Ax Thus dx. fx 2. or —+—u^ £ \ —- = - dx tan (a: + c) — x — udu = or = ifu ^— 1 + 1/] + dx. Thus + c. Let u 2^/u = 62. Let u or u 2 ~u 2y = x = x + «y = = i (1 +y x - = 2x - lOy The solution = + 1 2x + ci = 1 + 61. or -e^"^ = 5 x + 1 = sinu or = dx or (sec = j/) x + rfu = dx. Since f{tx> ty) = 3 cos +y 1 -f(x. 2 + y) 2u 0. ty) — 3. and £ + y + sin 2u = so that du/dx sin«)/(l 1 = y so that du/dx + sin 2(x + y) = = + c). Thus dx. and (x + 5 In so that 1 + coru = + 2x + = c + isin2it-x + cor 60.ty) = 3 (tx) + 2(tx)(ty} 2 = - 3 t f{x. of degree 0. y). ' c. +c — or tan(x 1 1 + = 1 u2 = or c) x. sinu) we have — secu = x + c = - 10y-9 Then dy/tt Then + dy/dx. the function is homogeneous of degree 3. Since f(tx. the function is not X sin is of degree 2 4- x = f(x. —1. (x (tx) 6. Since f(tx. Let u -e~ u = x = = — - y +c y x 2x + 4x + ci. Let u by x + y u u 59.3 and y = = 57.x+ - 11 ~ dx tan(x Then dy/dx. the function —= ("cos —X — - x+y for any - x -\- y homogeneous n. ux we have {x 12. ty) — + inx 2 — ^nix J (i^^ 3 In ty Since f{tx. . ty) — 9. 11.y). n. not homogeneous.Exercises 2. Letting y homogeneous of degree y = + + + In y) = 2(ln( |:r| + = + xdu = + l 2u 2u\ = c x 2 + 2xy = ci. ux we have (a: 4- ux) dx + x(udx + (1 + 2u)(ix —x + In 13.ty) \nt 8. the function — ux)dx + x{udx + xdu) — dx 4- x du = dw = f- a: a: = In |x| +m= c In \x\ +y = ex. Since f(tx. # n t (x tne function +y+ l) 2 for is any homogeneous of degree —2. the function ^ ne functi on ^ i s is -j$f{ x < f). Since f(tx. Letting y = ^j(tx In ty + 2 l) for an y n f(x. Letting 0. Since f(tx. In ^ xdu) + [1 x = vy we have + y (fv) + vydv + 1 {y (j/ — (w In |w - 1| - 2v - 2vj/) <fy = + = l) 2 1) i— + In v — 16 1 dy y |j/| = c is not homogeneous. ty) = 10.3 2 7. vy we have y{vdy + ydv) y dv 2{vy + y) dy = - + 2) % = (v tit) + v lnjv = ux we - 2 —= <ft/ 2 y + 2| - . Letting y . Letting x = + \ny — x/y-l V .3 ^-1 In (x 14. ux we have 2 (u x 2 + ux 2 ) dx + x 2 (udx + xdu) - (u 2 + 2u)dx + xdu = dx du x In \x\ + ^ In |u| - u(u ^ In ju + 2) = + 2| = c .+ In 15. + 2j/ = ci?/ 2 have 2 [u x 2 + ux 2 ) <te - 2 + xdu) = x {udx (is — 3 <iu = (is <iu 2=0 —= In |z| H y In = c +-=c lnld 16.y) In | a: - y\ -y= c(x .y). Letting y c In \y \ = c - In \y\ = c a. [a:j +x= cy.Exercises 2. have (ux .3 u+2 ci \x x = 2 x y 17. du - ln\x\ + Inz ^ln (u 2 ^+ 2 ln(z 2 18. ux we have (i + 3ux) dx (u (3x 2 - + ux){u dx + + X In |rc| dx l) + x(u + ti 7 lj = 3) du = r + w 3 du = — In |ti+l| = c - Cl (u-l)(u + 21n |u — x du) + l) z(u-l) 2 !1+ ( !/ 18 1 -x) 2 = c 1 (y + x).x)dx (u 2 + x) (ti dx + x du) = (ux + l) + dx + x(u du 1) + — + -~u — + dx 1 . Letting y = iiiwe cj(y + 2x).= c ci 1 ci. Letting y = + l) = _ 1 U-' a: = 1 + tan" lj+2tan !/ _1 = ^ = + y 2 ) +2tan~ . .Exercises 2. 2 c)' + c have x\j\ + u 2 dx-x 2 du = du dx In III — i+ In u + u2 y/l + + 1 21. Letting y = ux we have —uxdx + (x + {x +x + xdu) = ~Jux)(udx ) + u 3/2 dx = du u! \ x -2u.c \/l + u2 = c\x 2 + x2 = c\x y?/ x — vy we have 2v 2 ydv - (v 2u -In 3 It. 3 + l] 2 + .\2/3 = c 2 . Letting y = ux we In \x\ = 2y[x]y - = 4x.^ + lnH+lii|x| = l In \y/x\ + y(\n\y\ 20. Letting c = . dv lj 1 - In dy = dy — = \y\ .Exercises 2.3 19. . - l] . have x 4 + uV) dx - 3 + x du) = 2x ux(u dx 2 u2 - l) = dx . Letting y — ux we - I I2 set + I U a- . ux we have 3 (u x 3 + 3 a: + u2x3 } + xdu) = dx . Letting j? = 2 = c c. ..u 2 x 3 {udx (1 4- w 2) da: - u 2 x du —+ dx ~ x In In txl |a.\f u2 - 1 )lnM+x 3 = C (» -x a 2 have (x 2 + u 2 x 2 ^ dx - + xdu) = 2 ux {udx = dx — ux du dx u du — x In |a:| — ^u 2 = 2la\x\-(y/x) 4.+ 1 tan tan an = - u2 = -1 -1 u= c .Exercises 2.| 20 —u+ .3 25 + £T Letting y — ux we =c 2 y 3 + y°) =c2 y s x* 12.2xudu —x — —1u du dx (u 2 In 2 (K :3.= c. Letting c In |x| \x\ - n .3 25. Letting t/ = tii*e |x| + cosu| = c y x cos — x = c. Letting y — ux we 2 e~ u + u 2 x 2 ) da: - ux 2 (utte + x du) = — ux du — e~" dx —i -«c x In j/ = ux we = a. x)e y t have (ux + x cot u) rfx — x(u dx + x du) — cot u dx — x du = —x — tan u du — In 28.4e" 2 "rf{/ = |e 2 "-4In |y| = e^'v .we" + (y - du = e" = c x = ex.8]n\y\ 26.r 27. have (.Exercises 2. Letting x = vy we have y(vdy + ydv) - + 4j/e" 2 ") (vy dj/ = ydv . In | have ux In u dx — x(u dx + x du) = (it In u — u) dx dx x — x du — du u In u — u = . . + ux 2 - = u 2 x 2 ) dx + ux 2 {udx + xdu) (1 + u) lix + xudu = —x + uu +dur = dx i In |x| +u— + In |u u + 1| 1 = c = cie = ciie"/* a. 30. du = = + u2 ) = c 1 1 +u 2 =c ie tH1 " .3 - ln|x| In | = c = c\ x = Cl lnu = cjx s = xe - lnu 1| x — lnu 29. Letting y = ux we (x 3 have + ux 2 + 3u 2 x 2 ) dx - (x (l In Ixl 2 + 2ux + u2 ) - 2 dx ) - (udx i(l + x du) = + 2u) rfu <ix 1 + x 1 + v?T tan" 1 u - In f 1 2u .Exercises 2. Letting y = ux we 1 I i n V x _ l + In 2 + 1 1+C2X . have 2 (a.u x^if + x )^™ 2 22 1 *!*. ^ + 1 a. 2xdu 2du dx ln|x| + xdu) = u(u + 2 In \u + x(u x(y + x) 2 = + ciy 2 . solution of the initial.Exercises 2.3 31.^ln In |x| + y3 = Sx 3 + u2 +u * we find ci = 1/2.value problem (l = y have (x Using y(-l) = 3 + ln|x| c 4 — ci = ci 2 {y solution of the initial-value + * 2 ). Letting y 2 we = ux we find c\ = 8. . problem we have {Zux 2 + u 2 x 2 ) dx (u 2 2 2x (u dx + u) cfz £ - 2 In |w| . The 2 + 2 2u x 2 ) +u 2 In udu |x| 1 . Letting y is 3a: dx-ux 2 (udx + xdu) = eta: 1 c\J?. The = +u 2 ) = (l l = 3 . 2 . Letting y = ux we have + u 2 x du = dx dx Vu 2 du = Q x 1 + ^u 3 = In |x| 3r3 = Using 32.ux du = dx ) x 33. . + _ q l) 1\ l) = c = ci 2 is 2x 4 = y 2 + a. 3 Using j/(l) 34.Exercises 2. Letting y 4x(y + \Jx + x) vy we have vy 2 (vdy Using is = 1 we = ux we find ci = The 1. Letting x = —2 we = = find c\ 1/4. Letting x = = we find c = ~ e" = c x = c. e»' —1. dy + y dv) + (y cos 3/<ii> — vy) dy = v + cos dv sec v t> (fy = = -\ V In sec v I + tsnv\ + In \y = \ / sec y \ 24 x — y I- tan z\ — — ] v) c c\ is In \x\ = e^1 . x 2 + y2 have (x + uxe") dx - xe u (u dx + x du) = = dx — xe" — e "du = x - In |x| ln\x\ Using y(l) 36. The solution of the initial-value problem vy we have 3/(1. The solution of the initial-value problem + ydv) — 2 (v y 2 djf = 1 dj/ = In Ivl = c = Ciy + vy\Jv 2 y 2 + y 2 ^ ydv — + \jv 2 — In \7 + x2 3/(0) 35. 1 + y l =ciy 2 solution of the initial-value problem is . The du 2a: dx 2du a: Ji'' In 39. Letting y = ux we have 2 (u x 2 + 3uz 2 ) dx - (ix 1 + ux r) (udx + xdu) = — u dx — x(4 + u) du = — dx 4 + u — + du = X u In \x\ + 4In |uj . Letting y = 1 we ~ ux we find cj = e. Using y(l) 4 = c = r= \x\ H t — c solution of the initial-value problem is a. The 3 ) da: - 2a? (udx = ua: = rA x 3 e~y^is = u4 ~ x^e i v l x . = e _x2 /!/ 2 +i/2 . vj y 37. +u= xu 4 y Using y(l) 38.a: / .— Exercises 2. + xdu) = we find ci = e'^ 2 . we have (x — ux — v?t 2 xj dx + (i + v^a:) (udx dx + xdu) = + x (l + V") du = ^+ In x (l + du = + u + ^u3 ^ 2 = c O 3 2 3a: / lna: + 2 'ix^ y + 2y 3'2 = 3 2 c.+ tan -1=2. Letting y -ti have u 3 da: - = c\e solution of the initial-value problem (uV + 2ua.3 (zr x\ sec . Letting x = vy . Letting x = e we find ci = — e. The solution of the initial-value problem (Note: Since the solution involves yfx 40. -1. The solution of the initial-value problem + y) In \y\ = y - (x + y) 26 or (x + y) In \y\ = is -x. + - yln 41.Exercises 2. ) l) 2 dv (v + v + x +y \) is 1 we find c {x = - dy = dy = y .3 Using y(l) = 1 we find c\ = 5. The solution 3 ci. in . tf = c 1 y = dy 2 1 j/(0) c vy we have y (n dy Using =Q y + In |y| = In |ln |f || = ve we have y(vdy Using y(l) is + In \y\ = c. yki . x > and we do not need an absolute + ydv) + vy(\nvy — Iny — y du = 1) + ulnudy = <fo w In v dj. of the initial-value problem + y du) + 2 (u y 2 + m/ ydw + 2 + (jj + 2 t. 2tdt = '-* 1.l|1+a|+c I Vx r 3/2 <lt —d« = « du - is . — ux we Letting y have + {^/x dx — x{ u dx y/ux J + x du) = du (tc 1 a: + 2.v -1- 2\/l --f = = + 2^1 -x/y = c c.Exercises 2. Letting x = = we find c\ — 1. solution of the initial-value problem \n\y\ + 2yJl-x/y=V2.3 L2.e solution of the initial-value problem is vy we have 2 vy- \Jy -vy 2 - y(«d?/ J vT— v In In Using &(l/2) = 1 we find c = \/2 . x The + 2^/y = I u= + 2.1- +c 2 c. The |y| + ydu) = — y dv = dy dv y Vl ./u = nil in \x\ = = f / —-= /rfa Using y(l) 3. sin0)(sin 0dr + r cos0df>) = 0. sin9)(cos9dr Simplifying [M(cos 9.[rM(cos 9. l)dy + yM(v.9) cos9 28 Q . l)(vdy 46. 2/ = r cos (? and ?/ = r sin In |x| = c — In |x| = c. From i j — differential M(vy. y) dy = 0. JV(t>.y) = [vM(v. r sin 9 = r n M(cos9. we have sin 9) cos 9 + AT (cos 6.y) find c = n y M(v.rN(cos 9. sin #) the differential equation becomes r n M(cos9. sin 0) sin 5] dr dr r Af(cosfl. du 1) = dv = Q = 0. Letting y have x(u dx + x du) — (ux a: x cosh u) dx du — cosh u dx = sech u _1 tan 1 tan = Using 45. y) = M(r cos 0. sin. 1) we obtain dx = 1) + is tan -1 ^sinh - ^ = In \x\. 1) + 2 y N(v. y)(v dy n y M(v. — —= — ciu solution of the initial-value problem = vdy + ydv obtain = The 0. we From i = vy we Using M(vy. = N(r cos 9. sin 9) cos 6 ^ _ + N(cob 8.r N (cos 0. sin 9) cos 0] d9 = . sinfl sin 8) sin . 1)] dy vAf(u.Exercises 2. — + n N(v. N(v. sinf) and y) ) n N(cos 9.3 — ux we 44.r sin 0) = T Wfx. and simplifying we have 1) + ydv) + y M(u. sin9) sin 9 M(cos9. equation becomes N(vy. -r sin fldfl) + r n A^cosfl. 1) cos <?dr — r sin and dy — sin fldr + r cos fldfl. Using Af(i. 1) (sinhu) ^sinh and the + y dv) + and N(vy. sin ff) . y) ^ . we obtain = lj dy x \y |j =i"/(l. Nx The . y) .4 1. h'{y) = 2 Let A/ fx is = = siny siny — ysina: and — ysini we obtain 1 2 = xsmy + ycosx — ~y c. = = 3y + 7. and zosx = 4 -2i/ + xcosy — . -c ( .y n 48. y / = isiny + ycosx + frf!/). 1 y x 3 v / 4. 3. Mx dy dx we If . = 2x-l = ^x + 4xy+h(y).x M = 2x + y and N — — x — Then M = and N Let M = 5x + 4y and N = 4x .Exercises 2. so the equation = JVj. Let Af /i'(jf) 2. then by homogeneity f(x. The From/^ . 3 solution is x2 . let 1 j ^ u = y/x. The solution so that /i'(y) = = Prom /a 5i + 4y we obtain ^x +4xy . |) = tf).. Using M(x.8y so that M = 4 Let 6y. + yn N n y or M M^ iy' l) N(x/y. -Sy = 3 . = and JV = 3y+7sothat Afj. = —1.ljdx .2i-l we obtain / = x 2 -x+h(y).2yA = 2 is My = not exact. and — = sinx = 2 ^y . Exercises 2.4 = yn M 47. Using the chain rule for we obtain and du 9j/ du dy \x/ du Then = nx n /(l. c. 1) ( partial derivatives.u). u) = nx n f (l. and h(y) = -y 2 + 7y. 3 + -y 2 + 7y = c.y) = x"f (l. From solution . 1 j and N(x. War. is cosy —y. / 9. Let = / 6. The 0. h'(x) = 1 + ini. so that 2xj/coshx we obtain / 2 3 is From . h'{y) = 0. Let / . and h{y) 2 3 2 = A^.. M- + h(y). 2 3y = = is ~x 4 = 0. .1/f + $x 17.4 5.2xex we obtain . Let Nx = + xy 3 = c. = The 0. = Nx 4xy The solution 1/x + — 2y = y 2 x y is = From . Let - = h{y). x 2|fsinx From fx = x 3 + y3 we obtain . + N y/x 2 and = = and h{y) equation M 4 so that is = 1y. h'(y) JVX solution x In y so that JWU / 14. 3: From fx = 3x 2 y + e" we 3 2 is x y + xe v — y — c. 30 JV. 8.3 and x y — 3x 2 2 = Let A/ JV^ 7. From /x = y . 0.2x 3 . and 15. = and Afy) l/y + Afj. /e = iV. Let = y =y 3 - fx solution 10. = \ay.1/ + 9x and JV = x ^ so that M = 3xV = we obtain / = \x y . Let JW 3xy 2 not exact. Let Jtf = Zx y + e" and JV = x + le" . The ye~ xv and JV. 11. 2 (l 1 solution = and h(y) 0. ^'(j/) sinh ar = 0. V(jf) - y 6x 2 and h(y) 2ie I and - M = I-3/1+ if and JV so that — 0. is not exact. Let M = xy From fy = solution is + 1 lay = -2x/y 2 = solution Af„ = I = x2 is Nx + 2 3\n \xy\ sinh x e" = +y 1 -3/j/ + x so that h'(y) = 0.2y so that Afj. Let M 3 - . + 2y cosh x = and h(y) = JVX .^x = -X 2 /y 2 2x/y and JV h 13. 3xy 2 so that = = 2j/cosx so that JUV 2 2 / = xy 3 + y cosx . is = = = JV M = y\ny . The 2 1/x = JV 4. M— + lnx + y/x and JV = -1 + lnx so that My = l/x = Nx Prom /B = -1 + lnx we obtain = -y + y\nx + k(y). M = r ^ .6x 2 . — 2 - we 3 + 4j/ = c.2xy so that Afy Nx = and 2x ~ The equation 2y.\ arctan(32:) + h(y). M„ = 3 1 cosh x and = 1 = JVX . and h(y) - . = JV. The solution is — + y lnx + ilni = c. From h'(y) = 0. and k(y) = x\nx. Let x and . The = 1 -3/x + y we solution obtain is c.x we 3 2 +y xy — - sinx sinx 2 Jf is J/ 2 x3 + y 3 obtain = and JV h'(y) M = + 0. = -2y 2 x . j/ Let A/ / l 3 ) y 3 2 3 ) — arctan(3x} = c.2xe + 2e* = c. From fx y .0.3 In N = e y + 2Tj/cosha. + 3y 2 c.. The . JL/ y The N — x so that = . and h(y) x 3 ^3 = 2x/y we obtain cy.e'^ and N = equation 12.^x 2 = cos 2 = ^x 4 + xy 3 + h{y). 2 + + xj/ 2 cosh 1 = ey = ey + xj/ 2 coshx + A/s = 2a:?/ /((j/). The c. The solution is xy ..Exercises 2.c M=x 2 — y 2 N and 2yx2 = h'(y) — 3 sin 3x. = — 3sin3x — 3x M cos3x so that 2 2y x y obtain 1/x 2 and not exact. h'{y) 2y. = "ix + 3 2 v — — — — = y The solution obtain / x y + xe + h{y). / = x + y + xy - 16.31n|x[ + xy + h(y). 4X3 — — 3j/sin3. From . = xy-2x 3 -2xe x + 2e* + h(y). = Let 2y2 x . The solution fx l/x 2 + y2 ) - My) = so that 2 y/ (x + y2 ) - ey — c. and h{y) . solution — 2xy + is From TV^.y/ (x 2 + y 2 ) . Let A/ 21. If y(0) = 1 then c = 3 and the solution of the initial-value problem is e x + xy + 2y + ye" — e" = 3. h'{y) = 2y . Let 0. = ^y 2 The /i(y) . h'(y) then c = — M y = —1.Exercises 2. Let is 2 y sin x . we obtain The solution is - y If c. and ft(y) = y -y. and h(y) W^. 3 + y so that .3 and TV = 2y + 5 so that My = = TVX From = 3xcos3x + sin3x . —2xy+h(y).15x 3 23. 20.y + 2y 2 e xy2 we obtain / = ysin 2 x — xy + 2e xy2 = h{y) The 0. . and h(y) — 2y + ye y — y. M = tanx . solution M = 4x y . The = x 2 + 2xy+y 2 general solution is 4/3 and the solution of the initial-value problem is - M = e x + y and TV = 2 + x + ye x and From M„ = 1 = TVj. 2(x + y) = ye y .4 M = -2y and TV = 5y-2x so that M 18. h'{y) = 2y + 5.sin x sin y and TV = cos x cosy so that M Let = — sin x cosy = + cos x sin y + h(y). and h(y) = y 2 + 5y. k'(y) = y /x = tanx solution x sin y we obtain / = sin In sec x\ is | + = cos x sin y secx| In j TVX . Let M v /= — 5x 3 — M — l/x - 4 2 In \x\ + y = c. The solution is x + 2x y + y . 26. — y 3 . My). Let — h'(y) 19. From = — y. h'{y) c.2sinxcosx - 1 sin + Axy z e 2 x xyl + Axye^ so that + Aye 1^ = Nx .y + 2y 22. The solution is xsin3x — 3x + y 2 + 5y = c.y and 2 TV — xy + 2e = xy2 = x 4 + 3y 2 .3 we obtain / = xsin3x . = 3xcos3x + sin3x. = -2 = y and 5y.x 2) 2 (y --- / {x 2 2 + y2) = arctan x [ - ] + Nx so that TW„ 3 and TV = From /a . \y/ In Ixl 25. h'[y) = ye" = 2 — — — + 2xy + y 2 and TV = -x 3 -I- + xy 2 — y = x 2 y + xy2 l/x 4- . From fx = e x + y we obtain / = e + xy + h(y).x 4 x y is 24.1. From and h(y) 0. =^ y(l) = 1 [ — | + ye y — e 8 \yj 1 so that hly). 2 = 4x 3 + 4xy we obtain Let M = 4x 3 + 4xy and TV = 2x + 2y . The c. h'{y) = 2 + ye". fx = 4x y — 15x — y we obtain / = x y — 5x — xy + h{y). arctan 2xy + a: 2 - we obtain / = -x 3 + x 2 y + xy 2 + -x 3 + x 2 y = 4x 3 - h'{y) 2 + x/ ye y and x M=x — 3y 1 2 = Nx . The general solution is x e + xy + 2y + ye" — e y = c. 2 jjy = /j = -2y we obtain / = c. From fs = 2y sin x cos x . l/x 2 . Let 2 xy2 e and = -x + TV My . M = 2ysinxcosx . . = 0.. Let = 3 xy 4- h(y).3x + h{y)..y = c.1 so that My = 4x = Nx From 2 i 2 4 2 2 f = x + 2x y + /i(y). cosx - ysinx and 4- is — +ln obtain \y\ = c. If y = 8. = 6xy 3 we obtain solution of the differential equation M = -l/x a = Ax From /x = -y/x 2 we is . y y 34. Equating 35.5 we 2 = 3y .+ h(x) so that = 2y 1/2 18x?/ 2 = x 1/2 + ^ ^ A^.5x + x 2 —y= c. and 2 3 2 The general solution is y sin x — x y — x + y In y — y — c.Exercises 2.The ^(t/) ' Nx and the solution it/4 = . M Equating M 32.y. = M 2kxy 2 — siny we obtain (z< ») 2 +x ' c. - 1. /. (x 2 In |x 2 + y|+/i{x) From j. so that ft'(y) + iOxy 3 Sy 2 Axy + 2xy + 1/x ti( x ).4 M 27. The = e fc xy 2 +» " Let N(x. lny. solution of the differential equation 32 so that 1 + The y = — 5.ycosx + y sinx general solution 31.)" . and 18xy 2 — s'my and M{x. Let = Ay = obtain / 4xy + 28. 1. . Since /x = /j. y(l) = 1 3 5 — s = — 4 2y — 7 is = A^. The general solution is . + xy 2 + . h'{y) 6y h(y). A. Let . = 2 3i y 3 M 4xy + e x Nx = and A^ - xe x " = ^+ + 5 = + h(y).y) + is — — tan 2 = — xy cos xy — siuxy + 4% 3 My = ye*" 36. h'{y) — lny.value problem is y sin x — x y — x + y In y — y = 0.y) = y 1 y. + 3y + 3y 2 — 5i M = x/2y 4 N= and 3-2 then c 29. Let / = - — 2 J. From /x a-2 = —5/4 M= 2 = ^.x2 ) M = y 4 = Nx Prom = 4y + 2x .Let = h'(y) = 6xy 3 and = — + h(y). Let M=y = fx 2 + J/ 2 -1 xy 2 — ycosx — tan y is the initial-value problem A/j. Since /x = + y2 ) 1/ (l we obtain / = ly 2 . Equating N = 2xy . + Ax h'(y) = y{— 1) .1/2 x'/ 2 M xy — ycosx + 4fcxi/ 3 2 3j/ N(x. = -y/x 2 {x 2 '' 2 A' and h'{y) = A'x = M i- 1 /2 (a: If -1 y(0) y and A^ + ke x 3 + 4j/ Ay N= 3 . = y-^V/ 3 + = of 4 we obtain / 9x 2 y 2 so that 2y = — 20i/ 3 ~ xycosxy — s'mxy we obtain we obtain eXV = J^~2 then c — —1 — we obtain k we obtain / and l/y B = = —1 — ^ 1 + y)' + h'(x). = y + y) ' and + = y 4 . 30. y) 1/x so that = 1 My + sinx = . Let / = 38. From = -tan ~' V. Let cosx — 3x 2 y — 2x and 2 4/ A' 3/ j/. and h{y) — 2 then c = 8 and the solution of the initial-value problem 5 so that /y 6y 3 = and so that 1 M„ = — 2x/j/ 5 = The and the solution x general solution problem of the initial-value — 4y is 2 x/2y4 we obtain ^ ^3 - If c. (3?/ 3 = ^4 + Hv). Equating 33. / N= and 5 2 x 2 — 5x + 4xy is + 4xy — 2 2x - + - q l = 2ysinx — x 3 + ln so that Ms = 2j/cos£ — 3x 2 = A^. = 9. If y(0) = e then c = and the solution 2 3 2 of the initial. From 2 2 3 2 2 = j/lny — /e = y cosx — 3:r y — 2x we obtain / = y sin x — x y — x + h(y). = 37. = 10. = by -co < x < 2. + 4y = . 2 — For ]f+3x y for an integrating y' y' / 5dl e is oo.5 M = —x 39. — and h(y) 0. FVom 2 2 3 = 0. JV = 2x 2 y so Nx A^. For for 5.Exercises 2. an integrating factor = +-y= < y' = e~ 5x — dx so that = 5x y] fe 1 and y = ce 5x for J factor is ef 2dx = e 2x 4~ so that dx 2x \« = y] < _2x and y = ce and w = . —y = e x an integrating factor -oo < x < CO. h'{y) 2 e = 0. 2y -oo < x < 6.y ) / (x + 2xj/ + ) and N 41. For for 4. solution of the differential equation c(x 43. j/ My = -Axy/{x 2y / = x2 + y2 = x H + y} 3 = = A^.+ for J oo. _ Exercises 2. For y' is —oo < x < is x 2 an integrating factor oo. /i'(y) x+y + y) M — —g(x) and = = -1. o 3 . y coax — 2x 2 ys'mx + 4xycos:c = xe x = The 2ye x + = and h(y) 0. Identifying N = h(y) we from see that exactness follows M v = = Nx . e'f^ = is e / 3l2liE e~ x so that = — [e -:I j(] 3 e^ so that e dx y = = 1 and y 3 = xe x x 2 eI and y + ce x for 1 — —+ce~ x . and 3 x + x = c2 2 2 = (j/ 2 + 2xy . FVom solution of the xye x = 2xy 2 3x 2 we obtain + 3a: 2 and that My = 4xy = A^.x 2 ) / (y 2 + 2xy + x 2 ) so that Let M = (x 2 + 2xj/ . Let From /y = 2x y cosx we obtain / M /y = = xe x equation xye x + 2yex + is M = 2xy x 2 y 2 cos x 2 x y e + =x = c. The solution of the differential equation is / = x y + x + k(y). 0. h'(y) = 0. + e .5 1. solution of the = x The + y 2 e x = c.an 3 —oo < x < oo. For y' - + — oo < 3. Let 2 -+- V 42. +y = e integrating factor Z/x an integrating 3x is = e/ 4<tc e 41 le^y] so that ox factor an integrating factor is e/* 2 ^ = is *e < = x 2 so that e* so that = -e ~ [e*j/] 2 e 4x ax ce _4t 3 = [x y] = 41 3 J 1 3x and y and y = = 31 ^e 4 - + cx~ 2 + ce~ x for oo. and k(y) The -y. For x < 7. 2 N = ye x and we obtain / differential equation is N ~ 2x 2 ycosx so that My = 2xy 2 cosx and 2 differential 40. For y' x < oo. xe 1 +y xy<? + h{y). From /E [x 2 + 2xy + y 2 - 2y 2 ) /(x + y) 2 we obtain 2 h /i(y). Let smx + 2 y'i = 2 — h'{y) + 2ye x so that jWs x + h(x). 2y 1 and y 11. +— + x2 y = + y sinx an integrating factor x ^ 1 < for c + — — In x + 00.% an integrating factor —t + 11 — + — x = -2y an mt dy 2y — —x = an dy ce 2xr for is e'^ 2dx _0° < x < integrating factor y = +— y — ~ x sinx \J\ 15. For y . For j/ = -x y + -|^-y = = < < x< ior +e + e1 x x —-—1 y = 1 1 + x. an integrating factor + x2 = -| (l is is e j>/0+z 2 )l<fr = go tnat 1/2 + x 2 ) + c (l + x 2 ) eJ^^ 1 ^^ = 1 for + -co < x < e* so that [1 ax 1 for < x< is + e x y\ = and eJP*VC**-i)]<k = x* - 1 so that [(x 3 - l) yl = 00. For y = y' — dx -x\j\ for is = x3 + -l for + ccosx (cotx)y [(sinx) y] = ~ e~ 2x so that _2ir [e = y] x 2 e~ 21 + 5e _2x 00 ef^ 2 ^= y l i2 — ay so that fy 3 2 xl = -2y ' — f 1/2 L and 00. [(sec x) y] = sec 2 x and . cos x x 14. x an integrating factor 2 sinx cos x and y e/tanstte = sinx -+- is ccscx eJ for 34 coix <te = <x< sini so that it.Exercises 2. For if y x 00. — —-y 2 + cy~ 12. uX 7r/2. + 2xy — For y' x 3 an integrating factor ef 2xdl is — — \e^y dx so that = x 3 x2 e and I 1 y 1 = -x 2 — 9. an integrating factor sec = and y an integrating factor -co < x < + (tanx)y = sinx 18. „ . For = ~ [^f] dx 2?i x 4~ is _ gec ^ go na ^ (. is e S dy — e y so that dy is e/t 1 /*)*** ''xl fe = ye * and x = — y — 1+ce" J L = iso that [xy] = xsinx and ax 00. For . Fory' and y 17.5 8. For y' 16. For y' - + ce -x + —~ y = <x< 10. 00. For y' 1 ^2 y an integrating factor —00 < y < 13. factor 1 r tic e/' / ' is = x so that for = x 2 +5 1 1 2 = ~-x -7. —00 < x < for -i an integrating X1 X for 1 00. x an integrating factor — tt/2 < x < 2 cos 00. For t/ 4 4 \x y\ e -J>/(l is r = x+ i) e ( -* go that (1 d — dx \. is e/P+W*)]-** is e = xe 31 so that ^ [xe 3x 3/] = 1 and oo.a^j = so that e 2* ^ 00. 22 . For = - y xj 23.tor H [xe y] = j.2T 1 y'+ 21. For ox 29. ce _I \ 4~ ax / x(x 1 ^ + (l = 1 yJ for < x< x < oo. and i/ —+— x+ 2x 3 - - + ce 1 e /ll+(2/^)l^ is „ x+ -1 < x < oo for 1 = x2 ei ^.^3 + 3x = 2 y x 4 ~ i 3 In e~ = y < x< for CMtxdx J x ] xx + 1 x esc x an integrating factor y) 1 1 y . 5 = x an integrating factor 7~— + xj V - 20.r 2 x2 w' + + -~\ + x = 24.-s H e> 1 4 y2 ce _B y s2 < for w an integrating factor is < e is In j sec x\ e^ l+(2/y ^ dy = is = sec 2 x = _ (i C0S x} 2 + cosx 4-c for so that — dy < x < 2 fv e"xl L tt/2. For = -x- .Exercises 2. For 3/ + \(x = For 1 . = J oo. e"^ 3 ^ dx ~ x~ 3 _3 — tJ = —-— and x+l (2 so that [x i/l (ix —1 < 1) + cx 3 jj = ~.* 7 <x < for i = x 6 . For y x 2 - an integrating factor 1 pJW x is ) dx = — dx x 4 so that a: y 111 — -x + cx = -a. l)e . fWvWv = «~ 4 so that 4 fi/'" xl = Ay and .an integrating factor ce~ ix for H [(sinx)«l /[aein 1 + ^ ~ dx sinx so that n/2.x* and J oo.— -e y 2 cosx) +- 1 2 = sec + ccscx secx ( y e x sin2x and xex y = -r 1 2 and y 26. For l)e < X< T= (l + ^ an integrating factor *. For y = 28. x* — ^H. x y' + \(x + y x l)e y] ^ — -x = ^1— an integrating = 2x and (x = 4t/ 5 + lje 1 ?/ = x2 factor +c an integrating factor for is J\(x+2)/(x+V]dx -1 < x < e~ = ( x + i)^ so t^t oo. 3 y tanx(l = |x 2 = y] -cosx) an e« tan x integrating factor — sinx — cosx) 2 = and y(l an integrating factor — + . *sin2x an integrating factor = — -cos2x + c for is < x < is eS e f^ + ( lS x )\ dx = xe* so that oo.5 + -y = 1 19. For y' + = so that 2smx COS 3^ J- ^- + ^ dy \ | and x — [(1 27. For y'+(cotx)y 25. Jt + 37. 2 an integrating factor a xe x J L <x>. For y' 31.y = . For c 3/ + ^ do —+ x \e = y] e x + -5 y is 1 e ef^y+ is ^ e^ 2 y < .4 for )\ c(z eSW^- is 1) for -1< lOcoshx an integrating lOtcoshiJe"" 1131 and y = 10 { x x< + 2) 4 -2 < x < ^=-+ 3 1 + c(x+ 1 = so that 00.5 x = 2y 6 + cy4 = = ze 1 — + ce 1 1 1 1 y y 2 = ey + -5 -x 1- for = x ] r rf —00 < a: < is e x —d so that is = J"*** e < for y < = 35.an integrating factor + e' = ^xe x + 33. For + \{x i/ 39.— Exercises 2. For 2 - ey -e" !T r seed = [r(sec0 36. For 1/ 3/ oo. For 7a. factor -21 e + e~ x + ce~~ x = y - ex e~ x lnfe1 an integrating . cosS an integrating factor + tan0)] = (2i < for 2 - „ ex 00. (I_1 &= so that e dt d_ = Pe {At 2 - 2)e' "' and P = 2 + ce'"'* -00 < for i < 00. factor is + ce _sinhi: 36 e/ coshllil for = -co < e a ' nbx x< 00. = eJ = 2 so that y) . For e^ 2 ^^ = x 2 is <x< for sinhx an integrating factor \ = +c —00 < x < for ) — + \2y + dy and x 2 . y] = + = l) an integrating factor and y = |(» + 2)" 1 an integrating factor + is JW^ x+2 dx + 2).+ -ce _ y dx 34. an integrating factor 2 + x In x 00.i 1 =1 + lV .(e x + In x) 30.IIP = + sin0 1 -2 At e~ x — and + e' x so that [e = j/] (l ^ — e ^ and ^^ v dy = ye y * so that ye y *x = dyl 2ye» dy = a 2 — ayL> = y so that \y x] and ey and 00.lnx - 1 +y= y' 32. For ^ y' [e" 4 2) y\ t — 1 . For < for r(secf? is sec eJ ^^ = + tan#} - an integrating factor is 9 gee $ + tan# -cos0 + e-^ 2 '" 1 ' so that c for -tt/2 < < tt/2 .ex + ^. so that dx . x\ so that 1 1. y x \x y) dx oo.l)y = + + 2)- {x = 5(i + 2) 2 —y = x — + and (x = y x(x (coshi)y inha. xx and i 2 !/ y y < + . For — — x+ 2 438. t L -oo < for R 44. For 1/ ?/ = < y < t = oo. ^ £ [ie^l so that ax for = + ce~ 2y J _2x so that = /W^< = e «A cos 2 x an integrating factor — -5x g = 46. If y(l) + (tanx)?/ = sin 20e5x and « ey . For —- jfcT -7- y dy 50 ce ftt 1 = e y(0) and <? if] = xex — x = and —+ F. If yll) = 10 then c = 21 + 1) w] = hix and 21 x + 1 an inteeratine factor is e^ l^ x da ^ — x so that ~ dx \xy\ 1 1 — e x and y xx = —e + — 11 .2« 2 2 . = eJ™* is hx e 3x 31 — /L 2 then c = —2 and y = 4 ) an integrating factor is e~f 2dx 2a .\e i 20 an integrating factor -oo < i < — 2y and y = 3 xe * ^ dt 43. If an integrating factor e is 2y 2 47.Rt = (e = | ^ ^ L + /it i oo. 1 = ) x/ and y + ce" 51 and 3 -x — is e J" t_fc)lfc = e~ fc( — so that + -00 < f < 00. at T= = . For y' y l + 150e fct _fc( and . — + Ce.5 + 2x = Ze ^ ay 40. If y{\) — then c = -1 and 50 V = y = [7\r fct l at + 4 .lS so that = —1 c so that e -7e l5 = [(sees) — and y [e ax -50fc an integrating factor foT +- x [e _ *6 x cos x sin — cosx. For I hix — + x + u' + — v — — ex x 1 x x + 1 is e/[V(*+i)H* = ^ + 1 so that [(x dx 1 for <x< 00. If y(Q) — y' 42. For = 00.E/R and i = I so that / tflnirfx -I^ Adx = = -7 then c= -7 IfQ(O) 00. c = hix "x+1 x+lx+1 and v V = 50. For x - e J. 1 x- 49.ix 2 e 2x + ce 21 for -oo < x < integrating factor ~ — — x = 2y an dy is e — 2e~ 5x < 45. For e = = 4~ U^y] dx so that J. For for —oo < < y an integrating factor ef 2dy is = e 2y so that 2y -f.—\e~ mlL (i \ H and 2 . . = andQ = Q| L cosx and ce x * J . If = . If i{0) integrating factor = e 2 then c + ccosx 1 cos x 4 -00 < x < jm = then c io iQ = /(Vs^J/ e is 5 then c = — jt/2 < x < for = -49/5 and x is e ir/2. + 5y = 41. For 1/ + —+— x y = x 1 + an integrating factor X 3. — [xVyl dx so that e -50fce J L 1 x = 2x J x . til + 49 = = —1 = _2at J \ S ecx then .e~x y T(0) = 150 then an integrating factor c is = e 150 and /(l+2/*)<k T= £ x c 1 —^e <x< for 00. If j/(0) y for = n.—y. For and x 3y 3e J l for = x\ dy oo. oo.Exercises 2. we must have Ue 6 -lle.esc x. 38 = -y + - for y g0 that = -3 3. For y' + 2y = 2 = — ie 2 then c sec 2 t8JI1 = 8 = and z dy and y = 1 y(0) = 8 2 y + ce~ tani /(a. If 1 -y+ - x an integrating factor = = -1 and y = . we must have 1-1 f(x) an integrating factor x>3. For — (a: 52. If y(0) ci = and = C2 < a.21 f 57. ^ so that then c = -4 and .) an integrating factor is e then ci = — 1/2 and 21 = x-2 s inx y so that ( is z)dx sec -7. C2. je^ — 3. If y(l) 1. z(x - = 2)y + 2 then c = - 2 and y e an integrating factor -e* e H e^ 2/xi x is — 2 1 = = - 2 )\ dx - — for < a: = — tt < — + -x — ay oo. 1. + ci. 1.Exercises 2.[yx] y' +y = = 1 /(a:) then For y' + 2xy — e tani an integrating factor e is 37 tt/2. If y(—ir/2) - an integrating factor 1 e^ is 1 54. so that fe* C2 = and X > . for continuity and T . If j/(3) = 6 then c an integrating factor x < 0. For y j/ = 53. c ^ x i-2 2x = 2 and y /™ tKitc = e is then 1 = y < y< ^dx .5 < x< for 51.4e. C2 < > a. \ -e* for continuity = . For y — dx 00. 0<i<1. a: = < 2e so that 1. . If t/(5) + (sec tana: fe 2 x'jy - yl sec y=l. so that +c u 0<x<l- I I C2.i + e is x > x2 1. y and x ? = ^= y(0) [(sin x) y] so that X > pC If = dy = <x< for -tt/2 < f 56. .so that 2) (cotx)y ccscx = go. For + 2 y' y = cx for 2 < . For so that .tani 55. From y' xx + — y = iy x3w = x3 + 2. — — y j/ e 31 y' y y' — ^1 + 5.. obtain = —H we obtain —+ 4- —^ w = —1. we must have C2 = 1 so that 2(1+^) Exercises 2. °S r<1 fi£?- 2x = —^y +x 1 2 0<z< . ' 1 so that fix If y(Q) 7=^ 1. An integrating factor is x 3 so that An integrating factor is e x c or 2 and 1 . For + y' { an integrating factor +x is 1 = then ci = and * > . An integrating factor is x so that . An integrating factor is e~ 3x so that ax =x+ y~ 3 and y + w = -e ^ dx .*. we obtain y u> = i+ — y^ we 1 = ~xe x + e1 + c or y + ^ ax we obtain = -re 1 + ce — — y = — -^y 2 a. From im = y' In + +c = if y 3 and 3x y -1 = y + = = u> -3 _. x so that ^ — 3w = — 3x.6 = If 3/(0) 2 then c\ = 3/2 and 3 = -e + 1 we must have for continuity C2 \{ + \e. it) or \e~ xe 1 so that xe*w and y = xy 4 xe~ 3x = From + and = 1 + cx -3 x 2 w = — -e 2* + c Z) From e" y' 3 c or 2 or y _1 y —x c _1 ce 3x . we obtain -iu = — x . . From e z 4.6 1. u. so that Z z for continuity a 0<x<l. Exercises 2.x \ 58. An integrating factor is c 1 h x ^1 -e _a \ x ^ + —w = . = — In x H x 1 . + ci. n trom u 3 2 / x = -^w y or From £ 9. An . Identify Pfx) = e integrating factor 16. = 2 + /2 2ef and uj = -3x 1/2 + cor = -2. and R{x) x 3 so that x 3 w .. Exercises 2. x — Then . integrating factor = 1. ^— u= or = -1. An integrating = + u. u= = -3x 2 + 4x 3 / 2 . = 1 so that e Q(x) 2l w = — -e + x 2e x . {0 j = ^u. Identify P{x) j f j. 2. = — = —y h yx x so is 5 7 and 2 An /2 .. ^ + f-. -1 factor is xe 2:13 15. An -^-w 2x Then 1. y 2e* - x x 2e )w = -1. y Thus.6 integrating factor + xl 1 7. = 4 and y3 + 4)uj = Then x. and R(x) w = -^e 31 + c integrating factor 14. 2 dx = is 1/3 -1/x. i 1 x^ = --x 5 + c x% w —^—^ = r so that is ~ + ^-4xjw = = — 1 2 I- u.e V/2. 5 fxe x2 ~x dx ./2 W= e 3 x /2 Prom = yx 10. 3 X /2 y' + y = y~ l. and Q{x) — ^ ax = ~Zx 2 + cx 3 ' 2 -1. (1 + Thus. +c or ^+ -1. +c Thus. Identify P(x) — and y" = c ^ K r integrating factor . w— + 1 5 y x e^l^w = -ye" so that x- y + xl = --x -1 + cx~ 8 3 and + cot ay 1 . +corr' = 2-j + ce~f /2 + c fl + x 2 )/ v 1 5 we obtain — x 2 so that e e . =- J" = xe ce~ sx = 12 ""dx If . y .. then c 1 (-1 Thus. An x \ ~l integrating = 1 + u. 11.then ay 2 = x x ^+ we obtain = x + ce -3x/2 3/2 = — ^l/~ 2 — x" 3 ' 2 w is —w = = y(l) If . An 6 I- -3 2 3 factor — ax . integrating factor 2 = y{\) 4 = = ~x. - tu -1. x 2 (? l so that is integrating factor = If . Q(x) 3l An . Identify P (x) = 2x so that 2x is . = 2- From 3/ so that 2 3/ e 3x w— y 3 ^ w = and 2x 12. Identify P(x) is ° y + = x^ lilt we obtain — . 2. —& X ~ X 4 = An + 2x)w = (-1 — —\x^ + cor u — --x + cx -3J and R(x) x~ s / 2 + u. e Q(x) x sec 3 x. = —9. or 1/ c or u and R(x) = . r- e" '* is = -1 then c and ~+ 2x 2 (?(x) = 1/ 1/a. Q(x) = 2 x x so that e ~ w = -4/x 2 is . l -j— + (— tan x + 2 tanx)to = — 1. +c ce x 1. Then An -x.+ xj Then 1 -2. 6 = j + 7fi -to/2 j. c or y .3/2 . that —5 x~ = --x _1 + 3 integrating factor 4 then c 2 = = y y 3 3 we obtain = - 1 x. y Thus. + ^ dx Then = = 40 1. and jT 5 8. Identify P(x) x2 ~ x 13. 2x = and w — —e x + = — tanx. An = — e x + u. . The singular solution The singular solution . y . Identify P(x) x so that sec is a: 1 + given by x f{y') where f(t) = —y and y — Int. A . Let is = xy1 Q(x) — — 9. Let y is — — R(x) — y\ 37 5. y = cx — e ! t given by 24. = f(t) x = 2t~ 3 and y is . ^— + (5 — 4)u. 2 xy 4- ccosx] -l family of solutions 2 = j/ 27x 2 2 -t- — Ax + t2 A and = —t y = cx — is cx +1— In c. + R(x)yf\ + [Q(a> + 2 Vl R(x)u + R(x)u 2 + } dy\ du dy . w= so that 19. Identify P(x) | + u. Q{x) given by x is given by 21. Let y is 6. y — is e = is 1 = = solution 20. The singular solution In c. family of solutions 4f is y — cx — <?. 2 . tan x 17.6 integrating factor w secx = — In Thus. family of solutions or y = — ^(2 + + f(y') where /(() = — e'. Let y i/ = = solution 23. = \nt— = 1 A family of solutions ory = ln('— — [P(x) — is y = cx + 1. = — = -2 + u. The singular solution cx . The singular ma:. A family of solutions x — e and y = — e' + Je or y = In x — x. = 2 (~ 2 . Let y + tana. 3t~ An —2. + c or +c or u= —a: where ~ t~ xy' + xy' filf) — + 3t 2 f(y') u = [— cos x In sec a. Let y is — or 6. — —4 — 2t integrating factor for Ini or = — t3 A = A t. y . j/ = family of solutions 3 ~ + (6-6)w = -1 ax = —3 + u. singular 2 4) 1 xy + tana:] integrating factor for — or 4y or 27y = yi Thus. 1 so that e x w 18. 3 . | where and y = /(() = where 2t 3 f(t) and 1. is y + c~ 2 . An -3. Thus. —x + c = 1 — In = = 1 — u and y where /(f) given by x is l and 1.} + c ~ + f(y') xy' sec a. + f{y') given by x 22. is y — + c2 The + Ac c .e 1 Exercises 2. c) = 0. becomes Thus. Let u = lny. and (y') 2 + 5 = 0. + c + 5 = 0. If y = is WW — then ^ = w ax = and y — cx. — Ru o (Q + 2yiR)u -. x 2 u = 2xlnx. This equation or In y e~ x du) 42 — is x* +u= ^ dx + c.2x + 2. Then — = ax with integrating factor e 1 . Let u = ye*.6 26. Let u = „ e iV . the equation becomes . This equation and = ^e1 + ce~ K = — ue~ x dx + e~ x du. y') and 29. + u){—ue~ x dx + 2 I and and the equation becomes u 3. and the equation becomes or (1 + u) du = u z dx. Then y = ue~ x dx ~ ax = ie 1 ue~ x and dy + = 21nx 2 c ii] or (1 [e x u] = e + ce" 1 21 x u = x 2 e 2y = 2xlnx . ax (b) Write the differential equation in the form (y solutions so that dx obtaining F(t. (a) + y 2 . by the chain 0.Q(x)y Assume that — [Ft{y F{» - — 2 P(x) = by differential equation 27.Assuming = F(y . this ^ 0. rule. [x y dx Thus — dx rfii - . we have ^ Ft ~WW " - y' 3 xy') = + c . .cy.Q(x)w' W Then. — x 2 Thus . the parametric equations form a solution /(?/) Exercises 2.2x 21nx 5— — .— u Exercises 2. s) w = u _i let + f(y') = xy' /(f) + f{i/) into the differential equation ic tf(t) we find f(t)-tf'(t) an is + f(y') we obtain + /(c).7. Assume du that ax 1 If y 28. (y ndu dw — = —u — ax — + (Q + 2yiR)w = —R. 3 cx) cx + f(c) then y the identity cx 30. £ = ^ = xf = = + /((). 1. e*. is linear . F= c )l x?/. 1 ) — 1 FYom i = = 1 /{() — tf'(t) — ~ */'{*) + of y = V+ = j> xy and substituting c = -/'(t) and y Substituting into y ' ' and w" .P(x)w = 0. - which xy' we obtain identity. „ Then du „dy — = 2e — and dx ay 2s linear with integrating factor . j/ = By (a) a family of 2 = + /(c) = Multiply the given . = Since x f for /"(() -/'(*). c) — and F(y (f ™ c — 0. _I so e . Let u =— ln|y| +x= x +c yln \y\ = e~ x + cy. V (2 2 + e~ u )(udy + ydu) + 2(l -u)dy = -+*- 2. An integrating factor so ^[e*u] 8.c. equation becomes = 2x dx. The equation becomes dx +w+ 1 = uV T — + u = uV*. ^ = 2™'.e 1 /*' + x . An.-x a + x - 1 + ce". i/6 ZL = so that x = uy and dx u dy 4- The equation becomes y du. Separating variables and integrating we find — — + In |u| = x —~ + +c 4. Let w= x +u + x4 -e _u = x 2 + find so that -r- = 1 dx + This is Let u — a = => + u) = cl y 2 is so that 4ui 3 di + x 4 du. . The 3 c or -r- .4x w = 2x ^ dx 1 dx =0 dv — du + — = xig y and dy 4ux 3 Integrating dy y(2e =» = ux 4 so that -^7 = |s/| +1 du H +u e~ u + or u =_ —y+ 1 (j? + so that x ~) e* c du dy — =— dx dx . * u= _ (xV . dx or j w = u _1 to obtain dx w— e -3*.Exercises 2. + c. = + e""rfu or rfx x 0. -e~ y t xi = 5 e" x2 e . Let c 2t. Let u — = c we 6. and integrating we . The equation becomes ~ +u= — ax 2 — 1. 2e u 2eu -- Writing this in form + «| +ln In |2e" 5.xe 1 + e x ) + c => 2 y The equation becomes du — =u— dx 1 + xu+l du or dx 2 u = xu . y find p ^2e*/» a Bernoulli equation and we use the substitution integrating factor 7. is . cosh x so that du is u= c or wi dx y — = — —h2ylnx dy x dy cfti so that — = xe" —dy— = y dy = — 2u = x 2 ey =*• iz' = =f- e The equation becomes 2 15. 1 (1 du -r- — 2x —u or dx — c = ln(tau y) x H — = u dx The equation becomes 2xy. x efy. Let u = x3 y3 = => . Separating variables and integrating we have du + u2 11. y x so that u' -2 u = x +y integrating The = e y y'. x d — ax 10. -— = so that 2 y dy — tany dx sec rfu u — mitany} u = x2 w => . so . = -xe x -^-\e w\ w — I- dy — dx i xx — H . 2x xuj — = x -— dx dx 2 so that 1 u —+w = to obtain dx —x. Let = r An 2.x + ce -1 ) -1 2 + = x . An integrating e = x 2 ln III + cx 2 . Separating 2x 3 - 91n or u' x + c. — ye y ti ye" — ev 44 2 y In x = ye" — e" = 0. _u sin x.=> u = x2 = 1 + y'.1. Let x y and integrating we have variables 12. — dx 13.u = (1 ax 9. c = li . dx 1 u tan = 3x y ^ + 3x y ^ dx dx 3 so that tan = du 2 2 3 . -x + ce -1 )^ . 2 1 =1+c l or ey . . Let u + c. = 2x ^ dx 3 — 3. Separating variables and we have sin y „ xu' + cx 2 In Ixj x J so that v! e 14. An so . . 1. . = 2 fx" ul 1 The equation becomes = . or c cos y cosh I+y x du dy y dy dx we have = + c =^ . The equation becomes ^x 3 6x -- 2 =s> it = 2x 3 - + 9In|x| ==* x 3 y 2 c x Let u factor = is e. |x| u— x. = y The equation becomes x .— 7 Exercises This 2. solution Let w ~ = v u — sinxdx du e u = — cosx + — sinysinhxdx + sin ^ cosh x = e. Let — 1 (ill dx — u I dx integrating factor 2csc2y so is x. The equation becomes y du c. The equation becomes du —— = y-— Separating variables = — cosx + + c. a Bernoulli equation and we use the substitution is integrating factor x e is x w = -x+l+ce~ x =s. l-2xlnx. y This — — 3* 2 ) = is ^Cix 1 + a Clairaut equation 2 4f + 3 . Eliminating the x\ 5 /2 24 / ==> u xa + C2. (l + cfj x + ~~5\~^) = v! = tan(x 1 + u2 + ci) . I' tl" 21.= -dx => 18. Let = _ = « 1 J that u' => is | =i* 20. which = -in n\ i C1 .— 7 u Exercises 16. x => . if U^f—+ ci ^x + 1/ci = xv! 1 + x + (u') 3 + + (l + cfj. + —w = we obtain cos(x + Cj)| + C2- . . 3 — t t ( \cix ci a 1 / 1. v! The equation becomes x 2 w' j/'. A . „ = -2x 1 w] L An —1. is . so x 1 X y 3 singular solution 22. Let u jd y' so = that u' — we obtain — dx =u d f jx i 2 iix = it j/ so | x w— du dx .x2 . u — C\X is _ ^/C j _ The equation becomes _1 -j . Let du Ihe equation becomes xdx _.. . 1 —— = — 3t 2 = 1 + 4 -- tan ^ 2x J family of solutions y". — —xe + cx =5- = cost/ xe 1 — ex. -1 becomes u=-2 + ci =* y' u' = -u - = tan(ci - => i) Thus separable. so is A. The equation y' so that u' 9 u — ~x e .x 2 +C3 Bernoulli. parameter we obtain u 1 -1 + -|i2 ^ given by x is integrating factor c = w> i In Icii + = x. .x2 c\ 1 -= integrating factor The equation becomes y". u = t/ so —^i— = 1 + u1 that u' dx =^ = i/ = 2 ±\/c i . u z The equation becomes u .2 ™-2 — =f> tt = A 1 — 1 _ U y' so that with /(() + t it' — y". Let An . | Using so 2 x + u2 = x\ and u = 3 /2 ) '^^ = x + ci Separating variables we obtain 0. is j/ = In cos(ci - x)\ | The equation becomes y". . 1/x. Let = ii 1 y so that u tan = u' du ax _ 1 01 - x u = — xe . Separating variables we obtain j/ = — In I cj. ~ y". Bernoulli.X _ c\x + 11 + c2 / I u „ 1 3 u = — is x ci . Let . which 1 — — u = u2 u' which . Let An du dy — = smy — dx dx = —cosy so that u integrating factor = u —1 u X -^L. is + c% Using the 'X' substitution w = u _1 ax -M = -x=> » = 11 d = 19. dx 17. 2. > = y cio. In u = In +c —U = -<tr du 1 = xu' . u— dy V + =s- dy = dx —y + 4 1 and another solution (y') +u —- 1 — y* The equation becomes y . We / [I = 0. Let u = du 11 =u so that y 11 = dy T 27. =* cicosi I- = 2yu y = c\ ainx we obtain + C2- Separating variables 0. = tan0 . Let = 1/ —= = In |u| = du — dy ti u' + ut&ax = + c => In cosxj j so that y if The equation becomes y".) dx it = 25.. / — s-r . 24. need to solve + ir J = u u — dy y 2 = 1- (1 + / or (1 11 => C] . dy we obtain du u* 26. Let u = y' so that u' = u Separating variables 0. = so that v! y' The equation becomes y". Separating variables and using the substitution u tjz d$ co$6dQ Vl - = x => x-1 46 = x =f- sin# = a..7 Exercises = 23. . C2£ +C3. —(tana.. Let u 2.. — du The equation becomes w— . 1 = — dx |l => c V then ydy ->\3/2 h t/it = u — If ci 1 J = + „2y ay 2 = ^ ] J = we have — = dx => Let u -y = — x + c% is = y' so that u' = y". u= a. The equation becomes /u v" du ^- . Separating variables we obtain u. y c\y = — 1 2 —— )dy = T # + ci ci _ Separating variables we obtain ciy-l 0) I — / j/ y =^ dx (forci + du = «. d$ = x 3.. a. 2.. j/o 1. .. yn (x) y3 (x) = * + yn-i(*)- + x + ^x 2 yi(x) As n — we = 1 y„{x) . = y 1. j/ = Identify — n (x) eT * = 0.Ix 4 »(*) = ix 2 . = 1- find y 2 (x) oo. . 3. = Identify x for = n 0.i/n-i(i)) = 1 + x + x 2 + jU 3 = 0.£n-i{')) = 2ty„_i((). ... .±x*. 2e Picard's formula 2 + ^x 3 + ^x 4 = 1 + = 1 + x + x 2 + ^x 3 + -^x 4 + x + x ^x z . = -x 2 -2 Picard's formula is *Hn-l(0* find = ^x 2 .gz 3 . 2.7 Exercises 2. 2. . — —1 — x + » Vo 1. = l-x »(x) = oo.8 1. 5 .8 Exercises 2. j/n(x) Identify xo 1. 1 n As n 3. /(*. 2. + ^x 2 . !fl(x) As n —* /(t. + x 1 . 3.X + ^x 2 . 2. and /(t.X + ^X 2 ra = . = — » 1.. and /((. . 3.. 3. Iterating . . Picard's formula find yn (x) for = -yn -i[t). yo e * = 1. Iterating . = 7i = i«(x) = = l + 1 a.j/„_i(()) we =t- 2fj/n _i(f). = 4. and 1. is x t/i(x) Identify xn for . we Iterating . 0. Picard's formula j/„(x) = 1 we is is + 2 £tyn ^{t)dt find + x2 !fl(x) = nix) = 1 + x 2 + ^x 4 y4 (x) = 1 + x 2 + ^x 4 + ix 6 + ^x 8 0. .jU 3 + ^x 4 .ix 4 + ^x 6 .yn -i(0) Iterating »(«) 1 2 + ^x 4 + \x e 1 — j/„_!(t)(ii + yn -i(t))dt j*(t ysix) yn (x) for =1- = oo. Iterating .. formula j/„_i(t). oo. = find yi{x) /((.x . n = = -> - . j/o 0. = 0. . yo) in the region x 2. is {*) dt 1 - . Identify to for 6. l. . W (a:) y2 (x) As n —> 7. -i -x* 4 2 = . .\x 2 . — tans. y\{x) 8.. ir/2.0 did i+ -x 3 + —x 5 + -tt^x 1 for \x\ H k then the iterants are k times the iterants given in Problem (a) = .. i . 4 8 7 2.Picard's formula < . Picard's formula 1 + -x3 yn{x) .4c8 7 2 3 x 3 + x 5 + Ts mx 16q Chapter 2 Review Exercises 1. For f(x. = Identify xq = we Iterating . Picard's y3 (x) - = >/3(z) x + ya ) (b) - — y„(x) is find y\-\{t)dt for n -\- = x = 0*0 3/2 I yo 0. yn (x) —* 0. 2. 24 o I .^x 3 1 + x + \x 2 + \x 3 + ^-x4 . = x we is find 12 1 + -x 3 + ~x 5 + —x 7 we use separation of variables to obtain y 1 2 17 O i. . 3. (a) Identify xo 3/ n (x) — x = 2e = 1 FVom dy (c) The Maclaurin = (l 2e* = 2e'-l-£ y n - - = 2e* + x + \x 2 y 4 (x) = 1 1 = t/a(x} If yo (b) If yo(x) = oo. y 2 +y < 2 = 48 (25 — x2 — 25 or x 2 y 2 so there will be a unique ^ +y > 2 25. and 1. x then m(x) = x + 2 kW = x + . j/„_i(()) -J/n-i(0. 1. 2.jf As n —* 0. 3. = and 0..-e = and yo 0. /(i. 3.8 As n -> 5. = = = x and y(0) = y2(z) series for tana. 2. . we Iterating .y) — (25 — x2 — y 2 ) we obtain fy (x.Exercises 2.. yn (x) forn = 3. is =1+ n _j(()) j/ 1. = x yn (x) —> e oo.y) = 2y solution for any point (xq. . separable. obtain ylnydy = xe x dx If => l)+c (j/ . = - e 21n(y 2 + l) +c. I. so becomes ux (udx + xdu) = 2 . exact y. so let x = Then dx — udy + uy.^y 2 = 4' ij/ 2 hi a 2 8. is a homogeneous V \ J differential equation becomes y) dy ylnudu — —dy. linear in homogeneous (m) homogeneous y (n) separable (o) Clairaut (p) Ricatti 6. Bernoulli (j) x and (k) linear in (1) 2 (b) linear in (c) Clair aut (i) l) y.4e x — dx = \x\n V ydu and the ylnu(udy + ydu) — (uylnu — y 1 + c. j This dy. Separating variables we „ . Ricatti (h) homogeneous x (g) linear in Bernoulli homogeneous. The solution 2y is 2 ln |y| Write the differential equation in the form y equation.= -ln|y| + *ln \ y let 2 (3u x 2 — In y) y = +x ux.. 2 + x2 = 9x 6 . since 4. since f(x. Then dy = udx + xdu and the dx ot uxdu = c y ^2u 2 + differential equation Separating variables we l) dx. or Separating variables we obtain In ji du =— uln |u| — u = — In \y + c y x(ln x 9.In 4 2 1 /j .y2 - In xe* 4xe x . exact. 2 y V + xdx — 1 we obtain 1 1 —x + — dy . False. exact. obtain u dx j\n(2u 2 + l) =lnx + + 1 = Cl x 4 2^ x i If y{— 1) = 2 then c\ = c 2y 2 => 2 2u + x2 = 9 and the solution of the initial-value problem +l= Cl x is cix 4 6 2y . is = (y — l) 3 — and fy {x.y) — 3(y x are continuous everywhere in the plane. The equation is homogeneous. 2x + sin2j. = 2i sin -1. y(l) = c= 1. homogeneous. 2 J — x = — y In |y| + cy. True. exact. (d) Bernoulli in x (e) separable (f) separable. -1/4.y) 5- (a) linear in a solution. .Chapter 2 Review Exercises = y 3. Separating variables cos 7. . The . /dw — \dy „ equation becomes e" differential 2 = I2y dy i/ is + dx (u x I 12w + xe" = --2 \ . Let + 6a: * . 50 . . £ -e _I . Write the equation in the form y y c is is (ar \i + 41 . The [ * e -2 "x1 = ye" differential equation dw 4 dx x w = — x 1 An . — dx If [x -4 wl ' <- y(l) = 1 2 " => e-*i = ~»c-^2 1 = is w= Bernoulli..2x) dx + 2x) e 1 => 4 . mtegrating factor =t.1 Chapter 2 Review Exercises 10... -^r + r^-T => ™ = -9* a du — =x+ dy that « 6x is is 1 differential equation u = xv so 11. I J +y- = 2 fx 3 4j/ + c = of the initial-value 2 x . integrating factor a An . f . Using r .-x 4 lnx + cx 4 v 4 — x4 lnx) ' .. . 3 equation becomes = = u dy 8x — + —-y = ±[(x*+4) y\=2x(x* + 4f => then c = e" or ^+w=x 2 => + + 2x. u 3 we obtain also exact. n / (aT dx = integrating factor . The differential that du du - An 1 w = Using Separating variables we obtain e"du If 3/(0} + Bernoulli. u- x then c V 1 . = —1 = then c u = xy so 12.lnx + e -4 _1 y = 1 and y = (x 4 - =t- x 4 lnx) 2 " + c => 4 x = -\y 2 we obtain -xy 2 \ 4 ^+ 4y = =t. .y — (cx + ce 2". + 1 -£-[(fa {Note: 9l2 w= + 6x 2 = —~~—ry y 1 and y = 2x „ .-320 e I e*" = 4y problem 3 is + c. Let 5 is integrating factor dx y-r- „.. x 4 y 2 or so . so = \ + c (x 2 + 4) e~ 2y so .x~ 4 io is x = . tii dw — dx 6 H + The or e" — dy = lM = 12y 2 . e*.(0) so 1. dy dy 15. l)y 3 = -3x 3 + c. e xy = 4y + 5.. . Write the equation in the form = -1 + ==* (6x dy and the solution -T-le^u] If 3. .320 14. The ^ + 6x + differential equation ^ „ . + c An = + [x> 2 i e* + ^+ +4 = An integrating factor 2x y. so 13.) = xdy + y dx. .. y 18. (()) yn(^) for 20. — = \y — and dx 2 dx y +x — ^ dx sin u — -Lz let +. it is = y(0) a Clairaut equation then c = -1 and the —x. 2. [e so that (4 — . 3.Chapter 2 Review Exercises 16. Picard's formula is so that yi{x) = 3~2x y2(x) = 3-2x + 2x 2 y3(x) =3- 2x + 2x 2 - yi (x) =3- 2x + 2x 2 - 4 3 4 3 2 4 2! and j/n (z) -* 2 - find yi(x) 2y) dx and y(0) 1. n= n = . Write the equation in the form -i [cos £ !r \ y } dx the differential equation becomes + {y' + l) 2 we = a: and • Then — - u=x sin —^2 = x A we obtain Separating variables 0. Let is e — dx u— y 1 x = ti' The equation becomes ?/'. = =t- + e -21 as n — > oo. family of solutions solution of the initial-value problem is y = is = xy' y = i ^+ ] — ^ (cos u) 2 cos u du = 2x dx cx + + (c I) 2 see that If . .. From dy = for = x — x - \ + c\e u' u ov v! +u= x. Writing the differential equation in the form y = with /(f) (t + l) A 2 . 3! 4! X + C2- . Identify xq xe z — e i- 0. 1.. 3. 17. t/o = x u — xe x - 1. An integrating factor so . Iterating we = i l + 1 i 2 = y' + y 2 -i(t). and e x + c\ yn _i /((.c. 1 ^] = 19. ^ 3 x = l + x + -x s y 2 (x) = 1 + x + x2 + — y= Picard's formula -x 2 -x-cie is + _(%n-l(()^ 3 we obtain + ^x 4 + ?/ = 2 ~x 5 + ^x 7 + e _2a\ . 2. obtain 2 = = 2x —x - - = —xdx y' 2x so that the differential equation of the orthogonal family and y 2 we obtain y = — y = and / y = y' and 2y 2 2 y 1 we obtain y = 1 Then ydy .3 Applications of First-Order Equations Differential Exercises 1. From v 9.1 — = o^x. = so that the differential equation of the orthogonal family x Then ydy 2. = = -dx + x2 = C2- 2^/y so that the differential equation of the orthogonal family and \--y\dy = xdx Then U 3 2 4j/ / + 3i = c2 is . = ax we obtain y' — — From y Prom 3i y 3. so that the differential equation of the orthogonal family is + ciso that the differential equation of the orthogonal family 2 and 2y \ay — y 2 = —2x 2 + ci. 1 so that the differential equation of the orthogonal family ia we obtain y '— 1 cf x 11—dx = 2x 1 dx and y we obtain y' Then y\ny dy 3 cix we = x2 + 2 In \y[ 2 j/ + c2 . is . 3.4j/ and y 2 1 ia o FVom y y' 5. Prom y y' 4. = From 2i 2 y = y y + x2 = we obtain cj Then Zy . 4. so that the differential equation of the orthogonal family Then 3ydy = -2xdx and Zy 2 is + 2x 2 = 3y 52 ca. cji = is y' 8. — y 2 } —x = y' xy + y2 = V — 2x = From y «' c2 3 = -- y' = -xdx Then 2^/ydy -y Prom y = 1 = C2- we obtain — c\ (x —^j2 =- 2 Then 2ydy . -— — . so that the differential equation of the orthogonal family is so that the differential equation of the orthogonal family is c\e~ e ClX .4x =_ 1 7. = From ax 2 +y 2 y 6. — —x dx ' = — = — . 4 -. we obtain Then -dy . ylny = 2. . + ax = 2 2 is C2- by 11. This is ~2 ] = i2 c2 + y 2 = c 2 y. 2xy r x* + y2 --.y1 x- is + y 2 «i|y| = y' 2 2 = y— -x — ^. = ux so that . 2 we obtain + CjX 1 In |x| cry + c =^ ^ — n If — n x \) = ' I mar \ +c 2 . we obtain - = x family y' — y2 (1 dy } c?.. 3y2 _ +r c . 2u J._ i_i In |x| 111 j.Exercises 10.a x y = c\x x2 so that the differential equation of the orthogonal 2xy 53 ..21 — = u — 3/' = .. 1 From y 2 — x 2 = c\x 3 we obtain _ . = From y 1 is y' 13. j. From y family 3 is + 3x 2 y = y' = x2 ci we obtain = + —+ .. x Let = uy so that dx dv — = u+w— dv dy Then y 15. ^2 du g = ^£ — z2 From x 2 +y 2 — 2c\x we obtain y' 2xy = „1 This a . - 2 _ a? J- /\1 f i y~ \ W I = ci => . 2xy = ux so that y1 = u+xu 1 . — = y' u3 is 2x Then - + y2 = y' so that the differential equation of the orthogonal family c\x From 2x 2 is = y' Then y 2 dy = —x 2 dx and x 3 + . _ = — ^ — _ r -In — ill I-. 7j rfu wu. >- —f .-- j/ 1 [ so that the differential equation of the orthogonal 5 £ y a homogeneous differential equation Let y .2 — u -2 — In |u| = => is = = u + xv! Then 2 14. _a — . Then - 16. so that the differential equation of the orthogonal family 2xy a homogeneous differential equation . so that the differential equation of the orthogonal family — — 3£ Then bydy = —axdx and by .2x 2 2 so that the differential equation of the orthogonal 2xy 2xy_ = 2x z This z y is a homogeneous differential equation Let y . From y a = C\X b we obtain y' ^ = y' 3. = Prom y y' — x2 = r £ 12. so that the differential equation of the orthogonal family — 2xdx = 4cix we obtain y' —s—-—* y — 3x 2 — and 3y y 3 = C2- . is y' = family 1 y —— 2xy t-j Zy x2 —u + xu'. From y family 23. 1 1 + 6xV+V) . Then = An x. — —y 2 obtain y' 1 In \x\ + -x 2 + c = 2 2y 2 hi 2 Ixl + x 2 + ci. + tan x) y so that the x x dx and 2y 3 we obtain cii we obtain .i d + | In \u equation 3y x y =a + 3. 1 = . a homogeneous ^=^(1 + 6^ + 9^) 1 + 17. .1 Exercises 3. .„-4 = ---x +cx differential . V 22. ==> + „ . 2xy From + x2 - = 2 dx ==> y x —+—x we = i/ l = 2ydy 18. ~ y x so that the integrating factor -ye y + ev + c l_i. so that the differential equation of the orthogonal family is c\ 1 y 19. From 4y + x 2 + 1 + c\e 2v = 4 orthogonal family H is —x — — [xy\=x rf I" 20. Then 2 dx — I l-3u —sdu= 3 ti + 3u . y (x — From y + 1 > y ^—x xz we obtain 2 + 3y 2 ) = y' —x dx 2 (x ci = l differential .2. = 3x 3 = e~ y sec x so that the differential equation of the orthogonal e~ v dy = differential 2 = —cos 2 xdx and 4e~ y = 2x + sin2x + C2- taimy so that the differential equation of the orthogonal family x = — xdx and 2 In j coshyl 54 + x2 = ci. so that the differential equation of the 1 x cix ln(ci 1 y x\ or = + xi — ey is =s> x . du= u + 3u3 l =^ This . ~ —x — FVom y = — dx + 1 dy family is 21. 21n(l I 2 2 - 3u I Let y . = Then y 2 dy — dx and y s = 3x + . equation of the orthogonal so = -y + 1 + ce 3 Then = [e 1 = dx +x = ?/ Ay -x~5 we obtain ^ In y y 1 = From y x 1 d — dy f cie 3 j/ we obtain c. 3 = {x 2 = + 3u 2 = ) c 1 (x'' + 3y 2 ) ux so that In \x \+c / ^ 2 =* ==> y ) . y' Then tanhudw y' equation of the orthogonal family is + c. integrating factor ^4^1 x y=-x 4_1 --x 6 +c +c we obtain = —e v cos 2 x. is . 2 From y' = is y sinh y „ tanhy = ^' — +x = — dy = -ye v 2 y dy = + y . = so that the differential equation of the orthogonal family is 1 + x- 2 l + x = l+SL Then . evx ==s- y' = is x4 so . An y. is 2 + 9u 2 — -12u . . — x. r cos cisin20 we obtain ^ = . Then dy = cos0 we obtain dd — = tan dr 6. If = y(0) 10 then c = 10 and y = lOe1 . so that the differential equation of the orthogonal Then cot 0d9 = dr — =i- In lsin#| = ln|r| +c =4- = r cisin#. so that the differential equation of the orthogonal ' 2. + y = — is y' family l ~a 28.„ sin 31. family x we obtain ci sin 3. = tan20 so that the differential equation of the orthogonal Then -tan20(f0=— r . = u(0) dy y we obtain ci Cie H 1 2'3 Then dx If y cot x so that the we obtain cj Then y . = —_ so that the differential equation of the orthogonal Zx*y y. is + y' = .cot dr sintf r r i dr sinfl <tf . 3x 2 ydx and r ^ dr = —cot j/ = ce 1 . so = 2-x + ce^ 1 . y . From = = r family = y' is is r 2ci y' and y = —^ 4~[ex y] ~ 2 = x | x + c2 is . . so that the differential equation of the orthogonal + y-1 -xe 1 =^ 3cix we obtain y' 2 In cosx\ orthogonal family so that the differential equation of the orthogonal family 1 = 3andy = 2- + 3x — Then y + y — e differential equation of the 5 i 1 "" dx and y' ^ 2 x 2/ 3 dx and y x y. .1 Exercises 24. ( —= -ln|cos20| 2 55 = Inr +c r 2 = C! cos20. . v' 25. 2 = dy - = y' we obtain —x— 5 then c 3xt/ a From family 29. = From y —- From i 1 ^ 3 26. . An x e y = 2e 1 + 3e~ x x2 = 'a + c2 ." j/ ^= x5 / 3 + c2 . integrating factor x ->xe* + c =» y is e x . From family 2 is = r sin 6 so that the differential equation of the orthogonal Ifien -z l + cos0 dr 1 - r— dr 20. .tanxdx Then ydy . From r ci(l+cos#) we obtain r family = — dr is r l+cos0 . = x = t/ = From x — 1 ^3 From x" + ya — is y' 27. r = 30. . r 34. the slope of the tangent Depending on how the angle a is we chosen. and ip the angle of inclination of the tangent to a trajectory. of the given family. This is + u2 ) = = In \x\ +c ±2 tan ~ . Then dr dr — -cot8~ => — In = sin SI I In Irl +c — r c\c&c8. r . de — =— dr r + coa 9 1 . From r r^- = = ci sec sinfl dS l+cos0 — — — — — so that the sm8 dr - differential equation of the orthogonal ° : — dr sinfl => — s<w = 1 cosf? we obtain 6 r Then . = — . y) ± tan a IT f[x.y) . In tan/3. Then t/ = u + xv! and 2 . y) tan a r isogonal family a trajectory +a= have will either = — <j> tantp. + cos0 l dr — r = d(? sinf? 33. using the . Since the differential equation of the original family is /(x. " dti = ~ dx =* ±tan u.^ 1 1 ±2tan _1 |-ln^l + |^ = 21n|x|+ci 37. — tt.cosfl] = +c lnr 1 = ==> r ci: r 1 - cos#" so that the differential equation of the orthogonal family is -tanfl. x homogeneous so dy/dx — = Troi0 — a f(x. From r = C[e fl we obtain = r ^j- 1 dr r = _l. ci — From r 1 . ^ dr so that the differential equation of the orthogonal family is Then — = -dB -9 = +c ln\r\ = r c\e~ e . See the figures for this problem in the answer section in the text. is Now. the differential equation of the let y = ux. i TV This is (j> + is fact that f{x. Let measured from the positive x— tangent line to a axis.In y = - . of the member be the angle of inclination.— \/3 — = lTV3si/i y i In (l is f{x y) y \/3 x y=- x^VSy 56 . r 35.. xu — ±1 ± u — => l^u ± Itu + v? J. we obtain + cosS = cot ^ dr r - In |1 . Since the differential equation of the original family the isogonal family is y' = yjx ±=.r— periodicity of the tangent function and the dy — — tan^J = dx tan{/3 tan/J±tana ± a) = -— 1 T tan p tan a 36. At the point where the curves intersect. (x 2 + y 2) = a..Exercises 32. family is 3. y) is y' —= = 1 T y/x . Then . the angle between the tangents a. line to any event. the differential equation of X homogeneous so let y = ux. Vt Self-orthogonality follows from the fact that the product of these derivatives 40. - 1 ci(2x + ci) we obtain c\ -1 == ±2\/3 tan =*• ±2^3 = -x± u. the differential equation of the t and y = coe _t sin i.y) is -lT«/v^. 2 + y 2) = = - f(x.1 Exercises y' = u + xu' 3. we obtain This dy — dx is satisfied x+y x by x —y = . the differential equation of homogeneous so let y = ux. Cl . . Then and xu — 39. yy* i ci results in exactly the 41. This shows that the family and y is -r- ax = = * cie sint — w +x . 1 is r c\G cos orthogonal family t same equation. Since the differential equation of the original family 1 the isogonal family y' = u + xu' y is V^ X ^ }^^. and = xu ~ 1 .I -1 tan" 1 yjx 2 2 In — da: + v?) = (1 ^ - In ^ - In (x ^1 + 2 In = + y2 ) = Ixl +c 21n|x| + ci ci- + y 2 and x -\ + y \yj \ y i. 1 \/3 T + u2 ±-~ tan ± 2 dx j x 1 1 u. is Then C2e -i cos self-orthogonal. +U ±y/3 tan = This . r ~— aii = => ±/ ±vJ— 1 from y 2 is In (x .= V ^ 3 v^j ^ l^y/VSx x^fy/ V3 = ±l/</3±u?/V3 — —= . Ftom + ci + l y = — FYom jt — we obtain ci = - —1.^ + u2 ) = In (l !/ tan-^-lnfl + = In +c \x\ 21n +ci |x| "V3 =* ±-j= tan -1 38. When 90% In 1/2. = 01 find 97 we find = 50 in fc = = fe ^ From dN/dt — t. 0. —— 2) t / 5 and Pq the f. we obtain =» = Po 61n2 10. From dN( dt 400 = N 3k e or e* = JV{0) = = kN we (400//V )V3 . k= 575 we find = = kt « 6597. ho.1 = 500 we obtain 500e 3taL15 r* 760<9^p> number. Setting JV(f) Let JV 1 In 2 ^ N(t) be the number of bacteria at time et (V3. Setting JV(i) e 2000 we then have Using JV(3. Let JV Let i P(f) be the population at time 500e From 5. = 4P kt .2 1. 15.000 and = e = f = 3. = Using P(10) .97.42.! From dN/dt Then JV(24) ( = = kt = » grams and N(Q) = iooetV«)("»ojr)M 10. .B< (ln2)t W 1 Setting P(i) . = fl. £ In 0. P= fct Problem = taa = obtain JV = Ne JV(10) = JV = will N = e fci . 100 = we obtain 100 ( . Let P= P{i) be the population at time P= obtain Poe kt ..96 hours.1 ^ * t. = 3Po 3 — t=^£« 7.3)ln(i/2) 6. We - have tb< ifo =? so that = tani/ji + tan (^2 2 coti/^ — — tan ^2 2/ \ Exercises 3. Let P= 4.!.000 Then P(10) = — 111 J ln3 = fc initial have 4 2. H = lnl — t 58 = « 136. t = 10 years. * 5 =j. Exercises 3.5 hours.** 1 we have be the amount at time JV(t) 7. Poe 21n2 (ln2)t/5 3 in 10. = 2PQ we Using P(5) find we have 3 = .3) = P=P (ln2)t/5 5 In ^ =i^ n4 N(t) be the amount of lead at time Using JV(6) and = kP we From dP/dt population.5. t and Wo the = initial 2000 we find = P = and P{0) ^lnl. Using JV(3) remain. «26.9 7 )4 Problem 6 we obtain go. kN and we obtain of the lead has decayed.000e-°' Prom dP/dt t.4P we Setting P(t) n e ' P Setting =10.390. N = 100e w „ ggg mg . Then P(30) 400 and iV(10) = we 1/2 = 0.9 years. 25.Exercises 3.2 8. g(. 50 so that = = 20° and T(\) = i § T(i) If +ce~ sm . E(t). jfc{T-5) so that Assume that dT/dt = k(T - then c rt and 1(3) fc/ 12 years. *(t. = As and i = 60 = A(t) 10 + T = = If then . C= -6 5 x 10 [f *(0) = -4 .-1/100 then c 1/1000 [e*/ So- 3/5. 20 the differential equation = 6e" 10 T= .75% then 5(5) 59. = Let I . = and £(t) 100 so that q = 1/100 + ce -60 2001 . k / 10. .25/ $6665. 5.000 then (c) 5 $5000 and r A= Assume that 12. = = Assume Ldi/dt = + Ri = 10) so that = = io L = i(t) = g = and 19. If Sa = (b) If S(t) =$10. = T{0) 15° then = t ce*'. -3/5 and limt—oo Since i(0) 18. 51*. 13.1472 amps. and £(t) then c = = 200 so that -1/500.-i 2 )=ln£ ^2 = £ A Solving . 1000. ~ (tl -(ln2)/fc. If T(t) 100) so that £(f). E(t) we obtain Assume Rdg/dt + Assume then .1 seconds.00098/ / $6651.45.06 minutes. and IO -4 . + it 2 C= 200. 36.4611 so that T(0) Assume and k - =S . fa- /t = -200cet If i^sinwt. intensity. Assume that dT/dt and c 14.00012378. It follows that At (2) ~ ( t2 = t - In(Ai/A2} 9. 22° then 98° then If t{0) = -» co = i(0) iQ so that -r^^^rcoswf + ce + & Rt/L . = fc 21n(2/3) so that T{1) = c = -80 and t = 145.67°. If = t wl5. have g -> 1/1000. . we is + cje"*/ 10 *. R= E(t). i = = A(ti) Aoe*' 1 A2 = . = Aoe^ A(ti) and => ife^-J—to^. The = kA solution of dA/dt =A A(t) is 2 =A = Then Ai . For j t = fttfg/df + + ce" i(. = i io + = = and £{(). and 1(0) t = I e kt 11. = T = 5 + ce*'. = where 5(0) -.82 =s = = and /(15) fa) = the thickness. so .0O5) = . = If J"(0) = 82. Aoe*' and fc 16.4611°. 20 di/dt If *{0) - + 1i = then 120.7 seconds. ln(39/40) so that T(t) Assume Ldi/dt + Ri = If ?(0) = 64. L 2 uj 2 + R 2 17. 90° implies sinwt- Z'w' = 30° then k = -|ln2 ( = and £(t) 70° and T(l/2) = 50° then-c = 60 3.1. = 55° and T(5) = + 100 50. 15.005) = <t< 1D i] (l/c)g c = = (l/c)g 2001 and .145-4 T(\) i ce**. = be the I(t) £ln FVom dS/dt = rS we obtain S .003 coulombs.40/2 kt e e*' for we obtain t. .600 years. a= An integrating factor -60 and i = 60 - 10 is e*/ 60e-'/ 10 . . = t dT/dt = k(T - that = e = If (*//<** - . 60e~ 3 60 i( * ) Ea . 60 - t) + c(400 - f) 4 . = 26. t>20.000 and 4(30) tank = . If in 100 minutes. If 4(0) of alcohol after 60 minutes is 4. + - empty 24 4)r (o = .60e-'/ 10 j 60 \60( e 2 -l) e and - 60 (e 2 = i -'/l0. Thus l).06(400 The percentage 400 minutes. Separating variables dq 20di/dt . From dA/dt = c . we obtain = 4(0) A = 30 and = 1000 SOe'^ 50 A= then c - 1ft = .1 gallons. If 1000 4(0) + ^ = ce"*'' 30 then c 100 If .38 pounds. From dA/dt = 23.18 = -12/400 and empty after + ce"'/ 50 ce"-'/ A = -10 - _ 5)t The tank . -CIn fc2 t we ijo = + we obtain 20.q/C is find c2 — = ~ fjii — 1 80 / 21. = 10 then = 12 then f 64. 4 = . 10 . Prom dA/dt = - 4 4 = 200-170e~ 22. 1000- 4(0) 25. 44/(400 4(60) is —— _ = 3-~+— 44 = 3- 4 is obtain ^ - -100. -1000 and + c(100 If 4(0) - t) 2 .A/100 lOOOe '/ 100 dt c we obtain = then c dA From -4/50 / 50 . c2 e~^ < t 20. = 10 5Q0 —— 200 A= we obtain 100 0. The . if A(0) = 30 then c i/ck2 = -170 and = oil 50 .1%.4 \ .4/50 we ^= From t ki - t) we obtain 14.2 For At > t * = 20 the differentia! equation 20 we want c2 e -2 = Setting g{0) fci = - dt - + = 2i = so that c 2 . < .Exercises 3. we obtain 4= 50 + ( + c(50 + £)" 2 . From dA/dt 4= 24. m . Owe obtain x . If &i < = fcsinl + c — — P= - . cie frsin K ci -P . If &2 t -(*i+t>)t.A/B . P= vq e( (l .{AfB)e~ Bt = A/2B then T = (In 2)1 B. As ( — * oo.Co we C) and C(0) k2 )P we obtain oo as t m m 9 I — * oo. Write the differential equation in the form dA/dt Then an .a). J If l ~l s Pee*™'- ' integrating factor . i If — gm/A. m\ C = Cs + (C .Exercises 3.( V fic so that x ~> A/B 33.kAi * v obtain = If £= S 32. From 31. P{0) ffcet*'-*")' Po From r 2 In [P| i Po then dO for every t. oo. + Using P— then /> 34.2 27. From d£/<i( = -E/RC m gm\ ( V dC/df = kA{Ce - 30. k cos = and . 61 e -(*i+fc2)i). (a) From mdv/dt = mg — kv we obtain v = gm/k + ce the solution of the initial-value problem — (b) As (c) From ds/dt ( oo the limiting velocity * = = v and s(0) 28.) m k\M. x. + = we find c = --™^-' and A = . = v(Q) we obtain so am *"/*". (l_ the materia! will never be completely memorized. d( = ^ 2 foJA = l i 10 —(6 . is = A-Bx&nA X(0) . = p( 0)> where Pq P= then as t -» oo.(L/m) dt we v ' and P= ^ — — — —— — — obtain A= * \ I 2 r d$ = * 1 e'* 1+ 2 ' ^ 2 2/9i is + — / mJa + (ki 4 = _^_+ ce k2 ki ^2 > 0.4(0) > 2 .Ct )e. A kiM .n and . Jf(T) vq then c is FVom dXjdt If 29. Separating variables we obtain = = gm/k. (a) From dP/df (b) If > fci as t — * = (*i - P— &2 then = and £(ti) » _kt/ Eq we obtain . . * ~+— w 150 150At -* co so that the amount here 1 of A— • 70minutes. = _7 f ^ ' = P(t) = obtain E where ~ bc > t =P P(0) From Problem 5 then c = we have ^= 2 Setting d?P/dt X{5) as 8. is P(a . 52.2X)(150 - .0005C / MOfc+ 5000 we obtain 500. be the amount of 10 then —= = oo.0005C) and C(0) 1 we obtain \G d£ C = ^°^Q5 1 e 2. f VfezM ) d P = dt a-bP + P .™"".c / f \ df 7.3 grams. so that " so that and 150 .000 then .000095238. dt* and using co. t From 1834 supermarkets.3 1. and 180A:t amount Then X(20) P= e^e . • as t and where k . and X(Q) = X = - 10 then 62 » 30 as we obtain -» 150 as 75 then dt B— i = ( t — X = X -» 60 oo.bin P) we obtain If .0001259.000 as ^ = P{a ^ + — P= — + From ^ = - c atfe*" 1 bEe\ a - 5. rrr-7 10 fcP) dt = JV(1) -t oo.00014.3 Exercises 3.7033.X) 2 X(0) = B— = = a/b.Exercises 3. and X(5) 33. = .w .lnP we fee"" v (1/6) ln(a/f> - - l) In Po) . = t -» 2000 as an arbitrary constant. ~= Prom = C(l . ^ = N(a - From Um - t = Then °( 1Q ) ' + = t • . = Let A" t — From ^ A.3 grams — = oo. .ce W e and iV Since - = 5 °° P= - ^'°°IL _ so that W . so that the and the amount 9. Now A"). Va*0.000. Xp^ Xj^ (iMz^L + \ct — = ~ — ) dX = kdt so that .9months.™ - " Q^. = = ' X (t) 6ce | - = P = e^e . 3. N= 1 (ltT 1. —^ln|a.cP"*) we 1 1 = 1000 we have a P) and P(0) If N= 500 we obtain C dC = — 1 -6 (a) (b) 6.000 and ^=P From P 4. and bN) and N(0) ^ =50. If and X(() fc(a-X)(/3-X). ' and P= e^ 6-1 If X(0) 29. ^^-^ In Pq. b and . and X(20) > and the amount of 0.150e X=— Q^ fc(150 dt .bin P\ = + Q t ^ c — ^ ^-^^ = ^= of b 2 obtain t C ^= &(120 at time of A— . p = = ^x 2 — ^ dx ln|x| ^ we obtain p — cosh ^-x + = and . In a) = 32 ft/s and #= - /?)(7 + -/?)'" Then . + — — we obtain 1 2[vi/v 2 1 + - T + T„ -2tan. 5291 mi/hr ft/s as v 12. If ' V2 then VlV2 + l/M In 25 l-vi/v2\ l + p2 = . \dx } then y = ^ and . k (t 4 From . ^ and . 50/ If h(t) - then * = 50^20 seconds. V^gli.T^) we ^(1) = From ^ot and w| ' 1/(47%) 1/(27%) T-Tm T + Tm T 2 + 7"2 ft(0) e wx ^ so that p=-2 (x n/v * .X\ .7 )0? .X)(0 . In \0 oo we assume that v ~> * ff = v (a ' «o (c) -1 X„> + a- and «o = \a\f~X\ = fci + c. . p 13.2 ft/s «w mi/hr.3 X= 10. .X)(j . .ae^-ftto -^dX = kdt - then .— Exercises 3. From y(l) dx l = + 1 FVom u(0) = and vi = i>2 . 14. 4000(5280) we ft 7760 ss -1 „.X)* (a kt+c obtain at .„ . (a) As . „ —= dX From k(a a= If . = y'(l) — If ^j.(/?-a)( 7 1 a-X + -Q) 0-X + (a-0)( 1 -0) l-X (a. ^=^ From = sinh ^-x.X) we X = a- and .165)(32)(1080) . .x~ v ^). a)( 7 ?/ — (b) Using - .1 20 we obtain dT = kdt ~m = 4T^H + c- -i ft = ["^20 \ - . = y'(0) follows that y 1 it = —\l+(^r) V2 \ p ./l - ' v\ obtain so that 15. find » 25067 36765.7 )(/3-7) dX = kdt so that -1 - {{0 11.7) (a ' = 2gR Uq = v^2)(4000X5280} /2(0. — } Exercises 3. a Clairaut dx +y y H dy .^cos20^ 64 = fcsin d0. t = . = Jtyt + c.v ^ that dw — — = dy -c 2 which 2x »t 21. -r 3/3 yfZjidb so that and A(0) = /2 10 - In (fiXJTr + we obtain 10 /(cscfl ^) = . 20. is . 2 = ±dy. ( j " 1 . If h = . dx ' + 2fcr 2 ) -9 - From If > /i W then find ^ 17. + c.. = dv + tjk/mgv 1 v — yjmgjk 19. 2k If y . and t/ > \ +a we obtain dz = 2fcsin0cos0 d$. 2 1 /'di/A . dx = -^L=dy. Using x > kd . From a = lOsintf. + y2 yjx 2 +c I _|_ / 1 » dx dw — — and w = y —4 \dy dy dy x \/k 2 dy dx dy — =— — we obtain dx dt — ^mg/k to see that v and the quadratic formula we obtain _-y± ijx 2 + y 2 ±J/ t 4 dy ^ ^i — yjmg/k or Then dt a family of parabolas.y _ + From m dv ^ = - fa> 2 and w(0) = -\/l00-y 2 = wo we obtain 1 — yjk/mgv v + ^gjk so that 1/2? + = vo + ^gjk vq — <Jmg/k e2 Divide this equation by e 2 \Zs k /mt and multiply by v di (g) From x — (dx\ \dyj I . From y [l + dy (y*) = 2 ] = as t —» oo. f 1/ 18. 2 then and x = we have . Using 2 + y2 = / dt —7 In y + 5y = a In x — 22.3 16.dx where y ^100 Then 10 J100 . 2 v 10 In k /3x $y\ dy = —— /& [ - fix | dx. i and dy The equation.smO) dB = + 2/ir = dr dt.1/2 = then r 1 ! 2 we table of integrals (2/xr 1= -.^sin20 + c. _ + 2y— = solution 2 x is dx + 2y- x 2 = = dy dx 2 u-i'so cy + . Let * :r. A — and = -4(0) 16ft 3 we obtain 4 CtZ the concentration As 0.8 + -» 4. z(0) = then -.017%.„ -r- v cos = . I r = rffl 0. dt / or Jo / fl <w ° / V .16x = ^ dy 3 c%.2e"*/ 4 . Then Ay . -j differential = -Ay and x + 64 4 equation of the orthogonal + qje 16* If . .-x2 + c 2 . l dy — = K2xy we obtain . is t -> 00 we have or 0. + Cij = From y(x 3 family — —x 2 y 2 y' so that the differential equation of the orthogonal 1 — is y' we obtain 3 . —x = 3 we obtain y — Ay — I6x so that the = 4x+ 1 + cie 41 is y From y — family 2 = a(x — 1 is y = —.„ . at lnM^lnll+d^'l+c or y = c 2 (l +c 1 e ak > t h/k ' . = when x then c 2^-^dt = From (a) = 9 0.4 7. . ) + cie"* 1' . dA — = 1. Since A(10) = 5.cos (?o vcos 9 JO . 2 = P we 0. ^ -^f-smOdS and (It (it = t ^ dt J = ] (b) Solving ( ^ ^ (cos = J \dt J .cos Po = 0(0) we O obtain ~ cos^o).2 - A = . Chapter 3 Review Exercises 1. 2(!/ 4. dt 6.Chapter 3 Review Exercises If 23. ^p(cos0 and separating variables we obtain cos #o) for ~jt dt i V 2 ff •'Co — l H~ r° / I etc T/i /2T ™ T = *2.. 8./— .7ft 3 . From . The orthogonal . Let A — A(t) be the volume of CO2 at time From t. If we obtain P= P(T) 4e = 2P 0i8t then T= so that P(45) ]- = ln2.. trajectories are arjr 2. From = ^f- 2 we obtain y' = ^ — -— x The —^-r 2) and P(0) jfcP ^= I) orthogonal trajectories are (y - 2) 2 = x . . From 5. .99 billion.8 ft From — 3 11. ^ .018P and P{0) so that the differential equation of the orthogonal 1 = P= obtain 4 billion Poe*'. = — kjx(a x) we obtain | — \ x dt 1 \dx a .1 = 64 3. From y family Y' = - 16x C2 - - . .06%.xJ = k\ dt so that x = r-. 4. = . -f- — and so +B + +B +B 1 w= and lim Tit) ^+ BJ + 2 . . f 66 > 10 = = get 10 the equation for the current becomes 0. 20. 3 + C3 e fc < 1+B >'. — t\ +c V40 - or Solving for i we 4 *"*' 2 °£ < ( ' 10 ..2i = 4. 10 Then t 10 -iln|40-2i| = — In Since i(0) < t < = 10. ~ 2ky/m 7 the square root of the result obtained in Problem 27 of Exercises 3. + 7b)]. at and v(0) . ^ = k[T-T - (c) becomes mg + kvn dv = mg — kv «(0) = 0. and y(0) = we From mv dy mg 2 t*y/ m — oo we see that the terminal velocity is v = ^ Letting y In e differentia! (b) Since v i mg "| - v2 follows that it _ f\ (b) Setting y 9. (a) Let . — ^-t= 1 we must have lim e ^ t-00 — is V{ dT -. Separating variables we obtain fc e dv — = — mg — kv dy * 2 Since trra — .2i it. I 20. B(Ti . . dv dv dv — = v — so that m~— = —mg — kv dy . . 1 40 w If - . Thus 20 . + B)T - = ^f^/' Separating variables we obtain 20 10/ dt .T)} MtJ first ^ Using y{0) •> impact at 1 We - . is (1 10.2. Chapter 3 Review Exercises . 8. = is ft „ This 2 dt we must have For r > ci = |10 2/"/l0 .*)-/ 2i = ci(10 At 4 or — i - gt 2 = t). Then 2) and = T(t) ^"J ^ + 0.v height v% The (a) is m — 2k ~~ = h we see that the velocity equation ^-=]n\(l+B)T-{BT T 1 + D 1 Since T{0) = 7i < 0.r2 t-00 T). ' - ' 1+B ^ rs = T2 + B(7i - solve f 1 \ 10 2i = then the - —— ^ = +T2 = )\ C3 7i = maximum find that ^Jmgjk k[(l kt —=-r =k r + [BTi +c + B)T - (BT\ dt. 1 ^T2 + BT^B UmT. From y = = that ci 2.C2 = 0. From y are y 8. Solutions are y (b) (c) (d) = e x cos x . y'(0) = c\ + C2 = so that ci = 1 and c2 = -1. Then is y = Then j/(0) Theorem 0. y{n) = -c\e" = so that ci = and c 2 is arbitrary. We have y(Q) = ci = 1.C2e x sinx we find y' = cie x (— sinx + cosx) + 026^(003 x + sinx).l). 6. j/(tt/2) = c2 e"'' 2 = 1 so that ci = 1 and c2 = e^ 2 The solution is x v 2 x y = e cosx + e~ / e sinx.4 Linear Differential Equations of Higher Order __ 1. 2cj • = ci 4. y'(0) -1 so that + c2 e .1 + C2 cos x + C3 sin x we find y' = —C2 sin x + C3 cos x and y" = — 2 cos x — C3 sin x. for any real numbers c2 . t/{0) = = = c\ = 2c2 3. We have y(0) = ci = 0. Then j/(tt) = ci . (a) We have y(0) = c\ = 1. and cz = -2. j/(jt) = — cie* = —1. . The solution + c2 x 2 we find = x is y{0) = a 2 (x} we have In this case ci - l) and + cj = 1. y'(l) = a + C2 = -1 so 3x — 4x In x. Since 7. We have y(0) = ci = 1. so c\ — and c2 is arbitrary.1 is = = 0. y'{\) — 2c2 = 6 so that cj = 1 and c 2 = 3. is 4cie 4E y _1 y(0) = ^e 1 — ^e = + C2 = c\ e/ (e 2 . + C2e~ x we 1/2 and C2 solution From y Exercises 1 . D x and y = 2x 2 1 y ci = 2c2X. .cae -1 Then y(0) = 1 . c 2 = -1. y = c^sinx. we have y(0) = c\ — 1. at x= = 0. The solution is y = —1 — cosx — 2 sinx. y'(0) = and y'{0) = 1 is not not violated. Two solutions 2 . j/'fjr) = -C3 = 2. The solution From y = ax + Qxhix that c\ = 3 and C2 From = ci jf = = we find y' = Ci —4. We have The 3. c\e x i/(0) is 4 eye * = so that ci = = ci = = find y' cie x — czeT x e (e + c^e -1 0. C2 = -e/(e 2 - 1/(0} = l). — e x sin x. 5.C2 = 4ci 2 2 -e~*. which is not possible.1 does not apply because y and y' are evaluated at different points. solution is y 3 41 = -e + = cj — = so 1 - a= = 0. + C2(l + lnx). c1e 2 Then '. + y From y = cie^cosz +. 4. The solution is In this case = 9. The solution is 2 3:r Theorem 4. —1/2. - e~ x we find x = 3/5 and c 2 = rffO) ^ j (e 1 y = The 2/5. = = ci+c2 = possible. j/"(tt) = c 2 = -1 so that ci = -1. y 4. for < x< £1 68 00. is = Ax 15. + (l)cos x = have nontrivial solutions when c2 n a nonzero rnr/b for 2 will y{0) x < C2 sin A7r have nontrivial solutions when 02 A A = -f will = c\ (If = (— 4)x — y(0) arbitrary and and c2 — tt/2 < x < set of functions containing f(x) 19. see that the functions are linearly independent since The = Thus we they can not be multiples of each other. the problem has a unique solution for + = = y(2) 3.2+x — W (l + x. x2 ) = +x 1 x x2 1 2x 2 + so that c\ y = is 0. ci + c 2 + 3 = 0. have y(l) solution ci = ci We have y(0) = ci-0 + c2-0 + 3 = 3. y(7r) = + ci cos Att = 0. 11. x. The Thus we require + c 2 sin 5A = / 1. 17. 0. y(5) or The problem 0. Since (l)cos2x 15 so that the problem has a unique solution for 0. which not possible. the family of solutions Ax + 01 sin Ax we have = ci = 0. 21. is = 16. (3)x + (0)x + (l)(4x 1 (OJe = - 3x 2 ) + 2 + (1)1 (3)(x — (1) sin 2 + 2 (-2)cos x 1) the graphs of /i(x) c\ cos 5A integer. Since a2{x) 14. the functions are linearly dependent. 4. (c) 13. Since (-l/2)e* 0. tt/2. = the functions are linearly dependent. + 3) = +x 0. (a) We have y(-l) (b) We have y(0) (d) We y is —x— 12. Since (—1/5)5 +3 = is — = + 16c 2 so that ci and xq c 2 sin A7T + + = 3 — oo < C2 sin c\ cos 4ci not possible. Since (-4)i we — y(l) 2 and xq tana: ci cos that shiAtt 20. Since a = -1 or A be a nonzero integer. 5A 18. + c% • = c\ + c2 + 3 = = —x 2 + x 4 + 3. v (l/2)e c\ the functions are linearly dependent. (If = A = 0.) argument shows that -H-+- 22. Solutions axe y = c\x — {c\ + 3)x + 3. linearly dependent. 3* + so that = 0. .) |x| 1 _I 0. y(l) — c\ + c2 + 2 4 C2 = — 3 — c\. .Exercises 4. Since (1)0 any Ax we have The problem From 0. W(x l '\x 2 ) = x1/2 x2 \x-W 2x (l)sinhx = -x 3/2 = require that ci j^t. 2. t —— t = 2^0. + {l)(x = 2 will = — = be A similar and /2 (x) =2+ functions &re linearly independent since 23. Since oi(x) = from 1/ = = and From y and — C2 sin sin5A +3 = + c2 + 3 = c\ which 1. — x ^ the family of solutions the functions are linearly dependent. y is = the functions are linearly dependent. = = 4- the functions are linearly dependent. 10. or -1. a. +1. > oo. (a) (b) If If y = y - 1/x then y = -1/x 2 c/x then y" -2^ = 1 = 32. IV (a:. 5- Hence. tV(sina:. For x < 0. . 2x 3 - = 2x 3 0. + 21nx and f2 are and f2 are of fi r* - + 2x In £ = 3 i 29. cosx 26. (a) + C2f{x) — The graphs for a// values of -co < x < for is on — oo < x < oo. a constant multiple of the other neither function (b) For x 7r/2. W^. so that c = for c 2 ^ or 1. i 2 lnx) = 4e . this does not imply that fi <x< x 2 lna. No.Exercises 24. 31. /i and f2 are linearly 4-H- independent on (—00. 1 + {y') 2 = zl —y1 + ^ = x - = 2/x 3 so that y" 3 then y" ± % x' ~ 0.x 3 ) = +x x3 sin = 25. dependent on any interval containing x Obviously.fi) = so = -2x 3 + 2x 3 = x2 x2 = „ 2x We 0. 4* xlnx 1 oo. x = 0. 0.-30e 4x # 4ar x — need c\f[x) 30../2 = +lnx = -J + In and y" implies that c a. 2x conclude that W(fi.e-V 4 - *) e x esc 2 e 1 -e" 28. If ji = cijfi + c2 jft = ct + C2lnx then . x -oo < x < x e 1 for = -2cotx ^ cot x esc tanx = x esc a.00). in as shown. <x< for linearly oo. <x< for = -2secxcscx ^ . + In x 1 for jr.cotx) = x 2 (3 + 2x) ^ 3x 2 1 4.f2 ) = 2 f2 = -x and for all real values of x. (a) Clearly y\ (b) If J/" y = + yi + 2 (j/) 1 1/2 and = 1 . 69 2y 3 0. satisfy jj" + -c= 2 (j/) = 0. cscx) - sec 2 cot — x e 27. In a. x 2 and x1 -x< 2x -2x 3^ W (fi. x(2 + lnx) ^ = /2 0. 3 * We the interval. 1 W(l+x. W(tanx. x" 2 In x) = 9x" 6 ^ is = c\x + C2X -2 70 + C3X -2 lnx. The (x. + + c2 xe x ' 2 W(cos(Lnx). The general 1 (e solution oo. 4. — oo < x < The for oo. The general solution = cie functions satisfy the differential equation <x< oo. The general solution The 3x . and are functions satisfy the differential equation cie~ 3l + cae and are functions satisfy the differential equation 4:t . The . = sin 2x) is w(x for = y is x functions satisfy the differential equation and are linearly independent since -co < x < The + C2 sinh 2x.e 4x linearly independent since )= 7e*/0 is = y 34.1 Exercises 33. = 1/x ? is = ci cos(ln x) + C2 sin(ln x) functions satisfy the differential equation and are linearly independent since W for 2x functions satisfy the differential equation and are linearly independent since y 39. general solution y x~ 2 . The general solution / pje 1 sin 2x.sinh2x) — oo < for x < oo. The general solution is = ci y 35. The 36. independent since linearly 6 ^0 = ci# 3 + C2X 4 . 2 functions satisfy the differential equation and are linearly independent since W for = < x < oo. The general solution The 37 cie cos 2x 3 x/2 The < x < oo. e y 37. linearly independent since Whoosh 2x. and are .x 4 = ) x . . W(e—oo < x < for oo.sin(lnx)) for 2e is y 38. cosh 2x cos 2x. sinx) for — oo < x < The oo.Exercises 40. = 1 and y'(xo) 4. a: By Theorem = xq. 44.4 since 02(2 ) independent since 3/1 y-l*l a 3* = x 3 solves x 2 y" — Axy' + &y = 0. . general solution = y 41. the general solution since we form a general solution on an interval for which for every satisfies x y(xo) in the interval. 42. 43. let j/2 = -x that It y-i shown easily It is form a fundamental = W and 3/2 (1/1. The and are functions satisfy the differential equation linearly W(X. To show 3 3 that ya = \x\ is a solution let 3/2 — x for x > and 3 for x < 0. The equation. set of solutions of the homogeneous a particular solution of the nonhomogeneous equation. 0. c\ = 4.1/2) = on /. 1 equation. and yp functions y\ equation. H-H (b) If x j/i > then 3/2 = x3 and W(y\. l From the graphs — x 3 and of yi — ys |x| 3 we see 3 that the functions are linearly independent since they cannot be multiples of each other. ze 2* form a fundamental = 3/2 +x— 2 2x 2 is the homogeneous sinx form a fundamental set of solutions of the homogeneous xsinz+fcosa. They are linearly 00. set of solutions satisfies y(a. = x~ f 2 and 3/2 — z -1 form a fundamental set of solutions of the homogeneous — j$x 2 — g£ is a particular solution of the nonhomogeneous equation.x 2 ^ a: satisfies y(0) 3/2 0. If x < then 3/2 = —x 3 and = and y'(0) — =s x2 of x y" — 4xj/ x < is zero at x 2 = 0.y2) x" = 3x (c) (d) x3 -x* 3x 2 -3x 2 = x" 2 3x 2 The functions Yi (e) The (f ) Neither function y a 2(a0 46. The = functions yi and yp The functions The (a) = functions y\ and yp = coax and yi = e i 2x and e is a particular solution of the nonhomogeneous equation.) = 3/1 and yp equation.cosx. Thus. x. Part (b) does not violate Theorem 4.o) yi(x)i/ 2 (x) - = and y'(xo) j/i(a:)yj(x) = 1 = at 1. Assume y\ ^ is = = a: 3 W [x x3 = x are solutions = 4 ^ for —00 < 2 and Y2 3 . 45.2 they are linearly independent since and = 0. independent since = e 2* and y% = e 51 form a fundamental set of solutions of — Ge x is a particular solution of the nonhomogeneous equation. is + C2X + C3 cos x + C4 sin x. + 63/ = 0.) bi(cosa. 1 = ^(^5. In Problems 11-30 the text.2 In Problems 1-10 (4) 1. —2x. W^ 48. function. W If (3/1.1 Exercises 4. e 5 / = e 5x . (a) Assume y\ and y 2 are solutions of a2y" 0. from we use reduction Define y = u(x) - Now we use formula 1 so y' If v> of order to find a secoond solution. = [e 5l w] — gives 72 u" + 5m' = 0. obtainitlg c . Then + aij/i + ao) + a response of the system to the input E\ + (U2J/2 + a if2 + «o) = E\ + &2 Ei- Exercises 4. ki k3 k2 ki lni| e 50. and ai(x) = 1. 2 1 a constant. y" = u".]nx + iDX <> )e^M = (*1*4~W*0 x E\ and 03^' +V2)' + <H> = +a = + (<*2I/i E%.fa = -ffl(0)-B2(0) The equation (b) is x (c) Let (d) Prom We + a iv\ + a oyi) °- The first-order linear.order equation ti/+5u. + a-ilf + avy = 47. in part (a) ( 1/1 + i/2 (ft!** - + an/j + oq = + y2)" + fll(yi is k2 k3 *o = (fok4 -k2 k 3 )e. 1 49. which has the integrating factor e 5l tu = c. = u'. Then from Abel's formula Then from If W(x ) ^ then in Problem 47 we have - xa the alternative form of Abel's formula in Problem we have = We '. . and y" + By' = — u' we obtain the first. is a 3j// solution is W = ce^-H" '"^" ^''' = W = ce" O ai(l)/as(()idI x in We we part (c) for see that if W(xq) = every x in / since =1- identify 02(3) identify 02(1) 47(c) is an exponential = x 2 and oj(i) W then = have a 2 y" 02(2/1 and where c = for every z in J.1/2) = yu/2 — y[y2 then dW to = yi (021/2 + a u/2 + ao^) . a. sin4x. Define y = v! = c/x 2 and u = ci/x. gives l e second solution = ui = is j/2 = c -1 . Now 3. (2 and + If if = we obtain v! 2j/' + = j/ e _a: (a:«" the first-order equation + w 2u') = u" or + -u' = 0. u(x) cos 4x so y' = — 4w sin 4x + u' cos Ax. Define = t/ = u' u(x) ce 5x and u = = second solution and u". y" — u" sin 3x + 61/' cos 3x — 9u sin 3x.2 w= Therefore 2. = Therefore u" = = u' 5*.Exercises 4. is j/2 = — xe _I = e -2 . = Deiing y u(x)xe 1 so l/ = (1 - ije-'u + ie -I u'.4y' + Ay = and u. x —w= 2 which has the integrating factor H a: e*ff/' = x1 Now . . e which has the integrating factor e~/ dx ax w= — is t/2 = u"-u' = i/'-i/ = = -r1. which has the integrating factor Now ^ Therefore w' first-order equation = 2 [(cos csec 4x and u 2 Ax)w] = c\ = tan4x. (cos4x)u" -8(sin4x)u' 6. c. e E .x)e~ x u' - . so + u'e 2*.' If u) — = and u V+ V+ a + cix 4e 2 Taking C2.[e y' 4. £IX w= Therefore 5. we obtain the first-order equation u/— to ti' Therefore 3/2 = y" «'. — [x 2 w] = A second solution gives x2 w — c. and — C2 we see that 4e 2l u" = 0. x = j/" xe~ u" + 2(1 . — Define y = u{x)e 2tie xe 2* 2x ce 1 it = ce x y" = e and A . A . is 3/2 = tan4xcos4x = u(x) sin3x so y' = 3u cos 3x + u' sin 3x. a second solution is 2*. y" = u" cos 4x — 8u' sin 4x — 16u cos Ax and y" If e w= -8 / u' + = 16y we obtain the tan4tiit = 2 cos 4x.x)e _ *u. gives A (cos 2 4x)w second solution — c. 0. 4e = ci 2l 1 . c\e 5x so 1 j. Define w= y = u' = — u" or 8(tan 4x)tu - = 8(tan4x)u' = 0. = dx = = lna 7 a:) lnx x(lnx) 1. (x + dx - iy dx . t/" - e*/ o V 4- ^WV + Je^u o y and 6j/" If ui = u' e (S/6)M we obtain the = + y'-?/ = e l/3 w= = w' 11.x2 l) [-7TT- 2 a dx 2 dx = (x = -2 - + 1 x" 1) - = (!+!)/ / x. |x|. (In A = 6 2/x we have is j/2 = 5x/6 fe -f-(7Mdx fl — dx — x dx — x § j J % ^W7h^r 14. Identifying P{x) 0. 1) - 2x (x + + l) . we have = is = w= 1/x we have A second solution is 15. x 2 x"' / j x _6 dx = -7^ 3 -3 . is 3/2 = e -W 6 e s/3 — e . Identifying P(x) ce -51 ^ 6 second solution 12.2 10.2x . = x = x j^—dx = 2 . Identifying P(x) §u' which has the integrating factor -/(2/. A e In — second solution 3/2 second solution W= = = c. Identifying P(x) + have — = y2 A u" or Now e 5*/6. ~-[e**/* VJ] Therefore + 5u')=0 (6u" 2(1 (* x 1 ?2 + x)/ + !) + (l . Identifying P(x) and u = — 7/x we V2 A + w' first-order equation = |iu is j/2 = second solution = = gives C\e~^ x ^.1 Exercises 4. Define y — u(x)e x / 3 so \e x !\ 1 y + e*/V.I 2 ) / <x 1 ^+ (l . .x 2 ) we have e -/2(l+x)dx/(l^.)<i« 13.T / 2 In \x\. -dx j- x 2 cos(ln x) tan(ln is t/2 + 1-x 1 fa-li 11 we have X C03 ~ ( xcosflnx). = | ] -^ = fa -j. dx ~ = d: we have 2x) . we have fe -S-d*/* m = xj - ^ dx 76 = — fdx = xj xln|xj. dx ^ = x] ^ / e -« x u— . — x) dX = x3 ^^iiWH f X x) = e -i* — j e~ 2x [i e 2r + xe 2x - ±e . Identifying P{x) = 4x/(l y2 A second solution 20./ ~3dx/x x^o^x) J x a x^snrfmx) . Identifying P(x) e = = — 3/x / j i"1 ^ A second solution 19. fe~ = x fe~ -~y dx-\-x j j = = snv^ln x) = e -2xy = | . dx.x 2 ) we (l have B = / c -/-^Mi--*}^ = | e -Ki-A second solution 17.Exercises 4. = e-^ J(l+ 2x)e 2*dx = 1/2 — x. x ^—-e e X) -g-JxAj/d+a) zj—g—dx- x a! i 2 sin(lnx). Identifying P{x) is J yi / J . e -*+ln(H-z) - X] 2 .-dx/x - [xsinflna:)] [— cot(Inx)] is j/2 ( we have = xsai^ax) y2 ) — x)\. = A second solution 18.2 A second solution 16. =— x - + e - . dv = -^dx. Identifying P(x) V2 = = is ^ + + A second solution 21. Identifying P(x) is j/2 = j = — 1/x — 1 . + In (1 a x . dx^xj ( du——e x l + a: ) e -» — X. Identifying P(x) is y% = = -2x/ + x 4- x2 2. x xsin(lnx) = — 2cos(lnx). . v x* - e dx we have — dxj + x j — dx = -e = -1/x 1 x 2 sin(lnx). dx e x . . . we have -5 — /(lnx) — fx— 5 (ir/l x A second solution 24.2 A second solution 22. 3 . e ~ J ~ ldx/x xi . Identifying P(x) In sin(lnx). Identifying P{x) = is j/2 = xln|x]. J cos-'flnx) A i we have - dx — e x j gi+Ini — dx = 77 e 1 f j xe x dx = e?{~xe 1 - e x ) = —x - 1. = + 3x cos(lnx) tanflnx) = sin(lnx).:. l)/x . = is . Identifying P(x) ?/2 = = cos(ln x) 6 = x3 y% is dx r^- st. . dx r —(3.)- in . . I _7 X in / / 1 _n\\ dx = J*f 1 i 1 we have 1) ^ = e 3* | (3x = + g3x ^_ xe -3. 3/2 = e" J 3x + I 28. Identifying P(x) / -stt 6 2 J x (lnx) dx I — r s-t. = —7/x we second solution — f have 2 A x \ -^•^(. Identifying P(x) — - . * . _ | efa e _3^ _ = |_ + 2. Identifying P(x) = ^2 is x5 = — 5/x .Exercises 4./2 = dx cos(ln z) / J = is 3/2 x3 = is j/a x A e 3x — — . 2 = In second solution 25.f -{x+l)dx/x 5^ = cos-'flnx) -d» = e*/ second solution = ) Lux/ . Identifying P(x) e e31 dx ^ is 3/2 = -a. we have B -J0<fa A second solution 23. = — 4/x we second solution I x 1/x we have r A = . = -(9x + 6)/(3x + ( \ 2 m-^j = 1 have „-/ J -7ds/x 27.^-(^^ 26. = — 3tana: we y2 A + — sec 3tanxdx x tan x + ij/z + x tan a. . Identifying P(x) = is 1/2 x second solution = is j/2 = -(2 have = j e' i = 30. sec + In - In sec x j sec x | 3lnstKX ^J dx dx = Jsec 3 xdx + tanx|.- e . y" = \<? fe x - 3*. general solution is . We . Thus y 34. see by observation that a particular is x = a + cieT x + x. The 3 (SAe *} = e + 246 = -4 e _a! -. 33. Identifying P(x) 1. 31 = 5e 3 *. — 9Ae 3x and The . yp = y% is = x. 1 We we have The see by observation that a particular solution = y2 = —3 QAe 31 - x . Identifying P(x) = e^ 1 . is yp — —1/2. Identifying P(x) + c2 e'!I - we have a particular solution we try yp 3 !I " cie = j e'f^dx = general solution y2 find 2) e we have y To -2x + is 32. Exercises 4. ^ j dx = e = Ae 3x Then . Identifying /"(i) A = second solution general solution is 1/2 = — + 2a. + tan x\ we have W = | e" J "P^W 1 ^ = | e 21nl+ *di = 1 1 V dx = A second solution 31.2 A second solution 29. Identifying P(x) is 2 2) e*. y solution (x = A= c1 e I / -4 dx y' J = 5/2 and yp + c 2 e 2x + we have - x r e V2 78 Ax e x dx = e 2x 3 3/le *. 3— ^ then and = Z£ e .3 m= 11. From 4m 2 + we obtain m= and ^ . 4. Then 3a = 1 and -4a + 36 = yp = ga: + | and the general solution is = so a = j/J. . + -./ ^_4 e -/ + v\ y\ 4 y{ e -/ + y« / J so that y'i + Py'2 + Qv2 = (y'{ + Py[ + —~ £^ re -fPdx Qyi) I dx vt dx = °- Exercises 4. m = -2 ± %/5 so that y = qe'" 24 ^) 1 + C2^~ 2 ~^ x From 12m 2 .8 = we obtain m . 2.1 = we obtain . 10.Exercises 4. o. ^ . To find a particular solution we try yp If j/2 = J/i / ax + b.—1/2 so that y = c\e x i A + cae~ x l 2 m 2 + 4m . 3. 14. 7.2\/2 and m . 3:r. ' 2 . Then = 3ax-4o + 36 = x. 6. j/£ 1/3 and 6 = = 0. / . . m = -1/4 so that y = c\ + cit~ x 4 From 2m 2 — 5m — we obtain m = and m = 5/2 so that y = Ci + oie" x 2 Prom m 2 — 36 = we obtain m = 6 and m = — 6 so that y = cie 61 + C2e~ 6x From ro .2 = we obtain m = -1/4 and m = 2/3 so that y = cie -1 4 + c2 e 2* /3 From 8m 2 + 2m — 1 = we obtain m — 1/4 and m . ~ m — 6 = we obtain m = 3 and m = —2 so that y = cie 31 + C2e~ 2x From From m 2 — 3m + 2 = we obtain m = 1 and ro = 2 so that y = cie 1 + cae a *. 5.3 A second solution is e and 0-4a + 3(ax + b) A particular solution 3x . . From 1. is !/ 35. = = cl e I + C2e JI + -a.5m . 2 1/ . From m + 8m + 16 = we obtain m = — 4 and m = — 4 so that — c\eT Ax + C2xe~ ix From m 2 — 10m + 25 = we obtain m = 5 and m = 5 so that y — cie 5x + C2ie 5x From m 2 + 3m-5 = we obtain m = -3/2± %/3§/2 so that y = Cie (-3+^>/2 + C2e (-3-VS)*/2_ 12.cie 2 ^ 1 + c2 e _2v 21 From m 2 + 9 = we obtain m = 3i and m = — 3i so that y = ci cos 3x + ci sin From 3m 2 + 1 = we obtain m = and m = — i/y/Z so that y = ci cosx/y/3 + 02 sini/v'S. 4/9.-2^ so that y . 13. . 9. 8. . 3x and e~ so that -5 *. e so that i m = 3/4 ± a/23 i/ 4 so that we obtain y 17. + C2sin:r/2). V23 x/4) c2 sin + ci&~ x ' 2 + csxe~ x / 2 m= and j. and c3 x 2 e~ x . ± -1/3 m= we obtain y ?/ V^3 x/4 + (ci cos m= we obtain y 18. and m = —3 so that . From m3 — m 2 — 4 = we obtain j/ 27. 24. From 1 /3 = m3 — 4m 2 — 5m = e ( Cl From 4m3 + 4m 2 21. m = m 3 + 3m 2 — 4m — 12 = + C2sina:). From in 2 16. = QeT* + c 2 e 3x + c 3 ie 31 = —1 + c3 sini/3a. cos x i .3 — 4m + 5 = 15./2) + C23: + cje c\ . m= 1 c\e — 1/2 m = 3. and 5./2) m= —1. m— so that _3. m= cje~ 2x m— —5 —2. . so that + c2 e 2x + c3 e. Prom = m 3 + 3m + 3m + 1 = 2 lx c\e c2 sin 5j: + c3 e ± . From m 3 + 5m 2 = = m= c^e* we obtain 1 = = From m 3 — 5m 2 + 3m + 9 = From + e~ x/2 = we obtain 25. From m3 + m2 — 2 = we obtain y 26. Exercises 4./2 m— cie" (c2 . m = we obtain +m = = \/2i/3 so that cos y/2 z/3 _I ^ 2 y 20. m— + c 2 xe _:c + 80 so that + C3sin\/7a. m = —1/2 ± \/7 i/2 (c 2 cos\/73. From 2m 2 . and m = 3 so that —1. m = we obtain j/ ± i/2 -1/2 m = 0. and and 0. m = —1 ± = x + x m=2 and + e~ x ^ we obtain = 1 2.. ^/Si/2 so that m= ?/ ^2 x/3) m= —1/2. —1/2 m— we obtain y c2 e + (c2Cos v^a:/2 m — 0. From m3 — 1 = we obtain ?/ 22.3m + 4 = = Prom 3m 2 + 2m + = 1 From 2m 2 + 2m 3l/4 +1= = e" 19. . —1 so that . so that + C3 sin x). m= 2± we obtain —1. e^fci cosx so that cos:r/2 (ci m = 0. + ci ci y 23. 3x we obtain y 35. = = m= 3. m = 1.16m = 6 c\e we obtain y 33. and y = 2cos4i - 2 then 39. +C2e 2x + + 12m3 + 8m 2 = y then -JZi/2 so that so that From 2m 5 . m4 + m 3 + m 2 = From = 30. bo that y and y -1 and 5c 2 4:c 2x . m = we obtain = e = c\e x + C2e~ x .8 = = y 29. and m= 1. 40. so that . m 5 + 5m 4 . x + C2ze~ I + c3 e + axe* + c5 e~ 5x we obtain 3 then c\ 1. m = ±V5i so that —3.2m 3 . If y(0) = 2 and j/(0) = —2 ^sin4x. m = 0.3 28. and c$x cos m = 2. and y e 4l — If . we obtain y m = 2. -1/2. 2 2iC m — ±4i so that y = c\ cos we obtain + m = 0. c 2 that y c2 = e 4a - — ae~ x + C2e -5x -3/4. m = 0. so ci — 8m + 17 = we obtain m = 4 ± i so = —1 then c\ = 4. 4q + c 2 = —1. If y(0) = 1 y'{0) = If j/(0) — and 1 1 -5 . + c 2 sin 4i. 2. + ca^re 2* + c$x 2 e 2x (c3 cos \/3 a.Exerci99S 4. and y (ci = \e~ x cosx + C2sinx). m = 0. m = 0. we obtain + 24m 2 + 9 = 21 + c 2 + e" 1 ' 2 ci y 31. we obtain =. m = = c\+&ix + c3 e~ x ^ + e we obtain 2 3/(0) From j. - fe y{0) -5 *. m = 0. m— and 2. c\ cos . — 17sinx). m = 0. V3x/2 + CiXs'mV^x/2. we obtain c\ - C2 — m + 6m + 5 = m = cie" 1 m= m= -1. C2 c\ 4. c\ -1/2 + C2e~ 3x + C3 cos \f2 x + asm V2x. m= ci m= 3. x m= and m — 1. so ci = 4. = (4cosi —17. so that y 3/4. c\e x/2 .7m 4 From ± + c4 sin y/lxfty —1.6m 2 + 12m . m 4 — 7m From = — 2 = m From = 18 = we obtain = m 5 — 2m 4 + l7ro 3 = From = 38. 4 and . -1. 2 y 37. m 2 + 16 = c. ca m= - = —1 0. and (c4 cos 1 and = 0. From m 3 .10m + m + 5 = From m = —5 36. and m= 1 ± so that 4i + C2X + C3X 2 + e x (ci cos 4x + C5 sin 4x). FVom m 4 — 2m 2 + 1 = From 16m4 y 32. cie m = 0. and m = 2 ± 2i 80 that + c5 sin 2z). and + c 4 cos2a: + Cssin2x.'(0) = m —1= From and c3 e = -1/2. m = ±y/3i/2 and m = ±\Z%if2 so that m= we obtain m = 2 so that + C2xe x + c$e~ x + Cixe~ x + y 34. -d m= 1. c2 m= so ci = m= 1.C2 From = m= —1 . and _2a: m = ±2i so that -2. —3 so that + 9c3 = 1. \c\ + ^c2 = 0. -£ci + §c 2 = 5. + 11/4. y(0) +c 2 e 3x/2 andy = 12C3 Jaw" + c3 e" 3c3 — = --e. c\e Fromm 2 +m+2 = Owe obtain m = -l/2±V7t/2 so that = e . = 3/ . c 2 x + 5xe*. . 6 *.c + 2c2 - = cie 2iC xl 2 c\e~ = cie -2 + cae + — e~ 10 + ci 6 e lx 15 21 + e _I = 1/6.^ 2 If y(0) = and y'(0) = then ci = and c 2 = so that y = 0. then 0. and y"(0) y + c2 e cos\/7x/2 1 e If . c 2 = 1 then = Cl e -ci 1/10.8 = = we obtain y{0) = and y'(0) C! so ci = -1/6. . and y — (ain^x — cos jx). — — \/3. 4. m = y + c 2 + C3 = 0. _. so that 4ci = Ify(0) . (ci and y 1. - 36C2 1. 0. -7. From If = - 5/36. 1/6.1 ± \/3 y If = = C2xe x andm = —6 so that y = —6. = -e +e If y(ir/3) = and 2/(jt/3) = and y .^=sin\/3x^ 82 y(l) = and 21-2 2 c\+C2e~ 6x +C3xe~ 6x 3x - If . m = If y(0) . 2c2 e = 2 so that y 1/ ^/3 = + C]e m= and 1 2 m = ±i so that = ci cos we obtain ^^3 m= we obtain 2 3/2 so that y -7/4. 37-1 3a. 42. - i .|e" 61 + and y we obtain v V From 3.2V3c3 = = -^e 21 +e~ x ^cosV3a. m = 2 and m = .0. so cj = —1. c 2 = 1. and c2 cos \/3 2 + \/3c3 = -1. c3 = 0. 01 m From i/fl) From = m 2 1 then Cie + c2 e = 2 + 1 then -c\ 47. = = -fe^+^e 2*. -6C2 0. = — 3m + 2 + 1 = 0. soc! = 46.-1/2V3. and y = 5. a. ci so ci + c2 = = m 3 + 2m 2 — 5m — 6 = y(0) = -1/6. c2 -5/36.Exercises 4. c3 . . From 45. * + C3 sin V3x^ 2c 2 . 5 and + c 2 shi\/7x/2). = 4c2 1 31 ' 2 = — V3~ cos +sinx. —z-C2 ——c\ + -c 0. FVom2m 2 -2m+l = Owe obtain to = l/2±i/2 so that y = e^ 2 (ci cosa:/2+C2 sinx/2). ci + 01 = = = 10 so c\ m and 1 = 1 so that = 5. y'(O) = 0.c 2 sin 2. 1 = 2 = so ci 48. 5e* 1/ 4m2 -4m. c2 = = m3 . C3 = -e~ so cj Fromm 3 +12m 2 +36m = we obtain m = 0. Ifv(O) = -1 and j/(0) = then c\ — — 1. . and y"{0) 1/15.x + + c2 = 2ci = and -1. m= and 2. ^(0) = 1.3 = Owe obtain m = -1/2 andm = andi/{0) = 5thenci+C2 = 1. and y"(0) = -7 then ci 49. c2 m = —1. 0. . = C3 = c2 . m 2 — 2m + = 10 then = 1 = c\ m we obtain 5. 44.3 41. FVom i/(0) 43. + 1 = & . so c\ 2. --sini. = C2 —2. and y - ci cos2i 1/ + = cie 5x + C2xe 5x — e 5^ — xe hx If . is 0. 1 1 = -e*--e 5 so ci = 1. and 1.3 50.m = From y — x x + c 2 e + C2xe + C4X c\ + C2 = 0. If y'(0) = and 1 = — 2cosx. = 2. a. -l = 0we obtain m = 1 and m = — 1 so that = cie 1 + c 2 e~ z or y = C3 cosh x + cy sinh x. Now. cie 5 - 0. £/"(0) + C2 + C3 = Cl so ci m= we obtain 1/4. 3. m= ±2i so that m= ±i so that y 2 m=5 and . y(0) = 1 and . y (m-4){m+5) 2 = 58. = 1 is a root of the auxiliary equation. y'(0) C2 0. and Cl 0. o m= 1. 4 ao that y C2 = —1. we obtain = and y = cosi ci + C2sinx. Since = — cosh x cosh 1 From the — 6m + solution yi = dividing the polynomial 1 — loj = m 3 — ^-m 2 + 7m + 5 e x 2 coshfx cosh + is y'" the differential equation 5 !/ = 1) . and _ 4 m= 0. = §z: 0.3m 3 + 3m 2 . ci sinh 1 + C2 cosh 1 = 0. m4 . 6q = 4. C2 = — sinh 1/ cosh 1 and 2 From 1/ If y{0) . C4 + C2e — y"{Q) = 4. m4 = Owe obtain y = Cl + c2 x + c3 x + ax 2 From then = ci = 2. smb. and 5. 2 we obtain x . by m — 1 gives m 2 — 8m + 17. C3 2 = e If . and y 52. C2 = 2c3 3. y'(0) 2. we obtain we obtain 2 then 56. = 1 and j/'(l) = then ci = 1. Cl = = 1 then + C4 = 0. 1 Prom = 3: y 53. Cl = so ci 2. 1. C2sin2x. C2 = = = -1/4. c 2 1. so ci = 1. Cl y"'(0) 5 = + C2 - C3 = 0. then 2 = + 3x + 2x 2 + 0. m = — 1. andy"'(0) = 5 m = 0. m 2 — 10m + 25 = = m From then 55. y"(0) = + 2C3 + 2C4 = 1. If j/{0) = y(it] = y'{ir/2) = and c% sin 1x. y(0) + C3 = C2 a— Prom m* — 1 If y(0) = = = - 0. y'(0) 0. m = 3 . j/ 51. eg 1. = y(l) 54.Exercises 4. Since fm + Q (m sinhl 2 . Cl — C2 — = C4 1. 1 15?/' — IOO3/ = 0. and m = ±i so that y = ciex +C2e~ x +c$ cosx+tysinx. Therefore m = 4±i are we conclude that mi m — 9m + 25m— 17 3 73/' ——— sinh x sinh 1 -r~cosh 1 m 3 +6m 2 -15m-100 the differential equation y'"-y!/" + 59. = Hy{0) —1/2. cosh 57. 3 .coshx . = 2-2e I + 2xe -^rV. and C2 m= so that 1 ?/"(0) = 1 then + 3C3 + 6C4 = 1. -1/2. ci + = ci — 4 and y m +1= From ci = —2. 0. e'^cosx we x 4- e ta (c2Cosx m 3 + 6m 2 + m-34 by [m.(-4 + i)][m.3 the remaining roots of the auxiliary equation. A. . is + y" 16y = a differential equation . a v^m + l) (m + \f2rn. we find 3 Then yc mi = m2 into the differential fx + f . Substituting into the differential equation y 2.2 — e" x ^ ^3 cos + C4 sin ^= x 3. 9. Exercises 4. From yp = m2 -+- 3m + 2 = we find mi — —1 and A. .C3 sinx). J- = + c 2 xe 51 30 and and we assume — 10-4 + 255 = 3. we obtain ro = -l/\/2 ± i/v^ so that ^ _ € i/v^ f Cl coa _L 1 + ca sin x^ + m. = 0.2. 3) a m 7) = m — 7m (m — 3)(m + 3) = m 2 — 63. = cie (m — 6)(m + 2 = -4l and the general solution of the the third root of the auxiliary equation. yp = | and 5 - 5. + c 2 xe 0. = -1 Then yc —2. and the general solution of the differential equation is y 60. Substituting into the differential equation we obtain y 3. Since FVom _4x m 2 + 16 = a differential equation (m — 3 m +1= (m 2 4 Now sinx. Prom 64. y 3 ci cos -a: — 2A — + c2 sin -x + = cie 51 84 and we assume yp = 3 and c2 sin Then j4 §x and we assume = jj . From yp = 4m 2 + 9 = we find mj = — § i and From cie we obtain + c2 e~ m2 = 1 1. = i)] e m2 = and i Therefore m3 = 2 differential equation is + c2 e _4l sinx + c^e1*. Substituting p Then A = § B yp = j/ .Exercises 4. From the solution y\ = c\e . 6.(-4 = y 62. -4 . c\ cos 9A = Then yc = equation we obtain = c\& x + 3. cie 1 Sl 25-4 and = + c 2 e 2x Then A = 3. Since 65. Since mi = -4 + conclude that Hence another solution must be y% auxiliary equation. is — y" 7y" — 9y = 0. a differential equation is y" — 3y' — ISy = 0. 21 = m 2 — 10m + 25 = = Ax + B. cosx m 2 — 3m — 18.4 1. 61. is 4.t + gx + |x + 15.J are roots of the dividing the polynomial m 2 + 8m + 17 gives m. + / / l/v 2±i/v 2 l) and y"' is equation differential 2 m= 0. Substituting into the differential A = -3 B = yv = £x . = we find mi = 2 + 4i and ni2 = 2 . + C2sin4x) 3x — (Ax + Bx + <7)e + 12C = 0. obtain 24 . = (-4x 2 + 4x . + C2e~ 1: '' 2 and we assume yp = 4coe2x + 5sin2x.Then 2 and we aaaume yp .§) e 3x and 24 + 65 yp i/ 8. y 7. Then yc — e 2l (ci cos 4i + ci sin 4x) = Ax 2 + Bx + C + (Dx + E)^ Substituting into the differential equation we 20 and we assume yp . j/ 6.^ and yp . and ^ y = cie 3l/2 + c 2 e" l/2 - ^ cos 2x - ^ sin 2x. From 4m 2 . Substituting into the differential equation we obtain 4 = 1. y 5. C = ^ D = . 13D m. Then A = 1. Then yc — cie _2a: + C2xe~ 2x and we assume 2 ?/p = Ax +JBx + C.4 4. + 5x 2 + 4x + ^ + f-2x . . 124 + 125 . C = \ yp = x 2 . B = -4.^] yc = e and 1 .0. yp = .]§ -2. 3x Then yc — c\e equation we obtain —64 2. and \A + B + C = 0.cos2i . Then .Jgsm2x. B = 4. + 4x - 2 C2Sin-\/3x+ (|-4x and 1 {§) e + 4x + ft + (-2x - mi — V3i and mi = — v^3i. Prom m2 + m — 6 = we mi — —3 and mi = find = Ax + B.. 5x 2 ci cos \/3x find mi = + | . + ci& 2x and we assume = 2 and A — 65 = 0. Exercises 4. = + cje 2 * + 3 cie" * ^ - . Substituting into the differential equation we obtain —19 — 8B = 84-195 = 0. \m 2 + m + 1 = we find mi = ma = 0.2 = -5 Then • yc = cie e B = 4.4m -3 = = we = -26 20A = yp = 100. Then 4B= . From m 2 . From m2 + 3 = = e we 2l (cicos4x find £ = . . 24 + 5 = -2.8m + = cie -21 + c2 xe~ 2x + x 2 - 4x + ^ . 1 and . cicos\/3x + Substituting into the differential equation and 124 = Then A = -4.4i.Jg. -48.85 + 2QC = -6D + 13E = -164 + 205 = Then 4= 5.4x + | and From . C2sim/33: we obtain C = -f 3x 3l '' a . we find mi = + Bx sin 2a:. = Ax. yp m2 - — Axe ix . Prom m2 — m = we — mi find and m2 - 1 we obtain Substituting into the differential equation y 10. and cos 2x + C2 sin 2x — —x cos 2x.Exercises 4. = ci cos2x -f C2sin2:e and we assume m\ = yp = = c\ 4B = and -|a:cos2:z. and ~2C = -1.4l + ^ = — 2i. = we find m\ = Substituti:ig into the differential + ±xV 2 . y 14. y 11.E = -3 -8B + 6Z> = -12A86 1. Then yc = cie _2x + c2 and we assume 2x 2 Substituting into the differential equation we obtain 2A + IB = 5. + C2 Then A —3. + 2m = we find mj = —2 and m2 = 0. Then and mi e yc 41 . . B = £ Prom . 16 = m. 2x — m + \ = we find mi = 2 x/2 = A + Bx e Substituting into the yp = 12 + j^V 2 and A = 12. Then = ciW 2 + c 2 xe^ 2 + y From + C2 + . . + C2e . . . yp + 3x. Then yc — c\e x ^ 2 + C2xe x / 2 and we assume equation we obtain \A = 3 and 2B = 1. 2i Cl e 3 we 2 find 2i and 3 we obtain 25 + AF = + 8£ = 12D = -4C + 2. Then yc = c\ cos 2x + C2 sin 2x and we assume = (4i + Bi + Cx) cos 2x + (Dx + Ex 2 + Fx) sin 2x. Then 4 = § B = 2. Then yc = cie 4x + C2e~ ix and we assume equation we obtain 8. . = C]e x m + C<2 = —A = c\e x Then yc 0. Then A = ~\ . and = y 13. From yp = -4. Substituting into the differential equation From yp m2 + 4 = 4l Substituting into the differential equation we obtain B = 0. = cie~ m2 .2 ]-x \ + 2x + ^-xe~ 2x 2 - differential .4 = 2. Then A = | yp — jxe^ mi = 4 and 12 -4.4 m2 + 4 = Accos2:r = 3. C = \ yp = \x 2 + 2x + |ie _2x and Prom 2 . m2 = — 2i. yp = Ax + Bx + Cxe~ 4A = 2. = 3x and and we assume yp = 3. 12.4 9. Substituting into the differential equation we obtain 4C = 0.4 = 16. 1 2 1 + C2Sinx — -x cos x + -ism x.C = 12 — sin2x.4 Then A= -fa.B=-£.yp = ^cosx. and 2C-5D = 6. B= 0. Then A = 0. — A cosx + Bsinx + Ccos2x + Dsin2x. From m2 — 5m = we ci . and -AC . 62 lo n xJ + ) J — — r«2 p j/ Then yc i. C=§ = ci cos = .3D = 0. Then A = y p = —j cosx — ^cos2x + ^ sin 2a.Exercises 4. Substituting into the differential equation we obtain we 2x e e we -3. mi — -6 and m2 = 4. From m2 + 2m + 1 = = (ci cos2x + C2sin2x) + ^xe I sin2x.2 — y 16. + —x and m2 697 .4=|. Then . cosx mi = find . and yp y = c\e~ + C2xe -T — x 19— . £= F= fa. * = "A* 4 + fr 3 + = v 17. Then y c = c\er x —1. SB*. . 12A-15B = -4. From m2 — 2m + 2 = A + 2B = 1 ?/ 19. and x e (c\ cos differential 2x + ca sin 2x) and equation we obtain . C = 0. x H x. From m 2 — 2m + 5 = we ^ . = y 18.8 = 0. . . and 2 yp 2 — . £> = £ yp = — ja co8X + gxsinx.cosx 20.4 = -\ B = 0. = c\ + cosx c^sinx and we assume = (Ax + Bx) cosx + (Cx + Dx)s'mx. 5 and m2 = Then yc = 0. and y 15. 0. Then A = -fa S = $ C = D = -|g 4 yp 2 3 . Then x cosx (ci find .^sinx + C2 sin x) + mi = TO2 = 7 1 5 5 -e 2l cosx — -e^sinx. c\e 5x + and we assume ca = Ax + Bx + Cx + Dx. B = \ yp = ^xe 1 sin 2r. — cos2x Jo 2. From m2 + 1 = we „ + + C2Sin2x 2a. find = Ae and -2A + B = and we assume yp 2 = 1 — i. 65— IOC = -1. -4A = 2. Substituting into the differential equation we obtain — 20A = 2. -3C + 4£> = 3. Then yc = we assume yp = Axe? cos 2x + Sate* sin 2a:. = 1 — 2i. + + C2xe~ x and we assume differential equation we obtain D= B = Q. Substituting into the 4S = 1 and -4A = 0. 2A + 2D = 0. 0. Then y c = e*(ci cosx + C2sinx) mi = 1 + i and 2x cosx + Be sin x. 25 \ In — x cos2x + — i' sm2x. . mi — find and i f 1 \ 12 = (-^x 3 + fx) cos 2x + ^x 2 sin2x. -2A= 1. and -2B + 2C^0. From m 2 + 2m - assume yp 24 — we find = A + (Bx 2 + Cx)e 4x . Substituting into the 2. 2o Then y c — cie" Substituting into the differential equation 87 and 61 + x and we C2t* we obtain —24.. -»d cie find kt 1 + C2 mi = x + 2i 1 4 53 14 . Substituting into the differential equation 4^4 + C = 1.£ cosx + ^ sinx. mi — m.^x + m3 = — rri2 . and 014 = —1. 6j?-C = -1. = 24. m4 — m 2 = = we 1 -+- 2 sin x. and and we assume yp 25. andB + 6C = 0. Then yc = cie I + c2e 2a: +C3e -2x + c2 e 2x + C3e _2lc + 7 4 + ^xe* 3 + 7 xe 5. = Ax and = we B + Cx 3 e x 4- 6C = Then -4. m 4 + 2m 2 + = C3X cos x m = 2 and m3 = -2. y = x 2 . Then . £7=^.2x . and = x 6 2x Substituting into the differential equation . and we we obtain C4X sin x and A= 1. Then -4 = |. . / = Then yc 2 2x cie * +C2xe +C3e~ 2x Substituting into the differential equation .yp = J y From j / = 4+Bxe I +Cxe 2x Substituting into the differential equation we obtain AA = AC = 1. . + caxe 21 4- mi = find (±x cae" 21 2 ) e Then yc 1.[\x 2 + y = ci §x) e~ x . and p find mi = 013 we assume yp = Ax 2 -2. 10C . B = -2. + */„ . and we assume and = ?/ —6 cos x + — 1 1 + C2X + C3e Br . C = -§ + c 2 xe + c3 xV . Then A = 1.12A Substituting into the differential equation A = -\ B = Then .^x 3 68 ^x 2 + ^x^ e~ x . and -4C = 2. -IB = 0. + cix + cge 8 * c\ = 3. and A--\.4 cie 2 find = B= -1.4 2S+10C = = 20S -2.B = -^.~x 2 - Ci 4 22. Then A^\. = cie x c%xe x + C3X 2 e* and we obtain —A = 1. . we obtain and ^x 3 .^ = 5 + ^xe 1 + Jaw 2 *. 4 = i and TO2 = ran = —i. Then yc = c\ + C2X + c$e x + c\e~ x and we assume yp = Ax + Bx 2 + (Cx 2 + Dx)e~ x Substituting into the differential equation we obtain -6A .-x - . = 7712 and — 013 Then yc — 6. From m 3 — m 3 — 4m+4 = -3B = -1.C=-^. From m 3 — Qm 2 = we mi = find 2 yp = Ax + B cos x + C sin x.2D = 0. Then and e 21.-x 3 e x .fl = J. From m3 -2m 2 -4m + 8 = we find 2 = y 23.Exercises 4. ro3 = 1. 3 . C=^ .Then yc — ci cosx + C2sinx + + Bx + C. C = -3.yp= 3 -\x . D--\. . we obtain .x i: mi = 1. and + c2 x + cge 1 + c 4 e _I . 21 m 3 — 3m 2 + 3m — 1 we assume yp 3-4 cje mi = 2x and we assume yp = (^4x + Sx )e and 6A + 8B = 0. and 3 . -1.4 = -| B = 0.yv = -§-(^x 2 + fax) e 4*. From -B= 0. C = -\ From we find 3 . yp .B 3 o ci cos x 4- C2 sin x 4- C31 cos 1 + C4X sin x + x2 — 2x — 3.2 = 0.^x 2 ) 3 . = -±x 2 . and m3 — —2.4. B= y 26. ma = 2.3. -3. 24^4 = c\e .fxV. = -^. 21 . and = 4+ | cos2x. so y 34. S = § C = 0. . Thus y = ae~ 2x + cze*/ 2 . into the differential equation we obtain -8A 0. B -7. . We = have yc cie -2* A= equation we find From the initial + cie x l 2 and we assume yp = Ax 2 + Bx + C. . = 4 — 4cos2x. 9. .4 27. and -3C = 0.7x 2 . We have yc = c\ cos2x + C2Sin2x and we assume yp = A.\ — i and rug — — i. We have yc = Cie equation we find 1 + C2e _I A= a | = e~ (c\ cos x + c<i . Thus y = c\e~ x ^ + C2 . Substituting c = C] cos u + C2 sin i and we assume yp = A cos 3x + B sin 3x + Cx cos = = = \. From m 2 + 1 = we find mi = i and m 2 = — i. c2 xe~ Substituting into the + ( B x 3 + §i 2 ) e -2*. -3B = -4.\xe~ x = cje 1 + C2e _3: + ^ sinhx. Exercises 4. j/p a. and p = -^sin3i + \xoasx.2D 0.. = Ae~ 4x Substituting into the differential sinx) + 7e~ 4x From the initial conditions we and we assume yp 2x = e ~ 2x (. so _ 19x _ 3? 5 We have yc = c\e~ x ^ +C2 and we assume yp — Ax 2 +Bx. 2x so Qx 3 + \x 2 ) 33. x + c2 e _I + \xe x . We write sinxcos2x = ^sin3x — ^sinx. We have yc = e~ 2x (c\ cosx equation wj find obtain ci + c2 smx) A = ^ Thus y = = -10 and C2 = 9. e ci We = have yc differential From the c\e -2x + equation we initial 200' I/5 . Substituting into the differential equation we find A = —\. conditions we obtain y 31. — ci + 9xe~ 2x + + 30x. 30.-200. = cie' 2* + .10 cos x and we assume yp + 9 sin x + 7e~ 4x = Axe x + Bxe~~ x . .37.Then A = 4. From rr? + 1 = We write 8 sin we find m.200 . 28. -SB B= C = \ £> = 0. Then yc = c\ cos x + C2 sin x and we assume yp — A + B cos 1x + C sin 2x. Substituting into the differential equation we obtain A = 4. .3x 2 = C2xe~ 2x and we assume yp find conditions A = ^ and we obtain y = c\ 2e~ 2x B = = 2 § and — (Ax 3 + Bx 2 )e~ 2x Thus y . Prom the initial conditions we obtain c\ = 200 and ci .\ a: j/ . = A -2z 5 = + and oi 186 gl/2 _ = Hp 7x 2 . Then + Dx sin x. ) Substituting into the differential and B = — \ Thus cie . 29. Thus y = c\ cos2x + C2sin2x — \ Prom the initial conditions we obtain c\ = and C2 — V2 so y = V2 sin 2x . j/ .19x . so y 32. . Substituting into the differential = -19. Substituting into the differential equation we find A — -3 and B = 30. and -2C = Then A = 0. and C = -37.3x 2 + 30x. Exercises 4. Substituting into the = — fo/2w and B = 0. ^3-65 COs2l -65 S1Il2x A= ci x sin ~ cos 2x 00 i - we assume yp B= 3: and j From so .72 + C2 sinwf + coswf = ci fb/(w itt 15 7 = 7—= (w 2 - 7 ) cos 7*. 7 1 . and D = 5 Thus . (_F and we assume xp Fo/(w z ~~ We + - 2 x— 37. Thusx = c\ Coswt+C2sinuJi— (Fo/2u>)t coswt. x 5e~ (fb/2<J )sinurf we obtain conditions initial - C2 sin uit find x the — . = c\cosx + ci C2sina: . = A + Bcos2x + C sin 21.l2a. j/ cie~ x + C2e 3x - . + 7—. B = 0- and ) /2w)fcoswi.4 Prom 35.C = 0. ^ 2 the initial 38. conditions we obtain c\ = and C2 — Fq/2w 2 so initial have i e —5. I 1 H 2 A = — 5 B = —^ = = —\ C2 4 sin O and sin a: and we assume find if c\ 6 3x so 0. 2a:. = 7 and C2 cosw( c\ differential equation Prom we obtain Thus . We have yc = ci + c-ie? differential equation we + we obtain -* 1 = e F0 + y = 3 55 3. . 00 n 4 . B — ^. the conditions initial y 39. Substituting into the so . A = 0.cos y = and we assume yp we obtain conditions ) C2 it From Substituting into the Thus . w 7 COSwt J + C2 sin x + x ci cos 1 = — . We the conditions initial have x c = the ci — y — 7e We = Q cos uit + we A= have yc = ~ sinhx. differential equation Prom x + C2 smart and we assume x p = Atcoswt + Btsinuit.7 2 and 2 Substituting into the differential equation we find y = A cos 7* + B sin 7*. G 52 csxe x and find c\ and C2 — sm „ 2x. — sr. We have j/c = cie -1 differential equation + C2e we ( = —\ t J = Ax coax + Bxsinx + C7cos2i + £>sin2:r. ^-x sin + x ~ x — . Substituting into the .V + ^e 5 *. H 3 —^ C- =^ 2. p . so we find A x 36. „ 90 - = Ax + Bx 2 e x + Ce 5x C= 2a: j . = + C2C 1 + c 3 xe x + —12. and Thus sin 2x.COS 7*. We have yc — conditions 2 = ~ i c\ and t/(l) ' 2x + eX ("S c\ — — cos C2 . and we assume yv = Ax + B. jt/2]. We have yc = e*{c\ cosx equation we find A = 1 + C2sinx) and B= 0. and C=— 1. Substituting into the differential Thus y = ex {a cosa:+C2sin:r)+:E.4 FVom the initial conditions we obtain y 40. solution of the boundary-value problem is y 42. and C3 . oo) — c%e x sinx + x. + c 3 sin\/3x) + -x - y so 9. The = — 0. — —H ^ ^x = Ax + B + Cxe -21 C = | Thus 5 t and + 2 -xe~ 7a = C3 + sin - .4 we have y = = c3 cos 2x and B— = j . FVom + Bsuix = y(0) c\ cos = 1 on and Substituting [0. Substituting into the differential Thus = cj cos x + C2 sin x + x 2 — 1. + e^ci = any 7T. C2 = —11. real number. 6(cot l)s'mx + x2 ~ 1. From y(0) = and y{ir) ?r --- we obtain — 7T Solving this system we find c\ problem = and C2 is We have yc = C\ cos 2a. 1 FVom 5x and we assume yp \/Zx = qe" 21 + e I (c 2 cos \/3a. the initial » 41. = is y 43. r . .Ue x + 9xe x + 2x- x e (c2 coa + = ci + cssim/Zx) equation we find A = I2x 2 x e + ^e \ B — —| .\ + h'*- = A 2 + Bx + C. so . ci we find . j/ we obtain ci (cos l)ci Solving this system we find ci = - 1 = 5 + sin(l)c2 = 6 and C2 = —6 cot 1. oleosa: Thus y + c 4 sin 2x. . and . We = have yc cie -2x = 11 Substituting into the differential = 11. 1. Prom 3/(0) = 5 cosz + C2sin:E and we assume yp A= equation we find = e we obtain . 6 cos a. The solution of the boundary-value On (7r/2. + 2x ca sin 2x y'(0) = 2 + we 3 sin x on obtain .Exercises 4. C2sin2i and we assume yp into the differential equation [0. B = 0.ir/2]. (D 3 . D 3 + 4Z> = D{D 2 + 4) 13.8D 2 + D(60) Ae x l 2 - D4 because of x 3 1)(D = + 20e 2x = (D .2x) = D 3 (30x . t — = . D 4 + 8D = D{D + 2){D 2 -2D + 4) D 4 y = D 4 (10:e 3 .2)(D + 5)4e 2 * — (D - 20. (D 3 .5sin8x) 2)(8e 21 ) 22.4D 2 7.Exercises 4. (D .4frc / 2 = = . D 3 +2D 2 -13D+10 = 14. D 2 - 5 a: e" 3 * + e 2* = (d .2) 2 {D + 4) 2 = Ae*l 2 = . 2 \)y a £> a (603:) = %De x l 2 . (4D 4.40cos8x) + 64(2cos8z .cos7r + .6){D + 2) + 8)y = +3 2. (D + 64)(2cos8i . (2D - = {2D - l)4e x i 2 19. 2D 2 . sin 7T H 6 —1 + j = — C3. 92 D5 2) + 3) = (D . 16 - 128 cos 8a: because of x 4 320 sin 8x = [C .2D 2 + 7D-G)y = l.2)28e 2 * = 56e 2 * .4 = Solving this system we find c\ Now x= continuity of y at 1 and — 5 H 7T — 1 . {D + 3.S&e 2* = = D(-16sin8i . is tt/2 tt/2 Exercises 4. (3D 2 - 5.5sin8x) 15.2)(3D - 12 + 2) = (D . C3 = | .V5) (D + y/E) 10.sinx 6.3D - 2 = {2D + 1){D 11. D4 (D-l)(D-2)(D+5) 17. D 3 + 4D 2 + ZD = D(D + 16. 9D 2 - 9.2D 2 + D) = 8. sin 3 Continuity of 5 —| — 2C4. + + <x< ^ sin x > |sin2x.128 cos 8a: + 320 sin 8x+ 21.2) = 18. Hence | — Thus y . D 2 - 5)y + 5£> 4 l)y = + 5D) = = 4£> 9sinx e x 4x (3D .cos — = — ZC3 shitt + or + cos 2x 7r/2 implies cos or = c-i cost 2c4 | and the solution of the boundary-value problem !cos2x |cos2x g sin 2a.5 = 1. Then 04 = | sin 2x + | sin x on C3 cos tt + C4 sin 7r 2 j/ 1 at x = implies 7T — 2smx + . D 3 + 10D 2 + 25D = D{D + 5) 2 12. {D 4 . D 3 (D 2 + 16) because D 2 (D 2 + l)(D 2 + 25) 29. e~ 3x 37. 24. . and 1. D 2 + AD = D(D + 4). e 5x . e (3 2 5) .2D + 5) because of 1){D l) - 2 1 because of (D . 1. D 40. 2 + l 2 ). x. e . D 2 -6Z> + 10 = 39. e 12x . 1. —9A = 54 or .6) 2 26. Applying D to the differential equation we obtain D(D 2 - Q)y = 0. 28. D 2 (D . Then y and j/p = solution = + c 2 e~ 3x + c3 A. and and e I e 2x cos2x e~ x 5} because of sin x and e 2x cos x e" 41 ex e' Sx / 2 . e 1 x .9D - 36 = (O - 12)(D + 3). e 3l sin:r 5x 7x Exercises 4. (D + 1)(D - 30. Substituting yp into the differential equation yields is y 2. because of e _I and x 2 e x 3 32. The genera! . D(D - 2) 25.6 1. 35. 3 . 36. D(D 2 + 1) because of x and xe6* because of 1 and sinx sin 4a: because of 2 3 2x x 2 and because of 2) (D + 2D + a: of e and co95x x. we obtain D(2D 2 -7D + 5)y = 0. sinx. cos\/5x. 1.Exercises 4. 3x c-je Applying D to the differential equation = cie ix + c 2 e- Sx - 6. sin \/5x 38.6 23.4 = —6.D 2 -2(3)D + . £> 2 .10D + 25D = D(D 2 x.4D + 2) 33. e *. D(D 2 . e xe 3l cos:r. 5 1. x2 x4 34. D2 + 4 because of cos 2x 27. D(D - 31. 6 Then y and yp = 5A = —29 A. and the general solution y = cie~ 2x 2 6.^. The general solution is + 3x. D 2 to the differential equation we obtain Applying D 2 (D 2 + 4D + 4)y = D 2 (D + 2) 2 y = 0. Then y and j/p = j4i. Substituting yp into the differential y 4.Exercises 4. B— 1. is + c 2 xe~ 2x + ~x + 94 1. Substituting yp ci + c%e~ x + case"* 4- C4X into the differential equation yields y 5. Substituting yp into the differential equation yields general solution D Applying or A= —29/5. 4Ax + (4A + 4B) = 2x + 6. we obtain D(D 3 + 2D 2 + D)y = D 2 {D + l) 2 = y 0. = ae 5x/2 + c 2 e* + C3 = to the differential equation cie hxl2 + C2e x . we obtain D(D 2 + D)y= D 2 (D + l)y = 0. D Applying to the differential equation = +c 2 e ci A= equation yields _31 3. Equating Substituting yp into the differential equation yields coefficients gives 4A = 4A + 4B = Then A= 1/2. = — c\ + C2e~ x + czxe~ x + A— 10. Then y = cie' 21 + c 2 xe~ 2x +c3 + c4 x He and yp = Ax + B. . Then y = ci + c2 e~ x + C3X Vc and yv ~ Ax. The is y 3. The general solution is lOx. obtain. Then y and yp = Ax 2 + Bx. and the general solution 8 2 ci is + c 2 + c 3 e _I + -x 4 . 2 Substituting yp into the differential equation yields 6 Ax 6/1 Then c3 x 4- = cl to the differential equation + c2 e -1* ** is 2 19 .-x 3 + 8x 2 :k D 4 to the differential equation we . + -x'. B= -8/3. —19/9. .4 A= 2/3. Equating = c\ + cae" 3 ^ + ct x + (2A + 3B) = 4x- coefficients gives 2. and the general solution y 7.Exercises 4 a 6.—x. we obtain D 3 (D 3 + D 2 )y = D 5 {D + l)y = 0. Applying 8. D3 Applying to the differential equation we obtain D 2 (D 2 + ZD)y = D 3 (D + 3)y = 0. D 4 {D 2 -2D + l)y = D 4 (D ~ ify = 0. Then y — c\e x + C2xe x + c^x 3 + C41 2 + c^x + c$ yields . Then = y + C2X + c3 e~ x + c 4 x 4 + c 5 x 3 + c%x 2 ci _ = Ax 4 + Bx 3 + Cx 2 Substituting yp into the differential equation UAx 2 + (24A + GB)x + {6B + 2C) = St 2 Equating coefficients gives and yp . B= = D3 Applying 4 + 35 = -5. 124 = 24A + 6B = 6B + 2C = Then A= 2/3. C= y 8. = 8 0. 2C + Then A= 1. we obtain (D-6)(D 2 + 2D + 2)y = 0.3)y = D{D . Applying D—6 = Cl e 4x to the differential equation + c^e~ 3x + equation yields TAe41 ^xe 4x = e**. The general solution is and yp y 10. Substituting yp into the differential coefficients gives A — 1/7. Equating .3)y = 0.6A = 6.1)(D + 1)(D . Then y = cie 3x + c2 e~ x + c$e x + c4 _ 96 = 5c 61 . £> = 32 C\e 0. Applying = 1) general solution — e~ x (c\ cos a. Substituting yp into the differential equation yields Ax + {B . Then y = cie 4x + c 2 e~ 3x + c 3 xe ix _ Vc = Are 4 *. we obtain to the differential equation -D.6A)x 2 + (6A .4S + C = 2B . Then y and yp = j4e 6a .Exercises 4.6 = Ax 3 Bi 2 + Cx + D. to the differential equation D{D - 1)(£> 2 50Ae 61 is + ci sinx) + e6T - ^j we obtain -2D. C = y 9. Equating . and the general solution . The y 11. coefficients gives D{D — e _I (ci cosx + C2sinx) +C3e 6s: Substituting yp into the differential equation yields A— 1/10.12)y = (D . Equating coefficients and j/ p 4- 3 A= gives 1 B .4B + C)x + {2B ~2C + D)=x 3 + Ax.4 .Af(D + 3)y = (D . x D= 4 x 3 2 + C2xe + x + 6x + is 22x + 32. B = 6.4)(D 2 0. Applying D—4 = 22. The general solution ^ sinx. 21 yields solution is + c 2 e.~. Equating Substituting coefficients gives . and the general . Substituting yp into the differential equation + 8Bx + (6S + 8C) = 3e~ 2x + 2x. Then y =d cqs2t + C2Sin 2x + C3 cos x + a sin x + c5 l/e is + . Applying B= and c\e 3x The 3. B= 1/4.ix + \xe~ 2x + ]x . Then y = cie~ + c2 e~ ix + c$xe~ 2x + c*x + c 5 2x Vc and yp 2Ae~ 2x = Axe~ 2x + Bx + C.4 y 14. we obtain to the differential equation D 2 (D + 2)(D 2 + 6D + &)y = D 2 (D + 2) 2 (D + 4)y = 0.6 and j/p = Ae x + Equating B. we obtain \){D 2 + 4)y = 0. is + c2 e~ x -e x + 3. Substituting yv into the differential equation yields coefficients gives A = —1 = y D 2 {D + 2) 12.Exercises 4. 2 to the differential equation (D 2 + 4 lb we obtain lXD 2 + 25)!/ = 0. Applying D(D 2 + 1) p into the differential equation yields 24 A cos x i/ — ci cos 5a. Applying D +1 2 -3/16 = cie" 0. Equating coefficients gives 2A = 3 85 = 2 6B + 8C = Then A = 3/2. Then y = pi cos 5x + C2 sin 5x + C3 cos x + a sin x yc and j/p = Acosx + Ssinx. general solution — 4Ae x — 3B = 1 4c — 9. Cy 13. + C2 to the differential equation D{D 2 + = and sin5x B= + 1/4. 24B sin x = Gsiax. Then y = cie~ + C2Je~ 3j: 3l: + c3 xe 4:l + c4 e 4T — Axe ix + Be^. and the general solution 1 ~ 5 xe 98 _ 3 1 x e 36 6 10 . 100 is . Then y = cie 2x + eye' 5 * + c3 xe x + c\t x + c 5 x + eg = Axe x + Be x + Cx + D. Substituting yp into the -6Axe x + {5A .4 144 Then A= B= -1/49.6B = -10C = 3C differential equation yields - 1 0. y y C= -1/10. Applying = -1 = Cl e- to + c2 xe~ 3x to the differential equation (D - 2 1} {D 2 + 3D - is . B- -5/36. and j/p -6-4= 5-4 Then A= -1/6. and the general solution y 16.Exercises 4. ^e 2 1) {D .4) 2 (£> + 3) 2 = j/ 0.6 = Acosx + Bs'mx + C. 2.cosx + sinx — = 4/3. -3/100. = ae Or + 1 c?e 2 10D -- D= —St Equating coefficients gives 1 . Substituting yp into the differential equation AQAxe + (UA + 49B)e 4x = -xe 4*. we obtain = D 2 (D - 10)?. we obtain to the differential equation (D - Equating 9)?/ = (D . and C — —2.IQCx + (3C .—xe 4* + 4x .2){D + S)y = 0. Substituting yp 3j4cosi + 3Bsinx + 4(7 = 4cosx + 3 sin x — 8. D 2 {D — D l) 2 2 + 495 = 0. The general solution is into the differential equation yields and yp = y 15. Applying (D — 2 A) ci + C2sin2x + cos2x 2 4) (D 2 + 6D + coefficients gives -4 4 .10D) = xe x + x. 2/343.6B)e x . B = 1. Equating coefficients gives and yp yields ix 49. Exercises 4.\f{D + l)y = 0. .4 + AB)xe x + (2B + 2C)e x .-x 2 e x + 6 to the differential equation (D + \f{D 2 4 -xe x - is 5. Li 19. Equating coefficients gives . B = 0. The general solution is y = cie~ x + c2 xe~ x + ]-x i e" x . -5.6 D(D — 17. The general and yp 3Ae x .D — x 2 e x + 5. Then y = pi^ + <%e~ x + c3 x 3 e x + CiX 2 e x + c 5 xex + ce d Vc — Ax 3 e x + Bx 2 e x + Cxe x + D. and C = 0. y 18. Then y — x e (c\ cos2x + C2sin2x) + e*(c3 cosx + C4sinx) yc = Ae x cos x + Be x sin x. Equating coefficients gives and yp &A= yields 1 6A + AB = 2B + 2C = -D = Then A = 1/6. Applying (D + l) 3 C= = 1/4. Substituting yp into the differential equation 6AcV + (6. Substituting yp into the differential equation yields we obtain cosx + 3Be x smx = e x s\ax. and the genera! solution + c^e~ x + -x 3 e x . 4 we obtain + 2D+ l)y =(D+ ify = 0. Then y = Cje~ x + C2xe~* + cjx 4 e~ x + c<ix 3 e~ x + c^x 2 e" x yc and yp = Ax i e~ x + Bx 3 e~ x + Cx 2 e~ x Substituting yp into the differential equation yields l2Ax 2 e' x + &Bxe~ x + 2Ce~ x = x 2 eT x Equating coefficients gives A = 1/12.D(D . Applying I} 3 we obtain to the differential equation D(D - 3 1) (D 2 - l)y . . Applying D 2 — 2D + 2 to the differential equation {D 2 we obtain -2D + 2){D 2 -2D + 5)y = 0. c\e x D= 5. B= -1/4.4 = and B = 1/3. 4a. 5i — 2x cos The 10Bcos5x - general solution is 5x. Substituting yp into the differential equation yields {95 I x I 27v4/4)e cos3i — (9^4 + 27i?/4)e sin3x = — e^cosSi + e sin3a. Then y and yp = . Applying x e {ci cos differential equation we obtain -2D+ 10) [p 1 + D + = (D 2 .-^e 1 cos 3a: . 4 Then jl = -4/225. .^-ex sulZx. Substituting yp into the differential equation yields 2Bcosx 2 A sin x = 4cosx — sinx. Equating coefficients gives A = 1/2 and B = 2..6 solution is = y (D 2 2x + C2 sin2x) + — e x sin a. The general solution is and yp y = c\ cosx + C2sinx + 100 ^3: cos a: — 2xsinx. and the general solution = cie~ x is ^ + C2xe~*ft . Applying + C2 sin 5x + C3X cos 5x + c^x cos 5a: D2 + 1 = ci cos 5x to the differential equation (Z> 2 + 1)(D 2 4- into the differential equation yields A — —2 C2 sin and B = 0. o D 2 — 2D + 10 to the 20.2D + y 10) (*> + 5) If = 0.. Then y — ci cos + C2 sin x + C3X cos x + C4X cos x a: Vc = . we obtain + 1) = (£> 2 + 2 I) = 0.-1 4 27 -&4 S- 1. Applying -28/225. Equating coefficients gives y 22.4xcosx + Bxsinx. Equating coefficients gives and i/p - -— A + 9B . Substituting yp 20sin5x. Then y = cie'^ 2 + C2xe~ a ^ 2 +036^ cos3x + c 4 e sm3x a: yc = Ae x cos3x + Be x sin3x.Exercises 4. 10-4sin5x = cos 5x + = c\ cos 5x Bxsin5x. B= y 21. D 2 + 25 to the differential equation we obtain {D 2 + 25)(D 2 + 25) = (D 2 + 25) 2 = 0. B = 1/8. + C5 + Bx sin 2x + C.2C + D = -C= Then j4 = 2. and the general solution V3 — C2 sin and applying 2: D(D 2 + 4) + 2 cos x is + sin x — x cos x. to the differential equation D{D 2 + 4)(D S + 4) = D(D 2 + 2 4) = we obtain 0.Cxsinx = xsinx. and ci 24. — v/3 cos 2: + 1.r + C2 sin --- + C3 cos + C4 sin + c$x cos x + c%x sin x a: a.4 cos x c\ cos —. Equating coefficients gives A = 0. Substituting yp into the differential equation yields 5 + 5 cos2x. Applying + l) 2 to the differential equation (D 2 2 + 1) we obtain (D 2 + D + 1) = 0. Then y and j/p = -4i cos 2x -4Aain2x and C= = ci C32 cos 2x + C4X sin 2x 1/8. coefficients gives B + C + 2D = O= -A .Exercises 4. a: Vc and i/p = (B Equating + Bs'mx + Cxcos x + Dxs'mx. Writing cos 2 x = h(1 + cos2:r) D = 0. C= -1.6 (D 2 23. 5= 1. 2 ) Then y ~ c\ -\- cix + C3e 81 + c4 x 2 + c 5 x 3 + c$x A . Then y = e -/a . Applying + C2 sin 2z + cos 2z = ci is cos2i + C2 sm2x + ^1 sin 2a: + D 3 to the differential equation we 8 obtain D S (D A + 8D = D b (D + 8) = 0. + 4£?cos2i + 4C = The general solution j/ 25. Substituting yp into the differential equation yields + C + 2D)cosx + Dxcosx + {-A -2C + D)s'mx . Then A = 11/256.Exercises 4. . Equating coefficients gives 4£> = 1 2C + 4D = -4B = -1 Then A= -7.^xe x + ^ 1) = D 2 (D - l) 4 = Then y = cie x 2 I e we obtain . . C= -1/2. and = cie* + C2Cosi + cgsinx - y 27. D(D — 26. to the differential equation D 2 (D - 1)(Z> 3 and the general solution 7 + ^e" 1 .3D 2 + 3D - + C2xe x + c$x 2 e x + c4 + c 5 x + cex 3 e x 102 is 0. Applying D 2 (D — 1) £> = 1/4. B= 1/4.4Be~ x -A = xe*~ e~ x + 7. . + 6B = 2 + 24C = 9 16A 485 96C = -6. 2 1) C= -1/16. Applying B= 2 {D + 1} D(D - l) and 7/32. and the general solution we obtain to the differential equation (D + 1)(D 3 - D +D2 1) is = D(D - 3 1) (D + 1)(Z> 2 + 1) = Then = de + C2 cos x + C3sinx + a + c$e~ x + <%xe x + 31 j/ 2 x c?x e Vc and yp = A + Be~ x + Cxe x + Dx 2 e x .6x 2 Equating coefficients gives and yp . Substituting yp into the differential equatioi Wxe x + {2C + AD)e x .6 = Ax 2 + Bx 3 + Cx 4 Substituting yp into the differential equation yields 16A + &B + (48B + 24C)x + 96Cx 2 = 2 + 9x . and p yp .3D + 2) = D(D - 2)(2D 3 2 + 2){D + c 2 e 2x + c3 e xf2 +c4 + c$xe 2x + cee' 2) {D + 1)(2D - 1} = 0. Applying . The general solution + C3e x + e^are* + ^x 2 4. 2 (D + 2) = 0. + c2 e 2x + cze x/2 + 1 + 4 1)(D - B 1/9. y 28. Applying = = 1/2 and ci + c2 x B— 1/2. c%xe x + c3 x 2 e x - and applying 13 is + x + -x 3 e x . . 2A + 2Be x = 1 + 3 e .2QCe~ 2x = 2 + and yp and C= 2x e Substituting yp into the differential equation yields 2x _2x Equating coefficients gives = = e + = D(D — 1) to cie~ x A . j/ into the differential equation yields Equating coefficients gives -A + 3B = 16 ~B = -1 6C = Then 4 = -13. ^xe 2x - ^ e ~ 2 "- we obtain 2D 3 + D 2 = D 3 (D .3D 2 . B— C= and 1.2} 2 ) .2){D A . + c3£ x + c^e 1 + + 2 C5X + C6i 2 e I Substituting yp into the differential equation yields A= y 30. is the differential equation D(D - 1. and the general solution y 29.6 = A + Bx + Cx ex Substituting (—A + 3S) — Bx + 6Ce x = 16 — x + e*.Exercises 4. c\e x + + e" 1 )' = 2 + e 2x + e~ 2x 1. Writing (e* = and the general solution 1/6.iUV is 1 to the differential equation we obtain D 3 {D . 6 D(D-2)(D + 2) to the differential equation we obtain D(D - 2)(D + . ) Then y and yp = Ax 2 + Bx 2 e x Equating .if = 0.AD = D h (D . Then = y x cit~ 2* Vc 21 = A + Bxe + Ce~ 2A + 9Be 2x . coefficients gives D 3 (D — 2) ci . —1/20. C = = S 31.. and yp = A + Bxe x + Cxe~ x Substituting yp into the differential equation yields AA .1)(4D 2 + = 1) 0. The general solution is y . and the general solution + c2 x + c$e 2x + ae. and C = 1/6. = cie 1 + c2 e~ x Equating . '.\xe x + \xe~ x o o . y 32.e 2x 2 and yp 3 into the differential equation yields . 0. Exercises 4. Writing 2cosh x = D(D - e x = The c\e + e~ x 1){D + general solution x l2 + x 2 c2 e~ ^ 1)(D 4 - + C3 cos \-x + c\ sin \x + \xe x ^ 2 2 D(D — 2 = cie x + + 5D 2 + 4) = D(D - 1) c2 e~ x 1) to the differential 2 (D + 2 1) (D . Equating coefficients gives -8A + 24C = -24B = -48C - 160= Then A= -5/16. Then y = c\z x t2 + c2 e~ x ^ 2 + C3 cos -x + c. and O= to the differential equation (2D . B = 0. B = —1/6.2)(D equation + 2) = + cse 2x + c4 e~ 2j + c5 + c$xe x + <^xe~ x yc . -1/16.6Be x + 6Ce~ x = -6 + e x + e~ x Equating coefficients gives A = -3/2.6 Then = y + c2 x + ae 2* + f^e"^ + c 5 x 2 + cex 3 + ci c7 x 4 + cgxe 2* Vc 4 21 = Ax + Bx + Cx + Die Substituting yp 2 (-SA + 24C) 24Bx 4SCx + IQDe 2* = 5z 2 . we obtain . Substituting yp into the differential equation yields A~ 1/8.1)(16D 4 - 1) -1.j sin -x + Csxe x^2 Vc and yv — Axe x^2 coefficients gives . . Applying (2D - 1) -5/48. a Then y x 2 e ^ is 1)(D and applying 8Ae*^ — + c%<?* + c 4 e~ 2x - ^ I 104 .2* - ci 5 ^x 2 - j^x 4 - is ^xe 2* we obtain = (2D - 2 1) (2D . 1 + x. 35. and j. Thus we find A — —1/4 and yp = A. we obtain — 64. j/ p . and The complementary function is yc — ci+c2 e bx . Using y' initial 2B) + 2Bx — x. 8c 2 =2- e _I . The complementary function is = yc c\e Sx + initial Using .T 9 conditions imply d+co — 1 1 2 j/ p . 8 8 Substituting yp into the differential equation B= = 5/8 and y 34.4 Substituting yp into the differential equation The Sx c2 e ax y = Cl e y' = Scje + c2 e~ 8x - 81 - 8c 2 e~ D to annihilate 16 = 16. Thus A = 9/25 and £ = -1/10. conditions imply = 2 and C2 = — 1. .x + -x 2 . \ 4 8x conditions imply ci+c 2 = - 8ci Thus ci = = C2 The complementary 1/2. function is yc = c\ + x 4 c2 e . Using ^9 . + = Ax + Bx 2 Thus A — —1 and x we find 1 . . The initial . = l 1.6 33.x + -x 2 = -c2 e~ x .4+25) — lOBx = —2+x. D 2 to annihilate x — 2 we find = Ax + Bx 2 Substituting yp into the differential equation we obtain (— 5.Exercises 4.ci+c 2 e -C2 ci to annihilate we obtain (A c\+c 2 = Thus D 2 and y The 0. function find yp -6ca = --. -f- 2B cos x — 3C cos 2x — 2A sin x — 3Z) sin 2x = and D = 0. -11/3. conditions imply 3 d Thus 37. <5 The initial conditions imply - 7T sin x -Cl Thus ci = -7r and c2 = The complementary xe x +5 we find yp 0.l) 2 to annihilate + Cx 3 e x Substituting yp into the difFerential equation . Thus we find A= 5/4 and The initial y = cie y' = cie x + c 2 e~ 6x + ^e 2* 1 - 6c2 e- 61 + \z 2x . + 4) to annihilate Substituting yp into the 8 cos 2x — 4 sin i. . The complementary yp = Ae 21 . — — cos 2i. - and 5/28. .Exercises 4.cos 2x o = — ci sin x + C2 cos x + 2 cos x — 2x sin x + — 1 sin 2x. ci = -3/7 and c2 The complementary — 8cos2x 4 sin x we difFerential A= 2. D— Using . C = -8/3. Thus 8 . function 41 = u y 41 e 1 125 is = yc 9 ^ + —x c\e x x 25 c^e~ 6x + 1 ox 125 . and 36. 106 . is i/c = c\cosx + C2sinx. 10 2 to annihilate lOe 21 we obtain SAe 21 Substituting yp into the difFerential equation = lOe 2^. and equation we obtain B = 0. and y 38.6 Thus ci = -41/125 and c2 = 41/125. y y' = cos x ci + C2 sin x + 2x cos — a. 3 3 ^ = C\ + c^e x + csxe x Using D(D . = Ax cos x + Bxsinx Using (D 2 + 1){D 2 Ccos2i + Dsin2x. = = — function —— 11 jt cos x + 8 2x cos x is = Ax + Bx 2 yc x e. Using D i to annihilate x 3 we .JiV + ^zV. and y 40. The initial y = e j/ = e 2l 21 (ci + cos2x C2sin2x) 3 + J-x + -^r + ^x 8' 16 32 2 . and find 2 yp 3 . C2 = The complementary x + e x we 3 3 o2 o 2 . Thus A= 5.12D)x + 8Dx = x Thus A = 0. = ci 8.xe + ±x e x ) x + caixt? + 2e x ) - e x - xe x LV.6 we obtain A + (2B The initial + QC)e x + 6Cxe x = y = ci y' = c2 e y" = c2 e + c2 e x xe x + 5. and — = 6e e x + 3xe x + 5x. B= -1/2. B = 3/32. -3/64. and C3 — 3. . and + c3 xe x + 5x~ \x 2 e x + \x 3 e x x 3 x + c3 (xe x + e x + 5 .2sin2x) + [ci{2cos2a: 02(2 cos2x 2ci = ci 2. and C= 1/6. + \x 2 e* + conditions imply d +c =2 2 + C3 + 5 = C2 + 2c3-l = c2 Thus 39. + C2sin2x). C .A + Bx + Cx + Dx Substituting yp into the differentia! equation we obtain 2 3 3 {8A -4B + 2C) + (85 . A s in2x) + ax + + + ^3 |^ + C3X 2 + c^e 1 .Exercises 4. 8 find yp + 2c 2 + |. 3 — + ^x + -x conditions imply Q= Thus + 2 sin 2x)] + = e 2l function = Ax 3 + - (2cos2x is Bx* yc = + Cxe ci x . Using D 2 {D - 1) to annihilate Substituting yp into the differential equation we obtain . = 2 4.SC + GD)x + (8C . 3l (ci cos 2a.3/16. y = 8 function is yc The complementary 2 -l. and D = 1/8. C2 = —6. + C4 = + C4 + 1 = 2c 3 + c4 + 2 = C4 = + c4 = is yc = 0.1 -4x = and (D + 4)(iZ) - l)x = (D + 4)(xDx - x) = (D + 4)(x-l-x) = 108 0.. and 24 c\e x + cie~ x . . is yc = c\+ C2t~ x .6 (-6A + 24B) .Dx-4x = x(0) + 4x(l) . — Using {D l)(D 2 — 2D + 5) 2 to an + Bxe x cos 2x + Cxe x sin 2x + De x cos 2x + Ee x sin 2a: The complementary function 9- + xe x x we obtain Up 42.^x 3 + c2 2 ci o 1. Exercises 4.^x 3 2 C= -1/24.\x 2 -x+ B= -1/6.l)(D + 4)i find = {xD 2 + 4xD -D-4)x = xD 2 x + 4xDx .24Bx + Ce x = x + y The initial = x e A= Thus . C2 = 1. and conditions imply Cl Thus x ]-x x . + c 2 x + c3 x'2 + ci c4 e + 2c3 x + Cie x - y' = c2 3/" = 2c 3 y'" = c4 e + eye 1 x - 1 Ze x = + 2. 2e and 24 . -1 2 /fi sinx. + xe x . Applying the operators to the function x we {xD . The complementary e*{2 + 3a. x e + xe x 6 41.cos2a:) C3 = 0. Using D(D + 1)(D 2 + I) 3 to annihilate x 2 sin x we obtain = Ax + Bxe~ x + Ccosx + D sin x + Ex cos 1 + Fisini + Gi 2 cosx + 43. and function = Axe x e~ x + yp + xe x . —2. «2 = — cosx. Thus. cos x secx we obtain sin = ua x sec x cos x sec i — — tanx = 1. auxiliary equation is m + = 0. the operators are not the same. Since y^ (x) = n > for 1. m 2 + = 0.Exercises 4. Exercises 4. n) 44. The = + «iJ/l U2i^. 1 Then ui = U2 In| cosx|. so yc — c\ cosx + C2 sinx and 1 cos W= Identifying f(x) validity of a particular x sin — sin x x = 1. = y for -5r/2 1.sin x sin x - 1. where trigonometric functions are involved. + tanx|. and + C2 sinx + cosx (sinx — In | secx + tanx|) — cosx sinx . in the following problems can take on a variety of forms. yW + a n_iy( n -V + an • • + aiy'p + a = yp + + + + a —= it. cos x tanx we obtain = — sin 2 tan a: = cos x — 1 = cos x — sec x cosx iiq Then uj = sinx — y for -tt/2 < x< hi sec = | c\ tt/2. yp especially checked by substituting 1. = cosx c\ + C2sina: + cos x In | cos x\ + x s'mx it/2.7 The particular solution. The back into the it auxiliary equation is = form can best be differential equation. so yc = ci cos x + ci sin x and 2 1 W= Identifying f(x) = cos x . x cosx — sin x. The < x< and x. auxiliary equation Then — -2 cos x — <x< sin + C2 sin x x x = 1. cos x sinx we obtain — — sin 2 x u'j_ — u2 cos x sin x. «2 y for -tt/2 The co. auxiliary equation Identifying f(x) x sin x - 1. tt/2. cos x we obtain u[ = -sini(secxtanx) = .cos — sin 2x — — x — - 1 — ~x £ cos x sin x. auxiliary equation m is + = 1 0. The „ 1 1 1 u\ = U2 = — .7 Exercises The 4. so yc = — Identifying /(x) =x— = sec x tan x tanx. | c< . x — -x cos x ci cos cos x u\ - 00. and = is 2 tanx. so yc = ci cos cos x cos 2 x x sin x — sin x in sinx In cosx| | + C2 sin x and sin — sinx = 3 n cosx|. cosx we obtain til — — sin 1 cos u'2 = 3 cos x = x cos x (l 110 — sin 2 xJ . and y for —00 < x < The — c\ cos x + C2 sin x + = ci cos x + C2 sin - sin 1 cos 2 x ro is 2 + 1 = 0. = — x sin x sin + cos x c\ cos W= Identifying f{x) — so yc x and C2 sin x = 1.tan 2 x = u'2 — cosx(secxtanx) — —— and ' - 1 sec I ci cos x + C2 sin x + x cos x — = c\ cos 1 + C3sinx + xcosx — m2 + 1 = 0. cos 2 x a.(cos 2 x — c\ cos x + C2 sin x + . ] secx tanx| + tanx| 4.7 Exercises Then u\ = 3 cos x. — ci cos x + C2 sin x + ~ cos 4 x + sin 3 x — ^ sin 4 3. so yc — cie x W= Identifying /(x) + sin x In = coshx = \(e x + e x ) we obtain + C2e~ x = and -2. 00. = -- «2 — secx.+ .sin x 1 C2 sin a. —00 < x < The Ci cos x + 2 x — sin 2 x~j + sin 2 x 2 — sm 2 x + o •J = ( cos 1-2 + . y 112 = sin x — and 5 sin x. cos x x sec^x we obtain sinx Then ui - -- 1 — — sec x COS 2 U2 = In I sec x + tanxl and y for -ir/2 7. = so ye cos x C] cos x Identifying f(x) = + sin — sin u. 1 1 + sin 2 x) for 6. auxiliary equation is m +1= 2 0. . C2 sin x = 1 and 1. auxiliary equation is rn 2 — 1 = 0. The < x < = c\ cosx + C2 sinx — = ci cosx + C2sinx — 1 + sin x In cos a: sec x | secx + tt/2. = c\ cos a: + ci sin + . le-.-e x - x - x e ) oo. — e Identifying /(re) and sinh2x we obtain „-3x 1 4 4 4 4 Then 1 T . auxiliary equation is m 2 .Exercises 4. —oo < x < The = cje = cae = c%e . 1 + c4 e x + ae x - i _. —oo < i < The oo. Then 1 -2* * + -1 x u^--e and y for 8. auxiliary equation m 2 — 1 = 0. i i _ + -ze 1 . 12 and 4 = cic* = cie z + c a «-* + ^(e 2l -e+ C2e I + !l11 ) -sinh2x o for 9. -e 1 + -x(e + -x sinh x . IV so y c = cie 2x + cieT 2* „2z „-2i 2e^ -2e -2x = 112 and .4 = 0. so yc = cie x + C2e~ x is W= - = -2. 1 x x + c2 e _. 3" 00.\xe~ 3x 3x ?xV 3 * 4 1 „„-33x (l-3x) -±xe- „-3i 3x + 4 c3 e-r 1. y for 12. auxiliary equation is m 2 + 3m + 2 = (m + l)(m -1 W= Identifying f{x) = 1/(1 + e T ) e -e" 1 + 2) = so yc 0. > x The = cie 21 + cae" 2* + 2 (e * In ^ - \x\ e~ 2x dtj >0 x . auxiliary equation is m 2 . —00 < x < The e^ + c 2 e~ 3x . auxiliary equation is m z . 0.2i =- Hi - ~ 1 Then Ul = ln(l + ex ).I )e" 1 ln(l + e 1 ) 00. + e* 1 cie -* + C2 e- = cae~* + c 2 e. = ~\ x Then u'2 - -61 1 = "24 e„Hte and -3x = —J* «2 and y = Cl 24 = tic Ci e - for 11. -00 < x < The u2 = ln(l + e 1 ) 2x - e 1 . 3x . = cie~ x + c 2 e~ 2x and -2i = _ e -s« -2e" 2a: we obtain + e1 1 . and + e~ x ln(l + = e + e1 e*) + e~ 2x ln(l + e x .^e~ 5x .e" 1 ) + e. so yc = cie 1 + C2e 2x and 4.7 Exercises — e^/x we Identifying f(x) = obtain u\ ui 1 = = —e 4x /4x.2x + (1 x . 1 r "' x I t j* ^ --j and y for 10.3m + 2 = (m . . so yc — cie 3x + C2e" 31 e W= Identifying f(x) = = Six/e^ we obtain u\ 3i e 61 |a:e 1 111 = and -6.9 = 0. Then l/4x and u'2 u2 = -ln|x|.l)(m - e x 2e 2x 2) = e = 0. = c\e = eie T + c2 e 21 - x + c2 e 2x -e x e cose x 21 sine +e x cose x -e ^sine* 1 oo. so y 2 W= e e Identifying /(x) = e 1 tan 1 1 xe 1 1 xe c — c\e x 1 + e r x we obtain ul ti 2 = ^ = e^tan c 2i : = — xtan x = 114 tan 1 x. y for 14. auxiliary equation is m 2 — 2m + 1 = (m — I) = 0. auxiliary equation is m 2 + 3m + 2 = (m + l)(m + 2) = 0. so yc = c\eT x + c 2 e~ 2x Identifying f(x) — sine 1 e~ 2x e" W= -e~ x .-3z Then in = — cose 1 . Identifying f(x) = e 3l + /(l e 1 ) we obtain 1x e.7 Exercises 4. -co < x < The = «2 e x . + c 2 e 2x + e x ln(l + e x ) + c3 e 2x + x + e x )e (1 ln(l e + e 2x ln(l + e x 2x + ex ) ) oo. t + 1 4 Then t*i = H + ex ~ 1 e ) y for 13.-3x -2e~ 2x we obtain ^ sine 1 e „-3x = -e 2x sme x _f. —oo < The a: < x u2 . = = Cl e = cie* x ln(l e = e* + ex l - e' x +e x 1 + e1 and ). cosx — sine 1 and . 1 x + c 2 xe x and and . ^ In (l «2 = = — e c\e x + C2ie x 2x = tan cie 1 -1 x.7 e Exercises 4. y 16.2i x ainx + C2e I cosx + xe x sinx + e T cosxln I cost! cje x sin x + cje 1 cos x . so yc — and e^cosx e^sinx e Identifying f(x) = e I x cos x + e 1 sin x — e x sin x + e x cos x seci we obtain I'm TP 1 — 4 u\ = x. 2 *(l + x2 1 ) + x2 1+x 2 ) ' and + c2ie T - ^e 1 In (l + x 2 ) + xe x tan 1 x is m 2 — 2m + 2 — [m — (1 + j)][m — (1 — i}} = 0. + ex 1+x 2 for + x-\n(l + x 2 1 (m — W= u\ 1 oo. auxiliary equation Then + x 2 )^ xe" we obtain u2 —00 < x < ^x tan"" 1 x so y c 0. and 2:1. c\e (e <ip*- . Then ui = U2 = tan — i x — - x tan x In x +— + 1 ( x' and y cie = cie —oo < x < for 15. auxiliary equation Then e 112 = In cos | y = 35 T = sinx)(e x secx) -e 1x 1 — — tanx. The . and 00. = The 1 1 + c2 xe x + 1 tan ^e x [(x 2 - + cgxe 1 + + |j a: l) tan" m 2 — 2m + 1 = is e = Identifying f(x) 1 e / (l + x2) x l) 2 xe x = = e = — 5 In + a: 2 J. xe -5x e -lQx = e -5* -lta e e e ~bx -S* u'2 Then u\ .llnl . 1 2 --2 x r ^-x T e x ^2„-n + x*e \nx-x 2 e i x x lnx-^x 2 e 0. > x The = cje = ct e -x X X + C2xe -ix + C2xe x „2„-a: x 1 . + x irx*e Vax l + .cf* t anc . = —-x tai + -i 112 = x In x —£ and y for 18. Then u\ 1 1 2 2.. "2 x xe Ul = x e ~ In x = 21 In a. Jin > I xi) > t and 2/ = „-5x JJ cie - 31 + c2 a:e -5x e -Si 31 /" 5f X e j dt / Jzo 116 t 01 + xe -5i [ X C / Jxa 51 .z e -5i =— —— I Jin U2 = xq dt. x e \nx = . —5.dt. < x< tt/2. auxiliary equation m 2 + 2m + 1 = is IV Identifying /(x) = e~ x In l) x e = + (m = 2 so yc 0. — -Sxe-^ + e. The 4.5* 51 „-l(te e fx we obtain e u. auxiliary equation is m 2 + 10m + W= Identifying f{x) = = (m + 5) 2 = 25 so y c = c\e~ hx + oixe" hx „-5i „-5x xe e -5c- 0. cje _T = + C2xe~ x and xe —e~ x —xe~ x + e~ x i we obtain .-3» x e = . /* e~ 5t / —=.7 Exercises for -tt/2 17. 1 sin 3a: + 3a e = x sin 3e 2x . + tan3a| — ^e x sin3a.cos3x + C2eI sin3a: — — e x cos 3a: In | sec 3a: + tan3a| 7t/6. 3x tan 3a: we obtain (e 3a. so yc = cie* cos3x and W= Identifying /(#) = \e x T cos3a ~3e x sin x e x+ e e 1 3c cos cos 3jt x smZx)^ tanZx) 1 sin 9e 2x 2 9 cos (e^cosSxlfe^tanSa:) . auxiliary equation x C2e sin 3i is 3m 2 . The > 0. \xe*t 2 + x 2 e ' = (2m — W= Identifying f(x) — e^sinSxcosSa: + C2eI sin3i + xl2 I) so y c a 2 we obtain xe x / 2 e^ 2 VT^ 1 4c 1 4ex 4 Then 3/2 U2= |\A . The 4.x2 + l sin 1 x — c\e x ^2 + C2ie x / 2 and + . -(cos3x . — 1. | + tan 3a | 1 «2 = — ^= cos 3a and y = I cie cos3x — ~ for -7r/6 20.(1 . < x< ~e x cos3xln cie^cosSx | sec 3a.sec 3x) 9 3a: 1 Then ui = ^ sin 3a: — ^ In sec 3a.6m + 30 = 3[m - + 3i)][m .3i)] = (1 0. auxiliary equation is 4m 2 — 4m + 1 \e = je^Vl — 2 = 0.Exercises x for 19. —00 < x < The C4 + C2 cosx -f C3 | sec sinx — ln| cos. = -1 < x < The c^ 2 + c 2 xe x t 2 + ±-e x'2 fl 12 ^ . a: sin tan x 1 W 3 = = cos x — sin tanx a: x = — sin 1 cos x — x sin — sin x — cos x 1 = sin — tan a: we obtain cos x 1^ /2 1 sin x cos x cos 2 x = — sin x tan x — sin x — cos x — 1 = cos x — sec x. auxiliary equation m 3 + m = m(m + 1) = 0. so yc = ci -f C2 cos x + C3 sin x and 2 is cos 3. auxiliary equation is m 3 + 4m = m (m 2 + 4) = 0. so yc = ci + C2 cos 2x + C3 sin 2x and 1 W= cos 2x sin 2x -2sin2x 2cos2x —4 cos 2x —4 sin 2a: 118 . 1 W Identifying /(x) = = tan x sin x — cos x a. | x In sec x | + tanx| 00.7 Exercises 4.x2f + \x i fl 2 j\-x* + \xex ' 2 sin" x 1 o 8 1. - cos x — sin 1. and y for 21.r| x + cos 2 x + tanx| cosxj In — sin. cosx tan x Then u\ = — In 112 = cos x U3 = sin I cosx| 1 — In! secx + tanx! and y = + C2 cos x + C3 sin x — c\ + sin 2 x — sin 1 In = for 22. so yc = ae x +C2e 2x +C3e~ x and e e Identifying f(x) | — e 31 x 2e 2x 1 21 4e -e~ x e" = 6^. = Vi = sec 2z cos 2x sin 2x -2 sin 2a: —4 cos 1% 2 cos 2a: Sin 1 = . 4 —4 cos 2a: sec 2a: Then u\ = U2 = --x - In sec | 2x + tan 2i| 4 = «3 . + <x< In ^ | sec2z + tan2i:| . cos 2# 1 — — -2 sin 2x tan 2x. 1 we obtain e 21 1 6e 21 1 2e* Se 2* e e e 31 4c 21 x e~ _I -e e" 1 e~ x x -e" 1 3 e * e" 1 1 -3e 41 ~ 6e 2 * 2e 3 * 1 6e 21 3 £ 2 2a. .7Xcos2x 4.sec 2x 4 —4 sin 2x 2x 1 2cos2z "4 — 4sin2:r sec2a.In cos2x| | and y for -tt/4 23. The = ci + cscos2x + C3Sin2a. auxiliary equation is m 3 — 2m 2 — m+2 = (m — l)(m — 2)(m+l) = 0.Exercises Identifying f(x) — we obtain sec 2x «i 4.^ sin 2a: In 4 8 o cos2a:| 7r/4. U2 - je*. 1 a. y = = for 24. x 2x 2e' x ie 2x e ' 6e 2 * 3x 6 and + c2 e 2x + c 3 e~* + c2 e" + c 3 e - \<?" + ^ + i-e 3* 24 + -e J 1 o 00.—x — ~x 4 = ci+ c%x + c$e ^ + —x 120 1 2 x - ^ 1 - 1 55 and . auxiliary equation is 2m 3 — 6m 3 = 2m 2 (m — 3) x 1 W= e = 0. so yc = ci + c2 x + C3e 31 31 3e*x 1 ge 3* Identifying }{x) w'l = x 2 /2 we = — obtain e Wi 9e^ 2 1 3e = g e 3x W.- 7 Exercises 4. = = 9^ 9e 3x 3z 1 1 6" 9e 3s Oe 31 x 2 /2 1 U3 3* 9e 31 /2 e «2 3x a. „2x e e Then u\ = -^e 2". —00 < x < The and Cl e x cie-^ = 113 jje 41 . 1 9e 3 * 9e 3 * ~ 1 2„-3x 6 IS x 2 /2 Then 1 1 4 111 = 24* "Si 1 U2 =- 1 X 3 3 T8 "3 X 54 8 81 243 and y 1 1 1 4 1 . Then ui = -e-/ 2 u2 = = c1 e (^-2 -gie*. Then ui = z 2 /8 and Thus y = 1/2 J c. x^2 = /4 we obtain x/4 and u'2 = so y r _ = c\e x^ 2 + C2&~ x ^ and -1. is 2m 2 + m — = (2m — 1 z/2 fi ±e*/ = (x + l)/2 1 i= 0.Exercises 4.7 — oo < for 25.p c l e ->* ^ + -x'e xf2 c2 e + ftf -t- -J- and 2 The initial 16 conditions imply + <=3 1 1 --c 2 - ^ 3 Thus 26. and W= Identifying f[x) =1 C2 2 e l)(m + 1) = 0. —xe^/i. -x -e"* we obtain 4 = -3«*(* + l). The x < oo. The C3 = 3/4 and C2 = auxiliary equation 1/4. auxiliary equation 4m 2 — is 1 = (2m — l)(2m + — 1) 0. Thus !/ and l/a + C3e~ 3! -a:-2 so yc = c\e x/2 + c^e x and . - = Identifying f(x) u2 = -ze 1 /4 + e it xe /4. 27. and * = C 36 + g e 9 4 122 + C 9 - 21 + C2e 41 and .\e~ x .-6e -2i -4e. ci + c2 - — = 36 2ci - 4c 2 + —= 1 0. 7 Exercises 4. conditions imply 8/3 and C2 = 1/3. y' The initial Thus ci = = oCie l/2 x -c 2 e - 1. conditions imply 25/36 and r2 = 4/9.4:c e~ x we obtain — -e„-4x — -e -3i 1 = Ui 2 * 6 3 Then Thus 1 1 -2=: -x 18 12 4 6 18 9 and y' The initial Thus cj = = 2 Cl e 21 - 4c 2 e~ ix + \e~ 2x . — cje -4r . and = Tho auxiliary equation m 2 + 2m — 8 = is e 2at 2e Identifying /(i) = 2e _21 + 4) = {m — 2)(m e 2x so yc 0. ci - c2 - 2 = 1 -ci - C2 - 1 = 0. - cie 21 + c^xe 2* and „ D 2x „4x 2e Identifying f(x) 2 2) 2xe 2x 2x + e 2x 6x^ e 2x we obtain — u'j = 6x 2 . . The auxiliary equation ism 2 — 4m + 4 = (m — B 2x W— (l2x 2 = so yc 0.Exercises 28.) 2 so u\ = — -(lna. 4 -z 3 ) -2.i3 - 4 y — y yi —x and yi x 2 e * l) .2xe 2x + (i (z 2z + . . FVom .x3 and y' The initial = 2c ie 2 * + c2 + e 2*) + e 2 * (2xe 2x 2c\ ci = 1 and C2 = + 2e 2x - 3x 2 ) identify f(x) — + c2 = 1 = 0.Zx 4 ) ^de^ + axe^ + e 2 * (x 4 e 2x + (4x 3 - 3x 2 ) xe 2x . Thus y = Cl e 21 + tW + (2x 3 .) 3 and v. (x 4 . Then 4 2 .2 = — Ini x so U2 = 2(lni) 2 . and = e = e 2x 21 29. Write the equation in the form and 3 conditions imply ci Thus (4x (4hix)/x. + -*y = . 4.12x 3 u'2 = 12i ui = 2x 3 - 3x u2 = 4x 3 - 3x 2 - 6x.Inx x x — we compute xhix x 1 xlna: 1 + lnx Now u\ — (lna.x3) . . 1 — x4 u2 = so x5 1 T . 4x 4 Thus Vp ~ 4x 4 3x 3 ~ 12x and y = ye + yP = cix 2 + c2x3 + 31. From = ?/] a: 2 and yi = 2 3 x x a. U2 = sin x.7 Exercises 4. + x ^2 . x 3 /x 3 = "1 80 and x 2 /x 3 u2 — .6 . 3 X° we compute = 3x 2 2x Now I1 X -— = -? 3x 4 4 = x4 - 2x Ul = 3?' . ^cosx and l ^sinx we x cos x — jx x 3' 2 2 ' Now uj = sin i so ti^ = cos x so and Thus j/ = c\x = cix ^ 1 '/2 cos a: + C2i ^sinx + x cosx + C2X 1|/2 sinx 124 l /2 + x ^2 2 cos x . Thus yp = -^x(\ax) 3 + 2x(laxf = §x(lnz) 3 and — y c\x 30.zv + jf = 3 1 y and identify /(x) = 1/z 3 .w) = — x — yi 1 /2 i 1 /a x sinr l y2 — cosx x ^sinx ^ cosx — ^x 3 tii = cosx. Write the equation in the form and identify /(x) = Prom x W{y\.4. Write the equation in the form + C2X In i -x(lnx) 3 4- . . 7 32. = y\ cos(ln x) cosflnz) W= and 1/2 = sin(lni) we compute sin(lni) _1 sinfins) cos(lna. A= so that . secllnz} 1 . so «j = m jco5(lna. = ix 2 — I61 + 21. = B= cie -1 —16. (a) Write the equation in the form „ and identify f{x) = secflnxj/x 1 2 From . so U2 = inx.) x Now tan(lnx) . Substituting into the 4. + (In x) sin(ln 2) and — — %L x Thus. are equation we find 4A + (b) (lni)sin(lnar} . a particular solution yp (b) The general solution = y for is — cos(ln x) In (a) We ci cos(lna:) — n/2 < \nx < n/2 have yc differential = c\e~ \ + C2sin(lna. . and C= B= particular solutionis yp +C2xe _r and — = A 21.) + cos(lnx) In |cos(lni)| + or e -7r / 2 < x < x + C2xe~ x e"^ 2 . . is sec(ln x) in the differential equation 33. U2 = ie -- x e x a -2x I I e -2x e~ e" /x = jx = -1 1 " a. The bounds on and we assume yp A= have y c due to the presence of — Ax 2 + Bx + C. * xe -1 — ie _T e Identifying f{x) A + 2B + C = -3 2A We Ina. cos(ln x) | * + e _T x e~ /x we obtain u.e Exercises 4.jj. and C = — ^ Thus yPl —2x — jQe 3x Next we use variation of parameters to find a particular solution of y" + y = cot x. = -xe~ x + xe~ x In x. . is results of (a) we take yp = xe~ x kix. Assuming ypi — Ax + B + Ce 31 and substituting into the differential equation we find A = 0. We have yc = c\ cos x + C2 sin x. = 2 4x - 16a: + 21 + xe~ x lnx. — e 31 + cot x is . cos x W= Identifying f(x) = cot a. — sin x sin x = 1. — cot x|. We use undetermined coefficients to find a particular solution of y" + y = 2x — e 3*. cos x we obtain ui sin x cot x = — cos = - "2 = 2 cos X cos x cot X sin a: ~ cscx — smx. + sin x In | cscx — cot x\ + sin x cost = 2 sin x cos x + sin x In Using the superposition principle we have that a particular solution of y" yp = ypl +yP2 = 2x — — e + 2 sin x cos x + sin x In 126 | cscx +y = — | cscx 2x cotx|. U2 = lnx and yp Since (c) -xe -1 Adding the a solution of the homogeneous differential equation. We have . a: Then ui = sin U2 = In esc x I a: — cot x\ + cos x and j/pj = sin x cos a. and (b) we have yp 4. u\ = —x. B = 0.7 Exercises Then 4. (-oo.4D + 5) Identifying P(x) — we 2) 2 have = cos 2x .Chapter 4 Review Exercises Chapter 4 Review Exercises = 1. y2 15. true 51 .oo). y 2. x 9. Section 4. False. = The statement would be independent on an interval 2 -Sx + (-2) if dependent. 11. Section 4. From m 2 — 2m — 2 = 14.dx I 12. True 7. 5.0) 6.2/x we y2 13.2 In x — — dx = e* we obtain m 3 + 10m 2 + 25m = cos 2x sin 2x. Problem (l neither -x 4. A + Bxe x 10.1. 45. J y From 2x — cos' 2x J ± 1 e x and 2 j x dx = Tj^e 1 - \/3 so that m = -1/2 ± \/5/2 so that -W ' we obtain y = I ci m— ci ^ cos -^-x ^ + 0. consider Problem multiple of 0. if it a constant multiple of the other. From 2m 2 + 2m + 3 = = sec I 2 2x dx J ^ tan 2xj have / m= we obtain = e P dx = -2x . see 8. Identifying P(x) — cos = ^ = -2. (0. = = and fzix) 2 ) + linearly "Two read dependent even though x + x2) = 2 (D - 2 [p .r—. see 3. False." is (2 These are x. m= C2e" 5* 127 ^ + C2sm -^-a: —5. — —5 so that . False. and to + c3 ie~ is not a functions fi(x) and fo{x) are linearly 31.1.oo) or (-oo. iV. Then 23 + C5X + CfjX° C4I y= and = A + Bx + Cx + Dx 1 i/ p solution coefficients gives A = is 9 Substituting yp into the differential equation yields . Applying (D - 3 l) to the differential equation we obtain (D - 1) 3 Then y = cie 1 c^xe? 4- + 2 I c3 x e + 3 c4 x e x + cs^e 1 yc and j/ p = Ax 2 e x + Bx 3 x + Cx e A x e . 1/2. y D cie~^ /2 + 2m 2 + 6m . 35 + 2C) + (55 .3D vTT ^11 \ ^ —^ x + c 2 sin — — 1 + . and c\e x C— + c^e 1 + to the differential equation D{D 2 + l)(D 3 1/12. . From 3m 3 + 10m 2 + 15m + 4 = = y 18.5D 2 + 6D) = D 2 (D 2 + 1){D . The general ^^e 1 solution - we obtain .— Chapter 4 Review Exercises 16. Substituting yp into the differential equation yields \2Cx 2 e x + GBxe 1 + 2Ae x = Equating coefficients gives A— 0. 4 x ^ + e~ 3x/2 = e m= '. and _ j__ _ v^l x 222 \ 46 + 36 _ x D= 2 + (D . ± -3/2 -\/7/2 so that c3 sin m- -2. Applying D(D 2 + 1) = 0. x + C2Sm C= 46/125. ci cos J + C3 + 5) = 0.2D + x + 4/5.4 = From 2m 4 + 3m 3 19.9D)x 2 + 5Dx 3 = -2x + 4x 3 (bA Equating 3 = e a*/a I _ vTT /" ClCOS B= -222/625. 36/25. B— y 21. Applying = m= ( 3x/2 ' I D we obtain i (D 2 .6C + 6D)x + {5C . The 4 3 1) = (D - general ^ 20. and + c^xe~ x c2 e~* ^c2 cos we obtain to the differential equation y + m= we obtain Cl e~ —1. . l) 5 = 0. and m= ±-/2i so that = c\e^ 2 + C2e~ 2x + C3 cos \/2 x + q sin v^x. -1/3 and m- ^-x + m- m = —5/2 so that — 1. 2m 3 + 9m 2 + 12m + 5 = From we obtain y 17.3) = Then 1/ = ci + c2 e + c3 e is + c 4 x + c 5 cos x + eg sin x to 128 0.2){D . . Applying Substituting yp into the differential equation yields = B= 4/3. . Setting cosx. y gives -1/5.Chapter 4 Review Exercises and yp = Ax + B cosx + C sinx. 6. . and + 8 cse x m— and 1) Assuming j/p = .c cosx)(e taEx) _ .4x + 5 + Csinx and substituting S = 0.-e [m — e e Identifying f(x) — e x 1 x cosx sin x + x e x sinx. — and m? — 2m + 2 = is = —1 we j/(7r) auxiliary equation + C2X + c\ is obtain m2 — 1 = so that - = c\ e " —2A = equation yields differential . .D = D 3 (D . 1 cos x — e x sin x + tanx we obtain . is .4 + (5B + 5C) cos x + (-5B + 5C) sinx = A= Equating coefficients gives y 22. c\ + 1r c2 e = 24.\ sinx and = = y Thus. 1 - e sin solution of the initial-value problem -x - and W= „ 3. cje1 sin x + cze? cosx . The 1 + . so that 1/ e^fci — m e I-7r cosx + C2 sin x). 5 . so yc = = -e 2x cos x .cosx is Then + C2X + cie x + cix 2 ci = Ax 1 Substituting yp into the A = —3. C= 2 sinx. 2 and yp 23.-= c2 = — | The C2 e 2 0. The general solution is = 1 - solution } y The 4 It + c%e^ + The general 1/5. ±i and 1 = C2 (m — l)(m + — 3x 2 6. The auxiliary equation is 13 — m 2 — 2m + 2 = 3 x . . y Setting j/(0) = 2 and y'(0) = 3 = 1 -x--smx. auxiliary equation j/(tt/2) .1) = 0. +C2e c\e z we obtain + c2 = ci - ci Solving this system we find C\ = -^ and y= 25. and C = — \ Thus j/p = -x . — (1 — i)] — (1 (e I .sinx. = ±1 and 3/ into the differential equation = c\e x we find + C2e -X A = — 1. 0. D to the differentia! equation we obtain D(D 3 . Equating coefficients . we obtain + C2 — 4 = — 4 + 3c 2 + c 3 = a ~ -§ y= 28. The auxiliary equation cie x er particular solution is ex + e -i tan"" = -4. e = x . so yc = cos x c\ cos x — sin x 130 + C2 sin x and sin x cos x - 1. The auxihary equation is e 1 - m2 + 1 = 0. The x cie sini c\e x — am x — U2 s\nx c + C2ef In cosx e x and .-e x + + e 2x + c 2 e~ x + e 1 tan" y Setting y(0) „3x 3sc e Vc A -2. + e2x 1 2m 3 . ci Solving this system 1 and the general solution and y"(0) 0. y = = 26. \e *' e2 + e" 2 tan -1 1 = (2m - + c2 e 3!C + l)(m ca^e - 5 3) 31 - is 4. is + tan x\ — e x sin x cos x + e x sinxcosx — e'cosx In + C2e T cosa.Chapter 4 Review Exercises Then uj = — cos x. = so y c c\e + C2t~ x x W= Identifying f(x) 2e x /(e = x I +e ) = — Then Ui — tan -1 e 1 -e2 + - 112 . Thus *n-L 3x + xe 3x -4. = j/ 27. . yp j/'(0) 1 e i x = -4 = = = l/2 cie c\e x/i = find c\ = | . so that + tani| . — auxiliary equation x sec | .13m a + 24m - is and e 1 4 secx we obtain + ex | + tan:c|. and C3 — 1. 9 1 + c 2 e 3x + c3xe Sx - § ici we + and . cosx\n secx \ m 2 — 1 = 0. yp The initial = — C3 sin x + C2 cos x + 1 .sec x.sec x tan x. . Li and . C2 sin # 2 x sec 2 x 2 Thus y = c\ cos £ + = ci cos x + C2 sm x — -1 cos x sec > i + smi tan x 1 sec x 2 = + 1 — cos 2 x cosx 1 C3 cos x + C2 sin i + — sec i.cos x A + -sinz + £. conditions imply c3 + = C2= Thus c3 = c2 = l l 1 2- 1/2 and y = . u. z. 11—x— = — 1 2 cos U2 = = tan x. — Then ui = cob x sec x = sec i.— Chapter 4 Review Exercises = Identifying f(x) sec 3 i we obtain smx = — sin x sec i x = . . . 107 + it ft* 2. A Since sin x(t) 4. A upward released from a point 3 feet above the equilibrium is The velocity of 2 ft/s. a second quadrant angle and tan _1 (-2) + 7T = -1. A weight of 4 lb (1/8 slug).034). attached to a spring.-2. A = ^4+1 = 2V2 and = tan^> —= -1. weight of 2 lb (1/16 slug).(0) = ci = c\ cos \/2' + C2Sin -J2t and gives = -l and x'(0) 132 = \/2c2 = -2-/2. . and 2.034. c2 = = is c\ is 3 lb/ft.5 Applications of Second-Order Differential Equations: Vibrational Models Exercises 1. cos At + c 2 sin At and 1 = x'(0) and sin(4( initial Thus = — 4ci sin At + 4c2 cos At gives x'(t) 4c2 . 5. conditions to x(t) -\/2cisini/2t + V2c2 cosv^t a. = <j> < > and cos 2\/2 sin(5t- Applying the initial 0. > z(t) «s and cos$ < ^ Applying the 3/(() = — — ?r/4.-2. z(0) Then a fourth quadrant angle and 0. <t> is ci = = c2 1. 3. position with an initial 2.7 feet below the 4 lb/ft. conditions to x(() = = ci c\ = Thus 5. The equilibrium position. cos5f = -2 ci is spring constant + c2 sin5( and x'{0) and - — — 5cj sin 5t + 5c2 cos bt x'{t) = 5c2 gives 10. attached to a spring. + 2. <j> 4> = is ^ and tan <p = —^- . -1/2.1 Applying the initial spring constant conditions to x(t) = x(0) Then = c\ -2. and A = Jl + 1/4 = Since sin^ 4> jr/4). released at rest from a point 0. x(0) = A= \/16 ci cost + — — c\ sini + C2Cosf C2sini and ^(t) = -4 and x'(0) = c2 = gives 3. Thus 0. and A= < Since sin Thusi(t) 6. and 2\/5 = tan ^ = 2.471).107). 0.Exercises Then ci = = —1. = z'(0) 10e 2 = 1. A = Vl + Since sin0 = ci so that the period tt/4 = Prom mx" + 120x = we obtain ns/mft. c\ = 4. = quadrant angle and first tan -1 2 ss 1. tan~ 1 ^ + = tt + tt 0. VIM - 01 is and cos0 > < 5 shift From mx" initial and l and 1/10. and 0. = quadrant angle and tan -1 10 « 1. . = = ci cos 8t + C2 sin 8f and x'(t) c\ and 4 = i'(0) 8c 2 = = — 8ci sin 8t + 8C2 cos 8( gives 16. C2 = 2.605. a is 0.605).927). + - a first conditions to x(t) = c\ + a — 3. t 4 + C2 sin —. = z(f) 8.= f 1/4 slug.107. 2. Applying the initial = conditions to x(t) cj + C2 sinlOt cos lOi = — 10c sin lOt + IOC2COS lOi and gives = x(0) Then ci = 01 1. +4= y/l = conditions to x(t) = ^. C2 —2. C2sin y^30/mt so that the period . 16x Thus 1. and = tan y~ = 10. 7.Owe obtain x 10. and and cos0 > > —^ = = tan + 3. +9= -4 5 tan0=— and = a fourth quadrant angle and is ~~ tan -1 (— g) —0. and the weight ci cos 2^/30/m ( + is 8 lb. = and cos0 > > -4. = 4 ci m= = cos —7= . < and cos v/5sin(\/2i =s Applying the initial is 0.464 =s 3. « i/ToTsintlOf Applying the Then c\ — Since sin x(t) 9.471. Thus x(t) ss 2\/5sin(8t+ 1.927. A = V16 + 4 = Since sin0 and 1/5 a third quadrant angle and z(0) Then 5. 2 i(9tt/32) = v^/4. 18.588). The 20 kg mass has 20 kg: i'(tt/4) -5sin2i = x(0) (b) - = x(0) (a) (c) If 0. - obtain y/E/2 x m/s. and n= . x' If x = AcosSt = then i = (2n + 1)tt/16 for n = 0. . 1. and and x'(0) x'(0) = -10 sin ( + 16x = 0. -by/2 m/s. m.6). ar'(0) = x'(0) 2 = = we obtain x we obtain x = = -jcos4\/6f- sin4v/ 6*- we obtain x = £cos8t. and -10cos2f. masses at the equilibrium position. approximately 97. the 20 kg mass vibrations. is . 3. x{0) x' = -lOcosf. -\-12x 72a: and lb. From fx" + 15. x(0) = -1/4. it will make 8 complete . -5sin2i and x' = x(tt/12) 16.3 vibrations/second.1 Exercises 5. is feet. = -1/4. and = 0. m=30/ir 2 C2sin2( so that the frequency 0. x(tt/6) = -1/4. 10 m/s placing both is odd. 1. nir for = 1/2.. From 50x" + 200x = 17. 0. x'(jt/2) moving upward. x'(0) and is + 0. x(0) = 1/2. 19. In 4?r seconds x!> sin(2i 134 0. (a) and the weight slugs. 0. = = -10 sin t = 50 kg: x'(n/4) so that The 50 kg mass even and downward when n -1. x(n/8) = -1/2. x(0) - 0. From \x" 14.^sin4i = —^cos(4f - x The period = -10 we then 2 sin ((cos (-1) moving upward when n From x" = -10 we the larger amplitude. — — 4sin8i so that x'(3ir/l6) ~ 4 ft/s directed downward. . From 20a:" + 20a: = 0. + 40x = 0. From fx" (b) (c) = 2/2iv is = 13. 2. and x'(Q) .-2 we ( = w/2 seconds and the amplitude is = From \x" +x= 0. i(jt/8) = 1/2. x(0) x'(tt/2) = is is obtain 2 obtain x = m/s. 2 we first Let ki and weight. If x' = f cos(10t .927). 2. 1..814 ft/a 1(3) (f) ( g) (h) = a/'(3) 59.6a:" + 40a. so From these equations we w= + = 1- denote the mass in slugs of the Ak\k2/{k\ effective spring constant k 32m = &i(^ so = sin 3t for . the numerical value of the W — mg — 32m. = 4(40)(120)/160 Using x(0) = and x'{0) = = 120. From 1. 1. 2.721 s.927) = then 10* . .0. If x — and the weight is moving downward for the second time. Let — first = m = ^ k*i = 120 k/m = sin8\/3 we compute the 120(32)/20 = 2 —7= sin / y3 \ -7tt/18 + 37 . 2. we have from or k = 225. . x' = If x' = 3 then t fci Now. . 2. . is w = k/m 2 2-k/w — ir/15. and x'(0) ^ sin lOt ft + cos5t + 0. 1.927). 1. n = 0.702 ft/s 2 = thent = ^(0. 1. 23. 1 and 2. . (d) 5..927 + wr) for n = 0. — then lOf (2n + 0.Exercises 20.. weight is + 192 and x" 192x 0. — 4tt 3 + 2n7r/3 and t = -?r/2 + 2h7t/3 n= for 1.0. = -0. 5 we obtain 0. be the spring constants and fo) the effective spring constant of the system. = 0. . (j) If x = 5/12 thent = ^(tt/6 + 0..927 = or 2tt + 0.927 + 27iw) for n = 0. .927 = tt/2 + tot or t = = ji 0. 3 From k V3 — — — cos 3f + 47r/3). 30.597 ft X '{Z) = -5. and x'(Q) = ^- sin"(5t + I + 0. .927 (e) for 71 = 0. and z'(0) = —/3 we obtain (i) If x t 22. + 2n?r) 0. 2. and the period 2-k/IO is = n/5 cycles. = x(0) = x If 21. m = = 40 and 20/32 so obtain x{t) 24.927 + 2jijt) and i = ^(5tt/6 + 0. From x" + 9x = 0. Since the find 2fci mas = 3/t2- and The given period of an 8-pound weight 30 2 = 32m = k -71/4 = is Ak fc 2 ^ of the combined system 1/4 slug.927 + 5 (f = -1/3. = -f cos lOt + (a) x (b) The amplitude (c) 37r = 7rt/5 is = i(0) 5/6 and k — 15 and 2jitt) = §sin(10t 5/4 we obtain \ sin5t - = t = -2/3. x(0) = -1. .0927 l)ir/20 for . Now. . t = 0. 2V3cos(3t .. x = 5/24 then From 2x" * = + 200x = 0.927 + 2rwr) (k) If x = 5/12 and x' < then = ^(5tt/6 + 0.. and x'(t) = ±f ft/s. we obtain vq w sm uit .A.^sin5f] = 28. x'(0) — weight 46. 5 1125/8. = —c^/A 27. .4cos(uf 2\/2cos(5( + 5tt/4). or f = (n/2 — <j>+2nn)^ Thus. hi = 375/4 and = fc] Prom x = c\ coswt + C2smut.. the time interval between successive 2ir/w.. Thus a'(t) = when cos(wt + 0) = or am(ut + maximum acceleration occurs when = Thus. i = A cos(w( + = xo cos tot H (wq/w)^ first o wo = 22 «^ and xq. = — ui 2 Asin(ut + 4>).4>) we compute the acceleration a(t) = x"(t) 3 <j>) . the displacement is ±. Let /I amphtude = +4 is x(Q) A= = + yjxg cos0 = c\/A and sin0 = 2V2~[^cos5t. lZfcf = k2 first then minimum and maximum . x' = Auj cos{ut+<f>) = 0. 136 maxima . = is. A + uji velocities occur when x" = —Auft cos(wt+#) 0.4sin(wf 4. tiating we find a'(t) — — j4cos(wt + 0). Using T 2tt/w orw= 2jt/jT we see that the magnitude of maximum acceleration is w 2 A = (2it/T) 2 A = 4tt 2 A/T2 From x(t) . If x is zero. If x and is = ( Asin(uif-l-i^) the = (—n/2 extremes for x occur when — 4> + 2mr) for n = 0. Finally.2. . we obtain so that I If _ equation. A i = .Exercises We now 5. 26. Differen= ±1. 1. 30. that 29. .88 is lb. <j>) then the when i = =A ci -c 2 — coswf — sin . have the system of equations + ki fcl 2ki = 225 = 3fc 2 . Solving the second equation for ki and substituting in the 4(3fc2 /2)ft2 + 3fe/2 Thus. the value of the x so that the 12fca = hk2 ^ = 32m= ^ = 25. x(Q) = 1/2.. 153 second. + 4.232 meter. x = 1 - 9. resisting force numerically equal to the instantaneous velocity.e" 4' and 8 1/4 second.25 i(0) 0. and i'(O) = we obtain x = \e~ 2t - \e~ st . is The weight (b) heading upward (a) = from the starts 1 ft/s. equilibrium position with a damped with a ft/s.lx" + 0. and x'(0) 1 = =stn4( = 2tt. (a) From \x" is + 1&e . and a/(0) then f = 5 ^ we obtain x = 5te~ 2. and x'(0) then f = = we obtain x = 4te~ tt .2 1. the extreme displacement is x(0) = 1 meter.0. 16te" 4 '. x(0) = 1. = 0. * x' = y~ st (5 . (a) 5e~ 2v/3i (l 5y/2e~ l /4 FVom x" + e x ( (a) damped with a x(Q) x = = heading downward -1. x(0) = = If x' 2\/2(). + x' + 2x = 0. (h) (b) x 11. first time heading upward is f = 1. e .384 second and the extreme displacement is x = —0. (a) below (b) from rest 5. *. A 16-lbweight is downward velocity of above 4. From \x" .. (a) \e~ st - I0x' From i" + = is starts 2 feet above the feet. 12. resisting force numerically equal to 2 times the instantaneous velocity.Exercises 5. 3tt. A 2-lbweight attached to a spring whose constant is is The system 1 lb/ft.2i = s i n (4t so that the we obtain = e _2t lo) j-cos4i - = then £sin4(]. = x If -2 From \x" + -fix' + 2x x 10. and x'{0) = -12 then x = -fe" 2 + fe" 8 m (ie — l) is never zero.2 Exercises 5. 3. (a) below (b) heading upward 6.25).5 2. (a) above (b) 7. if x = |e" 81 [e 6t = g In 10 = 0. ^ . equailibrium position with an upward velocity of 1. and x'{0) = 1 we obtain x = e^ 21 Qcos4f + £sin4(). . i(0) = 1. x' The weight The system 2-lb/ft. 1 From O. 0. = -1. 8e" 4t - displacement 8. If x' = then t = 1/2 second and the extreme feet. attached to a spring whose constant is is + x' + 5x = 0. 4tt.4r' + 2x = (b) « = 2 e-»^ — —7=cos4t -/5 (c) x = If then 4t + 4.294 seconds. = V^/i t and second and the extreme displacement + 16x = 0.2e 6 ') = when * = $ In § « 0. J). m= —^±. see that the roots of the auxiliary equation are 2tt h^JlQO-0 2 so that 138 = 6.5 -.75x" > 5/2. . l . x(0) 2) so that + c 2 sinh-09 2 -18t c2 = x--^e. x 16..(-14-Tv^)( .3t + If 18* = -3/03 2 and x'{0) = 2 we and = -- v we obtain (t. 14 -2/3. and x'(O) v > 18. > and 3i/2 we find that the roots of the auxiliary equation are m =-f ±|03* -18 and cj If 15. then = 5/2. ~ 18. From x" + 6x' + 9 = 0. x(0) = 0. x = then t = 2/3(u - = = _^ (-H+7V2)t p 6 0..Exercises 5.2 -*^ (b) x = (c) x= If e then 4t+7r/4 n= for ^ + co B 4t = = ^""»in (« + gin*) it. so that the times heading downward are ( = (7+8*1)7^ 0. cosh -<J& 2 = x(0) 0. -2)(e- 3t . From 40i" + 1120x' + 3920x = T X 17.\\J 100 — . then < p< then + fix + 6x = 1 = — ^0±^402 — 5/2. and x'{0) 14 From x"+0x'+25x = we The = quasi-period is 7r/2 obtain = 2 we obtain + ^. a - 25 > If 40 25 = 2 If 4/3 25 < If 4/3 2 From 0.5 -1 13. 1. 2. 2 ft/s. 2jt. 3tt. x(0) = and Prom 40x" x'(0) = -2 then + 560x' + 3920x = Cl 0. Prom -^x"+0x'+5x = Owe find that the roots of the auxiliary equation are m (a) (b) (c) 14. -e " sin 7(. . From equation (17) (2n + l)7r/2 i/w which |ir.Xt sm interval \ju 2 - A2 f + 7] - A2 .2 underdamped motion 19.A2 (15) touches the graphs of - y — ±Ae~ xt tt </> 22. if x = then * = |tt.X2 1 = Ae~ u sin j^w 2 . For x for = e- M d cos \ju A some constants and (? - 2 A2 B and some constants the quasi-period of 20. . is ^?r. -A 2 (a) If S > (b) If x ~ -^e" 21 sin (4t + tt/4) is t and A2 f £ + -I- ^ is 2-k/^/lj 2 — A2 2ir/Vw 2 — A 2 that . is slow. = Ae~ Xi sin (Vw 2 — the ratio of the values at e 24. between successive intercepts vV-A The time fl] The difference in times between two successive maxima is 2wf \/u/2 (w+l)7r-^ 21. + = Be..Exercises 5. . The time interval 7. x'. .X2 ~ for which + 1)tt/2 (2n y/ui 2 ..X 2 1 + c2 sin \jio 2 and x' for t 2 between successive values of __ (2n — nir ~~ + 3)w/2 - yfui ( 2 7T <p . . and if x' is then ( = v'w 2 x of 2tt. The is . so that the ratio of consecutive is -A((+27r/v^^A !I) very small then x n is slightly larger then 5 = than x n +2 and the rate of damping 27rA/\/u> 2 - A2 = 4tt/4 = tt. extrema 23. quasi-period of x maxima = 2 The period half of the quasi-period. tt. so that the time interval between intercepts and tt/4. - nir 4> <f> -A = 2 _ tv/2 ~~ Vw 2 -A 2 e~' sin(( + tt/4) ' is 2?r. 37t.. x(0) 2 + + 4 -' . so that the equation of motion I =ie-'" x'(0) xp + 8x' + lfiz x As 5. . 6. t oo.Exercises 5. Since c2 *e + = cie _4i + c 2 te _4t and 7sin4().2. -!I we obtain x c = cicos4t + C2sin4t and cos4t-2e i. the amplitude approaches ^85/4 as the external force is F(t) — kh(t) so that 140 mi" + /3x' + kx — kh(t). = X = transient 3. ai'(0) - = we obtain x c -^-e-'(24cos4( o25 0. x(0) and 0. i = sin(4t By Hooke's law = 2t + . = so that the equation of motion / . f — > = ^e" 625 cc the displacement x From 2x" Xp = + 32x = — > 4t (24 5e" *cos4( — 2e~ sin4t so that x = --cos4t + 1 7.219) - and lOOt) te- 4t -4t and -icos4t. and 9 -sin4t 4 2. + T = 5 then x c ) -1. ' ! 'sm4(. 0.3 1.g5g e"' sin4t so that From x" we obtain x c = Cie~ At is 4 4. From x" + xp + 8x' = — jCOs4( I6x = = 8sin4t. and x'(0) e ^2 4 (a) x" + 2x' + 5x If = and zp = + C2 sin -^-f1 1 1 64 " * 2 x = 1 3/17 = 12cos2t + 3sin2i. .0. and x'(0) 3sin2t so that the equation of motion + Sm (C ° S = e _l {c! cos 2i+c 2 sin2i) is + 3 sin 2t.-^e~'cos4( . x{0) = xc — ™ (cos 3i + sin 3f) and x p -2. z(0) is \ SU1 2 10. l e~ cos 2t (c) steady-state <*») then \/47 ci cos I ^/if ~3 ° 0S [ 2.897).3 Exercises 5.e sin 4t. t- ^e _2t sin(4( . 68e~ 2! cos4t. If + Ix" \x' + 6x = 10cos3i. i(0) = 0. = x'(0) + 1 -e = >. 3 8. and x{ir/3 + mr/2) - -1/3/2 cm. (a) If g'(7) test (b) = then 7 (y 2 + 2A 2 . at the = + 32 — -sint. If x" + 1\x' + u^x = J*b sin xc 7* describes = e -At underdamped motion then ci cos \/w 2 - A2 t + ~ c2 sin \Jui 2 \2 t and F 2 4A 7 If sin^ cos# = = cj/^/c2 (w 2 +4 — 72 ) . Othent = w/3+nn/2 and many t = other values of n/G+nir/2 t for which 0. ) = -2A7 / v/(w 2 .V3/2 cm. z'(0) 13 . COS ft.2A 2 ) = = y/u 2 2 . 13 1600a: = 1600 sin St.7 2 2 + 4A 2 72 ) then the equation of motion . = x'(0) £ ra = 0..sin2I +Tr:cosf + 13 (a) we sin£ so that x 9. 2.Owe = £sm4t(2-2cos4i) 2 = = obtain x c c\ cos At + ci sin 4( then 1 - . (d) x(tt/6 + ror/2) . C2sin2t) x(0) = . A2 and . (e) 10. 1. /\j (w cos^ 2 (w 2 - 2 . = e 56 -2t( a [-— + From lOOx" = and xp .72 ) 2 -2A7F0 -7 + (w c2 /^ + — 7 2 ) 2 + 4A 2 7 2 2 2 4A 7 ) c 2 .A 2 ) 2 + 4A 2 72 or 7 = — 2A 2 F /2Xy/u 2 + 0)- Vw 2 . + Prom \x" - and x p 2x' + + jfcoat = ix f| 20cosf.A 56 „ cos2(-—.. 1. and 0. . x(0) = and 0. Note: There are = |cos4t-f cosgi = n = 0. ..Exercises 5. sin0 2 + (w 2 -7 2 . .. 13 (b) x1 e~ 2( (cicos2t -jsinSf so that x x= = obtain x c 72 . . first derivative .sin4£ - 3 o = htt/4 for sin St. 2. .2A 2 The .w 2 ) = shows that g has a maximum value The maximum value of g is 9 so that 7 at 7 = (V^ 3 . = If (c) Ifz' §(l-cos4t)(l+2coB4t) for extreme values. is F sin(7* \j{u 11. so that ) From x" xp < for various values of 0. sin 7* —Jo* — Jo = ^— tsinwt. The system 3 + 2x' + 6x = 40sin2i = Vu 2 . = \t sin 2t + |( cos 2t. and x= 2 cos 3f — + 5 sin 3( — 18 19. 142 u = 5 -t cos 3f 6 + v) = 3(7 — — sin u sin v we obtain = 5(7 + the result cosucosw w)t and w . (a) Prom x" xp = + uj 2 x = shown is = = J^cost*.u y . . x{0) = = ^ we obtain ic = .80/2.3 12. and x'(0) x(0) = — cos2t — = jt/4). this 1-J% then the roots of the auxiliary equation are the resonance curve and the family of graphs If < where we require that 5(7) 13. 2w = x'{0) we obtain x c = and _lim = — 1. = From x" + w 2 x ip 17.2-^12-4 = uj — < or 0. < we obtain x c = c\ cos3f. xp = + C2Sin2f. = 7 (b) yjZ When - Fa 2 = /2 3. -|(cos3(. Exercises 5. F 1 . z(0) = x'(0) (Fot/2ui) sinuii + 4x = — 5sin2t + 3cos2t. and cos(u Letting follows. 2V(cos7i — — - 7 2 + 5sin2t = 0. and From x" + 9x = g amplitude of xp 5\/2. when given by is -5cos2t x Jb . (a) From cos(u — sin w sin w = v) = j[cos(u cos u cos v — v) — + sin cos(u + sin v v)]. = cicos2t + C2sin3t.f and (sinwf. cos 7i. and 2 = hm focoswt. </6. \x" 7 15.sin2t and x'(0) = — = = — 2u f sinwt 1 we obtain i c 3 5 4 -tcos2f. 4 + -tsm2f + 8 5sin3t. x(0) 16. —27 and 0.0/2 > 3 in resonance is then 2 and g(f) (Focos7()/ (y 2 00 f-^w 'is 2 underdamped motion. ci coswi + (vjsinwi ci cosu* + and 2.2X2 = is = xp 14. . the cos iOt — 72 ' (Jot/2w) sin wt so that x 5v/2sin(2i - F = — coswi) x 18. C2Sinu. (a) x" If + 0X1 + 3x = and m = \ (~0± \J0 2 — 12^. damped.1071) time when 40* + 0. Solving the differential equation q" conditions g(0) initial = = <j'(0) g(t) = initial q(t) 2 3. Exercises 5. Solving the differential equation bq" The 4- imply is as (ci cos 40i + c 2 sin40t). underdamped. Since 4. — + c\ cos At C2sin4t 4.4 1. 6 Exercises 5. = 60 we obtain = At the circuit the circuit -201 e ij'(O) — = ^sm2V5t + — 4L/C = —20 < q(t) t as = conditions q(0) 16? —.cos 2. cj cos 2t/5t + ci sin2v^t + 1/5.5676 coulombs. 2q' + 5 and ^(0) = ^q" + and q(O. ' we obtain 5 x — — ttt(cos It — cos 5f) 12 sin6( sin t — cos6t cos ( — sin 6t sinil = 12 5 — sin 6t sin t. V5/50. The initial conditions Thus ^25 + 25/4 zero for the e~ 20t first sin(40i + 1. 0.. The Thus.4 (b) 5(7 lim (c) v t-0 2ef ' 20. ^5cos40t+ ^sin40t) 4. 27 27 ' = 10cos7i.4636 = jt or .15/4.0509 second. q(t) 5 and c 2 c\ \t is critically = = The charge e _20t 5/2. and = x'(0) = — — [cos6( cosf — 5 — — coset am ft (-. Solving ff g(0) = — L/C = 0. = If e — w) sin et sin ft w =s so that = hm x — (Fo/2e7)sineisin7f. Thus = ^cos2v5t + \. x(0) 0. 100g + —15/4 and ci + — 100g = 20t imply = imply we obtain ci is = and — c-i i(t) we obtain = and and 0. Since i? 2 5.0 + 25x = From x" then 7 am ft.Ol) « = 0. 15 sin q(t) = c% i(t) — q(t) — it. 150/13 and -50* B= + 2B) cost 100/13. Solving q" + initial + 20g' + 1000g = 100 sin f.4.' Exercises 5. z To use Example Then X = L 7 -1 ^(60) Z= yjx? + -5^" = /Y2 + 400 w and 144 13. The . Solving q" = g(0) + lQOtf and ^(0) q(t) Solving iff) = + 2500<j = 30 we obtain q{t) = cie -50t + c 2 te. Therefore the charge cos3( + c2 sin3t) '(ci is never + 10.50 ' . Thus 10e~ 3t (cos3t + sin3i) maximum see that the and i(t) = when charge occurs 60e 3t — t sin3t. Solving \q" and (f(0) = + 20tf imply = 300g = ci we obtain = 6 and oi = 7. .4) sin i steady-state charge = 150 - jg. sini+ rT T3 150 . = 1/35 and g(l/35) + sin%/3 1).012 we obtain yc = e~ l (3A A= l^te maximum see that the 9.4 + 6. Qp(t) and the steady-state current charge occurs (cos v^Sf z(t) when t = 26. and Substituting into the differential equation t. tt/3 and q(x/3) « 10.01871.2e- < e" 0. Thus q(t) Setting q = q(t) £ = q(t) 201 . + 0. 8. conditions q{0) = 4 -2. initial conditions -10. The = 2 imply c\ = -0. The 0. From and Z= \ZX*TW we see that the amplitude of ip(t) The Eo differential equation is = 100 and 7 = 60.432 coulombs. steady-state charge has the we find 50 cost. ^g" is z aV z* V 11.0370. 3 m .50t + 0. 24.70te _5Ot -I- (35 - 2. 3 in the text we identify . sin t is *j>( ( ) = 100 -— smi + —cost.012e. 10. Thus = we -0. The conditions as 0. is .012 and c2 = 1. Solving §g" + 10?' + 30g = q(0) = g*(0) = i(t) = imply c 2 q(t) Solving = find e 40* we = we Be" 1/3 which implies 300 we obtain = c2 = = 10- cie~ 2at + C2e~ m The initial .cos f + — 100 = .50 ' + 2q' + 4q = = A cos t + B sin form yp Thus.3333.012. 5880 and i Equating + = -XjZ and cos<£ = RjZ.1603(60* c2 sin 10*) + 3/2. Solving £7 — I/C7 = for 7 we obtain . q(t) -» 3/2. The initial = -i e -' ot (cos 10* + sin 10*) + \ -+ oo. = -^cos60* + ^sin60* + 100g and (400C - + = -—sin 60*- and the steady-state current i sin 60( 200 sin 60* qp (t) IJ ^ cos 40* - if = imply c\ ^ sin 40*.2400B) 13. Since Eq is constant the amplitude will be a maximum when Z is a minimum. Thus tan0 = -X/Rk Now equation (t)f« 4.1603(60* = - is a fourth quadrant 0.5880).6667 and find + As p (t) we obtain ^(f) {. Li = e.10t (ci cos 10* + = q = -1/2.4 . Solving L7 — I/C7 = for C we obtain C= l/i7 2 . 145 .Exercises 5. Thus 150 we obtain q(t) q{t) 14. 15. (a cos40t p (t) + conditions q(0) 10^ — 1 + {2400A + c 2 sin40i).4 sin = = 60* is 4. By Problem 10 the amplitude of the steady-state current is Eo/Z. « + B cos 60* + Csin40* + D we obtain coefficients state charge * -0. Substituting into the differential - 160OD) sin 40* 16005) cos 60f A= -1/26. OCi = + + 400 cos 40*. Z will be a minimum when X — 0. Since Eq is constant the amplitude will be a maximum when Z is a minimum. where Z = \/X 2 + R 2 and X ~ Ly — l/Cy. The steady-state charge cos 40*. <j> s=b 12. where Z = y/X 2 + R2 and X = L*i — I/C7.4 From Problem then 10. and sin 40* + 1/17- The steady- — cos 40* 1 1 I D= I is Id q'(0] (1600C C= -3/52.1600. R constant. Z will be a minimum when X = = \j-jLC The maximum amplitude will be Eo/R7 Since is 0. By Problem 10 the amplitude of the steady-state current is Eq/Z. Since R is constant. i p where sin$ angle. Solving \q" + 20^ + we 1000? = has the form qp (t) . Solving \q" 0) -0. 13 B= + 400Z?) cos 40* — cos60* + —4 1 4/17. EdjlkL. qa where find Eacosft. io i imply ~ ci we 3 sin?*. t At cos kt + Bt sin kt where k find ^cosfct. the EqC + cos 1 c2 VLC 1 H 1 charge is — EqC/{\ — LCy 2 ) and form of qp (t) coefficients we ' C2 = iij^/LC A— q{t) i(t) \ = = qo = and ci cos and ^(0) —ciks'mkt 5= fct = = \js/LC 71. = C2 1 — £7 5 ^ Equating ^ ^ 1 qp (t) and ) where we is i(t)= FVom Example ( differential equation -7 2 )Scos7t = and 72 + c2 sin lOt. qp {t) is i(f 1 ) 18.LCf + k 2 q = -2kA$mkt + 2kB cos kt = obtain conditions g(0) 1 qp (t) is we EoCt .(*) The B = 0. The charge + C2 sin io sin 1 . The is +qP {t) —^ ).<7o* j sin &t + io cos fct + 146 sin 2k ij and ci + 02k cos kt + ( is — I io/fc. The —107/(100 — £7^ B cos ft = + and cos e. ' EoCf . Substituting gp (t) into the conditions q{0) The current = 100sin7(. . i £bC / 1 in resonance the 1 initial equation differential EqC/(1 — —VIC ==cos —j== VW . Solving O. (cos 2 + coefficients initial find ^-7sin Wt) 1 Q sill in the text . . — . sin q The - charge (t/\fLC) cicos + c2 sin * and 90 5= Substituting qp {t) into the differential equation Equating ^j — 7 2 ).4 16. The current is . 1 When Thus. Substituting gp (t) into the fct imply + cj = —— (&£cos fcf + sinfci) = g .^v = ' the circuit 1 —VLC ^= 1 ci g'(0) = is . LC7 2 Thus.Exercises 5.+ qp (t) cos lOt 1" 10Q 17.lq" qp (t) = + lOq + A&inyt = 100sin7t we obtain (100-7 Z )^sm7( + A= Equating coefficients we obtain initial conditions q(0) = 1 q (0) ~ (100 100/(100 imply = . „ „ 2 . c\ -f 2 — c\ - q(t) and the current = q{t) Bcosft. = Bcos7t.4sin7( we = vlsin7i A= we obtain - see that q{t) . 7 t-cosl0t). cos kt. then -0. From mx" 14. If ^= then 4*+tt/6 = x/2+nn . 8 2. 3. = even and = 12.. < \0\ < 16. If x' n n odd. > or < m < 2. so that the maximum displacement is x = 5e . = subject to x(0) x (b) exist. True 5. = 1. = 1/2. From \x" + \x' + 2x = 0. is 2/ir. 2. is tt/2. 1. From \x" + x' + x = 0.Chapter 5 Review Exercises 19. 9 and — \ cos4f 2 The amplitude 20. n= 1. ft. -tt/4 9.£e _4t From x" + £x' 4. since 6. x(0) = 4. since x 4. x(0) = 1/3. The motion is upward 13. 9/2. = for and sin4i = x'(0) + w/2 n = 0. False 7. 5/4 m. 3. + 4x' + 2x = we see that non-oscillatory motion results if 16 — 8m. 2. period is 1. for + —V sin (^t \ 6/ is 2tt. 2tt/5. + 3ir/4 = 7r/2 + titt or i = 3tt/16 + nn. an external force may = c\ Solving fx" cos </2k t + 6x = + C2 sin \/2fc The amplitude (c) If x (d) If x = = 1 then then downward (e) i x'{3tt/16) for is \/2. n + obtain 3tt/4) . (a) 4. . = 2^3 fl'(0) + we obtain -^sin4t = 2 and frequency U6 = 0then4t+7r/6 = nn or t = j(njr-ir/6) or f = |(?r/3 + mr) for n = 0. = -4 we \Z2sin (At and frequency -tt/8 nn/4 1 for 1. Chapter 5 Review Exercises since k = 1. False. = i — period rnr/2 = t. Prom 0" + = 160 8(0) 0. and x'(0) = 2 we obtain x = 4e _2t + 10fe _2( If x'(t) = 0. and x'(0) . .. 2. ..64x = we see that oscillatory motion results if 2 . since x 10.Owe obtain x = |e _2t .. 2. and tt/16 + t cos4i — is tt/2.2 ^ 4 094 i = 1/10.256 < or (f) for then 4f . = — cos4( + |sin4f. since 3.. overdamped 8. 11. .. \x" + 6.25x = 0. Z/4W. l . §cos50t. = 2. speed of the weight we compute i . and x'(O) cos 2^ = and x = e ~« = restoring forces satisfy k\x\ + t The fci + .. to obtain the desired result. g(0) sin lOOt 20. — j^e '. ~j^ mx" + kx = x(t) The = ^2x2 so xa k ^xi From and a state of pure resonance in 18. (a) Let k be the effective spring constant and x\ and 22 the elongation of springs k\ and (b) = suffices. 2 xp = A/u 2 16. 2.. Writing gi" §£ = + sin 7* cos yt w = 64/3. we in Section 5. . and and g/(t) = ^4§+| = + i- we obtain qc = cjcoslOOt + |a/(t)| = \\l*9 C2 8inl00t. (0-2y|aln2^|( 19. 2^|t. From Example when7 = \/6473 = 8/\/3. The solution 1/Jfc ci cos and 100sin50t. - is lfyfig.3 8 cos 7* + 8 sin yt we see that the system is identify A e _! x(0) . Differentiate 1 From {k\[ki)x\. Clearly 17.2W and £3 = 4W we find differential equation (c) conditions x(0) initial To compute the maximum = we obtain x c ^ sin = 2v^t) e~ 41 (c\ cos + ^e~ 2\/2t + €2 8^2^2*). = x zj = k = 1 _ fcl k{x\ + X2) = k\x\ x'(0) = + J_ J_ C2 sin when + = 2/3 imply c\ 1 and C2 = + |coB2^t = 0. Then k = 4W/Z = + (4g/3)x = 0. . .Chapter 5 Review Exercises + 15. 1. and L dt 2. From lx" + x? + 3x = xp 4 + ^x = form x" in the cos50t) + R ~ + ~g = = i?(t) or t = jmt/50 for and use ^{t) dt 148 — 71 = i(t) 0. and -|cosl00t The *2 then becomes x" ( fcj- we have = I/2W+1/4W . = From qp = 9" + 104 ? y% sin 50f (a) 9= (b) i= (c) g = . sin50t(l 4mg/$. + ^ sin 50t. 2 = m 2 + 2m . we obtain = (m - l) 3 = 0. Assuming that y 1 ^2 [ci differential (\/21nx) . 2. The auxiliary equation is 25m 2 + 10. .6 - (m . Assuming that y = so that y c\ 2 . The auxiliary equation is 8.2m + 2 = so that = x cos(lnx) + casinflnx)]. The auxiliary equation is 12. 3. The auxiliary equation is m s + 4m + 3 = 7.4m .1 is m 2 . + c 2 lnx. The auxiliary equation is 4m 2 — 11. The auxiliary equation is 3m 2 + 3m + 1 = so that y = x~ 1. 1 1 = (m + l)(m so that y = c\x~ l)(2m + so that y x"1 and substituting into the m(m - c\ cos l)(m - 2) - 6 = ^ 1+ly (| In x) = 1) c\x~ l + cax~ 3 4- c 2 x~ + C2 so that y 1 "^. m 2 + 7m + 6 = (m + l)(m + 6) = so that y = cix -1 + C2i~ 6 m 2 . The auxiliary equation is 5.2) = is 4m — Am + m = 2 2 = 1 (2m — = l) = 2 so that y = so that y = cix 1 '' 2 + C2X 2 1 c\x + cax 1 '' 2 . Thus 18. The auxiliary equation is m 2 — 2m — m(m — 2) = so that y = cj + C2X m 2 + 4 = so that y — c\ cos(21nx) + 02 sin(21nx).m — 2 = {m + l)(m .. + 2) = 0./2 16. The auxiliary equation is 2m 2 - 17. The The auxiliary equation auxiliary equation 6. 14. + ca sin (5 lux)]. (-^lnx)]. lnx)].4 = 9.3)(m 2 +c 3 sin(\/21nx) substituting into the differential equation l)(m - 2) +m- 1 = ro 3 . The auxiliary equation is m 2 .3m s + 2m . The auxiliary equation is m 2 + Am + 4 — {m + 2) 2 — so that y = cix~ 2 + c 2 x~ 2 lnx. . In 1. 6 Equations with Differential Variable Coefficients Exercises 1. 6.3m 2 + 3m - 1 . "^ + c2 x 2+ A cjx Ji m+1 = 2 = — — so that y so that y so that y = (2m — + 3) = . The auxiliary equation is 4. The auxiliary equation is m 2 .8m + 41 = so that y = 15. The auxiliary equation is 13. (5 In x) = c^x 1 / 2 + C2X~ = x4 [ci x 1 ^4 cos(51nx) = x m and m(m - |ci [ci lnx) cos cos (-^lnx) -f c^sin + qjsin equation we obtain m 3 . Exercises 6. Thus y 19. Assuming that y m(m - l)(m - — xm c\x and substituting - 2m(m - 2) = + C2x\nx + C3i(lnx) 2 we obtain into the differential equation m - 2m + 8 = 1) . 3 2 - 5m + 2m + 8 = (m + l)(m - 2)(m - 4} = 0. Thus 20. Assuming that y m(m - = xm l)(m - 2) and substituting - 2m(m - -1 = y cix + C2X 2 + C3X 4 . we obtain into the differential equation + 4m - 4 = m 3 - 5m 2 + 8m - 4 = (m - 1) l){m - 2 2) = 0. Thus y 21. Assuming that y m(m- = xm and l)(m- 2){m- 3} = c\x + C2X 2 + C3X 2 In x. we obtain substituting into the differential equation + 6m(m - l)(m- 2) ^ m* - 7m 2 + 6m = m(m - l)(m- 2)(m + 3) = 0. Thus = J/ 22. Assuming that y " = xm + C2l + C3X 2 + C4X Cl and substituting 3 . we obtain into the differential equation m(m-l)(m-2)(m-3)+6m(m-l)(m-2) + 9m(m-l) + 3m+l = m 4 +2m 2 +l = (m 2 + l) 2 = 0. Thus y 23. The = c\ cosfln x) auxiliary equation is initial = ci 4- C2%~ 2 and 24. The = 2, C2 = -2, and y auxiliary equation is m 2 y The initial — — 2cix~ z y' . + c2 = -2c 2 = ci + C4 In x sin(lnx). conditions imply C! Thus, cos(m x) a: m 2 + 2m = m(m + 2) = 0, so that y The + C2 sin(ln x) + C3 In = 2 - 2x — 6m + = cix 2 8 4. -2 . = (m — 2)(m — + C2X i and 4) y' = = 32 conditions imply 4ci + 4ci + 32c2 = 16c 2 150 0. = 0, 2c\X so that + 4c2£ 3 . Exercises Thus, 25. The ci = 16, c 2 -2, and y auxiliary equation y 26. = = is m2 + initial The auxiliary equation is m y = cix initial conditions imply (-oo,0). c\ - = so that 0, = 1 and - 4m + 2 2 conditions imply c\ In the next two problems 1 l&x 1 2x A + C2Sin(lna:) C!COs(lni) The The = C2 and = + C2X 2 lnx = we use the . X + = 2 2) = = —x t + 2sin(tna;). + C2(x + 2x\nx). 2c\x = Thus y 3. X cos(lni) so that 0, = 1 y 10 substitution — Thus y and 5 and C2 = -ci-sm(lni) + C2- cos(lni). y' 2. = (m - 4 5x 2 - 7x 2 ln;z. since the initial conditions are on the Then dy dy dx dy dt dx dt dx and dt 2 27. The differential equation and 4( The dt\ dx) dt\dt) auxiliary equation is 2 initial initial conditions imply y 28. The = 2t» differential equation a c\ = 1 2 and = (2m — 1 y' = initial conditions _. _„__,_„„_ -4. [=1 2 l) \c = y'lt) x = 0, so that t'^ + c 2 (t^ 2 + \t~^intj 1 '2 - 5(-x)V 2 ln(-x), auxiliary equation is m 2 — 5m + 6 = y The initial = c\t 2 = y'(t) S, tfw Uj (m — 2)(m — + C2t 3 and y' 3) = conditions imply Ar, * < become t=2 The dx 2 dt + C2 = — 4. Thus -K^Ini = 2(-x} and 2, [=1 and dx 2 dx dt = y(t) t, 4m 2 — 4m + [y) become conditions y-citW + C2t 1/2 lnt The dt ^f + = 0; 6. -\- Rm — 8 = 0, 2cit so that + 3c2f 2 . 0. 0. . ' interval 1 Exercises 6. from which we find c\ = 6 and — c<i = y 29. The auxiliary equation is m2 — —2, Thus 2 6t - 2t = 3 so that yc = 6x 2 In 1 < a: , + ci In x c\ = W(l,lnjs) 2x 3 + 0. and 1 a: 1/x Identifying /(x) 30. The = 1 we obtain y — c\ auxiliary equation = — xlnx = c\ + C2lnx + ^x 2 — c\ is m a — 5m — m(m — 5) = x 3 we obtain y 31. The auxiliary equation = c\ Uj = — 5X 4 + C2X 5 — and so that yc x 25 is 2m 2 + 3m + 1 j/ = cix 1 — S we ol5ta^ n u 'i = = The x" 1 is 112 — xeX — = m 2 — 3m + 2 = x 2 e T we obtain u\ The u\ — «2 = 5 lux, and x -2 _J r = so that yc = c\x~ l 2 — x3 ^ 2 cix"" 1 ~~ I '^2 Then ui - = jx 2 + cax-W - \x + ^-x 2 x x' 1 2x 2) and = so that yc = x2 — xe x — c\x + C2X 2 auxiliary equation = cix + c 2 x 2 - x3 e x + 2x 2 e x - = c\x + c2 x2 + x 2 ex - is to 2 — 2m + 1 = (m — W(x,xlnx) - l) . Then uj = —x^e? + 2xe x + x3ex - x2 ex x 2 . = 1 152 so that y c xlnx x 1 , . + In x and . < 2xe — jx 3 15 (m — l)(m — — —x 2 e x C2X~*/ 2 and -3/2 6 = 4- eX y 33. and . Then 1) x-'/ 5 lV(x,x 2 } Identifying /(x) + l)(m + c 2 x -V2 + I T - It 2 + \x 2 -\x = auxiliary equation 5x 4 l/5x. £ — x 2 and u 2 I 32. . 5 = (2m + , ; , & 5 ) = = u'2 + C2X 5 = 3X 2 and 1x2 —x s + 7X S inx = ci + C3X 5 + ^x 5 lnx. W(x-\x-V 2 = Identifying f(x) — ^x 2 lnx, + C2lnx + ^x 2 — ^x 2 lnx + ^x 2 lnx = x. 5x 4 = jx 2 ui and u 2 1 Identifying /{x) = Then u'j = cjx + C2ilnx and 2xe x — 2e x , Exercises — Identifying f(x) 2/x we obtain u[ = -2lax/x and x(lnz) = 2/x. + 2x(lna;) u'2 Then m -(lni) 2 = , 112 = 6. 2\nx, and y 34. The auxiliary equation Identifying f(x) U2 — x\nx — y x, = c\x + C2x\nx — = c\x + C2x\vlx + x{lnx) 2 m 2 - 3m + 2 = is = xinx we and cix = + C2^ 2 + we use the i = - l)(m - . = 2) X' 1 2z = and u 2 - -x 3 lna: + x 3 lnx - x 3 = 3 so that y c x 11 -rx 2 = c\x + c^x 2 and .2 X = — zlnr obtain u[ *4 In Problems 35-40 (ro 2 2 . = cja: Then Ins. 3 1 *± £. + cix 2 - -x 3 + -x 3 \nx. £1 following results derived in = |x 2 — ji 2 lni, i/j Example 6 When the text: in x = e* or lnz, dx~ 35. Subsituting into the differential equation The auxiliary equation undetermined is coefficients y m2 + 9 + 8 we = try yp cje" 1 x2 dx 2 x dt dt we obtain = (m + = Ae dt 2 2t . l)(m + = 8) = so that yc This leads to 30Ae = 2t e 2( , cie so that + c2 e- 8( + ^-e 21 = c^" + C2X~ S + -^z 2 -t + A= C2e~ 8t . Using 1/30 and 1 . 36. Subsituting into the differential equation we obtain The auxiliary equation undetermined ,4 = 1/3, B= is coefficients 5/18, m 2 - 5m + 6 = we try yp = At (m - 2)(m - + B. 3) = so that yc This leads to (-5.4 + = QB) and y = cje"" + c 2 e Jt + -(+ J — = ci^ + 1(5 c 2 :r J + - lnx O + — 18 cje + 21 6At + C2e = 3t 2f, . Using so that 1 Exercises 6. 37. Subsituting into the differentia! equation we obtain The auxiliary equation coefficients we try yp m 2 — 4m+13 = is = A + Be l . so that yc = 2 e '(ci cos3f+c2sin3i). + lOBe = 4 + 3e', 1 This leads to lZA so that Using undetermined A= 4/13, B = 3/10, and y = e = x2 zi + C2 sin 3t) (ci cos 3t [ci cos(3 In x) 4- —+— e' + C2 sin(31nx)j + + io 38. Subsituting into the differential equation ^-x. 1U we obtain 2m 2 — 5m — 3 = (2m + l)(m — 3) = so that yc — cie - '/ 2 + C2e 3t Using undetermined coefficients we try yp = A+B^+Ce 21 This leads to -3A-6Be -5Ce 2t = l+2e'+e 2t so that A = -1/3, B - -1/3, C = -1/5, and The auxiliary equation is . t . , y = c\e~ t/2 + c2 e3 ' ^e* - \e 2i = c\x~ 1 ^2 + c 2 x 3 -\x- ^x 2 . 39. Subsituting into the differential equation we obtain The auxiliary equation undetermined is coefficients m 2 + 8m — 20 = we try yp {m + 10)(m — = Ae~ st . 2) This leads to = so that yc -35Ae~ st = = 5e~ and y 40. = Ci e~ m+ c2e 2t - \e~ 5t = ax' 10 + c2 x 2 - ±x~ 3 From dx 2 x2 l dt 2 154 dt c\e~ iat . 31 , so + c^e 24 Using that A = -1/7 . Exercises it 6. follows that dx 3 x 2 dx [dt 2 ~ x2 dx\ x2 dt 3 dt dt 2 x 2 dx J dt 2 d2y dt 2 x3 dt + x3 dt x 3 dt 2 dt)' we obtain Substituting into the differential equation 3 dt [ dt J x 2 dt 2 \x) \x) x 3 \dt 3 d y x* \dt 2 j dy dy\ fd^y dy or d3 y The c$e 3t auxiliary equation . A= -17/12, y The m 3 -6m 2 +llm-6 = (m-l)(m-2)(m-3) = Using undetermined so that 41. is = BI cie* = coefficients we try yp = A + Bt. T* !t m 1 m = m(m + uq and u(b) = m yield the system Cia~ — = /iio-ui\ ab \ , Thus b , u(r) = The auxiliary equation and u(b) — is m2 — ui yield the system c\ Cl = u\ In a ^H ~ J t — «i \ ~Tb-a C2 In c2 a = = ci uo, c\ „M U{r} ~ t Ul lnq -"0 lnfc — uq In 6 ln(a/6) + , = +C2 = u\b -"l MVfe) = cir uq, cib" — — 1 -1 + , In a:. C2- +C2 = The boundary «i- Solving gives uqo. a u ib - «oo — b-a ii +C2lnr. The boundary conditions u(a) + C2 In 6 , and ln( a /&) Th„ hUSB i o so that u(r) + and } Ziifl \ so that u(r) . , —a = 1) 1 9 •> + ci 42. This leads to 17 17 — - -t = cix + c^x* + c%7? - — - - 9* 2 is = c\e +C2e 2t + {HB-6A)-6Bt = 3+3t, so that yc -1/2, and + c 2 e' + c3 e M - auxiliary equation conditions u(a) f.tPy ... dy "o _ 111 = C2= u\. Solving gives tto — u\ M^}' _ «oIo(r/6)-ui ln(r/q) ~ " tafc/fr) = uo 1 Exercises 43. Letting 6. i^i-lwe obtain dy = dx dy dt and 2 _ d y dx 2 d dy dx Substituting into the differential equation The auxiliary equation is m 2 — 3m — 4 = y 44. Letting t = 3x +4 = cii 4 d?y dt _ _ dt 2 dx dt d?y dt 2 we obtain (m — 4)(m + + c 2 f-' = d(x - I) = 1) 4 + so that c2 {x - l)" 1 . we obtain ^-^ - s dt dx dx — dt and dx 2 dx\ Substituting into the differential equation dt 2 dt The auxiliary equation is y 45. Letting i = i + 2we ' we obtain air 9m + 21m + 9 = 2 dt 2 dx dt 3 (3m 2 + 7m + 3) = so that (-T+^)/6 + ^((-7-^1/6 _ cl( = ci(3x + 4)<- 7+ ^>/ 6 + c2 (3x + 4)(- 7+ ^>/ 6 . obtain dy dx _ dy dt and £l2 ~ dx d2y (d}L\ - d2y — ~ ~ dx \dt ) dx dt dt 2 dt 2 ' Substituting into the differential equation we obtain The auxiliary equation y = c\ is m2 + = cos(in t) 1 so that + ci sin(ln () = a cos [ln(i 156 + 2)] + a sin [ln(x ^ Exercises 6.2 Exercises 6.2 1. = lim n—too On x n+1 /{n lim n—too + 1) = lim c"/Vi CO The = — 1, on (-1,1). At z aeries is absolutely convergent ^ -n the series j is the harmonic series n=l 00 which diverges. At x = 1, given series converges on (—1, On+1 2. lim n—too = ^ (—1)" the series converges by the alternating series z n+1 /(n+l) 2 = lim 74—t OO X = J lim on {—1, series is absolutely convergent alternating series test. At x = Thus, the 1]. 00 The test. 1, At x = -5 a convergent 1). the series is —1, the series —— (— 1}" p-series. converges by the Thus, the given series rt=l converges on [—1, 3. 1]. p±l = n—lim too Urn 2 n+l x n+l /(n+ 2"l n /7l 1) 2n — iim 111 = 21*1 00 The < series is absolutely convergent for 2\x\ or 1 |x| < — At x 1/2. —1/2, the series ^ (—11* fc fc=l 00 converges by the alternating series test. At 1 = j ^— 1/2, the series is the harmonic series which fc=i on [-1/2, diverges. Thus, the given series converges On+1 4. lim n—too The On lim rt—too The lim n—too 5n+1 i" +1 /(n + 5 n z n /n! series is absolutely convergent On+1 5. = On = lim l)! series is absolutely (a: Iim "-co on (-00, (x-3) n+1 /(n + n—too — l) - 3)V«3 convergent for 1/2). n+l \x\ = 00). 3 = |x Urn — 3| f-^-l < 1 |i-3| = |x-3| At x or on (2,4). = 2, the series £ —n - n=l 00 converges by the alternating series test. At x = 4, the series ti=i the given series converges on [2, 4]. ~ j ' s a convergent p-series. Thus, the series j —= ^2 is —8. .2 On+1 6. 10. the series a divergent jL- the given series converges on [—8. the series —5. Thus. 00 The series absolutely convergent for is \x + 7| < OO converges by the alternating series At x test. the series converges on (—5. = hm (n+l)(n + . 6). 1 x (n series the series 5. At 1 x — 00 converges by the alternating series comparison On+1 9. lim n—»oo The with ^— (n lim n—'oo + . = 11m n—-oo (x On + 7)" +1 n /Vn+T = lim oc V n + n— + 7)"V" lim rc—*oo (x |3 + = 7| + 7| |x 1 V" (-1)" — p-series. the (— — — = ^— °° ^ = = At x l)*10 fc -j diverges by the n-th term test.Exercises 6.. or 15). — = on (—8. = 15. «n+l lim = On (n lim n—>oo l)(x-4)" +1 /{rc + n(i-4)™/(n + 2) 2 + 3) 2 . 2 3) x 1 £ ^7— 00 The series is absolutely convergent for \x — 4| < or on (3. it=i 8. nx" +1 /{n + l) - 2 <"+ 1 > — l)i n /n 2 " ^ — the series 1)1x1 ' 1 1 = 00.5). x(n + 2) 2 -4 = i-4 111 . Thus. 15). nn In (n-l)(n + lim 1 ' 2n = lira "-«(n-l)(n+l) 2 Vti + x| I/ 1 — 1 lim «—»(u-l)(/i+l) 2 (^)T = lim n^(„-l){ n+ l)2 [(l + l/ n )n]2 Ixl 158 = -Ax\ = -r^ diverges by the limit # l) 2»+ 2 (-l) fc k fc converges on [3. —6). lim n—too The — On (x - 5)" +1 /10n+1 (2 - lim n—-oo — 5)"/ 10" series is absolutely convergent for ^ (_— 00 series l) k - ^(—1)* (— 10)* — — lim n-ooio |x — 5| — |x 5| 1 = < \x 1. = n— lim 2<n + too n\2 n x n lim n—too Thus. test = At x test.. the l)!2 series converges only at lim Ti — On fln+1 10. On+1 7. — |x - 51 10' 1 — ' < 5] on {—5. „. At x or 1 —6. 3.5). 00 1 diverges by the n-th term At x test. —"OO = On n+1 x n+1 = 0. " Exercises 6.. e .. series is convergent 3 2 . 2x 5 4x 7 3 15 315 3x 2 4x 3 1-- 1 4 . .X + X -. x5 ~ — x6 120 ' 720 X6 X4 1 ex — + ^ + 2* ' 24 6 • 720 X4 x 3 1 \ h —+ ^+^+ + X6 x 105 3 —5 T4 + T T s [ 1 — 44x 8 12 ~3 + 4 X3 x 2x 6 " 720 24 ~ 6 + 2 12 1 i2 5x 4 61x 6 2 4 48 1440 24 —_ x3 x5 4 3 H llx 4 + + _.= (l +«+ -b x5 x7 120 5040 1 —X 4 x2 z3 2 o 2 + e. 15 I?* 7 315 + ' _6 . * x1 00). X4 .. „ —— x3 x5 ^ / 504Q 12Q g X' 5 7 4 xe 3 _ 16..j - 4 \ / . — x . e X3 x \ ( + + + '" 2 x4 x6 x 2x3 . 4 x3 x T -+ nx=|l + x +y + .x „ x 4 x 1 19- x2 1 x4 x6 -T + T"T + - ^ \ =x . S1 on (-00. -„=|l-x + T T s 12.. X2 l- W ^ -r h X5 x " z x7 h -r — + + -7T 6 X . = l-x 2 + '-/ X X2 x 3 / + + X2 x 4 .2 The 11. + ___ + — 1 W *3 ^ . . + 120 2 2x 23x — + — .— +— 45 7 x- 15... =!-. 17 a 1- x x — +2 3 ^I= ^ tan ' r 4 2 \ x3 6+ = cosx ~2 e* + e.. 5 + . \ " \ X X T 5? —. sinxcosx . w 13.) — + Xx24 6 — x^xjT+ + 2 18.— + V =z*. ln|d = — x + c => y = c\e~ x . k 1 and = Ar we find r> 5 1 1 1 24* so on. 2.[(fc + fc=0 k=n fc=n-l = 2 n=0 n-l l)cfc+1 -2c t fc ]x' = *=0 160 0.-cox 3 I 1 + ^cqx*4 = cq l ~ 24 6 x+ 1 x 1 Q 2 . 1/ Substituting y = E£L CnX n into the differential equation leads to * t/-2y='£ £ c«x" = £ f. Separating variables 1 1 2 i -cqx . Iterating l)Cfc+l +C fc ^ k—n it=n— 1 Thus {k + l)cjt + i + Cft = and ck +i =— for + 1 Cl - -Q> C2 ." Exercises 6. V Substituting y oo y' + V=J2 n=l = ££Lo W 1 "1 CnX n into the oo + £ CnX" «=0 equation leads to differential oo oo + l)ck+l x k + fc=0 oo £ CfeX* = £[(* + A:=0 ft=0 0.cqx + 22.c3 = .~2 C1 = C3 = "31 C2 = Ci 1 = . 1. Therefore y = co . Separating variables we obtain — = — dx =4. ~r + 1 x 2i we obtain — = 2dx =^> ln|j/| = 2x +c « = 3 cie *. (* + !)<*+!** ~ 2 £ k=Q ck x k — 4 ]x fc = 0.2 21. . x 2 y= = ci = C2 = 3 00 E +c 0. find 2co § = 2°° c2 = -co C3 = 24°° 16 2 «= 4 and so on.— Exercises 6.n ' nto tne differential equation leads to EJJLo cn oo j/ - 3 1/ i/ 2l obtain — = x ax Substituting £ i(2*)» = ^ £ " + 3)c* +3 . (fc ci + 2c 2 x + oo E ^" +2 = E - oo + 3)c t+3 x i+2 - E cfcx^ 3 *=n fc=n-3 Thus ^ 3. Iterating we find .fc + 3 — Cj. k = 0. = — — and C3 = 3~C0 C4 = C5 = 1 c7 = eg -Cf. 1. 1. 2.. Separating variables we ^(2x) 2 -cox" + 6 — cox* + 44 l + -{2xf + -^(2x) 4 + --]= o = lnjj/| = .c^*" 2 = 1 [(* + 3)c.2 Thus {k + l)c fc+1 - = 2ck and Ck+\ = T~T7 ch> ci = C2 = c3 = = for we Iterating 0. Therefore = y co + 2cqx + -cox* + 2 = co [l + 2x + 23. for 1 = 1 0. 2. Therefore V = co = e-o + J jcox° 1 1 x3 + T + 1 * 6 pCoZ" . 3 12 1 V 4 we obtain dy y _ dx 1 -x In |y| = — In |1 — 162 x\ +c y = l-x' Iter) .™=o °n £ n=l + xHy = = ci CO QO OO */ ' ' we obtain 24. Separating variables Substituting y + + nc^"" + 1 £ c^ 3 £ = n=0 00 (* + 4)c* +4 x* +3 - fc=-3 £ ck x k+3 it=0 + 2c2 x + 3C3X 2 +£[(* + 4)cfc+4 + c fc jx fc+2 = 0. Separating variables s 1 i/4\2 4 = 1 + 2V4 2 3 / . 2.Exercises 6. Therefore 1 1 t CO 1 ~T 25. + 4)c k +4 + ct = and c*+4 = ~ fc ^4 & c fe' = 0. it=D Thus ci = C2 = C3 = (k 0. + ^ 1 /x 3 \ 2 T — 1 -^CQX 9 1 + 2 fx 3 \ 1 + 2~3 (t ^- = -x 3 dx => ln\y\ = y = ~x 4 + c => 4 y = ce" 1 ^4 . find 1 C4 = --CO C5 = c = -8 C * = 2-4^° C6 = C7 = 1 8 Cg = Cl2 = 1 1 = Cn = Cio = -_.2 and so on._<:„ and so on. xn ' nto tne differential equation leads to Y. 1. 2y = equation leads to oo CO E tkwe"- 1 n=l ^ + E - ^ k—n oo l)c fc+1 s* + fc=o C! £ fi=0 k=n oo = 2 n=l Jc=rc— 1 .E 2 jfc=0 jfc=l 2co + + z) 3 £ K* + l>«*+i + - 2)c*)s* = 0. £>. = Cl = Co C3 = c2 = Co on.2. Separating variables = co [l + x + z2 + i = E^o + • •] = co => In|tf| = 21n|l+a:| + c => y = E ci(l ~\~ c^x" into the differential OO (1 3 = 7^- we obtain —y . 1.E(* + ~ oo E ***** .2 Substituting y = J^L cn xn into the differential equation leads to oo (1 . iJpfc+i - (* - + l)cjt l)c*+i (* + - o- = a = co and = Cjfc+i Iterating and so EP+ -^+ we c fc = A .T-7—d x x Substituting y • + x)y' .x)y' oo -y="£ nenX*n— 1 oc E n=l ~ 1 _ ~ EW n=0 k—n *=u-l k—n oo 00 = £(* + £ " lJOfc+lZ* n oo £ cti* - fcCfcX* OO Thus = ci ci-co = + (ft 0.Exercises 6.3 find ci = co. . Therefore y = co + cox + cox 2 + cqx 3 + 26. . .. . Substituting y — ^ n=0 differential equation leads to oo oo k=0 k=0 oo oa n=2 n=0 ( k=n-2 k=n oo = O* + 2 )(* + l ) Ck+2 k + Ck\x = 0.2 Then - ci {k and — ci + 2co = + (k-2)c k = l)ck+1 2co — k 2 = .Exercises 6. find ci = 2co 1 and The = 0c 2 = c4 = co (l + so on.. 2. so y — c\ cos X + C2 sin £.l. Therefore = 27. . 3. cA auxiliary equation is co + 2coi + coi 2 = 2z + x2 ) = m 2 + = 0.jT^J c *> Cjfc+i Iterating we = ft 1. fc=0 Thus and (k Cfc+2 = + 2}(fc + l)cfc +2 ___i__ Cic 164 . n c„3: int . 1 cq(1 + 1) 2 .2. +c fc fc = . The 4-3 so on. 1. i + + . 1 -(agr + «iE m2 — 1 = 0. 2. Therefore !/ 28. fc=0 Thus {* + 2)(* + l)£* +2 -cfc = 0. * = 0. 1 1 a= so y = (2n cje 1 Is 1 =coc OS * + Cie n *.2 Iterating we find C2 1 = Co _ 2 C3 1 — C 3-2 i and = CQ = CO + ClX - ~ C2 2^ 4-3- 1 1 fc5 L — C6 = -eV c7 - "7^ C5 = 5-4.3.2 = 4 <=1 1 -ei* 1 1 o auxiliary equation is 1 -cox 2 - 1 . 1 — cix J + —^ cox 4 1 + C1 -**i. 1) . C2e s Substituting y .Exercises 6. Cn 1" ' nto tne . = ^2 differential equation ieads to n=2 CO 00 00 n=0 k=0 k=0 fc=n = £[<* + 2){fc + l)Cfc+2 " ck \x k = 0. Therefore. Substituting = £[(* + -1 00 2)(* 2)(* + l)c fc+2 z* + l)c* +2 - - (fc £(* + l)c fe+1 x + l)cfc+1 ]z it=0 Thus (k + 2)(k + M ~{k + l}c 166 . 1 5 x2n+1 m 2 — m = m(m — 1) = 0. 5 i 1 = 00 C03h = so y 00 - v' = E 00 n(n - £ iKx«.2 - n=2 ci 1 W 00 = £<* + . 1 into the differential equation leads to y" . y 29.Exercises 6. l)c k+i = fc = fc 0. + Cl 9inh x + C2C 1 1 n=l . 3/ = Cn^" . Cy 1 * + 2 + 1 2 C31 .2 Iterating. we find 1 CO 1 ci C2 1 C3 Ci — and 2 = co + c\x + C2X = co + c lX + \cox 1 r co = The = 3 + i - 1 = Cl 7-6-5-4-3-2 7-6 ' so on. ^x + ^cox + ^^J^* + 3 4 S» is 1 r °° + Cl 4 1 2 auxiliary equation . ~--c 3 = 1 1 22 3-2 1 1 2^4! = C1 Cl fc = 0. 2) find C2 C3 C4 = = 1 "2 1 C1 2 1 "2 C2 = 3 1 1 .1. = so y + cue ci x^2 . Exercises 6. + 2) (k 0.lW" + n=l 2 n=2 = 2 £{ft + 2)(fc + l)cfc+2 T + £) fc *=0 = £ (Jfc 2(k and Iterating Ck+2 (2(fc + 2){fe + we + 2)(k + =- \)ck+i x k k=Q + l)cfc+2 (t + l)c i+I ]x Jb=o Thus + l)ck+2 + {k + 1 2{k + Cfc k + i.2 and c*+2 = we Iterating = * cfc+i. .1.0.2..2 find C2 1 = C1 2 1 - C3 C2 = C3 = 1 3-2 3 1 = C4 1 Cl i 5i and so on. l)ct + i = 0. = 1) 0. Therefore 1/ = co + c\x + 1 2 -ctx* cq -C + The V t gj-cia: = l 1 + jjCi^ 1 + x + -x 2i + -x 3i + is 4 + 4 + + ci Co 1 ci auxiliary equation — £n^o 1 + 1 -x-' 2m 2 + m = m(2m + . Substituting CnI ™ int0 tne differential equation leads to 2y" + y' - 2 £ nc^xn-1 £ n(n . " - equation we have CO n(n - n=Z l)^" 2 .-Cii + - 1 3 /x\ J3 1 2U) -3iU) -Cix 3 + 3! + ^^ | ^(|)" = c + | I(^)^c + c Cl l 1( o -2/2 o Exercises 6. it=l Thus c2 (fc and Choosing ct+2 co = 1 and c\ = we = + 2)(* + = l)c fc+a __l_— -c _i=0 ^ find I C3 =6 C4 = C8 = C5 = Tio 168 fc fc = 1 .3 1. Substituting y = E^Lo ^^ Cn^" i nto the differential OO j..c^Jx* = l)c k+2 0.-CiaT 222 2 2 2 ' /x\ /xv2 1 4 = Co — 2ci = -iCi 1 1 1 1 = C + Ci .. 2 .3. Therefore 1 1 1 2 Co ci 2 x = Co + Ci = -2 + l .2 and so on. c *- ..2 Exercises 6..£ cx^ oo 1 n=0 fc=0 f k=n-2 oo $> + 2)(* + l)<*+3** ~ £ = Jt=l fc=n+l oo = 2c 2 +E \{k + 2){k + . For co = and ci = 1 = Cg = C7 = C7 = Cg = we obtain c4 = C6 = k + £ k=2 fc=0 oo = l)ck+2 x * 2 ' M 0. For cq = and c\ — 1 we obtain c3 = 1 C5 = Cg = and so on.Exercises 6. Thus. C*_ 2 z* . Substituting y — Y%Lq Cn^" into the differential equation we have y" oo 00 CO + x 2 y=J: l)^"" 2 4- n(n - n=2 £ n=0 k=n-2 oo ^x" +3 = + 2)(fc + 2c 2 jfc=n+2 + 6c3 x + + 2)(* + + ljcu-a c*_ a ]»* - k=2 Thus c2 (A ^ Choosing Cfe+2 Co = 1 and ci = + 2)(k =~ (fc + we + 2)( fc = C3 = l)ct + +D 2+e*-2-0 Cfc = -2 ' find 1 C5 and so on.3 and so on. two solutions are 2. Substituting y + — Y^=o y" - W Ci»^ B = .Exercises 6. two solutions are m= .1*6 + Jj^ - and n into the differential equation + If = we have CO CO £ n=2 ~ 2 1 ~ 2 £ n=l A=n— 2 = £(fc + W 00 n + £ n=0 k=n fc=n + Oct+ai* ~ 2 )<* £ 2 it=0 + E c* x * fc=0 fc=l oo = 2c 2 + co + £ [(A + 2)(* + l)c fc+2 - (2fc k=l Thus (k + 2)(k + l)ck+2 -(2k-l)c k = Q and 2k Ck+2= (k Choosing q> = 1 and ci = we — 1 = k Ck + 2)(k + ' l) find c2 = -- C3 = = C5 C7 = - • • • = 1 06 and so on. . For cq = and ci = 1 7__ ~ 336 we obtain C2 = C3 = Ci = Cfi = 1 6 C5 = 1 24 4 C7= 1 m 170 - = 1 M-- - l)ck ]x k .3 and so on. Thus. Thus. Substituting y = and „i = x + -J + - a* + -.^120 0.x r + Y.2)ck \x k = 0.™=a Cn^" i nto the differential equation we have y" -xy' n(n - + 2y=Y. £ nc„x" + n=Q £ c^" l)^"" 2 - 2 n=2 n=l r 4=n fc=n-2 oo = £(* + + 2)(* l)c t+2 £ ^- Jt=0 = 2c2 k=n oo fc=l § + 2co + [{* + 2){* + l)ck+2 Thus + 2co = 2c3 (k + 2)(k+l)ck+2 -(k-2)c k = and c2 < Choosing For co = co = and 1 a = and ci = 1 ^ we a = -co " (*+*2)(ft+l) k=W '*' find ca = -l C3 = C4 =0 Ce = C5 c$ = Ct = Cio = - = = = = = we obtain C2 = C3 = "61 C4 = eg C5= . .3 and so on.x 4.Exercises 6. oo +2 £ QfcX* fc=0 -(k. two solutions are __x m = l-. Substituting y = . oo = + 2c2 (6c3 + co)x + + 2 )( fe + *Cfc_i]x = fc + iJcfc+a Jc=2 Thus c2 + co = 6c 3 (* + 2)(* + = l)qt+ 2 + kcfc-i =0 and C3 < = -^ *+ a = < -(Jfe Choosing co — 1 and c\ — we + 2)(Jfc + ' find 1 <* = -g ^4 = = C5 1 and so on.1 l) C6 = 5 252 172 2 3 4 ' ' -" . For co = and Ci = 1 we obtain c3 = 1 C5 = C7= *- *.1 X t + ^ Cfc. Thus. £ nc^ + £ c^ n=l .x2 1 and y3 = - x \x* - ~x 5 Y^^Lq r-n xn i nt ° tne differential equation we have oo co on / + *V + xy = £ n(r.jX ifc=l .3 and so on.l)^"" 2 + 1 n-2 1 n=-0 fc=n-2 it=«+l fc=n+l oo oo = £(* + 2){* + oo + £(*- l)c t+2 S* fc=0 fc=2 l)cfc .Exercises 6. two solutions are = yi 5. Substituting y = 1 .= . 1..and so on.t +2 + k=l Thus 2c 2 (ft + 2co = + 2)(* + + 2(* + l)Cfc = and 2 c*+2 Choosing and so co = 1 and on. 2{k + ft l)ck ]x' . find 1 c3 = -l C3 = C5 = C7 = 1 ' = we obtain C2 = C4 = C6---. K* + 2)(* + l)c.™=o cn I " i nto tne differential equation we have 00 00 00 n-2 n=l n=0 00 CO CC = £<* + 2)(* + l)a +2 ^ + fc 2 A. +232* -" Y. 1 5 « = 1 "6 I + 45 X 6... two solutions are 1 .=0 £ + lfc=l 2 £ k=0 C *x* 00 = 2c2 + 2co + Y. Thus.j-jT^ c = fc. fi 5 4 ""I .3.2. For cq = c\ — and we c\ = = . . Thus. = i .3. C4 _. . and so on.. £ n=2 2n(n - l)c„x"- 2 + 00 £ nc„x" . £ n^x""' n=l it=n-l it=n-2 fc=n-l oo oo = £(* + l)kck+l x k oo ~'£{k + 2)(k + 1)^+2** + E(* + oo = -2c2 + ci + ^ [(A + k t=o Jt=0 fc=l l)c k+l x - l)fcc t+ i (A + 2){fc + l)c k+2 + (k + \)c M \x k = 0.. = and ci = 1 we obtain .n=0 £ n=l t k=n— 1 fc=n— 2 fc=n 00 00 = E (A = 4ca -c + + ljft^+jx* + £ fc=n 00 2(fc + 2)(fc + ljcfc+a** + 00 E ***** . Substituting y l-^ + i^-ix 6 + -- = and - l)y" x -l x> ± xS-JL x + ? + ..E 00 EP+ !)ftcfc+l 174 + 2(fc + 2)(Jfc + l)c k+2 4- (ft - ljcjtjx* = 0. two solutions are = y1 7. Substituting y = = and 1 Cnx" into the y2 = a: differential 00 (1 + 2)y" + xy' - y = £ n=2 1 1 1 1 1 + -x " + -x 3 + -2 * + equation we have 00 00 n_1 n(n .l)cnX + .3 and so on. Y£?=o Cn 1 " i nto tne differential equation we have 00 (x = y2 + y' = 00 £ n (n - n=2 00 £ l^x"" 1 - l^x"" 2 + n(n - n=2 .. two solutions are 4" (1/1 8. = For Co 0. Thus + ci =0 -2c2 (k 2 + -{k + 2)(k + l) ck+l l)c k+2 = and 1 cfc+2 Choosing co = 1 and — c\ we = find C2 I fc + ^ 1 = 03 = C4 1 — = = = C3 = ft Cfc +l' ^TjT2 - - 1)2. Thus..Exercises 6. = j/2 480 24 c fc - (At 6ci = + 2)(k 175 + l)ch+2 = ~ ( k + 2 )( k + l)c*+a] = 0. = ^4 = C5 0.lj^x" - Tt=2 - l)cfci* +4 k=n +4 fc = -2c2 + 2co + {-6C3 + 6ci)a: + 2 £ 2 [(* " * + 4k + 2 ) c* Thus -2c2 + 2co = — 6C3 + + 3A + 2) k=n oo £ ***** + k=0 £ fc=2 2 n ck x k k=\ fe=0 (fc ac £ ncnx" + 2'£c nx n-l n=0 CO . 2. . and Choosing co = 1 and C2 = c *+2 = ci ^ so on. . . two solutions are 1 2 4 9. . ^ we obtain c2 = c3 = C4 = C5 = eg = = 0. 3. « = 1.. Thus..1)^"~ n=2 k=n = cix equation we have oo + 4xy' + 2y=Y. 1 = = -^. 2)(A + fc . 2.3 Thus - 4c2 + {k l)Jfccfc+i + 2{k + 2)(k + = co l)c fc+a + (k- = l)ck = 0. k 1. Substituting i/ = Z^Lq Is If °n xn into differential oo (x 2 - l)y" and n(n . Fbr co = = and l)Acfc+1 2(k we -=1=0. <* \. Exercises 6. . 1) find C2 = C\ + . and + (fc + (fc-l)c „w. 3. .£(* + 2 )( + ifc=2 2 k=n~2 oo £fc(fc ' oo £ nfn . . Substituting y = H^Lo = 1 4- CnX n x2 + x4 H and 2 + l) y" + x3 + x h n=2 oo H n n " l)^" n=2 2 ( OO ~ 6 £ n=0 + =2 . .. find = • = 1 we obtain 1 - - • • = = 1. .4. ^ oo CO = £*(*- H we have oo .3 and Choosing For Co = co = and 1 and c\ — = ci we C2 = eo c3 = Cj Ck+2 = ck ca = l c3 = c5 = c7 = C4 = C6 = Cg = C2 = c4 = ce = C3 = C5 = C7 = = ft .Gy = Yl n ( n ~ Vcn*" + ft x into the differential equation 00 (x = y2 E t=0 + 2)(* + (ft l)c* +2 x fc - 6 £ t=0 cfc:c * oo - 2c2 - 6co + (6c 3 - 6ci)x £ + [(ft 2 - ft - 6) c* ifc=2 Thus (ft - 3)(ft = 2c 2 - 6C3 — 6ci = + 2)c + fc 6co (ft + 2}(ft + l)c k+2 = and c2 — 3co c3 = Cl = ft-3 c *' 176 = 2 3 -4...3. > + (Jfc + 2)(ft + 1 .. Exercises 6. two solutions are j/i 10. 2. Thus. Substituting y = 2 + x*.Exercises 6. Thus. two solutions are = l+ 3x 2 +x 4 -~x b + yi and y2 5 11.lfax"n=2 oo oo £ *(* " 1><*** +3 l)<*+2** +3 k=0 oo £ nci" ..co) + (12C3 + 2ci)x [2(* + 2)(fc + - = + Y. 00 + 2)y" + 3xy' -y=-£n(n- lj^i" + 2 n=2 CO £ n(n . l) Clt+2 + 2 (fc k=2 Thus 4c2 12c 3 2(fc + 2){fc + co + 2ci = l)ct+2 + + 2fc - 2 (fc l) cfc = and Cfr+2 = A: 2 -2(fc + 2lfc — 1 + 2)(i + *- Cfc l) ' 2 >3....3 Choosing Co = 1 and = c\ we find c2 = 3 C3 = c5 Ci = 1 = = c7 - - - = 1 and so on. + 2* - l) cJ x* = 0.k=0 E cjt** k=l oo - (4c 2 .n=0 £ c„x n=l 4=n n k—n co co + 2 E(* + 2)(* + fc=2 2 fc=n-2 fc=n = x n T.4. For = Co and cj = we obtain 1 C2 = C4 C3 = 1 C5 = C7 = C6 = = Cg = • • - * = = 0.^Lq c„x into the differential equation we have 00 (x = E ***** . . IK*"" 2 + n=2 £W n=l n=2 k=n—2 jt— n OQ £ - (-c 2 - *(* - lJCfcl* co) - £ . Substituting y = = I^ two solutions are 52%Lq Cn^" i Qto tne differential equation we have oo (x 2 - l) y" + xy' - J.l)c„i £ + OO to*** (fc a - - £ l) ck ] C x* . 12. Thus. For 1 and co ci = = and we c\ find = 1 c2 = - C3 = C5 C4 = "96 = C7 = " = C6 = -'- = we obtain = C2 = C4 1 6 C5 and so on.3 Choosing cq - and so on. = £ .3.&3Z + (* £ + 2 )( fc [-(fc + l)cfc+2** + 2)(* + -2c 2 - co -6c 3 = l)c fc+2 + = (fc - ^ = + 1)q = and C3 = Cfc+2 = fe — 1 ^j^ c *> 178 2.4 + l)ck+2 Thus + 2)(fc + £ c^" n=0 k=n CO fc=2 -(* - k=n CO = oo oo oo B «(« .Exercises 6.j>(n . n=0 £ cn^ fc=n OO OO fe z* - fc=l £(* + ljqt+i** - £ c*x it=0 fc=0 fc oo = 2c 2 £p + a .Exercises 6. Substituting j/ n J^™= o c„x = = " 1 2 i 1 into the differential equation 00 f" - {x + 00 -y= £n(n.3 Choosing cq = and 1 c\ = we find C2 = --1 C3 = = C5 C7 = • • = 1 and — so on. For cq and — c\ 1 we obtain C2 = c4 = eg = C3 = C5 = C7 = = - = - 0.3.4 find C2 and so on. . Thus.co + - 2)(k + l)ct +2 — (k + Thus 2c2 (k + 2){k + - l)c k+2 ci - co = - (k - l)(ct +1 + Cfc) = and Cft+2 Choosing qj = 1 and ci = we = cq = and ci = fc = 2. two solutions are ! 13.£ l)y' m=^ j 4 8 2 n=2 n=l « we have OS n - 1 OO fc=n— 1 OQ = £{fc + 2)(fc + l)cfc+2 ^ .£ Ac fc=0 n n=l A=n h=n-2 OO £ W" .l)c«* n " 2 . For ^±1^^ 1 = 2' we obtain 1 C3= 6' ^6 l)ck+1 -(k + l) C(t ]x* = 0. 5 + .xy' + y = ih 1 3 = x + -x 4 1 5 equation we have 00 00 £ «(« " IK*"" n=2 1 +12+8 00 -£"(«" l)^^"" 2 . - 2)c* = = c fc _! 0.3 and so two solutions are on. 1 ) c *+2 " ck-l]x k = ~ (* + * - 1. VI = 1 + x2 + \ = ££Lo 14. 2 ) c* 0. and Choosing co = and so on. Thus. and --- differential 00 (x - l)y" .Exercises 6. Substituting y + |«* CnZ" into the + • • y > 2)y = OO £ «(n GO CO £ £ nci" . two solutions axe yi 1 3 1 a i = l+i 29 + -x + -x 4 + 15. Substituting y = ££Lo — 11 Cnx" into the <. For 1 and Co = C2 = co Cft+2 = m ci = Ci =0. C4 5.n=0 n=l . . .. 1 oj 1 Cs = 11 5f we obtain = . .E ncn^ + E 1 n=2 n=l n=0 t k=n— 2 fc=n— 1 180 k=n k=r. = ^. we + (^ + 2)(Jc + A = 1' 2 = -. 2. - 3 --- l)' find = C2 and ci = 1 C2 = CO = = c3 1.l)^"" 2 - n=2 t=n k=n-1 OO - 2c"*" k=n oo £ - 1)<*+2** £ n=0 fe=n+l CO = £(* + 2 >(* + • we have differential equation CO _ xy _ ( T + " = x + \* 2 + \* 3 + \* 1 + V2 • E *^^ fc oo c*-i^ fc " E 2c*^ oo = - 2c2 2co + + 2)(* + £[(*. 3. C5 = i and so on. Thus 2c2 (ft + 2){k + - l)ct+2 (A + - 2q. Thus.. l^x"' n=2 2 - 2 £ n=l W 1 CO OO "1 + £ ncx" + n=0 £ n=l ^ r k=n-2 k=n— 1 OO fc=n-l OO = £{* + l)kc k+l x k A. Substituting j/ = (l and C% = 6. Thus -2c2 + -(* + 2){k + l) CJc+2 + (k = Q) - — l)*Cfc+i (A — l)qt = and Ck+2 Choosing co = and 1 ci = we Co = and = c\ 1' 2 3 ' -" find C2 and so on. For *- -JT2-(k + 2)(k + l)' 1 ff = C4-0 C=l \.t + 2 + (A: CO £ - fcct Z* - l)fcct +1 (k + £ c*x* - l)c k ]x k = 0. P + 2 )( + fc l)t*+2 - (* + l}cfe+ i + (* + ljefclar* OO £ *c x* + £ - 0.3 00 £ = OO (k + l)kck+1 X . + i* 3 + ---)+Q i: c and The initial — —2 conditions imply C\ = -2 V 16.l)^"" + 1 ti=2 OO £ n(n .-2c 2 + + k - 00 £ E H* + (Jfc + 2)(fc + + 2)(* l)Cfc +a i* + l)c. we obtain c2 = Ci(l + ^ = 3 = C3 = C4 = - Thus. fc=0 ck x k .Exercises 6. so + ^x 2 + ~x 3 + )+ 6x = 8x - 2e z . 0. 52%Lo Cn 1 " in*o the differential equation we have (z+l)y" ~(2-x)y' +y OO OO = j>(n .=n OO + £(* + 2)(* + ljct+ax* ~2^(H fc=0 fe=l fc=n OO l)cfc +1 i* + t t=l fc=0 CO - 2c2 - 2ci + co + Y. = Q= 0.)-(x + ^-^ + -) _ 2 x ..x z + (l ) . xn i nto tne differential equation we have Y^?=o °n 2xy' + 8y = £ n(n .l)^"" 2 - 2 n=2 £ "ex" + 8^^" n=0 n=l ( ^ ^ oo = £ k=n k=n k=n— 1 oo (fc + 2)(fc + l)c*+3S* - 2 £ oo fccfc** +8 fc=0 £ c t x* fc=0 GO = 2oa + 8co + £ [(* + 2)(* + l)c k+2 fc=l Thus 2c2 (fe + 2)(fc + + 8co = l)c t+2 + 182 (8 - 2A)cfc = + (8 - 2fc)c fc ]x i: . Substituting y" - + ^x 3 + —2 and t?2 ) + C2 = — 1. + 2x . 2r * ^+^+ . y = C (l-lx 2 -lx 3 + ±-x 4 1 12 + --)+C2 (x + x 2 -]x 4 + --- and j/ The initial = 2 Ci (-x .Exercises 6.3 Thus (k + + 2)(fc 2c 2 - 2c t l)c t+a - (fc + co = + + ljcfr+l + (ft l)cfc = and Choosing cq = and 1 C) 1 C2 = ci Ct+2 = ^ = we ..-co "^ Cfc+1 Cfc * ' = 1' 2 3 - find 1 2 and so = on.±x conditions imply C\ !/ = 17. For cq and ci = we obtain 1 C2 and so = C3 1. on. Thus.-. so = 2(l-^-^ + l^ + . equation we have differential n(n . conditions imply Ci y 18. 00 00 n=2 . - (l n(n .3 and C2 C* = -4co 0fc Choosing co = 1 and c\ — we — 2k +2= + 8 Ct 2)(fc+l) * ' = 2 3 1' ' find C2 = —4 C3 = C4 = c5 = = c7 = cio = eg = • = • 4 3 = eg For cq — and c\ — 1 eg = 0. we obtain C2 = C3 = -1 C5 = C4 = • = I5 and so on. Substituting y — T. Thus.l)c„x"" + £ 2nc x n £ n=2 2 1 2=1 k=n k—n-2 k=n 00 00 = £*(*fc=2 l)c fc x fc + £ 00 (fc + 2)(* + l)c* +2 x fc=0 fc + £ *=1 2fccfc x fc 00 = 2c 2 + (6c3 + 2<n)x + J^[k(k fc=2 + l)c k + {k + 2)(k + ljc^+a]** = <> .Exercises 6. s/ = C (l-4x 2 + 1 (x-x 3 + ^x 5 +--) ^) + C 2 and = The initial (-8x C.l)cnX n + -) so + ^x 4 ) = 3 - 00 (x 0.%Lo Cn^ = + ^x 3 ) + C2 3 and C2 = 3^1 - n into Ax 2 = 2 + l)y" + 2xy' = £ 3x a + ~x 4 + 12x 2 4x 4 + . ^coj x 3 ) H j = 2c 2 + (6C3 + ca)x + (12C4 + ci)x 2 + 184 (20c 5 + c2 - 3 ^co) x + = 0.^x 3 + ^-x 5 * = x 2 6 ) 120 i + 20c5 x' + + cox (co + ax + ca x 2 + + CiX 2 + . = 0. .. 3.3 Thus = 2c 2 + 2 Cl = 6c 3 k{k + l)cfc + 0./ The initial conditions imply qj = Cl = (l-x 2 + and = Ci 1 19. Substituting y y" = £J^o + (smx)y = dii" into the 1.. = For Co and c\ = 1 we obtain 1 C3 -3 c4 = C5 = "5 C7 =7 = ce c$ = = 1 1 and so on.l)^' 2c2 + 6c3 i + 4 -x 6 + --). . + 2)(k + l)c k+2 = and e2 = C3 = "3 C1 a+2 = "-j^2 C^ Choosing co = 1 and = cj we find c3 = = c4 A = c5 • = 2. 3 £ n(n . 4. . {k 0. Thus and . so 1 1 5 7 differential equation 2 12ciX we have + (x.Exercises 6. Cn^" into the differential equation we have („ _ 1)^^-2 + + 6c 3 x + CO + I2c4 x + CiX + cq) + (6c3 \ C2 2 + _ Ix2 + 20c 5 x . ci = 1 c2 = 0.Exercises 6. 1 = =0. For cq = and = "12 C1 find C3 0.3 Thus 2c 2 6c 3 + cq = 12c4 2flc5 = + ci = + c3 - = \cq 6 and c2 = C3 . = = c5 "IS' and so on.^c + ci)x + 3 + 2 + ^ x (l2ci (c 3 ) (cq - + c2 - x3 + ^cq) x 2 + ^cj*j - + c lX + c2 x 2 + = 0. two solutions are Vi 20. C4 = C5 120 we obtain c3 = C4 0. Thus.--CO 1 D C4 Choosing cq = 1 and = ci we = C2 and so on. Substituting y» + j/ = £J^L _ gn = [2c2 + = Thus (2c2 = 1 - ^+ 1 + and J/2 — —x £ — 4 + • - - . c3 x 3 + -) . + + + ' Exercises 6. For co and q= 1 we c2 and = l/' + -3 = C4 0. Thus.cq)x + {12C4 + c 2 . C4 = two solutions are so on. <S and = so on. 21.c\ + Then 2c2 6C3 12C4 + co = + ci - + c2 - ci 186 ' ' ) co + = ^Cfl = - cq)x ^co)x 2 + + (c 2 - - - ci = 0.3 12c 4 + c2 - \cq o = and C2 _ __1 C3 = -TCi 6 = -12^ + C4 Choosing Co = 1 and 01 = we find = ~. Substituting y C°- 72 tne differential equation £)n=o -n^" e-^g^-lKx"- we have 2 n=2 + 1 i ~x x2 \ = [2c2 + 6c3 x + = (2C2 + Co) + 12 Ci x 2 (6C3 hx ~ l x3 * + 20c5 x 3 + — + Cix + C2x2 + 03x3 ]+ [cq + (ci + ci . + . = ~. i = obtain = c3 0. 3 and 1 Choosing cq = 1 and ci = we find C2 and so on.Exercises 6. Substituting y = l- — 2n=o -x* 1 + e x y-y='£n(n-l)cn x n n=2 |2c2 + = (2c2 y2 = x. ] . two solutions are yi 2.co = 6c3 Uci + 2e 2 = + 3c3 + c 2 + -c l =0 2 + + c2 + - [co + cjx + c-zx 2 H 2 ^ci) x + • • = 0.-X s + ci + 1 + ci - co) 2 + [ci + 2c2 i + 3c 3 ^ci x 2 a: + 4ciX 3 + •)- £ c„x n=0 n + 20c 5 x 3 + + ci)i + + 4 we have J 12c4 x (2c2 1 00 \ + x + -x 2 + -x 3 + + 6c 3 x + —x -2 (1 1 = and cn :c " into tne differential equation 00 y" 1 + (6c 3 ( 3c3 + 2c2 + + 2c 2 )x + (l2c4 + ) 3c3 Thus 2c 2 + cj . For cq = and = cj 1 = 03 ~r 1 we obtain + -x* = = c4 6* Thus. two solutions are m= + 23.Thus.3 and = 02 2°° ~ C1 2 1 1 1 C4—4C3 + -C2--C. + "' fc=1 > 2 3 <' > . Choosing and so co = 1 and on. Substituting y V" = I^Lo .xy = £ n=2 1 2 o 1 X ~ X 6 o 2c 2 n(rc + V2 1 X ~ X 2 2 + 1 X ^ 1 6 ~ X 4 24 + Cnx" into the differential equation leads to . For co = c\ = and we c\ find — 1 1 1 2.. o we obtain and so on.l)^"" 2 - £ k=l [(* £ n=0 ^ 00 = £ + (* 2)(* fc=0 + 2)(fc + l)c k+2 - ck ^)x k = 1. Thus 2c2 (* + 2)(* + = 1 l)c fc+2 -<:*_!=() and C2 = 2 Cfc+2= (yfc + 2)(yt+l)' 188 + l)c ft+2 x fc - £ fc=t A=n+1 fc=n-S = = .Exercises 6. 1 -coi- 1 . l)c k ]x k .4(* + k=l Thus 2c2 - 4c = 1 and c2 = ^ + 2co ^^(T^A^*' fc = l.2.Axy .!4.. Exercises 6.3.. + —x + 1 .3 Let Co and C\ be arbitrary and iterate to find 1 C5 = = C2 55 20 and so on. + —cix* + 12 1 c5 + " Sn^=o Cn 1 ' nto the differential equation leads to OO y" — 40 .l)^' .£ 4c*x B £ n=2 n=0 2 Ti=l ^ k=n~2 ^ k=n = k—n oo oo £ £=0 (A 2c2 - + 2)(i + l)c* +2 x* oo £ - - t=l £4 Cfc s* jfc=0 oo = 4cq + £ [(A + 2)(fc + l)ct + 2 .Ay = 1 CO oo n{n .£ 4nc*s* . The solution = Substituting 3/ = co + is 2b 1 cix . dt 2 190 in terms . 2 — d e — = and the boundary. Two power Substituting 26. If t of 13 i 17 4! 5! * 261 6! fi 64 105 409 7! series solutions are „ n —2 3! ^y **y 7 16 2" 64 n = 1 -.21c into the second series gives the polynomial solution — into the first series gives yi = L—x fe <w then -p- dx — —— and de ' dt . + 2 Vf n(u-2)-.(H-2fc + 2) .Exercises 6. The solution 14 +s = C7 1 1 c5 5 3! 4 13 6 4! 4 17 7 5! 13 +2CO 4! 16 17 16 8 261 4 409 64 is (5 /261 + a^y 4 \ + Qi /409 fi t^y - 64 \ + .. 1 — <Pe -p-^ dx* 2i j/2 = z> whereas substituting 2 .3 Let Co and ci be arbitrary and iterate to find + C2 = 2 C3 = 14 + 2c° = 3 5! 14 + C! 3 3! 14 11 + C2= + +2C0= 14 4 = C4 C1 4 4! 2 4! 1 14 and so on.value problem becomes at* t. 15 1 25. For co = and ci = 1 C7 = Cg = C2 = ca = we obtain A2 C5 = C6 = A3 C7= 504 CS = C9 = and so on.3 Substituting B = ^ Cnf into the differential equation we obtain A2 Choosing cq — 1 and ci = we find c2 = C3 = "T = C5 A2 <=4 = A4 and so on. Thus C2 = and .Exercises 6. Thus Now or the boundary condition S'{0) — implies C2 = 0. . 5. Regular singular points: x = —3. . collecting terms. Substituting y 2xy" -y' = X^o + 2y= (2r 2 cn^" - +r 3r) 2. 7.. For r ci For r = - 3/2 the recurrence relation Cft and The ci general solution on s (0. is w -2co. = 0. Irregular singular point: x = 5. Regular singular points: x = 0. and into the differential equation which implies The = C2 = ^. Irregular singular point: x = 0.) +p l ^(l-|.).4 Exercises 6. c2 2cq. Irregular singular point: 11.. 2. Regular singular points: x 3. x = 3. Irregular singular point: x = —1. 9. ±2i.Exercises 6. ±i. = 1- 2 3 - Cs -- =- 9l5 D0 - is -Oi( 1 + 2 . 1 coz^ + 2r and (A indicia! roots are r = and r 2 - 3r + r){2fc + = +r- £[2(ft = - 2r 3)cfc = 3/2. = c3 4 -co- is = t -(2TT^' = oo) - + 0. —3. 3.-tf + | a! - + . Regular singular points: x = 0. Irregular singular point: x = 1. Regular singular point: x = —3. Regular singular points: x 10.1 ( 0. 6. 4. the recurrence relation «-m?*jand 3) = + r)c k - l)(fc - r(2r ±5. 2.4 1. + 192 ^-^ + . (fc = + r)c + 2ct _ fc 'X - - 2cfc _i k = we obtain 1 ]x* +r . Regular singular point: x = 0. 8. Regular singular points: £ = 0. Irregular singular point: x = 0. Regular singular point: x = 0.. —^co...Exercises 6. C4 = ^co. is .4. 5{k we obtain r + r)ck + c fc _ 2 ]x k=2 = 0.jr) co^. + 5) c\x 7r l) Ck + + 3) = 0. which imphes and r I (*»- r(2r + 7r + 5) ^( _^ + ^ + ZSJLo Cn£ +V= c2 2 = + r)(2k + 2r + 3)c* + c —3/2 and C* 3r 4r i(/c 2 7 — -r — f r ( 4r — 7\ = -J + r}(8fc + 8r . = gjgCo.7)q + Cfc_i = 0. we obtain ..4 12. which implies 2r 2 + (2r and The (k indicia! roots are r = and C2 For t = = and The general solution on . n+r into the differential equation and collecting terms.^.1 + £ + r)(* + r - [4(A l)c fc 0.)...3. —3/2 the recurrence relation is ^2. cs = 0. +j ^. -(2T3tjP -^co. + . = 0.1 . = = 00) is = 0... c3 = 0.. Substituting W = the recurrence relation + j/ \v' = Ci (0..) + ft l ( . Substituting y = H£Lo 2xy" CnX n+r + 5y' + xy= and into the differential equation (2r 2 + 3r) cox £ P(* + + r_1 + (2r 2 + r- r)(k + collecting terms. 13. + + r)c k + c fc _i]x* +r . so c\ a = ci . fc _2 = = For r 0. 2 (2r - + r) ci = ~ 2r so ci 3) = + 0.1I + I | 2xV .(i-i. l}c k t 1) ' is . . we obtain differential - 2r2 ( ^. -^h)> c3 -~co.3. For r _ " Cfc and = cox r + + E[2( + r )( k + fc (2r 2 + r) - - r r+l t CiX*" + 0^ + (* cfc + ck . rt- + 7)*' (8* C2= 4 -^ggCO- s| „ -. 7/8 the recurrence relation = 7/8. 2ct-i = c3 _ .) Cn£ B+r into tne EfJL = C2 -^> oo) i.. 2. is Jfc(8fc-7)' — " Cfc the recurrence relation 2 £fc-l -2co.. 0.. 0i 1 ( 14. = - l)(r = 1/2 the recurrence relation = = c*-2 "*(2fc + fe 1)' 194 = 2 3 4 * 1 i^g^ is Cfc 0.. which implies 2r 2 - 3r + = 1 2r and The + r) (2fe + [(A indicial roots are r = 1/2 and r Cfc and For r c2 = 1 = the recurrence relation = = 1. + l) V _ is = + 3r l) l . 2 ]x k+T k=2 = o..4.. C4 0..Exercises 6.-^.5 s? + ^/. + ct _ 2 = For r = = 0. + . q '"^'---' 1 C0 = Ca ' ~m5 C0 - is .4 The = indicial roots are r and r ci For r = = and The ci general solution on „.zrf + (i 2 + o i i 2 -co. Substituting y = = (0. + .. equation and collecting terms.). .cix«»(i-^ + 1 L^ + .). is .. oo) = c3 -tttco. c The - 1 = 1/3 the recurrence relation and r + r)(3fc + 3r - and and For r -i I 0.... Substituting y = 2\ -r+-)cffL T + ^ r '52 [(* + r)(* + r 0..Substituting y + (0...). which implies indicial roots are r 360 co^"* £ P(* + + The I into the differential equation (Zr = r^Q>. = 3xy" + (2 n+T Z^Lo CnX -y=* - 2 - r) 3r and (Ar — ci = = r general solution on .) & C3 1 - + ftl . / 2 \ = we obtain is ^^ (2 x-Q)y=(r which implies 2 -co.. we obtain + -c* . ^+ = X)^o ci - 00) is » + L«./. 10 = c4 0.) + a. + ^ + 5 ^» + crt x" +r into tne differential equation and collecting terms.( 15.ck ^ 1 .. + + — — co. s and collecting terms. r 2 -r+\ = (r — ^) (r - ~"\ = - 2 l)c* . r = + r)c k + 2(k + r)c k - — l)c k - = = c2 — r(Zr 1/3. For r + r)^.3.. 1.( 1 + "j^co- J.4 and The C2 general solution on (0...Exercises 6.2. 1 - . ot 1 ( 16.. 1 C2 -co. the recurrence relation 1 = c3 JqCO' — is 1 co. — ifc . + .]^" (k 1) (fc = + r)c k -i = 0. 1. . [2(ft + r)(ft + r - we obtain 00 2xy" - (3 + 2x)y' + y= (2r 2 - = and The (ft indicial roots are r = 3{fc 2 r Cfc = - For r ci = Ck - 5/2.. . + 5) C2 4 = ^CO. 1/3 the recurrence relation = £*_i 2/3 the recurrence relation ft . Exercises 6. 2r which implies - is 1 . +k 3k 2 ~ Cfc l60 general solution on {0. For r = c* and = — is CS = C3 = 560 OD - Co - is and The 0.2. 6 is 2{ft+l)ct-i -co.4 and The + r)(fc + r-l) + -j <fc indicial roots are r = 2/3 and r Ci For r — = = 1/3..-CO.2. oo) is 1/3 17. C3 = . the recurrence relation 3) Cfc _! - 5) o fc(2fc and r(2r - = ^o. 5) C2 - + = 2r - 3)ct_i = 1.3. . 196 = 1.. For r = (2k - ci = £ + 2(fc +r- — (2* l)ct _! = .3.. 2. ^CQ.jjx^*- 0.. C3 = 32 693°°- l)c ft + ct..... 5/2 the recurrence relation ft 5)cfc fc(2ft and r-1 + r)c - — 5r = + r)(2ft + 2r and 5r) eo* 0. 3. Substituting y = E^Lo +r Cn%" into the differential equation and collecting terms. 1 -rco.. .4 The general solution on . * . $( k + ifc=i r )( k +r- + 2cfc + 9(* + r - l)c*_i]* is ._ Ck 1 + ( 18. we obtain V + T. is = ~C0. Substituting y 2xy" oo) is |.9r + 2) cqx t equation and collecting terms.4) -. C4 = j^<*. we obtain differential - 1 (r 2 + 2r + + £[(* + r )( + r ~ fc !> c * jj) + Cl z (* r+1 +r jt-2 = ) c* ~ 5* + Cfc-a]^ y 0.. so ...Substituting y 9a: V (0.) +ai w( f) q.4. = For r = —2/3 the recurrence relation 2... (x 2 CnX n+T into the - = y (r 2 .Exercises 6. which implies T z + 2r+-)ci=Q. is = J^Lo CnX n+r into the differential + 9x + 2y= for 2 .3.0. and The indicial roots are r = —2/3 and r ~~ 3k(3k and C2 For r = -jCo.^_^ + — ££Lo + xy' + (0./ + + | I+ + equation and collecting terms. 9 128*°- C3 = °' C4 = C3 = 0. 2/3 the recurrence relation and The = C2 general solution on 19. oo) a 2/3.. ~ C3 7 ~Y20 C°' is 1 --co. is into the differential equation = - 2 4- (3*-2)^ " 2/3 the recurrence relation and The = 1/3 and r and 9r + r)(k + r - Ct For t - 9r 2 which implies (2r +r- 2 and collecting terms. we obtain r l) cox CO + = and The [(jfc indicial roots are r = -1 +r- 2 and For r ci = 1 = (2r - + r)(2fc + 2r + 1) = r _ and + r)(fc + r - [2(fc l)cfc + 3(fc + r)c k -ck + 2ck _ 0. oo) ZJJLo cn i Tl+r + 3ay + (2x = (3r - l)(3r 1) + 2}c k + 9(k = 2/3. = 2) +r - *- fc(3fc-l) - gco. c 2 == —5 = c3 cq. For r c2 = l)cfc _! = 0. = 1) + 3)' 198 fc- 1 " "*'---' 2 is l ]x k+r . 1/3 the recurrence relation 1 ' 2 3 ' is '"- ' 1 1 --co.4 and The [9(k indicia] roots are r = ci = = ci general solution on 20. -— 1 cq.Exercises 6. For r l)(r + Ije* + 2c = -1 <= 2 fc _i = the recurrence relation = -2c C3 . _ 2cfc_i 2co. is C *~" *(2* 0. = 4 qCq. 2r which implies £ k=l = 1/2 the recurrence relation 1/2. Substituting y 2 2x y" = = (0. x{x - 00) (0. + l]c fc For r 1... t + T){k + r - + r){2k + 2r - and = l) cqx (2(* Ck For t -— 945 0. Substituting y collecting terms... which implies The r E + = - C3 Co.2.3. = 02 5 The general solution on = 21.) +CM ( 1 into the differential equation + y'-2y= (-2r 2 + 3r) cox + i. is ^ = 7^7. 2k Ck-l c2 = ' c^o. is 00) = C. 2k + 3 The general and l)ck k= ' -co. c3 = ^co.X^(l + i. 1 = ci 1 cq. relation is 1. c3 = ^cq. and V solution on x(x - (0.4 and c\ - --co. - +r+ .3. + 22. * = 1. Q-^co.Exercises 6.. is n+r [2t — 35 ^+i I3 + .. 2)y" = we obtain + (k + r)ck -c k -(k + r- l)(r - 1) = l) C*_!]x fc+r Y1%Lq CnX n+r - = (A. Substituting y 2x 2 y" . +r— l)2c fc _! = —1/2 the recurrence 0. + ^ + 3L I 3 + . 1 1 -co. Yl^=o Cn% l)y' -y= into the differential equation - 2 2r and \{k indicial roots are r - = —1/2 2 - - r and r the recurrence relation = = = 1 1) (2r - ~..2. ) we obtain r~l CO + + ifc=0 +r- l)c* - 2c* (* l)(2fc + 2r- l)ck+l ]x k+r ' .. and collecting terms. . oo) Y. -2co. the recurrence relation and 13. x - c2 2co. = = --co.1..4 -2r 2 + 3r = -r(2r - which implies and The [(fc + r)(fe + r- indicia! roots are r = - 1) — - 2]c t j ci +r+ = For r 0. ci general solution on Substituting y = xy" (0.. 2.2. 0.Exercises 6.. r 2 = —1.. For n = the (k indicial roots are ri = and c2 = C3 = C2" = gjCo C5 = C7 = = CO (2i^TIj! 200 - recurrence relatic . + r)(k + r + l)c k .%Lo cn x" + 2y' +r -xy= =0. = _ C2 c°' 03 ~ "i^g 00 ' is Ck+i The + 2r - 1 32 For r l)(2fc ill 3/2 and r 2k- and (fc = 3) = k-2~ = ^k _ ct = A: .. is into the differential equation (r 2 + i r) c r" 1 + (r 2 and collecting terms. l)cfc+1 3/2 the recurrence relation is *»0. 0.c fc _ 2 ]r Jfc=2 which implies r 2 r and The and +r = 2 + r(r 3r + + = 1) = 2) ci 0.c k -2 = 0. + 3r + 2) ax + £[{* + 0(* + r - + l) CJt 2(fc we r + r)c* . 1.. c3 = 0. so ci = 0. For r*i 1/2 the recurrence relation is . oo) is OO i 1 „to<2n + i)r = — [Ci sinha: + C^cosha. + £[(* + r)(fc + r - and collecting terms. = 2.±) + (r a + 2.1) A-2.. and C3 = C4 = = C5 C7 = = OD 4i = C2n (2n)! The general solution on (0. which implies r 2 + 2r and The ^ + Ck indicial roots are ri = 1/2 and T2 = —1/2.1) y into the differential equation = (r 2 .. 1) ci = 0.. 24..Exercises 6.4..* \w *(* .. Substituting y x = S^=o %£™ +7- V + V + (V . + Cfc_ 2 = c\ £ 0.3..].3..4 For r2 = —1 the recurrence relation is <*= J. we obtain + |) C^+l l)cfc + (A fe -c* 4 fc=2 = + r)c - + c*_ 2 ]z* +r 0.4. so *(* + . = = 0. %Lo Cn% 1^2 [Ci sin x + C2COSX]. Substituting y x(x-l)y" = x T. oo) is x 2n — 5.4 and c2 = -jjjco C3 = c5 C4 = = = c7 • • • = C0 ^! (-1)" C2n= For T2 = — l/2 the recurrence relation C0 - (2^TI)! is °k ~ 2 c= and - l C2 — — ^rco C3 = C5 = C7 = C4 = 2 3 4 2! = CD 5f The general solution on (0. Ar which implies and equation and collecting terms.2c k ~i}x k+r = 12)c t _! - (k + r-2) -2]e _! = +r- + r)(k + r - 1 0.Exercises 6. n+T into the differential + 3y'-2y = (4r - r 2 ) cox ". l)q . we obtain -(fc — + rJffc + r.^cjj + r 2 — ttAr r(A — + r202 r) l)(fc = fc 0.1 1 + £ [(fc +r - + 3(k + r)ck . is + ^x + ix 2 ) + Ci + (x 4 + 2x 6 + 3x 6 + Ax 1 + ^ + ^ )+C n=l f nx" 2 6 6 2 ' +3 ._i =0. =s- c3 = . . .6. - fc = 1. . 2.4)ct + = r<i the recurrence relation . 00) Ci (l =C 1 ('l K ci = c2 cs = 2c4 ce = 3C4 C7 = 4c4 = c3 = . 3. = -co C3 = C4 = C5 = - - = 0. .= Taking Taking The cq cq ^ = and and q= y = ci = + C3 = ( oj is arbitrary *-^ = . we obtain C4 ?^ general solution on - = + 0c2 = Ocy and 2cq (0. . .3)cj. . 2. 7 we obtain c. .The = indicia! roots are ri = 4 and ti -fc{fc For 0. or — - 4)c* + - (A: 3)e*_i - 0. Then 3ci - 2c2 ca c. k(k k = 1. 3. 5. Substituting y = y" + X)^Lo £n% -J n+r into the differential equation and collecting terms.2 + (r 2 + 4r + 3) c.)' 1 /. the recurrence relation is .. we obtain -2y= (r 2 + 2r) cox'. 1 9 7 4 19 6 \ .4 26.Exercises 6. =0 2) cj = - 2cfc _ 2 For r\ - = 0. so c\ 2c fc-2 _ + r(r 0.fe f _ dx (1+1^ + f ^ ^ + r 204 ..^" 1 fe+r-2 fc=2 = 0.-234 and = -co C3 = C5 06 The A 1 c2 = C7 ^li 00 = = - ' result is second solution is „-/(3/*). which implies r 2 + 2r = (r {k The indicial roots are n= and 2 + 4r + 3) + r)(k + r + — r% 2)c k — —2. we obtain + r X* + r " [(* ^ + r)ck -(k + r)ck - + 1 ]x k+r . = 0. 00} 19 -x* 2. = xy" + (1 £?|Lo .Exercises 6.i E + indicial roots are ri solution = f"2 = +C2 y2{x). 00) 3. = + r)c k +i +c k = Q. 1 3 second solution cq (l = + x + ^x 2 + ^x 3 + coe*. = we obtain 0.2.1 and the recurrence = £ Ti * - = relation is 1.304 . . C\y\{x) differential equation and collecting terms. ck One 4 and (*: The 19 2 is y 27.7 1. Substituting y .x)y' -y = = which implies r 2 = r I "+r into the W c.4 f ( 1 The 7 1 general solution on 19 1 7 2x 2 96 (0.3 is = yi A + + r) a Cfc-(* + r)i*_] =0. is .-±-x 3 + L The i*'-s*' + Cn^" = -\ e x lnx - e x J + T ^ ?-s** + -)' K 1 n-nl . 28. Substituting 1/ = E^Lo xy" -)*-'/(j- + -±-x 2 . is = +r 3-3! 1 Cie 1 + C2 e x [lux - £ J 1 n into the differential equation + y={?-r) ^ +r+ + \){k J" n\ and + r)c k+l + ifc=0 which implies r (fc 2 -r= + + t- l)(fc r(r - 1) collecting terms.-/(i/*-i>fa »2 = yi IS y -^/i('-* + = e 1 Ins - x general solution on 2-2 (0. x n . ^co C2 = 03 = C4 = 3T2 result second solution _ 7 /... A 2 =C m +C c„x" +r into the V"" + lnx + 2 yi differential 1 r ~x + ^x + £[(* + r )(* + r ~ ^ + (* and indicial roots are n = r2 = + r) 2 c k + c k -i = Q. we obtain oo (k The - is yi (x) xy" . W is -*J J-J + foa*- The 00 is 1 A is C0 'm 5!4! The the recurrence relation 1 * 206 = 3 is +r ) c* + c t -i]x fc+r -1 - . 2. and the recurrence relation ^-^fi1 1.. equation and collecting terms.)..) 38 \ .. general solution Substituting y 2 ^ dx f f 1 9. r J ^-^ / 1 7 1 + .Exercises 6. 7 . 1 / = S^Lq + y' + y = which implies r 2 1 1 3 = _ + .. ' 2 + . and ci = .- 38 1 4 5 19 dx ( yi ^(1-* + J \ .4 The indicial roots are n= and 1 — — For r\ 0. lr^' which implies and 5 . {k l)c k = 0. * + VI oo) /„ I Substituting y — xy"-xy' + $2%Lo Cn x y= (r 2 'i+T - r) c =C r"1 a: The indicial roots are n= 1 23 — x .6. + 2x £ 2 — [{k r +r+ — r(r — l)(fc 1) + r)ck +j - + r)c k +i -(k + r- = For ri = 1 + r)ck + ck ]x k+r = = l)(k 0.. 1 4 .(l-^ + H-l^+H**-. r% we obtain 00 + r {k + tne differential equation and collecting terms.4 One A solution is second solution is = VI — = — ! V\ — dx dx .j [ = The VI In general solution on (0. + l^r>x* + +r+ and 1 y l (x) + C2 y2(x).) / 5 Z 1 [. . is y 3. the recurrence relation is . _ l2 + 2l + 677 o 23 .. !riI yi ————— yi / f VlJ -/J = = 23 i 23 2 677 5 „ 5 . i 677 . \ 3 _^ + 677 + _. __ x3 + ..Exerc/ses.. C 1 1 2 3 is " +r +V= 1 .. second solution is dx 1 f ( 1 1 i The 1 1 1 2 general solution on 1 oo) (0. is 1..(r(k second solution + r- e- -^.2. = l) is yi A 2 l) c k l and the recurrence relation 1 ck One -2r + + r- [k indicia! roots are r\ 2 yi \lnx +x+ general solution on (0. j/i J > is V = Cm(x) + C2 y2(x).^x 3 + /XG X ^-^dx = y f(l-l/x)dx 1 + ^x 3 + +x+ etc 3! The 2 - = c xe" is .3. 1 . 208 1 + 1 + 2* + 1 3!* 2 + dx +r . 4 y 1..Exercises 6.4 and one solution is = yj A cqx. into the differential equation P+ + 2r and collecting terms. -x* oo) + —x 1 J + = f 1 1 x j -e dx . 1 3 \ 2 = T^Lo Substituting y xV + ~ cn .. = C\x + C2V2{x). = = l)ct _ 1 *= = 0. we obtain l ) £P+ +v- r)(k l)c k -{k + r-l)ck + (k + r- l)c*_i]z* k=l = which implies r and The = r% = solution + . = cox(\-x + ^x 2 . ) = M /(i-2.3. l) ci + r) 2 c k - — Vl = 0. + §*»-fx' + .Exercises 6..)« fa = n The 0.ic^x^- 1 *=2 = which implies r (r and The (ft indicial roots are n = ri = 0. ft = relation is 2.™=o cnX n+r mio tae + y' ~ 4xy = 2 r cax r ~1 differential + (r EP+ + 2 equation and collecting terms.. 4 = ax 5 l(1+2ia+ yi £ ~ I WK'-^r -?* +-> J +tl .. we obtain + 2r + r)(k l) +r- cn r l)ck + (k + r)ck . + - 6 gx 6 + ] . + .x2 ^+ u is j/ = Ciyi(x) + C2y 2 (x).4 32. One A solution 2r = + 0. and the recurrence ^. is I W = = is second solution 02 = + ~ so c\ Cjc 2 2 yi In x + yi [-x + general solution on (0. oo) 5 A - 8 23 [in x . Substituting y = xy" Y.. 4 — 33. yi = = and c%x 2 . Substituting y n+T into the differential equation and collecting terms. 2. 34. 1 T y x + 4i 1 x a ) 1 2 ^ln*-. 3 Then = => cj = = = ci = + 0c 2 = = c3 = - -ci — 0c2 3c 3 2co ci -2co and C2 is arbitrary and Since ci Thus. + 4r + 3) l)cfc - (* we obtain r+2 c 3 x'"' + r)cfc + c k ^)x jfc+r-1 ..+ *--^ + -*<-.Exercises 6. = A // 1 have co second solution ^— n = ^7 . Substituting j/ = EJJLq Cn£ xy" -y' +x 3 n+r y = into the differential equation and -1 r (r 2 - " 2r) cox 2 + (t + £ + [(A 1 + 2r) c 2 3: (r r+l + r)(fc + r k=4 -0 210 2 - + - l) c : x (r 2 collecting terms..1 = which implies r 2 = and + r)(k + t - (k The indicia! roots are ri = = T2 fc(* + 2)c k (k + r- and the recurrence " 2)c fc + (* - relation =0. = — 2co. we obtain Yl^Lo <^x + (x. 3)cfc_i 3)ct _i k = 0. is = 1.. 11. C2 = we obtain eg = C4 = C5 = - - is ^ J 1 dx ~ \ 1 x j ^V~ X+ 2 X 2 .IV - xy" 2y = r 2 ^ - 1 £ + [(fc +r- + + r)ct + (* + r . we ct dx =x 1 1 = Taking 0.3)^_ (* l)c fc I ]^ ft+r . is and ci arbitrary we find C3 = c$ = C5 = _ * = 24 C2 A second solution = C10 = C8 = C9 1^ C2 = - is tin y2 The C7 general solution on (0..Exercises 6... {r r 2 + 2r = (r and (A The indicia! roots are r C2 arbitrary. fc _4 Also. 0. 0. r = 2. 0.. but when r = 0. oo) = fr. ci = 0. when 4. c 2 \x / 2 — -±x 6 + -±-x 10 . = 2) + 2)c2 = r(r + r)(k + r- = - Ciyi{x) + C2 V2(x).920 is y = 0. = +c 2)ck 0.5.6. . For r is = = 2 and r 3 = cq arbitrary and = C3 the recurrence relation C2 = we c3 0. = * 1 One solution Taking co = = Cfi eg = cio = C7 = — en — 0. r 24 1. find C5 = is «--*?Sri)' Taking = + 4r + 3) so cj 0.4 which implies t - 2 2r = r(r 2 - l) c. 8 - = Cjx -4 + C2^ (r + 4)(r - 2 - a regular singular point so that oo CO n=0 Multiplying both sides of y" + P(x)y' x + V+ 7i=0 Q(x)y = by x 2 we have 1 x (xP(x)) y 212 + 2 (x Q(x)) y = 2) = 0. c2 so on. Substituting y xV - we obtain +V= if = + [c k (k +r- + r . fc=o Thus r = and the recurrence relation is =k + — Ck+1 *- °k Then and Q =0.8 = r 2 + 2r . Therefore.8cn ]x n+r 71=0 00 = [r(r - 1) + 3r - £ + 8]c [(" + r){n + r + 2) .4 = 35.%Lq ^ into the differential equation and collecting terms. we have + 3r . .8Kx" +r 71=1 = Taking cq / and c„ = for r{r The genera] solution 38.2)c l)(k lt _ 1 ]x fc+r = 0. -(k = y(x) is £ A=l 0. is Cf> into the differential equation = ^[{n + r)(n + r - l)c„ + and 3(n collecting terms. Assume x == is is y - 0. one solution = y(x) 37. we obtain 00 It follows x 3 y" +y= = and that co cox r + Ck The only solution = En^o 36. rcox 1 - we obtain CO 1 £ + + r)(k + r - {k ([ + 1) l]c k - {k +r+ l)ck+1 }x k+r - 0. Substituting y Y. Substituting y = x*y" JZ^Lo Cn2 + 3xy' — n+r 8y 1' 2 - 1 = ' ' i 1 -co. . 3. 2. + r-l)(k + r-2)c k ^. Cn x7l+r into the differential equation and collecting terras. = -co. . c3 c4 = 7 -co. . we obtain + r)c . n= 1) 1.Exercises 6. . \/x.(n + r)(n + r.Exercises 6.l^z"*" 2 + x n=0 o. Exercises 6. we obtain / 00 £ £ p„x" \«=0 \n=0 \ (n + r)cn z»+ '- 1 / / n+r \n=0 / \n=0 CO \n=0 = The coefficient of the lowest indicia! equation is 39.x n+r into the differential equation CO \ / 00 x 2 Y. c\Jb / 2 ( x ) + c ^-&/2l x ) . is 1) +Por + becomes aw 4y = a singular point at co.5 1. the dw (b) Identifying \Tt=0 °- w 2pLi + 2w %Land we / 0. Since v 2 = 1 the general solution y — c\J\{x) 1 = 25/4 the general solution 3. 2.5 *y PnA y' + (f: <hA * = / \n=0 / \n=0 Substituting y ~ J^Lq On. Identifying po The = 40. Since v lojco- 1/3. 2 we see that oo is a regular singular point. P(w) = 2w and Q(w) = — 4/u. obtained when n - 1)cq then r(r 5/3 and go indicial roots are \n=0 = —1 and + porco + qoco = - 1) + po^ + 50 = - is 0. r(r The \n=0 / is is y = + C2Vi(x). Since v'1 = 1/9 the genera] solution is y = ciJy 3 (x) + c^J^^ix). (a) Substituting w— / Vi=0 power of a:. the differential equation see that there — indicial equation is —1/3. 2nx~ n 214 -1 J'n + n{n + l)*""" 2 Jn . 2 = 2 the general solution is y = ci J2(3x) 2 = 1/4 the general solution y = ci ^1^3(63.^ + 92^-1/2(^3. If j/ = f 1/16 the general solution y is is — ciJi/ 4 (x) + + c^J-i^ix).2n)x n J'n + 1 (n J£ 2 2 + xj'n . c\x~ x ^ 2 Ji/ 2 {Xx) + C2X~~ 1 /2 J_ 1 / 2 (\x). - (1 n 2n){x J'n . Then c\J-l 2 {^ x ) j + ni"" 1 ^ z n j. find x-"J'n -nx.n . From y = x~ n J n y' = is = y = x"" = 0. 0. and x2y" + Multiplying by x 1/2 + X2x2y = 2xy' 10. l)x we have Jn + + = xn J% + y" and a solution of the we _1/2 find + 2nxn J'n + n(n - Therefore. C2V2(3x). Since e2 = the general solution is y = ci Jq(x) + C2Yo(x).Exercises 6.Jn l and y" = x~ n J'^ . x n+l Jl V + x^v' + (aV . 2 — 4 the general solution is y = ci + C2l^{i).n Jn + x Jn JZ + xJ^ + (x 2 -n 2 )Jn 1 (since * 2nx n~ l J'n + n(n - n .).x. x n Jn 3 + xv'+(\ 2 x 2 -±)v = Substituting into the differential equation. Since i/ 7. y' = x~ y" l ' 2 v"(x) . = 3/ we obtain 2 x v" whose solution a. .5 4. 2 l)x + n~ l (2n ) v.b l 2 v{x). 2 Since v = 5. + C2^_jy a(6x).2 J„.) 6. FVojn y = is v = x n Jn (x) we y' - x = x n+1 n+l J% 2 [x -x n+1 lx 11. Since 9. ar-V2 w {a.3 ' 2 v'(x) + ~x.) then = x-Wv'(x)-\ X -V%(*).2n 2 )x n ~ l Jn + x n+l Jn ] ] a solution of Bessel's equation) original equation. . Since i/ 8. Jn is 2 + nxn ^Jn + x n+l Jn ) -n + n. with n = -1/2 we find 11 with n — —1 we find 11 — x~ 1 J-i(x).-x-V 2 MXx). From Problem n = we find n — — 3 we find 11 with 1 J_i(x).5 Substituting into the differential equation. we yfx J„(\x) find l = X^Jl(Xx) + -x- y' l'2 Ju {Xx) and = y" 2 + Xx~ X Vx~J'J(Xx) '2 l Jl{Xx) l . = xj-i{x) = From Problem y = A) „ = ^ = -Jx = 0- a solution = n 1/2 = n 10 with 1 we find we 10 with l n = -1 we y = find y + XxJl(Xx) + Jn is 2 (X x 2 . = 3 we we find y ±3/2 we find y = = find *Jx Jo(2x). Substituting into the differential equation. xy" + Therefore. y = x s Js{x).n 2 Jn ) 2 \ a solution of Bessel's equation) is a solution of the original equation. 2 {x we have J% + x J'n + (since (x Jn .Exercises 6. From Problem 14. y = [X -xJi(x). From Problem 10 with n x J-$(x) x 2 J'J(Xx) (since find y From Problem 3 2 of the original equation. 12 with A = 2 and v = 17. From y = n (1 Jn + 2n)y' is + xy = aT"" 1 — x~ n~ l = 0. we have x 2 y" Therefore.u2 ) J„(At)] a solution of Bessel's equation) x x l 2 J1/2 (i). From Problem 12 with A = 1 and e = 18. From Problem = From Problem xJ\{x). 16. + (aV - -JxJ^Xx) 13. x~ 12. x~ J\{x) = -x~ l is 10 with + „2 = -x 3 J3 (x). yfx Jyz{x) and y From Problem = yfx J-z/2( x )' 11 with . From Problem y 15. 1 E ^ 2n!r(l + c + n)V2.Exercises 6.1 + n)rff + n)V2 2n!(e E ^ + f(-l) n 2n!( I/ 1 216 + rt)r( + n)V2 l/ .5 19. ( 1 (_l)n W*) = E / x n 2n+f-l we obtain ^[x"7. (-l)"(y . ^nirfl + (-l)"{2n y + y (2) + n) + n) V2 /x\ 2n+( ' f) + n) V2 20. Using •M*) = = (-D E {2n n 'x\ 2" + + v)(-l) n ". The recurrence relation follows from -vju {x) + xJv -i{x) = -J2 00 2n+i> (-1)"" 2n+f-l (-1)" n) (x\ 2n+ » (-l)V = -E = E + ^Jn!r(l g.(x)j i^-VvM = z"Jj(s) = + i>)(-l) n / x\ 2 " +t -1 *"E n)V2 ntj2n!r(l + + + ' (2n i/ 2n+u (-1)" + (2n „tl2nl(y f)(-l) n /asN 2 ^"" 1 + n)r(i/ + n)V2 - 2n+i/ „(-l)»2-i (I)" (I) E ~ + (2n i/)(-l) n /x\ 2 " + ". Using Problem 25 with n jx n n j x -\xJa {x))dx = j x ^~{xJ^(x))dx n- . 25. in JJx). relation follows from recurrence relation follows from Example 3 in the text and Problem 21: 2Jl(x) 24.5 _ Alternatively.(n- = x = x n h{x) . 2 Jo(i) - 4 - J I) 2 / i""V xJ (x)dx 4xJi(x) + c. 23. . Using Problem 20 and 24 and integration by parts Jx n J {x)dx = 26.y r -- \2vJ*(x) By Problem 20 By Problem 19 .Mx) —Ji(x). .2J„ +1 (x) = \xJu+l {x) rJ (r) dr = J„_i(x) = xMx). (x) <*c - J„+i(x). The pf"^- x". An integrating factor for this equation The recurrence 22.Exercises 6. rJi(r) r=0 J-\{x) and by Problem 22 (x) = J-t(x) . so is is 1 a linear first-order differential equation — ax v \x J„(x)} — x"J ir -i(x).2J„ +1 {x)\ = - -^-fxJi(x)] dX we obtain = xJ J'n {x) 2J so that J'q(x) = (x) so that [* JO = + xJ„-i(x)] .(n - - xVi(x) + — 3 we have l xJi{x) (n - 1) I) ji jx n-1 Jb(a=) and Problem 23 we have J (x) xJ]{x)dx (-Jo(*)) -1 lja:" 3 dx n-2 - (« = x 3 yi(x) + = x 3 Ji(x) 2 + 2x Ja (x) - 2a. (-1)" that the formula in Problem 19 we can note 21.Mx) = JSC*) . z:) pZ /cosx . j 30.5 27. + xJ_ 3/ 2 ^H™(^ . .7_ 5 / 2 (:e) = xJ_y 2 (x) !(l) \ . By Problem 21 we obtain . we obtain -SJ_y 2 (x) = xJ„i/ 2 {x) . . ^ . (^) so that -*t*w--i™{— +sm v- ZJj. By Problem 21 we obtain 29. / . (n-l)!22"-l J + +COSX the function 35. so that 34. — .— J Exercises 6. hiiW 33. 2^1/2(2. = i~"J„{ix) then S/i=i-" +1 218 ^( l x). 5— - 2 — s 6sinz + xJ_ij 2 {x) — /— 15cosx \ so that 15cosa. By Problem = . - so that 3sinx + xj3 / 2 (x) 15sinx feh / + xJ_ 5 / 2 (x) /3cos:r 2 we obtain — 5. — 2 . By Problem 21 we obtain By Problem 21 By Problem 21 21 xJ^j 2 {x) + .J_ 1 / 2 {x) Ji/ 2 (a:) = xJ 1(/ 2 .) so that /3sini 2 / we obtain 5J5 / 2 {x) = ^ so that (. 3cosx \ a: 7)/ 2 = (x) /15sina: /15sina.ji{x) JT 31. If yi = Iv{x) \ - -^-^ {-l)"i 2n fx^+" 6cosa: ^. 32. Since 2 we obtain = xJ3 / 2 (x) + xj_y 2 (%) 28.+ is real. Since -viC \ 1 \ SiQX )- . V» mK x4 x (I = M*)lnx + (. (l- (a) ^(w) + Jo(x) then using equation (35) on Page 299 in the text gives V2 39. . x2 = T . . " (-1)" (-l) /S^'" (-1)" n^n!r(l-m + fl) W m J (a.Jj»!r(l-m + n ) V2> = 38. m m we have ' (1 + i + . and the general solution is Jrn^ dx dx dx j f . the differential equation.(x) = 2 = i~" [(w) i"J.y (ix) = Mx) = Mx) satisfies + {«) a ((«) 2 .). Using (8) with v 7 =m ) T + 3x* — — 128 23a: 5 23a: . .5 and *V + aVi " (* Similarly. ." ) M*c)] = i " = 0. . Jo(a:) In a: hx 3 x2 5x 4 2 +— 4 37. If = t/i + VI = I-v{%) — + C2l~v(x). 2 — 16 (231a: 8 . 6 --~ + x6 x* 11a: = -£ d r \ 2 fx + ^_ _+_+ 5a: 23x 6 . . . a: . y 36. 6 13824 flN*"".315x 4 + 105x 2 - 5)' =(-')•«. Using (7) with f x2 xe we have ^.Exercises 6. t/2 ciIl.) (-5) i- i r£ ^ + i t .| (-i ) Using the formulas on Page 315 in the text we obtain P6 (x) = and 4 4- . J. z 2 )^| + (~ 2x )^. (\t\<i) 1./2 = we have . By are shown the binomial theorem [l + + 44. 42. and sin#S( + cos(?^( do That do + n(n l)(sin0)y = sin# -cos 2 S) 1 ^ . and Pi{x) = x = (1 . 3t 3 + . - 7 693a. 16 P6 (x) (b) 40.t Exercises 6. 3 - 35a.5 Pj( x ) = A {429a. Letting (t x 2 -2xt)y = 1 in (1 (1 - 1/2 2t on Page 316 in (18) in the text. .2cos$^ +n(n+ l)y = 0. The polynomials 43.x 2 ) y" - 2xy' + 56y = 0. 5 + 315a. cos# then dy Sm0a . + n ( n + = (1 - l)y x 2 )y" - 2xy' + n{n + l)y = 0. .) . (\t\ < 1) t 00 = £'" 71=0 From Problem 43 we have n f. we have 2 =l-±(t 2 -2xt)+^(t2 -2xt) + --. . We - satisfies (l 2 a.. y" - 2xy' ) + 42y = d_ If satisfies (l .= l + xt + ±(3x 2 -l)t 2 + ---. 2xt + t 2 )" 1'2 + t 2 ). is. we - see that Pn (l) = have +2t + 2 y 1 '2 = (i +1)-! = i .t+t 2 - = L = "T* i £(-i)V=£pn (-i) n=0 n=0 220 t ". Similarly. use the product rule for differentiation: + n{n + dx 41.. d9^- (fiy 9 sin dy Tx' Q-r-z — cos dx* de* dy — dx . - (1 t)" 1 = jl— = l+t + t 2 + t 3 + .pn (i)t = Equating the letting i (i-2* +t a coefficients of corresponding terms in the — — 1 we (i r l/2 = £t n two series.. 3^ 231 8. - _315 6 2 . recurrence relation can be wrtten ft+iW = 3 k = 1: k = 2: k = 3: w = k = = 4: n— 0: = 1: n— 2: 71 "- ^ C 1 = -?*•-!)-! 35 ort 3 1 Pl(x) = 1^/2 (X — l) = z ft(x) = 0.6x 2 + l) dx = J | and j P${x) dx ^ =j i (25x 6 - 30x 4 + 9x 2 ) = In general. m. 1.5 so that 45.. "2 MkFT k 2 2* = 2. Exercises 6. 4.35 = n #» . All integrals of the form P*(x) <ix = 2^ Pa (x)Pm (x) dx are for for n n= ^ 0. For n 3 "2* P6 (x) = 5: . 15 x x+ T .4] " 3 *' + 312 " 3 = » 48< 16 = -x 2 3 1 2 2 ' 5 5» 12to3 and 3 we obtain ^P a 2 (x) dx = (9x 4 . 2. . 1 ?)-!(?"- W W .. 1.' 16 . 5 /35 \ 15 3 = 3: 47. 3.- . 8 35 1 <P Sdx 2 ^ ^ 2 " J (l2 8 &x* 30 4 " »' " -2x 2 + ( - (1** . £ 48. 2. ^(12x 2 a\ -.1-) l) = T f 2 T "fjUT . The P„(-l) = (-1)". X4 + " 72l > = 105 IF ? 3 1 " 5* . = and a particular solution is x so that auxiliary equation is ro 2 — c\x 2 + C2X 3 + x A — — 2m + 1 — (m — l) 2 = y 5. Since P(x) 2 2 4) (x + 4) . cix~ 3 — 5m + y 4.x)(l + x)y'i - 2xy'2 + 2y2 = 0. All others are ordinary points. and a particular solution + c 2 x In x + -x is yp — jx3 so that . The auxiliary equation is m— = 6m — = y 2. so that 1 = c\x x 2 In x. 6. — Q(x) ^ v ' and and x — —1 — 1 (at - 2)(x = and Q(x) = 222 (x 2 - + 2x + 4) ^/Si.X Exercises 6. Since P(x) = the singular points are -2x (x-2)(x 2 + 2x x= 0.5 49. x = —1 + + 4) \^3i. 1/2 cix 2m 3 + 13m 2 + 24m + 9 = (m + y 3. The auxiliary equation is The yp auxiliary equation = x4 — x2 In is m2 The = + c 2 x~ lli 4- C2X~ 3 In x = (m — 6 . 3) 2 (m + + ^x 3 2)(m — 3) = 1/2) so that . Chapter 6 Review Exercises 1 . Let = y2 + x)-ln(l-x)}-l -x$n(l that = J/2 1 t: x 1 + l+x + I- + x)-ln(l-x)} -\ln(l and 1 2 (l + (l + x) 2 x) 1 1 r + + (1-x) 2 1 + + (l-x) 2 1 1 2 l+x 1 + 1 + l-x 1 1 2 1 +x 1 + 1 1 -x\ 1 l+x + l-x Then (1 . x the regular singular point is x= and the Alt others are ordinary points. Since the regular singular points are x = 3 and a: is i = 0. Since P(x) = —x 12. the regular singular points are x 9. Since = 8. c = —i. Since ifa^+l) the regular singular point 11. = and x — -co < x < . ^ 5)' Q ^ =0 irregular singular point is = £ 5. interval of convergence is oo y" + -2 < x < 2. [*(* - 1)<* Choosing co = 1 and ci = we find . Substituting ?/ = and (x 2 = S^=o x is - 4) cn x 'i = 0. — x — 2i. oo. The irregular singular point There are no irregular singular points. . Since P{x) = —2x/ 13..k-2 k~2 + c k ^\x and c k-3 x equation we obtain it=3 which implies lj i . = — 2i. = —3. afo - —2.Chapter 6 Review Exercises = the singular points are x 7. and x = = and and i <?(*) = = 5. Since P(. 2. The [X^ irregular singular points are 6 the interval of convergence and Q(x) mto * ne = 9/ (a: 2 - differential 4) an is + xy = 2c2 C2 = +Y. 10. 3.. 4. . . = 2 3 C6 4 = 45 and so on. For co = and = ci 1 we obtain c3 =0 Ca = 1 12 = C5 C7= = fk and so on. two solutions are and 14. Substituting y = ££Lo 1 dj^' into the differential equation y" - 4y = £ [*(* . find C2 = 2 C3 = C5 C4 = = = . = .Ik* - we obtain 4ct _ 2 ]x fc -2 k=2 which implies Ck Choosing Co = 1 and c\ = wc = 777 rr fc i -D' = 2. Thus. .Chapter 6 Review Exercises and so on. For cq = and ci = 1 we obtain c2 = C3= C4 = ce = 2 3j C5= 2 15 5 4 C7 =3i5 224 = .. 4. For £ + 3co/2 and ck Choosing + = 1 = c3 0. -. Thus. and — C * +3 Choosing co = 1 and c\ = we =(A + 1 3)0t + * C *' =1 2) find 1 Ci = C7 = C5 = c8 = en = C10 =" = 225 • - -- = . ..---- (* - l)c*]i fc+1 = = .Chapter 6 Review Exercises and so on.. two solutions are and = G2 V2 = 16. two solutions are and 2 I » = C ( I+ 15. 2 . 2 + X » 4 * + X YH 3 into the differential equation Y5£=$ 7 a: 3i5 + \ ---)' we obtain oo - (x l)y" which implies + C2 3y = = (-2c2 cq = 1 3q. 1} find = C3= =2' 2' ^= 8 = - we obtain 1 c2 and ~ (* k{k _ C2 and so on. C3 = — cq/6. Thus.5.) and c\ = _ - (fc - 1)(* en we " 2 H-l ~ k{k - + 3ck _ 2 }x k l)ck ~2 = and - ci + 2)0^1 3ck „ 2 _ fc-3. c4 1 so on. .3. Substituting y Cn*™ ' nt0 { I + ^x 3 + ^x 4 + equation we obtain diiferential CO y" -x V + xy = 2c 2 + (6c3 £ + co)* + [(* + 3)(* + 2)c*+ 3 - it=i which implies C2 = 0. Substituting = ?/ .. Chapter 6 Review Exercises obtain C3 = ce = Cg = C4 = c7 = Cio C5 = eg = cn = - • = = • = . C2 c = -~2 C linearly independent solutions are and 226 <>' c3 = "18°°* is c ft _i]x* .r- 1 = (2r + l)(r- 1) - ck = and [(A The indicial roots are r = 1 and + r)(2* + 2r r = 1) —1/2. two solutions are = yi 17.%Lo Cn% . equation we obtain differential + xy'-(x+l)y = for 2 -T-ijcox'+Y. 2 3 ' c3 = ^co.^x 3 - Co (l n+r into the ~x 6 and ) y2 = c Y x. For r - = ^mrry SO For r CI = —1/2 = c2 \co. Thus. and so on. the recurrence relation = 1 ' ^co. the recurrence relation Ck Two c\ = 1 fc ^ = 0. is = fc(2* so = \\ck - 3) * ' = 1 1 2 3 ---> > 1 -eg. |2(* + r)(A +r- l)c k + (k + r)c k -ck - it=i which implies 2r 2 .. Substituting y 2x 2 y" = T. -1 = .Chapter 6 Review Exercises 18.(i-. + 1 -^-~.. linearly independent solutions are yi = c . ' C3 = -^CO. + r)ck + ck ~i}z k+r (k fc=l which implies 2r 2 - = r - 1) \)c k + r(2r = and + r){2k + 2t- {k The indicial roots are r = = and r For r Ct = = 1/2 the recurrence relation Two = =1 > 2 3 > is -" 1 = -—c c3 ^co..2{fc + r)c k it=i - (* +r- l)(fc +r- 2) Cfc _! + c^]^" 1 = which implies r 2 . b . Cfe the recurrence relation = ~k(2k~-1)' Ck so = 1/2. 3 + . 1 1 . 90 is = ~*(2fc Cl * 1 = c2 -co. Substituting y — n+T into the differential equation we obtain EJJLo cn x CO 2xy" + y' + y = (2r 2 - r) cqx'- 1 + £[2(* + r){k + r - \)c k + = 0.) and ?/2 V 19.3r = r(r - 3) = and (* + r)(k + r- 3)c fc - [{k +r- l)(k +t- 2) - l]cfc _! = 0. Substituting y i(l - = 630 30 3 / n+r into the differential equation we obtain EJ^Lo Cna: x)y" -2y' + y= (r 2 - 3r) coaf' 1 + £ [(* + r)(fc + r - l)c* . For r -loo. + C2 fc = 1)' = 2 3 1' Aco. + c + ^_ 2 1* fc .Chapter 6 Review Exercises The indicia! roots are n— 3 and = t-i 2 + 3* + (* _ For 0.2) + so 1. / 11 209 o \ 3 SI A second solution = V1 -/ is ^(l-2x + ^)(l + |x + f§^ + / / 1 =m J = 1 1 3/ = yi Cn^" xV -xy'+(x 2 +r . into the differential equation + l)y= 1 91 ^+^+ (-^3 + + _ 1.lni V^" fl r3? + 4? + lfa 36 + ""J 1 l?-2?-16?-3fe— -^ lnz + 20.4 fc _2 = 0...) \ 1 (r 2 - 2r £ + + [{ft l) cox we obtain + r 2 cjx r+1 r + r)(* + r - l)cfc - (A + k=2 = which implies r 2 -2r + l = (r-l) 2 = r 2 cj [(ft The indicial roots are n= = = + r){k + r . c2 -co.-). c3 = —co- is 5 . C* c\ = = 1 . n= 3 the recurrence relation is l)c -i fc so Cl One solution = 209 11 5 = -co. Substituting 1 |i| 3 x 1]^ +c and -^T' * 228 = 2..3. 2 ]i fc+r -1 . and (fc + r) 2 c fc (2k + 2r- !)<.Chapter 6 Review Exercises Thus - C2 -4* 1-5 and one solution A Ci - C6 = — — l*T (-7 1 61°° 2. x - + ct . 23 4 + ) = 2 6 equation we obtain differential T.1 .(2x = ££Lo - l)y' + + E c„:r (x [(* - n+r into the l)y - 2 r cox + r " 1)^ + + {(r (* -\ .*_! + ck_ 2 = 0.304°° is second solution is e^/ 1 xdx f vi — - y ^ f V /• x(l _l x 2 + ^__ _ l6 + i f /1 5 1 23 5 2 21. I)co] xT ^ ck . + 2r + + r)cfc - l) ci 2(k - (2r +r- + l)ck ifc=2 = which implies r (r + 2 l) 2 = 0. Substituting y xy" ... ci-(2r + l)co = 0. 3. 4. k = 2.5. and [(* The indicial roots are ri -2ci + Co — + r)(k + r - = = 2 and r2 and 1) fc(fc - - -(k + r.. so c\ = -Co.. Substituting 1 1 = C3 is 1ft A 1 = £™=0 2 (* - y—^ e cn x" 2) y +r = = dx . For V2 - 3)c ft (k - 0.xV + —Co.^ e = e 2 + - - r £ r 2) CoX + +r- 2 +r- + [(* [(r 2) ci - l)c fc lnx e - we obtain into the differential equation (r Jx 2cfc - - rco] (A: + x r r+l r4 - Ijcj^ +c fc fc=2 = which implies r 2 - - t- r 2 = 2 +r- - (r 2)(r - 2) ci + rco - 1) = 0.ljc^ + c k _ 2 = 2}c k = -1. _ 2 ]z fc + r . is y> 22.— Chapter 6 Review Exercises The indicia! roots are n = r2 = 0... 2)c fc _i + ct _ 2 = 0.. -1. . . = —Co C4 = co (l + x + -x 2 + -x 3 + ii 4 + = Co e dx = x . — and cq Thus C'2 and one solution second solution i i/ = V . Thus -2c 2 cs and - — c% + c\ = cfc = c\ 1 = ci ^co + co = =? (ft-2)cfc_i C2 = -c fc => = Ci _2 .6. 0. 230 C2 = ^co and A = |co C3 is arbitrary 4.. CB 2 = 03 we have 1 1 ci=c2 = c 0. 2 l) ci = 0. and the recurrence -^' ^ = relation 2. Choosing co 1 2' = and 1 = C2= C2 -. 4 64 l—x — 2. c* = + r) 2 ck + cic-2 = = 0.304 6 + is . Substituting y xy" + y' + xy — = = Qx- J^nLo cnX n+r ' nto the 2 2 r r CQX + (r + 2r + 1 (x 3 1 + -x 4 + 3 ~x r+i + £ + equation we obtain differential l) Cl x 5 [{k + r)(k + r - l)c k + {k + r)ck + ck . 4=2> C5 3 = 20' and so on.3. Two solutions are and Vi !3. = - = -^. and (k The indicia! roots are r\ = ri = so ci 0.4 Thus c2 = --co C3 = C4 = = C7 = = 1 C6 = C0 64 -2^4 C0 and ?/i 3/1 = rs\ co 1 ( 1 1 — \x 2 + ^-x_ i .Chapter 6 Review Exercises Taking cq = 1 and = C3 we have = Cl and so on.2 ]x k+r = which implies r (t + 2 = 0. 7. #{/(*)} - 3.e {sint)e.~e~ at 0.l)e~ - \ 3 \ e -st S 232 — = 2 -je"'. f. e ^2 .e 7 Laplace Transform Exercises 1. ~ St s s s 6.st dt S s o J™ e- ie 3 -St s o e" st \ — = #{/(*)} — . e_s e (e-" + 2 1 8. s e~ st smt 1 */2 >0 1 1 = -e = J™te.flt ¥{f{t)} r = (cosi)e- st = = (--^ye-^sinj- dt = ( \ < t (> 1 0.^° - . - -ji-ye-^cost 00 #{/(*)} = > s J 0-(o + ^e-"' )=-Vrre" 2 s + l' «a + l /(() "s e e e Jn/2 7. l . S = #{/(()} = et te- J* -7 e 4. s > . + /2 .(--t e ~ s - . s>0 .e~ at ) 5 JO 5.St dt = (-\te~ at . - 2 Hit J\ t '. < — f(t) = —-i—e^'cost + + S £ 1 J?{/(t)} <t< > 1 2t - 2. \ dt "s /'(2t + - S — + l)e- 3t "s ) dt = J* e st - = dt (° (~l -i) te ' s ~ St - -| e £ .dt = JO %{f(t)} e' st dt ~e~ st dt + S 2. s 1 l)e~ st dt = 2 st (--{t .r ' S + s>0 l).1 e~ a s>0 . = s St 2{f(t)}= f Ae. s ! s)* 1 — oo e-* Jo 3-s 15. 2 l l e P-)* S s . #{/(«)} e 1 (4 14. 2 —^ w) "<it (3-5) 2 = 1 4 = jT t 2 e 3t e~ st dt = (3-s) 3 ^{/(*)} -^—te^ \4.(smt)e-" dt + l) 1) = £° e t 2 2 s . s > 1 -5 + a . t e.Exercises 9 -' ( f 1 - Ho. 13. *</<<» - t< o < 1. (s-3)3 t J™ + + 1 - s2 t s) 2 + 3 (s+l) 2 + (cmt)e-* dt + -s 2 3 -')' > l 1 (l-s) 2 < = J^ismt^+^dt + 2s + 2' = J^°(cost)e^-'^dt 1-5 (1 - - si so -e- + cosi l* (l-s) 2 + s> 1 a-1 1 s2 - 2s + .£ll e -(»+2)t /o s + 2 = rte^'dt = dt JO s . = jo ' -(e" sa b °° / - e / 00 > -2 1 7. .st dt = 1. 1 >0 t /V < f 0. = 0- e^^'df = 7 -h. {/(*)} = #{/(*)}= 1 WJ #{/(()} 1 - t> e' + V'dt [°° e- 2t [°° te 4t e- st fe-t'+^dt = _. 11. - > " 8 '* -tV 3 ( - 2 e( 3-s _JL~f e ^(3 (s+ 16. - < f - t)a-' + ^ = « "2 e a t -st 10 0. 12. e 3 o (4 - X °° s) 2 — S > . /ao 18._-i -2 + -i ^ 5 - i = 3 . *{t B } = 22..^-^ + ^ 3 3 -5-2s + 9 5 28. + st 2 l) 19. ^{( 25. dt * 2s (c08t)e + 1 1 (s 2s 7 (P + if{4(-10} 23. %{coshkt} . ^{l+2e 2t + e 4( a if{4t -5sin3[} y{sinhA:(} i ^ + 3-| + 4 + - = l} —-!- 2 -l + 1) {s 2 1 (sint)e . ^{7( + 24.1 Exercises 17. 2 2 -*_ «». 5 1)' s + ' 4! 4 if{2t 29. ^{l + e -"} = i + } = 4 10 — 4- + 4-^ s s s + 6(-3} = J 2 + 3f + 3( + s 33. ) = 34. i? ( c „ s_5. 31. Jf{/(t)} = 7. + sin5. t(coat)e- J st st s + s 1 (s -l 2 -5 2{f{t)} = t(8ini)e" 5C jf -1 2 2 + 1) > S . - 5 -^_ + ?A-5 a .i} - 234 { 9 ^+^ so.+ 5}. 4 s = s 35..i„ h <) . y{-4f 2 + 26 ^{8i 3 -12( 2 +6i-l} = - s + ^ s — 2 2 4 + ^-r s . = 2^ 21.-.a + . = = 20. -fc 2 ^.. } * + 2 s>0 .4 - 2 ^} -* 16f 2 + 9} = -44 + 16 8^-124 + 4-" y 32. ^{t 3 27.if {e- 3}-^ + -s ^-. the Laplace transform of 1/f 2 does not exist. 41. i?{co S 39. Let for 3 u= } = Ys s + l 2^ +4 =if j^cos3f + ^cosfj = ^{ S m(cos2t} =i? y {sin cos2t l =J? {^cost - if{ Sin( S in2[} = j^sin4fj + {l = Is ^ du s dt 2 s2 9 + 1 \ - ± ^ ( = Is + : | (^l C0S 2 )}=^{i f}= ^{ sin( st so that cos3f} \ . r(i/2) 7. If r(5/2) 3^ s 5/2 4s 5/2 we attempt to compute the Laplace transform *^ If s = = for of 1/t 2 atdt+ we obtain rk stdt then which diverges. -^r{a + 1) .Exercises 37. Thus. i?{sin2tcos2f-} 38. 5^_l^ = . ^{costcos2r-} 40. 2 t}=i? = if 43. If s < then which diverges. If s > then which diverges. 42.) .du a > — 1.^in(} = {|sin3t and %{t"} = Si n / e~ t-i(ism3 i -i S mt)} = a st t = dt ( In V s r{3/2) 47. i 1 Exercises . se- Us + xto 1 ii. 7. and N such that Then = for c. Exercises 7. Since / and g are of exponential order there exist numbers and < Ne \g{t)\ dt for > t T. 5s - i*— + 4 s s& s \4 S+1/4J 2 \5 s J '{?T49} = ^ _1 + At + 2t 2 8_ lJ - 2/5 4 5 J = {? ' I si sin7t 7 2 236 3. and is M. 12. 8. d.2 24 s5 ' 3! . if-lL.1. |/(t)| < Mea . 48. < Me<*Ne dt = A/TVe'^ 1 \f(t)\W)\ of exponential order. t >T.i + 9. Exercises 7.2 13. iy ' " ^ 26 1 25 = l/4j 2 10cosh5f h I s2 U 2 + 2j \s 2 +2 U 2 + 3§J U 2 + *- + a2) \( s _2)( 5 -3)( 5 - 2 9 3 S s2 + 1 + l)(s-2)J \(s-2)(s 2 + 4s + 3)J S 3 + 5j"9 9 + s-2 ft ( s-3 + 2 1 1 1 12 s s-1 3 1 15 2 sin 3* s/2 1-jf-if 1 * - -^ ^-^}" ^ 12 fl2 2cos3i + 2j 9 }-^"4 (a3) \s(s-l)(s = + 3/~3 5-4 -6)J + 9)} - s2 \/2 * \9 20 J ^1 (. g-i/-il-} = .y-iJ 2 I4s 16.1 / X a* + S 5 s-2 3 s + 1 5 s + 2 1 6 1 6 1 1 + + a8 '^' -6/~2 e 1 s M s-2j + 3J G 15 3 C 5 . i?" 1 !— I 17.-a^ + X + J 2 1*3 23 — \s 2i lj U|^|| + 9J i?. r Utf-J * 4 1 + 4 )( s + 2 )}=^ (s 2 20 ( 7( } = > 10! (s + 2) 2 + 16 exist and .6) 2 J I 3! 21 _„ hV3t..3 1.. jf/ te -«} s ( y { etsin3( } = + 2)4 4. J£ s s-l 1 {s + 1} J i. 5 - ^{(* 3 e- - 10) 2 = - -sinf . 2 (s -4s)(.J = = In Problems 35 + 4j s 1 2 1 f s2 8 5-4 36 ' s _^L_ J_. ^ = #{/(*)}= s 13 + 4)J e~ st dt = 7 + + s 1 2 + ) > 1 J 12 2 cos - 1 r e^. (73^ ^{( 1 238 = 10 e- _J + fs s 4. U S- 33. 36.— Exercises 7.^L} = J_ * + 4)j +3 6* \(s 2 f{x) „_i \6\/3 * + \(s 2 3? -if 34. 1 ! -9J .-5t 36 = 1 — f — cos t + sin t I 1 + 20 5J r^-4'^T2) = 4 COs2i+ 4 6i/3 -t^-t 2 s + l + 4 ~5 s 1 45 2-^ + ^-2 + + and 36 we use the J + 5 -i 2 1=^-1/ g(z) for at most finitely 2{f(t)} s 5 2 l4"^?4 ^U .-Lsin^f Exercises 7.^dt=-^~ — 3 s jo - 2 s 6 — s2 1 + 4j + sin f — fact that 45 1 „ 1 1 1 s 3 1 2 cos 2t sin 1 S1Il2i = ^ (s 3.i 2 2 s s W 32.2 s+1 28. l)(s 2 l)(s 2 + 35. > fors>3 3 2.sin2t 3 6 3 s 2 2 1 +4 2 s 2 +4} — — sin 2t /™/(x)di = Jo°g{x)dx if both integrals values of x.s + 5)J U .. -4 e 6v3 3/ t many for a s 1 . (11 MIs s2 4) 30. 11. 3 (2e 2 J (C + 6* 6 _« .*{*»«» - I)*} J 12. = S ioh3t} 5 { [ \(s 1 - I_ s + 2)3 - 2 —^2—^1 t (s l + 2) 2 + l 2 = e_2t cos _ 5 + 5. l s + I) 1 1 1 . it.s v-J* 5 _ s+l (s + 2)3 _ (s + + 1)* 3 2 (s 6(s + 2)V 239 - 1 52 j 1 4 * - 2e_2t 9in( / 3) ot2 2 3) ! l22 2e..^e. t coa W ._ 4te _.3t coS 5 I -»-t_ I 2 + 5t. 18. ls 2 W 2 ' 4s + 6s + 34 J 1 _ = s 2 (s l(s 1 „ 1 . } * " (s-l) 2 * l = ±tV \6(s-l) 4 J 6 — V + ^ = Win 5 U [ 22 1 * ( + J 3t}=y|^e + i y-i 9 .3t sin5t 1) fe 5 J t „-t _ 1 _ 5e _.3 7. +4 2 s-l + 36 1 2 7^ " 1 2s-l + ^e cos6t} 1) . _ (fi 10. ^ - 14 .Exercises 7. t = _} + 5J ^. \(s W v-J^ J J + 2)^-^ 2) ( 't.le-'costt) = 1 J.1 12 2 2 + 2 (s+ y|L e -' sin 2 t} = y{e 5)2 . s-l) 4 J -J 21 2 _ + V' . [ J-lJLi} = + ^ . 2 "I? + 3) 2 + {. + 2) 2 + ( (S 2 (s + " 1 . ** _ + sin(i-7r)%((-7r) = ^- 1 f e~ 25 e {-— -- ^ = --f ' d$W + 4-J -28 55 p~ 2s + ) r^} S (s2+4) 2 240 = -'«(*-2)-{*-2)K(*-2)+«*->*(*-2) . 36 yj ^" - 37. — = 2)) 3)} = ~ + sl 3 s .3) * (t - 3) + y* (t - 3)} 3s tt) It (t .3 23. # {tK ^{(3i - (f + = 2)} 'X {(t . 30. 26. - 2) m It - . - 1 f e" 2a 5)} = 1 {ivrTyj y{icos2(} = if f (t -^ - ? l)< (S - SJe 1 "5 « (i - 5) + 5e*" 5 * (i - 5)} = 6 .tt)} = 4f=P » *H*(«-!)}-*M'-i)«K)}-j£ 29.Exercises 7.^(t-l)} = ^/(e 1 "5 (* 33.3)} = 3 ^{ lj'tt (t if{cos 2t K (f - tt) } - 3? {cos 2(i - - <U (t 10e-. - + s + 1 + 2°U (t .2)} = 2) + 3e~ 3a 27. 1 ^{( ( -l)V. a?{(t-i)qi(t_i)} = i^ S 24. if{e 2 -' «K (t - = 2)1 2 J? /e-f" ' (t <3i - 1 25. (e) 2{2-4<V(t-3)\ = ---e.if ^ -. (a) 50.-^-y - a J-^-j- * (t - 1)} . (f) s 52./ s 53.2(3 + 1 )„ 1 + _2) 2 + 36f [( 5 l) <. (b) 57.Exercises 7. t-smt<ft(t- if{/(i)} 2tt)} + i 49. (d) '' — — l- + s l) 2 2 + 1\ 2t - s l] K (* - 1)} - ^{[(f - l) 2 - + 2(t - 1) + l] _s J?{t-*qf(t-2)} = #{t-(t-2)«(t-2)-2'W(t-2)}= s -^2 i?{sin 1 1 l. > V 2 \2 J [(5 + 3 l) + 3) a + 9] 2 . (s 5 + 1 j-cf-if »-'f 1(^ + 2^ + 2)2/ ^ 1 45.3 2 2 1)} = y {[(( / 2 55. 2 3 - 2 a i?{sin t - = -^{^(i-a)-^((-6)} = sin(f p-as - 2tt) K (t - — .(-J—'U + (s 2 + (s-2) 2 + ds \{s ' \(s 2 44 + 46. 1 ds 2 Vs 2 ' ^ -j.2 12 [( s + (s 2 y 2 1) + 2 1] 'dsVs 2 + l// 48.3 38.-6s 2tt)} 2e e s2 .f\2 -'f / s 56. 2 I J + + 3) 2 + 9 J 2 l) 1) ds\(s 2 l/ 6 41. 2 s 2{l-<V(t-4)+«U(t-5)} = 2{t 2ail(t - 2 ^ 36. (c) 51. l) 47. gft B mh3*} = 2 / 6s ^ 1 -^(p^)- 39. Y( S ).I)* Y(s) (s 6.s) - y(0)\ + Y(s) = 2 (s - 4s + 5)Y(s) -s + 5 0. y'(0) (s 2 -2s + l)K(s)-2s + = l 2s. [Jo o ds \s s 2 / 1) m^} -^ £ sinTcos(f-7-)dr[ = ifU + +3 +l l J 14. . 2[j\e^dr} = 12. s 2 + s+l 1 J (s+l) 2 d s+ + r* 'o -t.S y(0)-y'(0) + Y(s) (s 2 + l)Y(s)-2s-3 VI r(S} ~ 1 7.<M J s ( s2 l 1 + 1 2s + 2) 2s 1 ^ cfes 2 +l./ s (s 2 + 2 2 l) (s ^ ++ l) 2 + = if {sin (} if {cosi} = ^ ifn/'sinr^U^if/rsinrdxU-A^.if{tsint} = .4 4. ( } s[s X{ tco&rdr) = -¥{cost} = 10.1 Exercises 7.1 . if|^ e-r cosrrfrj = X\ fTsiRTdA = s(s 2 + l) ifje-'cosf} = J . / d« Jo <* \ Te- T <M = f —d (1 - 1 + X 1/ s 1 ^ ds\s(s + l)2) =- 2 (s 2 3s 2 a (s 2 + l + l) 3 2 l) . T 1 Te. if{ 13. We solve = s 2 Y(s) %{y" -2y' + S - if {y"} 2 - y} 4if{y'} - sy(0) = Y( S ) - */(0) = if {0} - sy(0) + 5if{y} - 4\aY{a) - y(0}} + 5Y(s) - - 2{sY(. if{/V«fT} = -if{ e [Jo 8. X{y" - V+ by} = 5. S (s* sl 1) t 9.(a \ 11.— -f. —^~ - = a ) 2s + > = . We solve %{y" + y} = if {1} s 2 = 1/s. y- 22 if.sin 4^ + - — . + l)[(s-l) 2 l)J } \s(s 2 + (s > 1 e I cos2f] ' . (s „ 2 = + 4) 2 J = -/ t /V * e -'= ' r e-<*- T >d7- Jo cos2f * 2 1 = I /'cos2rsin2(t 2/0 — cos 2t sin 2r) <ir = 1 rl 1 l + -sm4r = -sin2i f-f 2 \2 -( sin 2i + 4 = ^(sin2i — 16 + = ^sin2i + 4 + 8 + — cos 16 [sin2i(2sin2*cos2f) -^cos2i 16 2 [2 + l) cost 2t ~ 3T dr = -± 1 1 o 3 . = 5 )} + e = .T = 1 *sini = /Or) cos 2{( J - / sinft -rWr = cos(t. y -1 j .2t-3r ( 3 ^ tWt . 5-1 I 21. = <s r) dr \=e-Ue = f e^e^dr = f e \(s + l)(s-2)J Jo Jo g-*J jif o JO l)J = -ri s(s + 2) ) W Jo I .3t *{ e «* 20.cos At cos 2t 4 o = (s-2)(s 2 lo 2 -sin2f y-T —J f dr^te"' e"' 2 Jo = -I Jo isin2t cos2r(sin2( cos2r = 1 I v ' 2i * . 25. — cos 2((cos4t - .5(1 . 26. • ^l^}-!* ^{i* 16.}=e\(s + l) 2 f i? -1 S j . 27.sin2( cos 2r dr / — cos 2t Jo 4 sin 2t 2t cos 4t 1) —— cos 2t 16 + cos2t + cos 2 2t - sin L (cos 2 2t 2 - - 2f ll J 244 sin = 2 2t) - -tsin2f 4 / -sin4r(ir Jo 2 16 / sin 2t sin 4t . {^F( 23 + (s(s 24.5l l] t */(t) = /(r) e |o cos2t*/(()= .Exercises 7.4 15.l {-j^—F(s)} .t) = if-if—l-. s *{/(()} 33. #{/(()} /" / e~ <dt- #{/(()} JO - -r- dt at T te / ~ s(l dt = _ <it + 1 fff e + _ ee( 3t Bint ^ A- (2 - t)e _s( 1 #{/(*)} s— / -e.T )dr=- f{r)g(t = tf(rMt-r)+h(t-r)]dr= JQ = f f(t. 2{f{t)} 34. 1 ~~ e~ aa ) 2 jf te~ -^y 35.cost — -sin ((cos 2r) — e 2t e .r)dr JQ = [f(TMt-T) + h(t-r)}dT = f*g + f*h 31- 32. f f(r)g(t .2s ) W+ ^——^ e J o 36.u)g{u)du g*f.} Exercises 7. Let u —t~ i — t so that du h} e 2t sin t .t) dr = sin(t ' = 6 -2i — . (1-e-"8 ) 2 s(l-e. x f = e" j£ 2r 8inTe" s Tl 1 sint / Jo 2 = e * '{[(TT^TTf i* + 5) 2 } + 4s «2 -2( ''" r .2as ) dt r 1 _-2a 8t Jq 6 e" 2 "8 Jo e- 2 e ~"s/2 1 - + l l~e-' s j coth — 2 .r) dr + JQ/' f(r)h(t .2"Jo e "sint rft = 1 „ s2 1 dt " s(l -e" + e-<") -e" s 2 (l-e.4 28.cos t — sini(cos2i — ^ sint 2 (cos 2 ^sinf (-cos 29. - -(1 V / sin sinr(smtcosr Jo 2 o ^ -2 ' /' 1 sin2TdT .cost sinr)dT cos2t) dr sin 2t 2 — - t + sin 2 t + l + 2cos 2 () -tcosf = ^e" 2 '(sint - 2 sin - ^ sin2t t t - + ^ cos t(2 sin t cost) tcost (cost) dr and rt f*{g + ~ \ 2 t * ' ~ [t — ^cos t 1) f*9=f 30. of the differential equation is 3 Solving for X {y} we obtain „. is s Solving for f£{y} s 2 + tete~ 1 _3 e -a. 4. 2.Exercises 7. + 4) 2 y The Laplace transform 11 3 As 2s As + 2' = 2 ( is 1 + 4i?{s} = s +4 2 + + 4' u+ of the differential equation 2e _4t : . 3. ^_J + Thus.4 38- 2{f{t)) = T^f\-«costdt~ 1zLri Exercises 7. The Laplace transform Solving for %{y] we of the differential equation is obtain s Thus. l of the differential equation *tf{»}-|f(0) Solving for ?£{y} 11 ' l we obtain vr 1 1 ( 52 + l)( s 1 _l) 246 s+1 1 1 + 13j-1 2(' . (s Thus. The Laplace transform we obtain t£{y} = 1 -75 -. y The Laplace transform s — 1 = -1 + e'.5 1. 1-s 2 2 s {s + 2) . y The Laplace transform a Solving for 2 %{y} we = X{y) - s+b + 5s + 4 2 4 2{y) - - sy(0) 13 X{y) = 0. s ^(cosf of the differential equation a2 6..(0)] 1 + 9 X{y} = we obtain 1 .2. The Laplace transform s Solving for 2 f -27 e + of the differential equation X{y} - sy(0) - y'(0) 3 1 - 4 [s 10 T te is %{y) - y(0)} + 4 %{y} 6_ »4 we obtain s 5 -4s 4 + 6 3 4 (s - 2) 2 4 s 9 1 8 s2 3 2 1 4 s3 4 Thus.y'(0) + 5 [sX{y} - sy(0) Thus. 247 3! 1 1 4 s _ 13 2 8 (s - 2) 2 ' .-e of the differential equation s2 7. 2 2 1 ^27 + 9 8. . obtain 3 -6s + 13 of the differential equation *{y} - *s(0) - 2 (s-3) 2 2 + 22 = --e 3t sin2(. Exercises 7. T/ The Laplace transform Solving for ^£{y) 39 + 4' . 5.6 \s2{y) . 1 -4t .5 Thus. — ~e* - j/(0) 6 [s is %{y] - j. + s2 2 s (s ~ 1112 2 3) 2 27 5 10 1 27 s 9 - 3 9 1 (s - 3) 2 ' Thus. + 42{y] = y(0)} 3s+l 4 -t = j/ %{y) we is obtain The Laplace transform Solving for + sin(). 2 11 1 is 3 s 0.(0)] + y'(0) Thus. 2 2{y} - %{y) we Solving for !£{y} 2 ~ ay(0) i/(0) is .5 9. ^ {3-2) 1 5! ^ 6 = 4 The Laplace transform s 2 = J_ 1 16 a 115 00344 + 16 16 of the differential equation 2{y} - sy{0) + . 3 Solving for %{y} we obtain 2 W _~ s 2 s( + 2a + 1 _ ~ s 2 + 16) Thus. we obtain a 2{v} = 3 ( - s 2 +a s2 + 1 )2 y = cos t s a2 1 + s2 1 + 1 ( a2 1 + 1 )2' Thus.y'(O) - [s 15 a 16 a 2 +4 + 2 4 1 2 a 2 + 42 ' 1 + sin4( " 2 is X{y) - 3/(0)] 3 = (s 248 - " 1 l) 2 + 1 ' . .y(0)} + 5 X{y} = ~ + ^.4 [s 2{y} . of the differential equation X{y} - - _ = j^e 21 .y'(Q) + X {y} = . 12. 2 \sJ£{y} we obtain iVi _ ~ 2 4s s 2 (s 2 7 1 25 s +s+1 _ ~ 2s + 5) - 7_ 1 25 5 7 1 1 t 5 s2 25 (s + 1 _1_ -7s/25 + 109/25 - 2s +5 + 2 5 s s s. is y'(0) + 16 = 2{y} - .I) 2 + 2 2 2 51 2 - | 25 (s l) 2 + 22 Thus. The Laplace transform — ^ sin t — of the differential equation s 2 2{y) - sy(0) - cos t. is . The Laplace transform ^^ e ' COs2t + l ' e Sin2 *- of the differential equation is a Solving for ££{y} 2 X {y} . V 13.y(0)] + 1 = Z{y} obtain The Laplace transform a of the differential equation sy(0) - y'(0) Thus.Exercises 7. The Laplace transform s Solving for 10. y .sy(0) . y= + 2l 11. V(0) . l) l)(s-l)(2s 8 1 + + l)(s 2s + 2) 1 9s + 18 l 1 . 13 -20 e .74 e 7 4 we obtain Solving for w 4 of the differential equation . is = [s^{y} . 16.y'(0)) - [s 2{y} .!/'(0)l-3[ S if{j/ }.y"(0) + 2\s 2 X{y} . !/ 15.S (0)] - (s Solving for Z£{y} we obtain v/ s 2 (s - 4 s 2)2 Thus. = y 14. The Laplace transform 2 \s 3 X{y] - 11 = (s + s 1 it 4 a - 1 2t + te 7 4 2 - 2 1 1 4 (s - ' 2)2 is 2 y"(0)]+3[ S i?{t/}-sj/(0).y(0)] - 2 <£{y) we obtain a 2 + 12 >-l)(s+l)(s + 13 60 13 1 s - 1 2)(s2 16 1 + 20 s + 9) 1 39 s 1 + + 2 3 13 s 130 s 3 + 9 65 s 2 Thus. _ 111 1 „ s - 2 v + 2s 2 s 2) s-1 2 (* - 1j 1 1 2 + - 2 (a 1 l) a + ' 1 Thus.y (0)]-2^{y} 115 s-1 +3 2s .V(0) " 2 s (0) 111 1111 1 . 1 9s + 2' l/2 Thus. 2 + 74 ( . 13 ^60 e . The Laplace transform s z ^ - r 4- ^e* cos of the differential equation X{y} - - 53/(0) - j/(0) 2 ^e' sin t. fl .Exercises 7. l = 7 T . The Laplace transform 5 3 £{y) - Solving for 2 s (0) of the differential equation is . + „ 16 C + 39 249 3 „ CO83( l30 1 - Sin3t 65 - +9 ' = 3 ^+ .sy(0) .5 Solving for % {y} we obtain . cost. The Laplace transform %{y} we -t It 1 1 + -e --e -t + -smi. y 19. is . %{y} we obtain The Laplace transform s Solving for 4 %{y) we .sV(0) . The Laplace transform = 5%t-l)-5e-^°U{t-l). X{y}-y(0)+2{y} = obtain bests = 5e" +1) S 3 + 1- 1] Thus.V(0) - f"'(0) . y 20. £ £ of the differential equation S Solving for = . The Laplace transform = l. of the differential equation is s2{y}-y(0)+Z{y} = \3 Solving for %{y} we V«.e -'-2[l-e-('- of the differential equation 1 £ '] W((-l). y 21. is -€-*.Exercises 7.5 17. 2 - sy"(0) .2{y) = \.*V(0) - 3 s y(0) is g %{y) = of the differential equation 2{y} - A s y(0) = Thus. 3 obtain *{y} = 2e" s($ + l) s(s + 1 l) -2e -a 1 8 s + 1 1 . y .ii 4 s 1 _J 2s !+ 4s + 2 250 6 -t 1 1 4i + 1 2 .3 1 3 + l] Thus. 3 obtain ~ sV - 1) 111 + ~ 4 s 11 - + 4 s 1 + 1 11 2 a2 + T Thus. is a o we obtain Solving for !£{y) 1 l " _ ~ 1 s 2( s + S 2) _s s+ 1 _ sHs + l)~ ii.2{y} = y"'{0) 0. The Laplace transform of the differential equation s*X{y} Solving for 18. 3 2 1 i s2 + 6s 2 + 4 1 Thus.6 25.5 Thus.Exercises 7. y 24. » = + . of the differential equation s Solving for ?£{y} - i 2{y) - 2 sy(0) - j/(0) is + 42 {y} = e" 2* 8 s2 + I we obtain i . y 23.>-k 2 22. The Laplace transform i of the differential equation . is - [s y(0)] + = 6 <£{y} obtain X{y}=e = e a(s-2)(s-3) + 1111 6s 2 s -2 + 1 (s-2)(s-3) 11 ^ 3 1 .2 2 s X{y} - - sy(0) y'(0) 2<1 -" is + 4 X{y} = l-tl s Solving for a %{y} we obtain 2{y} = 1 s(a 2 s Ills 1 — e + 4) s(s + 2 4s 4) 4 s 2 12 +4 +4 2 s2 _. 3-2 s~3 + „1 s Thus. 3 i s 4 s2 +4 . »=-i4 + k '-H<'. The Laplace transform 2 - 6 1) + - 2( e is g-jre 2 31 3 of the differential equation s e 2{y}-sy(0)-y'(Q)+X{y} = i Us g— 2irs .(0) i/(0) - 5 sin 2(f - 27r) (t *tl - 2tt).r i-icos2(i-l) «(t-l). The Laplace transform s Solving for 2 %{y} we = coe 2f + \ Bin(f - 2jt) - of the differential equation ^{y} - - aj. = The Laplace transform ~ cos 2t ^ sin It . ri — e c Thus. s l.(0)] + 3 X{y] = e~ 2a - - e~ is + e _6s obtain 1 %{y} = = tj 3 s 2 s — e -4a + 1 65 + l — e -2s 3 1111 2s+l 3s + 11 11 3 s 2 s 11 - 6 s + + + . 27. y 26.-6s e~ 3 111 + + 3.5 we obtain Solving for ?£{y} '1 3 ITS S . 2 1 + + s l. 2tt) is 1 + 4[s %{y) . = y(0) we . y{t) = c^" 1 { -1^} + (c + 2) if" 1 1 252 (J^p} = OB ' + (c + 2)te- ( .Exercises 7.cos(t . = . 6 s l 1111 + 2 s 3 s + 1 11 T +3 6 s Thus.n)\%t - (1 The Laplace transform s 2 Solving for 2{y) - - - [1 of the differential equation - S y(Q) ^{y} we it) y'(0) cos(t - - 2ic)]°tt{t + sint.e~ 2™ 1 - s rl s .3 + 2 . Taking the Laplace transform of both sides of the differential equation and letting c obtain 2{y"} 8*2{y} - sy{0) s 2 - y'{0) + X{2y'}+X{y} = + 2s 2{y) - %{y} -cs-2 + 2s 2y{0) X{y} (s 2 2c + 2s + + X{y} = + %{y) = l)%{y} = + 2c + 2 cs +2 (a + l)3 2c ( + 5 l)2 + 1-1 (s + l) 2 c s + (a c + l ' +2 + 1)3 2c s (s +2 + l) 2 ' Therefore. y 1 1 3 2 1 -i i-A e -('-» + Ae-"('-« -st 6 A + 3 2 "!/((- D Z + <tt(t-4) 6 2) A _ A--(t-B) + A P -3f'-8) <B(t-6). + 2 l Thus.2. W) 29. To find c we compute B '(i) and let y'{l) = 0. 28. 5(4 - ' 5e) . 6 20 4 The Laplace transform + 5 4-5e^ I 20 + 4(4-5e) of the given equation is y{/}+if{t}i?{/} = y{(}.5e ' Thus.} + 20if{y} = J s (s 2 -9s + 20).5 To find c we let y(l) = 2. Thus.c (4 e *-5e Bt ) Then 0=-e 4 + e 5 -c(4e 4 -5e 5 ) and C ~ g 4e 5 4 ~ - e 4 5e 5 _ e. = _ e * + e «.y'(0) s 2 %{y} + 9s X{y] + r- c 9y(0) 2{2Qy) = ^{1} + 20if {y} = . Then 2 = ce y(f) _1 + (c + 2)e _l = (e-l)e^ + = (e 2(c + lje^ 1 and c + =e- 1. l)(e-'.S?{i/} = . Taking the Laplace transform of both sides of the differential equation and letting c = y'(0) we obtain %{y") s 2 X{y} - ay (0) .+ c s - s(s 2 + 9s 1 s(s-4)(s-5) 1/20 a s2 20) + .9s + (s-4){s-5) c_ 1/4 a —4 20 c s — 5 s — 4 c + — 5 a Therefore.9s ^{*.Exercises 7.1 ~ 4. /(*) . 2 (s %{f) we M obtain (s - l)3( s + 8 s i) /(t) The Laplace transform 2 + |* l . S +2 {sinf}.Exercises 7. /(() if{l}.5 Solving for Jf{/} 30. l) 2+ % ( is = Thus. = e"'. +2 _ + 5) of the given equation . + 5' is - + V5 8 1 5 a2 113 + s Thus. 31.lte + 4iV if{/}+if{l}y{/} 34. - we obtain Solving for Solving for 12 4 (a + J(V - _t 2{f} + 2X{cost}%{f} -4J?{e } 33. e* of the given equation 5%/5s 2 sin \/5 t. we obtain if{/} = The Laplace transform of the given equation = Thus. (s + 1) 3 ' + 1 .2 ^ 2 = /(() The Laplace transform Solving for s is if{cosi} +if{e- we obtain 254 t }i!?{/}. 32. is #{/} = 2{2t} . 1 of the given equation 2{f} = Solving for if {/} T + . smt.4%{smt}Z{f}. Solving for %{f] we obtain 2s 2 yrf1 _ XUJ Thus. 11 l) 3 8 a is + 1) = /(*) The Laplace transform 3 5 4e~' of the given equation + (s 1 %{f} we obtain The Laplace transform #{/} = . 4 1 te * | 1 (s - l) 2 + (S Thus. 5 Thus. is {/} we obtain v/„l j3 ~ g2 +s 2 + l) s(s Thus. 2 4s 2 + 4' 4 we obtain U' Solving for 2s 2 + 2 2 of the given equation jfr 37.Exercises 7. sX{y} . = is . 8s + + \e~ 2t + a 36.1 3 |e 2t | i(r) dr = 100[1 is -°U(t- i(0) 1)].i(0)] +if{i} + 50 5 = 1 1 s 3 100 e 0. + ( l 1 2s 2 (s 2 + Solving for if{/} we obtain %{y) = —+ 7 (s Prom equation (3) in 0. 1111. l) - 16 /(f) = s 4 8s-2 The Laplace transform Solving for if {/} a 2 ^ f1 ~ f{t) The Laplace transform of the given equation + \ sin2t. 4 11 1 ~2s = ±t - 1 2 3! 12 5 4 ^t 3 ' . cost of the given equation is = #{1} +%{t} + Solving for X {/} we obtain s^s + Thus. = f{t) The Laplace transform + sint. y = te~ 3t Jtf {1} . Ji? \ cos y The Laplace transform = ^ 2 fl* sin* of the given equation — ^ .005[sif{i} ' .} = 39.3/(0) + 6%{y} + 9y{l}^{j. 35. . 2{t 3 }2{f}. 38.005 The Laplace transform —+ i + 50 of this equation 0. Thus. 3) ft / 3 is the text the differential equation di l) sin*. 2t is 2s" Thus. -U. The differential equation 10Ot - 2K(t - + 2e _100 < t . = or — + 200i + 10. = 2 - 2e- 100t - 200(e- 41. 100) 2 Thus.1 '^ - is fl^ + The Laplace transform 1) of this equation lg= £be- ta fl(O) 1 -0.000[£ i(0) 1)].Exercises 7. From equation (3) in = 20. is + 200 y {i} + 10.l > <W(t - + 200(t - 1) lle" 100 ''. i(t) 40. is = m[t - dT Jo -100 " -1 " 1) (t - " * (* " *(0) 1)1. = 0.000(t - the text the differential equation rf» 005 dt r* 1 + + * i{T) O02 lje ' K(t - 1). + 100) 2 (s Thus. is we obtain Solving for E /R EC ' > + k)(RCt + When 1/RC 1/fiC (* + Jfc)(* + 1/ftC) ^we have by partial fractions W=^ When 1) = ( V l/(l/RC-k) _ l/(l/RC-k) \ _ Eo s + a + l/RC R } fe A we have £b R 1 (s 256 + k) 2 1 (J- l/RC-k\a + k a + l/RCJ' .000 The Laplace transform / i(T)rfr of this equation = - 20.5 Solving for !£ {i} we obtain *»-^iU-.000 we obtain Solving for ^W 200 "s(s+100) 2(1 6 J + s s 100 (s + (l-e" s ).000 - s - = 1 1 20.000fe- 100i - 20. g(t) 44. g(0) = 0. The differential equation is 2. The differential equation = — f 5 3) — e | 5 -B(t-3)^^ _ 3 )_ is or 50^ + The Laplace transform of this equation 50s 2{q} Solving for %{q) we = 100$ + Eo[^(( - 1) -H(t - 3)].5 Thus.-e" 3a \s 3 obtain „-3 S 50 [s(s + 2) s(s + 2) 50 12 s + 2j 2 Is s + 2J ' J . 5 1 1 _ H s 5 s + 5) e" 3 *. 43.5 9 = 5 s!/(t-3). The R R differential equation is 10^ + IO5 = - 30e' 30e'^/(f - 1.5^ + The Laplace transform Solving for %*{q} of this equation 12. _ ( . 42. is we obtain X{q} 2 = + 5) s(a e -3. is 100 ^{5} =E (-e~ s .5). Thus.1 Exercises 7. OX The Laplace transform of this equation is 3e 3 Solving for if {q} ls _ liBa we obtain ^-(-'i)-^T + i^"(^^)--Thus. The W= 1 e ll K - " 2(t " 1. )*(* - !) - (! ^ - 2(£ .3 ™/ 2 1 we obtain Solving for 1 y) (a 2 ' + l)(a + + 10 + 10) (s 2 ' 101 Vs s2 + + l)(a + a 1 + 10) W N + 1/ 2 1 101 /_^ + Vs + 10 W.uw-^ffl + 46.3) )^C " 3)] differential equation is I + lOi The Laplace transform = sin + cos t of this equation (t . I_e (•+!)*«>-£t a(l + e" 258 s ) - *) .4. The differential equation The Laplace transform (<-|) + *. = 0. is se. i(t) = rjrr 101 (e~ 10t ^ . (« - is of this equation 8<£{i} Prom Problem 10 c„s 31.~j^(t - t(0) .5 Thus. Exercise 7.cos t + 10 sin t + _1 (. we have #{£(()} 1-e . ? 45.Exercises 7. .' = s(l + e Thus. s 2 + 1 + 1 s 2 + 1 Thus. is + 22{i} = j-X{E(t)}. 4. Therefore = i(t) -[1 -1%t- I e R « 1) + 2%t- -Rl/L + 2e .e -«/£) + £(-1)" (l . = 1 -= + 1 1 Thus.. | Tl=l ' 47.5 and 1-8- 1 = - L s{s + i L/R L 1 1 R s + e" L/R + R/L s 1 s ) (1 - 1 e-")(l - e" 8 1 1 + e~* + e~ 2a . R\ „ / f . we have 33. is s^{i} + |y{i} From Problem t ).2%t - 2) -R(t-l)/L _ 3) + 1} _ 2e -R('-2)/t ^( ( I (l .e~ 3s + -3s is {\-2e~ 3 + 2e~ 2s -2e-' + + R/L s -e h s(s + R/L) 1 R/L){1 ) ). = -iy{£(()}. The differential equation is f + fi=^( The Laplace transform of this equation i(0)-0. Exercise 7. 11 Jl/L) 1 111 and + L s*{s 1 fL/rt 1 +- L rt/L) s(s L 2 /fi2 | L A R s \ 2 1 _ L/R + s s + L 2 /R2 \ s + R/L) L/R s + R/L 1 e s (L/R | L s L/R + R/L / 1 - e _2 ) .Exercises 7.e -«t-«)/£)^( t _ „). ltt .^e" 10 silll0( j_ ' 2) - 3 _3 e -io( t -2) <W(t-2)../L "e 2 Z{q] g(0) = = ?'(0) 0. then 150 s(s 2 9 (i) = | _ C o S lot _| e 49. i(t) < For f < 2 - 5 (' " 5 + e_nt/L I + ) = s + - (' e_i!t/L i ^ + ) U('-*+* a_ * /L )+A( The e ~ fl!t " n)/L )^ " ») we have t(t) 48.-*) of this equation **X{q} + 1009 = 120 sin 10*.+ ^| at* at The Laplace transform sin lOt (1-.5 Thus. is 20 S #{9} + 100i?{9} 260 = 120 - c03lo(( _ 2} . 4 (8 + 10)2 + 102' lOt and i(f) Hcj If E{t) = 150 - 150 %t - 2) . is + 20$. 9 '(t) 5 iur I5e- sinl0f.luc —lot . is + 20s^{9} + 200^f{g} = — 150 . we obtain 3 150 s ( a2 + 20s + 200) Thus.nx .3__ 10t 1K cos r _ r3 e -i°' cail0tlot e sin ^ 4. = -10t 10t = (t. ^i = q(t) 3 1 3 4(s+ 4 a LV + 10 10) 2 + 10 10 2 3 . The Laplace transform ~ fl( '~ 1. !) ^*< 2 - is ^+20^ + 200? = 150. 4 4 .Exercises 7. The differential equation -lO(t-2) + 20a + 200) . " 1 t differential equation 1 of this equation s Solving for !£{q} - )^ - .1)/£ e 1 ). = E C (l .* so (recalling that w2 = 1/LC. is ^b - + uj 2 %{q} = 2{q} + 2XsX{q} s or ( s 2 + 2As + W 2 )^{g} = we obtain Solving for if {q} and using partial fractions 2^ = Eo(l/u L \ For A > w we write s 2 2 (l/w 2 )s s s + 2As + J1 = X{q} = for < <j we write = Ek.s Thus (s + 2A/w 2 ^ _ E + 2As + w 2 2 f i. The steady-state current is The differential equation is = q '(t) -60ie.c(ls 2 for A < e- Ai - J1 ) . 5 5 and = 50.' X > u. . + (u> + A) 2 + (w 2 cos i/w 2 - 2 - A .5 Solving for f£{q} we vj obtain 1200 \ (a + 3 + 2 2 10) {s 1 + 5 a 100) 3s 1 10 + (a 2 10) 5 s2 + 10 2 ' Thus. of this equation S 2 5 (0) = = .) X -(A 2 -^ 2 ) ( s + (s {a + A) 2 — .1O( 6sinl0(.e _A * A2 t - ^ sin 1 . f sinh ^A 2 .'(0) 0.A2) 2 ] . . |f + 2A§W 9 =f.w 2 ^ so (s + A) 2 + (u 2 — X2 ) J \/w 2 - A2 j ' w.a Thus + A) 2 (A 2 s2 +X S (s - A) 2 fl ImP \s J A) 2 -(A2-w2). The Laplace transform + 6 sin lOt. q(t) For A + 1 E c{ -.Exercises 7. s + 2X + 2As + w 2 .w2 1 - cosh V'A 2 + 2Xs + J1 = . 1/A 2 fl/X 2 is ^{ q } + —X{ q = E } 1 L + s k obtain E E 1 fl/(k 2 + l/LC) s/(k 2 + 1/LC) + */(* 2 + 1/LC)\ . 1 slug.At ). 9(i) 51. The sin The Laplace transform = sinf - sm(i of the differential equation s 2 < t. x'(0) = [e~ + l/LC) kt - mx" = -kx + Thus. is of this equation S Solving for + s «. initial 2k conditions are . Also. sin £ = sin(i — 2tt) we can = W/g = 32/32 = + 16x — /([).5 For A = w.Exercises 7.2 Solving for !£{x} x" is sin (t/y/l~C)] 0. is 1 %{x} + 16X{x} = . Recall from Chapter 5 that so that k i(0) = 0. Thus for = A + A) 2 and L\ 2 s The differential equation The Laplace transform N £b /l A) 2 / LA 2 ^s 1/A X + (s 1 s + A (s + A) 2 /' %{q} we = -EoC(l-e. the cos [t/^/LC) f(t).A( -A(e. Eq = ?(*) L(k 2 52. s 2 + 2A + w2 = + (s A) E s(s Z. t < 2?r write /(f) - a 2ir) il(t - 2tt). L + (s k){s 2 + L 1/LC) s \ + k s 2 + 1/LC 1/LC )• and 32 = Thus. = 16 lb/ft. since ( and m Now equation differential + k^LC „-2tT3 + J s 2 +1 we obtain „-2tts y+ 2 16) (s -1/15 s 2 + 16 + + 1) 1/15 S2 + l 262 (s 2 + 16) (s -1/15 s 2 + 16 2 + 1) 1/15 s2 + 1 _-2jts . . and k a:(0) + 4 sin 3t = x'(Q) 2 cos = & or 8 sin 3£ ^ The Laplace transform 0. x(t) = -^r sin At + t>U \ x(0) + ^- and x'(Q) = - sin 4(t 2jt)^ - - 2tt) <(< > m Now 0x'. of the differential equation \ - + 24 _ 2 + 9)2-3 4s ~ {s 2 2(3)a 2(3) 12 + 3 (77^5 27 Thus. 55. is dx 4 Taking the Laplace transform of both sides dx 4 and using y(0) El = ^M-V'(0)-/'{0) = j/(0) |^ = we obtain is . 53.21/2 _ _3 ~ s 2 + 7s + !6 2 + 7/2 a VlE/2 7^*15 _ ' (s + 7/2)2 + 10 (715/2)2 ( s + 7 /2)2 + (v^5/2)» Thus. mx" = -kx differential sid(* lo The Laplace transform 0. = —3/2 t 0.„ 2r „. equation is + x" .bx = conditions are 10 2 mx" = -kx + + 4 -(sin3t y ~ 3tcos3t) = 2 -t sin 3t o + 4 4 y o . Recall from Chapter 5 that that k sin -^sin4f + ^sint.5. The 0. Exercises 7. the 2 Ib. 2 54.W/g = 4/32 — + 7x' = I61 ' 5 slug. initial of the differential equation 21 .5 Thus. f = ~ lo = and 4 = 2k so conditions are is 0./ft. The = 2 -ts'mZt differential equation 4. Now 2 m = W/g = x" + 9x = 16/32 = 1/2 slug. Recall from Chapter 5 that so the differential equation ^x" The initial Solving for Z£{x] f(t). + 4 cos 3f we obtain VI x(t) = is + A. . we obtain _ -3s/2 .sin 3t . (t bU t Thus. f {X 27r) 1/ ( t - 2tt) 2tt _ .-tcos3(.3 ^{z} +-s + 7si?{z} + — + \&%{x) Solving for !£{x) - 2-jt. we have so that 1 3 — = -ax 2 + -c 6~*2 x + 1 1 y(x) 1 24 ' To find ci and C2 /i. y . system yields the c\ = 2 /EI and Umax = y{L) e2 = —woL/EI.5 = Letting y"(0) c\ and = y"'(0) we have C2 v/.2L/3)]. i .L/3) -%x . The this ci we = = and we obtain find C2 y(^) + c2 + ci y"'(L) differential 1 1 ^^i 2 and 4 we compute C2 y"(a:) Then ? 1 i a: = equation ^v>oL ^ - c2 + ^ x.sy"(0) Letting y"(0) = c\ and y"'(Q) — c% and using y(0) y"'(0) = |J ± = y'{0) (e~^ — we obtain . c\1 i c2^ .«-»•/») . .f 2L 3 y we compute = ci + c2 x + 1 - — wo *-!) *H)-(*-?) *(-t) and El 264 .Exercises 7. = Thus. Taking the Laplace transform of both sides s*X{y] . ] wou 1 1 w so that i To and find ci = Solving for From 56. (a:) WQ — EI L\ 4 m . is EI^ = vjo[H{x ./ 3/ L\ ( 2L\\. so that .y"'(Q) = ^{y} - sy"(0) = we have y"'{0) C2 = and using y(0) w ^ 1 \ (l y'(0) - e" = we obtain Ls / 2 ) . The and c\ C2 2i-j <> 2 . = . 21.- ~ £7 ^12" 1 3 is E/^ = ti*o[l-<Sf(x-Z/2)]. Thus.x 2 1 + -c2 x 1 1 — 1«0 we compute (x) = ci y"'(x) = C2 y + c2 x + - — and Then = y"'(L) = yields the r 1 . 4 . w system 21 L2 -f4 w (L\ Solving for ci and c 2 we obtain c\ = %woL 2 /EI = Cl+C2Lr + 1 «j and c2 2 £ ___ =0 3 iu £ = — ^wqL/EI. Taking the Laplace transform of both S Letting y"{0) = c\ and 4 sides . .Exercises 7. c2 Solving for system yields the we obtain cj 2L DO + _ ^L = \wqL 2 /EI w L2 6 £/ w L 1 and = — ^woL/EI.5 Then y"(L) = y"'{L) = w 1 i ^ 57. «B[a: I 24 18 equation 1 r Ll / differential 2 £7 x. y{x) To find ci and C2 1 -c. c2 Thus. ^ ds = a 3 . is -|[^M. we obtain The Laplace transform c\ = wqL s /24EI and of the differential equation C2 = —wqL/2EI. dx* we obtain s^{y}~ S y^)-y"'{ Q = ) f 1 -. The differential equation and using j/(0) = y"(0) = is d^y El-r—r dx* = — =— El d^y mjo or r Taking the Laplace transform of both sides . I Letting j/(0) = C] and y"'(0) — C2 wc have " £/ + 55 + S2 S4 Then To find c\ and C2 we compute Then y{L) = = yields the system ^ = -w Solving for cj and C2 59.5 58.y'(0)]-^M = ~ Then and = -4- + This is 3 a first-order linear differential equation with integrating factor e/' s 3 ^{y} = . . Thus. Thus.Exercises 7.(\ds = J so 5?{y} = —2 + —c s and 266 s + c. The Laplace transform of the differential equation ~ \s 2 Z{y} - - 2/(0)] 2 is ^[sX{y}\ + 2%{y} = 0. = = ln^} -~l -21n( S + 2) + c => {»} = ce" 2 ^ = ci^ + 2)" y(£) (a) The Laplace transform . Solving for !£{y} we obtain ^ {V} = as 2 + bs + c- Thus.5 60.J Exercises 7. } is = sin t. V2 1 -21 and cife = 1 f' — (sin I t cos t — cos t sin t) dT — Jo cos t — t sin t -+- (sin i) / Jo cos (In cost!.2{y}\ - ( 2 S X{y} - 2s . From part (b) of Problem 61 the solution of the given initial-value problem - sec ry\ (t / t) dr where y\=!£ Jo 1 1 1 L + . 1 Thus. the Laplace transform of equation (13) gives \as 2 + &s + cj a I w as 2 + 6s + cj a by the convolution theorem. Vl (b) Now if = %?{g(t)} =i?_1 {as 2 + fe + C }- G(s). Tlien -S 2 .Z{y} } - 22>{y} + 2%{y} = and This is a separable differential equation so ^§jjjy 61. of the differential equation is (as 2 + bs + c)l£{y} = a. I dr— sin t (cost) / jo cos T dt . 62. The Laplace transform = ^sm4((-27r) fl l/((-27r). The Laplace transform of the differential equation is of the differential equation is so that 2. 268 2?r) +*U(t - 4w)].6 1. of the differential equation is S -\" 1 bo that J/ 6. of the differential equation is *<»>so that 3/ 5.6 Exercises 7. ( .Exercises 7. The Laplace transform p~ s 2 so that S 3. The Laplace transform = 2e- 1 + e-< i_1 of the differential equation ^(t-l). = sin( t -^(t-f) + sin( -f)^( -f)=-cos^(t-0 + co ^( -0 The Laplace transform ( S i of the differential equation is so that y = cost + sint^fi. The Laplace transform sinf + sini^((-27r). is " ?TT( + e *<»> = 1 a ") so that = i/ 4. of the differential equation is „-2tts so that = !/ 10.3 "! S in3{t - 12.2 *'.{t of the differential equation + 4s + 52 3 (s s2 13 + 2)1 + 3 2 + 4s + s + (s ~ 1)a U(t-l). - 11 1 4s 2 2 s2 + r 1 _1 |.tt) 111 2s\ . The Laplace transform of the differential equation 2 i is + 2s 11 11 2 s 2 s + (l 2} + O so that _ 1 8. The Laplace transform = (t-l)e. -I]*(t-2). The Laplace transform e -2(t-2.) sini 9/(f-27r).6 7. is 13 +2 + 2) + 3 2 2 + 1 3 (s + 2) 2 + 32 so that 2 y 1 = -e~ a sin 3t + e _2£ cos 3t + -e _2((_.r) sin 3(f + ie. of the differential equation %{y} = is + {s 1)= so that y 11. The Laplace transform s 2 i e -2£*-i) <?/{(- of the differential equation -2 8= 3 e (s-2) s(s-2) is 3 1 4 s 1). The Laplace transform X^ of the differential equation 1 (s-l) 2 (s-6) + -2s e 5-1 5 (a + - 3jt). The Laplace transform O Of J. is -is e (a-l)(s-6) 11 25 c 37r) «(£ - 11 l) 2 25 s-6 1 1 5 s- tt)^ (t .Exercises 7.2s-2 so that J 9. 2 + i/'(o)^ + Using y{L) 6EI\ 3 I2 0< x3 )' a. < 4 ^ so that { ^ JfOO ' FOB rO dt = / 9(t)d(t-to)dt = g {t ) fV 3l e- st S{t - ) g(t)6(t = e- st - t ) dt - 6(t / °. X we know that 13 ^iv"(o).. { ( j * e _3. 5 of the differential equation is 13 12.Exercises 7. ) < (>0 then from /°° /(*)*(* J-oo - (7). . If /(0 = f 0. 4) dt = f°° J0 270 <5(f -4)dt = We' 12 .6 so that _A e t-4 + 5 13.-f). Using y"(L) = = and V 14. The Laplace transform l e 6(t-4) m{t - 4). FVom Problem we obtain EI A X 6EI + X = = and Assume io > X 2) 2] \ and g(t) = i§(x-f)\(. -co 16... we obtain !^(lV 15. £/ 6 s" so that 3 . y'{0) = — — eiiiwt. w 1. of the differential equation s + is s 5 so that V = S(t) - 5e" 5t ..3ir)%t - 3jt) of the differential equation = ( e" cost is * <»> = i so that y Note that 19.6 17.Exercises 7. . The Laplace transform s 2 of the differential equation X{y} - sy(0) - y'(0) is + 2{sX{y} - y(0)} + 2%{y} = -e" 3 " so that *M. +5 + e . The Laplace transform of the differential equation is so that Li Note that 20.(s+ + 8 1 1)2 + 1 ( S+ l)2 + 1 and y 18.3.(t . i{0) = 1/L ^ The Laplace transform 0.) sin t°lt(t - 3tt). = e"'coB( - The Laplace transform e~ (t ~ 3w) sin(( . ) 1. 2{f{t)} 2. %{f(t)}= 3. = 1^0.jr)H(t .2a -e.Chapter 7 Review Exercises Chapter 7 Review Exercises = te' . False. False.£{flm2t V(t Theorem +4 ^{tsin^^-l^ 12. since /(() 5. 4s S2 ( . f e- if(e. False. True. if J Is .3 'sin2(} 1 1 11.tt)} = s ~ 5 5 l(s-5) + 22 2 -™ ? | 2 -e (s-5) 2 + 272 1 22 / . et = = 7 dt = -U. co F{s) 6. 6t + 1.tt)} = if {sin2(( Utf-i ^ -103 + 29/ £ 2 7. (See f + 4)2 — .4 in the text. consider f(t) 4. since lim e _. consider /(£) jo dt r°° ^ . e 10i .i3 ) = (e (s t -1 ' 2 10 ( ) — + 1 = . and 3) 2 g{t) — 17.12 (2-t)e~ et dt=-^-^e.s [ 10. Chapter 7 Review Exercises 18 = 20 . cos7r(t - - +sin7r{( 1) - - 1) = H-^(t-^1 = ^^^t ^{ht^I L + nV + tmr i 2s 2 I 21. y{e~ 5( } 22. ^{(e 84 /^)} 23. ^{e°<^*>/(( 24. 1*1= 2 Z/ mr J exists for s > 2 I s (n 2 7T 2 ) /L 2 J -5. "^(s " ») - - k)%t - = k)} e~ ka %{e at f(t)} = e- k *F(s - a) l f dr = t Jo 25. (a) /{() =t- 26. = + = - jt) - sin( = 1) -<U(t _ =t- 4) _ -(a-l) (t - l)*{t - 1} - *(t - 4) _J_ e ~4t<-l) s %t - 3tt) = — -sin(( 1 - jr)<3f(t [(t - + 2]*(t - 2) = 2 + 2) - (i - jt) 2)<K(t 5 *{* »,}.^ + * l ( ( /(£} - -2s 2' S (a) !)+<«(( + sin(t --^- + -^-3- = 2 - 2"tf(t - 2) + (b) 28. - i]H(t _ I e -«- sint"U(* *{/(,)} 27. (a) /{() (C) l) ^/w}-(rh?-(rriji e (a) /(*) (b) - = (b) <«> [(( =t- t°U{t =i- 2(t - - 1) S -l)2 + {2 - t)K(( - l)<B(t -!) + (*- 1) 2)«« (t (2 - - 2) - 2) - 2) - 37r)K(t - 3jt) Chapter 7 Review Exercises - (b) + we obtain 29, Taking the Laplace transform of the differentia! equation (s-l) 2 so that = y l) 3 (a- 2 + ^tV. 5fe* 30. Taking the Laplace transform of the differential equation we obtain ^ {y] = + 20) (s-l) 2 (s 2 -8s 111 6 169 a - s-4 6 - 13 (a 1 169 1)2 (s - so that y y = —e< + - -I( e ( 169 13 —e 169 4t co S 2t 5 + 22 4)2 — + e 338 4t {a - 2 4) + 22 sin2(. 338 31. Taking the Laplace transform of the given differential equation we obtain s(s 2 -4s + 6) (s-2) 2 (s-2)2 + 2 « V +2 so that y = 5W(t-*)- Be 2 *'"*) cos ^2 (( - jt) « (f - tt) + 5 V2 e 2 32. Taking the Laplace transform of the given differential equation My) ws = s3 s 2 (s 6 + fo2 + 1 + l)(s + 5) 1 1 1 5 s2 ' + 3 2 + s 1 1 s 5 s2 1 1 2 s+1 + + + 5) e 50 1 1 4" 1 H> + l e -(t~2)^( t _ 2) - A ? + i)( s +5 s 1 W 1 +5 1 ie- 100 e -5('-2)^(( 274 V2 (t - 2s _ tt) %{i we obtain so that + -*> sin S (s 1 s ( -2* 13 1 1 -+ > I s 2 (s+l)(s < 2). 2B e ) 2s Chapter 7 Review Exercises we 33. Taking the Laplace transform of the differential equation s 3 s 3 (s-5) (s-5) 2 obtain 2 1 1 25 s 2 125 a H 127 1 5 s3 125 s - _37_1_12_1__1_2_ ' 25 s 2 125 s 5 5 s3 + _37 125 s so that y 2 2 125 25 = ( _ -f , 2 + 27 e ,, 5t - 125 5 34. Taking the Laplace transform of the integral equation we obtain + s(s 5) 3 . 5s 2 35. Taking the Laplace transform of the integral equation „(0 = i +t+ 36. Taking the Laplace transform of the integral equation (#{/}) so that /(*) 37. The = 2 = 6-^ or +5 „-« that so that 5 s we obtain |t a . we obtain #{/} = :M * ±6(. integral equation is 10i +2 2F + 2t. Taking the Laplace transform we obtain ^ A (s 3 2 s ^Wl0s + 2 The differential +2 = + 2) —+ 9 s ' 2 s 2 + = -9 + 2t + 9e~' /5 Thus, 38. s 2 s (5s equation ' 45 5.s + = 1 . is + 10^ + 1009 = 10- 10*(i-5). — +" s -* s 2 + " ' a + 1/5 Chapter 7 Review Exercises Taking the Laplace transform we obtain 20 + 20s + 200) 2(s 2 1 3+ 1 10 s 10 (s + 10j 10 10 2 + ~ M sin 10( 10 2 + 10 (s lO) 2 + (l-.-) 102 so that = q{t) To~ e ~ l0t cos 10( " To e ^o 39. Taking the Laplace transform of the given differential equation we obtain 2{y} = (L 4! 15! EIL \48 5 6 2w s 120 s 15! 120 s3 2 s s4 6 so that V where y"{0) = = cx 2wq and L 1 EIL 48" y'"(Q) 120" = c2 Using . = ci u) j/"(Z.) = c2 2 , Q2 3 2 = we find and y"'(L) L 2 /24£7, ci --) ~\~ 2/ 120 V ' = -woL/4EI. Hence wo 1 5 YIEIL ~H + L i2 4 ~ 2 T 3 L3 + 2 T L\* / 1 / L\ 5^2) n*-*) 40. Taking the Laplace transform of the given differential equation we obtain 4 s4 2 +4 + +4 s4 4 wq 4EJ s4 +4 so that y = sin + where j/"(0} — cj a: sinhx 4El and + sin j/"'(0) ^(sinxcoshx — - = ^ C2- Cl cosh Using _ wq ~ El j/(tt) cos a: sinh x) ^= cos and - y'(7r) sinh = we find WO cosh j siring 2 sinhTr 276 - sinhn ~ ^)]^ x — ( Chapter 7 Review Exercise Hence, wo smh f* y - —=77 2£7 . , . sib x smh j - sinliTr + 8in [ (* - —wo— cosh 5 (smxcoshx - coszsinhx) cosh 1) , 4£7 smh ir x cos ( " I) siIl!l (* " 0] * x" I) ( 8 Systems of Linear Equations Differential Exercises 1. Prom Dx = 2x-y 8.1 Dy = x we obtain y = 2x-Dx, Dy = and 2Dx-D 2 x, and (D 2 -2D + l)x = 0. Then = x 2. c\e + C2te Dx = 4x + 7y and Dy = 2 (D 2D - 15)x = 0. Then From Dx = -y + 1 and cie Dy = t and y = - (ci + c2 e~ 3 5i x - and ' we obtain y t y c2 )e* + C2ie'. = ^Dx - x - 2y we obtain y From x= 3. l = - c2 e~ 3t ^c\e ht — t - Dx, Dy = Dy = ^D 2 x - ^Dx, and fx, - 1 . D 3 x, and (D 2 + l)x =1+ 1. Then x = ci y = ci sinf cos t + C2 sin f + 1 + i — 1. and _^ 4. From Dx - 4y = 1 and x 4- Dy = 2 x — c\ V = -7 c 5. From (D 2 + 5)x-2y = and (D 2 + 1 2Cos( — 1.1 = 0. and (D 2 + \)x = 2. Then 2 -ci suit 4 and -2x + (D 2 + 2)y + 6)x = l)(D 2 , + C2 sin t + and 4 +t— - \Dx - | Dy = \D2 x, we obtain y cos t C2cosf — 1 ci sin t 4 - . 4 we obtain y = £(D 2 +5)x, D2 y = £(D 4 +5D 2 )x, Then i = ci y = 2c\ cost cost + C2 sinf + C300S VEt + C4 sin <Sfit and 6. From (D + l)x Dx = -\{D + 2 + (D = ci -C3C0S y/6t — -C4 sin \/6t. — l)y = 2D)y, and (D y + 2c2sint — 2 2 and 3x + 5)y cos v^5 f = + (D + -7. Then + C2 sin V5 — i \ and 278 2)y = -1 we obtain x = - £{D + 2)y, Exercises = 1 7. Prom (P 2 D2 x = 4y + ^ 2 ( l~3 e l and ~3~ C2 D2y = + 4){D - 2)(D + 2)x = x ~ Cl -3e = \ 4x - ( v5t+ cos I I — we obtain y = e' 2 \ -C2 J - Ci 3 i- . smV5i + - |D 2 x - ^e 1 ZJ 2 y , 8. . = jP 4 a: \e l 4)x = , and Then . ci cos 2t 4- c 2 ain 2t + c^e 21 + Cie~ 2t + -e l 5 and y 8. = -Ci cos2t- C2sin2f + 5)x + Dy = and (D-5)(D 2 + 4)y = 0. Then From (D 2 (£> + + {D - l)x a: = c\e y = C4e + c3 e 2c + C4e~ 21 4)y = -e'. we obtain (D - 5)(D 2 bt + C2 cos 2f + C3 sin 2t 5t + C5 cos 2t + eg sin 2t. + and and (6cj so that C4 + (D Substituting into l)x + (D — 4)y = + c4 )e + {c 2 + 2c 3 - 4c5 + 2ce) cos 2t + = — 6ci, From £)(D 2 (-2c2 +c3 - 2c 5 - 4ce) sin 2t = — 5C2, and C5 = 1/ 9. gives st Dx + D 2 y = e 3t and (D + l)y = -8e 3 Then -6cie l)i 4- 5t + cos 2t + (D - = l)y - ^C2 sin 2f. 4e 3t we obtain D(D 2 + l)x = 346 31 and '. y = ci + C2 sin f + C3 cos t — _4_ 3i 1 = C4 + C5 sin ( + ce cos f — 15 -re 15' and Substituting into = ci, C5 l)x + {D - - Cl) + {C4 so that Ci + {D = C3, ce (C 5 - = — C3, from D 2 x - Dy = D{D + 1)(D t and (D + 3)y = -1 - 3t. + 4e 3t gives - C3 - C6 C2)sin( + (C6 e . + C5 + C2 ~ C3)cost = and ci — C2Cos( + C3S111 + 3)x + (£> ci + C2e 1 + 3)y = 2 17 — 15 e we obtain . D(D + Then x and = = x 10. l)y -+- = ' + c3 e 3( - + t ^t 2 + 3)x = 1 + 3t and 1 Exercises 8. = y (D + 3)x + (D + Substituting into + c5 e" + cee~ 3i + 1 ! ci = Z)y D 2 and 3(ci+c4 ) + 2 - Dy = x -t . gives t + c 5 )e- = l 2(c2 2 2 and + c s )«- + 3(3 C3 + ce)e- 3t = 1 (ca — — c\, so that C4 = — C2, C5 ce = — 3^3, = -ci - -l)x-y = and (D - 1)(D 2 + L> + l)x = 0. Then l)x + Dy = y 11. Prom (D 2 {Z? and c 2 e' i - 3c3 e~ 3! +t- we obtain ^t = t/ 2 . (£> 2 - ljz, Zfy = (D 3 - D)x, and ' x = 4/2 +e l cie >/3 C2 cos -—t + \/3 C3Sin -—-t . and 3 / 12. \ \/3 _ tj2 3 From (2D 2 -D-\)x-{2D+l)y = land (D-l)x+Z)i/ and (2£> + l)(D + l)y = \ _ (/2 . v/5 = -1 we obtain (2D+l)(D~l)(D+l)x = -1 -2. Then x = c\e~ y = c4 e" t/2 + c 2 e~ l + c3 e' + 1 and Substituting into (U — \)x + Dy = —1 (-|c 1 so that C4 — — 3ci, C5 = — 2c2, Prom (2D~5}x+Dy = e 1 and 2 + C5e" - 2. 1 gives -^ )e' 4 1/2 + (-2c 2 -c 5 - -3cie _t/2 {D-l)x+Dy = 5e t = Cl e - 2c 2 e _! - we obtain ^ 4t + U l •J Dy = -3cie 4t + 5e ( e -1 = so that j, = --cie 4t + c2 + 280 5e 2. Dj/ Then and ) and y 13. l '' l - = (5-2D)z+e and l (4-D)a: = 4e*. 1)(D 2 + so that D + l)x = 0. Dy 8.ci . = = - c2 + D2 x - 2(D 2 + D)y .1)(D + l)z « 1 2 and Substituting into y = (D . and the system (-D 2 + D From Dx + z l . = -Dy.l)i + Dy + Dz . C7 = V 16.l)x and — c<it l)y = _1 - ^( + cge"' - -f + {D + l)x x = ci+C2t — C3e' . we obtain z = ci+C2e -t cos( + C3e -i sml + 2 and 2 1 7 cos t 4- 5 . + C3 cos — -t 2 e~'/ sin ^t + (^~c 2 - ^ 2 e"'/ cos ^t.2y = 0.C3)e~ sint and Dz = x we x^de' + e"'/ 2 y = Cl e z = cie ( + ^ic C2 sin 2 — t . ™t + and x l)x (-^-c 2 ~ + 2y \c-& + Dz = + Dy = -e 1 e l \ e~ t/2 cos ^t.sin* and x D(D 2 + 2D + 2)y = — sint. ! + f-^c2 + ^cs^ e~ t/2 sin = e (D . Then - C2 (D 2 - From (D . From Dx = y.c2 t 4.1)(D + l)y = 1. 1 2 5 5 -sint .C3e* y = -c\ + te' and 15. .0.\}x + (D 2 + = + C2 1. (ca + (2c g _( - 2c4)e + e (2c7)e = 1 and l)t + Dy = + Qe" 1 ^t .~c^j + (c2 - obtain x c C3)e~ cost + = D2 = D 3x t.c 7 e' - 2) l)i C2 + + + 2. FVom Dx+Dy = e* and (-D 2 + D+l)x+y = Owe obtain y= andD 2 (D-l)x = e ( (D 2 -D-l)x. x = ci 4.1 + c 5 + (c2 so that eg c 5 4. and 18. we obtain 2 D 2 (D . + (D 2 + l)y = 1 and D 2 (D . D 2 x = -D 3 y. t (c2 4. gives 1 - (ce 0.cet 4.te* + + c3 e* + c 4 e e l . C5 (ci = \)y .suit 5 and t 17. = -Dx 4.cost. Dz = -D 2 x + e'. Then Prom « - C2 c\ 2 .e 4. = (D3 — D 2 — D)x. Dy = = z.1 Exercises 14. Then we obtain 2 and (-D 2 4- l)x 1 . Then .. (D . ) = eg C4. Dy = \D{D 2 - = \{D 2 - x— - and [D l)x.3t . 282 1 we obtain + f2 so that the system has . From Dx — so that 6y = x 0. — Dy + 2 = {D + 1)(D .y D+l D{D + l) 2 z = 0.1 Exercises y 8. 3 — 2){D 2 c l e2t — c 2C0St — cgsin t. x = c\e y = --cie z = --ae -t + -c 2 e. and = — 1c\e 2t — a cost + C2sin(. 2 19. and z . + (D - = ( and Dx + l)y Dj/ y and Dx = cie"' + t2 - 4f +5 no - 2Dj/ = t 2 and (D i1 we obtain (D cie- t + l)y = 2f = It 2 - t. Then + 2( 2 -5( + 5 so that x 22. (D + l)y - = z 0.-C3e and 20.2(D + l)y = solution. Prom Da. From (D + l)x - = z 0. Prom 2Da.2r + 5t. we obtain 0-6 D -6 1 -D 1 —D 1 1 1 -D 1 -D = Then 0. = = + - l)x -cie" c 1 + c2 + -r . C\e 2t ^ + = l)x -2e* so that + C2 cos t + C3 sin( + e'.3)(D + 2)x + y — Dz = and x 0. and 21. D+ -1 X — D -1 1 we obtain 0-1 -1 D+l ao that + Dz = l -1 D -1 Then X= C\ + C2& y = c\ + z = ci + C3e * {c2- + C3te c3 )e _t + c3 te~ ( . -c 2 e dl . .-c3 e -2t t + c2 e 3f + c3 e + 2( . Thus 3. value problem —sinv^A + 6 / ^-cosv^f + ^sin v^ij +1.2D)y = y y = x = -e e +3c 2 = -e 3 . The solution of the x + 2 1 - Thus sin\/2(] 0. Thus and Using z(l) = = and y(l) -(2ci + c2 )e~ 3! . Dy = -(D 2 + 5D)x.-3t+3 t( = -\{D-2)y From Di-j/ = -1 and 3x + (D-2)y = Owe obtain x 2 . solution of the initial value problem _ x = y = _ e -3 t+ 3 + 2ie -3 i+ 3 1 and {D [c\ co3\^2* l l + c2 = e -3t+3 2 is .3 = cie ci 2ci Thus 24. 8. Prom (D + 5)x + y = Then Ax and Ax. — 2D + 3)y = Dx = -\{D 2 -2D)y. The 3 + c2 e Then -\{D . + c2 sin\/2t) + so that 1 and 1 Using x(0) = j/(0) = l [(ci - \/2c 2 ) cosV2i + (v^ci + c 2 ) we obtain C! ( ci = —1 and c2 = Cl = e t = e' initial f-^cosv^f 3 ?/ 1 = .2c2 te~ M we obtain 1 3 = -(2c.{D + l)y + (D + 5D)x + (D + 5)x = 2 = we obtain y = -(D + 5)x so that and (D + Z) 2 x= x = ae~ 3t + c 2 Ie~ 3t y = 0.V2c 2 ) + . ci = e 3 and c2 3 = — .3 -2c2 e.= V5/2. 3 is + 2 - .+C2)c.e 1 Exercises 23. 3 Taking the Laplace transform of the system gives 1 s<e{x}-L = 2X{y} s-1 s%{y}-l = 8Z{x}-^ so that eBI . = -e s 2.Dy = {D-\)x-y = Q. 284 173 « 53 _ it 160 s 1 +4 .1 _ *\ 4( 160 1 1 . 2\Vt ~ s 3 + -s + — — - 777 s{s 7s 2 777752 \){s 1 l T7T7 -16) = 1 " 16 7 s 77i 8 —1 7 77 15 s 7 1 + 173 96 53 1 s - 4 and y Then — 1 8 16 15 t 173 e* H e 53 4i « e 96 1. ^ e 3 and y y = 3 + -e -e' 3 . Exercises 8. Adding the Dx . Taking the Laplace transform of the system gives = -2{x) + X{y} sie{x} s%{y}-\ = 2%{x} so that 1111 + 111 + 1 >-l)(s + 3s-l 2) and s(s- s 2 2 2 1 . A system is 25.Exercises 8. 3s + 2) l)(s 3 s - 3 s 1 ' 2 Then a. Differentiating the equation we obtain equations we have x -t- y Thus 2c2« Dx = Dy. Dx = 2c2e 2t and Dy = = 2ae 2t = Dx.2 1. - 5s .sin 3t. 2 cos 3( Taking the Laplace transform of the system gives (s + 3)X{x} + sX{y} = ± s 1 (s-l)X{x} + (s-l)X{y} = - s 1 so that „. t t j and V -+r + 1 = 1 .3.te 5. 5 = — cos 3t — x -x' = — sin 3i. 3s(s- 1111 1 l) 2 s- 3 3 s 1 4 1 3 (s- l) 2 and l-2s - 3s{3 1 1 ~ l) 2 _ _1 1 1 3s-l 3 s 1 ' 3(s-l) 2 Then 1 1 1 I= 3"3 e -3 . 3 4 t t& ' 3 Taking the Laplace transform of the system gives {2s-2)%{x} + sX{y} = 3 (s-3)2{x} + (s-3)X{y} = Z so that X{x} -s-3 \L 1 s(s-2)(s-3) 2 5 1 2 2 s-2 s-3 h s' and 3s s(s - ~ 1 2)(s -3) 1 1 5 6a 2 s 8 1 - 2 1 3s-3' . 7 — . Taking the Laplace transform of the system gives a X{x} + l-X{x}-2X{y} sX{y}-2 = 5X{x}-X{y} so that -s-5 s2 + 9 s 5 3 +9 3 s2 +9 s2 and Then 11 = -x — y 4. Taking the Laplace transform of the system gives + l)2ix}+<e{y} = l 4%ix}-(s + l)X{y} = l {s so that |X| ~~ s2 + 2s + 5 " (s + l) 2 and 286 + 22 + 2 (s + 1) : .2 Then 2 6.Exercises 8. y 2 6 2 Taking the Laplace transform of the system gives + \)2{x}-{8-\)2{y) = -\ {8 sX{x} + + 2)2{y} = (s l so that + s w„i = and 1 /2 s = + s+l S2 ( S + 11 s 2 +s+ /2 1 + (V5/2) : ~ 3/ 2 ~W <*r x] + l/2) 2 l (s + 1/2)2 + (^3/2): Then y 7. x" 1 — 2 2y2 + x = --( + 3 y= sin V2t. 2 2 Taking the Laplace transform of the system gives 2 (s + l)2{x}-X[y} = -2 -X{x} + + l}X{y} = 2 (s l so that * ' y = 113 -2^-1 X lx] S4 + 2s 2 2 s2 2 s2 1 +2 and Then 8. = e~'cos2t + -e _t sin2( and Adding the equations and then subtracting them = y -e~* cos2( + 2e" f sin21.cos i 5 2 X{x}+3(s + l)X{y} = 8 .sint.Exercises 8. 5 11.2t . smt 5 and 1 = 1 .2 +3 + 2s + 5 -s . 1 13! 4! 2i? + 3^ + and v. 9. n l 8 . gives Taking the Laplace transform of the system gives ^> = r„r . 14! .2ro + -e >.81 5 s - so that = 3 X{ X ] + l) 2 + 5 5i 2 + l 1 1 2 211 s s2 s3 5 s- 2 6 *81 5 s2 + Then 4 = -e 2t —-cost 4 x 5 8 5 . y 5 6 . 13! so that 1 3 10. s2 + s + (s l + 22 l) 2 (s + l) 2 + 22 ' Then a. Taking the Laplace transform of the system gives s + 2 T 1 5 s2 + ' 1 . . Taking the Laplace transform of the system gives (s (s - 4) and w „\ - 2)(s 2 23 + 1) +4 s 3 (s-2)(s 2 + ^ + 2)if{x}-2s ^{?/}=0 4 (a = 3 4 14. 2 so that 1112 sj + i) 1_ Then = i +*+ 1 ^f 2 - e~* and 1 »=3 te t 1 1 » -r =r -/ 1 + r -t 1 -3- 12. Taking the Laplace transform of the system gives 2e" -3tf{x} + (* + l)tf{»} = i + ^ so that -1/2 (s-l)( S -2) 1 (s-l)(s-2) 11 11 2 + e" 1 ~7^T 2a-2 s-1 + 1 I s-2] and _^ s _ 3 _i (s a/4-1 .\)(s i 2) + ^ -s/2 e" " _ s ri i +2 (s-l)(*-2) _ 3 i i i Then and «(*-!). 288 .Exercises 8. Exercises 8. 4 s 21 + 5s + 2 4 s = 7 T5-nr l)( s 2 + n + iv. +6 2 V6 5VSs 2 + 6" 5s 2 + 6 l y/6 5\/6s2 5 1 5s 2 + IT .cos on mi and + £2(^2 — sin 5\/6 and x 2 represent displacements positions. mi = m2 = = 1. + k 2 (x 2 — x\) -^2(^2 xi(0) = ~ 0. Taking the Laplace transform of the system gives -2%{x } 1 + (s + 2)X{x 2 } = 2 s so that s 2 <fif s4 + 2s + 2 _ + 7s 2 + 6 2 s 5 s2 + 1 1 2 5 s + 1 and [0[ . Since the net forces acting respectively. In this system xi sin f + 5 —kixi f 5V6 mi and of masses m2 from their equilibrium m 2 are — and k 2 (x 2 — x\) — k$x 2l Newton's second law of motion gives mix" — — k\x\ 7712x2 Using = sin v 6 v61 5 £1) V6 1^2^- . x 2 (0) = 0. *i) ~ zi(0) k3 x 2 = . s = .cos t + 14. and .2 5s 2 + l 6) 3 r„2 2 (s 2 5s 2 +6 1 Then 11 = % cos * + 5 \ sin ( — ? cos s/6 5 and ^2 = 4 . and x'2 (0) = 1.2 13. The system is = Z" + -3ii -xi) 2(x 2 = -2{xi-xi) H (0) =0 *'. 2 - 5 ~ H 5 ki=kt = ks = 1. -1.(0) = 1 *a(0) = 1 4(0) = 0. Kirchoff's second law. (2 + a 2 )X{x }-X{x 2 } = -l 1 ^{x }-(2 + S 2 )^{z 2 } = -l 1 so that Then xi 15. (a) By Kirchoff's - E(t) first = — -^sinVSt law we have Rij + Lii'2 and E(t) = ii and + 83. = (c) ii (a) By i2 + i3 = Kirchoff's have E(t) i3 — = tf = = 80 -3- - 9 20 c - . + £q so that q is + Rii 2 = + fi2i3 + ^i 3 = 290 E(t) 0. 20 .000 = 400)i?{i 3 } s so that vr 1 _ ~ _ 8.01i 2 + 5i 2 + 5z 3 = 100 0.»-™«»3 0. 12 = .9001 first Li[ 80 . By 22 = Jfci+Z^ = 12 -^sini/St.2 we obtain taking the Laplace transform of the system.0125i 3 + 5i 2 4. law we have ii Rii 2 and E(t) = = i2 Lij + CR\i'2 — CR-iH so that the system Li'2 -flii 2 + 13- + Li'3 By R213 Kirchoff's second law.0025i 3 - 13 = 100 — 9 100 _»„.Exercises 8. . and . = or Lii'2 +Ri 2 +Ri 3 E(t) and on each loop we have L 2 i'3 +Ri 2 +Ri 3 = (b) Taking the Laplace transform of the system 0.20e. on each loop we = CR\i 2 - CR2 i3- Then .™ _BMt — g + — . 90m e 9 — .000 s2 80 + 900s 1 80 _ 9 3 1 9 s + 900 ' Then 13 16.5i 3 = 100 gives + 500) #{i 2 } + 5ooy{i 3 } = (s 400y{i 2 } + + (s . 17.2 (b) Taking the Laplace transform of the system i' 2 -10i'2 + + i' z = 10i 2 120 - 120 + - 2) + 5i'3 + 5i 3 = gives (s °U(t -10s2{i 2 } ™ + sX{i 3 } = 2{i 2 } 10) + 5(s + 1) %{i 3 } (l .-*)- (i + 10 s 240 + 5/3 s +2 (i-. Then + 48e.240e. t2 and ^-T3 e + 375 e I469 + 145 113 COSt+ 85 Slll( Tl3 145 s — + TTT7 ^r-^r + 15 113 s + 2 1 85 113 s 2 1 + 1 .-).e" 2s ) - so that 120(s (3s 2 + + lls 1) + 48 (i-„-)- 10)s s 60 + 5/3 s +2 + 12 s and 240 3s 2 + lis 240 -. Taking the Laplace transform of the system i'<2 + 613 = 50sint + 612 + 613 = 50 sin f + 13 lli2 gives ( S +ll)if{i 2 } 6^{i2} + (s 50 + 6^{i3} = + s2 l 50 + 6)^{i 3 } = s2 + l so that 20 50s (s + 2)(s + 15)(s a + 1) — 1 = -tz -+ 13 3 + 2 375 1 1469 s + Then 20 _.2 " 3 [l2 . -2 >] * (* - 2).5(t .5 " _2 ^3 .Exercises 8.2) and (c) ij = i2 + 13 = 12 + - 240e.a 288e" 5 '/ 3 - - 300e [240 e -2 ' - .300 e .2 < ( 2).60e" 2£ - *3 = 12 i3 = 240e" 5i /3 [l2 + 48 e ..5(i~ 2V3 - 60e" 2 < l -2 V(t >] .2 «~ 2 >] °ll(t - + 288e.6 "3 . i2 280 cos t IT§ Ri 2 + Li' - + — 810 .000 s(s 2 + 200s 6 + 20. KirchofF's second law.005i 2 60 + i2 .Exercises 8.h = gives -200if{i. + } + 200) (s — 120 + 100^{t 2 } = «J?{il} = ^{13} so that * 12 ' _ " 24. ( law we have Rt2 and E(t) = — ii Li\ 30 - 11 V2 = + i2 + 250 _.000) 1 6 "5s 5 3 (s + + 100 100) 2 + 100 6 100 2 5 (a + 100) 2 + Then h= 5 _ 6. mot. on each loop = CRi 2 so that q _ 15t ii = i3 1 q = we 19.100t cos 100t. Taking the Laplace transform of the system + 50i 2 = 0. Taking the Laplace transform of the system 2i[ 0.005i'2 + i2 = I .-iow cog 1M( _ 6 e _ 100i 5 5 1Q0( 5 and ti = 0.|e. ( e +j^-9 e By '3- + CRi'^ Then - = E{t) - = 0.005i 2 + + 50i 2 = i2 60 -h = gives 2si?{*i} + 50^{i 2 } = — s -200^{ii} + (s + 200) %{i 2 } = so that Xin} = s{s 2 + 200s 6 1 6 5 s 5 + 5. 20.000) 5 (a + + 100) 2 100 6\/2 .2 I3 18.5i[ 0.(50^2 } 2 100) 2 havt CRi'2 so that system ' 100 2 ' is .(50V^) 2 292 5 (3 + 50V2 . By Kirchoff's E(t) = Li[ + = first 25 TS m 1 --* 2 . Using across the shorter loop gives 1 ifl.s 2 + 1 and = 50e _1 e" (t_1) sin(i - 1) 293 = 50e _l sin(* - l)<3f(t - 1).^e. and taking the Laplace transform of the system we obtain oil ( S +l)J£{i 3 }-^{9} = 0. so that 2{l} = 50e (a + _1 l) e.Exercises 8.005i 2 Using KirchofF's first + j 2 = | . 1 . (1) so that Then dq 1 „. E(t) = 50e-"W(t - 0.2 Then 5 5 5 and h = (a) 0. dq/dt we have ii — ^3 = dqjdt.100*cosh50\/2t - law we write Kirchoff's second law = ii 12 + ^3.hRi + hR\ + i or £§ + *2i3-^ = (b) Using L = R\ = R 2 = C = 1. q(0) = i 3 (0) = 0. and Summing the voltage drops across the longer loop gives E<S)=i l R l + Combining this with (1) L^ + Rii*. bOe^e-^^t - = 1) 1). Since E{t) E(t) = = ii and summing the voltage drops ^e- 100 'sinh50v^(. iRi + -5. . we obtain + R2 3 . 6x2 + + 10y 10xi 294 + f2 + + 2 + 1 1. X2 x2 x2 - = = y'.=( + = -^'-20 2 3 . Taking the Laplace transform of the system + 02 + 80i = 40? + 0? + 202 = ' 2 gives 2 4 (s + 2) +s } 2 + s i?{0.} (s 2 2 i?{02 } = 3s + 2)^{02} = O so that (3s 2 + 4) or Then 02 S ( 2 + 4)^{02 } = Is 3 s 2 s2 2 s2 +4' 12 3 2 2 + 4/3 = -cos-7=t--cos2t %/3 = 0i . n Let xi = = = y. Let 3. 4 V3 Exercises 8.2 22. y'. so that .cos 4 0" and 12— so that -3s 3 . and y" and y" x3 = = = y".4j/ + sin3t 3j/' —2y' and x\ = xi x'2 = 3x2 + j/"' so that — + sin 3t. Let xi 2. j.3 1.1 Exercises 8. 4tj |y so that = x\ = x'2 = -2x 2 + 3y" x'j = x2 x'2 = £3 - xi Qy' x 3 = 3x3 . y. y'.cos 2f. .. -ix 1 + 4x + x4 = 7. Xi y"' = = -\y + |e' so that x[ = x2 x'2 = £3 = y"r and j/ 4 ' . x2 = j/. Let ii 5. x4 = X3 — 3:4 x\ = 2X3 and j/ x\ = x2 x'2 = Xi x's = X4 j/". x3 = y". Let xi =y.Exercises 8. 4x2 - Prom x' + 4x - u' = 7t 10 so that . y so that (-l/t)j/ + [(4 = = - X2 ( 2 2 )/( ]y so that X2 4~f 2 1 9. and y".X2 = = y. Let ii = y. = 4> — Xi+t.X2 = y*. y'. and y" = + Ay + 10.3 4. and y" = Let xi = y. = x\ - 1y" Ay' -y+1 so that i2 4 = ^3 6. x2 = j/'. x2 — y'. -\y'" 1 x[ 8. x3 x3 = = y". Let xi = j/. + sint — sint. is x' = -2x + y + 5t y' = 2x + y- a degenerate system. + y" = and 24 3x" = 2cost 3j/' = cost y'. 13. we obtain Dx = 2 t + 5£ . Then xi = x2 x2 = -cost* x3 = X4 = -cost < 2 2. + -sint„ 1 1 1 / Xi - we obtain cost = 5f — -sm(.2 Dy = -x + 12. Since Dx . Let yi = is xi. Adding equations. i2 = smt = i'. 2 . w — x\. y3 = £2. This 11.3 we obtain 2x' + 4x - 2y = lOf 2y' . and x" £3 = y. From x" — 2y" Let xi = x. It. and j/4 = y'\ x 3 so that = Wl mi ' 3/3 = 3/4 T712 296 mi .Exercises 8.4x - 2y = -At SO that 10.Dy = the system 14.-x and Si - degenerate. Z3 = 10i 2 -42 2 + 3^5 - and y.3 + lx 2 -lx I -4 ^ -^ "5T ' 1 4 2 X2 - 3 - + 3/25' . and = z'i =^ 25 so that 22 A = 23 = 23 - 4zi 323 + 425 4 = 25 4= 16. 22 = Dx. The system = 50X1 + 4a:i = 25e-'/ 25 - 25e _3t/25 . Taking the Laplace transform of the system gives so that „. Let 2] = x. Let z\ = x. is I1 = ' X2 = 2 . z4 = y.Exercises 8.6t 2 + 4t - 10 =-y + 6f 2 + U + 10 so that f 21 = 22 £*3 = £>23 ^3 - 3f 2 + 2t - 5 = -^23 + 6t 2 + 4i + 10. 23 = x". + 2) + 25 (25s+l)(25s 2 3) 25 1 a + 1/25 1 2 3 Then 2 2 and x2 18. z2 = x'. 2£> 2 x 2Dy = y . 17.3 15. 625(25s . y y = — 1c\e~ and (a) (b) a4 A+B = B-A= 4-2 5+6 + 9-10 -6 8 — a2i3 obtain y 8 +6 8. A-B = +4 2 6 -10-9 f-2-3 4-0 1-2 7 11 -1 f" \u X 2A + 3B- 2 6-5 ^-2-4 ^ 3 +- 2 y 19 -6 18 > 24 -30.Exercises 8. Let a\Dx + a^Dy = b\X + foy + aiDy = b3 x + b\y a 3 Dx so that if then the system Dx + Dy = —x . + l\ (a) = l ^ (c) «3 Dx + Dy = —\y we Exercises 1. and C.4. Since and ai 5 f -4 i\ i 5. is 21. X2.2 "Too 12 100 1 5- = . and #3 be the amounts of salt in tanks A.10. so that x[ 1 = 1 2- 100 4= *3 6 3 T^ x l -" 50 50 1 + X3 -160*. a2 = 0. degenerate.4 . B. -5 ( + 2 -1-0^ B-A = 0-4 2-1 [-4-7 — 2 — 3 > = 28 G 1\ --1 4 11 3 f (b) 0.7^X 2 6 1 100 100 = 13 Too ~ X2 h> h X3 12 + X3 ibo - 20. 298 — —2x and Dx = —a:.3 19. Let xi. respectively. Then x = c\e~ l . 15+ 4 ) 27 -4 -1 M9 6 3 22 \ 6-12 -4 + 4 + -32 -6 + 12\ _ 18 -3 + 1 5.4 -2\ (2 (c) 2(A + B) = 2| 4 \3 3.6-10 -9 + §J + -6-12 19 -18 15+16 -30 31 4 15 -10 .20 1 + + 24^1 18 6 + 12 9 ~ 30 - 48 -36 -4 + 30-24 .Exercises 8. 1/ 12 AB = -20+ 10 BA = 6 3 .5 (b) BA = (c) A2 = (d) B2 = (a) (a) BC- 6 2) -6\ -30 + 12 -11 6 17 -22 8) . A(B + C) = / (b) BA 8 ( -6 -16 6 5\ -4 -5 5 5J 8 10 = (-16) 3\ 5^ 5 12 0) .-32 (b) 8 '-2 -30 / 4. (a) AB = '-2-9 + . 3 -3 + -15 30 8 -24 + -10 ./ 2 8 2 -2 24' 3 (b) A(BC) = (c) C(BA) = (d) 3 /0 0^ U o.-20 24 J -16 + 60-36\ 4 16 - 30 + -6 / > + 20 24. (a) A + Br = 10\ 8 16 20 20 25 / ( 6^ + 12 \5/ G :) 8 \ 10 (2\ 10/ 4 V-5/ /-2 5 -1 7 3 7 5 11 \ -1 4 -( ::) = ) 9. not defined. (a) (b) (AB) T /l 2^ 3 U 4y (.4 18 21 24 28 AB is x 1 and 1 C 7. (a) — ( 4 = 104 72 -18 (AB)C (180) -10 /2\ T (b) B B = / 4 4 (2 5) = V5/ 4\ (c) A+ BT = 8. 16 / V 300 54 {-26 4 \ -10) 8 u 2 3 x 3 the product is / AT A u 78 f -1 1 -1} 6 (d) Since 2 (1 ^ is 99 \ 132 -33. .Exercises 8.3 7 10\ .38 75 J ' = (A 1 + B) T = -14 -u 20 -11 '-4' -7 T :*)( 2 1 -3 -6 5 BT A T = 10 (b) "(1 -6 -14 9 1 7 38 10 75 2 -11 20 8 2 -11 20 8 + 11. Since det A = 27. Since det A = 0. Since det A = 3.12 -10* \ 8 1 . A is I A= 2.4 -t 6f 12. A is singular. Since det A= 4.-1 Au = 4 -4 22 = -l A 32 = 4 nonsingular. A is 4 2 -10 nonsingular. 5 .-6* {.433 = -5. | 2 3f + | -* a -a. + l\ +t 3t-3 et ^ ( = 2* | V-iot/ / 2 +t- 10* - i 3 -38 -2 +3 -5 \-6f + 4 /-9* 14. A is nonsingular. -2 7 cof&ctors are -411=0 Ai2 A21 = -1 A 22 ^31 = ^32 1 =2 =2 = -2 A u = -4 = -3 A33 = 5. 1/-5 -8 4 18.-I 19. 16. Since det 3 The nonsingular. 2 13* + . \ -1 ( 2 -4 Xi3 n 2-2 -3 = 22 4 23 = -19 . A is The cofactors are A u = -1 421 = 7 A Z . Since det A = —6. 13* ( + 4/ + 1^ . ^23 Then -1 2 -4^ -3 1 -2 5 / 2 / 20. A-i .Exercises 8. 14/ 1/4-5 3 17.-(>) 15. l-l 2 A is nonsingular. 1 IF -2 -5/ A" = ±<T* 26.-1 22.10sin2t / + 8e. A is 24.3 ' <iX 28. 23. A is singular.4 Then -1 22 7 -1 .ie"» — e* cos t ! + 8sin2t \ : X= -6cos2(.. Since det A{t) = 2t 2e # 0. The f-\ \ 27 21.\ / Exercises 8. Since det A= —9. -e 4t 3e 4i _( e* sin t . Since det 8\ T -13 7 -I = 3t 2e ^ 0. A- 5 -1 -4e 27. An = -2 A 2l = -2 . -13 nonsingular. / 2e sin t -1\ 7 5y . dt »«t 3t cos 3i 4e 4t 2 + sin 3t ^ — irsinirA 6f J 302 2e' cos f ( IT cos2( 2e-' A is nonsingular.12e. Since det A{f ) 25. A is -5 -1> -19 \22 / -5 J cofactors are = -13 Ai3 = S =5 A 23 = -1 = -1 A i2 = 7 A 33 = -5.4. -2 A = 0.3t \ . -2e 2( + 4e" 3t / 2e* so that dX —— — A 4e 2( - 24e" 3i -4e 2t .-1 4 nonsingular.3! 7 4-14 -19 Ai2 Ai-i Then 1-1 -S S . 3 . y = 1.0 2 + 1) .3 In 2 + ( .4 (=2 -i t=o s=t (c) £m*)**= =2 -2(/(t 2 30. + - . 2 11 -55 ) .0 14 /l | 1 Thus x = 3. and 2 = -5.Exercises 8.3 s° l) 2 s J ( s=0 ( 3 - f 3 (a) ~dt 2f ri 1 /tan" 1 .6 3 1 4 0-3 5 6 1 .(5/2) -2 1 1 2 J 31. 1-1 t-1 a *t \ * E 3 1 / i 1 3 t=0 / 3t 2 /2 i=2 2( ( 6s/(s 2 + /3t " /I 1 l) 3 ln(t 2 (3/2) t V -2 + /l 4 9 2 In 2 6 +3 2/(s 2 -1 . .0 * - - 4 - jr/2 2 -1/3 14/3 \ -5/3 28/3 | 1 . + l) ^ + 12s 2 3 4( + 2 tan' 1 2t fl -28 - 1 3 l) 1 3^ j 1 I -5. = and x -3 1 4 2 --2 7 /l 6 - 11 -5/2 \ 5/2 ) j 34. 7/2.0 | /l Thus x -14. -2 4 1 1 un 1 l\ 1 6/7 fl j 9 1 9\ 1 -7 -1 -7 -1 -35/ ijt. -16 4 5 -10 1 -5 1 1 1 -5 j | . -5 -4 fl 7 \ 2\ | 33.4 /5 32. 1 5\ | 1 - . 3 we t find -5 j/ = 5 — 7^ | -1 /l 0/ VO |t. 1 -1/2. y 2 - 2 1 -2 = 3/2. . 5. | = -5 — Letting 2 (1 /l 6^ 1 f. 304 11. 8^ and z HO 2 2 -4 4 - 5 Letting z -6 — -1/2^ 7/2 J H 8 \ | -4 we \ find y 5 -10 = — 2 + 2(.0 1-5/ 1 \ 9 ij -45 J 9 0. Exercises 8. and x =4— | -35 1/7 1 j 4^ 5 | I V4 -3 = Letting a fl -1 VO 1. 1 —8. and ^ — —3. 10 -10 and 2 = \0 8 — 2(. /i 1 -8 j ^0 1/2 -2 -1 2 -2 6 -3 -7 -5 8j 4 | \0 fi 36. j V2 3/7 1 3/2 1 = 4 1 10 = -21 3 | fl Thus x 2/7 (1 | | k 2 \ 1/2 | 10 3.. + 4f 2 -17 17/2 1 j \3 4/ 1 --2 . 8\ 2 | 1 -2 -2 | j 6 t 22/7 . = y -3.0 = 2 1 ( 35. . =!• i 2 2 1 37. 1 -2 2 -1 6 5 5 I V4 -7 7 9 >o 5/ ^0 5. find X2 /I 2^ 4 4 j j 39. 2 4 3 1 .4 n -1 1 n -1 -1 1 -1\ -1 -1 /l i 1 1 _1 \4 _1 o —2 2 1 \o 3 2 -2 1 4 1 —1 A <j 2 9 4 -1 5 -2/ n u 4 I 1 4^ 5 \0 | /l - o 1\ 1 1\ /l 1 [ 1 1 1 1 j 1 2 1 2 1 | U ii = n 3 1 2 1 1 7 1 3 Thus x2 1. I There 41.0 1 0. -1 1 1\ 3 /l 1 -1 3 1 -1 -4 1 -1 -4 3 -3 -12 n 1\ 1\ 7 I -1 1 -4 1 -4 -1 I 40.A 2 -7 8-A = (A-6)(A- 6 we have -7 2 1 I -7 2 -2/7 I 1) - 0. o\ 1 2/5 1 -5 -1 -20 -4 0/ 1 1 1 1 o\ 1/5 f Letting 13 /l 2 I \Q 07 = we t.Exercises 8. solve d et (A . We is no solution.—5* and 2 —5 1 \Q 0/ y J = x\ 2^ (\ -2/5 ^ 2 —3 3/5 1 j I VI -1 2 -5 7/ I \0 5 7 7 I There /I is no solution.AI) For Ai = —2 =*. 6 i3 = n o\ 1 1 o) I and 14 2. 1 - 0. 38. 3 = . 1\ | i = -1 . Exercises 8. We solve det(A - AI) 2- = A 2 For Ai = 1 1 - = A(A-3) = A we have 2 1/2 1 1 j 2 so that ki = -\ki.4 = %k2 so that ki For A2 = 1 .If Aa = 7 I then 1 K2 = 42. We solve det(A For Ai = A2 = —4 we - AI) = —8 — A -1 16 -A 0\ f\ 0/ U -1 I 16 = -3*2- If (A + 4) 2 = have -4 so that k\ = Jfc2 = 4 1/4 I 4 then Ki = -1 306 I .If £2 = -2 then 1 K2 = 43. If k2 = 7 then we have -2 2 1 -1 j I -7 so that ft] = fo. If k2 = 10 I 2 then Ki For A2 = 3 j = -1 we have -1 1 1 -1 j I 2 so that fci = ^2. = 2&2.25 If A2 = 4 then fl -I 0\ -1 (I 01 j I 0-9 9 1 -1 ] I \5 -1 -4 0/ 0/ .A —5-A 9 = A(4-A)(A + 4) 4. If £3 -9/5 1 -1 0\ -9/25 (\ o) = 0/ 25 then 9\ K. = 1 -2)0 1 | -1/2 1/4 A2 (A A 3/2 we have -1/2 If = - then 1/2 then 1/2 1 2 1 | 1/4 1/2 | I I so that k\ = — 2&2- = If Afc 1 then -2 K2 = 45.4 44. We solve 5-A det(A - AI) = -5-A 9 -1 -A 5 If Ai = 4.A -1 4. = 45 I .Exercises 8.A -1 -A -1 then /5 -1 -5 s5 so that k\ = and k% = 01 9 §£3.AI) — 1 A 1 1/4 For Xi = 1 1 so that k\ = - 3/2)(A - 1/2} = 0. If ho. We solve = det(A . 0. We 3- AI) A = 2 - A 4 Ai = 1 = A)(2 - -A = and kt = 0. If &3 = n 0\ | 0\ | 1 | j 0. . .4 = so that kj and k^ — k$.4 so that &i 0\ | then K2 = 308 o o o.Exercises 8.4 A2 - then 1 so that k\ (3 1 (2 If w solve det(A If 9 1 then 2 then /l o = and k% = 0. If — (\ 0\ 1 j \o j 1 | 1 -1 . = k$ If 1 then K2 = If A3 = -4 1 then /9 U so that k\ k$ and k 2 — 9&3 - 1 - 1 9 - 1 4 *3 If ON 1 -1 l\ 0\ -9 1 0/ o) then /1\ K3 = 46. 4 If A3 = 3 then /O 0-1 1 md = it i *2 = *3 j o \0 ~2 0. If = *a -A 1 0\ | V = 0. We solve 1 det{A - AI) -A 1 6 2- = A 2 For A = 3 6 A 3 1 1 - - -A 1 A we have j -2 6 | 0^ .0 I (3 - A}(1 - A) 2 = . If 0\ I | \4 so that -1/2 fl fl\ I | = 2 then K3 = 47. If A3 — = 1 1 ^ 0> —1 j oy 1 2- I 1 i -A = —3 (1 j o 3 n . that ki = 3*3 and k 2 = Ag.-2 we 2 4 -1 -2 | -2fe.A Exercises 8. We solve det(A - = AI) -A -1 4 = -A -4 -2 For A! = = A2 A3 . have / so that ki + 2) 3 = -(A 0J | and fc3 = then 1 /-2 48. £3 If k\ = (0 0\ 1 1 1 1 1 1 oj ^0 0. 1 — 3t —Si we have -1 +3i 2 -5-1*1° 1 J -5 so that = fci (5 + |i) h- If k2 = 1 + 3i I 5 then K2 = 50.A Exercises 8. We l + 3i solve det(A . We solve det(A For Ai = 3z - AI) -1 .0 so that k2 = and =0. For A2 = 0.AI) = 2-A -1 5 2-A 1 = -A 3 + 6A 2 - 4 13A + 10 = (A - 2)(-A 2= (A-2)(A-(2 + i))(A-(2-i)) = For Ai = 2 we have to -1 0\ 4/5 (\ 4 5 0^ I I 1 j I V0 a 1 I \0 0/ 310 0/ 0- + .A - 2 -5 -A 1 = + 9=(A-3i)(A + 3i) = A2 we have -1-3* 2 -{1/5) 1 + (3/5)i I I -5 = so that ki (5 - If |i) — 1 = fc 2 3* ! I 5 then = K. then 1 /1\ K2 = / 49.4 For A 2 = = A3 1 we have 0\ 6 . 4x2 + a'4 X2 J 0. i 0/ then K3 = 1 51.If = fca * then K2 = For A3 — 2—i we have —10 /i so that fe] = -1 ~ik<i and A:2 = 5 i 4 .0 1 i -i&3- If A3 = / 0) 0\ i i 1 {0 0.4 AB = I.4x2 J ( + a'i%i + &2X2 + a 2 x.If £3 5 then K. Let A= an 112 tt2i a 22 Then x\\ d f a\Xi :)( x2j dt\ (13X1 ' >>*«»^C a-i 52. = 5/ For A2 =2+ i we have -1 f-i /l 0> -i j 0> I 5 -i 4 1 -i —* 1 I I \ oy Vo / I so that fcj = ife = and &2 *&3.4 so that kj = -1*3 and k2 = = 0. so that 'an ai 2 \ /fen hi a2 i 022/ \ ^1 ^2 ( 1 1 .2 \ \ a3x\ + a'3 x\ + 0.Exercises 8. Assume det A^ and K + a2%2\ _ + 0. B = (° t. Then IB = IC and 54. LetX= [ 1. Then \ Then X . Let X= I 2. No. "22 A .A _1 AC. Since (AB)(B _I A _l ) = A(BB _1 )A _1 = ALA -1 = AA" = I 1 and (B _1 A _1 )(AB) . 55. det . 021 022 det A 6l2 _a 2i . consider A= . Since A / 022 \ -a21 -ai2 an J A is nonsingular. . = -au deTA = an det A Thus B= A-_j = „ 1 1 det 53. 312 B= C.5 1 1.Exercises 8.B _1 (A _1 A)B = B'lB = B _1 B = I we have (abj-^b-'a- 1 . AB = AC implies A _1 AB . 1 °\ Vo 0/ f andj ll Exercises 8. .4 Then Oll6ll + Oi2&21 = 1 ttll6l2 + 112&22 — 121612 + 021622 = and 021611 and by Cramer's + ^21621 = 1 rule _ " 611 = . Then o / X' 6.5 3. dt a. dt _t. Let X= . + y + 8sin + t (2f + l)e 41 11. LetX = 1. = X+ 4 3 dx _ ~ 4x + 2y + e = -x + 3y ^ at ( . ~kt dx 8.Ay + z + 2e (t- 4)e* ~ = -2y + 3z + . ± c t t. = -f 3i . -3t 2 Then x'=r5 ' X 2 1 -1 t . di dx 9.9z ~_ x . = 7x + 5y . Let X= -9\ f-Z 4 6 -1 10 4 X /x\ 4. r f Ue-'cos2W) l ^-=4x + y + z + 2e5 dt 10. LetX = y . W Then -1 1 X' = 0\ 5.Exercises 8.y + 2z + e dx _ ~ 3i - 7i/ e 9/) + I e x+ - dv Zt. Since X' we = -5 -10 e _5t -5t and see that 3 -4 21 dt dt at + 4sinf + 2t e '.Se' dz — = ~2x + 5y + 6z + 2e~' + 5t ^= ( . X2.X2. . Yes. Since cost — 5 cos ( — cos t — sin ( J i sin ^ we cost \ X= and * \ see that f X' = i o 1 1 -2 19. Yes. Since X' we 4 5 = 2 -4 -1 and te* 1 -1 X= 4 -4 -1 see that 2 1 15. and X3 are linearly dependent on —00 < t < 00. No.X3) = 17. -1 16. — 5 cos t — cos t — sin t J ^ sin t IVfXi.Exercises 8. Since 3/2 X' = we -3 .5 12. Since X' / 5 cos t = ^ 2 cos f we — — 5 sin t \ . since W(Xi..(5 4 2 cost — 5 sin A — 4sint / ( see that 13. since W(Xi. Since we 1 2 6 -1 Ul -2 / (°\ x' = and 1 \ (0 X= -1.0 see that i 1 6-10 = X' -1 -2 X. n X. since 18. and e< 4 sin f / -2 5 -2 cos t X .X2) = 8e ^ and Xi. -1 / = -2e~ sl / and Xi and X2 are linearly independent on -00 < t < 00 2t and Xi and X2 are linearly independent on —00 < t < 00.Xa) 314 .n ^y-a -3J/2 see that 14. 3/ 25. and X3 are linearly independent 00. since —oo < t < ^ 1 and Xi.-6 1 1 /-1\ 3^ xp + oj 4 I sin 3t. and A= 6 1 Vi 0\ 1 1 0. Since 2 ^ e* + * I ) 2 1 3 4 and te* = e ie 1 thatt /n 1 K = c l 24.X3) = —Me 20.X2. on .5 W(Xi. 1 / 3\ / Xp + 4 [ sin 3t 3^ -3 sin 3i / 3 V 3 cos = see that 1 2 -4 2 . Let / X = 1 /2\ 6 -1 V-5 I e-\ Xa = 1 V 1/ 1 VI/ /O e 3t . Since we 2 1 1 -1 -5 X„ + see that 23.Exercises 8. Since 2 -1 we see that *-G i) 22. Since 3cos3t\ / f we — 3sin3t / 2 -4 2 V-6 1 and . Yes. 21. X2. set for X' = AX on 00.0. 26.5 Then /-6\ xi = p 1 — AX.AX. _t ^ \ 6 ( -2 ) . p" 2t V-2J 3i F = and W(Xi. Let Xi = -1- y/2 X2 = x„ = 1 I U2 + 2 )t+ ( 1 .X2. = x2 = set on —00 < / e t 2t = < 2^/2 ^ AX lt -2-y/2j 2\ and W(X].e "'\ Xi and X2 form a fundamental . X3) —00 < t < 20 ^ = AX 3 . Xa. e 7t\ j /3 e " 316 . and -1 -1 -1 1 Then x.V2 /-2\ so that l\ Xp is a particular solution and 00.Exercises 8. and X3 form a fundamental so that Xi.X2) e^' = -2. 2 [ so that and which give cj = 3/5.sinf 2sint\ ' 2cosi have x(*)= CI „7t . 5 \. =C}e C2 = 1/5. e 5 and M+ c\ = —1/5. c2 Vl = = 2/5.fi„7t 32.3 = 7l 6 a 2t. 1 -. c 2 Vl = 1 = /-I 1/2.3 so 2„2(. ( 5' [ -fe< 29.Exercises 8. *(() " ! e 2t \ "\ # -1 (t) and + sint — 3sin( + cost / fe — -3e* - 1 2 (— 3sint + cost \ -3cosf . c2 /I W e 5t = and 1/2. #(t) 30. Then V2 = 1 £ /-l e 5t . #(f) e 1 28.r 2 1/2. Then ^d V 2 = -i 7* * ( ] e» + I ] e «.5 -e' 3te 3e' We - -e 5t /3te -e' 1 " l e } K -2sint 2 cost / \ 3 cost 31. We have X(t) = Cj e ' + c2 I j e 5t 1 so that X(0) = ci + C2 X(0) - ci + C2 and c\ = and which give c\ = -1/2. I . = +e 'Sie' ' 34. 3 cos i \ -2sinf / + + sin t J c2 \ cos ( — 3 sin t so that and which give ci = —3/2. (to)Xo and follows that ci —5 cos t .«(()] Xo = 0. X= S^)*" 1 *(t)X we ^ - = see that 0. and Xo.Exercises 8. c 2 = —3. C2 = —1/2.(t\ 33. We —1. 318 [*(t)*~ l (to) . Since Xo . Since is = *(to)X = IXo X = *(t)* arbitrary it -1 = = C= 0. Then + sinf 2cos( 3 cos ( + sin t ff-^toJXo and X(t) = = AX X= we know that *(«)* -1 (to)Xo. and ci = J c% 0. 36. Then 1 fe' + e' -3ie ( 9te< have X(i) 2cosi = ci . 4"(t)Xo solves X' = AX. Since the column vectors of 9(t) solve X' X(to) 1. We i fi -t — 2 f _I eP -t _l + 2 lJ>t + ^2 Ie P 5t 2 have 3 / 3 V V-l / so that ' X{0) =d X(0) = and ' Cl 3 — which give —1. Since X(t D ) = »(to)C = Xo we = ci '— 3cost = have 37. and *(*) 35.5 H. => 0/ For Aj /l = 4 we obtain -1/2 I ON so that Vo j Ki 0/ I For Aj = —4 we obtain 'A 2 I 0\ /l 0/ Vo 1/2 I so that 4 K2 — 0.Hi. The system is and det(A . = For Ai ON /l 0/ V0 5 we obtain -1/2 I so that For A2 = —1 Ki 0.AI) = (A . e a e 5! .. The system ^ I -t M + c.AI) = (A - + 5)(A '-4 2 4 -2 1) I = 0. is and det(A .Exercises 8. we obtain '2 2 4 4 0\ /l 10/ V0 I 1 I so that K2 = ' [ Then X = Cl 2.4) (A + 4) = /-4 2 8 —4 \ I 0\ 0. Then 3. The system is 2J V-5/2 and det(A - AI) = (A - 1)(A -5 -5/2 + 3) = 2 I 0\ 10/ 0. For Ai /-5 = 2 we obtain 1 ( | so that V 0/ Ki .6 1. The system is x'=[320 2 |x .Exercises 8. . The system is 9 1/2 x'=[ IX 2. For Ai 0\ /I 07 Vo = 7/2 we obtain -3 I 0' so that -1/2 1/2 For A2 = —1 Kr 0/ we obtain '3/2 9 1/2 3 I 0\ fl 07 V0 6 I so that K2 — Then 5.. Then x=o m.' Then 6.1 4. + c ! r]. For Ai 0\ (\ 07 V0 0\ /l 07 V0 -12 J 8 V - = 8 -5/2 we obtain I I so that Kj so that Kq 0/ we obtain I -1/4 I I 0.6 For A2 = —3 we obtain -1 2 -5/2 5 I 0\ /-l 07 V 2 I so that Ko 0. The system is and det(A For A2 AI) = -10 = (A - 8)(A + '2 -5 I 8 -20 I '20 -5 I 8 -2 10) = 0.1/2 and det(A - AI) = (A - 7/2)(A -3 9 + I 1) = 0. 2) = For Ai 2. and A3 (~ 7 ) ) . K3 = . . K2 = 3 and .2/ 8.AI) = (A - - 1){2 A)(A + 1) = 0.-3 1 | For A 2 = —5 we | obtain 2 I 0\ /l I Oj V0 —2 I so that -3 6 K2 — .6 and det(A - AI) = + 5) = A(A '—6 2 = For Ai 0. A2 = 5.Exercises 8. The system is /l .-5 J / X = ci f-7\ 5 I so that 4\ / _ 7\ 3 f-7 e 5t + c3 5 = 5/ 7 we obtain . and A3 we obtain /1\ (2) ) Ki = = -1 3 K3 = and .AI) = (2 - A)(A ( - 5)(A 4 7) 12 -1 0\ 5 10 4 ^0 5 = = 0. VI 0/ Then 7. = 2. The system is X' and det(A . ON /l o) \Q we obtain -1/3 j Ki = | so that . 1 f OX 2 Vo and det(A -V 1 = X' -1/ 1 = For Ai A2 1.V so that X = (A (') e* ci + c2 /1\ 3 e 2t + c3 . K3 = U/ so that / X 11. and A 3 2 \ -2 I 11/ so that /1\ X = ci 1 W ( e 3t + c2 M -1 2' e- 5( + c3 -2 11 322 „6f = 6 we obtain . and K3 = 0/ ^ -5. 1-1/ \ 2 1-1/ 5^ I 4 f K3 = and . = A2 ^ ( 1 V-i/ 5/ \ 5)(6 2 ( .0/ For Ai = 3. that 4\ X = ci j * + We have det(A - AI) = (A - 3) (A 1 ( + 6 c2 -1/ 12. A 2 = -1/2. ^ c3 = -1. We have det(A - AI) = -(A + = /0\ 1^ + C2 ci + 1)(A 1/2)(A 1 f + e' 1 + 3/2) = For Ai 0. -1 .3 3/ \ so that /-1> X = ci 4 We have det(A - AI) U/ iy I 10. = 0.Exercises 8. = \2 = and A 3 1. -i . /0\ 2 we obtain fl\ 1 W and .6 = -(AH -3)(A + = 2) /l K = L K2 = . i\ -1 / = -A(A - 1)(A / 1^ - = 2) For Aj 0. and A 3 = -3/2 we obtain 4 ( f-12^ ^ K[ = K = 6 2 . 4\ / e \ - A) = 0. if Ki is chosen to be _ | cost X = c\ 2 cos 15. and C3 = = 3 -1/2. /2\ ^ f = K3 = . in Problem 15. In Problems 15-28 the form of the answer will vary according to the choice of eigenvector. = XI) (2 - - A)(A 5 3)(A + 1) -3 2. C2 = 5/2. e sine 4t + c2 2 sin f For Ai =4+ i t — e 4t . and A3 = -1 we obtain -2\ and . cos t we obtain so that x = 1 2 +i l ' 5 \ J e 6 <4+0* = /2eost-8int\ \ 5cos( J / cosi 4 + 2 sin i l \ 5sin( .t Exercises 8. = -1/2 and K2 = and A2 = 1/2 we obtain f j J that X = C! „t/2 If = X(0) then 14. We have det(A the solution has the form | .1/ so that l-T X = ci -3 e 2t + c2 e | 3t + c3 |e-» 2/ \ If X(0) then ci = -1. -2t. We ci = 2 and have det(A C2 - = 3. | 1/ .6 13. *) { = For Ai 0. - = AI) A2 - 8A + t + sin = 17 0. A2 = 3. We - have det(A = XI) (A + 1/2)(A - = 1/2) r Kj= For Xi 0. For example. We have det(A - AI) = . we obtain -3T '1 so that X 1 = 1-3 [ 2 ^J e <5+30< = /«»3t + 3Bin3t\ a I 2cos3( /'sin3(-3cos . 3i we obtain '4 + 3i' 324 — 3cos3t^ 2cos3t 5 '. + cosf\ /2sint .6 Then ..cost siRt ( ) e 2cosi I /-sint-cosf « 2sin* \ J Then X = ci 18. 2cos3t Then X = ci cos 3t I V 19.. 4t e . + i we 4 obtain '-l-i' 2 so that X. U . We have det(A - AI) = A — 2 8A + 17 = / - For Ai 0.Exercises 8. We have det(A - AI) = A2 +9= + 3 sin 31 ^ }e ' 2cos3t 0- For A t ot 5( + c2 J = ( siti3t \ I. We have det(A - = AI) A2 + 1 = + c2 = . Ki-. 4( e / For X\ 0. 1 = f'" 1 "'^^'^ 2 y .' sin X 2 ... / I. 4t . 5sint V we obtain i '-l-i Kl 2 so that —1 — I i\ 8 1 \ 2 — /sini it \ J cos*\ 2cos( / + j — — cost H sin* 2sini Then (sin f — cos f \ / — cos ( — sin t \ 2sin( +C2 2cos( 17.'2 X = ci — cost sint\ 5 cos* 16. 4i + C2 = For A] — sint — { cosf\ e 5 + 3i .10A — t cost \ + 34-0. )e S( ' . Exercises 8. / ' t j For Ai n — cos t + c3 -sini COS 22. 2 cos 2t i \ 1 cost . We have det(A - AI) = \2 + 3 cos3( / 4 sin3f. \ Then X = Cj . = -3 sin ( .6 so that 4cos3f .3sin3t\ . + c2 + 2A + 5 _ 1+M)( = = 0- 5sin3i \ I = -1 + For Ai 2i we obtain so that Xi „/2 + 2t\ ( 2 cos 2f - 2 sin 2t e ' + cos2t 1 Then X = ci 2cos2( - 2sin2i _t e We have det(A - AI) = -A (A 2 + = l) 2cos2t + c2 + 2sin2f sin2t 0. + 2sin2C sin 2t cos 2f 21.3sin3t\ .'4cos3i 5cos3( 20. we obtain -t . /4sin3i + 3cos3t ( 1 5cos3( / 5sin3r. - +i j cos ( cosi sint \ ) Then / (1) X = cj + c2 We have det(A - AI) = (A + 3)(A 2 - 2A + 5) = 0. = For A] we obtain /1\ \°/ For Aj =i we obtain f-i\ K2 = i so that x2 = — sinf i / sini \ / cos t sini ( . 6)(A 2 .2A + 2) = Ki -cos2i .2sin2( For Ai = = 1 we obtain 2 U/ For A2 =1+ i we obtain m so that x2 = e< i = 1 cos f ' 1+i >< faint \ — sint ( — sin f e ( +i .2sin2f > -3 cos It .8A + e 20) = + For Ai 0. We have det(A - AI) = -(A . Vo/ For A2 [ we obtain K2 = V 326 2^ cost c3 — sin f / 1 = 4 + 2i / sint \ > sint \ cos = 6 2 sin 2t 2sin2t \ 0.\ Exercises 8.2 sin 2t I l +i I \ 2 sin 2t + sin2£ \ I Then X=a I 0\ -2 e" 3( + -2cos2f c2 I -2 cos 21 + We have det(A - AI) = -3cos2t 2 cos 2f 1/ 23. cost s cos t j Then cost { X = ci 2 e' + - c2 V 24. - t / we obtain .6 For A2 = 1 + 2i we obtain -2-i ( K2 = - -2 3i 2 V that ( X2 = -2cos2( + sin2t \ -2 cos 2t + 3sin2t e 2 cos 2t y -cos2t. e +c 3 3 sin 2t (1 - A)(A 2 . For Ai t = K.6 so that sin 2* ^ / . /4cos3f .2cos2i / ( — cos 2t y X3 = 2/ \ 2 sin 2i Then '-cos 2t' sin2f \ X = Cl e 1 6£ + c2 e ] 2 cos 25.Exercises 8. obtain \ -5 1 \25j For A2 = — 2 + 3t we obtain /4 K2 = + 3A -5 ) so that X2 = p (-2+3i)t -5 = McosSt-Ssin 3^ — 5cos3t f4sin3i + 3cos3t\ -5sin3( e" / / Then X = c.3sin3t^ . 7 28 K = = For Ai 2 we 4t . / 28 \ -5 e 2t + c2 V 25 / 26. For A 2 = 2i + + 3cos 3^ ) \ = -2 --2t —5 sin 3t c3 / V -(A /4sin3( 2( we obtain 0\ -1 we obtain (~2-2i\ K = 1 2 1 / so that f-2-2i\ X 2 = '-2cos 2( \ 1 J /-2cos2(-2sin 2^ + 2sin 2t\ cos 2t cos 2t + i sin 2i sin 2t 2t . . We have det(A - AI) = -5 cos 3f e" + 2)(A 2 + 4) = 0. We have det(A - = AI) (2 - A)(A 2 + 4A + = 13) 2sin2f 2*7 0. . 2 cos 2* 2 cos 2t „ 1 e 5i . . X = ci -7 e l + c2 6) .2t + + 25) = = 1 sin2f \ . sin 2t we obtain 25 ^ K. We = C2 = —1 have det(A - and AI) C3 = = 6. Then s /25 1 cos 5t — 5 sin5t N ' sin 5t . + C3 cos 5t cos 5t K + 5 cos 5t sin 5t sin 5i „ .6 Then ( X=a We have det(A - = XI) - A)(A 2 1 /'-2cos2t-2sin + C3 cos 2( s (1 + 2sin2f\ cos 2t Oz I) ." . For Ai 0. Ki 5 + 2i we obtain 1 = 1 -2i that 1 1 e . '-2cos2( °^ -1 e. . 27.( cos5( = — 5sin5i^ +i cos 5( J cos 5t 4 sin5f ' + 5cos5f s sin5t ) sin 5t ( .2ij X = ci Uos2( + 2sin2f cos2t 1 . cos 2t + \ 2 sin 2M ct e +c 3 = 328 -2 sin2t\_ +i sin 2( / - sin2t V sin 2t If X(0) 5! . If 4\ ( X(0) = 6 V-7/ then ci 28. = -7 | 6 / For A2 = 5i we obtain K = 1 3 V J 1 so that ( 1 + 5A x2 = ' e 1 I 1 5. - A2 10A + 29 = = For Ai 0. Exercises 8. then 29. We ci = —2 and have det(A - c-i XI) — 5. = A2 = For Ai 0. = we obtain '1 K= A solution of (A - AiI)P K = is P= so that x = Cl 30. We have det(A - AI) = (A + l) 2 = 0. ( 3 i + ca = -1 we For Ai obtain K 1 A solution of K is (A - AiI)P = P= 1/5 so that X = c, le-' | + ca te-* + x 31. We have det(A - AI) = (A - 2 2) = 0. = For Ai 2 we obtain K 1 A solution of (A - A,I)P = K is -1/3 P= so that X = ci )c [ a+ c2 (e 2' + 1 32. We have det(A - AI) = (A - 6) 2 = 0. For A] = 6 we obtain KA solution of (A - AiI)P = K is _ /l/2\ Exercises 8.6 so that X = ci 33. We have det(A - AI) = (1 - A)(A " 1 e I - 6( = 2 2) + c2 0- te , 6t 2/ For A] = 1 + 1/2 I ] e we obtain /1\ Ki = \1/ For X2 = 2 we obtain K2 = K3 = and VI/ 1 V0 m Then X = ci /1\ 1 + c2 e' e 2t + c3 1 W uJ 34. We have det(A - AI) = (A - 8)(A + = 2 I) 0. = For Aj we obtain 8 (2\ 1 \2/ For X2 = —1 we obtain / K2 = 0\ -2 1 V 1\ ( K3 = and -2 V 0/ Then X = c\ ^\ 1 ( e Si U, 35. We have det(A - AI) = -A(5 - A) 2 = + c2 ®\ -2 For Ai = we obtain -5 \ = + c3 V f-4\ Ki = For A2 ! 1/ I 0. f e 2/ 5 we obtain /-2\ K= V 330 1/ 1\ -2 0/ A solution of (A - AiI)P = K is P 2 T„ so that '-2' X-d -5)+^^ Je j 36. We have det(A - = AI) (1 - A)(A - if = . 5( U + C3 For A, = l 5l + w obtain '1' K. = For \ 2 = 2 I we obtain 0\ K=|-l 1/ A solution of (A - A 2 I)p = K is / P= 0\ -1 0, ao that '1^ X = ci ( e' I + c2 °^ -1 °' e + c? -1 We have det(A - AI) = —(A - 1)3 =a For Al = 1 te 1/ ^ 37. j ) ( 2t we obtain -(!) Solutions of (A - AiI)P = K and (A - AiI)Q = P are /0\ 1 I \0/ (1/2" and Q= I 2c + Exercises 8.6 so that (Q\ /0\ 1 1 X=q 38. We have det(A - AI) = (A 0< f l i - 4) 3 = 0- 2 + r ay w 1 t 1 = For Ai we obtain 4 /1\ K Solutions of (A - AiI)P = = K and (A - AjIJQ = P are /0\ /0\ P= Q= and 1 \0/ so that \1/ m X = ci (0\ e 4t + c3 r. e 4t + 1 1 / 39. We have det(A - AI) — (A — 4) a = 0. For Ai = 4 we obtain K= A solution of (A - AiI)P = K is F.1, so that X = Cl | ( e 4t + c2 T; i te,,+ ,e ' ii If then 40. We ci = —7 and have det{A - ci AI) — X(0) = = For Ai 13, = -(A + 1)(A - l) 2 0. K, = V 332 i = -1 we obtain te 4t + Exercises 8.6 For A2 = 1 we obtain /0\ K2 = K3 — and 1 so that /1\ (-1} e" 1 + c2 e + c3 ( 1 uJ If = X(0) then ci 41. We = 2, C2 have det(A = 3, - AI) C3 — (A - and = 2 W 2. 5){A + 5) K = 1 = 0. = For Ai n K2 and = -5 we 5 and A 2 obtain =(~l so that *(*) = 3e 5t 5t E _ e -5t^ ___ 3e- 5 ' __ * _1 (t)=io _ and ] 1 / 3e -5t e« g -5( 5t 3e Then x = *( 42. We have det(A - AI) = (A = )*- (o)X(o) l f + 3/25) (A + 1/25) = 0. ^ e5[ For Aj + ^_ 5[ = j. -3/25 and A 2 = -1/25 we obtain so that /_.-31/25 p -t/25\ / 1 9 P -t/25 Then 25 X = *(t)*" 43. Using 1 (0)X(0)= 2 e -3t/25 ow™ ( X = x K in t i ' 1 tX =l l 333 IX 5 , 25 2 -(/25 .»«,. „-(/25 \ , Exercises 8.6 we obtain For nonzero solutions K we must have (A — 4)(A — = 2) 0. If Ai = 2 then Ai = 3 and A3 '3' = Ki and A2 if = 4 then K2 = so that X = at* 44. Using X = x K in t we obtain 2-X -2N For nonzero solutions K (0 7-X 2 we must have (A - 3)(A - K,H and \0 6) = 0. If K =( 2 ^ so that Exercises 8.7 1. Solving 2- A -1 we obtain eigenvalues Ai = —1 3 -2 and A2 Ki= = -A = 1. A 2 -1 = (A-1)(A + 1) = Corresponding eigenvectors are and | J J Thus 334 K2 = ( J = 6 then Substituting into the system yields 2ai + 3h = - ai - — from which we obtain ai 2. —1 and b\ — 9 = 26i = 7 -5, Then 3. Solving 5 A -1 we obtain the eigenvalue A = 8. A = = (A corresponding eigenvector is -A 11 \ 2 - 16A + 64 - 2 8) - '3' K= Solving {A - 8I)P =K we obtain Thus Substituting into the system yields from which we obtain ai — 1/2 and X(t) = ei bi ]e | B 5oj + 9&i -ai + llfr 1 = = -2 = -6, —1/2. Then '+c 2 + 1 3. Solving 1 3 A 3 1 — = A A2 -2A-8 = 335 (A-4)(A + 2) 7 Exercises we obtain 8. eigenvalues Ai = —2 = and A2 Corresponding eigenvectors are |_M = K, 4. K 2 =(| and Thus Substituting into the system yields 03 + 363 = 2 (12 + b3 = 3a 3 from which we obtain 03 = ^3 = 1 - X 3&2 + b2 + 3a 2 —1/4, + 3/4, 02 1 = 2a3 = 2& 3 = 1/4, 63 = A + ai 3o! = + fci —1/4, 01 = 02 +5= 62 3f>i = —2, and (>i = 4. Solving -4 1 — A and A 2 = 1 4 we obtain eigenvalues Ai = 1 + Ai Ki= (J) — , + 2A — 17 = Corresponding eigenvectors are Ai. K2 = and (~* Thus cos 4f + [ ^ I 1 sin 4f e + c2 cos 4f — — sin 4£ = d| .. cos 4t +c 2 |« / V sin At \l ^ J cos 4t — sin At Substituting into the system yields as 4<i3 — 4&3 = — 4 + 63 = 1 <i2 — 4fcj = (13 4d2 + 62 = i>3 336 — 5ai — 46i = —9 — 56i = —1 4ai 3/4. Then Solving 4 - A 1/3 9 6 we obtain the eigenvalues Ai = — = - 2 - 10A = 7. Corresponding eigenvectors are A + 21 - (A - 3)(A 7) = A 3 and A2 K '=L Ka= and 3) (g Thus xe =c 1( e _. 62 1. 01 + ( ) and 1. Then Solving -1 . + ^-' mi ')e- — sin At cos4( = 1/17.Exercises from which we obtain 03 ' X(*) = = = 0. = 55/36 and 61 = + 56j 3 = -10 —19/4. 63 — sin 4( e' ci — aa .A 5 -1 we obtain the eigenvalues Ai = and A2 2i Ki = 1 = -A ) 1 A +4= a —2i. t+ f»i i/17 _) ( = 1. . Corresponding eigenvectors are 5 I ' = + 2i J and K2 = 5 [ \l - 2i Thus X = Ci 5cos2t c cos2( - 2sin2f \ 5sin2t / + ^2 / \ 2 cos 2f Substituting ^ = C) cost+ {Z ]sint + sin 2t 8.) -+ ri^. c2 Substituting into the system yields + ^1 = 3«i 9ai from which we obtain ai 6.4/17. Then + (]) C - 1/17 5. sint. -A and A3 = Corresponding eigenvectors are 5.-2 ci from which we obtain = cj —2. . and ai = —3/2. 61 1 X(t) =d f — —7/2. -3 \ cost .2.Exercises 8. into the system yields — 02 + 562 — - 2 = + 56i + a 2 + 1 = -oa -oi + 62 X(t) = = 5cos2f / = -3. — -2/3. and 5sin2i / +C2 ci Vcos2(-2sin2t/ 7. Thus /1\ X c = ci e' + c2 f 1\ 2 1 W -St Substituting x„ = e 61 41 \ c l/ into the system yields -3ai +bi + ci = -1 + 3c! = -26i . \-2/3 J + /-l/3\ ' \ 1/3 Solving 1 -A 1 1 2- A we obtain the eigenvalues Ai = 1. Then fl\ ^ e ( + c2 1 e 2l 1 + c3 m 2 /-3/2\ e 5< + I 338 „4( -7/2 -2 . (1} Ki = and 1 K3 m = 2 . ai 61 + bi + b2 = -ai from which we obtain 02 - = aj \ + sin 2t / V 2 cos 2t bi — / + Then 1/3. A2 = = (1-A)(2-A)(5-A) = 3 5 2. 62 \ -1/3. 5t f-8\ + u 9. Solving -A 5 - 5 = -(A-5) 2 (A + 5) =0 A -A 5 we obtain the eigenvalues Ai = 5. and A3 = —5.-5 56i = 5ai = -40 10 01 /I X(t) = 5( e Cl + C2 1 e 5t + C3 e . and 5ci .7 A Exercises 8. .= [_M - (A 1)(A and K = 3 * ( -4 Ci -1 2) = Corresponding eigenvectors are Thus Xc = - e' + C2 339 „2i 8.3A + 2 = 2. and 1 1 K3 = U) \ Thus /1\ ( e 0l + c2 1 \ e 5t 1 + c3 I e~ 5t Substituting bi \ c i/ into the system yields from which we obtain ci = = -1 2. Corresponding eigenvectors are 1 / Ki = I K2 = . 2 V-l/ Solving -1-A -2 we obtain the eigenvalues Aj = 4- 3 = 1 and A2 = A 2 . = Aj 5. K. 4c2 - c\ c\ = and 13 c% = = -4 + 602 + 6 = -c\ Then 9 5.-2 -5 1 60 and X = ci[ c If XD = ( ^j then = is + 13.)^ + ^(t)et U -1/ so that 340 6t + \E/L 2 . we obtain ] -(Ri + R2)/L 2 ) \i 3 ) {-ft/Li so that '. .7 Exercises 8.9 6 ) 6 Setting we obtain . (a) By KirchofFs E= ij Ri first + Let I = t and second (on each + L2 i' dt \i 3 j (b) = 13^_ ^e + 2 i 3 loop) laws. 1 I (_ i = -3 + 46i = -3 3ai from which we obtain a\ 2f>i )e« 4 + ra (- e » + (. E = so that 12 ( i Xp = ^ ^ ) 2 . Substituting into the system yields -ai - — —9 and X«)^ 61 = Then 6. 2 so 1 X(() 10. ~12e.Exercises For I{0) (c) = h{t) = i2 ^ (t) we j find c\ = -12 + i 3 (() .2* -3/2 -5/2 Cl -3/2 1 —3/2 and ai = -5/2. 8.( and C2 = lSe"61 + 30.2A - A(A = 2} Corresponding eigenvectors are 2. K 2 -= and ( Thus 2t Substituting into the system yields From the If we first let b\ ~ system we have 1. then 01 = 02 - = 11 - &1 + 2 = (X 2 -a 2 + b'i = -01 + 61 - 5 = 62 «2 = 62- 0. .2 — &2 1 and - The second system becomes oj — 61 = a2 ai — 61 = —02 a\ = —02 — — 4. 11. Solving _ \ 1-A _i -1 i -1 we obtain the eigenvalues Aj = 1 = -A and A2 = = M Ki I = 2 A . 2 — 5. -6. This gives 02 = (>2 = Thus X(t) = . 8.'1 3e'\ . 8. )*-( i and Xp = 3. Prom .Exercises 8.8 Exercises 1. and . X' = j'2 3 -n X + /o\ -2 It we obtain Then 2 C so that -2(e~^ (2te~ t t u=/*.F*=/(-^. *u=[*) +(_° 4 t FVom 3/4 -\j we obtain 342 \-l 2te* + 2e- 2e l . From we obtain Then *= . 1 = l 2e j (-2 3 U"' -e" ( so that and 2. e 21 (l Then 2e ( e 2t and so that and # 1 = _ e -2< 2e -2( 2 '.8 Then / 2e t/2v 10e 3t/2 J _l -3t/2 "2 e e -3t/2 _3 e .4 we sin2t -Mx + f\2cos2f/ ) 2 obtain \2sm2t) V2cos2f/ Then / -e 2t sin 2t Ue 2 'cos2t e 2t cos2i \ 2^3^12(7 ~ 2t -if ~2 " e ^ ~V le 2f 3 e_a 008 2t cos 2* £ B -»aiii2t 9111 2( so that U 5 cos 4t ^ Fdf = ^^ ^ ^ sin 4t ^ and X P = *U=( ^ cos 2t sin 4! 5. — S sin2icos4f - I cos2f cos4i \ 8 e 5 sin 2t cos 4t / From we obtain Xc = et cl (l) + C2 .Exercises 8.( /2 5 5 so that U Fdt = 13 / *- \z t | and 4. . From x' = [' 2 . From - 3 A H 1 we obtain *— (!)«" + «-("iV- Then so that "-/•-"-/( )*-( 61e 3. and 12 x' = * u ='"o 8. 344 „ f" 2 ^ ) .( 4 /-2e-* + Je-** -ee \ at _ 2„-5t + r-)*-( ' u -/*" ip *-/(-^«" and e" 3£ 1 e 20 7. From we obtain Then so that 2e. 4 . 2(e 3.3t .Exercises 8._i.+ ) (: 4/3r From we obtain 4^ .8 6. Prom we obtain -1 e' 1 + c2 te* -1 + 1/2 Then $ and -e ( Ae'-te' 1 e = _t - 2ie~' -2(e 2e"' _( 2e~* so that U= Fdt = e _i . ±e< From X' 3 2 -2 -1 = X+i " \--t we obtain Xe = Ci| _ Je l + c2 te' -1 1/2 Then e *- l te* * and 1 e~* = 2e 2ie" 1 -2te _l _t 2e -' so that PA - U = di 6e -2t and 1/2 -2 10.8 Then 4> 4e - -2eat 3' 36 6 *-!=f and „-3( „3i . so that U= /#- 1 6 Frf(= 3 24 = df / t c lit' fi^^ T3 + e S 12 te 2I and - -te* 9.4te _t df 2e 345 - 3e-' + 4ie _( \ -2e -i e .Exercises 8. 3 cost/ -3 sin f + 3 cost 3 cos H* = and 13.8 and 11. ='i /sect x+ o we obtain . 1 / J V t \ / 3 cos t + 3 sin t \ + 3 sint J V 3 sint . t Then — sin t cos t \ ( .'cosi\ / sin t \ I sint — cos t Then #= cos i sin £ \ t # _1 = . e' cost * _1 = . and | —cost! sint / cos ( sin \sint —cost t so that U= 1 / *-'Fd£= /( )dt t = lnj sectl and X„ = .'t *U = s 12. cost + sintln sin — cos t m | t i sectl I sec | t] From we obtain — sint \ .'0 . / . e~* \ cost sint / so that U= J t / *" F(ft= r ( . From x -1\ . From X' = 1 — 1\ 11/ X 346 / cost \ sin t . cos t J cost V sin i .Exercises 8. and sint / / — sin t cos t \ . te" 2' 1/2 +| | e -2t U/2 2/ Then 1 2t+ 1 1"\ e 2 4f . „-2( Prom X--I Mx + — 10/ f \ sec t tan t we obtain cos t \ . i i Then — *- sin cos t t l e cos t sin * and _] / — ' — sinf cos t cosi sin t -t f so that and .sin t / / sin ( cos t V Then cos t sin t \ -sini * _1 = . t \ sin.2t .2tln! 4t + 3lnf-4tlnt 2t 15.Exercises 8. ( i t From we obtain .'-sint\ cos t /cost'.-i ^ -2t * = ( 2t + -1 2 so that u=y *- i Ptft= j 2 In t dt -lnt and + lnt . lj 2t+n . t and cost/ / cos t Vsint 347 — sin t cost J . . cost sin 14. . .8 we obtain . t cos£\ / + . . \-±smt) 348 In sint + /-2cost\. le* } * -1 = . — cot esc £ — cot In esc t £| £| I From 2\ 1 -1/2 1 /csct _ \sect J we obtain X = C1 2sint \ i ./ \ In csci \csc £/ | — cot t\ j and ' sin t | \ cos £ In 17. In sect \ sin£ ' . cos(\ #U = . Then *= / 2 sin £ \ cos ( 2 cos £ \ — sin t . . In sect| J | and X p = #U= /3sint\ . J — tan t\ [I — tan 2 £\ /( \ tant J Vln|9eci|7 J and X„ = 16. e~< so that U= J/#" 1 Fd£= /f. From -1 Wotf we obtain X = ci cos t \ . ] \cost. and cos £ \ / k sin £ ? \ j cos £ — sin £ / .sin Je* £ C2 / . . - \ £ In sintj J j . 1 \te |cos£y . .) . * J \%cost-tant W(l.K + C cos £ / 2cos£ V . . = V sin I — sint /cost I cos £ so that J .8 so that / .— sinf — sinf / £ | + \ sin / /sinf. c — sin / sin t +c 2 . \ £ / cos t Then sin£\ cost i *= I — * and sin cost t _.( Exercises 8. ?*. \ tant/ £ + ln|sec£|. . . 2i and 3> 1 — -2( lp e 2 o 5e e. Then I *= 1 e -1 e 2t 0\ 4 .1 Exercises 8.cos 2 ( sin 2 — 1 2 sin cos 2 f 2 — * + .3* e*/ so that /ie u = j * _1 Fd£ = ^ l„-2t c -|e 2 '\ dt j i = ¥ / and xp = *u = -e + \e 2t + ( 2 3t ht e \te 2t > . .cos! - In —2 cos f — cos t | secf + tani| \ sin t and 3 sin (cost X p = *U = 19. From we obtain - cos t .o we obtain ^ ( -1 + C2 H W 1 (0\ e 2t + c3 3t e .cost) In (sini cos ((In [sect | sec t + tanf| + tan(|) From / x' = / 1 1 e X+ 1 e ( \ 2t 3^ .3t / . Xc-Cl sin / cos \ f + C2 1 | + sin t \ £ 1 I cosf sint / Then *= cos ( — sin cos f t + sin ( \ cos t sin ( * and ) = 1 — sin ( cos £ + sin f \ cos t sin f — cos t J I I \ J so that ^ _ y ^-lp^ _ ^2cosi y" + sini - 2 sin t sect ^ 2 sin ^_ ^ — t .8 18. e Exercises 8. From we obtain _ e 4t c e 4( £ 2t 2t i J and X = *$- 1 (0)X{0)+*^'*.2t v 2"' \ -2f so that /-te. 2 f + ) f 2 \ 4 2 2 ie +* ^Jj e.Fds = *1 -2 „4f .e -» e. fe 22.t -e~ t -2e~ (ft + 2t\ = and -3/4 \ -1/2 ^ X B = *U = -1 -1 "1/2^ 21.4.ai + 2i . -3/4. Prom MI :l) x+ i/t we obtain i i i +t -t i t 350 i + -l t ^ e 2t - + 2t- . From /S -1 1 1 = X' -1\ I o \ -1 t 2e'7 we obtain i\\ Xc = 1 ci e< + c2 1 W e 2( + c3 a) Then e* e 2* e 2( -( \ and $ = 1 a -2t — .8 20. --.-+ I2/) 5t Prom -2\_. we obtain L\i'2 ( \sint . and X = *X(tt/2) + * h/2 f 9~ l Fda = * ° ( ) + *- \0J l)-{l) 25. t 2ot+6e 5 6 *-^=*.( 23. w .J Exercises 8. (a) By and Kirchoff's first E= i\R\ + d_ + L 2 i[ fh\ dt(i 2 j (b) Let I = V *2 ) 3cos( -{°i) i — 12+13.fl. 3 /2 we obtain *= /sin ( — —5 cost ^ 2cosf 3 cost sinf + \ 3cosi/ /sint . * > = + 5 cost \ — 2cosi 3cost sinf — \ 3 cost/ . /-ll 3\ 351 ZlOOsinA (E/L 2 { - \ 1 - E = iiR\ +13/^2+ £2''i> so that 11 f ~ 2c03t - COSt and second (on each loop) laws.f^-5/u*.8 and x . 8[Rt R2 /L2 f-(Ri + Ra)/L 2 { \ -R2/L )\i 2 ) Ri/Lj l so that / .G) ( ' - (l) + (!) ^ From X' = /4 1\ « s) /50e 7t \ X+ o ( ) we obtain and x=*x(o w)+ */A 24.60t-12e:. + .) ./r'F* - ln +• (-j) • . A*k '.5. . For A= .. r.<« .A... 4. ant J \ 12t &e (12sin( and T =*Ti= ^ sin *-I cos( ™ fat I I coat so that If 1(0) = ( „ ] then ci = 2 and c 2 Exercises 1. fc = 352 2. J J \3Qe I * . 12t = ... ^ | we have Aa = '0 ° Ji i a3 = aa = 2 ) = i .o | ^ = ^..Exercises 8.3. *=1.I.8 and Then *= I - .9. 6. 8. >-= ra : i 1 (A 2 = i = 1 i (o 2 A4 = s : . In general . i 1 1 1 ' i I A 5 = AA 4 = AI = A and so on. = a - cost) J .. For A= 1 ( ^ _ coshi { -sinhfA \ — sinh t cosh(-t) / cosh t J 0' ^ | we have A2 = I) a 3 = aa 2 = A 4 = AA 3 = u 1 = i (o ir "Uf'J (i 4 ° °) { 1 " ' Wi ^ dG 8 for A=l ° 16 and so on..Exercises 8. = I + At+ilt 2 + |A* 3 + --= I = I cosh (l ^+^+ + t *... In general A*=[J 2°J ( 2.) / cosh t sinh \ sinh cosh f / + A sinh t = t ( and /cosh(-I) sinh(-f) \ V sinh(-t) 2. 1 0\ /l } and e" 2t ' 353 .9 Thus A (A A A3 2 2 . _( et . 1 0\ 1 (l 1/1 0\ 0\ +^+i+ .3 Thus. + l.) +A ( t+ .. + . cosh s 1 1 solve X' — sinh s sinh s — + c2 t cosh a V . To solve 1 = X' x+ 1 we identify to = = e X(() 0. Using the result of Problem 1 (cosh ( sinh 4. / I cosh c\ 6.sinh 3 sinh t sinh f t (cosht sinh t + cosht ci t sinh f + C2sinh( + c\ sinh f + C2 cosh c\ cosh + cosh t + C2 sinh £ ci sinh t + c2 cosh t ci f' (cosh t cosht + C2 sinh t + ci sinht + C2 cosht c\ To (3) in the text.9 3.sinh t t 2 + 1 cosh s sinh t cosh 1\ = sinh s . and equation 1 C + e tA /' e-* A F{s)ds ci = Problem results of /cosht 1 sinh t . tA = F(s) and use the t sinh t \ sinh t cosh t + + cjsinhf sinh t + C2 cosh t cosh t sinht sinh t cosh t sinh cosh / cosh t t cosh t (cosht sinht / sinh \ sinh cosh 2 ( 2 1 sinht 1 cosh 1 / ' t t \ sinh — a — - 'o cosh 2 J 354 cosh s — sinh s cosh s cosh s + sinh s — cosh t . t sinh _ f cosh f cosh t\ I sinh sinht / \ cosht Using the result of Problem 2 X= e" I = + «=2 Ci e 5.Exercises 8.cosh 1 4. and use the Problem results of 1 and equation (3) in the text. t \ /s A ( i /cosh sinht/ t \ A sinht/ 2 A /sinht*\ /cosh \cosht/ \ sinht/ solve At 2 we 1 identify fo = X(t) 0. 1 _ - e - e"' e 2 -ie"* e 1 3 -se e' e' c2e .2i C2e + -t I„4( 2( 2 .4s 1 + e e £ l„2t 355 2 + 1 ds (3) in the text. To sinh t da + C2 cosh ( / i I. .9 we identify tn = 0.2t se + C2e cie' e 2f + it + „2s 2t cie e 2t . j e" sA F(s) ds Jtn (coshf sraht\/ci\ /coshf sinhf\ sinht coshi/ \C2/ \ sinht cosh(/ Jo \-sinhs rt ( coshs — sinhs coshs\ coshs sinhs / ds /cosht sinht \ c\ sinh t + C2sinh ^ + C2 cosh f / \ sinht coshi/JO \0 I c\ cosh t + C2 sinh t\ I cosh i sinh ci sinh f + C2 cosh t / \ sinh t cosh t / \ ( + C2 sinh t \ ^ f c°sh * sinh f ^ ( t + C2 cosh t J \ sinh t cosh t J \ + C2 sinht \ /i cosh /cicoshi = { c\ cosh V ci sinh (ci cosh t ci 7. = F(s) e (A e = M C + e tA and use the results of I' /' e~ sA Problem 2 and equation F(s) ds l e cie 2i o 1 .' Exercises 8. F(s) = ( coshf \ | \ sinh X(() = e tA C + e tA f* ( . 2i lis -e -2s -3e~* c\e -1 -3e.1/2 PDP" = 3 V 1/2/' V -1/2 3 1 3/2 2 1 -3 6 1 and D=f\0 10.A Exercises 8. Corresponding eigenvectors are K.4A +3= 356 (A - 1)(A - 3) = ° 5 (3) in the text.9 8.2t l .a C2e C2C „-2s \ t + Cie' 2t ( tr 1 C2 E Problem 2 and equation results of ' I e / c\ \ \ 2* ) +1 2 «3 e' +Q e 2< -3 + l e 2 Solving 2- A -3 we find eigenvalues Ai = 1 6 — 3 and A2 - A2 - 8A + 15 = (A - 3)(A - 6) = A = 5. ) ^ ( V 1 C + e tA f e~ sA F( S e' e 21 C1Z ds e 2t JJo e 2t \ e21 + 2 e e -3 _1 2 2 -3 - 3e* + = 5 9. Ka = and u u Then P= 1 1 P"l=f . -2( IP e . Solving 2 -A 1 1 2- = A 2 . To solve x-i we identify to = 0. . = F{s) X(t) = e tA and use the . -1 = e ePDP.9 we = find eigenvalues Aj 1 and A2 = Corresponding eigenvectors are 3.= j + ((PD p-l) + I f 2( PD p-l)2 + i. (2) in the text n e D p-l)3 + A2 • + . . e Xnt j 357 + Xn t + ^{X n tf + . P -i = p e 'D P -i. £D + i(iD) 2 + i((D) 3 + 12. Ki = M I K3 = and ' J Then so PDP 11. \ - + 1 \ • xl) x\ 7 2!< K) I • I /A? \ A| + + 1" VO /l A^y + Ai( + ^(Ait) 2 + l + A 2 ( + ^(A 2 i) 2 + 1 > • e < - A2t .0 - 1.) Exercises 8. From equation e (2) in iA 1 = 2 1 1 2 the text .(3(p 2! = P H. From equation lD - 1 = . since X' = X' + XJ. Prom Problems 9. True. and nonzero solutions of det(A — AI) AK = AK then A(cK) = cAK = c(AK) 10. and B = C. False. 6. 4.8.C J e 1 Z)(. Prom Problems e _ 1 Q 5I 3t_| e 5( _I e 3' 4. AB = AC. A _1 AB = A _! AC. True. True. A -1 = -A 4 -2N/-2 -3 1 j ~ \3/2 1 -1/2. since 9. by the definition of an eigenvector. 11. 11. by 7. . _l e 3( + Ig5t 3 e 5 t/ y C2 10-12 and equation (1) in the text X = e tA C = Pe iD p. False. True. True. \-l 2 358 = = A(cK). 0. consider A= V . 5. True. and 12. they are the zero 8. True 3.Exercises 8.o \ e 3t J U 4* )• Chapter 8 Review Exercises 1. since : Theorem if 8. and equation the text (1) in X = e fA C = Pe^P^C 3„3t 3 14.9 13. since complex roots occur in conjugate pairs. = AXi + AX 2 + F = A(Xj + X 2 )F = AX + F. Chapter 8 Review Exercises 12. False; n i 2\ i (1 1 3 i 1 -1\ 3 1 J U 13. Prom (D - 2)x + {D - 2)y = Dx = 3 - (2D- l)y. Then = y Substituting into 14. From (D - 2)x (D — 2)x + C2e - 21 c + (P — -y=t—2 and Dx + (2D — and 1 cie 0, 1 = 2)y -3a; and 3 x * ! = -c 2 e - + (D - 4)y = = 1 gives C3 x = l)y - -C2e l -cje 2t and + 03. 5/2 so that 3 -cje = = -6 we obtain (D - 1){D - 2)y 3 ft zt + 5 - . -At we obtain (D - 1)(D - 5)x = 9 - St. Then 3 and y 15. From (D-2)x-y = = (D - -3x -e* and -t+ 2)x + x = cie y = (£> = sin2f and 1 (£) 2 = -cie* - 4)?/ = + 3c 2 e 5( + _ + -7e' we obtain (£> —*. - 1)(D - 5)x = -4e* so that + c2 e 5 + ie' ' Then 16. From (D4-2)a: + {D + l)y - 2)x + e* = + -cje' 5x+(D+3)j/ = 3c2 e 51 cos 2t - te* + 2e ( . we obtain (D 2 +5)y = Then y = 2 ci cos t + ci sin ( — - cos 2i + J 7 - sin 2i o and x= = -i(Z> + 3)j/ /13\ — - \5 ci - 5 c2 + ^cos2( sin i / / 1 V 5 + — -C2 — 3 \ -ci cos 5 / I i 17. Taking the Laplace transform of the system gives S y{x}+^{y} = 12{x} + s2{y} = 359 1 ^+ 2 5 1 3 3 — - sin 2f — - cos 2t. l 2 cos 2i - 7 sin 2t. Chapter 8 Review Exercises that ^{x} = s - 2 1111 + +1 + 2) 2s s{s-2)(s 8s-2 + ~4s~ 9 1 +2 8 s Then x = -] + \e 2t + 4 o %" 2t and = 2/ 9 +1 = -x' 1 2t 4 o 18. Taking the Laplace transform of the system gives s 2 X{x} + 2 S X{x} + 2 s 2'{y} s 2 s(s-2) 2 and s-2 %{y} = - so that 2{x} = 11 11 2 s 2 + s-2 -s-2 = _3 1_lJ_ + 2 - 2 3 2 {s 4 s 2) 2 s 1 s-2 1 (s-2) 3 1 - 4 3 2 {s - 2) 2 Then x = l-le 2t + te 2t 2 2 and y = -\ 4 2 3t ( 19. (a) X= | , 20. Let xi -f -( + 2 + 12f 2 + 8t + 3 4f 3 =y, x 2 = y', x3 = y", (b) 1 \t X' = and 14 = 2 ^e 2t 2 - y'" so that Dx 3 = x 4 21. Let xi = x, X2 = y, 2:3 = £>£, - ^3 - and X4 = Dy Dxi = X3 DX2 = X4 Dx 3 = x4 £>X4 - + 2e' - |f. so that 2x 3 = -X3 - 3xi Xi - 2x! - lnt + + 5* 360 2. te 2t 1 + 24f + 8 } Dx\ = X2 £>X4 - + 6t + 5 -Zt 2 12( } + lOf -4 . ' Chapter 8 Review Exercises 22. If x= c\e l + C2te + sint and t y = c\e + c2 (te + e') +cos( l l then = x' cie* + + e') + cos t = c 2 (te' y and j/' = cie' = ~(cie* + C2(ie + 2e - sin t l ) + c 2 te' + sini) + = —x + 2y — 23. We have det(A - = AI) (A f - l) 2(cie' + c 2 (ie + e*) l - +cosi) 2cosi 2 cost. 2 = K= and A solution to (A - AI)P = j. ^ so that r/ n K /o . 1 24. We have det{A - = AI) (A + 6) (A + 2) = x 25. We have det(A - = AI) A 2 - 2A + so that -«(-i)^ + «(0 e 5 = 0. For A = 1 + 2i "" we obtain Ki 1 = ^ Xl -fV +a0f \i J j and ^WJ^U -(\-sin2tJ \cos2t) Then v X = c, coa2(\ t , e' + c2 26. We have det(A - = AI) A 2 - 2A +2= 0. For A = /sin2(\ , e*. \cos2t/ V,-sin2t/ 1 +i we 3 Ki = obtain * ^ ^ ^3 1 " ( 1+f j ( _ ^3 cost + sint ^ ' V 2cost j ( ^ ^ - cost + 3 sint 2 sint \ + sint\ 2cost , / / V 361 — cost + 3 sin (A 2sinf J ^ j Then (3cosf j , and t is P= ^ Chapter 8 Review Exercises 27. We have det(A - AI) = A 2 (3 - A) = so that /1\ 1 1) \ 28. We have det(A - AI) = -(A - 2)(A - + 3) = 4)(A f~2\ X = ,1, so that (o\ 3 Cl e 2' + c2 1 We 7 \ f e 4t + c3 -3t 12 {-is) u, 29. ,31 1 have Then e 2t 4g 4( e _4 e -2t ;~2( 4t and 2e~ 2t - 64te~ 2t \ — dt Wte -it ( 15 e - 2< + 32te~ 2t -e- 4i - Me -4t so that p 30. We -1 - 1 4t have Xc = /2cosf\ ci e \ — $\tit} , 1 + c2 /2sin(\ { \ cost J Then *= / 2cosi 2sint A cos t sin f — sin t I sin V-si cos I t ; cos t and cos t — sec t sin f sin = dt J t - In sec V | t — cos f so that — 2 cos (In \ 31. We | — 1 + sint In sect | + tant| \ + tan(| / sect have / cos t ^""H + sin t \ 2cos ( I sin t — cos f +t ) 362 *{ 2sint + tan i| \ e Chapter 8 Review Exercises ' cos t + sin t sin — t cos sin t -cosi — 2 cost 5 cos t + 5 esc — Asini - A cos t + A. ^ sinf + ^ sinf + 5 In — 2t te 2i sin )e + e 2t 2t + c2 \ * , ,2t ,2£ esc t xP = *u=| f| — t| I — j sin i + cos ' cot In esc 2t 1/2 1 /2 — t cot f|. „2i + ( -te -2t -te -« _ -21 ^ -1- U=^ t / I te = csci / f -I . t \ -te u = /*-^ ss — cot I sint -1 e ( 1 1" csc( -1 X c = c,| t t \ A,cos(+ A,sint / — 2 sin —5 cost — j cos t ' 2sin( 2 cost 1 )tV' + ( „-2t i2 - t e -2t 9 Numerical Methods for Ordinary Differential Equations Exercises 5. +4= Setting x 6. Setting + 2x 7. Setting x 2 8. Setting y we obtain x c = ?/ —y = — x2 9. Setting \Jx 2 — c c we obtain a family we obtain y + y 2 + 2y + 1 = a family c = x2 c; of vertical lines. a family of lines with slope -2. of hyperbolas. + c; a family of parabolas with veritces on the we obtain x 2 + + (y l) 2 = c 2 ; j/-axis. a family of circles centered at (0, — 1). + y 2 )~ = c we obtain £ 2 + 2 = 1/c; a family of circles centered at the origin. y(x + y) = c we obtain 2 + xy — c = or y = — ^x ± ^Vx 2 + 4c; a family of hyperbolas. 10. Setting (x 2 11. Setting = c — 4, we obtain y = -2x + c 2 9.1 12. Setting y l j/ j/ 1 +e = c we obtain y — 13. Setting (y — l)j{x — 14. Setting (x - y)j{x + y) = 2} = c c c — e x \ a family of exponential curves. we obtain y = cx + we obtain y = (1 - 1 — 2c; c)x/(l origin. 364 a family of + c); lines. a family of lines passing through the 1 Exercises 15. Setting = x we c form a family of see that the isoclines vertical lines. y \ + y = ewe obtain the isoclines 16. Setting x y 9. = —x + c. V, / / \ .X. ** \ V 41 V \ 17. Setting y = / s —x/y = c we obtain the isoclines 18. Setting l/y = c we obtain the 20. Setting xe y — c we isoclines y = -x/c. y 19. Setting 0.2x 2 +y =c we obtain the y 21. Setting y isoclines — cos |x = cwe y = cos ^x + c. obtain the = In c 22. Setting y = (1 — 1 - obtain the isoclines In x. — y/x = c c)x. V we obtain the isoclines 1/c. Exercises 9. 23. Solving ax + By T~ = yx + oy for y we obtain cy a family of 24. y = cx is lines through the a solution of the differential equation and only if _ _ ' and only oix + jx + 5cx and only 2 and only Bex + (7 - 0}c - a]x = if 6c if if if [6c if —a origin. ^ if c 2 + (7 - -a= 0)c if 8-7±^{3- 1 )l + 4a6 26 if and only if 25. The isoclines of y' = 3i + 2y are 3x 2 - {0 + 2y = + 4aS > f) c or 3 If 26. we choose The c = —3/2 then 3k isoclines of y' = 6i - 2y + 2y — —3/2 are 6x - 2y = is 27. we choose c The = isoclines of 3 then 6i 1 y = — 2y = 3 is 2x/y are 2x/y c a solution of the differential equs c or » If 0. = -3* + |. a solution of the differential equation . — cor y = 2 ~x. c Setting 2/c 28. The = c = we obtain c isoclines of y' = 2yj{x ±y/2. Thus y + y) are 2yj{x = ±\/2 £ are solutions of the + y) = y y = c or c 2-c 366 x. differ* EULER h=0.4823 367 .40 0.8840 .7596 3 . Then y EXACT 00 .1105 IMPROVED EULER h=0. — x are and y solutions of the differential .1230 2 2 3 3 .0574 3 . + are (5x a Setting (4c 3 - 5 = (3c - = 5) of the differential equation 0. 1 = 1 — x + tan(i + c) j/ 2. The — c) = c we obtain c = or c = 1 — Thus y . 3c - 10 3c 2 - 14c 5x are solutions Thus = c 4 and c = -1 and y = Ax = + 3y) + l)(c c or +5 4c + 0.4525 2 .Exercises 9. .5142 .4 = (c-4)(c + l) = are solutions of the differential equation isoclines of 1 y = (5x + l(h/)/(-4:r + 3j/) and — c 5)/(3c 5 and 3/ - 10) = — ^x = and = 3/ = we obtain c c 10j/)/(-4a. respectively. All tables in this chapter were constructed in Consequently. 0. 2 2 2 2 . .8845 3.5958 0650 . .0000 2 .2 Setting c/(2 equation 29.3075 .5931 3.8254 2 . = isoclines of y' (4i + 3j/)/j/ are (4x + 3y)/y = c or 4 c - Setting 4/(c-3) — —x and y 30.2440 2 . so J.1 h=0. . x n and yn will be indicated as x(n) and y(n).2 a spreadsheet program which does not support subscripts.9082 . Exercises 9. Thus c = -1/3 .3c.20 0. — du — dx + and j/(0) = 1 — x + tan(x + — = 2 gives c = 7r/4. 1.0000 2.10 .2261 2 .1 h=0.50 2 .30 0. .2727 .0000 2 1000 2 . — Let u x+y— so that y' 1 = (x +y— l) 2 becomes u2 and tan -1 u=x+ c.S858 3 0378 3.05 2 0000 2 .05 2 0000 2 .1228 2.3085 . 1220 3049 2 2. The c we obtain c 2 — . 1 x(n) vln) 2 0000 0.10 1. isy bU j . 5384 368 . 4870 0.0557 1.0500 0. 05 vfnJ 3 UUUU 4 4UUU .4260 .40 1. 2 2 2 1 .3200 0.25 1.05 Vln) 0.3647 2.5315 .45 1.1950 2.1943 0. i UU in 1.8207 xln) UU UD 1 1U 1 1 c 1.30 1 1360 1 .20 0.3070 0.35 1.0000 0.40 1.1 xln) 0. 6000 .05 0. 3683 0.50 1 .9800 . .50 .40 0.9830 0.1506 0.30 0.1001 0.1b 1.3050 0.00 0.2010 0.0460 . 0000 10 . vln) D uuuu .00 2 0000 .45 0.15 0.2538 0.20 1.9424 h = 0.00 .20 1 .1000 0. 1 . 0.05 1 .2018 0.05 xln) Wn> .4183 0. 0914 0.40 0.20 1.50 .30 0.25 0.0288 0.2V 1 .2715 0. 2 . J . 3617 0.2 n = xln) 1 .40 0. h = 0.30 1 .6300 0.Exercises 9.5702 2.35 0.0582 .10 1.4143 0.1349 0.8000 0.50 .40 1:50 1 .30 1.50 h = 0. h = xln) . .35 1. / C 1 1 "J 1 Zzs 1. 4770 0.10 0.20 0.00 YW 0.30 1.45 1. 4 lis . 15 1.0623 . 05 V(n> 0.2360 .0000 0.2676 0.0375 . x(n) h = x(n) 0.25 0-30 0. . 00 10 0.2278 0.35 0.20 0.3753 1. v(n) 1.0526 0.30 0.1 x(n) 0.25 0.2 h = x(n) .40 0.05 0.35 0.20 0.5070 6267 .15 0.30 0.00 0.0075 . 5735 1.0000 0.40 0.3492 0. .00 0.3427 .35 0.50 h - . 1863 0.45 0. .0025 .20 0.10 0.45 0.1 x(n) 0.45 0.00 V(n) 0000 0. 0.40 0. 1 0.0905 0.1905 0.1134 . 0100 0.10 0.30 0.7670 1. .15 0.4124 h = 0.2220 1.0500 0.50 A f\ f\ A 1 1.05 xln) 0.50 YW 0000 0.1000 0.30 0.10 .3058 .1429 0.50 . .0250 0.0703 0.40 0.25 0.05 0. uu 0.0500 1053 1668 1 1 1 1 .20 0.30 0.15 0.3144 1.20 0.50 v(n) 0.05 0.00 0.8371 . 0300 0.9332 1 .50 h = 0.0976 0.10 0.40 0.0150 .3782 .Exercises 9.0000 1 10UO 1.4039 1.0000 .0601 0.2731 0.1005 05 V(n) .0000 0.10 0.20 .4198 h = 0.40 0. 1 Exercises 9.2159 0.00 0.40 1.20 0.15 0.00 1.7219 h = 0. 30 1 35 1 1.05 1.1231 1.10 1.10 15 0. 00 1.40 0.30 0.00 u . 50 0.6217 1.0000 1. 0000 0.30 0. 1 .1 vln) 1 . 50 1 1.50 h = x(n) 05 Vin) .1538 .40 0.0000 1.50 .5000 5125 0.35 0.25 1 1.20 0.35 . 1U 0.10 1.00 0.10 1.2696 .2057 .40 0. 40 1.30 1 .5565 0. 0000 1.5293 1.20 1.45 0.2921 1.0000 1 .53 95 0.5000 1CA U.20 0. 5613 0.2194 0. 50 h = 0.4440 1 .c bzbu 0. 5548 f\ .1115 .20 1 1.10 0.5559 0.05 .0298 . .2245 1.45 0.5527 .6902 h = .1 xln) Y(n} 0. 1 1 .20 1.0147 .2 h xln) 0. vln) 0.0500 1 .15 1 Vln) 1.3651 1.00 .0775 . 05 xln) 40 0.5639 h xln) 0.5322 0.5232 0. vln) 1.0000 1.0506 .0588 1. 1000 .05 xlni 1.1619 1. 5431 0.30 1.3505 1.5072 0.30 0.25 . .0049 1 . 50 1 .45 1 1.25 0.5452 5496 0.0191 1.05 0.1039 1.5547 0. . 5465 .10 0.3451 1 .4475 1.30 2 .) Exercises 9.00 . 1512 .2 h = 12.2342 1.45 2.15 3.4230 0. h = 0.05 0.40 1 50 x in " n> < 1 00 05 in 15 20 1 ?5 .05 x(n) V(n) 1.0000 0.10 0.20 0.35 2 . 05 4 .4234 .9900 1.6231 1.40 2 3226 1.00 5.6228 .30 1 .5747 0.50 2 .20 0. 1 .20 - h 1 i 1 .3652 0.4952 1 .50 2 0592 .45 1.0801 fl .3095 0. j ^^^n ^^75 u J *± ^ ^ M ~> 5 i _> 5746 5868 0.1 xln) V(n) .5751 1.30 .3098 0.40 1. (b) h = 0.0501 0.30 2.35 0.00 .00 5.5989 0.50 13. . (a) h .40 2 .5991 0.2028 .0000 1.7236 1.2030 0. v(n) 5000 5250 .40 .5470 h = 0. 5000 n 1. 6109 . 1 0.25 2 .05 x(n) .2546 1.9763 1 .4832 0.30 0.20 3.0000 0. 1004 0.10 3.45 .35 .1005 0.9452 1.5499 0. 1.20 3. .25 0.40 0.1 X V 1.15 0. 10 1 1 -1- .50 .00 1 .0000 1.0.2554 0.1786 1. ^0 V -J 1.7009 1.10 3 .50 V(n) 0. 13 97 1823 h = xln) 1. 50 f\ fl u xln) 0.35 r\ . .5490 0.2622 0. 10 1.0984 1 1389 1 1895 1.5492 0. 05 0. 00 Uo ±U 0. 372 .2231 .40 .20 1. uysj 0.30 0.20 0.15 a ^ ZU 0. 10 0.20 h = 0.25 1.20 0.2 h = x In) .4053 0.05 1.0663 1 .0414 1. 00 1.5362 0. .10 . .50 V(n) 1.40 1. U .00 0. 5000 0.30 0.4054 0.1 1. 5214 0.20 1.25 0.5294 0.30 1. 0000 1. 0095 1.2526 1. 1. .00 1.35 1.40 0.5444 .1 Exercises 9.0000 U U400 /I 0.15 0.40 0.3260 . 0404 1.30 1 .3715 0.5469 .5000 0.40 0.3363 0. 05 Y(n> 0000 0024 0100 1. 0.15 1.45 .25 0.05 Vln) 0.50 h = 0.5449 0.50 h = 0.5408 . 1.5215 0.5503 0.45 x(n) ^ 0. n 00 in 0.10 1.05 .3315 1 .5359 .3364 0.35 0.5495 0.0967 1 .1866 1.40 1 1 . 1.2623 3001 0. . vln) xln) 0.45 .30 0. U . 00 0. 5116 0.50 .30 0.0000 1822 0.0228 .50 h = 0.1 xln) vln) 0.5484 . 50 h a A fl \J 11 1 1 .2515 10 .0805 .45 0.2541 . .1110 1.2 h = xln) . 0.00 > on n os 10 U.20 . .20 ?5 X 0.40 0. V . 1499 1.8598 2.00 . 1 1.40 h xln) 0. U \> Vu VJ 10 15 0. . 0200 0. 5556 1.1122 0.J 2 0.40 50 .0615 .0000 0.20 ns fl 1 v In ' X £ J^ u 1 7 IRQ X J J oo X o/ 1.0488 n 7 i 11 ' 0000 1. . 05 10 15 1.1217 1.0619 0.30 .50 x In v In 1 1. . 1 _L fl \t 0.0050 0. .0451 0.1266 n illili on n O - .25 .45 0.1022 0. 00 .35 0.35 1. 6939 ?s . I OS (1 x In —J 7 1 0.1 U .45 0.35 0.0200 0313 U V J XJ 0451 0.40 0.6600 1.4172 1.1266 .50 0. - 0.30 1 40 SO .6880 2 X & *± ** J. . 1056 000(1 1 o X - YW 1.20 . dO 1.0526 1 1113 1 1 77S — X X .20 0. . 3? 1 1 .Exercises 9. 1 ? .4361 .30 0.1916 1. 00 10 30 (1 0.1564 1. y ) .0000 0. 0805 0. 373 .1 vln) 0.50 0050 0113 0. 9060 1. Ob v(n) 1 .0000 1.5866 0.0000 x(n) .1 V(n) 1 0000 1 1079 1 2337 1 3806 1 5529 1 7557 en 5U 00 05 10 15 20 25 30 35 40 45 50 = 0.9711 2.4938 1.1 Yin) aa i 5000 1. y) dx so that y(*n+l - y(zn) = f{Xn.0519 1 1079 1 1 C A 1. 10 .6224 IMPROVED EULER EULER 1.6106 0.2469 1. cTc f\ r\ U f\ a /4 *i .2000 1. 0. 5986 1 1. 374 = hf{x n . 1 J .yn){Xn+l ~ %n) or Vn+i =Vn + hf{x n . 5744 1 1 4a 0.4634 1. Integrating y' = f(x.10 5250 i nn 5498 1.yn ).Exercises 9. . 6668 2. a U x(n> Vin) 0000 1.40 16. h = 0. OU / 1. 00 1.50A 0.5622 CI A A A . a <in n .7988 we obtain y / Jin dx= I Jx„ f(x.5530 1 .30 1.5498 0. y) ft 7> .2 12 A — AA U 10 A 1A 0.1684 1. JU 0.yn ) .2337 1 AA O 1 3043 h = xl 15. 1. 6224 (e) 1 1 1 1 1 1 1 1 >i IT 1 1 YW 1.6503 1.5125 U .5987 .20 A TA .20 1. 00 05 10 15 20 25 30 35 40 45 50 1 .7560 AC A 3UOU 0. h=0 x(n) rtc .6427 8. 1. y'dx^ I we obtain Vn+i)] ^Tl+l n+l 1.9452 1.50 2.yn ).30 0.8x„ + 4)-h 2 .05 x(n) vln) 1.2342 1.50 1. + f{Xn+l.05 x(ni v(n) 00 2. 3.40 1.3226 1. 0000 4. h = 0.9900 .35 2.00 5.20 1. = 4y - 8x 2t/) +4 so that J/n+l =Vn + (ten - 2yn + l)k + (4yn 0.Vn+l)].1217 0.4172 1.2(4a.2541 1.3451 2 .5237 0. We = yn + (2x n - 3yn + l)h + {9yn use .1916 0.30 0.45 1.45 2.40 1.3 17.8150 0.50 1. FVom y1 = f(x.4952 1.4475 1. We h = 0.50 3y' = 2-3(2x-3y+l) = 9y-6x-l Vlnl 5 0000 3 . .Exercises 9.05 1. y) m \[f{x„. n+> { + f(x n +l \[f(x n} yn ) + f{x n +i.10 1. 1564 1.2482 0.3 1.6x n .00 1.7009 1. 00 0.20 3 .1786 1.9763 1.yn+ i)\ or Vn+l - Vn + ^[f{x n . y) and f(x. yn ) .y„) + f{x n+ i.0801 so that lfn+i 2.1056 .l)^h 2 .10 3 .0000 1. .1 use y" = 2 - xln) 1.3212 0.35 1. . h = 0. 10 Vin) 2 0000 1. so that -y{x n ) « y(x„+i (x n+i - x n )^[f{x„. 6600 0.0592 h = 0.25 2.yn} Vn+l = yn + hf(x n .7236 2. where Exercises 9.1 y" =4- V xln) = 4 .20 0.40 0.40 2.5751 1. 05 10 1 .6571 15 1.1499 0.yn+1 )]dx •'In 'it.30 2.4124 1.2546 2 .25 1. 15 3 .20 1. . 1122 .30 1. 4053 .40 .35 so that v(n 0000 0.10 0.45 so that yn+i = Vn + (4 + Vl)h + use y = e.0952 0. 376 1 V .20 0.1000 .0000 1.30 0. 50 .2999 0.2617 0.2622 0.2551 T090 0.y ) =— -2y (2x n + 2 2x n yn + 2yl)\h 2 0.4310 1.4372 1.0000 0.20 0.05 0.2519 1.y (e.40 .3357 50 0.0525 1. h = 0.20 .3647 0.1111 1.05 .3378 1.20 .00 .20 1818 .40 2 !/ + 2y 3 2y x In \ni 0.25 . 0.2020 0. 05 .30 0.30 0. h = 0.20 0.0561 h = 0. We h — h = 1 ft use x.1770 1.Exercises 9.0500 1003 .1100 .3082 00 05 10 V 15 X -J 0.40 0. 1822 0.50 2 .50 .2230 0.25 .4046 .3 3.05 xln) Vln) 0.40 yn+l =y n + e-y^h-{e-^)\h i 0.35 so that - yn+l 4.5438 0.00 0.0950 .00 1 .4211 0.0000 0.0300 use y" 5.15 0.45 . 50 o noon 0.30 0.3714 0. 75 .2025 0.15 .2490 0. = y" = = 2yy' + 2y(l 0.4825 0.8557 2.6910 1.1 xln) Vln) .35 0. We + (l+yl)h+ yn (2y n + 2yl)~h 2 = 2x + 2yy' = 2x + = 2x 2 2y(x + 2x 2 y +y 2 + 2y .45 0.0000 0.6783 .10 0. 1 J- 510 J -L U 0.10 1.0488 0.5456 0.10 0.5535 1 .4223 0.10 0.3363 0.40 0.00 .05 vtn) 1.50 ) 3 We h = xln) .30 1. .1397 0.1 xln) vln) 1. 20 .1264 0.20 = = x{xy + y/y) +y+ x 2 y+ -Xy/y + y+ xy + 1 1 0. We n use — n ^f^J y" = v n U + 2yy' 1 = l + 2y(x + y 2 .7551 0.0200 0.25 . 1078 1.0519 1.5000 0. / ri 1 UUUU UU1J nn £ n Ju U .00 0. 0804 0.45 0.10 1.1265 . 50 0.20 0.30 0.35 0. 05 0.30 0. h = x(n) . 0.2327 .35 0.5524 1.20 0.5482 use x (n . U^UU U .50 that = Ifh+i 7.10 .5213 . U .45 0. 00 1.5480 . A\J U .5293 .40 ) nh —— 1 . u \j = 1 + 2xy + 2y 3 * .30 0. .3 6.45 0.1682 1. 10 .05 0.5116 0. + 2yl)-h 2 y" = - 2(x y)(l - y') = 2(x-y)[l-(x-y) 2 } = 2(x~y)-2{x~yf so that 8. VJ 1 A AAC1 0.5357 .40 0.05 0.35 0. We h = 0.5475 0. 0.7522 h = 0.1 x(n) V(n) 0.4628 1.0805 0. We yn + (in + + (1 + 2a:„jfr.5490 YW . U11J U .3039 1.05 x(n) 00 0. uu UD .50 V(n) 0000 .0451 0. - h = 0.0000 1.1021 0.40 0. ±U U ISc 1 -wr U u n .25 0.0615 0.20 0. YAHl uuuu u UUJU uu n n J.40 0.5504 .50 0.0451 0.5000 0.3802 1.J Exercises 9.00 0.5466 0.1 use y" = xy' x(n) 0.5487 0.50 0. + Xi\/V» + ^ Vn + U U U > .40 .15 0.3790 .5441 0.50 2^y 1 1 - that 1/n+l =yn + (XnVn + \/V n )h + { x nV«.2334 1. .30 0.6495 1.30 y/y .40 0. 15 0.10 +y+ ^ V(n) 1 .5406 0. ZD U .5438 0.1075 .5213 0.5355 0. 3 -TERM TAYLOR V(n) 1.13 87 1.10 0.10 0. 3226 use y" = +y - 2xyy' -V xy 2 = 2xy (xy 2 ~~)+P X) X \ = 2zV-2y 2 + 1 J- X 1 1 1 1 X* % 10. Using the Taylor .1857 1.50 0. l use y" = = = 2x 2x 2x 10 X V J.30 0.fv = 0. 00 1.2y(y .3301 h = 0. 1.4938 Vln) . 10 1.40 1. J + 3y 2 y' + 3y 2 (x 2 + y 3 ) + 3xV + 3y 5 1 J.6225 h = 0.20 1. 5988 1.40 0.30 1. \J\J KJKJ J.3 9.y 2 ) = y-3y 2 + 2y 3 so that yn+i 11.2469 1.5498 1. y) = 1 yn + = ax + 0y [*t + vt)h + so that fx (2x n = + 3a£i£ + a. » \J i 1 £*£aJ nd t t.40 0. We M + y- _ £) h + 2xlvl . 50 1.Zyn2 + 2y 3 )-h 2 .2vl = ri- YW = y-y 2 .45 0.5745 1.20 0.7988 . —YSRl ir/n x(n) h=0 . 0969 1.4600 5.05 0. 0000 1 . 6107 1.+ Exercises 9.30 1.5622 1. 1891 1.15 1 . and 378 3i£)£ft all a .9711 .6226 W Uj If) { use y" . ncci y ddj VjOJ 1.2518 1.35 0. 1.0100 1 20 1. x2 \J .2400 1.25 0.2000 1 . .00 0.30 1.0000 1.1 x(n) EULER 1. 0410 1.9060 1 2 IMPROVED EULER Vln) 0000 1.6353 so that yn+\ 12.5125 1.0000 1.00 1. » Uua j i K on m j.10 1. Let f(x.1 y<"> 1 00 1.5000 1. higher derivatives are 0.1 x(n) 0.45 1.40 1.5866 1.50 0.50 so that = fTi 1 . 2 nn i .6345 2 .5000 1.5374 1. * mm 1 J.5745 1.05 x(n> WnJ 1. We =Vn + (v» - vl)h + 2(y„ .5250 1.5987 1.20 0.6668 2 6427 8.5499 0. We — — h 11 h = 0.35 1.40 1. in J.5250 0. and y From = 5 we find c = 6e~ x = ce 1 - x. 5.3 series expansion we have for f(x.7992 7.5509 8.5300 6.50 {x„ + yn - l)h + {x n + yn )-h 2 .yn ) .5454 8.y n ). y) .0000 3 -TERM TAYLOR V(n) 5. Since f(x n yn ) .40 1. so that y = &e x.5454 8 .5310 6 . 6 5300 1262 6.fn) \h[2y'n = yn + = ft.1 - x.1262 6.7954 7.f(x n . For Taylor's method we use y" h=0.3847 . To solve the initial-value x integrating factor e~ we have + ^M/fan.1 x(n) = l + y' 1. IMPROVED EULER V(n) 5 .yn ) + ah + @hf{x n .7954 7. + V* + ^» fn+1 )] + fi^Vn) + ah + f}flf(x n + h{a + 0y'n . 5.30 1.Exercises 9.yn )hf(x n .3847 EXACT V(n) 0000 5.0000 5. 00 =\+x+y -\ = x = yn 1 +y so that I/n+i + .f(x n: yn ) +fxixn. 10 1.1284 6.20 1. = + 0y'n = y£ n w»d a y' Vn+l - J/n = 13.yn)h + fy (x n . y„)] )\ 2 i£- problem analytically we note that the differential equation linear with is Then . !/n) + + ^[/(^n.3923 . 50 V(n) 00 10 20 30 40 50 V(n) 0.2465 1.4 X x{n) 1 1 1 .0200 0.4110 1.1037 1 V(n) .1266 V(n) .10 .7561 n) Y(n) 00 10 20 30 40 50 0.3365 V(n) X 00 10 20 30 40 50 X 1.1115 1. .30 0.0989 .1480 1 .0000 1. 5744 0.5463 xln) .3163 .40 0.30 0.40 0.0000 1.5250 0.00 0.30 0.0000 1 1 .5531 1.10 0.0417 .0000 1 .5000 0. 50 0. 6562 n) 00 10 20 30 40 0.0000 1003 .4397 1. 5987 0.10 1.00 .20 0.20 1.6225 .00 0.4055 x(n) 0.5498 0.2624 . 5358 0.3333 1 1 380 .1079 1 .2337 1 1.Exercises 9. 0.50 5.5213 0.4228 0.40 1.0000 3. 50 0.30 1.0050 .40 1 . x(n) V(n) .20 0.0533 2 Y(n) 0000 0953 1823 0.20 0.2284 2 6945 2.2530 1 .10 .00 .4 Exercises 9.0805 0. Yin) 2 .40 0.2027 .9724 3. 00 1.6961 2.0101 1.5000 0.0670 X (n) .10 0.30 1.1905 1.3093 . 5482 0.20 1.5493 x(n) 1. 5443 0.50 0. 0.3807 1 . 0451 0.50 X 00 10 20 30 40 50 0.0000 . 0432.\n(a- In - dt dA = dt (3 A) A)} =t+c a(t a-pA A a.0A — A= 1 + c) . . ( 1 ^ ^^ + 1 dv + v \ - h W5( and v{5) a= -1) a 35.0 32 .128 and = we obtain 0.025v o 2 = 1 2 3 4 5 f{t.a(t+c) e ae a < i+c > . 2.0 34 .0A -[\iiA.7678. Separating variables and using partial fractions 1/1 ^v^- and iD 2^32^0.VO025 v\) = t + 13. OOOC 2570 9390 9772 5503 7128 .4 11. Separating variables dA A(a - a\A a. See the table in the following problem.Exercises 9. /3 + e" ac e c. v).pAt a ^ + 0e a(t+c )} A = ae al t+cl < Thus A(t) a Q = 1 + /?e a t+c < > + e-*(t+0 = dt . OA 12.0 Vfr025 we obtain Solving for v <n\ lill o we have + VomBv 2^32 .025 Since v(0) = we find c — 0.0 35. 14.0 35 . Let 25 . Write the equation in the form 1 n) — = 32 -0. 00 49.2128 ' A (observed) t 15.02 5 v(n) 1.128 A{t) 0.8235 and 2. + 1 1 1. ) .0432 1 2 3 2. 78 13.4 From A(0) = 0. + -h] n + k).95 12.32 49. .50 12.0282 16.93 1. 6934 2. Simpson's rule on [i n > r in = is x„+h Jx n For f(x.y) + h\ f(x n )+Af[x n O + -h)+f(xn + h) f(x) the Runge-Kutta method gives ki = k2 = hf[x n + -h fc3 = hf[ fc4 = hf(x n hf(x n ).9425 903 .24 = + e- 8. 0000 (n) 00 10 1 20 1 30 1 40 8.Exercises 9. 40 47.64 36.24 so that e~ ac = « - a/0. 50 49.30 36. 53 A approximated A (exact) 1.23 47.46 36. and f(x n ) + Af(x n + 382 + f{x n + ft)] .24 we obtain 0.8235e.2511 1.63 (dava) ( X ' 4 47. 22210646. = we 1.8) 2. « 1. Comparing exact values with approximation! 1.5 1. REM ADAMS-BASHFORTH/ADAMS-MOULTON REM METHOD TO SOLVE Y'=FNF(X. y(0.Y 240 PRINT "X". H 160 INPUT "NUMBER OF STEPS = = 1.X "Y0 =".09181796.02140276 compared to yi 1.Y) 290 K2=H*FNF(X+H/2.2) = e 1. so that and j/ From y(Q) = 1 we find c obtained in Example 1.Y+Kl/2) K3=H*FNF(X+H/2.Exercises 9. For — y' y = x — 1 an integrating factor = is e e x . fts = e^-ze" 1 + c) = -x + = —x + and y 1 find y(0. anc .09182470 compared to y 2 j/(0.N 160 INPUT INPUT PRINT 180 "X0 =".5 Exercises 9.22211880 compared to y3 100 PRINT 150 INPUT "STEP SIZE=".42554093 compared to y4 .02140000.Y+K3) Y=Y+(Kl+2*K2+2*K3+K4)/6 330 Z(I+1)+Y 1."Y" PRINT REM COMPUTE 3 ITERATES USING RUNGE-KUTTA 250 DIM 220 230 Z(4) 260 Z(1)=Y 270 FOR 1=1 TO 3 280 K1=H*FNF(X.Y) HERE 130 REM GET INPUTS 110 140 170 IF N<4 GOTO 200 210 REM SET UP TABLE 190 (AT LEAST 4)=".6) = x ce*.42552788.Y) 120 REM DEFINE FNF(X.Y+K2/2) 300 310 320 K4=H*FNF(X+H. y(0A) a 1. 2109 1.60 1 0.5569 x(a) 0.80 1.1039 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector Yin) 00 80 Yin) 2.1003 .00 0.00 0.00 .20 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector predictor corrector 0.00 I vinl 0000 1 .6841 1 0234 1.Z(3))+37*FNF(X-2*H.65B5 0.4228 0.Z(3))+FNF(X-2*H.4112 1. 0.2027 3093 10 20 30 4227 40 4228 50 54 62 5463 6S40 6842 8420 60 70 .80 1.Z(2}))/24 410 420 X=X+H PRINT X.Z(4))-5*FNF(X-H.20 0.2049 0000 . x(n) 0.BO 5.5 350 X=X+H PRINT X.0000 0.YP)+19*FNF(X. 7332 0.Y 360 NEXT 340 I 370 REM COMPUTE REMAINING X AND Y VALUES 380 FOR 1=4 TO N 390 YP=Y+H*(55*FNF(X.40 O.8423 1 1 1 90 1 00 384 .6461 0.0297 1.Exercises 9.40 0.60 0. .5376 1.40 xfn) Yin) 0.Z(2)) -9*FNF(X-3*H.20 0.GO O.Y 430 Z(1)=Z(2} 440 Z(2)=Z(3) 450 Z{3)=Z(4) 460 Z(4)=Y 470 480 3.1483 0292 0297 2552 1 2603 1 5555 1 5576 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector predictor corrector predictor corrector predictor corrector predictor corrector predictor corrector predictor corrector .2027 0.Z(l)))/24 400 Y=Y+H*(9*FNF(X+H.7232 4.0000 1.Z(4))-59*FNF(X-H.7328 0. NEXT END x(a) 0. 3433 3.1837 00 .60 0.0201 0. WnJ x(n) 1 0000 3 2 .34B6 4.0000 1 .2102 00 xfn) initial condition Runge-Kutta Runge-Kutta Runge-Kutta predi c t or corrector 0000 10 0003 0026 0087 0201 0200 0379 0379 30 40 50 60 0630 0629 0956 70 .9603 3 3486 3 3 3486 7703 7703 4 2280 3 0.5 Wn) x{n) 00 . 4414 1 .6028 3.2385 .60 .2230 Runge-Kutta pr edict or corrector predictor corrector 00 10 20 1 30 1 1 40 50 80 9719 1 90 1 . 3 1 J.00 1 . .Exercises 9.0026 0.2276 4.80 1.0956 B0 1359 1360 1837 90 .1362 1360 0.20 Aft f\ 0.20 0.00 0.40 0. 9719 2 .4414 6949 1 60 x(n> 0. 2 2 740 70 v(n) .23 79 0.2384 2384 1 predictor- corrector predictor corrector predictor corrector predictor corrector y(n) 00 20 predictor corrector i . 80 1.0000 .00 .2280 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predi c t or corrector predictor corrector predictor corrector initial condition Runge-Kutta Runge-Kutta Runge-Kutta predi ctor corrector predictor corrector predictor corrector predictor corrector predictor corrector predictor corrector predictor corrector .2740 2 6028 2 .6028 2 9603 2 .0630 0. 7561 1.0291 3.5207 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector predictor corrector predictor corrector predi c t or corrector predictor corrector predi c t or corrector predi c or corrector V<n) 0.60 0.t Exercises 9.90 3 .2.30 0.6214 3.5208 WnJ x(a) 0. 0499 1.20 0.3807 1 1.80 .1079 1.5531 1. V "'^3\ 2.2337 1.00 WnJ 1. the Taylor polynomial through k = 2.9961 2. Since the three-term Taylor formula error is x n<c<x n+ thus i.0000 1. the formula agrees with is = The 2.00 0.00 0.5531 1.9960 1. Wher6 is is y"'(c) 3.1) =s yi 386 xn — <c< x n +i.40 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector 1. the . = 4.20 0.0918 Exercises 1.0289 0.40 0.5203 1. 0918 1.00 3 .5 x(n) 0.10 0.6.0052 1.40 0.0000 1.2811 0.2337 .2312 6211 2.0214 1. 7560 1. 9.30 initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector predictor corrector 1. Since the improved Euler method the Taylor polynomial through k a second-order Runge-Kutta method.5151 3 .50 0.20 0. local truncation error (a) Using the Euler (5| ( c) method we obtain where j/(0.0000 1.70 2 2.6213 3.60 0.80 1.6180 2. Since the fourth-order Runge-Kutta formula agrees with the Taylor polynomial through k local truncation error is y 4. the local truncation -gj- where xn < c < x n+1 .5530 1. 1.10 0.9961 2.00 0. 0. 05 we obtain y(0. Thus an upper bound 0.Exercises 9.02e 1.2214 = 0. Thus an upper bound 0.1. method we obtain y"'(c) Since e 2* e halved we expect the error for h (a) Using the improved Euler 1 (b) Using y " < 2 = Comparing 0. the actual error - is j/(0. global truncation error 0{h 2 ).221403.1) ^6 = 8e = ' e 2 = e 20 2c < 0.1) s= 0.221403 - (a) With 0.05 to be one-fourth the error for see that this Using the three-term Taylor method we obtain y(0.6 (b) Using y" = Ae 21 we see that the local truncation error 4^^=0. is 2c 2c < 0. (d) h the case.221025 — Using the three-term Taylor method with h = 0.001403 which is less than 0.0114 with 0. is see that the local truncation error y "\c) y(0. = 2' 02 1. when « y\ — = 0.221025.1 = ' = e ' 2 < for c < 0.22.0114.21 = for is = 2 ' 01 ' = 2 e we obtain y(0.000378.22.1) = j/i 0. 6 e ' 2' 2 .001628. is less = when the when h = 0.001403 we 6.05 - 1.221403.l) (d) Using the Euler method with h (e) e is 2c < for c < 0.05 to be one-half the error = y(0.001333e ^6 = 8e M! 6 e c With global truncation 0. see that this an increasing function. is for the local truncation error (c) = Since y(0. 1. than . e error 0(h).1) = (c) Since y{0.1) = 2 e ^y2 — < 0.1) (b) Using y"' (c) we obtain 0.1.0244.21.05 halved we expect the error for h Comparing 0.221025. for the local truncation error is Since y(0.1) ?w y\ = 2 e than 0.214 we 5. the actual error isy(O. = = Se 21 we Since e 2x is an increasing function.001333e Thus an upper bound 0.1. is = -yi Se 21 we see that the local truncation error the local truncation error < for 0.1) as y2 = 1.1) - yl = 0.1) 2 e = is The error in (d) step size is is 0.001628.001628.0244. 1. is = COOl^e 2 ". is the case.2214. 1.001628. 2e 1.0214.000378 with 0. the actual error is y(0.02^. s/'(c)y= Since e 2x an increasing function. which = 0.1.1. 0. = 1.001333e 3/2 = 1. 1. (d) Using the improved Euler method with h (e) The error in (d) the step size is is 1.001403 which is less 0. 2c is .221403 = 1.025.1) (d) Using the Euler method with h (e) The (a) _2c = 0. when h error for 8. is see that the local truncation error pW( c J£. - — 5e _2x 2x is we is 0.0234 we 9.2214. e~ the local truncation error is 2c 0.1. see that the local truncation error 10e 0.221402571 Using the Euler method we obtain Using y" 0. for the local truncation error (c) = Since y(0.Exercises 9.000003257.0109 with 0.6 (e) The error in (d) the step size is - 1.000000187.8125 < . 3c < for 1 - is t/(0. halved we expect the error is = yi -acM! = a decreasing function.1.1) (b) Using y'" = global truncation error 0.05 to be one-fourth the error for method we obtain (a) Using the fourth-order Runge-Kutta 5 = halved we expect the error for h is With 0.1) 02 e = see that this is e 2c 2e < e 2 ( 01 0.000002667e = e 02 = y\ 1.8.05 1.025(1) Since y(0.1) With 0.000002758 we the local truncation error step size we obtain halved we expect the error for h is 5e Since e~ = 1. 0.221025 Comparing 0. which y(0.= Since e 21 global truncation error 0(/i 2 ).1) we obtain = for h yi = < c 0.221402758 the step size = 0.221402571. Thus an upper bound 0. error in (d) 4 — (0^L = 0.8125. global truncation error O(h). Thus an upper bound = 0.1) With 0.1)«tti (e) The 0(/i ). 1.1. 0. « y\ = 0. see that this -2c see that this is « = y% is less for than 0. 0. < c 0. the case.001403 we 7.8234. 388 < c < 0. (b) = Using j/ '(x) 32e 2ir we 32e ) is an increasing function. is = = when the case. Using the improved Euler method we obtain y(0.05 to be one-half the error is when when h = the 0.000000187 with 0.1.025e- = e° = -10e -21 we is the case.825.05 0.0109.001667e. Comparing 0.001667(1) < = e° = 1 for 0. (d) Using the fourth-order Runge-Kutta formula with h = y(0.1.8234 - = 0. the actual error is y(0.000002758 which is less than 0.000378 with 0. the actual error (c) error in (d) is 0. 0. j/(0.0234.l) - yi = 0. (a) (b) is 1.05 to be one-sixteenth the 0.1) = h— 0. e = ~ see that the local truncation error Comparing 0.025. Thus an upper bound for .221402758. < for 2c .000378. o Since e~ 2x is a decreasing function.001667.1.000002667e ) 02 y(0.000003257. 000003225. = — 38e is |0. is - 0. |y(0.1) is = = 0. is 0. = (c) (a) (b) = the step size 0. (d) Using the fourth-order Runge-Kutta method with h y(0.000003225 we see that _3 ^ I_1 ' we " y see that the local truncation error {c ) % = 38e-^-') % = is this is the case. see that the local truncation error 40e for global truncation error 0(/i 2 ). halved we expect the error for h Comparing 0.823413627| = 0.000305.001587 we y'" Using = — 10e we 0.1) -21 = we obtain 0.l) — 40e -2T Thus an upper bound 0.2c M! = is less « y2 = than 0.1) (d) Using the three-term Taylor method with h (e) The error in (d) h (a) (b) = is the step size 0.000305 with 0.1) (d) Using the improved Euler method with h (e) The error in (d) when h 10.001587 we 0.001587.000003333.2c 6 Since e _2x is a decreasing function. y\ see that the local truncation error l 0e g/(0. the actual error Since j/(0. halved we expect the error Comparing 0.05 = 0. e 0.823413 is is - y(0. (c) when 11. the actual error is = < 1 for < c 0. 0.6 0.823781.1)m y 2 (e) The 0(h (a) ).000003333(1) = a decreasing function.823416667.000000185 with 0. 0. the actual error = Since y(0.001667e. global truncation error 0(h 2 ).05 to be one-fourth the error see that this when the case.825.823413 is - 1 < for c < is j/(0. e~ 2c < the local truncation error 0. is 0. 0.000003333. which we obtain for h = y(0.001667. which — With y2 is less = than 0.823781. |0.823413441. 0. error in (d) 4 error 12.8237181| -yi = when the case.001667.1) is _2c < e° 0.823413627.823413. |0.05 we obtain 0. which is less than 0. .1.001667(1) 0.1. is = r.05 0. = is = e° 0.1.1) Using y^(x) = we .05 to be one-fourth the error =.823413441 step size 0.000305 with 0. is -^M!=0.000305.823413.1) 0. halved we expect the error for h — With global truncation error 0.001587. Thus an upper bound for 0.1.8237181| — j/i = = 0.1. when the when h = Using y" = 0.Exercises 9.05 to be one-sixteenth the Comparing 0. 0.000000185. With Using the fourth-order Runge-Kutta method we obtain y(0.001667.000003333.1) - = yi\ 0.1) as see that this Using the three-terra Taylor method we obtain ^(0. 120 Since e _2x is the local truncation error (c) = Since y(0. h We = 0.i/£ 13. = have Uo.5) ^).Exercises 9.9424.5.2325.005950.l/^0.080108. the error for h With 0.19.i/£b.3 ( c -'». ' we see that the local truncation error h3 (b) Since 0. « y(1. " 3 < c_1) < e _3(1_1) = 1 for 1 < c < 1.05 = 3 19(0.5) = 0. y(1.q$ ) fa 4.05 y'" e we obtain i?ci.(1.059166. we obtain 0. < e" 3 ' 1 "" 1 ' = 1 for 1 < c < 1. 0.05 Em = 0.10. the error for h have .l/^o.1109.l/£b.05 is see that the local truncation error h3 y"'{c) (b) Since e" = y(1. 1.5) ^" 1 ' is So.52. We actually 4. 2.5. the error for h With 0.05 = = -3 * 1-1 ' is = IHe" 3 ^" a decreasing function ^6 = 1 ' < x< for 1 19ft 1.05 2.1 is global truncation error we obtain ^ 0(h 2 ) we expect = i 14e mV -3(-i>^ 6 3 2.005950. (d) Since y(l. e 3 is e.05 5:3 We 2.053216.059166.$) (d) Since y(1. e -3 < c-1 > < e -3 ' 1-1 ) = < 1 for 1 c < 1.080108.5 and */"(c)y <19(0.1 0.5) w 2.05 h = 0.05 is actually have 2.6 (b) Since e^ -1 is ' a decreasing function for < 1 x < 1.5 and y"'(c) (c) ~o < 3 19(0.053216.5 and 3 v'"(c) (c) h - < Using the improved Euler method with h we obtain — = 2. (a) Using = 2.05 0.019.8207.05 is actually .1 £ is = .1) (1) Using the three-term Taylor method with h we obtain y(\.5) =a 2. (a) Using y'" = 0.1 0.5) £fl.05 = = With = 0.1) (1) a decreasing function for 1 < x < 1. while the error for h = 0.026892.5) #0.5) « = Eo. With k — 0. (d) Since y(l.026892. we obtain y(1. With h = 0.l = With h 1.05 * 4. while the error for we expect global truncation error 0(h) = = — lHe -3 ^ -1 . 390 Eq A 0(h = 0.1 is global truncation error 4 -52. while the error for 2 we expect Eq.1 = 0.05 = = w 0. >. e is 3 (c- -3 ^ -1 * .0532. = — 114e _3 ^ -1 we 14.\/Eq.1) 2 (1) (c) Using the Euler method with h 1.5.019. = 0.Eb. the error for With h = 0. 3 -.5 . 0.l/£fl. (5) = is — ( c+ l)2 * < ~ . (a) (c) for —< 8.05 is ^ 2. 3 < - . 3/(1. 1) „ 3 = 1 for < c < 0.000122595. £b.5) With h = 0. = 0.We actually have 2.05 we obtain 0.i/£fl. y"' (ar+l) 3 we see that the local truncation error is h3 1 ' 6 * (b) Since (l + is a decreasing function for (c + l) <x< 3 0. 0. (a) Using j/ 5 3<. y(0. + If we see that the local truncation error 2 2" 0. (x = 1 ' < e^ 3 ! 1 we obtain 0.5.Exercises 9. while the error for global truncation error 0(h 4 ) we expect £b.05 = j/(1. e = 5 8.06.4055.5.05 w (a) Using = 0.55fe < 1 B < x e- 3 <c.000006757.i/£b.i/Eom = actually have -3 2.55(0.5) 2.4124.0S « 18-14.05 = 0. -.053216232.i 0.05 We is we obtain £b.6 15.5) = = (1)^^ = 0.053338827.005. .0143.5) f» 2. the error for h = >.1) (1) = 0.5.1 we obtain 0.5) 0.5 1)2 and < y"(c) (c) Using the Euler method with k y(0.5) (d) Since £0.1 £ is = .05 0.000333.4198.5 = y(1. j/{0.i = * 1' = 1 for 1 < c < 1.0000855.05 17.1 = 0.x = -1026e ' we see that the local truncation error w 120 y 3 (b) Since e~ < 1_1 a decreasing function is > and y (c) (d) Since h = 16.1 is £b.0069. — (c l) + 1) and ft m i) 3 y"'(c)~< (1) 3 = 0.„ (0 * + .„ (0 + = 1 for < c < 0. (c+1) is (x+l) a decreasing function <x< for is h2 1 (b) Since ^ 1 =- Using y" With Eo.053222989. while the error for h we expect global truncation error 0(h) i?o. 0.1 1. Using the fourth-order Runge-Kutta method with h With h 16. 000333.1 is B Using the fourth-order Runge-Kutta method with With (d) Since ft = 16.05 is actually we see that the local truncation error is I) 1 = _J_ !t >» -.5) With - have Eo.5) = 0.405419.6 (c) Using the improved Euler method with we obtain (d) Since E 05 = j/(0. A ft = 0.1 we obtain y{0. + (x —+—^ 3 (x is is y(0.05 = = 0.405465111.5.405465.5) 0. is actually 4.05 & 0. 0.— Exercises 9. while the error for we expect Eo.05 We is = we obtain y(0.5 1) and y"'{c) (c) t/(0. = ft global truncation error 0(ft v (b) Since 0.i/Eom = ft We 4.5) as 0.l/£b.i = 0. With 0.o5 = —+ (x 1) ^ 5 0.\/Eqx>5 0.405281. have £*.405465108.05 0.64.05 ) We 4. 392 we expect £b.405465. r (c 5 1) < —-ttt = t: (1 + 5 1 for < c < 0.98.000000003.i/Eom -tj -. 2 — 18.05 « . (a) Using j/ 5 ' (b) Since ^ ' -.22. actually have Eo. -.5) « 0.405465168. the error for 0.J = + < 1 for c < 0..5) ^0. t /£t». while the error for global truncation error 0(ft 4 ) 1T. With = ft 0. With ft = h = 0.i 0(h = 0.000002. 0. the error for h = 0.5) Since = (1) Using the three-term Taylor method with we obtain (d) ^6 < = = 0.405270.5) = « y(0. ft = 0. while the error for 2 we expect £o.1 0.000823. j/(0.404643.000046.5) « £0. = ft ic) a decreasing function < for x < 0. 0.000184. +\) 5 is ft We See t ^ at ^ e '° Ca V W 120 a decreasing function ' truncat ^ on error ' s ' (c+1) 5 < for x < 5 —+ ^—tt 0.5 1) and y (c) i5) (c) —< (1) ~^ = 5 ft = 0.05 0. the error for 19.1 we obtain 3.000000060. 5 With = = . —^—^ < (c+ 1) 1) J (0 V.5. 0.05 = Boa 2 ) 0.1 is global truncation error Eb.i/£b.1 we obtain yf0. (a) Using y'" 0.05 j/(0.000195. 1(4u find c\ and 1 The substitution y The initial c2 = — 5.2000 m2 4400 y.9 y is — + 8) = 0.9.I1/0 -4 + 0.2) = + C2X 2 FVom .9 + 0.20 -1 .00 -2 0000 1 0000 0.2443 m2 1600 3298 initial leads to the system y' corresponding to Thus y 5. the 6.ltii - -2 + 0.00 -2 0000 1 0000 0. The solution of the Cauchy-Euler differential equation we find a — —1 substitution y' — u and ci = Using formulas (5) ml 0.1(1) = -4y 0.2) - = -2e 2x + 5xe 2x Thus y ).10 -1 S321 2 4427 0.20 -1 4919 4 4753 u .1(9) = U1 = + 0.9 + 0. The initial The we 2.2 -1. Exercises 9. and — (6) in the text w.1(2(9) - 2(4)] = 10 m = yi + O.1 (Ju . general solution of the differential equation = -2 =u n + h(4u n .2) ss 1.5360 4 8064 X y u 0.4yn u n+1 c\e 2x and 2.1(4 + 0.4918. -1. y corresponding to x.1(10) = 5. to the iteration formulas = = 4 and uo Then 9. with x corresponding to f.Imi = 4.1000 0. 2/1 =i/D + O. u' = 4u — 4y.4928 4 4731 Ruiwe -KuttB method wi th h= 0. conditions are yo — —2 and uq = yi = w + 0. + C2xe 2x from .9 u leads conditions are j/o ) = + 1 -1.68.1 ml 0.7 Exercises 9. y = c\x and y(l. the initial conditions y(0. The substitution y' — u leads to the iteration formulas =Vn+ hu„. Then 1. = — x + 5x 2 is ml 1710 3444 m4 2452 4487 k2 kl 1 1 2000 7099 1 2 4200 0031 k3 *4 1 4520 1 2 0446 2 7124 3900 X y u 0.1(2.^w) = uo 9 4.2800 k3 3 k4 .1«o = ui = ii + V2 = tfi + O.7. and we obtain m3 5280 9072 k2 kl n\4 2 4000 3 . 1. The general conditions 3. 20 1.0000 1.9983 9996 9997 y u 1.0000 5. y corresponding to x.2 m2 m3 2.1 !tl3 m4 .1973 k3 k4 1.0000 1.10 4 9500 1. 5 0000 -5 0000 22 3750 -10 6250 29 07 81 -16 0156 10 6309 -22 5488 55 9856 -31 2024 75 394 k4 5000 6875 .0000 2.3516 3076 9B21 00 10 20 30 40 50 i2 il t 0000 7500 2 5 7813 2 0703 7 4023 6104 9 1919 -1 .2000 .0165 m4 2.20 6.4640 2 2 0000 6594 Runqe-Kutta method with h= 0. 9443 -55 1758 -12 7344 6 31.9865 1.0002 Runge-Kutta method with h-0.00 4.0000 0. 0998 (5) and 1 .1 0.9500 1. and 2 2 x xl the text with x corresponding to (6) in (.l ^- 10 0000 8 .20 1. u' = 2u — 2y + e' cost.4660 m4 5320 kl 6000 k2 k3 6599 k4 6599 y t 0.0017 ml 1.3298 0.0000 11.2315 2150 2480 2157 .0023 1. Using formulas (5) corresponding to y.7500 -2 10 1563 -4 13 2617 -6 17 9712 -8 0000 5000 3750 3672 S867 kl 5000 -20 0000 13 .3507 -75 9326 -17 7734 8 12 .0000 2.0000 11 .9950 1.0000 1. obtain ml m2 .0000 0.0500 9501 0501 0.8000 kl k2 2.00 1. 0703 -40 0000 -8 7500 5 22.4000 4600 ml m2 m3 .00 4 0000 1.20 6 0000 0000 10 .9979 0.0000 9. u corresponding to the text with y corresponding to % and y. substitution y' m4 = u 0.9000 1.4640 2 2 2 0000 3150 6594 Runge-Kutta method with h^Q. The 9.4375 -28 7500 0000 -5 0000 4 17.10 1.7 Exercises 4. and u we obtain Runqe-Ku^ta method with h=0.0001 9.5619 11 4877 2 0000 SOOO 8125 3 we . The m3 m2 ml 0.0019 X k4 k3 0.9998 1. leads to the system y' Using formulas k2 kl (6) in = u.3587 u 0.7170 u 0.00 1.2487 2315 2659 ml m2 m3 !t>4 kl 3000 3299 k2 k3 k4 3150 3446 3150 3444 k2 k3 y t 0.2155 0. 1. substitution y' = u leads to the system . 0000 m3 m2 ml 2 2800 2 3160 mi kZ kl 2 6408 1 2000 1 .20 2.4086 -0.7730 .0785 1.3846 -0.10 -3 4790 -0.3055 y 2. .7648 .20 8.3200 .6524 3.Exercises Runoe-Kutta method with h=0.0000 0.2682 1 8218 3692 k4 1 1 0195 7996 X t 0.00 6.00 5000 0.8176 -0.6535 .10 7.20 1 2 5000 0207 1904 y 2000 0115 2 3592 1 9.2 m2 ml 9400 .6500 .4112 0.4571 -0.4006 0.3055 y 2.1 m2 ml m4 ia3 k2 kl k3 k4 X t 0.0600 2 k4 3940 3 7212 t x y 0.7120 -0.6000 m3 1 1060 m4 1 7788 1 4000 2 .10 1.6862 1 6600 0117 k3 k2 kl 1 .3579 -0.0845 y 1.3502 Runge-Kutta method with h-0.0000 3.10 0.20 2 1589 y 2 2000 3279 Runge -Kutta me thod with h= 0.4800 -0.0000 0.0000 3.4328 -0.8216 0.0000 .8963 3.0000 2.2 m2 ml 6400 1 27 60 in4 ra3 1 7028 3 .00 0.1494 1 1 0700 2289 m4 m3 ra2 1 1 0745 .9200 -0.5000 -0.0000 0.3300 -0.4785 -0.0731 0.Kutta method with h= 0.00 1.0000 2.4571 -0.1 m2 ml .3579 -0.1 ml 1 1 .20 8. 9080 -0.2 2 .00 -3 0000 5 0000 -1.4199 Runae -Kutta method with h=0.1 m2 171] 3000 5193 m4 m3 3850 6582 4058 6925 m2 m3 k2 kl 5219 8828 1 7000 1291 1 8650 4024 k3 1 k4 9068 4711 1 1 1343 8474 x t 0.20 -3 9123 y 5 0000 4 6707 4 2857 Runoe-Kutta method with h=0.3290 -0.7200 -0.4000 k3 1 k4 .7816 1 .4280 1 6632 x t 0.3558 k2 kl - 1 3200 1 7720 k3 2 k4 1620 3 5794 X t O.2 ml m4 k2 kl k3 k4 X t y 0.00 6.7736 1 4790 0862 m3 5324 1 1929 m4 .00 -3 0000 .00 0.3382 Runae -Kutta method with h=0.3000 -0.0000 1.3858 -0.6000 -0.20 1.4342 -0.2340 1 1 1496 3193 k3 k2 kl k4 6000 7073 .0000 -0.4199 Runae -Kutta method with h=0.7688 kl k2 k3 7075 8307 x t 0.20 -3 9123 4 2857 Runqe. 3226 -5.2167 identify P(x) = -10.0 4.0000 -0. is 0.75 0.2259 -0.0000 and h 1.3751 0. = 0.0 1.0 We equation 1.2w + i The finite difference solution of the corresponding linear system gives 0.3356 -0.0000 0)/6 = 0. = f(x) 0.0000 1. is 0.6 o. 1. 00 . Then the finite .8yi_i .4 3.3333yt _i f{x) xje 2".3308 -0.4000 = 4.Exercises 9.2.0000 0. Then the finite difference Then the finite difference + 0. identify equation 0.2355 0.6448 0. Q(x) = 1 0-25.0000 difference equation The - (1 - 2.5.0 0. Q(x) = -1.0625a:.0000 3. Then the finite difference 2 0.5000 3.1667.6 1. f(x) = 0. - (2 is yi+l +0.0316 -0.3333 3. We = P(x) 2.8.5 6.8333 2.0000 2.0400- 0. Q(x) = 25.0625yi -Vi 5. and h = (1 - - = 0. 2. f{x) 1.0 0.8889yi + 1. = - (1 = 0)/5 0. .6667yi+i X y 0)/4 0.6306 0.6774 -2.9600 identify P(x) = 0.a 7. is + 2Vi-l = 0-04.25 We x 2 and h .5807 W+i - The = 0)/4 solution of the corresponding linear system gives 4.0000 = (1 + 1.1667 3.8 -0.0000 + Xi)e 2x '.SB00 -4.0172 -0. solution of the corresponding linear system gives 0.6667 3.0000 1. Q(x) 0. 0.4 0.00 We Then the is 0.0 0.2 0.25^ The = and h 0.2778(1 solution of the corresponding linear system gives 0. 0324 Y 0.7200 15. = solution of the corresponding linear system gives equation The = + ^1 =0. = Q{x) 9.8 Exercises 9. 1.5 identify X P(x) = 0. = and 5x.0 0. We identify equation = P{x) 0.0.0000 0.2 1.1411 396 1.2. ft = (1 - 0)/5 = 0. - 1.96?/. 50 1. f(x) 3. and . 000 1. finite is 0.4167jfc+i The = f(x) 0.625 1.6 1.4168 -0.3 .0000 1 9. solution of the corresponding linear system gives Y 1.0625\ / 1.125 1 .7109 -2.250 . Then [-2 + O. = 0.1875\ J -2- Vi+i - = f{x) .2778(4^).8992 -1. .6510 -0. - = l)/6 0.2 W + 0. and 0.1988 -0.750 1.3353 0.1667 1.0000 We identify X .0156\ "2„ + /. (2 1. and = ft (1 .05a:i)!K-i = O.1.05(1 .125.1875\ 0.0469 + Vi x% \ 1 ( tt-i = o.4 9471 a:.8842 P(x) = difference equation 1.0)/10 = 0.01561a a*. 1.8 6.Exercises 9.5 146 5 .1594 -1.7 0.750 0.9640 2 = 1.0 identify equation = x.250 0.000 1. + 0. .Wtf.05(1 = 0. 0. = (2- ft — 0. Then the is (1 The Q{x) solution of the corresponding linear system gives 0.S918 -1.73 57 1.0000 We identify 1.0000 ft = (1 - 0)/10 = 0.Xj)l»-i = 0.0 1. W+ 0. x. 1 the finite difference 0-Olxi. = ft Y difference equation 8. Q(x) —) K+l + ^1 The = Q(x) 3/a:.0000 -0.3070 -1.9 1.6667 1.875 2. ft = 1.5000 1.2660 P{x) = . is [1 10.2704 -1.1541 -1. finite difference .5833yi_! = 0.000 0.500 1.Olarj. f{x) .375 1 500 1 625 1.875 0.1.000 5.8 0. Then the finite .2913 - (2 = l)/8 2.6430 x~ 2 f(x) = lnx/x 2 and . Ay/x is 1.2 5097 Q(x) f(x) = x.0000 We identify P(x) = is + The X — 3/x 2 0.1626 -1.3333 1.Xi)]yi+ + i 0.0000 Then the 0.0625N — ^-J W~l + (l = 0.0000 -0. J solution of the corresponding linear system gives y 1.125 3.0681 1.1 0. equation P(x) The 0.4304 -1. and 0.5149 1.0000 We = l-x.1667. Xii / ( 0.05xi)yi+i - l.OliilK + [1 - . We identify = P(x) difference equation = Q{x) 5. 0. + 0.2064 -1/x.6855 1. + (1 - solution of the corresponding linear system gives 0.5826 1.375 2.0000 1.8474 2. solution of the corresponding linear system gives X 7.8333 2. 5 3.5 4. Q(r) = 0.000 5. have from .0000 Then the 0. . solution of the corresponding linear system gives 0. We 0. finite difference is +1 -2u.0 3. finite difference J «_ l = 0.250 0.5 50.5. we .0000 72. 0.0000 Then the 0. .125 0.6233 2/r.625 2 .7 .875 3.375 1.0000 0.2225 0.4 0.750 .1 0.0 0. (a) The difference equation 1 is + + yt+ i (-2 + ^ h 2 Qi) yi «_! = h 2 fi The equations the same as the one derived on page 530 in the text. + h 2 Qo)ya + (l - \p V-i \ = 2 ft /o — 2ft. Y P(x) 0.0 2. 1 solution of the corresponding linear system gives 1.2118 = 0.6615 identify equation The X 12. yi + 2»i (-2 + + h2 Q ("2 ) yo + + h?Qo)yo = 398 h a /o Jp ) (in + 2h~ ya.42 96 is 0.0 1.8 - (1 1347 . allow jfo-i- i to range from Since yn (b) Identifying j/o n— 1 we obtain n equations one of the given boundary conditions. not an unknown.3 1.6 0. 0.5440 = 0.3492 identify P(r) The = Q(x) 0.0000 13.77 89 0.000 0000 We = 0. are the same because the derivation was based only on the differential equation. f(x) equation 0.8490 2 - (4 = l)/6 1.9 0601 1.3333 90. and h = 0)/8 tt + i-2.+ fl-^U_ =0.2 0.2222 83.500 1. is = to y(0).6190 100.0 2. y~i — y(0 — ft).y-i = (5) in 2ft. with y-i (l or + ~Po) = yi + ^Pbj + yi (-2 i = 0.0 0. not the boundary conditions. ('l + ^U f(r) = and h 0.8 11.3216 0.1363 0.4444 97. 0.Exercises 9. 2ft The difference equation corresponding to 1 becomes.0625»j + = -4.9386 0.7202 0. - Pq.0000 94.125. 2ft) = h?fo the text If j/i. 1 = ~ V-i] [yi and yi = if'(0) = 1 y(0 in the it is + h) we or j/i n+ 1 unknowns y-i.5 0. 0. - 0.8929 0. . 2462 2 .0735 2 .2 0.15 1.1197 2/i> - - - .00 1 . .0.30 1 1 . 2.5695 2 6944 2.8269 2. 2. RUNGE KUTTA 0000 0736 2 1556 2.4532 2.1 X (n) 1 .5672 2 .0000 .40 1.3454 2. = 2h to the yo> we obtain 0.4 O.3450 2 .4527 2 2 2 2 2.1157 0000 1556 2 3446 2 5680 2 8255 3 1167 2 .8589 -1.0 0.50 EULER 2 0000 2 2 2 2 2 2 2 2 2 3 0693 1469 2328 3272 4299 5409 6604 7883 9245 0690 IMPROVED 3 -TERM EULER TAYLOR 0000 1549 2.6 1.1197 .3275 -1.40 .30 1.35 1. 2 2 .5689 2. 2 IMPROVED 3 -TERM EULER TAYLOR .2459 2 2 2 2 2.0000 Chapter 9 Review Exercises h.20 1.05 x(n> 1.10 1 .3439 2 .1556 .45 1.00 1 . n obtaining (c) Using n = 5 + we may simply add 1 equations in the the equation 3/1— y-i n + 1 unknowns y_i .0 -2.25 1.9686 2 2 1187 3 3 . list of n difference equations I/n-l- .5695 2 8278 3.10 1 .B 0.0755 -1.20 1 .8278 2 9696 .6937 2.8246 3 .3454 2 . 3 .2755 -2.Chapter 9 Review Exercises Alternatively.05 1.1554 2 . 2 2 0000 0735 1555 2460 3451 4528 5690 6938 8271 9688 1188 RUNGE KUTTA 2 2 0000 . . 2 .50 EULER 0000 1386 3097 5136 7504 0201 2 2 2 2 2 3 h=0.6126 -1. 50 .2027 .6610 0.3087 0.00 EULER 0000 0500 1001 1505 2017 2537 3067 3610 4167 4739 5327 . .7194 .5512 5513 0.5376 RUNGE KUTTA 0.45 0. 0. 0.5000 5000 0. x(n) n uu nn u .1163 IMPROVED 3 -TERM EULER TAYLOR 0.70 .80 .0500 0. O— u J. h=0 . EULER 0000 1000 2010 3049 4135 5279 .1511 0.4202 0.15 0.75 .0000 .05 0.90 1 00 5000 6000 7095 8283 9559 0921 .30 0.4201 0.3088 0. .3638 0.40 50 . IMPROVED 3 -TERM TAYLOR EULER RUNGE KUTTA 5000 6050 7194 8429 9754 1 1166 .0452 1.50 60 .1169 RUNGE KUTTA 5000 0. .95 00 .20 0. h=0. 0000 0. 400 .2030 0.30 0. 5377 0. 60 65 .4202 4782 0.3637 0. 50 55 0.4201 0.2026 0.3087 0. 9757 1.3638 0.6049 0.5000 .25 . 9083 0.7194 0.4207 0.7191 0.3088 .9757 1.5512 0. 1 1 8430 9082 9756 0451 1168 0.40 .1512 . 8431 0.9082 0.9752 1.6048 . .4781 0. 1 1 6024 6573 7144 7739 8356 8996 9657 0340 1044 FTTT CTJ ft ft ft ft 3 -TERM TAYLOR n 0000 1000 2025 3087 4202 5377 0.1003 0. 5376 .20 0.6609 6610 7194 0.5000 .1168 0.35 .2552 0.70 80 .10 0.05 x(ni 0.6049 . 05 x(nl 0.9755 1.0500 .8427 0.8431 0. 1 EULER 5000 5500 .2551 Iff ft iqupa n ftft 1001 0.5382 IMPROVED 3 -TERM EULER TAYLOR 0000 0501 1004 . X fW EULER . 0451 1 .2551 .90 . 1ft ft 0.Chapter 9 Review Exercises 4.2027 0.4782 5378 . .7193 7801 0.3092 0.85 1 .7801 0. 1169 0. 1003 0.6049 6049 0. 1511 .7800 8430 0.2026 0. .00 .10 1 1. 8446 3 .1095 1.2183 1.1497 5.30 1.0000 1. EULER In) ILL- 1 00 1 10 1 . Yin.25 1.7689 7. 6197 3.23.5994 1.2405 1.20 1.2360 4 1528 . 6036 2 1909 1 IMPROVED 3 -TERM EULER TAYLOR EULER 1 .30 1 .1524 .4734 3 17E1 4. 1 0000 2000 4760 8710 4643 4165 .0783 .5910 2 h=0. + hu = y + 0.0000 2.Chapter 9 Review Exercises 6.1789 2 6182 Using = + hu n Vn = we obtain (when h = = 0.9988 1.20 0.45 1 7. 1. 1 1 2 1 .5300 1. 5 RUNGE KUTTA 2.05 1.1 we have xx = xa + 10 - yo + h(x - h{x Q + yQ = 1+0.35 1. L-< ! 0000 1.30 0.3) 3.40 1.2.8338 1 .1(1+2) ) y ) = 2 + 0.7567 3.2340 .2380 .2) Vl=IfO xlnl 0. .8515 .3 1.1 = 1 + 0.10 0.1(2xo + VZ = pi . .50 3 1 1 3 5 1. hj£ TMPROVRD 3 -TERM EULER TAYLOR . RTTWHR XViyi VJ Using xq + h(2x„ + = l)y„.1253 .2415 1.2510 1 KUTTA 0000 2350 5866 1453 1329 2208 1 1 1 1.4029 1 .6001 1 .2363 5.8523 1 2.7389 1. 3.40 1 . 15 2 .1911 2.2745 . + O.3296 4.2)1 = yo = 3 u = 1 = 3.4010 1.2401 1.1458 .6036 1 8586 2. 3 . yo initial condition Runge-Kutta Runge-Kutta Runge-Kutta predictor corrector = 2. 1.lwi - + + (0.3925 6.50 2 3 5 0000 1.3284 2. .1088 1.1 we have .20 1 .2755 4.1(1.6401 3.2415 1.1(1)3 = 0.9 1.1091 1.05 x(n) 0000 .6350 4 .40 9.3595 1.3 h = 0.1(1 When -2) = 1.1uo = 3 ui = u + 0. — 1. 0000 1000 . 5 1 Vn+\ 8. 2.1799 2.1 3 + (0.2) yi y(0.0000 1.00 0. and h = 0.4004 1.6404 .1)l l)yo 3. 8 0.55(1 + x).9 9.4083 0.3-1.3 0.84.1(1.0000 t.1 0. solution of the corresponding linear system gives 0.Chapter 9 Review Exercises and ' Thus.0655xj - 1.2) = Q(x) « ) 1. i(0. 6.9) = 1.3 + V2 = Vi + /i{x! . 0. 3/(0.7770 14.9 + and 0.1(1.1049 0. and h = (1 = 0. Then is K+i + [-2 + 0.001 or y i+ i The + (0.0 0.2 4.5 0. f(x) = 1.7038 14.9345)^ + yi_i = 0. .62 = P{x) difference equation x2 = xi + h(xi + yi) = 1.9) = 1-62 0.0655(1 + Xi)]vi + yi-i = 0.5396 0.0 0000 .19B7 8.yi - 1.4 11.9450 402 0.001.2) 10.7 12.84. - 0)/10 1.3640 13.3 + 0.2847 4. We identify « 1.6 1.1. Documents Similar To Differential-Equations-by-Zill-3rd-Edition-Solutions-Manual(ciitbooks.blogspot.com)_text.pdfSkip carouselcarousel previouscarousel nextEquações Diferenciais Vol. 2 3a Ed. - Dennis g. Zill e Michael r. CullenZill Complex Analysis Solution Guide Chapters 1 Through 3DELHI UNIVERSITY NOTES 2ND SEMESTER REAL NALYSISSolutions C5Solutions Manual Introductory Circuit Analysis 12th Edition BoylestadReal Analysis NotesElementary Linear Algebra With Applications 9th Edition Kolman Solutions ManualDifferential Equations With Boundary-Value Problems 5th Ed. by Zill and Cullen Solution Manual (2)Differential Equations With Boundary Value Problems 9th Edition Zill Solutions ManualAssembly Language Programming 8086 Exercise Solution .docxMathematics nawazish ali shahTelevision is the Leading Cause of Violence in Today's SocietyZill Complex Analysis (ed 2) Solutions 4 (Chapter 4.1-4.4)Ytha Yu, Charles Marut-Assembly Language Programming Organization of the IBM PC (1992)D.G Zill Solution Manual.pdfInterpretation and ConlusionOn the homotopy analysis method for non-linear vibration of beamsBalfour Stewart - The Conservation of Energy (1873)p 2003028 Eve HudRandom Field Model Porous Media Glimmiv force and acceleration 3 30 17Power Systems Control and Stability - 2ed.2003Work Lab 11st_orderCivil - Ijcseierd - All - (4)Hughes 76parachute velocity labUntitled1.pdfPower Systems Control and Stability 2nd Ed by P.M. Anderson & a.a. Fouadkenig - bibliografiaMore From carlosSkip carouselcarousel previouscarousel nextPlano Ensino Historia TrabalhoCEPSHCinema e Montagem.pdfAumont, Jacques - As teorias dos cineastas.pdfediting_avchd_adobecs4 [pt].pdfcinema_emenda.pdfE1-40-04-02ementas disciplinas ufabc BC&T - bct.pdfcinema.pdfrocha-glauber-revisc3a3o-crc3adtica-do-cinema-brasileiro.pdfCMA 5008 Estética Do Cinema02-victor.pdfRegimen ToEisner, Lotte H - A tela demoniaca_as influencias de Max Rei.pdfArticle MidiatecaGráficos digitales.pdfArtigo_NoticiasParaVer10 Reinhardt.pdfcaceres_f.pdfinfografia.pdfdossier_simplicio_neto.pdfDesigntipografico.pdfDialnet-ConceitoFundamentosEAsTresDimensoesDoJornalismoVis-4790814.pdfDialnet-ConceitoFundamentosEAsTresDimensoesDoJornalismoVis-479081460-81-2-PB.pdfa-arte-de-editar-revistas-portuguese-edition-by-fatima-ali-B0198QXXWS.pdfCMA5103 Montagem CinematográficaDesigntipografico.pdf8017-19538-1-SM.pdfDesigntipografico.pdfFooter MenuBack To TopAboutAbout ScribdPressOur blogJoin our team!Contact UsJoin todayInvite FriendsGiftsLegalTermsPrivacyCopyrightSupportHelp / FAQAccessibilityPurchase helpAdChoicesPublishersSocial MediaCopyright © 2018 Scribd Inc. .Browse Books.Site Directory.Site Language: English中文EspañolالعربيةPortuguês日本語DeutschFrançaisTurkceРусский языкTiếng việtJęzyk polskiBahasa indonesiaSign up to vote on this titleUsefulNot usefulMaster Your Semester with Scribd & The New York TimesSpecial offer for students: Only $4.99/month.Master Your Semester with a Special Offer from Scribd & The New York TimesRead Free for 30 DaysCancel anytime.Read Free for 30 DaysYou're Reading a Free PreviewDownloadClose DialogAre you sure?This action might not be possible to undo. Are you sure you want to continue?CANCELOK
Copyright © 2024 DOKUMEN.SITE Inc.