Diagnostic Testing in Cardiology - Cardiovascular Medicine - MKSAP 17

March 26, 2018 | Author: alaa | Category: Echocardiography, Medical Imaging, Cardiology, Coronary Artery Disease, Heart



MKSAP 17Cardiovascular Medicine Reference Ranges Type Size Font Weight Chapter 02: Diagnostic Testing in Cardiology Related Questions Previous: Epidemiology and Risk Factors Diagnostic Testing in Cardiology Clinical History and Physical Examination The initial step in evaluating for heart disease is a thorough history and physical examination. Specifically, a careful exploration of changes in functional status, associated symptoms, and the timing and nature of symptoms will help focus the assessment and guide selection of appropriate testing, if indicated. Cardiovascular testing provides both diagnostic and prognostic information and its use should be guided by symptoms, the level of risk for heart disease, and whether outcomes may be altered by interventions based on testing results. Diagnostic Testing for Atherosclerotic Coronary Disease Cardiac Stress Testing Related Questions Question 19 Question 38 Question 39 Question 57 Question 65 Question 86 Question 91 Patients are referred for stress testing to establish the diagnosis of coronary artery disease (CAD) most often because of new onset of or a change in symptoms. The utility of stress testing should be interpreted in the context of the pretest likelihood of disease. Those with low probability of disease, such as younger patients, have a higher incidence of false­positive tests and may undergo unnecessary testing without changing patient outcomes. Those with a high probability of disease should proceed directly to an invasive diagnostic strategy, such as cardiac catheterization, because the risk of a false­ negative result and missed diagnosis is too high. Furthermore, a negative test in a high­risk patient would not significantly change the post­test probability of CAD, and therefore would not change management. Stress testing is most clinically appropriate in patients with an intermediate risk of CAD. It is these patients who, by the result of their stress test, can be reclassified into higher or lower risk categories. Stress testing also has important prognostic value for predicting the risk of myocardial infarction and death in selected patients. For example, in patients with a previous history of CAD and worsening cardiac symptoms, stress testing is helpful to assess for possible recurrent or progressive disease. However, although the leading cause of death in patients with diabetes mellitus is Testing modalities for suspected CAD are summarized in Table 3. The decision about whether to keep a patient on cardiac medications during stress testing should be individualized based on the clinical question being addressed. Patients with . There are several indications for stress testing with additional imaging with either echocardiography. such as exertional hypotension. Heart rate recovery is another powerful predictor; patients with a heart rate drop of less than 12/min in the first minute after cessation of exercise have a higher mortality rate.cardiovascular disease. Only when there is significant coronary stenosis will electrocardiographic (ECG) changes be seen and symptoms occur. can be utilized in prediction models such as the Duke treadmill score.000 is also considered an adequate workload. Functional studies evaluate for obstructive CAD from evidence of ECG changes. diastolic dysfunction followed by systolic dysfunction may be seen by imaging studies such as echocardiography. routine stress testing in asymptomatic patients with diabetes has not been shown to reduce mortality. The additional prognostic information available with exercise. patients should exercise for 6 to 12 minutes to provide adequate time for development of maximal metabolic demand. which can be visualized by single­photon emission CT (SPECT). Although achieving 85% of the age­predicted maximal heart rate (PMHR) is considered adequate for diagnosis of ischemia. PET/CT scan. significant hypertension. CMR imaging. usually under stress conditions. In intermediate­risk patients who are able to exercise and have a normal baseline ECG. the patient should remain on current therapy to determine if ischemia is present on the current regimen. such as nuclear or cardiac magnetic resonance (CMR) imaging. and conditions in which exercise is contraindicated. which factors development of symptoms. or ventricular or supraventricular arrhythmias. ST­segment elevation or significant ST­segment depression. patients should continue to exercise until limited by symptoms. Stress tests should be terminated when the patient has exerted maximal effort and achieved at least 85% PMHR. and patients who have poor functional capacity and cannot achieve at least the first stage of the Bruce protocol (5 metabolic equivalents [METs]) have significantly higher all­cause mortality. or CMR imaging study. baseline ECG abnormalities. If the stress test is being performed to evaluate symptoms or to define prognosis in a patient with known disease. The earliest changes with mild stenosis are perfusion changes detectable only with highly sensitive modalities. The modalities able to detect cardiac ischemia are highly dependent on the degree of impairment of coronary blood flow. or when other adverse markers develop. Ischemia is identified on the basis of the development of 1 mm or greater of horizontal or downsloping ST depression with exercise (Figure 1). myocardial perfusion abnormalities. or perfusion imaging with SPECT or PET/CT. including functional capacity and heart rate and blood pressure response. as heart rate and blood pressure are the major determinants of myocardial oxygen demand. or wall motion abnormalities. A standard Bruce protocol increases the speed and grade of the treadmill every 3 minutes. With progressive coronary occlusion. degree of ST­segment depression. medications such as β­blockers and nitrates should be withheld for at least 24 hours before the test. the initial type of stress testing should be exercise stress testing. but the coronary territory involved cannot be localized based on the ECG changes alone. These imaging modalities may also be used to quantify infarction size and assess myocardial viability. If the stress test is being performed to establish the diagnosis of CAD. Ideally. and exercise duration to provide incremental prognostic information for 5­year mortality risk. as this measure reflects left ventricular myocardial performance. Anatomic studies assess percentage stenosis of the coronary vessels at rest. The many different types of tests to diagnose CAD can be broadly categorized as assessing either functional or anatomic evidence of ischemia. the patient requests to stop or experiences significant anginal or other physical symptoms. Achieving a rate pressure product (heart rate × systolic blood pressure) of at least 25. More specific signs of ischemia such as reduced regional contractility can be assessed by echocardiography or MRI. These include inability to exercise.  such as regadenoson or adenosine. and any delay can reduce the accuracy of the information obtained. In addition. The additional information and impact on patient care obtained with imaging must be balanced with the additional costs. these patients should undergo pharmacologic stress testing with vasodilators. but ST segments may be more difficult to interpret or may produce false­positive results. abdominal aortic aneurysm. Patients with right bundle branch block (RBBB). and ischemia develops distal to the obstruction. bifascicular block. Patients with severe aortic stenosis. Improvement in regional wall motion with low­dose exercise or dobutamine that worsens at higher levels suggests viable but hibernating myocardium. time. Exercise stress echocardiography is performed with either supine ergometry or treadmill testing. interpretation can be more subjective than with other modalities. particularly with baseline wall motion abnormalities or systolic dysfunction. Dobutamine stress echocardiography is used for patients who cannot exercise and can be particularly useful for evaluation of myocardial viability (Table 5) and to evaluate aortic stenosis in patients with a low ejection fraction. increases myocardial oxygen demand and elicits ischemia because of insufficient perfusion to the affected myocardium. left bundle branch block [LBBB]. In stress testing with adjunctive imaging. or who are on digoxin can undergo exercise stress testing. perfusion imaging can define the location and extent of reduced perfusion and provide additional prognostic information compared with ECG stress testing alone. Supine ergometry allows for continuous imaging during exercise. in patients with LBBB undergoing nuclear stress testing. a pharmacologic stressor should be used even if the patient is able to exercise because of the potential for a false­positive test owing to a septal perfusion abnormality that may occur with exercise. and function; valvular morphology and function; diastolic function; and the pericardium.abnormal baseline ECGs that interfere with the interpretation of the exercise ECG (for example. In addition. Wall motion abnormalities at rest that do not change with exercise usually indicate infarction. New regional wall motion abnormalities seen on the echocardiogram following exercise indicate areas of ischemia (see Table 4). In addition to identifying the presence of disease. stress echocardiography allows assessment of wall motion at rest and at peak or immediately following imaging to assess for obstructive CAD. or a paced rhythm) should undergo stress imaging to identify obstructive CAD. Vasodilators. and exposure to radiation or contrast agents incurred. produce hyperemia and a flow disparity between myocardium supplied by the stenotic vessel (in which the distal vasculature is already maximally dilated) as compared with the myocardium supplied by unobstructed vessels. these should be specifically requested in order to be sure that adequate echocardiographic information is obtained. The sensitivity of stress echocardiography is reduced with single­vessel disease and is dependent on timely imaging. If the examination is performed to assess dyspnea on exertion or valvular function with exercise. the extent of wall motion abnormalities provides prognostic information regarding risk of future cardiovascular events. . These are not necessarily routinely performed in a stress echocardiogram so if this information is clinically important. The choice of imaging modality should be based on local expertise and patient characteristics. whereas with treadmill testing. In addition. Dobutamine. it may be necessary to obtain both a TTE and a stress echocardiogram. such as changes in pulmonary pressures or changes in valvular function with exercise. stress testing with imaging may be helpful to elucidate a diagnosis in patients with indeterminate results on treadmill testing. like exercise. severe hypertension. or uncontrolled arrhythmias should not exercise; rather. Exercise invokes ischemia as the epicardial vessels become unable to maintain adequate flow related to myocardial oxygen demand via autoregulation. A major advantage of stress echocardiography is the ability to obtain additional information. left ventricular hypertrophy with ST­segment abnormalities. These imaging modalities may also be used to quantify infarction and assess myocardial viability. baseline images are obtained and compared with images obtained after either exercise or pharmacologic stress (Table 4). images need to be obtained immediately after exercise. thickness. At minimum. Routine transthoracic echocardiography (TTE) evaluates left and right ventricular size. As with perfusion imaging. Patients who are unable to exercise should undergo pharmacologic stress testing with imaging.  and new wall motion abnormalities. Because of the short half­life of PET radiotracers. or a paced rhythm) should undergo stress imaging to identify obstructive coronary artery disease. Unlike stress echocardiography. Myocardial perfusion imaging can quantify the extent and severity of disease and help direct treatment strategies. CMR imaging can be used for evaluation of myocardial and pericardial disease processes and can be particularly useful for evaluation of infiltrative and inflammatory diseases. Tracer is again distributed with blood flow and. cardiac PET can be used to detect ischemia. it is an excellent tool to evaluate for viability. measures of right and left ventricular function can be obtained. Limitations of the use of CMR imaging include the length of time needed to acquire images and magnetic interference with cardiac implanted electronic devices. This is particularly useful when there is potential for soft­tissue attenuation that can interfere with interpretation. can be reclassified into higher or lower risk categories. with exercise or vasodilator stress. images are not obtained immediately post stress and are often delayed. it signifies a high degree of stenosis. Because some PET radiotracers identify metabolically active myocytes. In patients who are able to exercise and have a normal baseline electrocardiogram.SPECT imaging takes advantage of the relative differences in blood flow with stress. and evaluation of myocardial metabolism. because it is these patients who. This relative difference in flow between stress and rest tomographic images is seen as a perfusion defect and is indicative of CAD (Figure 2). Because CMR imaging can be gated. stress testing with dobutamine to assess wall motion and vasodilators such as adenosine to assess perfusion can be used with CMR imaging to detect ischemia. Although not widely performed. thallium also can be used to assess viability. quantitation of myocardial blood flow. Visualization of the Coronary Anatomy . left ventricular hypertrophy with ST­segment abnormalities. less tracer is taken up in the left ventricular region supplied by a stenotic vessel. Cardiac PET also allows for assessment of peak stress ejection fraction. limited anatomic information about coronary calcification is also obtained. It can be utilized to detect the extent and severity of myocardial infarction and viability. and patients with diabetes mellitus. Radioactive tracer is injected and taken up by the myocardium with blood flow. but because it requires active metabolism. all studies must be performed with vasodilators. a second injection is given. thallium can be used for myocardial perfusion imaging. Most commonly. the initial type of stress testing should be exercise stress testing. Patients with abnormal baseline electrocardiograms (ECGs) that interfere with the interpretation of the exercise ECG (for example. Key Points Stress testing is most efficacious in patients with an intermediate pretest probability of coronary artery disease. Because cardiac PET uses CT for attenuation correction. The benefits of thallium are balanced against higher radiation exposure because of its long half­life. left bundle branch block. Myocytes that on initial stress testing appear to be infarcted may slowly take up thallium tracer. technetium­based radiotracers are used. by the result of their stress test. such as with breast attenuation in women. Like technetium. cavity dilatation. High­risk features that may be seen on myocardial perfusion imaging include lack of augmentation of post­stress ejection fraction. Then. Images are obtained at rest. identifying them as viable. Thallium is a potassium analogue and can only be taken up by active myocytes. If there is evidence of a new wall motion abnormality in these delayed images. PET imaging provides improved diagnostic accuracy compared with SPECT and can be particularly useful in patients with nondiagnostic imaging stress tests. The utility of PET/CT scanning is limited by its availability. These have a higher energy and provide good image quality. obese patients. therefore. Like SPECT imaging.  uncontrolled heart failure. Coronary calcium scores greater than 400 are associated with a higher incidence of abnormal perfusion on SPECT imaging. These imaging modalities can help identify those abnormalities that are associated with a higher risk of sudden cardiac death. Exercise testing is associated with a small risk of myocardial infarction or death (1/2500 tests). Both procedures require iodinated contrast and expose the patient to radiation. . Risks of Coronary Diagnostic Testing In addition to the physical and societal costs of downstream testing that result from inappropriate testing. Because of its cost and associated radiation exposure. CAC scores are categorized as follows: 0. Coronary angiography is also required if coronary revascularization is to be performed. and regadenoson. have intolerable ischemic symptoms as long as they are candidates for coronary revascularization. Coronary angiography provides a two­dimensional image of the lumen of the vessel filled with contrast. which is directly proportional to the degree of plaque burden present. and unstable angina.Coronary angiography and coronary CT angiography (CTA) provide anatomic information regarding the coronary vessels (Figure 3). such as initiation of lipid­lowering therapy. Coronary angiography may be useful as a diagnostic test in patients who. Exercise stress testing is contraindicated in patients with unstable cardiac conditions. the patient typically requires coronary angiography for better definition of the degree of coronary stenosis. can be evaluated by coronary CTA. measurement of coronary artery calcium should be limited to a select group of asymptomatic patients with an intermediate Framingham risk score (10%­20%) in whom results will influence treatment strategy. and newer technologic advances limit radiation exposure to the patient. Key Point Measurement of coronary artery calcium should be limited to a select group of asymptomatic patients with an intermediate Framingham risk score (10%­20%) in whom results will influence treatment strategy because of its associated cost and radiation exposure. Pharmacologic stress agents. including dipyridamole. CAC scoring may be useful particularly if the results will influence treatment strategy. mild disease; 100­399. culprit lesions are visualized on coronary CTA. CMR imaging. Coronary CTA can provide additional information about some of the characteristics of the plaque. If percutaneous coronary intervention is indicated. no disease; 1­99. each of the modalities used for diagnosis and risk stratification carry specific risks. Other limitations of coronary CTA include poor visualization of distal vessels and artifact from calcification that may limit interpretation. Assessment of the stenotic lesions is made from multiple views of the vessel. or coronary angiography. Coronary CTA may be used to rule out CAD in symptomatic patients with an intermediate risk of coronary disease. ordering an exercise stress test in a patient with a low pretest probability of disease may result in a false­positive stress test and additional downstream testing. CAC scoring can be performed with either electron beam or multi­detector CT. such as anomalous coronary origins. Obtaining a CAC score in a low­risk patient may lead to additional tests or procedures for an incidental finding on CT. however. moderate disease; and above 400. such as uncontrolled cardiac arrhythmias. despite maximal medical therapy. For example. It is important to determine the pretest probability of disease and to focus additional testing appropriately. severe disease. severe symptomatic aortic stenosis. If. it may be performed at the time of a patient's diagnostic catheterization. It detects the presence of calcification in the walls of the coronary arteries. adenosine. Coronary Artery Calcium Scoring Coronary artery calcium (CAC) scoring provides information regarding the burden of atherosclerotic disease but does not provide information regarding the degree of obstruction it may be causing. Suspected coronary anomalies.  Evaluation of structural heart disease typically begins with a TTE. dissection of the aorta. Routine yearly imaging evaluation of structural heart disease in asymptomatic patients is usually not indicated. TEE is commonly used to evaluate for endocarditis in patients with a high pretest probability; to assess for diagnostic findings or complications of endocarditis (such as abscess); to better visualize valvular pathology. and do not routinely need echocardiographic evaluation. complexity of procedure performed. Both of these complications require prompt recognition and treatment. operator technique. and function. Complications include esophageal injury and bleeding. and filling pressures. Key Points . New murmurs or a change in examination findings or symptoms in a patient with known structural heart disease should prompt further evaluation. and other high­flow states. and patient characteristics (such as body size). diastolic function. TTE is a noninvasive procedure and is the preferred imaging modality for evaluating anterior structures of the heart. The amount of exposure is dependent on factors such as the radiotracer used. particularly when planning repair; to evaluate specific structures that cannot be well visualized on TTE (such as prosthetic heart valves); to evaluate acute aortic pathologies; and to rule out left atrial thrombus prior to cardioversion (Figure 4). to document the presence of an intracardiac shunt or a patent foramen ovale. CAC scoring. are common with pregnancy. and coronary angiography (nonionic contrast). Various contrast agents are used for CMR imaging (gadolinium). and coronary angiography expose the patient to radiation. Imaging modalities used to evaluate structural heart disease are listed in Table 6. Nuclear stress testing. Diagnostic Testing for Structural Heart Disease Related Questions Question 74 Question 107 Diagnostic testing for structural heart disease should be based on a thorough history and physical examination. Cardiac catheterization can result in complications from vascular access. anemia.are associated with development of high­degree atrioventricular block and bronchospasm. echocardiography (microbubble contrast agents used for enhancement of endocardial borders). Atrial septal defect is suggested by shunting of microbubbles from the right atrium to the left atrium. coronary CTA. or disruption of plaque resulting in peripheral emboli and possible stroke. thickness. such as grade 1/6 or 2/6 midsystolic murmurs. The procedure requires sedation and is contraindicated in patients with esophageal strictures or active esophageal varices or bleeding. equipment. Transesophageal echocardiography (TEE) takes advantage of the proximity of the heart to the esophagus for better image quality. as well as quantitative information regarding valvular function. Vascular access complications include retroperitoneal hematoma from bleeding at the groin access site as well as pseudoaneurysm at the arterial puncture site. TTE can be used with intravenous agitated saline contrast. such as the aortic valve. TTE provides information about left and right ventricular cavity size. normally cleared by the pulmonary circulation. injury to the coronary arteries. Benign murmurs. Nonionic contrast may be associated with hypersensitivity reactions and acute kidney injury whereas gadolinium is associated with the development of nephrogenic fibrosing dermatopathy in patients with chronic kidney disease. coronary CTA.  J Am Coll Cardiol.Routine yearly imaging evaluation of structural heart disease in asymptomatic patients is usually not indicated; benign murmurs. whereas patients with less frequent episodes require other monitoring strategies. A looping event recorder captures several seconds of the ECG signal prior to the device being triggered and is useful when episodes are accompanied by syncope or presyncope. and most patients with arrhythmias do not require an electrophysiology study. or intraventricular conduction delay may give insight into the etiology of the symptoms. For infrequent symptomatic events. and exercise­induced or adrenergically induced arrhythmia. Diagnostic Testing for Cardiac Arrhythmias Related Questions Question 50 Question 98 In addition to a careful history and physical examination. ectopic rhythms. presyncope. such as grade 1/6 or 2/6 midsystolic murmurs. Evidence of preexcitation. et al. echocardiography may also be indicated. In patients in whom the presence of structural heart disease is suspected. Evaluation of structural heart disease typically begins with transthoracic echocardiography. and other high­flow states and do not routinely need echocardiographic evaluation. including various types of longer­term event recorders. which provides information about ventricular cavity size. Monitoring and diagnostic strategies are based on the frequency of the patient's episodes (Table 7). 2010 . Patients with daily symptoms can be evaluated with a 24­ or 48­hour ambulatory ECG monitor (Holter monitor). an implanted loop recorder may be warranted. an external patient­triggered event recorder can capture the arrhythmia. provided the event lasts long enough for the patient to record it. or syncope in which an arrhythmia is suspected begins with a 12­lead resting ECG. Exercise testing is also frequently employed in patients with a suspected or known arrhythmia. Selection of these diagnostic tests is dependent upon the particular patient and the diagnostic concerns. and function. ischemia. For very infrequent events. atrioventricular block. and filling pressures. their diagnosis and documentation can be challenging. Bibliography American College of Cardiology Foundation Task Force on Expert Consensus Documents. Key Point Patients with a suspected arrhythmia who experience daily symptoms can be evaluated with a 24­ or 48­hour ambulatory electrocardiographic monitor (Holter monitor). Bluemke DA. Because of the intermittent nature of arrhythmias. Hundley WG. anemia. Finn JP. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. thickness. Once a patient is diagnosed with an arrhythmia or arrhythmia­prone cardiovascular condition. are common with pregnancy. diagnostic electrophysiology testing can be helpful for both risk stratification and treatment (such as catheter ablation). whereas patients with less frequent episodes require other monitoring strategies. diastolic function. Treadmill exercise testing is an important tool for evaluating chronotropic response. as well as quantitative information regarding valvular function. the evaluation of a patient with a history of palpitations. the American Society of Echocardiography. Alexander KP. and the American Association for Thoracic Surgery. et al. Budoff MJ. PMID: 20513610 American College of Cardiology Foundation Task Force on Expert Consensus Documents. Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. American Society of Nuclear Cardiology. Blankenship JC. Bonow RO. PMID: 21144964 Greenland P. Heart Failure Society of America. Preventive Cardiovascular Nurses Association. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force. 2007 Jan 23;49(3):378­402. Douglas PS. Berman DS. Garcia MJ. 2009 Jun 9;53(23):2201­29. and Society of Thoracic Surgeons. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol. Society for Cardiovascular Angiography and Interventions. Mark DB. et al; American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography); Society of Atherosclerosis Imaging and Prevention; Society of Cardiovascular Computed Tomography. et al.Jun 8;55(23):2614­62. and the Society of Nuclear Medicine. J Am Coll Cardiol. the American Heart Association. American Heart Association. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force. Di Carli MF. Beller GA. et al; American College of Cardiology Foundation; American Heart Association. PMID: 17239724 Hendel RC. J Am Coll Cardiol. et al. Brundage BH. American Society of Echocardiography. Berman DS. Society of Critical Care Medicine. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. Heart Rhythm Society. the Society of Cardiovascular Computed Tomography. PMID: 20513611 American College of Cardiology Foundation Appropriate Use Criteria Task Force; American Society of Echocardiography; American Heart Association; American Society of Nuclear Cardiology; Heart Failure Society of America; Heart Rhythm Society; Society for Cardiovascular Angiography and Interventions; Society of Critical Care Medicine; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance. Society for Cardiovascular Angiography and Interventions. et al; American College of Cardiology Foundation Appropriate Use Criteria Task Force; American Society of Nuclear Cardiology; American College of Radiology; American Heart Association; American Society of Echocardiology; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance; Society of Nuclear Medicine. Alpert JS. PMID: 25070666 Greenland P. J Am Coll Cardiol. 2010 Dec 14;56(25):e50­103. PMID: 21349406 Fihn SD. 2010 Jun 8;55(23):2663­99. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. the American College of Radiology. the American Society of Nuclear Cardiology. Haines DE. 2011 Mar 1;57(9):1126­66. the Society for Cardiovascular Magnetic Resonance. PMID: 19497454 . 2014 Nov 4;130(19):1749­67. Next: Coronary Artery Disease Notes Chapter 02 0 Notes Diagnostic Testing in Cardiology Questions Reference Ranges .
Copyright © 2020 DOKUMEN.SITE Inc.