Diabetes

March 29, 2018 | Author: Chait Ya | Category: Diabetes Mellitus, Pharmaceutical Drug, Plants, Pharmaceutical, Wellness


Comments



Description

Journal of Ethnopharmacology 99 (2005) 325–348Review Mexican plants with hypoglycaemic effect used in the treatment of diabetes Adolfo Andrade-Cetto a,∗ , Michael Heinrich b,1 b Departamento de Biolog´a Celular, Facultad de Ciencias, Universidad Nacional Aut´ noma de M´ xico, ı o e Apartado Postal 70-359, 04511 M´ xico DF, M´ xico e e Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University London, 29–39 Brunswick Sq., London WC1N 1AX, UK Received 26 August 2004; received in revised form 20 February 2005; accepted 27 April 2005 a Abstract Diabetes mellitus is a syndrome which affects more and more people in all countries over the world. In M´ xico, it is commonly treated e with herbal extracts. Such treatment may be of considerable benefit especially during the early stages of the illness. In this review, we discuss species commonly used in M´ xico in the treatment of diabetes. A total of 306 species have records of a popular use in the treatment of e this syndrome in M´ xico. Seven of these species – Cecropia obtusifolia Bertol. (Cecropiaceae), Equisetum myriochaetum Schlecht & Cham e (Equisetaceae), Acosmium panamense (Benth.) Yacolev (Fabaceae), Cucurbita ficifolia Bouch´ (Cucurbitaceae), Agarista mexicana (Hemsl.) e Judd. (Ericaeae), Brickellia veronicaefolia (Kunth) A. Gray (Asteraceae), Parmentiera aculeata (Kunth) Seem. (Bignoniaceae) – are discussed in greater detail, highlighting our current knowledge about these botanicals, but also the enormous gaps in our knowledge, most notably as it relates to the species’ toxicology, the pharmacokinetics of its active constituents and their metabolism. © 2005 Elsevier Ireland Ltd. All rights reserved. Keywords: Type 2 diabetes; Hypoglycaemic plants; M´ xico; Neotropics; Traditional medicine e Contents 1. 2. 3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . An overview of important sources of information on Mexican antidiabetic plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ethnopharmacology of commonly used antidiabetic plants in M´ xico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 3.1. Cecropia obtusifolia Bertol. (Cecropiaceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.5. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.6. Possible mechanism of action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.7. Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.8. Cecropia obtusifolia—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 327 336 336 336 336 336 336 336 337 339 340 ∗ 1 Corresponding author. E-mail address: [email protected] (A. Andrade-Cetto). Fax: +44 20 7753 5909. 0378-8741/$ – see front matter © 2005 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.jep.2005.04.019 326 A. Andrade-Cetto, M. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 4. Equisetum myriochaetum Schlecht & Cham (Equisetaceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6. Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.7. Equisetum species—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3. Acosmium panamense (Benth.) Yacolev (Fabaceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.5. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.6. Acosmium panamense—conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4. Cucurbita ficifolia Bouch´ (Cucurbitaceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 3.4.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.3. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.4. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.5. Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.6. Cucurbita ficifolia—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5. Agarista mexicana (Hemsl.) Judd (Ericaeae). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.5. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.6. Agarista mexicana—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6. Brickellia veronicaefolia (Kunth) A. Gray (Asteraceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.3. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.4. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.5. Brickellia veronicaefolia—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7. Parmentiera aculeata (Kunth) Seem. (Bignoniaceae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1. Botanical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2. Ethnobotany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.3. Main constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.4. Pharmacology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.5. Parmentiera aculeate—conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8. Other species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2. 340 340 340 340 340 340 340 341 341 341 341 341 341 341 341 341 341 341 341 342 342 342 342 342 342 342 342 342 343 343 343 343 343 343 343 343 343 343 344 344 344 344 345 346 346 1. Introduction It is well known that diabetes mellitus is the commonest endocrine disorder that, according to the World Health Organization (WHO, 2004), affects more than 176 million people world wide, in M´ xico the WHO estimates that the number e of diabetic patients will increase from more than 2 million in 2002 to more than 6 million in 2030, which would imply that in a few decades M´ xico may have highest rate of diabetes in e the world. According to the Mexican health services, in 2001 diabetes was the first cause of mortality among the Mexican population (SSA, 2004). Because of the complications linked to diabetes like heart disease, retinopathy, kidney disease, and neuropathy, it also is a common cause of chronic morbidity and disability among the working population. The term diabetes mellitus describes a metabolic disorder of multiple aetiologies and is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. The causes of type 2 diabetes . But in our own experience from field work in Guerrero (Andrade-Cetto. is not reviewed here. and Wiedenfeld et al.. it is important to understand that this disease is one at the interface of conventional biomedical and local (or traditional) treatment.A. (1984. Finally we have recompilations in which the authors describe some aspects of species with hypoglycaemic effects from M´ xico (P´ rez-Guti´ rrez et al. 2000b.. Research and development activities on this botanical lead to a patent on some compounds present in the plant with hypoglycaemic proprieties A detailed review was conducted as part of the efforts to obtain a patent (Inman et al. 1998): “the novel hypoglycemically active eremophilanolide sesquiterpenes which can be . 2. 1989c. it is important to remember that the modern drug metformin (a biguanide) is a derivate of an active natural product..).. this number is at least double. Also. 1998a. e we have documented at least 306 species from 235 genera and 93 families used as hypoglycaemic agents (see Table 1). The authors have not looked for bioactive compounds of these species. patients are diagnosed in one of the primary health care centres and the MDs in these centres normally also prescribe appropriate medication. 2000. Hyperglycaemia was induced with a glucose charge. Castaneda-Andrade et al. Cactaceae (16). Acosta Pati˜ o and Revilla associated n with the above described groups. o 2002a. phytochemical and clinical research on some of the more widely used and better known species. flavonoids. Solanaceae and Euphorbiaceae (10) and Laminaceae (9). There are some clinical studies like the well known one by Frati-Munari et al. AcostaPatino (2001) (Revilla-Monsalve et al. 1991a. e ı ı Aguilar et al. patients used these treatments instead of conventional medications. based on Mexican medicinal plants are available: Hando. with the exception of a detailed report on the pharmacology and phytochemistry of Psacalium sp. which would be of direct benefits to patients. 1997. There have been many studies on hypoglycaemic plants and a great variety of compounds have been isolated (alkaloids. terpenes. 2000b. (1983. 2001). (1997). In M´ xico. at least two products for the treatment of diabetes. 1991. D´az. From an ethnopharmacological perspective.). (2003) on clinical aspects of anti-diabetic plants include. for example. and acute hyperglycaemia occurred (Shane-Mc Whorter. and severe complications including increased hospitalizations. 1998c.. 1991b). The group of Andrade-Cetto (Andrade-Cetto et al. some plant based compounds as well as herbal remedies are used along with other medications. we estimate that there are about 500 species used by Mexican people to treat type 2 diabetes. 2000a. Argueta. limited data is available but based on our field e experience diabetic patients practically always use plants with or without biomedical medication. In this context. 1998. (a native of M´ xico). 1954. For M´ xico. Normally. 1989a. 1987.. etc. Therefore. In this review we summarize information on plants with current information in the international literature and highlight the current state of ethnopharmacological. important pharmacological studies were conducted by Alarc´ n Aguilar and Rom´ no a Ramos (Alarc´ n-Aguilar et al. the plant was process in the traditional way and the water extract tested. The detailed reviews of Shane-Mc Whorter (2001) and Yeh et al. “Matarique” Psacalium decompositum (Gray) H.. Robins & Brett. Other data can be found in many of the ethnobotanical thesis or monographs on specific regions. 2000. (originally from Asia) and Opuntia sp. 1999). once a diagnosis is made the patients often recur to either local healers or to vendors of herbal and other health care products. from the active extract the main compounds are isolated and tested in the animal model. 1994. M.E. 1995). 2001). the commonly used Momordica charantia L. In the a beginning. but the main bottleneck is the further development of such ’leads’ into clinically useful medicines and especially phytomedicines or adequate nutritional supplements.). Andrade-Cetto. Munich. (1996.. In USA. 1994. These relatively well e known studied species are excluded from this review. Fabaceae. 2001). In Germany. 1990. 2004. 2001). later on they use healthy and alloxan-diabetic mice. 1998b) or some Mexican e e e plants as part of world wide studies (Marles and Farnsworth. The most commonly mentioned families are: Asteraceae (47 sp.. 1976. ketoacidosis. 2004). manufactured by Hando Austria and Sucontral (Coplachi: Hintonia sp. Normally. In some cases. galegine a guanidine isolated from the plant Galega officinalis L. and (HerreraArellano et al. Ernst. when a directed ethnobotanical study is performed looking only from hypoglycaemic plants instead of a broad study looking for all medicinal plants. Thus this is a disease for which many of the ‘traditional’ treatments were in fact developed in the last decades by local healers. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 327 are either insulin resistance with relative insulin deficiency or predominantly an insulin secretory defect with or with out insulin resistance (WHO. e e 2000a. The group of P´ rez-Guti´ rrez et al. However. 1997. P´ rez-Guti´ rrez and Vargas (2001) and e e P´ rez et al. An overview of important sources of information on Mexican antidiabetic plants Several valuable reviews on the ethnobotanical use of plants of M´ xico are available (Mart´nez.) manufactured by Harras Pharma. Starting at the early 1990s. 2002). 1989b. Then the traditionally used extract (normally water or butanol) is tested on Streptozotocin diabetic rats. Nopal (opuntia sp.. The group isolated bioactive compounds from some of the species working with the chloroform extracts. 2000). 1995. 2002b. Andrade-Cetto and Wiedenfeld. which was used in the medieval times to relieve the intense urination in diabetic people (Witters. 2002). Aguilar and Xolalapa. 2001. this group tested several plants for their pharmacological activity in temporarily hyperglycaemic rabbits. (27). Lamba et al. 1992) normally look for the pharmacoe logical activity in normal and alloxan diabetic mice and rats. glycosides. Rom´ n-Ramos et al. 2003) generally starts with their own field studies. Mara˜ on n Ananas comosus (L. Argemone ochroleuca Sweet Argemone platyceras Link & Otto Aristolochia asclepiadifolia Brandegee Aristolochia malacophylla Standl. 1995. M. the correct botanical names were corroborated at Missouri Botanical Garden (2004)—TROPICOS Scientific name Abutilon lignosum (Cav. Artemisa Anacardium occidentale L. palo de corcho Guanabana Pisto Flor de junco Cacahuate Injerto Steam roasted. Agastache mexicana (Kunth) Lint et Epling Agave atrovirens Karw. e Ageratum conyzoides L. ex Willd. Allionia choisyi Standl. essential oils. Acourtia thurberi. Annona glabra L. (A. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Table 1 Main plants reported in M´ xico as Hypoglycemic.) J.) Urban. Coyolose Essential oils Sapogeninns Toronjil Maguey Lechuguilla Maguey ´ Hierba del angel o Yolochichotl Hierba dulce Hierba de la hormiga Cebolla Prodijiosa Lamiaceae Agavaceae Agavaceae Agavaceae Asteraceae Asteraceae Nyctaginaceae Liliaceae Asteraceae Plant (aerial) infusion Steam macerated Steam macerated Steam macerated Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Bulbs raw Plant (aerial) infusion Terpens Flavonoids. the data were actualized and 40 species added from Aguilar and e Xolalpa 2002. Aloe barbadensis Mill. fruit raw Alloxanic mice (+) Alloxanic mice (++) EtOH Tetrahydropyrane. Lactones Isoquinolin Alkaloids Diterpens. Chirimoya Anona silvestre.) Merr.) H. terpens Sesquiterpen lactones Monoterpenoids. M. Allium cepa L. Carotenoids.328 A.) D. ex Mart. flavonoids Alkaloids Aristolochiaceae Plant infusion EtOH Guaco Guaco Aristolochiaceae Flowers infusion Aristolochiaceae Steam infusion . & Bonpl. Alloispermum integrifolium (DC. Acacia retinodes Schltdl. Apodanthera buraeavi Cogn. juice of the leaves Mixed with Nopal taken orally before meals Plant (aerial) infusion Bark infusion Juice of the fruit Bark infusion Juice of the fruit root infusion Fruit raw Plant (aerial) infusion Flowers infusion.) Burm. & Sess´ ex DC. Arachis hypogaea L. roots infusion Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Tannins Alkaloids. Andrade-Cetto. Aloe vera (L. Aristolochia sericea Benth. Pi˜ a n Annona cherimola Mill. flavonoids. steam infusion Seeds and oil Plant infusion Normal rabbits (−) Normal mice (+) Polysaccharides. Don Abutilon trisulcatum (Jacq. Aporocactus flagelliformis (L. flavonoids Polysaccharides A B. Alkaloids Sterols. terpens Sulfuric compounds S´ bila a S´ bila a Liliaceae Liliaceae Asteraceae Anacardiaceae Bromeliaceae Annonaceae Annonaceae Annonaceae Cucurbitaceae Cactaceae Fabaceae Loranthaceae Ambrosia artemisiifolia L. flavonoids Ping¨ ica u Chicalote. Gray) Reveal & R. Chicalote Chicalote Guaco Ericaceae Papaveraceae Papaveraceae Papaveraceae Leaves infusion. the original table is from Andrade. King Acrocomia mexicana Karw. Arceuthobium vaginatum (Humb. Agave salmiana Otto ex Salm-Dyck Ageratina petiolaris Moc. Rob. Cardo lechero.) Lem. Presl Arctostaphylos pungens Kunth Argemone mexicana L. Annona muricata L. Ex Salm-Dyck Agave lecheguilla Torr. F Common name Sacxiu Tronadora Mimosa Matarique Family Malvaceae Malvaceae Fabaceae Asteraceae Plant part used and preparation Root infusion Leaf boil Leaf boil Plant (aerial) infusion Pharmacological STudies* Phytochemical informat** Normal rabbits (+) Coyol Arecaceae Root roasted. brikelin Flavonoids Benzoquinones Flavonoids. Bidens aurea (Aiton) Sherff Bidens leucantha (L. steam infusion Plant (aerial) infusion Plant (aerial) infusion Normal rabbits (+) Normal rabbits (+) Bouvardin Essential oils. edulinin . Calea zacatechichi Schltdl. & Seaton Brosimum alicastrum Sw. Carya Nutt. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Table 1 (Continued ) Scientific name Artemisia absinthium L. & Cham. alkaloids. essential oils Flavonoids. Artemisia vulgaris L. Watson Puemus boldus Molina J. Andrade-Cetto. Gray Cacalia peltata Kunth Calamintha macrostema Benth. infusion Leaves infusion Latex Leaves infusion Leaves infusion. & Schltd/. Artemisia ludoviciana Nutt.L. alkaloids Alkaloids Tannins Triterpenoids Alloxan Mice (++) Normal rabbits (++) Alloxanic mice (+) Alkaloids. & Schult. Buchnera pusilla Kunth Buddleia stachyoides Cham. Rob.L.) Sarg. H. Byrsonima crassifolia (L. triterpens Alkaloids Normal rabbits (+) Pharmacological STudies* 329 Phytochemical informat** Sesquiterpen lactones.) Kunth Cacalia decomposita A. J.) Willd. loiflorin Monoterpenoids Alkaloids. Rob.L. Macbr. Schultes Bouvardia ternifolia (Cav. bark infusion Fruit Alloxanic mice (+) Normal rabbits (+) Sesquiterpen lactones Triterpenoid saponins Alkaloids. casimiroin. Roemer & J. Bauhinia divaricata L. Mosote blanco Aceitilla Llora sangre Boldo Family Asteraceae Asteraceae Asteraceae Asclepiadaceae Rutaceae Fabaceae Begoniaceae Berberidaceae Chenopodiceae Asteraceae Asteraceae Asteraceae Asteraceae Papaveraceae Monimiaceae Plant part used and preparation Leaf boil Plant (aerial) infusion Leaf boil Plant (aerial) infusion Leaves infusion Leaf boil. Carica papaya L. Gray Brickellia squarrosa B. Buddleja cordata Kunth Bursera simaruba (L. Berberis moranensis Schult. Calliandra anomala (Kunth) J. bark infusion Root infusion Root infusion Root infusion Plant (aerial) infusion Stem.) A. polysaccharides Polysaccharides Moraceae Bark infusion Scrophulariaceae Bark infusion Loganiaceae Leaves infusion Loganiaceae Loganiaceae Burseraceae Malpighiaceae Asteraceae Asteraceae Lamiaceae Asteraceae Asteraceae Asteracae Fabaceae Verbenaceae Scrophulariaceae Caricaceae Juglandaceae Rutaceae Fabaceae Leaves infusion Leaves infusion Bark infusion Fruit. Begonia heracleifolia Schltdl. Cassia fistula L Common name Ajenjo Estafiate Ajenjo Romerillo Buch¨ u Pata de vaca Mano de le´ n o Palo muerto Betabel T´ de milpa e Rosilla Aceitilla. Callicarpa acuminata Kunth Capraria biflora L. Calea hypoleuca B. M.) Schltdl. flowers boil Steam infusion Bark infusion Juice of the leaves Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Leaves infusion Plant (aerial) infusion Alloxanic mice (+) Alloxanic mice (++) Flavonoids.F. Buddleja Americana L.) Hemsl. Bidens pilosa L. Bidens odorata Cav. Beta vulgaris L. flavonoids Essential oils Trompetilla Prodigiosa Amula Ojite Chichib´ e Hierba del perro Tepoz´ n a Tepoz´ n a Cuajiote Nanche Matarique Matarique Tabaquillo Prodigiosa Prodigiosa Prodigiosa ´ Cabello de angel Xpuk’im Sabadilla Papaya Nogal Zapote blanco Ca˜ a F´stula n ı Rubiaceae Asteraceae Asteraceae Leaves. Calea integrifolia (DC. f. Casimiroa edulis La Llave & Lex. A. Brickellia cavanillesii (Cass. Schultes & J. triterpens Flavonoids. Wendl. Bocconia arborea S. & H. edulein. Schultes in J. flavonoids Sesquiterpens flavonoids Sterols. Asclepias linaria Cav. & Greenm. Barosma betulina Bartl. triterpenoids Cucurbitacines Alkaloids. A.A. infusion Leaves infusion Leaves infusion Root. Rob Cirsium mexicanum DC.) I. zacachichitl Cueramo Palo mulato Cilantro Ca˜ a de Jabal´ n ı Ca˜ a agria n Ca˜ a de Jabal´ n ı Tejocote Tejocote Retama Asteraceae Asteraceae Root infusion Flower infusion Alkaloids. & G. Irwin & Barneby Chenopodium glaucum L. flavonoids. Presl) C. Chromolaena bigelovii (A.) Osbeck Cnidoscolus aconitifolius (Mill. ex Petersen Costus rubber C. Johnst. flavonoids Polysaccharides Triterpenoids. Crataegus mexicana Moc. Coriandrum sativum L. DC. & L. Castilleja Mutis ex L. Cnidoscolus multilobus (Pax) I. A. Ex Roem. e Crataegus pubescens (C. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Common name Frijolillo Retama cimarrona Chaparro amargoso Venenilo Hierba del gato Vicaria Guarambo Ceiba. Ceiba pentandra (L. f. flavonoids. Pochote Tlanchalahua Tlanchalagua Frijolillo Family Fabaceae Fabaceae Simaroubaceae Plant part used and preparation Leaves infusion Leaves infusion Bark infusion Pharmacological STudies* Phytochemical informat** Steroids Simaroubaceae Bark infusion Scrophulariaceae Plant (aerial) infusion Apocinaceae Root infusion Cecropiaceae Bombacaceae Gentianaceae Gentianaceae Fabaceae Leaves infusion Bark infusion Leaves infusion Leaves infusion Leaves infusion Essential oils Frijolillo Fabaceae Leaves infusion Hierba del puerco Ambula Chenopodiceae Asteraceae Plant (aerial) infusion Plant (aerial) infusion Cardo santo Cardo santo Guaco Lim´ n o Lima Flor de azahar Chaya Mala mujer Chayamansa L´ grima de San Pedro a Bejuco de Carape Simonillo Cimonillo. Cirsium rhaphilepis (Hemsl. & S´ sse ex DC.M. Williams Centaurium calycosum (Buckley) Fernald Chamaecrista hispidula (Vahl) H.M. Gray) R. f. Centaurium brachycalyx Standl. Cnidosculus chayamansa Mc Vaugh Coix lacryma-jobi L. Don Cecropia peltata L. Johnst. tannins Flavonoids glycosides Normal rabbits (+) Menispermaceae Root raw Rutaceae Fruit Rutaceae Rutaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Poaceae Combretaceae Asteraceae Asteraceae Boraginaceae Boraginaceae Apiaceae Zingiberaceae Zingiberaceae Zingiberaceae Rosaceae Rosaceae Fabaceae Fruit Ripe fruit infusion Leaves infusion Leaves infusion Leaves infusion Plant (aerial) infusion Sap raw Plant (aerial) infusion Leaves infusion Bark infusion Bark infusion Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Root infusion Root infusion Leaves infusion Normal rabbits (++) Alkaloids. Presl Crotalaria acapulcensis Hook.M. Conyza gnaphalioides Kunth Cordia elaeagnoides A. sesquiterpenoids. Costus spicatus (Jacq.S.) Swingle Citrus limetta Risso Citrus sinensis (L.) Petr. isoquinolin Essential oils. Catharanthus roseus (L.) G.) Sw.) Gaertn. Cassia tomentosa L. Costus mexicanus Liebm. sesquiterpen lactones Essential oils. Combretum farinosum Kunth Conyza filaginoides (D C. Andrade-Cetto. Cissampelos pareira L.) Rose Castela tortuosa Liebm.330 Table 1 (Continued ) Scientific name Cassia skinneri Benth. M. steroids Tannins.S. & Schult. Castela texana (T. & Arn. King & H. Irwin & Barneby Chamaecrista hispidula (Vahl) H. flavonoids . Citrus aurantifolia (Christm.) Hieron.O. Wright ex Griseb. lenecin Terpens Terpens Coumarins. Cordia tinifolia Willd. flowers infusion Plant (aerial) infusion Root juice Normal rabbits (++) Sterols. Hamelia patens Jacq. flavonoids Normal rabbits (+) Flavonoids. Hidalgoa ternata La Llave Hintonia latiflora (Sesse & Moc. flowers infusion Leaves infusion Leaves infusion Leaves infusion Plant (aerial) infusion. coutareagenin.) Bullock Zapote negro Contrayerba Hierba pelotazo Hierba del pastor Limpia plata Cola de caballo N´spero ı Eucalipto Hierba de la Golondrina Hierba de la Golondrina Palo dulce Hinojo Albarda Fresno Gordolobo Guayacan Guayacan Chintuza Ebenaceae Moraceae Asteraceae Fruit Leaves bolied Plant (aerial) infusion Lomariopsidaceae Plant (aerial) infusion Equisetaceae Equisetaceae Rosaceae Myrtaceae Euphorbiaceae Euphorbiaceae Fabaceae Apiaceae Fouquieriaceae Oleaceae Asteraceae Zygophyllaceae Zygophyilaceae Asteraceae Plant (aerial) infusion Plant (aerial) infusion Leaves infusion. Equisetum hyemale L. fenolic acids Alkaloids. bark infusion Plant (aerial) infusion Leaves infusion Leaves infusion bark infusion Diterpens. Schott ex J. essential oils Sterols. Daucus carota L. flavonoids Alloxanic mice (++) Neoflavonoid. Common name Sangre de Grado Salvia Calabaza Calabaza. Karst. Foeniculum vulgare Mill. terpens Cumarines. fenolic acids Flavonoids. ex DC. triterpens Essential oils. B. alkaloids Sesquiterpens. Guardiola tulocarpus A. essential oils. Heterotheca inuloides Cass. terpens Normal rabbits (−) Alloxanic mice (+) Flavonoids Flavonoids. e Cynara scolymus L. Martens & Galeotti) F´ e e Cyathea fulva (Martens & Galeotti) F´ e.) Lindll. Cynodon dactylon (L. Mel´ n o Sacapal ´ Arbol de la vida ´ Arbol de la vida Alcachofa Grama Zanahoria Family Euphorbiaceae Euphorbiaceae Cucurbitaceae Cucurbitaceae Convolvulaceae Cyatheaceae Filicaceae Asteraceae Poaceae Apiaceae Plant part used and preparation Cortex infusion. Haemahtoxylon brasiletto H. Euphorbia prostrata Aiton Eysenhardtia polystachya (Ortega) Sarg. Cyathea fulva (M.) Pers. Cucurbita maxima Duchesne Cucurbita mexicana Damm Cuscuta jalapensis Schltdl.L. M. C´ scara a sagrada.A. Dyssodia micropoides (DC. . Elaphoglossum sp. Sm. Asteraceae Sterculiaceae Fabaceae Rubiaceae Asteraceae Bromeliaceae Asteraceae Malvaceae Asteraceae Rubiaceae Leaves infusion Bark infusion Bark infusion Leaves infusion Plant (aerial) infusion Steam raw Leaves infusion Plant (aerial) infusion Plant (aerial) infusion Bark infusion Alkaloids. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Table 1 (Continued ) Scientific name Croton draco Schltdl. Guaiacum coulteri A. Blake Hechtia melanocarpa L. Hibiscus rosa-sinensis L. Fraxinus alba Marshall Gnaphalium oxyphyllum DC. flavonoids. Sm. latex Pharmacological STudies* 331 Phytochemical informat** Diterpens Fruit juice Leaves infusion fruit juice Steam infusion Root infusion Leaves infusion Fruit infusion. Equisetum giganteum L. Rob. Dorstenia contrajerva L.F. Croton torreyanus M¨ ll u Arg. Gray Guaiacum sanctum L Guardiola angustifolia (A. Gray Guazuma ulmifolia Lam. Watson) B. alkaloids Flavonoids. sesquiterpen lactones. Eucalyptus globules Labill Euphorbia maculata L. flavonoids Bark infusion Bark infusion Alkaloids Alloxanic mice (+) Flavonoids Flavonoids. Fouquieria splendens Engelm.) Loes. Eriobotrya japonica (Thunb. tannins Tannins Flavonoids. flavonoids Chintuza Gu´ zima a Palo Brazil Balletilla Xapulli Maguey agrio Arnica Tulip´ n a Mozote de monte Copalquin. Andrade-Cetto. Haplopappus venetus (Kunth) S. cardenolids Diospyros digyna Jacq. flavonoids Flavonoids. Gray ex S. ) Nopal Salm-Dyck Flavonoids. Momordica charantia L. essential oils Essential oils Alkaloids Tepehuaje Elemuy Marvavisco Fabaceae Anonaceae Malvaceae Leaves infusion. Mentha rotundifolia (L.) Brand Lonchocarpus cruentus Lundell Lopezia racemosa Cav. Kohleria sp. Andrade-Cetto. Juliania adstringens (Schltdl. Karwinskia humboldtiana (Willd.) Pers.) Schltdl.M. Leucaena leucocephala (Lam. saponins Alkaloids. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Common name Cancerina Tumba vaquero Sangre de grado Sangre de grado Cuachalalate Muicle Tronador Tullidora Family Hippocrateaceae Convolvulaceae Euphorbiaceae Euphorbiaceae Julianiaceae Acanthaceae Crassulaceae Rhamnaceae Plant part used and preparation Root infusion Plant (aerial) infusion Root infusion Bark infusion Bark infusion Leaves infusion Plant (aerial) infusion Leaves infusion Pharmacological STudies* Phytochemical informat** Sesquiterpens Essential oils Terpens. terpens Terpens. Mentha suaveolens Ehrh. flavonoids Essential oils. root infusion Normal rabbits (++) Plant (aerial) infusion Leaves infusion Leaves infusion Leaves infusion Leaves infusion Plant (aerial) infusion Leaves infusion Leaves infusion Root infusion Plant (aerial) infusion Steam raw Flavonoids. M. Ligusticum porteri J. bark infusion Root infusion Leaves infusion Tannins Flavonoids Tannins Mango Marrubio Sandiita Hierbabuena Mostranza Mastranzo Gatu˜ o n Maravilla Cundeamor.) Huds. Berro Nopalea cochenillifera (L. Justicia spicigera Scheltdl Kalanchoe pinnata (Lam. Jatropha elbae J. & Schult. steroids. terpens. Lophocereus schottii (Engelm. Mirabilis jalapa L.) Garcke Mangifera indica L. Melothria pendula L. Regel Larrea tridentata (Sess´ & e Moc. flavonoids Essential oils. Anacardiaceae Lamiaceae Cucurbitaceae Lamiaceae Lamniaceae Lamiaceae Fabaceae Nyctaginaceae Cucurbitaceae Moraceae Musaceae Brassicaeae Cactaceae Bark infusion leaves infusion Leaves infusion.) Benth Malmea depresa (Baillon) Fries Malvastrum coromandelianum (L. ex Roem. terpens . Marrubium vulgare L. Flor de pl´ tano a Nasturtium officinale R.) G. flavonoids Terpens.) Britton & Rose Lysiloma acapulcense (Kunth. lignans Terpens Tannins Scrophulariaceae Plant (aerial) infusion Apiaceae Oleaceae Polemoniaceae Polemoniaceae Fabaceae Onagraceae Cactaceae Root infusion Leaves infusion Leaves infusion Leaves infusion Bark infusion Plant (aerial) infusion Steam infusion Alloxanic mice (+) Alkaloids. flavonoids Morus nigra L. Jim´ nez e Ram. Loeselia coccinea (Cav. Jatropha dioica Cerv. Br. terpens Triterpens. Don Loeselia mexicana (Lam. essential oils. Coult. Moral negro Musa sapientum L. alkaloids. & Rose Ligustrum japonicum Thunb. A. flavonoids Triterpens Flavonoids Flavonoids Tlanchichinoli Gobernadora Bret´ nica o Lentejilla Guaje Cenicillo Ra´z de cochino ı Fresno Hoja de la virgen Hierba de la virgen. Guayac´ n a Perilla Muso Gesneriaceae Zygophylaceae Lamiaceae Brassicaeae Fabaceae Leaves infusion Plant (aerial) infusion Leaves infusion Leaves infusion Seed raw Alloxanic mice (++) Triterpens Terpens. Mimosa zygophylla Benth.) Coville Lepechinia caulescens (Ortega) Epling Lepidium virginicum L.) Zucc. Mentha piperita L.) de Wit Leucophyllum texanum Benth. ex DC.332 Table 1 (Continued ) Scientific name Hippocratea excelsa Kunth Ipomoea starts Cav. Opuntia leucotricha DC. Physalis coztomatl Dunal Physalis philadelphica Lam. flavonoids Essential oils. DC. flavonoids. L¨ ve Parathesis lenticellata Lundell Parkinsonia aculeata L. Opuntia guilanchi Griffiths Opuntia imbricata (Haw) DC. alkaloids Steroids Phoratoxins Carrizo Costomate Tomate Acoyo Cordoncillo Hierba Santa Tlaxalisnuat Guam´ chil u Gusanillo Llante Plumbago Flor de mayo Sanguinaria Abed´ l u Poaceae Solanaceae Solanaceae Piperaceae Piperaceae Piperaceae Piperaceae Fabaceae Plantaginaceae Plantaginaceae Plumbaginaceae Apocynaceae Polygonaceae Salicaceae Plant (aerial) infusion Leaves infusion Fruit roasted Leaves infusion Leaves infusion Leaves infusion Leaves infusion Bark infusion Plant (aerial) infusion Plant infusion w/i Flowers infusion Leaves infusion Leaves infusion Lignans Flavonoids. Piper schiedeanum Steud. Plumbago scandens L. flavonoids Pharmacological STudies* 333 Phytochemical informat** Chagalapoli Bagote Escobilla Cadillo Aguacate Perejil Myrsinaceae Fabaceae Asteraceae Malvaceae Lauraceae Apiaceae Leaves infusion Leaves infusion Plant (aerial) infusion Leaves infusion Leaves infusion Plant (aerial) infusion Normal rabbits (−) Flavonoids.W. flavonoids Fr´jol ı Calahuala Injerto Muicle Fabaceae Polypodiaceae Viscaceae Viscaceae Fruit infusion Root infusion Plant (aerial) infusion Plant (aerial) infusion Normal rabbits (+) Essential oils. Opuntia fulgida Engelm. Phlebodium aureum (L. Opuntia atropes Rose Opuntia ficus-indica (L. essential oils Essential oils.) Mill. Piper auritum Kunth Piper hispidum Sw. Plantago major L. terpens Alkaloids. Pachycereus marginatus (DC. Piper sanctum (Miq. Gray Phragmites australis (Cav. Pithecellobium dulce (Roxb. Weber & ´ o A.) Schltdl.) Engelm. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Table 1 (Continued ) Scientific name Nopalea inaperta Schott ex Griffiths. triterpens Alkaloids. Olea europaea L.) Benth. flavonoids. alkaloids . Common name Nopal Hierba de oliva Nopal bianco Nopal Choya Nopal blanco Xoconostle Duraznillo Nopal blanco Nopal Zapote de agua Organo. terpens Flavonoids Normal rabbits (−) Terpens. Opuntia megacantha Salm-Dyck Opuntia streptacantha Lem Pachira aquatica Aubl. Plantago australis Lam. Sahuaro Card´ n o Lechugilla Family Cactaceae Oleaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Bombacaceae Cactaceae Cactaceae Asteraceae Plant part used and preparation Steam raw Leaves infusion Steam raw Steam raw Steam raw Steam raw Steam raw. Plumeria rubra L. M.) Eichler Phoradendron tomentosum (DC. ex C. ex A. flavonoids. Hill Phaseolus vulgaris L. Phoradendron bolleanum (Seem. Parthenium hysterophorus L Pavonia schiedeana Steud Persea americana Mill Petroselinum crispum (Mill. fruit Steam Steam raw Steam raw Bark infusion Steam raw Steam raw Plant (aerial) infusion Normal rabbits (+) Alkaloids.) Nyman ex A. Polygonum acre Lam. Populus alba L. partenin Tannins Sterols.) Britton & Rose Pachycereus pringlei (S. Sm.A.) J. ex Steud.) Trin.A. Andrade-Cetto. Watson) Britton & Rose Packera candidissima (Greene) W. e Raphanus sativus L. & Bonpl.) McVaugh Psacalium sinuatum (Cerv.) G. Blake Portulaca denudata Poelln.) H. fruit raw Bark infusion Leaves infusion Leaves infusion Leaves infusion Alloxanic mice (++) Terpens. Senna multiglandulosa (Jacq. terpens Terpens Cuajilote Anacardiaceae Root infusion bark infusion Guayaba Pach Mu´ rdago e Cuasia Encino Encino Grangel Granjil R´ bano a Niguilla Mangle Huiguerilla Rosa de castilla Zarzamora Cola de caballo Taray Catarinita Salvia morada Ojo de gallo Picon Chayote Siempreviva Siempreviva Siempreviva Doradilla Flor de piedra Diente de elef.) H. Presl) Spring Selloa plantaginea Kunth Senecio albo-lutescens Sch. Muell. Salvia leucantha Cav. Portulaca oleracea L. e Sedum moranense HBK.) Steam Rhizophora mangle L. Lamiaceae Asteraceae Actnidaceae Cucurbitaceae Crassulaceae Crassulaceae Crassulaceae Selaginellaceae Sellaginacae Asteraceae Asteraceae Asteraceae Asteraceae Fabaceae Steam infusion Leaves infusion Plant (aerial) infusion Plant (aerial) infusion Leaves infusion Fruit raw Plant (aerial) infusion Plant (aerial) infusion Leaves infusion Plant (aerial) infusion Plant (aerial) infusion Plant (aerial) infusion Root infusion Root infusion Root infusion Leaves infusion Normal rabbits (++) Terpens Terpens Flavonoids Sedoheoptulose Essential oils . & Brettell Pseudosmodingium pemiciosum (Kunth) Engl. Pouteria hypoglauca (Standl.F. terpens Terpens. Don Quassia amara L.) Baehni Prosopis juliflora (Sw. Ricinus communis L. e Randia echinocarpa Moc. Quercus acutifolia Ne´ e Quercus rugosa Ne´ e Randia echinocarpa Moc. Andrade-Cetto. Rubus adenotrichus Schltdl. Rob.334 Table 1 (Continued ) Scientific name Porophyllum punctatum (Mill. Senecio palmeri A. & Sess´ ex DC. Bip. flowers infusion Leaves infusion Bark infusion Bark infusion Leaves infusion Fruit Root infusion Stem infusion.) Sw.S. Irwin & Barneby A.) DC. DC.) S. Psidium guajava L. Sedum praealtum A. Salix taxifolia Kunth Salpianthus arenarius Humb. & Cham. flavonoids Alkaloids. Psidium yucatanense Lundell Psittacanthus calyculatus (DC. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Common name Piojillo Verdolaga Verdolaga Baehni Mezquite Capul´n ı Matarique Family Asteraceae Portulacaceae Portulacaceae Sapotaceae Fabaceae Rosaceae Asteraceae Plant part used and preparation Flowers infusion Plant (aerial) infusion Plant (aerial) infusion Leaves infusion Fruit raw Fruit infusion Root infusion Pharmacological STudies* Phytochemical informat** Alkaloids. & Grev. Gray Senecio peltiferus Hemsl. Selaginella lepidophylla (Hook. M.) Spring Selaginella pallescens (C.ante Matarique Matarique Matarique Retama china Myrtaceae Myrtaceae Loranthaceae Simaroubaceae Fagaceae Fagaceae Grangel Rubiaceae Brassicaceae Cactaceae Rhizophoraceae Euphorbiaceae Rosaceae Rosaceae Fruit Bark infusion Plant infusion. terpens Scrophulariaceae Plant (aerial) infusion Salicaceae Nyctaginaceae. Rhipsalis baccifera (J. Saurauia pringlei Rose Sechium edule (Jacq. Samvitalia procumbens Lam. flavonoids Tannins Flavonoids. & Sess´ ex DC.S. & Sess´ ex DC. Prunus serotina subsp. Rosa centifolia L. Sedum dendroideum Moc. capuli (Cav. Russelia equisetiformis Schltdl. Taraxacum qfficinale Weber ex F. Tournefortia petiolaris DC.) L. Common name Pa xojk Frijolillo Bejuco tres en uno. M. Urtica dioica L. Tropaeolum majus L. Lagrima de San Pedro. Swietenia humilis Zucc.) Vahl Stenocereus marginatus (DC. solanin Steroidal. ex Kunth Terminalia catappa L.) Link Serjania racemosa Schumach.) G. Sphaeralcea angustifolia (Cav.) Kuntze Tillandsia usneoides (L. plant infusion plant infusion Fuit Leaves infusion Root infusion Plant (aerial) infusion Steam infusion Steam infusion Flavonoids Alloxanic mice (++) Normal Dogs (++) Normal rabbits (+) Flavonoids.) D. (L. coumarins . Serjania triquetra Radlk. Don Stachytarpheta jamaicensis (L. Turnera diffusa Willd ex Schult. Wright Sonchus oleraceus L. essential oils Flavonoids Terpens Flavonoids Alkaloids.S.A. Tamarindo Diente de le´ n o Ahuehuete Tronadora Casta˜ o n Agrimonia Amargoso Heno Lagrima de San Pedro. Thriallis glauca (Cav.) H. Bejuco de tres C. terpens Flavonoids.) Juss. Tecoma starts (L. terpens Alloxanic mice (++) Flavonoids Normal rabbit (++) Sapogenins Pharmacological STudies* 335 Phytochemical informat** Antraquinones. Simira sp. Solandra nitida Zuccagni Solanum americanum Mill. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Table 1 (Continued ) Scientific name Senna obtusifolia L. Ortiga Ortiga Family Fabaceae Fabaceae Sapindaceae Salicaceae Rubiaceae Similicaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solaneceae Asteraceae Fabaceae Malvaceae Verbenaceae Cactaceae Loranthaceae Meliaceae. Solanum verbascifolium C. Spartium junceum L. Hunt Trigonella foenum-graecum L. alkaloids Flavonoids Terpens Terpens.B. Tradescantia pendula ( Schnizl. Tamarindus indica L. Solanum brevistylum Wittm Solanum diversifolium Dunal Solanum nigrescens M.R. sterols Alkaloids. Tournefortia hirsutissima L. terpens Commelinaceae Leaves infusion Fabaceae Tropaeoleaceae Turneraceae Urticaceae Urticaceae w/i Leaves infusion Leaves infusion Plant (aerial) infusion Leaves infusion Normal rabbits (−) Flavonoids. Aubl Smilax aristolochiifolia Mill. Irwin & Barneby Senna occidentalis (L. Quina roja. Taxodium mucronatum Ten. Wigg.) Berger & Buxb Struthanthus densiflorus (Benth. Asteraceae Fabaceae Asteraceae Taxodiaceae Bignoniaceae Combretaceae Lamiaceae Malphigiaceae Bromeliaceae Boraginaceae Boraginaceae Plant part used and preparation Leaves infusion Root infusion Plant (aerial) infusion Bark infusion Bark infusion Root infusion Flower infusion Plant (aerial) infusion Plant (aerial) infusion Leaves infusion Plant (aerial) infusion Plant (aerial) infusion Root infusion Plant (aerial) infusion Leaves infusion Leaves infusion Plant (aerial) infusion Plant (aerial) infusion Steam roasted Leaves infusion Seed raw Plant (aerial) infusion Pulp of fruit raw Leaves infusion Leaves infusion Leaves infusion. Andrade-Cetto. Urtica mexicana Liebm. Martens & Galeotti Solanum rostratum Dunal Solanum torvum Sw.) Standl.H. c´ scara a sagrada Zarzaparrilla Flor de guayac´ n a Hierba mora Malabar Malabar Hierba mora Duraznillo Berenjena Berenjena Lechuguilla Retama Hierba del negro Verbena Organo de Zopilote Injerto Zopilote Cempasuchil o Flor de muerto. emodin Flavonoids. Comellina Fenogreco Mastuerzo Damiana. Teucrium cubense Jacq. Tagetes erecta L. 3.. 1994). straight. “Chiflon” and “Koochl´ ” among others. 3. pharmacological and clinical data for the main species reported as hypoglycaemic in M´ xico e (Table 1). refers about the reports for the plant no the active compounds. Zexmenia gnaphalioides A.3. The leaves are in a spiral disposition located at the top of the branches and are simple. upper face and grey at the lower surface. e It is. amol Family Valerianaceae Valerianaceae Asteraceae Asteraceae Asteraceae Rutaceae Poaceae Asteraceae Rhamnaceae Plant part used and preparation Root infusion Root infusion Leaves infusion Plant (aerial) infusion Root infusion Leaves infusion Fruit infusion Root infusion Plant (aerial) infusion Pharmacological STudies* Phytochemical informat** Alloxanic mice (−) Alloxanic mice (+) Alloxanic mice (+) Sesquiterpens Alkaloids In the Animal studies +. Edo. 3.g. de M´ xico. processes for obtaining the novel eremophilanolide sesquiterpenes and methods for their use as hypoglycemic agents. The use is reported from the following Mexican states. Main constituents The following constituents have been reported: sitosterol. M.) Less. Instead we review the current information of some lesser known plants commonly used in M´ xico to treat type 2 diae betes and summarise and discuss ethnobotanical. 1999) and it is also known from e many ethnobotanical collections in rural lowland areas (e.1. 1 compounds 1 and 2).. 1991) and in a 3. Gray Valeriana procera Kunth Verbesina crocata (Cav.5. Bip.1. reported in the e international literature with pharmacological and phytochemical studies are discussed in greater detail and their potential for developing phytomedicines with a validated profile of activity and demonstrated safety profile is analysed (Table 2). Ethnopharmacology of commonly used antidiabetic plants in M´ xico e Seven species used throughout M´ xico. “Hormiguillo”. stigmasterol.1. along both coasts. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Common name Valeriana Valeriana Capitaneja Huichin Limpia tuna Tankasch´ e Pelos de elote Peonia Corongoro. a weedy species.336 Table 1 (Continued ) Scientific name Valeriana edulis Nutt. Zantoxylum fagara L. The phytochemical information. Andrade-Cetto..2. Zea mays h. a 3. Yucatan. then filtrated and drunk as “agua de uso”. Verbesina persicifolia DC. in the treatment of diabetes. for example. From the butanolic extract Andrade-Cetto and Wiedenfeld (2001) isolated chlorogenic acid and isoorientin (Fig. Distribution It is widespread in M´ xico. Gray Zizyphus acuminate Benth ∗ ∗∗ A. Oaxaca and Chiapas. (Cecropiaceae) The hypoglycaemic effect of this plant sold on several markets as a treatment for type 2 diabetes is well known in M´ xico. This tree has a tall.1.” Sadly. Tabasco. from e Tamaulipas and San Luis Potosi to Tabasco on the Gulf of M´ xico. pharmacognostical. Pharmacology A hypoglycaemic effect of the water extract was demonstrated in alloxan diabetic mice (P´ rez et al. Cecropia obtusifolia Bertol. It is a fast-growing pioneer tree from tropical America. isolated from Psacalium spp. Veracruz. in e hyperglycaemic rabbits (Rom´ n-Ramos et al. 1989). while—mean no observed activity for the tested extract. 1998). hollow trunk and a stratified treetop with few large branches growing horizontally from the trunk. with a deep green colour in the . 3. Zaluzania angusta (Lag. Guerrero. and from Sinaloa to Chiapas on the Pacific side.1. indicates activity and the level of it. The type of extract for the isolated compounds has not been specified. the resulting infusion is cooled in the pot. DF (Andrade-Cetto. “Chancarro”. & A. e 3. 1984). The traditional names include e “Guarumbo”. Campeche. in fact. the hollow septate twigs are inhabited by ants (Pennington and Sarukh´ n.1. The isolated compounds are also found in the medicinal tea.1. Mexicans have had no say in developing this patent on a Mexican plant. phytochemical.4. Ethnobotany Traditionally the dry leaves (15 g) are boiled in water (500 ml). 4-ethyl-5-(n-3valeroil)-6-hexahydrocoumarin and 1-(2-methyl-1-nonen-8-il)-aziridine (Argueta. Hidalgo.) Sch. The cold infusion is consumed over the day or when the people have thirst. which would presumably be relatively easy to grow on a larger scale or to harvest it sustainably by collecting material in the first few years after a milpa (corn field) has been given up. peltate or deeply palmate. Heinrich. ex Torr. growing in secondary vegetation in the tropical rain forest. Botanical description A monopodic tree 20 m tall. (1984) shows activity after e 5 h of intraperitonal and oral administration of the aqueous extract (obtained from 50 g leaves boiled in 250 ml distilled water). This study does not give more details about the effects between time 0 and 5 h. (2001) performed several pharmacoe logical tests in male Swiss albino mice and concluded that the water extract of the leaves has low toxicity. so there is no point of comparison. a substantial effect as a central depressor.3 -trihydroxy3. with statistical significance.glucoside. The hypoglycaemic e effect observed in mice after 5 h of experiment may be due to a lack of hepatic glucose production resulting in a hypogly- Parmentiera aculeata Brickellia veronicaefolia Agarista mexicana Cucurbita ficifolia Animal model Botanical species Clinical studies Bioactive compounds Streptozotocin diabetic rats. However.4 -trimethoxy flavone (8) . according to Versphol (2002) the animal model resembles more type I diabetes than type 2.7.6. (2004) performed a study on diabetic type 2 people. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Normal and alloxan mice None Lactucin-8-Omethylacrylate 337 Table 2 Overview on antidiabetic effects of the seven species reviewed and commonly used in M´ xico (for references see text) e In humans. of 3 g/day of the plant. There is no statistical evaluation of the data and the dose administered to each animal is not mentioned. a positive and an untreated control was used.-glucoside (3) Streptozotocin diabetic rats Equisetum myriochaetum Streptozotocin diabetic rats (Andrade-Cetto et al. and the effect can not be only attributed to the extract. anti-inflammatory and analgesic effects. the water and butanolic extracts as well as the isolated compounds were tested. 3. in the study performed by P´ rez et al. kaempferol-3. In the study by Andrade-Cetto and Wiedenfeld (2001) in Streptozotocin diabetic rats.24 dimethyl 1-24-ethyl-sigmast-25-ene (6 and 7) Normal and alloxan mice None 5. (1991) does a not use a proper diabetic animal model (Versphol. while Islas-Andrade et al. caffeoyl-methylate-4. and no proper controls were used. positive Unknown Normal and alloxan mice and rats None 12-ursene 23. Also. 1997). and showed no activity after 4 and 5 h. they conclude that the plant has a significant hypoglicemic effect after 21 days of oral administration. Also. Possible mechanism of action Chlorogenic acid was identified as a specific inhibitor of the glucose-6-phosphate translocase component (Gl-6P translocase) in microsomes of rat liver (Hemmerle et al. the actual doses are missing. but the traditional preparation takes between 12 and 15 g plant/day. Herrera-Arellano et al. Instead. Andrade-Cetto. the hypoglycaemic effect is observed from 60 to 180 min for all the tested samples. (1984). Simultaneous targeting of gluconeogenesis and glycogenolysis with an inhibitor of Gl-6-P translocase would result in a reduction of hepatic glucose production. positive Kaempferol-3-O-sophoroside. 2002).1.. The report of P´ rez et al.glucopuranoside kaempferol-3-O-sophoroside-4 O.7-di-O. The authors argue that the plant was given in a similar way as the traditional preparation. M. The study by Rom´ n-Ramos et al. it was conducted in healthy rabbits obtaining a glucose tolerance curve.. The effect of the aqueous extract of 132 g leaves boiled in 1 l water and administering the infusion (4 ml/kg) using a gastric tube showed a significant hypoglycaemic effect at 60 min after the administration of the extract.6.A. P´ rez-Guerrero et al. In progress Chlorogenic acid (1). isoorientin (2) Cecropia obtusifolia None Caffeic acid desmethyl yangonine its O4 -mono and di(1–6) glucoside (4 and 5) Acosmium panamense Streptozotocin diabetic rats Hyperglycaemic rabbits Alloxan mice and rats In humans. The Cecropia group was also treated with glibenclamide at different doses. The action of chlorogenic acid may well explain the hypoglycaemic effect observed by P´ rez et al. a proper positive control like glibenclamide is missing. the reported activity is after 300 min (5 h) and e Roman-Ramos et al. (2000) provided evidence that using this model in a proper way diabetes type 2 can be mimicked. report no activity at this time. Since the amount of dry extract administered was not measured in either study. 2000). Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 caemic state. 2002. (1991). The other compound isolated by Andrade-Cetto and Wiedenfeld (2001). the benefits of antioxidants in the prevention of the complications of diabetes supports and validates the use of the traditional medicine. (2003) tested the hepatoprotective activity of Gentiana olivieri and conclude that the effect “might possibly [be] due to the potent antioxidant activity of isoorientin”. Andrade-Cetto. and there was no hypoglycaemic effect observed. no action of the cholorogenic acid. They showed that the compound caused concentration-dependent inhibition of the amplitude and frequency of the phasic contractions of the rat and guinea-pig uterus but did not affect the isolated aorta. In the work by Rom´ n-Ramos a et al. and of course. According to these authors.. ileum or trachea. had previously been tested by Afifi et al. . Fig. isoorientin. The antioxidant effect of plants used in diabetes treatment was shown by Letitia et al. (1999). This would have been caused by the liver not providing glucose due to the action of cholorogenic acid during the fasting of the animals. Antioxidants are important in preventing diabetes. they argued that with this animal model glycaemia reaches basic values within 300 min. If the basic glycaemic value is reached at 300 min then the hepatic production of glucose has not been trigger. Deliorman-Orhan et al. 1.338 A. Natural products with documented hypoglycaemic effects from the species discussed in detail in this review. The authors did not observe any hypoglycaemic effect after 5 h. with low levels of plasma antioxidants implicated as a risk factor for the development of the disease. M. the animals were not fasted and they received an oral glucose charge at times 0 and 60 min at a dose of 2 g/kg. However.A. Many of the complications of diabetes. 3.7. and reduces symptoms of associated complications.. 1991). 2002). Andrade-Cetto. (Continued ). while throughout the progression of diabetes high levels of circulating radical scavengers have been recorded (Letitia et al. M. 1. (2001) the acute toxicity was tested in Swiss mice. including retinopathy and atherosclerotic vascular disease. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 339 Fig. The . isoorientin decreases the circulating of radical scavengers.1. Toxicity In the previously mentioned work by P´ rez-Guti´ rrez et e e al. have been linked to oxidative stress (Baynes. the hypoglycaemic effect of this compound has not yet been tested. In diabetic patients. the leading cause of mortality in diabetics. -d-glycosyl-sitosterol. it is a weedy species and there seems to be ample opportunity for collecting material form this species in a sustainable way.2. They are sold indistinctly on the markets.8. Nuevo Leon. 3. A lower risk of type 2 diabetes has been associated with flavonoid intake specially quercetin and myrcetin (Knekt et al. type 2 diabetes. The water extract was also tested in type 2 diabetic patients. 1. 3. 2000. An extract from this species has a great potential to be further developed into a phytomedicine to treat type 2 diabetes in humans.1. and Kaempferol-3-O(2gal-rhamnosilobonoside) from Sterculia rupestris (Desoky and Youssef.. However. The pharmacological testing in Streptozotocin diabetic rats showed a significant activity from 60 to 180 min. 3. 3. caffeoyl-methylate-4.. The extract has two main bioactive compounds. Pharmacology The hypoglycaemic effect was demonstrated in Streptozotocin diabetic rats (Andrade-Cetto et al. The results obtained in this study show a significant effect on the reduction of the glucose levels in these patients after the oral administration of an Equisetum myriochaetum water extract. Veracruz. 3. limited.2.. The relea ı vance of these data is.340 A. There already exist reports about hypoglycaemic activities of various kaempferol derivatives containing plant extracts: Kaempferol 3-O-galactoside and Kaempferol 3-rhamnoglucoside from Bauhinia variegata (Andrade-Cetto. The authors conclude that the aqueous extract of the plant has low toxicity.2. This is the equivalent to 673 g for a 60 kg person.glucoside. in up to 3700 ppm no LD50 was observed (B´ rcenas-Rodr´guez. and asthma.3.5. too. of course.4.. 1983). 2000).BdS). the traditionally used aqueous extract did not shown any toxicity. In such a study. . Equisetum myriochaetum Schlecht & Cham (Equisetaceae) The plant is sold in several markets in M´ xico to treat e kidney diseases (mal de orin) and diabetes.2. Andrade-Cetto. Toxicity In experiments performed with 200 male of Drosophila melanoganster (flr3/TM3.2..1.2. lung and prostate cancer. San Luis Potos´.-glucoside (Fig. M. implying that the mechanism of action is not glibenclamide-like (not due to stimulation of insulin secretion). Ethnobotany Species of equisetum. 3. compound ı 3. data on the insulin production should be recorded. 3.-glucoside. 1997). 2004). Hidalgo. far higher than the commonly used dose of 15 g per person and day.21 g of plant/kg of weight)”.. Kaempferol 3-O-rhamnoside from Zizhyphus rugosa (Khosa et al.-glucopuranoside and kaempferol-3-O-sophoroside-4ˇ-O. a ı Tamaulipas. this action cannot be due to chlorogenic acid. Traditionally. branched with regular verticilies 2–23 mm in diameter with 16–48 channels. 2002). 2002). Puebla. The hypoglycaemic effect started 90 min after the administration of the decoction and was maintained for another 90 min. M´ xico. Equisetum laevigatum and Equisetum myriochaetum. Again. sitosterol. Insulin levels did not significantly change during the study. kaempferol-3. administration is 1450 mg/kg animal (11. Guerrero. Wiedenfeld et al.7-di-O. mainly Equisetum hymale.6.2.. and in diabetic type 2 patients (Revilla-Monsalve et al. chlorogenic acid may well be responsible in part for the observed effect—the strongly reduced glucose production by the liver in a fasting state. (2000). The most potent effect was shown by kaempferol-3-O-sophoroside-4 -O. cerebrovascular disease. Kaempferol 3-O-beta-glucopyranoside from Morus insignis (Basnet et al.p. since Andrade-Cetto and Wiedenfeld (2001) and Rom´ na Ramos et al. Michoac´ n. 1993). Although the plant is reported mainly for kidney diseases it showed a remarkable hypoglycaemic effect in both tested models. for the water and the butanolic extract. the form of preparation is the same as for Cecropia obtusifolia. 1999). a decoction of the aerial part of the plant is prepared and consumed as “Agua de uso” (Argueta. Distribution It is known from the following Mexican states: Nayarit. Botanical description Terrestrial plant with aerial stems 2–5 m (to 8 m) high. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 authors conclude: “the median lethal dose (LD50 ) of aqueous extract from Cecropia obtusifolia after i. Furthermore studies focusing on chronic application over longer time periods (at least one or two months) may also help to elucidate the mechanism of action. The authors suggest an inverse association between flavonoid intake and subsequent occurrence of ischemic heart disease. 1994) The use as treatment of type 2 diabetes was described by Andrade-Cetto et al. terminal strobile in the branches and in the main stem 10 mm long and 4 mm in diameter (Palacios-Rios. Main constituents From the butanolic and the water extracts with hypoglycaemic activity the following constituents were isolated: kaempferol-3-O-sophoroside. Oaxaca and e Chiapas. chrysin. -d-glucose and fatty acids were also mentioned as constituents of Equisetum myriochaetum (Camacho et al. The potential beneficial effect was associated with quercetin (the strongest antioxidant) but also with kaempferol.2. (1991) reported an early hypoglycaemic effect. 1999). 1992). Cecropia obtusifolia—conclusion Some evidence mostly from in vivo animal studies is available which validate the use of Cecropia obtusifolia in diabetes. are traditionally used against kidney diseases. More studies are needed on type 2 diabetic animals and in patients to elucidate the complete hypoglycaemic mechanism of Cecropia extract. 3. Pinocembrin. 4. 2003) caffeic acid and three pyrones were isolated: desmethylyangonine its O4 mono as well as the di(1–6)glucoside (Fig. is used externally to treat a worm that runs under the skin (like larva migrans) in Hidalgo (Argueta.4. gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. and of a dark brown to black or creamy white colour (Purdue University. Andrade-Cetto. f. The isolated pyrones have hypoglycaemic activity. growing in a the tropical rain forest as a co-dominant species with Terminalia amazonia and Vochysia guatemalensis (Pennington and Sarukh´ n. up to 10 m long.3. 2004). Veitch et al. the inner cortex is yellow and bitter. 3. unpublished data). especially if the bark is to be used. The main constituents of the traditionally used water extracts are the isolated pyrones. slightly angular stems and ovatecordate to suborbicular-cordate leaves with 5–25 cm long petioles. Equisetum species—conclusion The antioxidant effect of flavonoids cannot explain the acute effect of the plant. 11-methoxytetrahydroyangonin. Heinrich et al. 1989. 2002).. The fruit is globose to ovoid-elliptical. respiratory problems. 3. some authors were suggesting an Asiatic origin for Cucurbita ficifolia. 3.6. 3. 2004). Leaves obtuse and pubescent surrounded by stipules with a spiral disposition. From the water extract of the traditionally used bark (Wiedenfeld and Andrade-Cetto. solitary. Three purified lectins (RLA(1). 3. Since the middle of the last century. In M´ xico.) Yacolev. Acosmium panamense (Benth. 1982. 1998).3. 3. 3.A.. Argueta. The flesh is sweet and the seeds are ovate-elliptical. diarrhoea. Fruit green to dark green legumes. Acosmium panamense is utilized to treat diabetes in the village of Soteapan.6dihydroyangonin.7. hydroxysparteine as well as lupinane alkaloids (Balandrin and Kinghorn. The flowers are pentamerous. RLA(2). (1994) summarise the use of the fruit as a treatment of diabetes: the healers recommend the ingestion of the fruit macerated in water.4. RLA(3)) were obtained . annual. affinity chromatography on Con A-Sepharose. (Kava Kava) used until recently as (often licensed) phytomedicines for the treatment of anxiety disorders: 11-methoxy-5. Nuzillard et al. Some authors have suggested Central America or southern M´ xico e as places of origin. For developing a more widely used phytomedicine for use in type 2 diabetes. the consensus has been that it is of American origin. and more specifically the Andes (Purdue University.3.4.3. Botanical description At the end of the 19th and the beginning of the 20th century. 1994). 2004. (Ranjith et al. It is a co-dominant species from the tropical rain forest.2. straight trunk pyramidal treetop with ascendant branches. Ethnobotany In Oaxaca the plant is used traditionally for the treatment of stomach pain. Veracruz (Leonti et al. Heinrich.. Acosmium panamense—conclusion Limited in vivo evidence exists for the traditionally used water extract.3.1. 5–10 cm long (Pennington and Sarukh´ n. 1. In addition. its centre of origin and domestication are still unknown.. 1994. while others suggest South America. 2002).3. However. more studies are urgently required.3.. 1997. Ethnobotany The popular name for the plant is “Chilacayote”. Cucurbita ficifolia Bouch´ (Cucurbitaceae) e 3. 1989).2. Main constituents Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol. 1992). but no information on the potential of sustainable harvesting.5. 1999). Sweetia panamensis Benth. malaria and “marsh fever”. compounds 4–6).2. Botanical description Acosmium panamense (Benth. a 3. It has five vigorous. The fruit. Aguilar et al.1. flattened. tetrahydroyangonin. Main constituents Phytochemical studies of the plant yielded several quinolizidine alkaloids like acosmine and acosminine. (syn. the e plants is consumed widely and several dishes and candies are prepared with the seeds or fruit.3. but more studies are needed to clarify the mode of action. seems to be quite abundant. similar pyrones are found in Piper methysticum Forst. 3.4. Pharmacology The water and butanol extract as well as a mixture of the isolated substances (4 and 5) were tested in Streptozo- tocin diabetic rats. monoecious. M. The main characteristic of the tree is a a tall. Distribution It grows along the Gulf coast from Veracruz to Yucatan and along the Pacific from Oaxaca to Chiapas. and in Oaxaca (Andrade-Cetto and Wiedenfeld. 1998). Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 341 3. and axillary. It is villose to softly pubescent with some short sharp spines dispersed over the vegetative parts. Cucurbita ficifolia is a creeping or climbing plant. These compounds had previously not been evaluated for hypoglycaemic activity. The external cortex is plain and dark grey.) Yacolev (Fabaceae) This species is widely used especially in the southern lowland of M´ xico for treating fever. Leonti. The plant medicine is prepared as an infusion of the bark and it is taken orally 1–2 times per day. For all tested extracts the hypoglycaemic effect was statistically significant with respect to the control at 120 and 180 min.3. with traditional names “Guayac´ n” and a “B´ lsamo amarillo”) is a tree up to 40 m height. 3. It is often managed by local people (Heinrich. malaria and in recent e decades. desmethoxyyangonin and yangonin. diabetes (Heinrich. 2001. is available. with the last two being the most abundant. the LD50 was 650 mg/kg with limits of 518. However. Acosta-Patino (2001) reports 90% of edible portion. In all cases.5 mm long. 0. In 2001. the doses used were high and the therapeutic relevance of this effects has to be questioned. Extrapolating the toxicity levels reported in Alarc´ no Aguilar (2002) to reach the lethal dose of 1250 mg/kg obtained from the freeze-dried juice. the hypoglycaemic effect was observed at 120 min with p < 0. Acosta-Pati˜ o tested the effect of the fruit juice n in patients with moderate hyperglycaemia at 4 ml/kg (100 g of fruit = 75 ml of juice). 3.5. from e Veracruz and Jalisco south to Quintana Roo. with thick. with acuminate apices. (2002) in alloxan induced mice and rats. when the measures were taken. e 2001).) Judd (Ericaeae) 3. the authors conclude: “Due to the negligible content of fiber in Cucurbita ficifolia and the design of the study. the authors report an hypoglycaemic effect at 240 min with p < 0. Mature fruits of Cucurbita ficifolia were cut in halves. compounds 7 and 8). Ethnobotany The water extract of the leaves of this plant known as “Palo Santo” is used orally to treat diabetes (P´ rez-Guerrero et al. The acute effect was tested in healthy mice using two routes of administration. resulted in a gradual reduction of the blood sugar levels. deeply furrowed bark. SLA(2). Pharmacology Blood glucose levels of normal and alloxan-treated diabetic mice and rats were determined after oral administra- . Cucurbita ficifolia—conclusion The fruit showed a hypoglycaemic activity in all the reported studies.. 250. 0.4. 12-ursene and the triterpene-23. Botanical description Shrub or tree to 8 to 11 m tall..1. 1000. In the clinical study. The daily administration of 1000 mg/kg to alloxan diabetic rats. 750.001 for all the doses. the lack of phytochemical information on the juice (extract). The acute effect was tested with the (i. More studies are needed in order to identify the constituents of the fruits. The amount of extract and the way of preparation are not reported in the paper. the same amount of potable water as control. In another session. Andrade-Cetto. The results from Alarc´ n-Aguilar (2002) showed that freeze-dried juice o of Cucurbita ficifolia fruits had toxicity when administered intraperitoneally to mice and when it was orally adminis- tered daily for 14 days to alloxan-diabetic rats.4.p.) they observe statistically significant activity at 120 and 240 min.. 1250 mg/kg. and then test these substances. 1.p. twigs very sparsely to densely pubescent. flowers with triangular calyx lobes.) administration of the extract at 25. corky. at 240 min with p < 0. a person of 60 kg would need 75. Several experiments were performed by Alarc´ n-Aguilar o et al. Tolbutamide was used as control drug.4. 2001).3.p.03 mg thiamine.342 A.001.5.05.2% protein.4.3% fibre content. Main constituents From the chloroform extract of the dried steam of the plant. 1995) often due to cucurbitacines.34 Kjoule (14 Kcal).001 at 120 and 240 min. 7 mg ascorbic acid. and at 300 min with p < 0. In alloxan diabetic mice. 100 g of Cucurbita ficifolia produces 3. Agarista mexicana (Hemsl. 1. while the administration of 1250 mg/kg cause the death of 100% of the animals. all compared with the control group. 3. 1.5.05.6 mg iron. SLA(3). 3. the same group of patients received.6. SLA(4)) (Lorenc-Kubis et al.5. The juice was obtained with an electric extractor and freeze-dried. Water was used as control. 3. the authors report a hypoglycaemic effect with p < 0. the observed effects on glucose levels are not a consequence of glucose absorption changes in the intestine” (Acosta-Patino. at least separated by 8 days. 3.2. 17 mg calcium. Toxicity Some toxicity has been detected in the majority of the hypoglycaemic Cucurbitaceae species (Marles and Farnsworth.05 for doses down to 750 mg and p < 0. with nonchambered to clearly chambered pith. M.24-dimethyl 1-24ethyl-sigmast-25-ene were isolated (Fig. The authors report a statistically significant hypoglycaemic effect of the plant from 60 min until 300 min. The authors report the hypoglycaemic effect at 180 min with p < 0.) at 500 mg/kg. 2004). 0. capsules subglobose to short-ovoid (NYBG. prevents an assessment of the observed effect on a phytochemical level. 3. In case of the po administration. at days 7 and 14. the animals receive 2 g/kg of glucose subcutaneously at the starting point and 60 min later. and this is much higher than the traditionally recommended dose of 32 g. 2001).001 for 1000 and 1250 mg at 240 min with p < 0. there is no report about the main constituents of the fruit extract. 594. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 from roots and four from stems (SLA(1). 1991). 500. 94% moisture.000 mg (75 K) of fruit to have the lethal dose. 8 mg/kg. 3.2 and 753. Quantitative phytochemical studies on the levels of lectins and other potentially relevant constituents during the development of the various organs of Cucurbita ficifolia and their link to potential toxic effects should also be conducted. while with the (i.5. Distribution Mountainous areas of M´ xico and Central America.01.5. Pharmacology The pharmacological activity of the plant was tested in hyperglycaemic rabbits (Rom´ n-Ramos et al.5. leaves revolute.5. oral (po) and intraperitoneally (i. the acute effect was also tested at 500 mg/kg (i. Blood glucose levels were analyzed hourly during 5 h using a commercial enzymatic kit.). buds to ca. 3. The a rabbits were submitted to glucose tolerance test and a preparation of the plant or tolbutamide was administrated.p. Inflorescences (fascicle-like) axillary racemes.4. 4. 3. The oral administration of the extracts produced a significant hypoglycaemic effect in normal as well as in diabetic mice and rats (P´ rez-Guti´ rrez et al. 10. white or pink flowers. However. Pharmacology A chloroform extract of the leaves was tested in alloxan diabetic mice and normoglycaemic mice (i.2. 1994). Toxicological test.24-dimethyl 1-24-ethyl-sigmast-25-ene is currently not known. In the alloxan diabetic mice.7.3. Brickellia veronicaefolia (Kunth) A. Ethnobotany The plant is know as “oregano de monte” the main use is against gall problems. Tolbutamide was used as positive control (P´ rez-Guti´ rrez and Vargas. present at the union of the stem and leaves. The fruit is a berry up to 15 cm long by 6. in alloxan diabetic mice. In case of the chloroform extract.g. The active doses reported by the authors are too high for use in traditional medicine or as a phytomedicine.01 in both models for all the tested doses (at 90. 25 mg/kg shows statistically significant activity at 90 and 180 (p < 0. 10 mg/kg showed activity only at 270 min. Compound 6 showed an statistically significant activity at 90 min. 2000a) discuss e e the species under a synonym: Parmentiera edulis DC. 270 min and 1440 min (24 h). Botanical description Tree up to 15 m. with several longitudinal furrows and a green-yellow colour. Andrade-Cetto. 50 mg/kg showed activity at 90 and 180 min (p < 0. while the effect in normoglycaemic mice was observed at 90 and 270 min. also toxicological testing is required in order to ensure the safety of the plant.3 -trihydroxy-3.6.) at 100.05). casticin and trimetoxiquercetagenin..05. 2001).7.6. a person of normal weight (60 kg) would need 85 g of plant to get the desired effect. e e 3. 3. In all tests.4 -trimethoxyflavone (Fig. The possible hypoglycaemic effect of flavonoids has been discussed above.p. A comparison between the water extract (traditionally used) and the chloroform extract tested (e. the reported effect is of the total multi-glycoside extract. e e The effect of the isolated compounds was tested in alloxan induced diabetic and in normoglycaemic mice at 50 mg/kg (i. (Bignoniaceae) The fruit of the tree is reported to be hypoglycaemic. however the reports (P´ rez-Guti´ rrez et al. P´ rez-Guti´ rrez et al. (1998).6.05).01) and at 1440 min (p < 0. The therapeutic effect of the plant is attributed to the extract and not to a single compound. 270 and 1440 min = 24 h.5. the branch is boiled in water and a bitter infusion results (Argueta. Botanical description Bush 40 cm to 1 m tall. branched at the base with grey-red stems. Gray (Asteraceae) 3.5 cm wide. 270 and 1440 min with p < 0.5. all this against the control groups. In alloxan diabetic mice. regarding the presence of the bioactive compounds) would be of considerable interest. 1998). 3. tolbutamide was used as control. patuletin and vernicaefolin. 50 mg/kg shows activity only at 270 and 1440 min. a 3. For the later. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 343 tion of the chloroform extracts of Agarista mexicana at 100 and 150 mg/kg.. M.01) and at 1440 min (p < 0. The mechanism of action of the isolated 12-ursene and the 23. From the chloroform extract P´ rez et al. Agarista mexicana—conclusion The hypoglycaemic effect of the extract has been demonstrated and two terpenes were isolated as bioactive compounds.A. and labdane diterpens (Argueta. 200 and 300 mg/kg.. In the normo-glycaemic mice.). other uses are against stomach pain. Main constituents The following constituents have been isolated from the leaves: flavones – artementin.1. similar ursine triterpenes were isolated from the water-chloroform extract of the roots of Tripterygium wildfordii a traditional Chinese plant used against rheumatoid arthritis and other inflammatory and autoimmune disorders. brickellin. eupatolin. (2000) isolate the e bioactive flavone 5. flavonols. 1998. 1998). 180 min. The species is managed by humans to produce shade and is a widely distributed species known along the Gulf and Pacific coast from Tamaulipas to Yucat´ n and from Sinaloa a to Chiapas (Pennington and Sarukh´ n. 25 and 50 mg/kg). especially bile. as well as a comparative phytochemical investigation of the traditionally used and the tested chloroform extract would be highly desirable. branched since the base and channelled trunk. e e In the same models. 25 mg/kg was active at 90 and 180 min (p < 0.1. 1994).. in which the ursenes are present together with other compounds (Duan et al. and at 270 and 1440 min (p < 0. It is necessary to know the amount of bioactive compounds in the traditional tea.6. the maximum effect observed was at 270 min.6. 3. The extract showed significant activity with at least p < 0. the isolated flavone was tested (i. 2001). 1996). external cortex dark yellow with fissures and scaly ribs. 3. 10 mg/kg shows statistically significant activity at 90.p.p.05). 3. Brickellia veronicaefolia—conclusion The hypoglycaemic effect was confirmed and a bioactive compound has been isolated.6.6.01) min.7. eupatin. Parmentiera aculeata (Kunth) Seem. Ethnobotany The fruit and the cortex bark of the tree are boiled in water to treat kidney diseases.6. compared to the control groups. 180. and for the treatment of diabetes . compound 9). e e 3.7. Compound 7 shows statistically significant activity at 180 and 270 min in alloxan diabetic mice. there are no other reports of the isolated flavone. 1.2. The use against diabetes is reported in P´ rez-Guti´ rrez et al. and at 90 and 18 min in normoglycaemic mice. Portulaca oleraceae L. 2002). 3. 1998c). From the methanol extract of the root P´ rez et al. Byrsonima crassifolia (L. The authors report that: “the plant orally administrated to healthy mice did not cause a significant decrease of the blood glucose level. (Guayaba).) Lindll. However the different doses did not shown different effect. Ibervillea sonorae reduced the blood glucose of normal mice in a dose-dependent manner after intraperitoneal injection (P < 0.W. Chloroform and methanol extracts did not produce any significant change in blood glucose levels (P´ rez et al. 1994). Psidium guajava L.. 180 and 270 min against the control group. 4. The compound was tested on alloxan induced hyperglycemic mice and rats. e e 1996). (Romerillo). Eriobotrya japonica (Thunb.344 A. Presl (Tecojote). 3.p. At a dose of 10 mg/kg the authors report an significant hypoglycaemic activity at 90. The plant is used in Guatemala to treat gonorrhoea (Caceres et al.). Cynara scolymus L. this extract significantly lowered the glycaemia of mild alloxan-diabetic mice and rats. Carica papaya L. Casimiroa edulis La Llave & Lex. (Cebolla). Wright ex Griseb. chloroform extracts at 100 mg/kg and 150 mg/kg) was tested in normal and alloxan diabetic mice. The authors conclude that those doses produced a significant hypoglycaemic effect in normal as well as in diabetic mice and rats (P´ rez-Guti´ rrez et al. so it seems that this antidiabetic plant needs the presence of insulin to show its hypoglycaemic activity. Nyman ex A. pharmacological. Citrus aurantifolia (Christm..) Swingle (Naranjo). (Asteraceae. Ananas comosus (L. 3. Phytochemically .) Salm-Dyck (Nopal). Daucus carota L. A hexane extract from Cirsium pazcuarense (Kunth) Spreng. (Nopal). (Zapote blanco). Some have received some attention in phare macological and phytochemical studies. Nopalea cochenillifera (L. (reported in the original paper as Cirsium pascuarense) at 100. (Calabaza).) Sw. Cucurbita ficifolia (L. Piper auritum Kunth (Hierba santa). Verbesina persicifolia DC.8. Crataegus pubescens (C. e 3. 1995). 2001).5 and 24 h against the untreated control. 150 and 200 mg/kg i. Chemical. Statistical significance was missed at 270 min. at least three of the species discussed above are edible fruits. For 200 mg/kg they also report effect at the same times. Costus ruber C. (Frijol). (Aguacate).) de Wit (Guaje). (Verdolaga). (Chirimoya).. From the bark beta-sitosterol and tannins e are reported (Argueta. will be equivalent that a 60 kg person would have to eat 18 g of dried fruit for get the desired effect. Phaseolus vulgaris L.0. (Tamarindo). Solanum verbascifolium Banks ex Dunal (Berenjena). a large number of other food plants (most notably vegetables) are included: Allium cepa L. (Ca˜ a agria). 1997 isolated Coyolosa (Fig.7. Petroselinum crispum (Mill. Persea americana Mill. Arocomia mexicana (Arecaecea). However. Tamarindus indica L. However. Citrus limetta Risso (Lima). the dose of 300 mg/kg of the fruit used in the first experiment. (Papaya). Andrade-Cetto. 200 and 300 mg/kg. At a dose of 25 mg/kg significant activity is observed at 270 and 1440 min only.) on alloxan diabetic mice CD1. which is to much for a single dose.p. Also. the data (glucose values) of what happened between 270 and 1440 min is not reportedfor all the experiments. The acute effects of the freeze-dried decoction of the roots of Ibervillea sonorae (S. showed a significant hypoglycaemic effect in normal as well as in diabetic mice. (Cilantro). Nopalea indica L. Hill (Perejil).) Merr..p.3. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 (Argueta. Arachis hypogaea L. M.5. o Of note. the extract altered glucose tolerance in alloxan induced diabetic rats.7. 2000). 1.4. Pi˜ a).) Bouch´ (Chie lacayote). e compound 9) a tetrahydropyrane. In addition. Sechium edule (Jacq. Tolbutamide was used as reference (P´ rez et al.. Main constituents The guaianolide of lactucin-8-O-methylacrylate was isolated from the chloroform extract of the fruit. Presl) n C. but did not in severe alloxan-diabetic rats. (Chayote). 3. In Table 1. the coyolosa exhibited significant blood sugar lowering at 1.05). Toxicity studies are also needed in order to develop a Phytomedicine. (N´spero). and toxicological investigations of Ibervillea sonorae must continue to establish its use as an alternative in the control of diabetes mellitus” (Alarc´ n-Aguilar et al. The hypoglycaemic activity was reportedly associated with this compound (P´ rez et al. Watson) Greene (Cucurbitaceae) on blood glucose levels were investigated in fasting mice. Leucaena leuı cocephala (Lam.5. Lactucin-8-O-methylacrylate e e isolated from the active fraction was tested (i. (Alcachofa).7. 180 and 1440 min. Pharmacology The chloroform extract of the fruit was tested intraperitoneally in alloxan diabetic mice CD1 (strain) at 100. and as in previous examples there is no information on the bioavailability of the drug.. (Cacahuate).. while at a dose of 50 mg/kg the activity is observed at 90. Annona chen rimola Mill. while the dose of 300 mg/kg shown also the same effects. at doses of 5.) Kunth (Nanche).270. 2000). According to the data reported.. Asclepias linaria Cav. For the dose of 100 mg/kg they report significant effects compared to the control at all observed times [90. (Zanahoria). 1994). in witch amount the isolated compound is present in the fruit. Similar effects were observed in normoglucemic mice (P´ rez-Guti´ rrez et al. Coriandrum sativum L. This is an example highlighting the need e for proper taxonomic validation of a botanical identification. Again the data is reported as glucose reduction percent. Other species As indicated in Table 1 many other species are commonly used in M´ xico.. Cucurbita mexicana Damm.0–20 mg/kg i. Physalis philadelphica Lamm (Tomate). More studies are needed to know how the extract is working. 180 and 1440 (24 h) min]. Parmentiera aculeate—conclusion The hypoglycaemic effect of the chloroform extract and the isolated compound has demonstrated by the authors. there must be some efforts to monitor and control the plants sold on markets and widely collected by the people for autoconsumption. a method developed e in 1964 is the most commonly used by them. 2000). fractionation. While currently specific pharmacological effects of this diverse group of species cannot be ascertained. When e conducting field work in any region of M´ xico one cannot e fail to note large quantities of discarded plastic bottles in each back yard. distillation. tinctures. It seems that many of the species were originally used for a variety of kidney disorders and most notably for their diuretic effect. Today. In this context. extracts. We see efforts like this. so also there needs to be an update of the pharmacological tools we use..). e a pers. which has for my years conducted research on popularly used medicinal plants. An interesting and e unresolved issue relates to the way such uses were developed over the last decades. For further testing proper animal model have to be used (Versphol. They are precisely defined by their botanical (scientific) binomial (Heinrich et al. The government and health professionals should also promote exercise among people living in the cities. fatty oils. In comparing M´ xico with the examples of Germany or France. where a healer is selling an ethanolic preparation of Malmea depressa (drops). This highlights another important point – the economic impact of using such herbal remedies has not been studied at all. considerable research will be required for developing such products which could be of enormous benefit to the Mexican population suffering from a drastic increase in this chronic and debilitating disease. or use genetically models like fa/fa Zucker diabetic fatty rat. it becomes apparent that Mexican businessmen have an opportunity to develop such novel products. It focuses on the development of a phytomedicine with hypoglycaemic effects at early stages of the disease or even prior to the start of the disease (during the period of increased insulin resistance). essential oils. the models used resemble type 1 diabetes or are no models for diabetic testing like glucose overload. The latter research should include projects on the species’ mechanism of action. it is possible that modification of the passage time or changes in the GI flora have an indirect influence. and on the best mode of preparation. but it is likely to be an important cost factor for many poorer families. for example on the market in M´ rida. Nutritional education of the general population is a first step which could reduce the epidemic proportion of the disease. The third level on our opinion the most important one. In order to achieve this we still have a long way to go and M´ xico with e its rich tradition in medicinal plants use still lacks appropriate training for physicians and pharmacists in phytotherapy and phytopharmacy. a large number of species are used in today’s M´ xico to treat diabetes or its symptoms. fragmented or cut.. 2002). lichen in an unprocessed state. Therefore. cost of treatment with Cecropia leaves bought on the Mercado de Sonora in M´ xico. From an ethnopharmacological perspective. algae.g. plants parts of plants. 2004). purification. Heinrich. Even though pharmacoeconomic studies on the costs of such treatments are lacking. The herbal drug preparation (phytomedicine) is obtained subjecting herbal drugs to treatments such as extraction. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 345 these are very diverse taxa. Herbal drugs are mainly whole. These include cut or powered herbal drugs. General conclusion Clearly. but sometimes fresh. the only way to get type 2 diabetic animals by chemical induction is by the proper use of Streptozotocin in neonatal rats (n-STZ). usually in a dried form. 4. Yucat´ n (Andrade-Cetto. Alternatively. We propose three levels of intervention led by the goal to reduce the public health impact of this syndrome involve government actions at all levels. The production of medicinal teas or simple preparations with ascertained quality that could be sold on markets should be promoted as part of this intervention. obs. but the importance of such fruit certainly highlights the health beneficial effects of a diet rich in plant fibre. physicians and social workers to ensure that the people drink those preparations in a medically and pharmaceutically appropriate way. The use of a phytomedicine is suggested because it would be subject to quality control. Such an approach would assure a health beneficial effect of the final product. expressed juices and processed exudates (Gaedcke and Steinhoff.A. and could be prescribed by physicians. None of these models has been used until now to test Mexican plants. . Additionally. Also the consumption of such “referescos” is visible everywhere and at anytime. could take a lead and develop phytomedicines which would be available at relatively low cost. These initiatives must again be accompanied by the appropriate training and education programmes directed at diabetics. and of course it would be ideal to largely avoid such beverages. via a special sales tax). and according to the group of P´ rez-Gutierrez et al. on the optimal doses and treat- ment schedule. to avoid sedentary way of life. e where the phytomedicine market moves billions of dollars each year. Clearly. DF may easily reach MEX$ 250 (US$ 20) per e month of treatment.. M. the isolation of the main compounds from the active extract is a crucial step in all R&D activities for developing a novel phytomedicine. the Mexican Social Security System. it is likely that. fungi. Educational programmes together with pharmcodynamic studies should have first priority. Andrade-Cetto. for example. it would be extremely interesting to analyse this process further. As a next step simple quality control measures could be established. This opens a fascinating are of research at the interface of food and medicines (cf. concentration and fermentation. 2003). 1998). But according to Versphol (2002). The only model with supporting data for type 2 diabetes is the Streptozotocin diabetic rat (Islas-Andrade et al. One core problem is the high consumption of sweet drinks commonly called “refrescos” all over M´ xico. strict regulations about the content of sugar in those drinks would be highly desirable (e. 171–177.. e Aguilar. Chavez. Andrade-Cetto.. 1976.. 471–472.... 1931–1934.. 2001. Journal of Ethnopharmacology 65.. Islas-Andrade. M. 99–101. S. Camacho. Afifi. B´ rcenas-Rodr´guez. R.. J.. R.F.. M.. 1997. E. 73–75.C. Vazquez-Carillo...... R.. Evaluation of hepatoprotective effect of Gentiana olivieri herb on subacute administration and isolation of active principle. Alarc´ n-Aguilar. Frati-Munari. 1997. 2000. Ohmoto.. Zagoya. J..... 405–412. A.. Wiedenfeld. P. M. Alarc´ n Aguilar. Castaneda-Andrade.. A. 1991.. 73–78. (Comp). Rivas-Vilchis. Acknowledgments We are thankful to Eddy Cuauht´ moc Mart´nez Zurita for e ı his collaboration in reviewing parts of Table 1. A. Aguilaro e Contreras. R. M.L. Study of the anti-hyperglycemic effect of plants used as antidiabetics. 145–149. L. Aslan. and one polysaccharide fraction from Psacalium decompositum in mice. Journal of Ethnopharmacology 72. (Ed. Hypoglycaemic effect of Sterculia rupestris and a comparative study of its flavonoids with Sterculia diversifolia. Journal of Ethnopharmacology 77. Chino. Plants with hypoglycemic activity in humans..E. R. Instituto Nacional Indigenista. Rom´ n Ramos. F.R. sesquiterpenoids. S. Hypoglycemic effect of an Opuntia streptacanta Lemaire dialysate. E.. Hypoglycaemic effect of extracts and fractions from Psacalium decompositum in healthy and alloxan-diabetic mice. R.. Takaishi.A. J.. P.. Gonzalezo Paredes.. 1997. D´az. knowledge about these these species. B.. S. M´ xico 19.. Youssef. 257–261... Reyes-Chilpa.. E. Archivos de Investigaci´ n. Quiroz. Roman-Ramos. Peralta..346 A.. Carrillo. o Xolalpa-Molina. Ergun. Camacho. 21–27. e Duan. Journal of Ethnopharmacology 61.. D.. Balandrin.. Ba˜ ales... M. J. A. 129–133. M.. Two new 2-arylbenzofuran derivatives from hypoglycaemic activity-bearing fractions of Morus insignis.K. Andrade-Cetto. S. Xolalapa. E. F. (−). Tesis de Maestr´a.J.. E.. M. e n Decreased blood glucose and insulin by nopal (Opuntia sp. Yesilada. Ba˜ ales...E.Y. ı M´ xico.. E. H. R.. S.E. 8413– 8424. 2004. 24–35. Journal of Ethnopharmacology 55.. M´ dica M´ xico 14. 1999. A.. Baynes. Palacios-Rios. Phytomedicine 4. However. p.. Facultad de Ciencias. 207–215. F. vol. J. Ariza. D. Effects of three Mexican medicia nal plants (Asteraceae) on blood glucose levels in healthy mice and rabbits. R. Terashima. Antigonorrhoeal activity of plants used in guatemala for the treatment of sexually-transmitted diseases. Jim´ nez. 269–274. Journal of Ethnopharmacology 82. References Acosta-Patino. Aguilar. Estudio Etnofarmacologico de Equisetum myriochaetum Schlechtendal & Cham y Cecropia obtusifolia Bertol.. 2002a. Alarc´ n-Aguilar.. 570–575.J. Rom´ n Ramos. Archivos de Investigaci´ n. Ernst. Role of oxidative stress in development of complications in diabetes.. R. Desoky. Juarez-Oropeza. 1993. 217–220. M. Jimenez-Balderas. Journal of the Professional Association for Cactus Development 2. Journal of Ethnopharmacology 90.F.. G.. Roman-Ramos..A. H.E... H. J.. UNAM. Andrade-Cetto. I. 2000b... a o Herbario Medicinal del Instituto Mexicano del Seguro Social.-Hydroxysparteine. M´ xico. Reyes-Chilpa. J´ quez. F.W. 173–177. o a M´ xico. A. B.. IMSS.S. S. Samayoa.. Kinghorn. The effect of different doses of prickley-pear cactus (Opuntia streptacantha Lemaire) on the glucose tolerance test in healthy individuals. Contreras-Weber. 1238–1243. 1983. Wiedenfeld. e their bioactive compounds and pharmacological effects is in the public domain. a new natural product from Acosmium panamense. Caceres. A. 2003.. Clearly. Taki. Gonzalez-Sanchez. La herbolaria Mexicana en el tratamiento de la diabetes.C.J. 1992. p.. H. Tetrahedron 57. A. e E. Fitoterapia 63. UNAM. M´ dica... Jauregui. UNAM. Immunosuppressive terpenoids from extracts of Tripterygium wilfordii. F. Ariza. 1998. Jimenez-Estrada. Hypoglycemic activity of root water decoction.. 1982. M´ xico. R.J. S. Cohobon... Takaoka. M. F. J. Y. 1995. J. RomanRamos.. H. IMSS. since some of these phytomedicines may also be commercialised outside of M´ xico. Journal of Ethnopharmacology 48. Diabetes 40.D. Campos-Sepulveda. Journal of Ethnopharmacology 78.).. Pharmaceutical Biology 40. S. 1995. Chemical studies on Mexican plants used in traditional medicine. Estudio Etnobot´ nico y Fitoqu´mico de plana ı ´ tas utiles en la regi´ n de Xochipala Guerrero para el tratamiento de o la diabetes NID.A. P´ rez-Gutierrez..R.. P. 358. Jia. B. Tori. Bulletin Faculty of Pharmacy (Cairo University) 35. G. E. e Basnet. S. A.. Deliorman-Orhan. E. 2001. Flores-Saenz. F. Hypoglycemic effect of Equisetum myriochaetum aerial parts on Streptozotocin diabetic rats. A.C. 185–189.. Men´ ndez. Facultad de Ciencias.. Contreras-Weber.. the Mexie can government or other appropriate institutions will have develop ways to guarantee the sustainable use of this species and that any economic benefit from these phytomedicines will also be shared with the Mexican people. Wiedenfeld... Frati-Munari. Flores.. L´ pez...L. o Hernandez-Galicia. Hypoglycemic effect of Acosmium panamense bark on Streptozotocin diabetic rats. (Cucurbitaceae) in different experimental models. T. Alarc´ n-Aguilar. Islas. Xolalpa-Molina.... R.). Heterocycles 19. C. A. 1997. T. Alarc´ n-Aguilar. Momota. F´ rnandez-Harp. This work was partially supported by DGAPA.. Hernandez-Galicia.C. 2004.. Andrade-Cetto... S. A.. Li..J. Detreminaci´ n del efecto genot´ xico de a ı o o Equisetum myriochaetum en c´ lulas som´ ticas de alas de Drosophila e a melanoganter Tesis de Licenciatura...L. Hypoglycemic effect of Cecropia obtusifolia on Streptozotocin diabetic rats.Q. E. 2273–2283. Journal of Ethnopharmacology 72.C. . C. 85–88.. 93. 2002b. Reyes-Chilpa. Hypoglycaemic activity of Ibervillea sonorae roots in healthy and diabetic mice and rats. Y. Instituto Mexicano del Seguro Social.L. n S. J. A difficult and unresolved issue relates to the traditional intellectual property on these species. Ciencia July–September. Mata.F. 1999. A. Effect from isoorientin isolated from Arum palestinum on uterine smooth muscle of rats and guinea pigs. Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. Kadota. M´ xico 97. Constituents of Equisetum myriochaetum. Journal of Ethnopharmacology 69.I. M. o a e Gonz´ lez. Tesis Doctoral. Mexico.. M.. A. Facultad de Ciencias. 1994. J. Khalil. Roman-Ramos. R.. Shimizu-Namba. 1987. Campos-Sepulveda. e Andrade-Cetto. A. their use in the systematic treatment of diabetes is relatively recent and it will be nearly impossible to identify one group of people which can claim traditional ownership. Ergun. Alarc´ n-Aguilar. E. Jim´ nez. 3. Informaci´ n Etnobot´ nica.J. e Andrade-Cetto. M. ´ ı Indice y Sinonimia de las Plantas Medicinales Mexicanas (IMEPLAM).. Atlas de las Plantas de la Medicina Tradicional Mexicana. Y.H. XXII. 75. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Argueta. 1994. 2001. o e e Frati-Munari. Life Sciences 72. Evaluation of the hypoglycaemic effect of Cucurbita ficifolia Bouche. 253.F. Revilla-Monsalve. E. V. Altamirano. J. M. PAPIIT Project IN204703..A.. M. A. A. o e a 2000a.. Chemical Pharmaceutical Bulletin (Tokyo) 41. o e e 143–148. Abdalla. D. H. 101–110.. 2002. Aktay. they have been used widely in M´ xico... M. A. Plants for Food and Medicine. A. W.. S.. 1997.. Fundamentals of Pharmacognosy and Phytotherapy. 197–201. 1991a. S.R.. Journal of Pharmacy e and Pharmacology 53... American Journal of Clinical Nutrition 76. Kew. Zavala. R. Influence of a dehydrated extract of the nopal (Opuntia ficus-indica Mill..3 -trihydroxy-3.. M. Phytotherapy Research 16. J. Knekt. Streptozotocin and alloxan in experimental diabetes: Comparison of the two models in rats.A. Dissertationes Botanicae No. Palacios-Rios. 2000. A. A. Heli¨ vaara. S. R.... Williamson. e e e e H. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest.. Journal of Ethnopharmacology 71. Isolation and hypoglycaemic activity of e e 5.. e Fern´ ndez. 1998a. P´ rez. Phytomedicine 5. Phytotherapy Research 15. A. Effect e e e e of Triterpenoids of Bouvardia terniflora on blood sugar levels of normal and alloxan diabetic mice. Journal of Ethnopharmacology 12.. J¨ rvinen.. 1991b. Furanoeremophilane and eremophilanolide sesquiterpenes for treatment of diabetes United States Patent 5. Moko/La Rosa Negra. Tortoriello.. S. A pharmacological study of Cecropia obtusia folia Bertol aqueous extract. Flavonoid intake and risk of chronic diseases. ´ P´ rez-Guerrero. M´ dica o e M´ xico 20. 2000a.. a e UNAM-FCE. 1989c....... L. 1989b. London. X. M. 457–495. M. R. Ocegueda.J. Herrera-Arellano. Elsevier. Actividad hipoglucemiante de Bouvardia ternie flora.M. ı S.. Islas-Andrade... e P´ rez.. Cervantes. C. 1999. M´ xico. Paulus.C.. Aguilar-Santamaria. Web page at: http:// mobot.. Zurich.. S. Botas..A. Licona. M.. 156–157.A. Revilla-Monsalve. Vargas. M.. M..A. Cune. A. P. A. Vibrans. 1653–1669. S. Indigenous phytotherapy of gastrointestinal disorders in a Mixe lowland community. De la Pe˜ a. Cramer in Gebr. M. Ethnopharmacology of the popoluca. A. P´ rez. 2001. Archivos de Investigaci´ n.M. M. Below. H.. 55–58. 561– 566. Archivos de Investigaci´ n. Equisetaceae.. E. Germany. p.. Lamba.B.. Nicasio-Torres.mobot. 2004). Garcia-Hernandez.F.. A. M.. A.. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose6-phosphate translocase. Del Valle Mart´nez. ı e e Missouri Botanical Garden. Medpharm. Acta Societatis Botanicorum Poloniae 70.A... A. Journal of Ethnopharmacology 36. Hemmerle.E. Luo. 347 Leonti. E. Lewis. J. Zavala. E.. Heinrich. Polanco.747. L. 2002.. M´ xico 40.D. 2001. P. Sticher. M.B. Avila. Singh. Lozoya. Ariza. C. London. J. Triterpenes from Agarista mexe e icana as potential antidiabetic agents. J.A. Ethnobotanik der Tieflandmixe (Oaxaca.. M´ dica M´ xico 22. de Rzedowski. P´ rez. Frati-Munari..M. 90. Alvarez de. C. Zavala.. P´ rez-Guti´ rrez. 2004. Heinrich. Frauke. (Scrophulariaceae). Chavez. J. Tetrahedron 55.. Botanical Garden.. Arboles tropicales de M´ xico. 137–189. Journal of Medical Chemistry 40. Hakulinen. T.. Web page at: http://www.. Ariza. J. Hypoglycemic effect of Opuntia streptacantha Lemaire with crude extracts.D. Alkaloides with a novel Diaza-adamantane skeleton from the seeds of Acosmium panamense (Fabaceae).. Letitia.. Zavala. Sotomayor. 1–6 July 1996. Herrera.. Nuzillard. Plants as antidiarrhoeals in medicine and diet. Effect of Cirsium e e ı pascuarense on blood glucose levels of normoglycaemic and alloxandiabetic mice. W3 Tropicos.M. Leonti. P´ rez-Guti´ rrez. pp.. pp. Antidie e e e abetic effect of compounds isolated from plants.M. 2004.. H. D. In: H. Indian Drugs 20. P´ rez-Guti´ rrez. S.. Munoz. M´ dica M´ xico 22. 1996. P´ rez. Antidiabetic plants and their active constituents. S. B.. Lorenc-Kubis. 2004. Morrow. 253–262. 1995. M´ dica M´ xico o e e 21.P. Computer-assisted structural elucidation. Acta Histochemica et Cytochemica 33.. Khosa. A. o e e Gaedcke. H. 1989. 2002. R. N. Heinrich.. C. 1998.. M. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins.M. P.. Schindler. o e e Frati-Munari. C. Marles. Phytomedicine 7. Kalinowska... Journal of Ethnopharmacology 76. Chavez-Negrete. C.. S. p.M.. J. Rissanen. R. 197–205. P´ rez-Guti´ rrez. P´ rez.. C. Zavala.. Berlin und Stuttgart. Studies in Natural Products Chemistry 21. Lopuska.L.html (accessed May..) on glycemia. n A.D.L. Edinburgh. Steinhoff. 351–353. M. 11511–11518. P´ rez. Ariza. 51–56..M.. R. W. Altamirano.. 211–216. Herbal Medicinal Products.C. Chavez.. M. M. S. 241–243. Pandacy. Frati-Munari. Ortiz. R. Borntraeger Verlagsbuchhdlg. Schubert.. M. New York.. Phytomedicine 11. Farnsworth. 55–75. ı M´ xico.C.. M. 560–568. M.C. Brickellia veronicaefolia y Parmentiera edulis. Lamba.). M. 17–30. D´az. Vargas.. Dissertation Doctor of Natural Sciences.. V. A. S. Harris..nybg. Vargas.527. Heinrich. P´ rez-Guti´ rrez. L´ pez.. Salud Publica. R. M. G.. R.R. 137– 145. A. ... o n o X.. Plantas utiles de M´ xico. M´ dica M´ xico 20. B. e A study of the hypoglycaemic effect of some Mexican plants.. 2000b. P. 1984. 201–208.. Buch.. Archivos de Investigaci´ n.S. J. Conolly. R. Altamirano. pp. Influence of nopal intake upon fasting glycemia in type II diabetics and healthy subjects. P´ rez-Guti´ rrez.. 2003..V... Islas-Andrade. J. Hernandez.. L´ pez. F. Heinrich.. Altamirano. 2001. Gordillo.W.. P´ rez.. C.R. 1998.. A.. Ram´rez. Antonio.. M´ xico: an evaluation. C. R. R. M. Hypoglycemic action of diferent doses from nopal (Opuntia streptacantha Lemaire) in type II diabetic patients.L... P´ rez-Guti´ rrez. J. P´ rez. M. 31–37. 2002..7. Rippel. P´ rez. M. 25–29. M... 177. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 Frati-Munari. M´ xico) und e phytochemische Untersuchung von Capraria biflora L. J.. Burger. R. 309. 1999. o e e 321–325.A. J. Chavez. 1998c. O. G.. S.Y. R. e e P´ rez. Evans. a o Reunanen. A. Instituto de Ecolog´a. S.. Ariza.4 -trimethoxyflavone from Brickellia veronicaefolia. Aromaa. Cortez-Franco. L´ pez. M´ xico. R. P. Etkin.html (accessed May–July 2004).. L.. 1992. Phyton 53.W.. 2000. Journal of Ethnopharmacology 82.. Ba˜ ales. Palomino. Delande. 39–42.. 1998b.L. Hypoglycaemic effect e e e of Acrocomia mexicana Karw. S. 1990. T. J.J. 2004.).. 279–284. M.. 99–103.6. 1998.. P´ rez. CRC. R. Experimental studies on Zizyphus rugosa (lam) bark. Phytotherapy Research 10. De Le´ n. Islas-Andrade... R. 2001.. H... P. H.. E.B. e Frati-Munari...M. Andrade-Cetto. 144.W. R. ´ Mart´nez. Royal Botanic Gardens. 354–358. 2001. Proceedings from a joint meeting of the Society for Economic Botany and the International Society for Ethnopharmacology.. e P´ rez-Guti´ rrez. Houghton (eds. 1989a. e ´ Pennington. R. o The action of Opuntia strepthacantha on healthy subjects with induced hyperglycemia. 1954... Phytochemicals as potential hypoglycaemic agents. P´ reze e e a a e Guti´ rrez.J... M´ dica M´ xico 20. R.. Archivos de Investigaci´ n.. Phytomedicine 2. org/bsci/res/lut2/agarista mexicana. S.L.. En: Rzedowski. R.. 1992. H..M. and P. M´ xico.. o e e Frati-Munari. R. K. MenOlivier. J. Churchill Livingston. 391–394..R. P´ rez. R. Phytomedicine 5.. 475–478. B. Ariza.D. P´ rez-Gonz´ lez. 1–6. Sanchez. H. M. Flora del Bajio y regions adyacentes. T. Timothy. King. Effect e e e e of Agarista mexicana and Verbesina persicifolia on blood glucose level of normoglycaemic and alloxan-diabetic mice and rats..G. 400. ı o The effect of two sequential doses of Opuntia streptacantha upon glycemia... Mc.... C. Islas-Andrade. R. Stuttgart.M. UK. Ethnobotany of the Popoluca Veracruz. Inman.A. Lagunes.. Ariza. Clinical trial of Cecropia obtusifolia and Marrubium vulgare leaf extracts on blood glucose and serum lipids in type 2 diabetics.. Gibbons. Kumpulainen. 1983. A. Zavala-S´ nchez. A.. S. 552–554. N. Zeches-Hanrot.. Barnes.org/W3T/Search/vast. R. 63–80. 333–336. Herling. Sarukh´ n. R..M..J. Prendergast. J. P´ rez. Velasco. Swiss e Federal Institute of Technology (ETH).R. (Eds.. R. C. Hypoglycaemic effects of lactucin-8-Omethylacrylate of Parmentiera edulis fruit. Archivos de Investigaci´ n. Rimpler. Archivos de Investigaci´ n. S.. 1991. Diabetes Spectrum 14.S... a new hypoglycemic from Acrocomia mexicana. Photochemistry 59. L.. Report of WHO consultation.. Andrade-Cetto. diagnosis and classification of diabetes mellitus and its complications.. F.J. R. Pharmaceutical Biology 39. Ikhlas. P´ rez-Amador.C. S. M´ dica. P´ gina de la Secretaria de Salud. N. Perez-Gutierrez.P.C. Rom´ n-Ramos. Web page: http://www. Veitch.J. Recommended testing in diabetes research. 1997.L. Andrade-Cetto. M... G. The blooming of the French lilac.. M´ xico 22.. H.. 2001.. Planta medica 68. J. Pyrone glycosides from Acosmium panamense (Benth. 105–111. Wiedenfeld. Andrade-Cetto.L. Dhammika. A. R. Simmonds. 2002. Shane-Mc Whorter.. Purdue University. B. Gobierno de M´ xico. and their 13 C NMR spectroscopic analyses. H.. Versphol. A. M. G. Systematic review of herbs and dietary supplements for glycemic control in diabetes..S. Alarcon-Aguilar.) Yacovlev.. Eisenberg. Biochemical Systematics and Ecology 28. A. p. H...gob. Kaptchuk. Kavalactones from Piper methysticum.J. Contreras-Weber. 317– 321. Journal of Ethnopharmacology 81. R. Biological complementary therapies: a focus on botanical products in diabetes. 2004. 395–397.. 2004. 199–208. .edu/newcrop/ 1492/cucurbits. 429–433...C. Partida-Hern´ ndez.J.348 A. 2001. Zavala... Flores-Saenz. P´ rez. N.K.ssa. Vargas. Wiedenfeld. 1999. e e 1997. Coyolosa. Hypoglycemic effect of Equisetum myriochaetum aerial parts on type 2 diabetic patients.purdue. 2001. 2000. Kite. o e e Rom´ n-Ramos.org (accessed January 2004)... R..mx (accessed January 2004). Witters.Y. Pharmaceutics Acta Helvetiae 72.. 1105–1107. G. Alarcon-Aguilar..... 117–120. C. R. Wiedenfeld. 1277–1294. Web a e page http://www. 2002.M.. Web page http://www.. Islas-Andrade. Definition. Dharmaratne.M. Word Health Organization. 2003. Nohpal-Grajeda. J. D. L. W.L.html (accessed May 2004). Andrade-Cetto. Journal of Clinical Investigation 108. Goodwin.. Blood glucose level decrease a caused by extracts and fractions from Lepechinia caulescens in healthy and alloxan-diabetic mice. M.C.who. Flavonol e glycosides from Equisetum myriochaetum. F.. 847–850. A. 2004. Phytochemistry 45. T. Floresa S´ enz. 87–93. A. 2003. Zeitschrift fur Naturforschung C-A... Revilla-Monsalve.S.. Yeh. C. Ranjith. E. G. 637–639. Experimental study of the hypoglycaemic effect of some antidiabetic plants.H. Methoxylated quinolizidine alkaloids from Acosmium panamense. 2002. 66. N. Laraa a Lemus. P´ rez. M. Phillips.hort. G. Word Health Organization.. Diabetes Care 26. Heinrich / Journal of Ethnopharmacology 99 (2005) 325–348 SSA. Geneva.G. Journal of Biosciences 58. Archivos de Investigaci´ n. 581–590.
Copyright © 2024 DOKUMEN.SITE Inc.