Desing Calc. Pressure Vessel

March 20, 2018 | Author: aurelpopp3225 | Category: Pressure, Nozzle, Pipe (Fluid Conveyance), Stress (Mechanics), Pounds Per Square Inch


Comments



Description

Cover PageDESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version : 2007, Addenda A-08 Analysis Performed by : PRESSURE VESSEL ENGINEERING Job File Date of Analysis PV Elite 2009, : L:\SAMPLES\SAMPLE 14 - VERTICAL W BOLTED COVER\P : Jun 19,2009 January 2009 Table of Contents Table of Contents Input Echo : Internal Pressure Calculations : Nozzle Calcs. : N1 Nozzle Calcs. : N2 Nozzle Calcs. : N3 Nozzle Calcs. : N4 Nozzle Summary : Nozzle Flange MAWP : Nozzle Schedule : Element and Detail Weights : Earthquake Load Calculation : Wind/Earthquake Shear, Bending : Longitudinal Stress Constants : Longitudinal Allowable Stresses : Longitudinal Stresses Due to . . Stress due to Combined Loads : Center of Gravity Calculation : Leg Check, (Operating Case) : Leg Check, (Filled w/Water) : Vessel Design Summary : 1 2 7 10 14 18 21 24 25 26 27 29 30 31 32 33 35 39 40 43 46 PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 2 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) Design Internal Temperature Type of Hydrotest Hydrotest Position Projection of Nozzle from Vessel Top Projection of Nozzle from Vessel Bottom Minimum Design Metal Temperature Type of Construction Special Service Degree of Radiography Miscellaneous Weight Percent Use Higher Longitudinal Stresses (Flag) Select t for Internal Pressure (Flag) Select t for External Pressure (Flag) Select t for Axial Stress (Flag) Select Location for Stiff. Rings (Flag) Consider Vortex Shedding Perform a Corroded Hydrotest Is this a Heat Exchanger User Defined Hydro. Press. (Used if > 0) User defined MAWP User defined MAPnc Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 125.00 200 UG99-b Vertical 0.0000 0.0000 -20 Welded Air/Water/Steam None 0. Y N N N N N N No 0.0000 0.0000 0.0000 NP+EW+WI+FW+BW NP+EW+EE+FS+BS NP+OW+WI+FW+BW NP+OW+EQ+FS+BS NP+HW+HI NP+HW+HE IP+OW+WI+FW+BW IP+OW+EQ+FS+BS EP+OW+WI+FW+BW EP+OW+EQ+FS+BS HP+HW+HI HP+HW+HE IP+WE+EW IP+WF+CW IP+VO+OW IP+VE+EW NP+VO+OW FS+BS+IP+OW FS+BS+EP+OW No Wind Loads 70.000 C psig F in in F psig psig psig Wind Design Code Design Wind Speed Exposure Constant Importance Factor Roughness Factor Base Elevation Percent Wind for Hydrotest Using User defined Wind Press. Damping Factor (Beta) for Wind Damping Factor (Beta) for Wind Damping Factor (Beta) for Wind mile/hr Vs Elev. (Ope) (Empty) (Filled) 0.0000 33. N 0.0100 0.0000 0.0000 in PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 3 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 Seismic Design Code NBC Acceleration-Related Seismic Zone Za NBC Velocity-Related Seismic Zone Zv NBC Seismic Importance Factor I NBC Soil Type NBC Force Modification Factor R NBC Percent Seismic for Hydrotest Design Nozzle for Des. Press. + St. Head Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Consider Code Case 2168 for Nozzle Des. Material Database Year NBC 95 1.000 0.000 1.000 1.000 1.000 0.000 Y N Y N Current w/Addenda or Code Year Complete Listing of Vessel Elements and Details: Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress, Ambient Allowable Stress, Operating Allowable Stress, Hydrotest Material Density P Number Thickness Yield Stress, Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Elliptical Head Factor Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter 10 20 Elliptical Elliptical Head 2.0000 in 36.000 in 0.2260 in 0.06250 in 0.2500 in 0.0000 in 125.00 psig 200 F 0.0000 psig 70 F 1.2 SA-516 70 20000. psi 20000. psi 26000. psi 0.2830 lbm/in³ 1.2500 in 34800. psi B CS-2 K02700 Plate 0.85 0.7 2. 10 Liquid Liquid 10 -9.0000 11.000 0.0000 10 Nozzle N3 0.0000 1.75 in in lbm/ft³ in in. 003 3 4 L3X3X0. Circumferential Seam Element From Node Detail Type Detail ID Dist. N 0.0000 20 Nozzle N1 24.1 SA-106 B 20 Nozzle lbf in in in in in in in in in psig F psig F in in lbm/ft³ in in.0000 GR 1.0000 125.2500 0. Longitudinal Seam Efficiency.000 0.7 0.2 SA-516 70 0.00 200 0.000 38. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid Element From Node Detail Type Detail ID Dist.810 36.0000 70 1.7 20 Liquid WATER 0.0000 41. lbf .2009 Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl Element From Node Detail Type Detail ID Dist.Page 4 of 47 Input Echo : Step: 1 10:38a Jun 19. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl Element From Node Detail Type None 0 0. 40 150 180. from "FROM" Node / Offset dist Diameter at Leg Centerline Leg Orientation Number of Legs Section Identifier Length of Legs Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Efficiency.06250 0.810 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.2500 0. N 0.000 20 30 Cylinder Shell 41.2500 31.0000 None SA-105 10 Leg LEGS 10.000 18. 2009 Detail ID Dist.1900 0.47 Flange Class of ANSI B16.1 SA-106 B 30 40 Flange 36" 150# WN Flange 6.2500 0. 26000.1900 36. 20000.000 3.5/B16.06250 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. lbf in in in in in in psig F psig F psi psi psi lbm/in³ in psi lbf in in lbm/ft³ in in in in in in . B CS-2 K03504 Forgings N 0.5600 0. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Flange Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance N2 24. 0. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Flange Inside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress.0000 70 1.00 200 0.47 Flange Element From Node Detail Type Detail ID Dist.5/B16.Page 5 of 47 Input Echo : Step: 1 10:38a Jun 19.2 SA-105 20000.0000 150 GR 1.5600 46. Hydrotest Material Density P Number Thickness Yield Stress.47 Flange Grade of ANSI B16. Ambient Allowable Stress.1 30 Liquid Liquid 30 0.2500 0.0000 40 50 Flange Blind Cover 3.5600 0. Operating Allowable Stress.0000 125.000 4.0000 in in.2500 33000.06250 0.0000 6.000 3.0000 GR 1. N 0.2830 1. 40 150 0. Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Perform Flange Stress Calculation (Y/N) Weight of ANSI B16.5/B16. PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.47 Flange Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid Element From Node Detail Type Detail ID Dist.5/B16. lbf PV Elite 2009 ©1993-2009 by COADE Engineering Software .47 Flange Class of ANSI B16.Page 6 of 47 Input Echo : Step: 1 10:38a Jun 19.0000 3. None 0 0.0000 150 GR 1.5/B16. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl 125.00 200 0.2009 Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Perform Flange Stress Calculation (Y/N) Weight of ANSI B16.1 40 Liquid Liquid 40 0.5/B16.2 SA-105 N 0.0000 40 Nozzle N4 0.47 Flange Grade of ANSI B16.0000 None SA-105 psig F psig F lbf in in lbm/ft³ in in.0000 3.5600 0. N 0.0000 70 1. 22600 0.19535 0.1635)/(0.884 | 195.00*0. 2007 A-08 Elliptical Head From 10 To 20 SA-516 70 .25000 0. UCS-66 Crv.1)) = 156.W.900*(0.516 psig Maximum Allowable Pressure. limited by: Nozzle Reinforcment. Diameter and Allowable Stress : | | Int.4 * 126. New and Cold [MAPNC]: = (2*S*E*t)/(K*Do-2*t*(K-0.2009 Element Thickness.P.900 psig = (2*S*E*t)/(Kcor*Do-2*t*(Kcor-0.0000 36. corroded condition [Kcor]: .995*36.25000 0. Pressure.1635*(1. Press From| To | + Liq.85+2*126.0000 | | | | | | | Allowable | Stress(SE)| psi | 17000.990 psi Required Thickness of Straight Flange: = (P * Ro)/(S * E + 0.1)) per Appendix 1-4 (c) = (126. | New & Cold | psig | 215.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.062500 | Element Diameter in 36.P. Internal Pressure Calculation Results : ASME Code.0 | Element Required Thickness and MAWP : | | From| To | | | Elliptical| Shell| 36" 150# W| Blind Cove| Minimum Design Pressure psig 125.000 125.900 36" 150# W| 126.062500 | | 0. B at 200 F Elliptical Head Thickness Due to Internal Pressure [tr]: = (P*Do*Kcor)/(2*S*E+2*P*(Kcor-0.2260*(1.00 * 0.900 = 154.1)))/(2*0.1954 in Max.062500 | | 0.0000*0.000*36.063 = 0.4 * P ) + c per Appendix 1-1 (a)(1) = (126.85 + 0.900 | | | | | | | Nominal Thickness in 0.900 Shell| 126.0 | 14000.1.0625 = 0.995)/(2*20000.900 *18.A.22507 No Calc No Calc | | | | | | | MAWP: 129.900*36.995-0.2260)/(1.000 125.1)) per Appendix 1-4 (c) = (2*20000.196 in Factor K.0 | 20000.0000-2*0.Page 7 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19.56000 | | | | | | | Required Thickness in 0.900 ) + 0.900*(1.1329 + 0.884 psig Actual stress at given pressure and thickness.530 | | | | | | | Actual Thickness in 0.100 144.062500 | | 0. Allowable Working Pressure at given Thickness.544 | M.85*0. Division 1.1)) = 0.85*0.56000 3. corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 1.100 258.1635) = 16225.000 125.416 .553 psig.1)) = 215.00*0. Corroded psig 154.00*0.000 | 285.25000 0.0000-2*0. corroded [Sact]: = (P*(Kcor*Do-2*t*(Kcor-0.995*36.25000 3.0000 46.85*0.516 144.00-0.0 | 20000.1)))/(2*E*t) = (126.0000-2*0. Hd | | psig Elliptical| 126.000 195.A.1)) per Appendix 1-4 (c) = (2*20000.000 | | | | | | | M. Section VIII.1635*(0.00-0.900 Blind Cove| 126.0000 )/( 20000.25000 | Total Corr| | Allowance | | in | | 0.531 | 285.544 258.0000 36.000-0. 4*t) per Appendix 1-1 (a)(1) = (20000.1875) = 146.2251 in Max.1626 + 0.914 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 0.0000-0.0000)/(20000.0625 = 0.2500)/(18.699 % -20 -51 F F Min Metal Temp. at Required thickness -20.4*0. at Rqd thickness (UCS 66.544 psig Maximum Allowable Pressure.900 psig = (S*E*t)/(Ro-0.W. at Rqd thickness (UCS 66.1875)/(18.70*0.950 ))^(2))/6 = 0.00*0.900*((18.P. F F Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F Minimum Design Metal Temperature ( Entered by User ) Hydrostatic Test Pressure Results: -20.900 = 144.Page 8 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19.1)[rat 0. w/o impact per UCS-66 Min Metal Temp.1)[rat 0. New and Cold [MAPNC]: = (S*E*t)/(Ro-0.531 psig Actual stress at given pressure and thickness. Allowable Working Pressure at given Thickness.900*18.900) = 0.085 % MDMT Calculations in the Knuckle Portion: Min Metal Temp.2500) = 195.3 * M.1875))/(0.1. at Rqd thickness (UCS 66.0000-0.4*0.4*t) per Appendix 1-1 (a)(1) = (20000. w/o impact per UCS-66 Min Metal Temp. w/o impact per UCS-66 Min Metal Temp.995352 Percent Elongation per UCS-79 (75*tnom/Rf)*(1-Rf/Ro) 3.61] Cylindrical Shell From 20 To 30 SA-516 70 .70*0. w/o impact per UCS-66 Minimum Metal Temp.1)[rat 0.419 psig .00*0.2009 = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 35.69] Minimum Metal Design Temperature Results : Minimum Metal Temp.70+0. corroded [Sact]: = (P*(Ro-0.00*0. * Sa/S 168.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. -51.1875) = 17330.4*126.70*0.673 /( 2 * 8.69] -20 -51 F F MDMT Calculations in the Straight Flange: Min Metal Temp.444 . corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 1. UCS-66 Crv. F Pressure per UG99b = 1.4*P) per Appendix 1-1 (a)(1) = (126.4*0.A. B at 200 F -20 -55 F F Shell Thickness Due to Internal Pressure [tr]: = (P*Ro)/(S*E+0.0000-0.4*t))/(E*t) = (126. 2009 Pressure per UG99b[34] = 1.6 17417.608 0.670 Pressure 170. PV Elite 2009 ©1993-2009 by COADE Engineering Software .P.3 * Design Pres * Sa/S Pressure per UG99c = 1.67 170.28 Elements Suitable for Internal Pressure.W.0 Ratio 0.Page 9 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19. .3 * M. * Sa/S Vertical Test performed per: UG-99b Stresses on Elements due to Hydrostatic Test Pressure: 162.328 142.0 26000.1 * M.Head(Hyd) Pressure per UG100 = 1.A.3 Allowable 26000.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.508 psig psig psig From To Elliptical Head Shell Stress 15811.A.P.500 252. 00 psi 17100.2500 0.2009 INPUT VALUES.00 20000.0625 0.0000 -20. Inside Nozzle to Shell Wi Pad Material Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16 Class of attached Flange Grade of attached Flange in in in in in Sp Spa Dp Tp Wp Wgpn psi psi in in in in in The Pressure Design option was Design Pressure + static head .PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.00 psi 20000. SA-105 Weld Neck Flange Can Es En 0.1 in Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Nozzle Inside Projection h Weld leg size.2500 2.0000 Q 150 GR 1.2500 0.00 14.5000 0.900 200 psig F S Sa D t cas caext SA-516 70 20000.00 in in in in in F Sn Sna Inbase Dia Idbn tn SA-106 B K03006 Smls. pipe 17100.00 22.2500 0.00 18.Page 10 of 47 Nozzle Calcs. : N1 Nozl: 6 10:38a Jun 19.00 1.5000 0.2500 0.0000 Nominal 40 Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Nominal Thickness of Nozzle Nozzle Flange Material Nozzle Flange Type Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck deg in.0000 26.00 psi 35.2500 0.0000 SA-516 70 20000.0625 1.0000 0.0000 0.00 psi OD 180. Nozzle Description: N1 From : 20 Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient 126. Press] Parallel to Vessel Wall (Diameter Limit) Dl Normal to Vessel Wall (Thickness Limit).90*17. pad side Tlwp Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE.00 Degs.1135 in Reqd thk per UG-37(a)of Nozzle Wall. 2007.4*P) per Appendix 1-1 (a)(1) = (126.0666 in UG-40.0625 in 0. The area available without a pad is Insufficient. Reqd thk per UG-37(a)of Cylindrical Shell.347 Area in Inward Nozzle A3 0. Tr [Int.2009 Nozzle Sketch | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad. Section VIII. Limits of Reinforcement : [Int. Description: N1 ASME Code.0000)/(17100*1.00-0.945 Area in Shell A1 1.248 Area in Nozzle Wall A2 0. Press] 18. Nozzle Angle Used in Area Calculations 34.000 Area in Welds A4 0. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness: Diameter 19.710 The Internal Pressure Case Governs the Analysis.562 in. no Inside projection NOZZLE CALCULATION.0000 19.4*126. The area available with the given pad is Sufficient.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.115 Area in Pad A5 1.000 0. : N1 Nozl: 6 10:38a Jun 19.8125)/(20000*1.90) = 0.90*9.90) = 0.0000 22.2500 in .0000 Thickness 0.4688 in in External NA NA NA NA NA NA NA Mapnc NA NA NA NA NA NA NA in² in² in² in² in² in² in² 90. Trn [Int.00+0. = (P*R)/(S*E-0.6*126.2500 in 0.6*P) per UG-27 (c)(1) = (126. Division 1. in.000 TOTAL AREA AVAILABLE Atot 2.0020 0.Page 11 of 47 Nozzle Calcs. A1 to A5 Design Area Required Ar 1. A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation Nozzle input data check completed without errors. Press] = (P*Ro)/(S*E+0. trb) = 0.1760 in Std.001)*(1.347 in² Area Available in Nozzle Wall. with Pad [A2wp]: = ( 2 * min(Tlwp.0. tr45 = Max(tra.562-0. E* = 1.trn ) * fr2 = ( 2 * min(0. c = 0.0615 ) * 0. tr = 0. ho) )*( tn .Page 12 of 47 Nozzle Calcs.ho) ) * ( tn .115 in² Area Available in Pad [A5]: = (min(Dp.002-17.00 = 0.14.2500-0.Te))*fr4 = ( 22.469 .5620-0.86 + 0.0625 .248 in² Area Available in Nozzle Wall.3906 in Wall Thickness per UG45(b).DL)-(Nozzle OD))*(min(tp.8550 + ( 0. DLR = Corroded ID: Area Available in Shell [A1]: = (DL-Dlr)*(Es*(t-cas)-tr)-2*(tn-can)*(Es*(t-cas)-tr)*(1-fr1) = (34. at required thickness Minimum Temp.8550 ) = 0.can .000 in² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. tr16b) = 0.5620 .8550) = 1.2500 * 1. trb4) = 0.067 . with Pad [A4wp]: = (Wo² .469 .00*(0.Ar Lost)*Fr3+((Wi-can/0.0. trb = Min(trb3. w/o impact per UCS-66 Minimum Temp.2500-0.347 in² Area Available in Welds. : N1 Nozl: 6 10:38a Jun 19.0000 .18.5620 . tg = 0.1760 in Final Required Thickness.0.062) *(1.0666 ) * 0.500 ) ) * ( 0.0000 )² * 0.0010*0. Press.1291 in Wall Thickness per UG16(b).707)² .1135+2*(0. trb4 = 0.1760 in Available Nozzle Neck Thickness = .0.0666 ) * 0.500 ) ) * ( 0.0625)*0.0625 .8550 ) = 0.113)-2*(0. tra = 0.053 in² Area Available in Welds.0000 ) * 0. w/o impact per UG-20(f) -7 -147 -20 F F F .875 * 0.8550 = 0. trb1 = 0.Tlwp.c) = 0.1 but with DL = Diameter Limit.0000 ) * 0.492 .707 )² * fr2 = 0. tr16b = 0.00*(0.Ar Lost)*Fr2 + Wp²*Fr4 = (0.0625)-0.can .0625 in Wall Thickness per UG45(b)(3).00 Stress Ratio = tr * (E*) / (tg . trb2.945 in² Areas per UG-37.4917 in --> OK Nozzle Junction MDMT Calculations: Minimum Design Metal Temperature (Nozzle Neck to Flange Weld). no Pad [A2np]: = ( 2 * min(Tlnp.062)-0.trn )* fr2 = ( 2 * min(0.0625² * 1.1135)*(1-0. trb2 = 0.5620 = 0. no Pad [A4np]: = Wo² * fr2 + ( Wi-can/0. trb3 = Max(trb1. Wall Pipe per UG45(b)(4).14.86 + (0.1135*(1-0.2500² * 0. Curve: B Nozzle.2009 Reinforcement Area Required for Nozzle [Ar]: = ( Dlr * tr + 2 * tn * tr * (1-fr1) ) UG-37(c) = (17.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.8550)) = 1.0000 = 1.1562 in Wall Thickness per UG45(b)(1).063 in .1760 in Wall Thickness per UG45(b)(2).155 Minimum Temp.] Wall Thickness per UG45(a). Curve: B Shell is governing. = 0.1768 = 0.00 = 0. Thk. c = 0.250 . for nozzle/shell Welds Tmin Intermediate Calc. = 0. : N1 Nozl: 6 10:38a Jun 19. tr = 0. The Drop for this Nozzle is : 2. Minimum Temp. Pressure in Operating case Note: The MAWP of this junction was limited by the shell. at required thickness Minimum Temp.2500 0.0938 = 0. w/o impact per UG-20(f) -20 -55 -20 F F F Nozzle MDMT per UCS-66 (a)1(b).7 * Wp in Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. E* = 1.00 Stress Ratio = tr * (E*) / (tg . 1 L-9.113 in Temp. w/o impact per UG-20(f) -20 -55 -20 F F F Minimum Design Metal Temperature (Shell to Pad Weld at Pad OD).4509 in The Cut Length for this Nozzle is.250 . 1 L-9.250 . Curve: B Pad is governing. w/o impact per UCS-66 Minimum Temp. tg = 0.5*TminPad Actual Thickness 0. Thk.443 psig .1: Nozzle Weld Pad Weld Required Thickness 0.445 Weld Size Calculations. at required thickness Minimum Temp.3).c) = 0. w/o impact per UCS-66 Minimum Temp. Description: N1 -20 -55 F F Intermediate Calc.113 . for pad/shell Welds TminPad 0. Reduction = 35 F Conservately assuming Stress in Pad is same as that in Shell (Div.063 in .90/285.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. at required thickness -20 -55 F F Governing MDMT of the all the sub-joints of this Junction : -55 F ANSI Flange MDMT including temperature reduction per UCS-66. tr = 0. Allow. tg = 0.1768 = 0.1: Unadjusted MDMT of ANSI B16.2009 Minimum Design Metal Temperature (Nozzle Neck to Pad Weld).3). Drop + Ho + H + T : 17. Curve: B Pad is governing. w/o impact per UCS-66 Minimum Temp.7 * Wo in 0.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b) Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 126.605 Minimum Temp.1875 in in Results Per UW-16.1750 = 0. (Nozzle to Shell/Head Weld). Minimum Temp.Page 13 of 47 Nozzle Calcs.2009 in PV Elite 2009 ©1993-2009 by COADE Engineering Software 146.113 in Reduction = 35 F Conservately assuming Stress in Pad is same as that in Shell (Div.7 * TMIN 0. Req. 00 psi 17100.00 psi 20000.00 4.0000 0.3750 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.0625 0. pipe 17100.0000 0. Nozzle Description: N2 From : 20 Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient 126.2500 0.00 psi OD 0.2009 INPUT VALUES.00 psi 35.0000 None 60. Inside Nozzle to Shell Wi ASME Code Weld Type per UW-16 User Defined Nozzle/Shell Centerline Angle Class of attached Flange Grade of attached Flange in in in in in deg.00 in in in in in F Sn Sna Inbase Dia Idbn tn SA-106 B K03006 Smls. : N2 Nozl: 7 10:38a Jun 19.0000 150 GR 1.Page 14 of 47 Nozzle Calcs.00 11.0000 Nominal 40 Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Nominal Thickness of Nozzle Nozzle Flange Material Nozzle Flange Type Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck deg in.00 1.0000 26.2500 0.0000 -20.1 in Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Nozzle Inside Projection h Weld leg size. SA-105 Weld Neck Flange Can Es En 0.5000 0.900 200 psig F S Sa D t cas caext SA-516 70 20000. The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | ____________/| | | | | | .0625 1. 6*126.00-0.1135)*(1-0.8125)/(20000*1. no Pad [A2np]: .793)*(1.118 Area in Inward Nozzle A3 0.2009 | \ | | | \ | | |____________\|__| Insert Nozzle No Pad.4363 in in External NA NA NA NA NA NA NA Mapnc NA NA NA NA NA NA NA in² in² in² in² in² in² in² 60.7932*0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.550 in² Areas per UG-37.90) = 0.00*(0. The area available without a pad is Sufficient.062) *(1.0166 in UG-40.90*17. A1 to A5 Design Area Required Ar 0.5863 0. Division 1.8550) = 0.113)-2*(0. 2007. DLR = Corroded ID: Area Available in Shell [A1]: = (DL-Dlr)*(Es*(t-cas)-tr)-2*(tn-can)*(Es*(t-cas)-tr)*(1-fr1) = (9.Page 15 of 47 Nozzle Calcs.1135+2*(0.589 The Internal Pressure Case Governs the Analysis.550 Area in Shell A1 0. in.2500-0.586-4. Tr [Int. Press] = (P*Ro)/(S*E+0. Limits of Reinforcement : [Int.90*2.6*P) per UG-27 (c)(1) = (126. Reinforcement Area Required for Nozzle [Ar]: = ( Dlr * tr + 2 * tn * tr * (1-fr1) ) UG-37(c) = (4.2500-0. Section VIII.062)-0.351 in² Area Available in Nozzle Wall.1135 in Reqd thk per UG-37(a)of Nozzle Wall.000 Area in Welds A4 0. Trn [Int.1135*(1-0.000 TOTAL AREA AVAILABLE Atot 0.90) = 0. Nozzle Angle Used in Area Calculations Dl Tlnp 9.2500)/(17100*1. Description: N2 ASME Code.4*P) per Appendix 1-1 (a)(1) = (126. : N2 Nozl: 7 10:38a Jun 19. no pad Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE.237-0.237 in.120 Area in Pad A5 0.0625)*0.351 Area in Nozzle Wall A2 0.00+0.00 Degs.00*(0.0625)-0.2370-0.500 0. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit). no Inside projection NOZZLE CALCULATION.8550)) = 0. Press] 4. A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation Nozzle input data check completed without errors.1 but with DL = Diameter Limit. Reqd thk per UG-37(a)of Cylindrical Shell. = (P*R)/(S*E-0.4*126. 00 Stress Ratio = tr * (E*) / (tg .017 .PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.1760 in Std.207 .1135 ) ) * 20000 .875 * 0.3512 + 2 * ( 0. tra = 0.8550 = 0.000 ) ) * ( 0.8550 + ( 0.120 in² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. c = 0.0625 in Wall Thickness per UG45(b)(3). Press. Sketch (a) or (b) Weld Load [W]: = (Ar-A1+2*(Thk-can)*Ffr1*(E1(T-Cas)-Tr))*S = (0. at required thickness -20 -155 F F Nozzle MDMT per UCS-66 (a)1(b). tr = 0.00 * ( 0.] Wall Thickness per UG45(a). w/o impact per UCS-66 Minimum Temp.00 Stress Ratio = tr * (E*) / (tg . Curve: B Nozzle.1.0.2500 . trb4 = 0.1562 in Wall Thickness per UG45(b)(1).2370 .707 )² * fr2 = 0. tr45 = Max(tra. no Pad [A4np]: = Wo² * fr2 + ( Wi-can/0.0.1: Nozzle Weld Required Thickness 0.90/285.can .1760 in Available Nozzle Neck Thickness = .1760 in Wall Thickness per UG45(b)(2).00 = 0.Page 16 of 47 Nozzle Calcs.2699 in Wall Thickness per UG45(b).207 . tg = 0. trb2.0.7 * TMIN Actual Thickness 0. trb4) = 0.8550 ) = 0. : N2 Nozl: 7 10:38a Jun 19. Wall Pipe per UG45(b)(4).2651 = 0.ho) ) * ( tn . trb = Min(trb3. at required thickness -20 -155 F F Governing MDMT of the all the sub-joints of this Junction : -155 F ANSI Flange MDMT including temperature reduction per UCS-66. c = 0. (Nozzle to Shell/Head Weld).118 in² Area Available in Welds. Curve: B Nozzle is governing. trb3 = Max(trb1. E* = 1. tg = 0.1760 in Final Required Thickness.2370 = 0. trb1 = 0. trb2 = 0.115 Minimum Temp.0000 )² * 0.0791 in Wall Thickness per UG16(b).0625 .trn ) * fr2 = ( 2 * min(0.436 .0166 ) * 0. Description: N2 -20 -55 F F Intermediate Calc.3750² * 0.445 Weld Size Calculations.063 in .0. tr16b) = 0.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b) Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 126.115 Minimum Temp.0. E* = 1.017 .c) = 0.2370 .2074 in --> OK Nozzle Junction MDMT Calculations: Minimum Design Metal Temperature (Nozzle Neck to Flange Weld). tr = 0.0625 ) .1745 in Results Per UW-16.11.063 in .c) = 0. w/o impact per UCS-66 Minimum Temp. trb) = 0.2009 = ( 2 * min(Tlnp.1222 = 0. for nozzle/shell Welds Tmin 0.0625 ) * 0. tr16b = 0.1: Unadjusted MDMT of ANSI B16.7 * Wo in Weld Strength and Weld Loads per UG-41.5495 .0.8550 * (1. 74 * Sng = ( 3. Allow.1416 / 2.1202 + 0. lbf Shear.0 ) * 5.0.78 lbf Strength of Connection Elements for Failure Path Analysis Shear.1416 / 2.78 lbf Weld Load [W3]: = ((A2+A6)+A3+A4+A5+(2*(Thk-Can)*(T-Ca)*Fr1))*S = ( 0. must exceed W = 4409 lbf or W3 = 5878 lbf Maximum Allowable Pressure for this Nozzle at this Location: Converged Max.3932 in PV Elite 2009 ©1993-2009 by COADE Engineering Software 131.7 * 17100 = 16388.0559 ) * 20000 = 5878. Pressure in Operating case The Drop for this Nozzle is : 0.2500 .0000 + 0.1962 * 0.1178 + 0. lbf Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( SONW + SNW ) = ( 25646 + 16387 ) = 42033 lbf Sonw + Tpgw + Tngw + Sinw ) 25646 + 0 + 19365 + 0 ) = 45011 lbf Sonw + Tngw + Sinw ) 25646 + 19365 + 0 ) = 45011 lbf Summary of Failure Path Calculations: Path 1-1 = 42033 lbf. must exceed W = 4409 lbf or W2 = 5878 lbf Path 3-3 = 45011 lbf. Nozzle Groove Weld [Tngw]: = (PI/2) * Dlo * (Wgnvi-Cas) * 0.0625 ) * 0.1178 + 0.86 ) * 20000 = 4759.3750 * 0.1202 + 0.74 * 17100 = 19366.0.80 lbf Weld Load [W2]: = ((A2+A6)+A3+A4+(2*(Thk-Can)*(T-Ca)*Fr1))*S = ( 0.1416 * 2.4973 ) * ( 0. : N2 Nozl: 7 10:38a Jun 19.0625 ) * 0.0 ) * 5. Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.1178 + 0. Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk . Drop + Ho + H + T : 11.0000 + 0.0000 * 0.49 * Snw = ( 3.2370 .1962 * ( 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. must exceed W = 4409 lbf or W1 = 4759 lbf Path 2-2 = 45011 lbf.0559 ) * 20000 = 5878.7 * Sn = (3.453 psig .0.49 * 17100 = 25646.12 lbf Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.0000 + 0.2009 = 4409.1202 .1432 in The Cut Length for this Nozzle is. lbf Tension.707)²*Ffr2)*S = ( 0.Page 17 of 47 Nozzle Calcs.Can ) * 0.0000 + 0. 00 1.00 psi OD 0.5480 2.0000 ASME Code Weld Type per UW-16 UW-16.0000 -20.00 psi 20000.Page 18 of 47 Nozzle Calcs.2260 0. : N3 Nozl: 5 10:38a Jun 19.00 psi 35.2009 INPUT VALUES.900 200 psig F S Sa D Ar t cas caext L1 SA-516 70 20000. Nozzle Description: N3 From : 10 Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Elliptical Head Aspect Ratio of Elliptical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance Distance from Head Centerline User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient 126.2175 in 0.0000 0.00 in Nozzle Outside Projection ho 1.00 psi 20000.0625 0.00 in in in in in F Sn Sna Inbase Dia Idbn tn Can Es En SA-105 K03504 Forgings 20000. Actual 0.7500 Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Actual Thickness of Nozzle Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck deg in.00 0.00 1.3750 Groove weld depth between Nozzle and Vessel Wgnv 0.2(B-H) in in in The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | | | | | | | |\ | __________/|_\| | | | | |______________| Abutting Nozzle No Pad .0625 1.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.1880 Weld leg size between Nozzle and Pad/Shell Wo 0. 218 in.1752 in Final Required Thickness.218 . tg = 0. tr = 0.750 0.1562 in Wall Thickness per UG45(b)(1). w/o impact per UCS-66 Minimum Temp.1752 in Available Nozzle Neck Thickness = 0.897*35. A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation Nozzle input data check completed without errors. tr = 0. especially for nozzles that are not isolated or do not meet Code spacing requirements. trb = Min(trb3. Trn [Int. in.90*0.00+0.006 . trb4) = 0. trb2.2*P) per UG-37(a)(3) = (126.2009 NOZZLE CALCULATION. tr16b = 0. trb) = 0.00*1. tr45 = Max(tra. Press] 1.90) = 0. no pad Note: Taking a UG-36(c)(3)(a) exemption for N3 . 2007.00 Stress Ratio = tr * (E*) / (tg .0625 in Wall Thickness per UG45(b)(3).8800 0.006 .90*0. E* = 1. Description: N3 ASME Code.c) = 0.90) = 0. Division 1.2*126.6730)/(2 *20000. c = 0.c) = 0. Tr [Int. Press.218 .] Wall Thickness per UG45(a).3875 in in UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.4*126. trb1 = 0. Section VIII. trb2 = 0.1752 in Std. (Nozzle to Shell/Head Weld).036 Minimum Temp. tr16b) = 0. It may be necessary to force the program to print the areas per UG-37. at required thickness -20 -155 F F Governing MDMT of the all the sub-joints of this Junction : -155 F . at required thickness -20 -155 F F Nozzle MDMT per UCS-66 (a)1(b). c = 0.1016 in Reqd thk per UG-37(a)of Nozzle Wall. tra = 0. Curve: B Nozzle is governing.036 Minimum Temp. trb3 = Max(trb1.1894 in Wall Thickness per UG45(b). E* = 1. = (P*K1*D))/(2*S*E-0. w/o impact per UCS-66 Minimum Temp.063 in .4*P) per Appendix 1-1 (a)(1) = (126. trb4 = 0. : N3 Nozl: 5 10:38a Jun 19. Curve: B Nozzle. Please check the Code carefully.2175 in --> OK Nozzle Junction MDMT Calculations: Minimum Design Metal Temperature (Nozzle Neck to Flange Weld).063 in .00 Stress Ratio = tr * (E*) / (tg . Reqd thk per UG-37(a)of Elliptical Head. Dl Tlnp 2. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit). This calculation is valid for nozzles that meet all the requirements of paragraph UG-36. tg = 0.00-0.8750)/(20000*1. Press] = (P*Ro)/(S*E+0.Page 19 of 47 Nozzle Calcs.0055 in UG-40.1752 in Wall Thickness per UG45(b)(2). Limits of Reinforcement : [Int.0680 in Wall Thickness per UG16(b). Wall Pipe per UG45(b)(4). : N3 Nozl: 5 10:38a Jun 19. Allow.2652 = 0. Drop + Ho + H + T : 1. Pressure in Operating case Note: The MAWP of this junction was limited by the shell.Page 20 of 47 Nozzle Calcs.1: Fitting Weld Required Thickness 0.0119 in The Cut Length for this Nozzle is.1(f)5 Actual Thickness 0. Description: N3 Results Per UW-16.7 * Wo in Maximum Allowable Pressure for this Nozzle at this Location: Converged Max.416 psig . The Drop for this Nozzle is : 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.2009 Weld Size Calculations.0663 = UW-16.4259 in PV Elite 2009 ©1993-2009 by COADE Engineering Software 156. Nozzle Description: N4 From : 40 Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Outside Diameter of Bolted Blind Flange Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance Distance from Head Centerline User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient 126.0000 0. : N4 Nozl: 8 10:38a Jun 19.3750 0.0000 Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Actual Thickness of Nozzle Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck deg in.3125 B in Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv ASME Code Weld Type per UW-16 in in in The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | | | | | | | |\ | __________/|_\| | | | | |______________| Abutting Nozzle No Pad .2009 INPUT VALUES.0000 -20.0625 0.5000 3.3125 in 0.00 3. Actual 0.0625 1.900 200 psig F S Sa D t cas caext L1 SA-105 20000.3750 0.00 1.00 3.5600 0.00 psi 20000.00 psi 35.00 psi OD 0.00 in in in in in F Sn Sna Inbase Dia Idbn tn Can Es En SA-105 K03504 Forgings 20000.Page 21 of 47 Nozzle Calcs.00 psi 20000.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. 312 . trb2.0938 in Final Required Thickness.009 .Page 22 of 47 Nozzle Calcs.3125 in --> OK Nozzle Junction MDMT Calculations: Minimum Design Metal Temperature (Nozzle Neck to Flange Weld).312 in. 2007.1562 in Std. Wall Pipe per UG45(b)(4). Thickness.2009 NOZZLE CALCULATION. trb4) = 0.0625 in Wall Thickness per UG45(b)(2). trb1 = Max(trb1.0000 in Check UG16(b) Min.c) = 0.00+0. Curve: B Nozzle is governing.] Wall Thickness per UG45(a).0938 in Std. Dl Tlnp 9.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. Curve: B Nozzle. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit).0938 in Wall Thickness per UG45(b)(1). trb) = 0. E* = 1. trb1 = 0.000 0. trb) = 0.0000 in Wall Thickness per UG16(b).312 .0095 in UG-40. : N4 Nozl: 8 10:38a Jun 19. trb2 = 0.4*126. trb = Min(trb1.0625 in Wall Thickness per UG45(b)(3). trb3 = Max(trb1. tr16b = 0. = (P*Ro)/(S*E+0.90) = 0.3125 in --> OK UG-45 Minimum Nozzle Neck Thickness Requirement: [MAPnc] Wall Thickness per UG45(a).009 .6250 in in UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Division 1. trb1 = 0. w/o impact per UCS-66 Minimum Temp.038 . (Nozzle to Shell/Head Weld). tr16b = 0.4*P) per Appendix 1-1 (a)(1) = (126. tra = 0. Wall Pipe per UG45(b)(4). trb = Min(trb3. tr45 = Max(tra. especially for nozzles that are not isolated or do not meet Code spacing requirements.0720 in Wall Thickness per UG16(b). E* = 1.1562 in Available Nozzle Neck Thickness = 0. tr16b) = 0. It may be necessary to force the program to print the areas per UG-37. tg = 0. tra = 0. A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation Nozzle input data check completed without errors. trb4 = 0. c = 0. c = 0. Limits of Reinforcement : [Int. at required thickness -20 -155 F F Nozzle MDMT per UCS-66 (a)1(b).2515 in Wall Thickness per UG45(b). tr45 = Max(tra. tg = 0. tr = 0.5000)/(20000*1. This calculation is valid for nozzles that meet all the requirements of paragraph UG-36.9950 0. Please check the Code carefully. in.c) = 0.063 in . tr16b) = 0.063 in .038 Minimum Temp.1562 in Final Required Thickness. Description: N4 ASME Code. trb4 = 0.1562 in Wall Thickness per UG45(b)(1). trb4) = 0.0938 in Available Nozzle Neck Thickness = 0. Reqd thk per UG-37(a)of Nozzle Wall. Press] 3.00 Stress Ratio = tr * (E*) / (tg .1890 in Wall Thickness per UG45(b). Section VIII. Trn [Int. tr = 0. Press. no pad Note: Taking a UG-36(c)(3)(a) exemption for N4 .00 Stress Ratio = tr * (E*) / (tg .90*1. w/o impact per UCS-66 Minimum Temp. : N4 Nozl: 8 10:38a Jun 19.1750 = 0.1: Nozzle Weld Required Thickness 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.100 psig . for nozzle/shell Welds Tmin 0.2500 in Results Per UW-16.7 * Wo in Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Drop + Ho + H + T : 6.2009 Minimum Temp. Allow.Page 23 of 47 Nozzle Calcs.2651 = 0. The Cut Length for this Nozzle is. at required thickness -20 -155 F F Governing MDMT of the all the sub-joints of this Junction : -155 F Weld Size Calculations. Description: N4 Intermediate Calc.7 * TMIN Actual Thickness 0. Pressure in Operating case Note: The MAWP of this junction was limited by the shell.9370 in PV Elite 2009 ©1993-2009 by COADE Engineering Software 258. Shell&Flgs 144.995 The nozzle spacing is computed by the following: = Sqrt( ll² + lc² ) where ll .002 9.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.. OK 0.. lc .176 OK Passed N4 258. Warning: A Nozzle Reinforcement is governing the MAWP of this Vessel.000 Layout Angle.55 ..000 180.000 26. .812 | Distance | from Edge | in | 16. Limit 2..55 N2 Min.55 psig [*] .2009 Nozzle Calculation Summary Description MAWP Ext MAPNC UG45 [tr] Weld Areas psig psig Path --------------------------------------------------------------------------N3 154.54 20 30 195.250 | | | | Nozzle dia. they will be noted below. UG-39 Nozzle Diameter and Distance to Edge Checks : Nozzle Description N4 | | | | Nozzle dia.A. . 0.52 ..This was a small opening and the areas were not computed or the MAWP of this connection could not be computed because the longitudinal bending stress was greater than the hoop stress..5000 | | | | Head Dia..880 34. /2 in 17.000 26.54 . direction If any interferences/violations are found../4 in 0.586 9.. 129.Arc length along the inside vessel surface in the long. Check the Spatial Relationship between the Nozzles From Node 10 20 20 40 Nozzle Description N3 N1 N2 N4 Y Coordinate.53 Computed Vessel M.W.. OK 0. . VIII Div. . OK 0.6250 | | | | No Multiple Nozzle spacing violations have been detected ! PV Elite 2009 ©1993-2009 by COADE Engineering Software . 0. .000 Dia.175 OK NoCalc[*] N1 144..000 0. in 2.10 .P.Page 24 of 47 Nozzle Summary : Step: 23 10:38a Jun 19.. OK 0..176 OK Passed N2 129. Note: MAWPs (Internal Case) shown above are at the High Point. No interference violations have been detected ! Checking Multiple Nozzles on Flat Head per ASME Sec.Arc length along the inside vessel surface in the circ...156 OK NoCalc[*] --------------------------------------------------------------------------Min. 1 UG-39 Comparing Nozzles on Element: Blind Cover Note: No Nozzle pairs found on this element. direction.000 0.000 0..Nozzles 129. 00 200 150 GR 1.00 285.000 psig Note: ANSI Ratings are per ANSI/ASME B16.Page 25 of 47 Nozzle Flange MAWP : Step: 6 10:38a Jun 19.00 200 150 GR 1.2009 Nozzle Flange MAWP Results : Nozzle Description ----.00 285.Flange Rating Operating Ambient Temperature Class Grade|Group psig psig F ---------------------------------------------------------------------------N1 260.5 2003 Edition PV Elite 2009 ©1993-2009 by COADE Engineering Software .PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.1 ---------------------------------------------------------------------------Minimum Rating 260.1 N2 260.000 285. 00 Blind Cover N2 26.)/2 Nozzle Material and Weld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Weld Weld Weld Weld Weld in in in in in -----------------------------------------------------------------------------N3 SA-105 0.000 40 WNF 4. in in ---------------------------------------------------------------------------N3 0.000 0.750 0.50 0. This value does not include weld gaps.250 Nozzle Material Note: The Outside projections below do not include the flange thickness.218 1.375 N4 SA-105 0.237 11.00 3.312 0.000 180.562 22. Wall Re-Pad Cut Size Sch/Type O/Dia Thk ODia Thick Length in.Page 26 of 47 Nozzle Schedule : Step: 22 10:38a Jun 19. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In From Datum Angle Outside Inside Component in deg.250 17.39 N1 18.375 N2 SA-106 B 0.000 40 WNF 18. Cls in in in in in -----------------------------------------------------------------------------N3 1.Nozzle Outside Dia.38 0. the Outside Diameter must be increased.000 0. nor does it account for shrinkage.94 N2 4.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.250 0. (per above) .250 0.312 6.000 0.00 Shell N1 26.500 0. The Re-Pad WIDTH around the nozzle is calculated as follows: Width of Pad = (Pad Outside Dia.750 None 1.19 0.43 N4 3.00 14.00 11.00 Shell Nozzle PV Elite 2009 ©1993-2009 by COADE Engineering Software .250 0.2009 Nozzle Schedule: Nominal Flange Noz.00 0.00 0.000 None 3.20 Description Note on the Cut Length Calculation: The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Thickness.250 0.00 1.000 0. Please Note: In the case of Oblique Nozzles.375 N1 SA-106 B 0.00 Elliptical H N4 0. 00000 | 20| 30| 332. | in | 0. Empty Wt.00000 | 30| 40| 0.7205 0.Page 27 of 47 Element and Detail Weights : Step: 5 10:38a Jun 19.00000 | 0.1176 | 0.+ Shipping App.7630 | 0.00000 0.798 | 40| 50| 989. Intls. Wt + Rem. | Dtl.00000 | 0. + Details + Wghts.+ Insul.604 | 24.55150 | 93.5 Total Weight of Legs 60.427 | 4.9 2988.3 lbf Weight Summary Fabricated Wt. + Operating Liquid (No CA) Empty Weight + Water (Full) 1/3 of the Vertical Vessel 767. Wt.285 in² [57. Wt + Rem.798 | --------------------------------------------------Total 8343. Fab.78000 | 0.0000 | 3.1880 | 19. |Dtl. Shop Test Wt.225 | 23.9 lbf lbf lbf lbf lbf lbf lbf lbf Outside Surface Areas of Elements | | Surface | From| To | Area | | | in² | 10| 20| 1635.50000 | 20. | in | -9.00000 226. Ope.00000 | 40| 50| 0.00000 0.09 | 20| 30| 4728.60 | 30| 40| 989.00000 | 0. Cent.8 767.52005 | X Offset.00000 | 0.35206 60. Intls.00000 | 0.8 50.00000 | 26.9 767.00000 | 3.9 Square Feet ] Element and Detail Weights . (etc) Fab.59562 | 0.9 767. Cent.9 767.2009 Element and Detail Weights | | Element | Element | Corroded | Corroded | Extra due | From| To | Metal Wgt.00000 | 0.09500 | 1.2083 0. Field Test Wt.00000 | 0.00000 2. Wt + Intls.74058 | -5. | ID Volume | Misc % | | | lbf | ft³ | lbf | ft³ | lbf | 10| 20| 124.00000 | | Description | | Liquid 10 | N3 | LEGS | WATER | N1 | N2 | Liquid 30 | Liquid 40 | N4 Total Weight of Each Detail Type Total Weight of Nozzles 250.3204 | 4.57062 | 0. Erected Wt.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.9 2988. no Liq Operating Wt.00000 | --------------------------------------------------------------------------Total 456 35 342 35 0 Weight of Details | | From|Type| | | 10|Liqd| 10|Nozl| 10|Legs| 20|Liqd| 20|Nozl| 20|Nozl| 30|Liqd| 40|Liqd| 40|Nozl| Weight of Detail lbf 0.00000 | 0.9486 | 249.7 --------------------------------------------------------------Sum of the Detail Weights 311.9050 | 24.00000 | 0.54561 | 0. Mass of the Upper Bare Weight W/O Removable Internals Fabricated Weight + Water ( Full ) Fab.00000 | Y Offset.469 21. | ID Volume |Metal Wgt.00000 | 3. Shipping Wt.00000 | 0.0000 | 24. Mom.91 | 579.00000 | 0.| Total.| No Liquid lbm | lbm | lbm | in-lb | lbm 623.896 Legs| 20| 83.893 | 582.91 | 6349.52005 | 2.52005 | | | | | | | | Note: The cumulative operating weights no liquid in the column above are the cumulative operating weights minus the operating liquid weight minus any weights absent in the empty condition.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.00000 | 40| 50| 0.|Total.00000 | 0.91 | 30| 40| 0. | Oper. | lbm | lbm | -623.52005 | 223.00000 | -499.91 | 20| 30| 6349.52005 | | | | | | | | Cumulative Vessel Weight | | Cumulative Ope From| To | Wgt.00000 | 0.00000 | 0.97 | 0.247 | 0.52005 | Cumulative | Cumulative | Oper. Wgt.00000 | 221.| | | in-lb | in-lb | in-lb | 10|Legs| 0.18 | 0.117 579.00000 2.97 | 83.896 -499.Page 28 of 47 Element and Detail Weights : Step: 5 10:38a Jun 19.52005 40| 50| 2.896 | 2043.|Hydro.| Offset Mom.52005 | 2.91 | 6349.3058 | 662.117 | -499.| Oper.903 | 579.423 | 2298. Wgt.423 30| 40| 2. |Hydro.00000 | PV Elite 2009 ©1993-2009 by COADE Engineering Software .00000 | 0.52005 | 2.903 0.896 | 623.30 | 6349.903 | 2074. Mom.91 | 6349.2009 | To | From| To | | | 10|Legs| Legs| 20| 20| 30| 30| 40| 40| 50| Total Ele.3058 20| 30| 582.767 | 2.00000 | 0.| Total Dtl. Cumulative Vessel Moment | | Cumulative | Cumulative |Cumulative | From| To | Empty Mom.117 | -1635.00000 | 623.91 | 6349.00000 | 0.52005 | 0.00000 | 0. Ele. Ele. | Hydro.00000 | Legs| 20| 6349.896 | -2043.00000 | 2. Wgt.07 | 2.| Oper. Wgt. Wgt. Empty Wgt. No Liquid | | lbm 10|Legs| -623. 40556 56.2420 Hz...7800 | 2..56 0 Element Emp Load lbf -21..40556 | 20| 30| 22..00000 | 40| 50| 51.... Importance Factor for the Vessel is ..2009 Note: Loads multiplied by the Scalar multiplier value of 0..) is 44.903 | 56.9050 | 579.......00 707...8223 0..0 lbf lbf lbf The Natural Frequency for the Vessel (Ope.2 63.. and Soil Factor (FS) is ...00000 | -499.....3519 6.55822 0 | | | | | | | | PV Elite 2009 ©1993-2009 by COADE Engineering Software .00 1.117 | 6...52005 | 0. 0.Page 29 of 47 Earthquake Load Calculation : Step: 9 10:38a Jun 19.. Total Weight (W) for the Vessel is ..00000 0...PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.8223 | 30| 40| 46.9050 | 0.....6 0. Force Factor (K) for the Vessel is .... Freq. Top Shear (Ft) for the Vessel is .896 | -21....... Total Shear (V) for the Vessel is .3519 | Legs| 20| -3..6667 Earthquake Analysis Results The The The The The The The NBC NBC NBC NBC NBC NBC NBC Velocity Zone Factor for the Vessel is ...00 3.0500 1... Earthquake Load Calculation | | Earthquake | Earthquake | Element | From| To | Height | Weight | Ope Load | | | in | lbf | lbf | 10|Legs| -8.....00000 | 623.00000 | 0.55822 | Top Load 74. Bending : Step: 10 10:38a Jun 19. Wind/Earthquake Shear.00000 | 0. Bending | | Distance to| Cummulative|Earthquake | From| To | Support| Wind Shear| Shear | | | in | lbf | lbf | 10|Legs| 7.99363 | PV Elite 2009 ©1993-2009 by COADE Engineering Software .7800 | 0.9050 | 0.00000 | | 675.44900 | | 0.477 | | 1215.00000 | Legs| 20| 4.00000 0.00000 | Earthquake | | Bending | | in-lb | | 0.00000 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.66 | | 4.55822 | 40| 50| 41.00000 0.55822 | Wind Bending in-lb 0.Page 30 of 47 Wind/Earthquake Shear.00000 | 0.7861 | 20| 30| 12.00000 | 0.00000 | 63.2009 The following table is for the Operating Case.00000 | 0.00000 | 0.3806 | 30| 40| 36.00000 | 57.00000 0.9050 | 0. 850 | 429. | in ³ | 225.169 | 187.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. Mod.217 | 3941.19 | | | | | | | PV Elite 2009 ©1993-2009 by COADE Engineering Software .Page 31 of 47 Longitudinal Stress Constants : Step: 11 10:38a Jun 19. | in ³ | 164.2009 Longitudinal Stress Constants | | Metal Area | Metal Area From| To | New & Cold | Corroded | | in² | in² 10| 20| 25.0780 | 21. Mod.744 | 249.4074 20| 30| 28.0953 30| 40| 28.0953 40| 50| 436.3995 | 18.867 |New & Cold |Sect.99 | Corroded | Sect.890 | 187.890 | 3890.217 | 249.0780 | 21. 0 | 31200.0 Legs| 20| 16800.0 | -21309. Ten. | | psi 10|Legs| 16800.0 20| 30| 16800. | Hydr. Comp. | psi | -21309.0 | -21853. | psi | -15508.4 | -15508.0 | All. Com.0 | 31200. | Hyr.9 | -21360.3 | -21853.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.Page 32 of 47 Longitudinal Allowable Stresses : Step: 12 10:38a Jun 19. Str. Str. |Long.0 | All. From| To | Long.9 | -16185. Str.3 | -26700.0 | 21840.0 | All. | psi | 21840.0 | 21840. Str.4 | -16185. Ten.2009 Longitudinal Allowable Stresses | | All.0 | | | | | | | | PV Elite 2009 ©1993-2009 by COADE Engineering Software .0 40| 50| 24000.0 30| 40| 24000. 0057687 | Wght.11453 20| 30| 25.00000 | 0.11946 40| 50| -0. | | Long. | Ext. Str. | | Wght. Str.00000 20| 30| 0.00000 | Bend. Pres.00000 | Legs| 20| 0.00000 | 0.00000 | 0. Str.00000 | 0.00000 | | 0. Pres. | EarthQuake | From| To | Vortex Ope.6091 30| 40| -0. .00000 | 0. From| To | Int. | Oper.00000 | 0.00000 | 0. | Bend. | | psi | | 0. Str.00000 | 0.52567 | -27. .00000 | | 0. . Str.7958 | | 0.47004 30| 40| 0. | Wght.| Empty | | | psi | psi | psi | psi | 10|Legs| 0.52567 20| 30| -27. .00000 | 0.00000 | 4. | Operating | psi | 33. From| To | Y Forces W | | psi 10|Legs| 0. |Long.00000 | 0.49 | 0. | | Emp. | | Hyd.7958 | 33. Str. Step: 13 10:38a Jun 19. . | Bend. | | psi | psi | psi 10| 20| 6896.00000 | 0. Equ. Mom. Str. | Long.6792 | 38. | Hyd.00000 | | 0. . Str. Mom.023679 | 40| 50| 0.11453 | 20| 30| 0. Wind |Oper.11946 | -0.00000 | | | | | | | .PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.00000 30| 40| 0.Page 33 of 47 Longitudinal Stresses Due to .6091 | -0.19 30| 40| 0.00000 | 0.4795 | 0.00000 |0.00000 | 0. |Bend.|Vortex Tst. .| Vortex Emp.00000 | 0.6792 | | 33. Str.00000 | 0.0987 | -81.0058624 | Wght. Str.00000 | | 0. Str.96949 |-0.00025542 Longitudinal Stresses Due to .00000 | | 0. .2009 Longitudinal Stress Report Note: Longitudinal Operating and Empty Stresses are computed in the corroded condition. |Hydrotest | psi | 80.47004 | 30| 40| 0. | Long.00000 | Longitudinal Stresses Due to .1289 | 0. Stresses due to loads in the hydrostatic test cases have been computed in the new and cold condition.00000 | Long. . Str.00000 | 4. From| To | Hyd.00000 | 0. Str. | Y ForceS S | psi | 0.00000 Legs| 20| 28.00000 Longitudinal Stresses Due to . | | psi | psi | psi 10|Legs| 0.00000 | 0. Str.0058624 |Wght.00000 | 6589. . Mom.00025542 | Longitudinal Stresses Due to .00000 | 0. .00000 | 0. . | | | | | | | | | Wght.023679 40| 50| 0.8460 | -7.00000 | 5945. |Long.00000 | 0. Equ. Pres.00000 | 0.00000 | 0.00000 | 0.00000 | 0. Str. Str. From| To | Empty | | psi 10|Legs| 33.8937 Legs| 20| -4.00000 | 6.00000 | 0.00000 | 0.00000 | 0.00000 | 6.00000 40| 50| 0. | | psi | psi | | 0. Wind | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0. |Hyd. Str.4729 | -26. | Opr. Str.00000 | | 38.00000 Legs| 20| 0.8937 | -4. | | Long.00000 | 0.00000 | | | Long.06 20| 30| 6002. Longitudinal Stresses Due to .37 | 0. 00000 | 0.00000 | Long. Step: 13 10:38a Jun 19.00000 | 0.00000 | 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.00000 | 0. .00000 | 0.00000 | 0.00000 | 0.00000 | Legs| 20| 0.00000 | 20| 30| 0.00000 | 0.00000 | 0.00000 | PV Elite 2009 ©1993-2009 by COADE Engineering Software . .00000 | 0. | | | psi | psi | psi | psi | 10|Legs| 0. Stresses due to User Forces and Moments | |Wind For/Mom| Eqk For/Mom|Wnd For/Mom| Eqk For/Mom| From| To | Corroded | Corroded | No Corr.00000 | 0.00000 | 40| 50| 0.00000 | 0.00000 | 0.00000 | 0. | No Corr.Page 34 of 47 Longitudinal Stresses Due to .2009 40| 50| 0.00000 | 0.00000 | 0.00000 | 30| 40| 0. 0028 0.2009 Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU = = = = = = = = = = = = = = = = = = = = = = = = Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.0020 0. Comp.89 34.15 6. Forces for the Wind Case. Stress 12923. Stress 16800. Ratio 0.0024 0. Comp. Comp. Corroded Bending Stress due to Lat.0027 0. Tens.0004 Comp. An asterisk (*) in the final column denotes overstress.41 15508. . A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress.27 12. Corroded Bending Stress due to Lat. WF. UnCorroded General Notes: Case types HI and HE are in the Un-Corroded condition.00 Comp. and CW are in the Un-Corroded condition.0020 0.27 Tens. Ratio 0.Page 35 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19. Comp. Forces for the Wind Case.40 All.0009 Comp.0037 0. Ratio 0.00 16800.00 Comp.0038 Analysis of Load Case 2 : NP+EW+EE+FS+BS From Node 10 10 20 Tensile Stress 33. Stress -43.41 16185. Stress -47.67 12923.92 Tens.0050 Analysis of Load Case 3 : NP+OW+WI+FW+BW From Tensile All. Stress 15508.89 38.00 14000.20 -61. Comp. Tens. All. Case types WE.67 13488. Tens.00 14000.66 All.87 All. Ratio 0. Tens. UnCorroded Bending Stress due to Lat. Analysis of Load Case 1 : NP+EW+WI+FW+BW From Node 10 10 20 Tensile Stress 33. Forces for the Seismic Case.32 -67. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat.19 All.00 16800. Forces for the Seismic Case. Stress 14000. Comp.0004 Comp.19 All.92 Ratio 0. Stress -54.41 15508.00 14000. Stress 12923.41 16185.00 Comp.00 16800.00 Comp.00 14000.20 -61.00 16800.3593 0.47 2.27 12.41 16185. Stress -43.00 16800.3054 0.15 6. Stress 16800. Stress 15508.20 -61.67 12923.67 13488.00 14000.0020 0.0038 Analysis of Load Case 4 : NP+OW+EQ+FS+BS From Node 10 10 20 Tensile Stress 33.89 38.0066 Analysis of Load Case 6 : NP+HW+HE From Node 10 10 20 Tensile Stress 80. Ratio 0.0038 Analysis of Load Case 8 : IP+OW+EQ+FS+BS From Node 10 10 20 Tensile Stress 6930.19 All.23 -107.33 All.03 All. Stress -61. Tens.00 14000.00 14000. Ratio 0. Comp.67 13488.0020 0.0037 0.0004 Comp.0024 0. Comp.0035 0.67 12923.00 16800.40 Stress 15508. Tens.03 All. Ratio 0. Stress 14000.2009 Node 10 10 20 Stress 33.38 6036.92 Tens. Comp.0050 Analysis of Load Case 5 : NP+HW+HI From Node 10 10 20 Tensile Stress 80. Ratio 0.64 12.0024 0.87 All. Stress -47.52 6.0027 0.Page 36 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19.41 15508. Stress 16800. Comp. Stress 14000.00 Stress -43.27 Tens.53 5947.66 All.0004 Ratio 0. Tens. Stress -54. Tens.0066 Analysis of Load Case 7 : IP+OW+WI+FW+BW From Node 10 10 20 Tensile Stress 6930.15 6.41 15508.0048 0.92 Tens. Tens. Ratio 0.27 12.66 All. Ratio 0.0001 Comp.0037 0. Stress 15508. Stress 12923.0009 Comp. Stress 15508.00 Comp.38 6040.00 Comp. Stress 15508.89 34.0020 0. Stress 14000.0009 Comp.01 Tens.40 All.00 16800.0050 Analysis of Load Case 9 : EP+OW+WI+FW+BW From Node 10 10 20 Tensile Stress 33.41 16185.41 16185. Ratio . Stress -67.67 13488. Ratio 0.00 21840. Tens.0048 0.0001 Comp.92 Tens.00 16800.0035 0.89 38.22 All. Stress All.32 -67. Stress 21840. Comp.00 16800.89 34. Tens.00 16800.87 All. Stress -47.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.27 Tens. Ratio 0.33 All.27 Tens. Stress 16800.00 Comp. Ratio 0.40 All.47 2.0020 0.4950 0. Comp. Tens.66 All. Ratio 0. Stress 16800.00 16800.01 21309.41 15508.00 14000.67 12923.23 -107.0009 Comp.00 16800.00 Comp. Ratio 0. Ratio 0.41 15508.0038 Analysis of Load Case 10 : EP+OW+EQ+FS+BS From Node 10 10 20 Tensile Stress 33. Comp.19 Stress 16800. Ratio 0.92 Tens. Stress 21309.0027 0.0028 0.41 16185.0028 0. Ratio 0.00 Comp.0050 Analysis of Load Case 11 : HP+HW+HI From Node 10 10 Tensile Stress 6669.00 Comp.87 All. Ratio 0.4125 0.2723 Comp.32 -67. Stress 12923.4315 0. Stress 15508.53 5947.0049 Analysis of Load Case 13 : IP+WE+EW From Node 10 10 20 Tensile Stress 6930. Ratio 0.38 6036. Stress 16800. Comp.41 15508.19 All.20 -61.00 16800.0038 Analysis of Load Case 16 : IP+VE+EW From Node 10 10 20 Tensile Stress 6930.41 16185.00 16800.40 All.30 0.22 All.52 6.2009 20 21840.0020 0.19 All. Ratio 0.19 All.89 34.0004 Comp.0013 Analysis of Load Case 15 : IP+VO+OW From Node 10 10 20 Tensile Stress 6930. Stress 21840. Comp.41 15508.00 16800. Ratio 0.00 -107. Ratio 0. Stress 21309. Tens. Tens.89 34.41 16185.0004 Comp.00 Comp.0020 0.00 16800. Stress 16800. Ratio 0.0038 Analysis of Load Case 19 : FS+BS+EP+OW From Node 10 10 20 Tensile Stress 33.4125 0. Tens.00 16800.15 6.40 All. Tens. Comp. Tens.00 Comp.09 All.92 Tens.40 All. Comp.41 16185.0038 Analysis of Load Case 18 : FS+BS+IP+OW From Node 10 10 20 Tensile Stress 6930.92 Tens.01 21309.4125 0. Ratio 0. Tens. Tens.52 6.00 Comp. Stress -61. Stress -107.4950 Absolute Maximum of the all of the Stress Ratio's .40 All. Stress -61. Stress 15508.41 16185.19 All. Stress 15508.0004 Comp.41 16185.00 21840.74 All. Stress 16800. Stress 15508.0038 Analysis of Load Case 17 : NP+VO+OW From Node 10 10 20 Tensile Stress 33.41 16185.00 16800. Stress 16800.0028 0.0004 Comp.52 6.33 All. Stress 15508.00 16800.Page 37 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19. Stress -61.00 Comp.00 21840.00 16800. Comp. Stress 15508.40 All. Stress -43.38 6036.00 Comp.0020 0.3593 0.01 21853.92 Tens.38 6036.41 15508.00 16800.0004 Comp.0038 0. Stress -43.92 Tens.3593 0.00 16800.00 Comp.52 6.41 15508. Ratio 0.4125 0.19 All.3593 0.3571 Comp.3054 0.30 Tens. Ratio 0.4125 0.38 6036.15 6.41 15508. Comp.00 16800.0038 Analysis of Load Case 14 : IP+WF+CW From Node 10 10 20 Tensile Stress 6921.0049 Analysis of Load Case 12 : HP+HW+HE From Node 10 10 20 Tensile Stress 6669.05 5999.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. Ratio 0.0004 Comp.3593 0.00 16800.92 Tens.33 21853.20 -61. Stress 15508. Ratio 0. Stress -20. Comp.19 All.00 Comp.00 16800. Stress 16800. Stress -61. Ratio 0. Ratio 0.0028 0.00 Comp.00 16800. Stress 16800.0020 0.92 Tens. Ratio 0. Comp. Tens.41 15508.4120 0.41 16185. Ratio 0.40 All.92 Tens.2723 Comp. Ratio 0. Ratio 0. Stress 16800.41 15508. 2009 Governing Element: Elliptical Head Governing Load Case 8 : IP+OW+EQ+FS+BS PV Elite 2009 ©1993-2009 by COADE Engineering Software .Page 38 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. 2009 Shop/Field Installation Options : Note : The CG is computed from the first Element From Node Center of Gravity of Nozzles Center of Gravity of Legs Center of Gravity of Bare Shell New and Cold Center of Gravity of Bare Shell Corroded Vessel CG in the Operating Condition Vessel CG in the Fabricated (Shop/Empty) Condition 26.2 in -5.Page 39 of 47 Center of Gravity Calculation : Step: 15 10:38a Jun 19.9 in 17.6 in PV Elite 2009 ©1993-2009 by COADE Engineering Software .9 in 17.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.5 in 15.9 in 15. 2 42.75000 0.240 0.5 707.25000 .85477 Geometric inertia components ZZ: 0.2442 Product of inertia: 0.577 0.0000 3. [Sma] = ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((707 / 4 ) + (8105 /( 2 * 19.2500 USA AISC 1989 Steel Table Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration ( Leg Orientation . Leg closest to N.2009 RESULTS FOR LEGS : Operating Case Description: LEGS Legs attached to: Elliptical Head Section Properties : Single Angle L3X3X0. Leg lengths and thickness: 3. [Sva] = ( W / Nleg ) / Aleg = ( 707 / 4 ) / 1. (Operating Case) : Step: 16 10:38a Jun 19.930 in in in in² in**4 in**4 in ³ in ³ in in Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]: W Fadd Occfac k 675.73981 Mohrs Radius: 0.00 )))/ 1.440 ) = 135.73981 0.A.92 lbf Axial Compression.98 ) = 16.000 21.71700 0.88722 0.4 0. Seismic) + Fadd ) * ( Imax / Itot ) = ( 42.78300 Arm about ZZ: 0.38947 0.35702 Geometric inertias Iy & Iz: 1.440 = 122.78 psi Computing Principal Axis and Inertias for Angle.84200 Arm about YY: 0.440 1.2442 1.577 0.71700 Leg areas: 0.0 ) * ( 2.4 + 0. Leg futhest from N.000 in-lb lbf lbf lbf = ( Max(Wind.A.65800 0.2500 strong axis ) weak axis ) strong axis ) weak axis ) strong axis ) weak axis ) Nleg Aleg 31.Page 40 of 47 Leg Check.0000 Distance to geometric centroid: 0.0 1.000 4 1.68750 Geometric inertia components YY: 0.333 1.240 1.0 / 4.000 10.12 psi Axial Compression.930 0.84200 0.Diagonal Leglen of Vessel for L3X3X0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. 600 0.12 0. R0²: 29500.00 in² Clearance Between The Bolt And The Leg Edge (BCL): = z .18 2.36 59.726 Weak Axis Bending Strong Axis Bending Axial Compression : : : psi psi psi UNITY CHECKS ARE: H1-1 H1-2 H1-3 AISC Unity Check : 0.005 127.0000 86.0000 in SA-193 B7 25000. 11346.00 psi 1.627 Initial (Kl/r)max.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------. & Cc Fa based on Eq 4-1 Actual 463. Kz: 1.0000 Values for Elastic Flexural-Torsional Buckling Stress: E.00 = 36.93055 21. G. & (Kl/r)equiv Final (Kl/r)max. (Operating Case) : Step: 16 10:38a Jun 19.7256 1.2442 21. LENGTH.1213 336.BOD / 2 .000 1. Few. from the Leg Edge to Bolt Hole Center z Bolt Material Bolt Allowable Stress STBA Anchor Bolt Nominal Diameter BOD Number of Anchor Bolts in Tension per Leg NB Total Number of Anchors Bolt per Leg NBT Ultimate 28-day Concrete Strength FCPRIME LEG BASEPLATE and BOLTING Analysis.65 231.31 23.005 17.30000E-01 AREA.4400 21. including Moments SA-36 16600.0000 in 2.9840 0.0000 H.00 psi 6.50443 45.760 QFACT = 1.39 268.80 31672.99873 0.08 23424.0000 in 0. 0.0000 in 3.Page 41 of 47 Leg Check.27 Fe computed from C4-1: 83.0000 in 6.481 59.030 = = = 35.030 Should be <= to 1 Bolting Size Requirement for Leg Baseplates : Baseplate Material Baseplate Allowable Stress SBA Baseplate Length D Baseplate Width B Baseplate Thickness BTHK Leg Dimension Along Baseplate Length d Leg Dimension Along Baseplate Width b Dist. Kw.573 Allowable 28792.00 * 6.000 0.000 0.0000 in 2 1 3000.000 2.63403 909.600 Shear Center Coordinates Wo & Zo: 0.2009 Average Inertia: 1.2500 in 3. Fej: 0.57 135.000 psi Angle Leg Base Plate Available Area (AA): = B * D = 6. Fez. J.0000 FBZ = Principal Axis Inertias (Z&W) = Angle to Principal Axis = Distances to extreme fibers CW & CZ = FOB from Eq 5-5 = Bending allowables Fby & Fbz = 1. ABS(MIN[B. (Operating Case) : Step: 16 10:38a Jun 19.Page 42 of 47 Leg Check.00 .97 in > D/6 [Plate Uplift Condition] a = MAX[ABS(MAX[B.00 / 176.2009 = 2.50 ] = 1.00/ P = 524.00 / 2 = 1.40 *1. PV Elite 2009 ©1993-2009 by COADE Engineering Software .MIN[b.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.d]) / 2] = MAX[1. the total number of bolts should be > 1 AND the total number of bolts in tension should be > 0.50 in There is uplift.1.d]) / 2 .92 * 31.1.40 in-lb Eccentricity (e): = MOMENT *1.80 = 2.50 .50 in Moment at Baseplate (MOMENT): = Vleg * Lleg = 16.D] .00 = 524.MAX[b.D] . 240 1.35 psi Axial Compression.88722 0.71700 0.Diagonal Leglen of Vessel for L3X3X0.577 0.2500 strong axis ) weak axis ) strong axis ) weak axis ) strong axis ) weak axis ) Nleg Aleg 31. Leg closest to N.78300 Arm about ZZ: 0. Leg futhest from N. Seismic) + Fadd ) * ( Imax / Itot ) = ( 0.A.0 1.84200 0.84200 Arm about YY: 0.25000 .38947 0.0000 Distance to geometric centroid: 0.440 1.73981 0.A.000 21.35 psi Computing Principal Axis and Inertias for Angle.000 4 1.930 0.0000 3.71700 Leg areas: 0.000 1.75000 0.65800 0.000 10. [Sva] = ( W / Nleg ) / Aleg = ( 2928 / 4 ) / 1.68750 Geometric inertia components YY: 0.98 ) = 0.2500 USA AISC 1989 Steel Table Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration ( Leg Orientation .2009 RESULTS FOR LEGS : HydroTest Case Description: LEGS Legs attached to: Elliptical Head Section Properties : Single Angle L3X3X0.35702 Geometric inertias Iy & Iz: 1. [Sma] = ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((2928 / 4 ) + (0 /( 2 * 19.Page 43 of 47 Leg Check. Leg lengths and thickness: 3.73981 Mohrs Radius: 0.0 ) * ( 2.440 ) = 508.0 / 4.85477 Geometric inertia components ZZ: 0.577 0.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.00 lbf Axial Compression.930 in in in in² in**4 in**4 in ³ in ³ in in Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]: W Fadd Occfac k 0.0 + 0.440 = 508.000 in-lb lbf lbf lbf = ( Max(Wind.2442 Product of inertia: 0.0 0.00 )))/ 1.2442 1.1 0.0 2928.240 0. (Filled w/Water) : Step: 17 10:38a Jun 19. 0000 in 6.000 0.600 Shear Center Coordinates Wo & Zo: 0.65 231.00 = 36.0000 in 2.0000 FBZ = Principal Axis Inertias (Z&W) = Angle to Principal Axis = Distances to extreme fibers CW & CZ = FOB from Eq 5-5 = Bending allowables Fby & Fbz = 1.00 in² Clearance Between The Bolt And The Leg Edge (BCL): = z .000 1.7256 1.99873 0. 11346.005 127.00 23760. (Filled w/Water) : Step: 17 10:38a Jun 19.00 psi 6.00 0.9840 0.63403 909.2009 Average Inertia: 1.31 23.000 psi Angle Leg Base Plate Available Area (AA): = B * D = 6.35 0.27 Fe computed from C4-1: 83. & (Kl/r)equiv Final (Kl/r)max.627 Initial (Kl/r)max.0000 in SA-193 B7 25000. J.00 * 6.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.760 QFACT = 1.0000 Values for Elastic Flexural-Torsional Buckling Stress: E. R0²: 29500. Few.2442 21. LENGTH.000 2.573 Allowable 21600. G.1213 336.66 59.029 Should be <= to 1 Bolting Size Requirement for Leg Baseplates : Baseplate Material Baseplate Allowable Stress SBA Baseplate Length D Baseplate Width B Baseplate Thickness BTHK Leg Dimension Along Baseplate Length d Leg Dimension Along Baseplate Width b Dist.00 psi 1.50443 45.Page 44 of 47 Leg Check.0000 H.726 Weak Axis Bending Strong Axis Bending Axial Compression : : : psi psi psi UNITY CHECKS ARE: H1-1 H1-2 H1-3 AISC Unity Check : 0.BOD / 2 .00 17572. Fez.30000E-01 AREA.0000 in 3. Fej: 0.481 59. Kw.029 = = = 35.93055 21.2500 in 3.600 0.4400 21.18 2.00 508. 0.000 0.005 17.0000 86. from the Leg Edge to Bolt Hole Center z Bolt Material Bolt Allowable Stress STBA Anchor Bolt Nominal Diameter BOD Number of Anchor Bolts in Tension per Leg NB Total Number of Anchors Bolt per Leg NBT Ultimate 28-day Concrete Strength FCPRIME LEG BASEPLATE and BOLTING Analysis. including Moments SA-36 16600. & Cc Fa based on Eq 4-1 Actual 0.0000 in 0. Kz: 1.0000 in 2 1 3000. Choose a practical bolt size! ** Summary of Results: Actual 0.D] .50² / 24900.00 ) ) .50 in = ABS (MIN[B.00 * 31. (Filled w/Water) : Step: 17 10:38a Jun 19.00 ) / 2 = 1.d]) / 2 = ABS(6. Bednar = (1 / STBA) * ((4 * MBB / (Nlegm * OD) ) .Page 45 of 47 Leg Check.D] .176.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.MAX[b.0071 in² --> (No tension in bolts) ** No Tensile Bolt Loads.n)² / (1.00 .00 / 2 = 1.00 = 0.00 in-lb Bearing Pressure (FC): = P / AA = 176.1.3.00 / (2 * 36.00 ) * ((4 * 0.00 ) / 2 = 1.00 = 0.250 1. Moss) ( in ): ( in² ): PV Elite 2009 ©1993-2009 by COADE Engineering Software .3.04 in Baseplate Lifting Moment (MBB): = Rmleg + V * Length = 0.80 / 36.80 ) = -0.036 0.91 * 1.5 * SBA) )½ = (3 * 4.P) = (1 / 25000.10 Required 0.50 in Moment at Baseplate (MOMENT): = Vleg * Lleg = 0.00 = 4.91 psig m = ABS (MAX[B.MIN[b.d]) / 2 = ABS(6.00 Pass/Fail Pass Pass Baseplate Thickness Bolt Root Area (D.00 .00 .00 in-lb Required Total Bolt Area per Leg (ABREQB): per H.2009 = 2.00 * 31.00 + 0.50 in n The Baseplate Required Thickness (TREQ): = (3 * FC * MAX(m.00 )½ = 0. 000 0.250 0. in-lb lbf Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads and stresses) during these cases. All.560 No Calc 3.70 0.00 in in in SA-516 70 SA-105 SA-106 B SA-516 70 200 125.544 258. Allowable Working Pressure Hydrostatic Test Pressure Required Minimum Design Metal Temperature Warmest Computed Minimum Design Metal Temperature Wind Design Code Earthquake Design Code Element Pressures and MAWP: psig 53.00 1.70 0.0625 Dens. 0.42 -20 -51 F psig F psig psig psig F F No Wind Loads NBC Element Desc Elliptical Head Shell 36" 150# WN Flange Blind Cover Liquid Level: 62. Tangent to Tangent Distance of Bottom Tangent above Grade Specified Datum Line Distance Shell/Head Matl Shell/Head Matl Nozzle Material Re-Pad Material Internal Design Temperature Internal Design Pressure External Design Temperature Maximum Allowable Working Pressure External Max. 64.Page 46 of 47 Vessel Design Summary : Step: 24 10:38a Jun 19.195 No Calc 0.00 1.00 0.000 0.A.225 No Calc 3.00 Element Thk R e q d T h k in Int.810 6.56 Internal 126.56 in Element Type Ellipse Cylinder Body Flg Body Flg "To" Elev in 2.0625 0.00 43.900 126.000 lbm/ft³ Length in 2.000 41.55 38.00 70 129.00 1.85 0.000 0. 0. 2007 A-08 Diameter Spec : 36.560 No Calc 3.000 in OD Vessel Design Length.: 0.497 3.000 Joint Eff Long Circ 0.900 External 0. Also included are moment effects due to eccentric weights if any are present in the input.560 Sp.W. Weights: .190 3.00 53.100 258.250 0.84 168.900 126.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.2009 Design Code: ASME Code Section VIII Division 1.56 0. otherwise are Minimum Earthquake Moment on Support Earthquake Shear on Support 1351.P 154.000 M.516 144. Ext.70 1. Gr.81 50.900 126.0625 0.: 0.497 Element thicknesses are shown as Nominal if specified.100 Corr.0625 0. 8 lbm lbm lbm lbm lbm lbm lbm PV Elite 2009 ©1993-2009 by COADE Engineering Software .8 767. + Rem.PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------.Page 47 of 47 Vessel Design Summary : Step: 24 10:38a Jun 19.+ Insul.9 2988.2009 Fabricated Shop Test Shipping Erected Empty Operating Field Test Bare W/O Removable Internals Fabricated + Water ( Full ) Fab. Empty + Operating Liquid (No CA) Empty Weight + Water (Full) 767. Intls. Fab. (etc) Fab. + Rem.9 2988.9 767.9 767.+ Shipping App. + Intls.9 767. + Details + Wghts. Intls.
Copyright © 2024 DOKUMEN.SITE Inc.