Control Estadístico de Procesos (c.e.p.)



Comments



Description

CONTROL ESTADÍSTICO DE LA CALIDAD1 FACULTAD DE CIENCIAS APLICADAS Y ARQUITECTURA CICLO I – 2012 ASIGNATURA: CONTROL ESTADÍSTICO DE LA CALIDAD CATEDRÁTICO: INGENIERO ALEX EMILIO CÁRCAMO MONCADA TEMA: CONTROL ESTÁDÍSTICO DE PROCESOS (C.E.P.) 1er apellidos, 2ºapellido 1er.Nombre, 2º nombre Carnet MARTÍNEZ ZELAYA RAFAEL ANTONIO 22-1593-1991 SAN SALVADOR, MARTES 24 DE ABRIL DE 2012. CONTROL ESTADÍSTICO DE LA CALIDAD 2 INDICE GENERAL TÍTULO PÁGINA INTRODUCCIÓN OBJETIVOS...................................................................................................................4 OBJETIVO GENERAL...................................................................................................4 OBJETIVOS ESPECÍFICOS..........................................................................................4 CONTROL DE PROCESOS...........................................................................................5 CONTROL ESTADÍSTICO DE PROCESOS (C.E.P.)....................................................7 GRÁFICOS CEP. GENERALIDADES............................................................................8 PROCESO BAJO CONTROL ESTADÍSTICO..............................................................10 VARIABLES Y ATRIBUTOS.........................................................................................16 EFICACIA ESTADÍSTICA DE LOS GRÁFICOS DE CONTROL..................................17 SUBGRUPOS RACIONALES.......................................................................................19 CONCLUSIONES..........................................................................................................22 FUENTES DE INFORMACIÓN.....................................................................................23 CONTROL ESTADÍSTICO DE LA CALIDAD 3 INTRODUCCIÓN Para que una empresa sea competitiva, en este mundo globalizado en que vivimos actualmente, debe mantener la calidad de sus productos y/o servicios, satisfaciendo a sus clientes o consumidores de acuerdo a las expectativas y deseos de ellos. Es en éste contexto que las empresas deben tener un estricto control de la calidad de sus productos para lo cual deben recurrir a un control estadístico de calidad como herramienta para minimizar así los costos de la no calidad que, en ocasiones, resultan ser más altos de lo que parecen. Para evitar esto, deben mantener un control estadístico en todos los procesos de su cadena de producción para obtener una retroalimentación constante de dichos procesos y advertir de manera preventiva cualquier variabilidad en sus procesos que desemboquen en productos defectuosos o de mala calidad y conlleven a una elevación de los costos debido a un reproceso o nueva producción. Es así como a continuación veremos la importancia de un Control de Estadístico de Proceso y algunas generalidades así como también sus objetivos y los tipos de causas que pueden originar un proceso fuera de control y un proceso bajo control y como calcular los límites de control para gráficos de control que son indispensables para el control estadístico de procesos. Solamente sometiéndose a éste tipo de control estadístico de procesos las empresas podrán sobrevivir en el mercado que cada día se vuelve más exigente y solamente las empresas que mantengan la calidad de sus productos y/o servicios lograrán mantenerse en un mundo moderno y cambiante constantemente, manteniendo así su prestigio y lo más importante la fidelidad de sus clientes. CONTROL ESTADÍSTICO DE LA CALIDAD 4 OBJETIVOS OBJETIVO GENERAL Estudiar y analizar el Control Estadístico de Procesos para aplicarlo en el Control de la Calidad y lograr así minimizar los costos de la calidad al optimizar los procesos de productos y servicios. OBJETIVOS ESPECÍFICOS - Conocer los elementos fundamentales del control de procesos. - Conocer el Control Estadístico de Procesos como una herramienta estadística para el logro de los objetivos del control de procesos. - Conocer los gráficos o cartas de control y aprender cómo construirlos y su clasificación. - Diferenciar, a través de los gráficos de control, cuándo un proceso se encuentra bajo control y cuándo está fuera de control, así como sus causas. - Aprender la diferencia entre los límites de control y los límites de tolerancias. CONTROL ESTADÍSTICO DE LA CALIDAD 5 CONTROL DE PROCESOS Un sistema de control del proceso puede definirse como un sistema de realimentación de la información en el que hay 4 elementos fundamentales:  Proceso  Información Sobre el Comportamiento  Actuación Sobre el Proceso  Actuación sobre la Producción Proceso Entendemos por proceso la combinación de insumos, personas, equipo y medioambiente que se utilizan como entradas para la elaboración, de un producto o servicio, como salidas de un sistema. El comportamiento real del proceso o sea la calidad de la producción y su eficacia productiva, dependen de la forma en que se diseñó y construyó así como también de la administración de dicho proceso. El sistema de control del proceso sólo es útil si contribuye a mejorar dicho comportamiento. Información Sobre el Comportamiento El proceso de producción incluye, no solo los productos producidos, sino también los “estados” intermedios que definen el estado operativo del proceso tales como temperaturas, duración de los ciclos, etc. Si se recopila esta información e interpreta correctamente, puede indicarnos si son necesarias medidas para corregir el proceso o la producción que se acaba de obtener. Si no se toman las medidas adecuadas y oportunas, todo el trabajo de recolección de información será un trabajo perdido. CONTROL ESTADÍSTICO DE LA CALIDAD 6 Actuación sobre la Producción Las actuaciones sobre la producción están orientadas al pasado, porque la misma implica la detección de productos ya producidos que no se ajustan a las especificaciones, en otras palabras habría que hacer una reproducción de los mismos o en el peor de los casos desechar dichos productos. Todo lo anterior nos llevaría a elevar los costos de calidad por fallos internos o defectos dentro de la organización. Este procedimiento deberá continuar hasta haberse tomado las medidas correctoras necesarias sobre el proceso y haberse verificado las mismas, o hasta que se modifiquen las especificaciones del producto. Es obvio que la inspección seguida por la actuación únicamente sobre la producción es un pobre sustituto de un rendimiento eficaz del proceso desde el comienzo. El Control del Proceso centra la atención en la recogida y análisis de información sobre el proceso, a fin de que puedan tomarse medidas para perfeccionar el mismo. Hay dos formas diferentes de diseño y análisis de sistemas de control que utilizan herramientas estadísticas:  Control Estadístico de Proceso (CEP).  Control Adaptativo, que utiliza lazos de retroalimentación para predecir futuros valores de las variables de proceso. Este control dice cuando hay que corregir para mantener a las variables con oscilaciones mínimas alrededor de los valores objetivos y está basado en el Análisis de series Temporales (Box-Jenkins). Este tipo de control puede implementarse mediante sistemas de control automático digital, que utiliza tecnología avanzada como son los procesos de servocontrol o automatismos de auto retroalimentación o mediante gráficos de control. En lo sucesivo nos referiremos únicamente al Control Estadístico del Proceso. CONTROL ESTADÍSTICO DE LA CALIDAD 7 Control Estadístico de Procesos (C.E.P) El CEP es una herramienta estadística que se utiliza en el puesto de trabajo para conseguir el producto adecuado y a la primera. Los gráficos de control constituyen el procedimiento básico del C.E.P. Con dicho procedimiento se pretende cubrir 3 objetivos:  Seguimiento y vigilancia del proceso  Reducción de la variación  Menos costo por unidad En cualquier proceso productivo, por muy bien que se diseñe y por muy cuidadosamente que se controle, siempre existirá una cierta variabilidad inherente, natural, que no se puede evitar. Esta variabilidad natural, este “ruido de fondo”, es el efecto acumulado de muchas pequeñas causas de carácter, esencialmente, incontrolable. Cuando el “ruido de fondo” sea relativamente pequeño consideraremos aceptable el nivel de funcionamiento del proceso y diremos que la variabilidad natural es originada por un „sistema estable de causas de azar”. Un proceso sobre el que solo actúan causas de azar se dice que está bajo control estadístico. Por el contrario, existen otras causas de variabilidad que pueden estar, ocasionalmente, presentes y que actuarán sobre el proceso. Estas causas se derivan, fundamentalmente, de tres fuentes: o Ajuste inadecuado de las máquinas o Errores de las personas que manejan las máquinas o Materia prima defectuosa. La variabilidad producida por estas causas suele ser grande en comparación con el “ruido de fondo” y habitualmente sitúa al proceso en un nivel inaceptable de funcionamiento. Denominaremos a estas causas “causas asignables‟‟ y diremos que un proceso funcionando bajo “causas asignables” está fuera de control. CONTROL ESTADÍSTICO DE LA CALIDAD 8 Un objetivo fundamental del C.E.P. es detectar rápidamente la presencia de “causas asignables” para emprender acciones correctoras que eviten la fabricación de productos defectuosos. Alcanzar un estado de control estadístico de proceso puede requerir un gran esfuerzo pero es sólo el primer paso. Una vez alcanzado, podremos utilizar la información de dicho control como base para estudiar el efecto de cambios planificados en el proceso de producción con el objetivo de mejorar la calidad del mismo. La Operación Evolutiva es un tipo de Diseño de Experimentos en línea (aplicado al proceso productivo) que sirve como herramienta para acercarnos a las condiciones óptimas de funcionamiento del proceso. Gráficos CEP. Generalidades. Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control es un gráfico en el cual se representan los valores de algún tipo de medición realizada durante el funcionamiento de un proceso continuo, y que sirve para controlar dicho proceso. Vamos a tratar de entenderlo con un ejemplo. Supongamos que tenemos una máquina de inyección que produce piezas de plástico, por ejemplo de PVC. Una característica de calidad importante es el peso de la pieza de plástico, porque indica la cantidad de PVC que la máquina inyectó en la matriz. Si la cantidad de PVC es poca la pieza de plástico será deficiente; si la cantidad es excesiva, la producción se encarece porque se consume más materia prima. CONTROL ESTADÍSTICO DE LA CALIDAD 9 En el lugar de salida de las piezas, hay un operario que cada 30 minutos toma una, la pesa en una balanza y registra la observación. Supongamos que estos datos se registran en un gráfico de líneas en función del tiempo: Observamos una línea quebrada irregular, que nos muestra las fluctuaciones del peso de las piezas a lo largo del tiempo. Esta es la fluctuación esperable y natural del proceso. Los valores se mueven alrededor de un valor central (El promedio de los datos), la mayor parte del tiempo cerca del mismo. Pero en algún momento puede ocurrir que aparezca uno o más valores demasiado alejados del promedio. ¿Cómo podemos distinguir si esto se produce por la fluctuación natural del proceso o porque el mismo ya no está funcionando bien? El control estadístico de procesos provee la respuesta a la anterior pregunta y a continuación veremos como lo hace. CONTROL ESTADÍSTICO DE LA CALIDAD 10 Todo proceso de fabricación funciona bajo ciertas condiciones o variables que son establecidas por las personas que lo manejan para lograr una producción satisfactoria. Cada uno de estos factores está sujeto a variaciones que realizan aportes más o menos significativos a la fluctuación de las características del producto, durante el proceso de fabricación. Los responsables del funcionamiento del proceso de fabricación fijan los valores de algunas de estas variables, que se denominan variables controlables. Por ejemplo, en el caso de la inyectora se fija la temperatura de fusión del plástico, la velocidad de trabajo, la presión del pistón, la materia prima que se utiliza (Proveedor del plástico), etc. Proceso Bajo Control Estadístico Un proceso de fabricación es una suma compleja de eventos grandes y pequeños. Hay una gran cantidad de variables que sería imposible o muy difícil controlar. Estas se denominan variables no controlables. Por ejemplo, pequeñas variaciones de calidad del plástico, pequeños cambios en la velocidad del pistón, ligeras fluctuaciones de la corriente eléctrica que alimenta la máquina, etc. Los efectos que producen las variables no controlables son aleatorios. Además, la contribución de cada una de dichas variables a la variabilidad total es cuantitativamente CONTROL ESTADÍSTICO DE LA CALIDAD 11 pequeña. Son las variables no controlables las responsables de la variabilidad de las características de calidad del producto. Los cambios en las variables controlables se denominan Causas Asignables de variación del proceso, porque es posible identificarlas. Las fluctuaciones al azar de las variables no controlables se denominan Causas No Asignables de variación del proceso, porque no son posibles de ser identificadas.  Causas Asignables: Son causas que pueden ser identificadas y que conviene descubrir y eliminar, por ejemplo, una falla de la máquina por desgaste de una pieza, un cambio muy notorio en la calidad del plástico, etc. Estas causas provocan que el proceso no funcione como se desea y por lo tanto es necesario eliminar la causa, y retornar el proceso a un funcionamiento correcto.  Causas No Asignables: Son una multitud de causas no identificadas, ya sea por falta de medios técnicos o porque no es económico hacerlo, cada una de las cuales ejerce un pequeño efecto en la variación total. Son inherentes al proceso mismo y no pueden ser reducidas o eliminadas a menos que se modifique el proceso. Cuando el proceso trabaja afectado solamente por un sistema constante de variables aleatorias no controlables (Causas no asignables) se dice que está funcionando bajo Control Estadístico. Cuando, además de las causas no asignables, aparece una o varias causas asignables, se dice que el proceso está fuera de control. El uso del control estadístico de procesos implica algunas hipótesis que describiremos a continuación: 1) Una vez que el proceso está en funcionamiento bajo condiciones establecidas, se supone que la variabilidad de los resultados en la medición de una característica de CONTROL ESTADÍSTICO DE LA CALIDAD 12 calidad del producto se debe sólo a un sistema de causas aleatorias, que es inherente a cada proceso en particular. 2) El sistema de causas aleatorias que actúa sobre el proceso genera un universo hipotético de observaciones (mediciones) que tiene una Distribución Normal. 3) Cuando aparece alguna causa asignable provocando desviaciones adicionales en los resultados del proceso, se dice que el proceso está fuera de control. La función del control estadístico de procesos es comprobar en forma permanente si los resultados que van surgiendo de las mediciones están de acuerdo con las dos primeras hipótesis. Si aparecen uno o varios resultados que contradicen o se oponen a las mismas, es necesario detener el proceso, encontrar las causas por las cuales el proceso se apartó de su funcionamiento habitual y corregirlas. La puesta en marcha de un programa de control estadístico para un proceso implica dos etapas: Antes de pasar a la segunda etapa, se verifica si el proceso está ajustado. En caso contrario, se retorna a la primera etapa. En la 1ª etapa se recogen unas 100-200 mediciones, con las cuales se calcula el promedio y la desviación standard: Luego se calculan los Límites de Control de la siguiente manera: CONTROL ESTADÍSTICO DE LA CALIDAD 13 Límite inferior = X - 3,09s; Límite superior = X + 3,09s Estos límites surgen de la hipótesis de que la distribución de las observaciones es normal. En general se utilizan límites de 2 sigmas ó de 3 sigmas alrededor del promedio. En la distribución normal, el intervalo de 3,09 sigmas alrededor del promedio corresponde a una probabilidad de 0,998. Se construye un gráfico de prueba y se traza una línea recta a lo largo del eje de ordenadas (Eje X), a la altura del promedio (Valor central de las observaciones) y otras dos líneas rectas a la altura de los límites de control. En el gráfico de prueba se representan los puntos correspondientes a las observaciones con las que se calcularon los límites de control y se analiza detenidamente para verificar si está de acuerdo con la hipótesis de que la variabilidad del proceso se debe sólo a un sistema de causas aleatorias o si, por el contrario, existen causas asignables de variación. Esto se puede establecer porque cuando la fluctuación de las mediciones se debe a un sistema constante de causas aleatorias la distribución de las observaciones es normal: CONTROL ESTADÍSTICO DE LA CALIDAD 14 Cuando las observaciones sucesivas tienen una distribución normal, la mayor parte de los puntos se sitúa muy cerca del promedio, algunos pocos se alejan algo más y prácticamente no hay ninguno en las zonas más alejadas. Es difícil decir como es el gráfico de un conjunto de puntos que siguen un patrón aleatorio de distribución normal, pero sí es fácil darse cuenta cuando no lo es. Si no se descubren causas asignables entonces se adoptan los límites de control calculados como definitivos, y se construyen cartas de control con esos límites. Si sólo hay pocos puntos fuera de control (2 ó 3), estos se eliminan, se recalculan la media, desviación standard y límites de control con los restantes, y se construye un nuevo gráfico de prueba. Cuando las observaciones no siguen un patrón aleatorio, indicando la existencia de causas asignables, se hace necesario investigar para descubrirlas y eliminarlas. Una vez hecho esto, se deberán recoger nuevas observaciones y calcular nuevos límites de control de prueba, comenzando otra vez con la primera etapa. CONTROL ESTADÍSTICO DE LA CALIDAD 15 En la 2ª etapa, las nuevas observaciones que van surgiendo del proceso se representan en el gráfico, y se controlan verificando que estén dentro de los límites, y que no se produzcan patrones no aleatorios. Como hemos visto, el 99,8 % de las observaciones deben estar dentro de los límites de 3,09 sigmas alrededor de la media. Esto significa que sólo una observación en 500 puede estar por causas aleatorias fuera de los límites de control. Cuando se encuentra más de un punto en 500 fuera de los límites de control, significa que el sistema de causas aleatorias que provocaba la variabilidad habitual de las observaciones ha sido alterado por la aparición de una causa asignable que es necesario descubrir y eliminar. En ese caso, el supervisor del proceso debe detener la marcha del mismo e investigar con los que operan el proceso hasta descubrir la(s) causas que desviaron al proceso de su comportamiento habitual. Una vez eliminadas las causas del problema, se puede continuar con la producción normal. Estos límites de control se escogen de forma que si el proceso está bajo control, prácticamente todos los puntos del gráfico estarán contenidos entre dichos límites. En tanto los puntos estén dentro de los límites no será precisa ninguna acción correctora porque se supone que el proceso está bajo control. Sin embargo, un punto fuera de los límites de control se interpreta como una evidencia de que el proceso está fuera de control debiendo investigarse la naturaleza de la causa o causas asignables presentes a fin de eliminarlas, adoptando la oportuna medida correctora. Si el proceso está bajo control, además de situarse los puntos dentro de los límites de control, todos los puntos del gráfico presentarán una posición originada por el azar sin la presencia de patrones especiales de variabilidad. IMPORTANTE: No hay que confundir los límites de control con los límites de tolerancia. CONTROL ESTADÍSTICO DE LA CALIDAD 16 Los Límites de Tolerancia son los valores de una determinada característica que separan valores correctos e incorrectos de la misma (fijados normalmente por el proyectista para que el producto funcione adecuadamente). Los Límites de Control son aquellos entre los cuales el estadístico considerado (sean valores individuales, medias, medianas, recorridos, desviaciones típicas, sumas acumuladas, etc.) tiene una probabilidad muy alta de situarse cuando el proceso está bajo control (no hay causa asignable). Cuando un proceso (que suponemos sigue una distribución Normal) se desplaza respecto a sus valores nominales o aumenta su dispersión, genera más elementos defectuosos (más elementos fuera de los límites de tolerancia). Variables y Atributos Los gráficos de control se clasifican en dos tipos: Variables y Atributos. Si la característica de calidad puede medirse y expresarse como un número la llamamos variable. En tales casos es conveniente describir la característica de calidad con una CONTROL ESTADÍSTICO DE LA CALIDAD 17 medida de tendencia central y una medida de dispersión mediante los llamados gráficos de control por variables. Los gráficos X son los más ampliamente utilizados para controlar la tendencia central mientras que los gráficos de rango (recorrido) y de desviación típica se utilizan para controlar la dispersión. Muchas características cualitativas no se miden en una escala cuantitativa. En estos casos, juzgaremos si una unidad de producto es o no conforme si posee ciertos atributos o contando el número de defectos que aparecen en cada unidad de producto. Los gráficos de control para estas características se denominan gráficos de control por atributos. Eficacia Estadística de los Gráficos de Control El objetivo básico de un gráfico de control es detectar, de la forma más rápida posible, cambios en el proceso. Cuando un punto cae fuera de los límites de control decimos que el proceso está fuera de control, que existe una causa asignable. Realmente, como en cualquier contraste de hipótesis estadístico existe una probabilidad de dictaminar una situación fuera de control cuando el proceso está realmente bajo control (error tipo I) así como una probabilidad (error tipo II) de decir que el proceso está bajo control (puntos entre límites de control) cuando realmente el proceso está fuera de control. Al diseñar el gráfico tenemos presente estos dos errores, que determinan la eficacia estadística del mismo. Dicha eficacia viene recogida en dos curvas:  Curva ARL (Longitud de Racha Media). Indica el número medio de muestras necesario para detectar un cambio en el proceso de magnitud determinada. Es la principal característica del gráfico ya que nos mide la rapidez de respuesta del mismo. CONTROL ESTADÍSTICO DE LA CALIDAD 18 Como se observa en la curva ARL, si no hay descentrado (d = 0), también hay puntos fuera de límites (falsas señales o error tipo I).  Curva característica. Da la probabilidad de que el siguiente punto caiga dentro de los límites de control para un cambio en el proceso de magnitud determinada. Para diseñar un gráfico de control con una eficiencia estadística determinada fijaremos: A) Separación de Límites de Control. Cuanto más alejados estén uno de otro, el error tipo I será menor y aumentará el tipo II. CONTROL ESTADÍSTICO DE LA CALIDAD 19 B) Tamaño de la muestra. Al aumentar el tamaño de la muestra el error tipo II disminuye. Subgrupos Racionales El concepto de subgrupo racional es una idea fundamental para el uso de gráficos de control debida a Shewhart. De acuerdo con este concepto, la muestra (subgrupo racional) debe tomarse de tal forma que si la causa asignable está presente, la probabilidad de aparición de diferencias significativas dentro de los subgrupos se minimice. Dicho de otra forma, los subgrupos deben elegirse de forma que tengan la máxima probabilidad de que las mediciones realizadas en cada subgrupo sean semejantes y la máxima probabilidad de que los subgrupos se diferencien entre si. El principal esfuerzo ha de centrarse en garantizar que las unidades de cada subgrupo se producen, esencialmente, bajo las mismas condiciones. Cuando los gráficos de control se aplican a los procesos de producción, el orden de producción será una base lógica para el agrupamiento en subgrupos racionales. Aún cuando se respete el orden de producción es posible formar subgrupos erróneamente. Los subgrupos se realizan agrupando las mediciones de tal modo que haya la máxima variabilidad entre subgrupos y la mínima variabilidad dentro de cada subgrupo. Por ejemplo, si se toman unas observaciones de una muestra al final de un turno y las restantes al comienzo del siguiente, entonces podrían no ser detectados algunos cambios. Supongamos una fábrica que produce piezas cilíndricas para la industria automotriz. La característica de calidad que se desea controlar es el diámetro de las piezas. CONTROL ESTADÍSTICO DE LA CALIDAD 20 Existen dos caminos para formar subgrupos racionales. Una de ellas es retirar varias piezas juntas a intervalos regulares, por ejemplo cada hora. Este método se utiliza cuando el propósito fundamental del gráfico de control es detectar cambios de nivel del proceso. La otra forma es retirar piezas individuales a lo largo del intervalo de tiempo correspondiente al subgrupo. Este método se utiliza sobre todo cuando los gráficos se emplean para tomar decisiones respecto de la aceptación de todas las unidades producidas desde la última muestra. Por cualquiera de los dos caminos, obtenemos grupos de igual número de mediciones. CONTROL ESTADÍSTICO DE LA CALIDAD 21 Si tomamos muestras según el primer método en un proceso que puede cambiar a una situación de fuera de control y volver de nuevo dentro de control en el período comprendido entre muestras, entonces, no detectaríamos la producción defectuosa, por lo que sería mas adecuado utilizar el segundo método. Hacemos notar, sin embargo, que cuando se forman subgrupos de esta segunda forma, los gráficos de control para la dispersión (rango y sigmas) requieren una cuidadosa interpretación ya que es posible la aparición de puntos fuera de control aun cuando no existan cambios en la variabilidad del proceso. Existen otras bases para formar subgrupos racionales: Diferentes máquinas, distintos trabajadores, etc. A veces, por ejemplo, será preciso realizar un gráfico de control para cada máquina. CONTROL ESTADÍSTICO DE LA CALIDAD 22 CONCLUSIONES De acuerdo a lo anteriormente expuesto y al análisis del estudio del control estadístico de procesos se puede concluir de la siguiente manera: - Para las empresas es de vital importancia mantener un excelente control de calidad para poder retener a sus clientes y adquirir nuevos, por lo que deben mantener un estricto control estadístico de en sus procesos de producción así como de servicios para poder seguir siendo competitivas y perdurar en el mercado. - Para alcanzar un nivel de calidad competitivo es necesario que las empresas mantengan un estricto control de sus procesos, logrando esto, a través de las herramientas de la calidad, específicamente con el uso de gráficos de control para tener dichos procesos bajo control y dentro de los límites de control establecidos en sus parámetros de calidad. - Independientemente de las causas que originen la variabilidad de los procesos los gráficos de control ayudarán a la optimización de los recursos de las empresas alcanzando con ello minimizar los costos de la calidad, tomando en cuenta los costos evaluación y prevención para evitar específicamente los costos por fallas internas. CONTROL ESTADÍSTICO DE LA CALIDAD 23 FUENTES DE INFORMACIÓN - MATEMÁTICAS Y POESÍA: TUTORIALES Y MANUALES http://www.matematicasypoesia.com.es/Estadist/ManualCPE06p4.htm
Copyright © 2024 DOKUMEN.SITE Inc.