Chemistry and Technology of Rubber

March 24, 2018 | Author: anbuchelvan | Category: Emulsion, Materials Science, Physical Sciences, Science, Chemical Substances


Comments



Description

“Chemistry and Technology of Rubbers”Chemistry and Technology of Rubbers 1. Overview on Rubbers, Definitions, Market, Properties, Production and Applications 2.1. Natural Rubber 2.2. Synthetic Polyisoprene 3. 3.1. 3.2. 3.3. Overview on Emulsion Rubbers Emulsion-Styrene/Butadiene-Rubber Polychloroprene Nitrile Rubber 4. Overview on Solution Rubbers 4.1. Overview on Polybutadiene 4.2. Li-Polybutadiene and Solution-Styrene/Butadiene-Rubber with an Emphasis on Integral Rubber 4.3. Chemistry and Production Technology of High cis-1,4-BR with a Special Emphasis on Nd-BR 4.4. Ethylene/Propene-Co- und Terpolymers 4.5. Butyl- and Halobutyl Rubber 5. 5.1. 5.2. 5.3. 5.4. 6. 7. High Performance Rubbers Fluoro Rubber Silicon Rubber Hydrogenated Nitrile Rubber Ethylene/Vinylacetate-Copolymers Thermoplastic Elastomers Test Questions 1. Overview on Rubbers, Definitions, Market, Properties, Production, and Applications • Definition of the Terms “Rubber“, “Elastomer“ and “Thermoplastic Elastomer“ • Nomenclature • Market • Important Rubbers and Property Profiles • Rubber Producers • Production Technologies • Producers of Synthetic Rubber and Production Capacities • Available Vulcanization Methods and Network Properties Standard Terminology Relating to Rubber (ASTM D 1566 - 98 ) rubber, n-a material that is capable of recovering from large deformations quickly and forcibly, and can be, or already is modified to a state in which it is essentially insoluble (but can swell) in boiling solvent, such as benzene, methyl ethyl ketone, or ethanol toluene azeotrope. 30 25 20 Stress [MPa] 15 rubber 10 5 0 0 50 Elongation [%] 100 1 min 1 min DISCUSSION - A rubber in its modified state, free of diluents, retracts within 1 min to less than 1,5 times its original length after being stretched at room temperature (18 to 29° C) to twice its length and held for 1 min before release. Comparison of Materials According to ASTM D 1566 300 Residual Elongation [%] ε = ε residual 200 Definition of „Rubber“ according to ASTM D 1566 - 98 100 TPO Thermoplastic Elastomers TPV SBS 0 0 100 200 Elongation (ε) [%] NR/BR based tyre tread NR gum stock 300 My personal Definition of “Unvulcanized Rubber“, “Vulcanized Rubber“, “Elastomer“, and “TPE“ Unvulcanized Rubber is an uncrosslinked, amorphous or partially crystalline polymer (synthetic or natural) with a Tg < temperature of use Vulcanized Rubber (or: „Crosslinked Rubber“ or „Elastomer“) is obtained by chemically crosslinking (vulcanization) of unvulcanized rubber Thermoplastic Elastomers (TPE) are physically crosslinked rubbers Thermoplasts are unvulcanized polymers (synthetic or natural) with a softening temperature (Tg oder Tm) > temperature of use Thermoset resins (or duroplasts) are highly crosslinked polymers which do not soften with increasing temperature, but will deteriorate at high temperatures In English, the term „Rubber“ is ambiguous as this term refers to unvulcanized as well as to vulcanized rubber: • rubber tree • natural rubber • rubber boot unvulcanized (=uncrosslinked) rubber vulcanized (=crosslinked) rubber Tgs of Polymers with a Saturated C-C Main Chain Polyethylene Polypropylene (atactic / amorphous) CH3 O O CH3 O O CH3 O O CH3 O ~ -130° C -18° C Polyvinylacetate +30° C O O CH3 O O CH3 O O CH3 O O CH3 Polystyrene (ataktisch / amorph) +100° C Si O Si O Si O Si O Si O Si O Si O Silicon Rubber -120°C Tgs of Polymers with an Unsaturated C=C Main Chain Polybutadiene -115° C (100% 1,4-cis) Polyisoprene -75° C (100% 1,4-cis) Cl Cl CN Cl Polychloroprene Cl -45° C (100% 1,4-trans) Nitrile Rubber -50° C bis -5° C (depending on ACN-content) CN black. 12/92 Bayer AG -KA Schematic Presentation of the Dependence of the Shear Modulus on Temperature 10000 NR (raw rubber) NR/5 phr DCP Polystyrene 1000 Shear Modulus [MPa] 100 10 1 0. except for butyl rubber • The temperature at the rebound minimum is significantly higher than the Tg of the respective rubber • In this respect.Influence of Tg on Rebound of Vulcanized Rubbers (50 phr carbon black. without plasticizer) 80 1.1 -150 -100 -50 0 50 100 150 200 Temperature [°C] .4-cis BR NR EPDM 40 IIR 20 SBR NBR Rebound [%] 60 0 -75 -50 -25 0 25 50 75 100 Temperature [° C] • With increasing temperature rebound elasticity passes throug a minimum • The temperature at the rebound minimum correlates with Tg. butyl rubber performs different from the other rubbers Source: Butyl And Halobutyl Compounding Guide For Non-Tyre Applications. GPO MQ. SBR. EU Z FZ Abbreviations (DIN / ISO 1629) and Examples BR CR CM CSM EPM EPDM ENR IR IIR NR NBR SBR FPM FKM Butadiene-Rubber Chloroprene Rubber Chlorinated Polyethylene Chlorosufonated Polyethylene Ethylene/Propylene-Rubber Ethylene/Propylene/Diene-Rubber Epoxidised Natural Rubber Synthetic Polyisoprene Butyl rubber Natural Rubber Nitrile-Butadiene-Rubber Styrene-Butadiene-Rubber (E-SBR und S-SBR) Fluoro Rubber (DIN / ISO 1629) Fluoro Rubber (ASTM D-1418) . EPM. EAM. CSM. ACM. CR. IIR OT. HNBR CO. PMVQ. FMQ NR. nitrogen and oxygen in the main chain (polyurethane type rubbers) Rubbers with phosphorus and oxygen in the main chain (polyphosphazenes) Examples CM. BR. EPDM.Designation of Rubbers (DIN/ISO 1629) ClassChemical Description Designation M N O Q R T U Rubbers with fully saturated main chain (polymethylene type rubbers) Nitrogen containing rubbers Rubbers with oxygen in the main chain (Polyether type rubbers) rubbers with a polysiloxane main chain Rubbers with an unsaturated main chain (double bond containing rubbers) Rubbers with sulfur in the main chain (Polythioether type rubbers) Rubbers which contain carbon. EOT AU. ECO. MVQ. NBR. NBR. Wembley. Rubber March 2005: Verbrauch 2001-2005 Application Areas of Solid Rubber (rubber latex not included) Automotive 15% Tyres 45% Modification of Plastics 14% Cable and Wire Construction 3% 3% Others 15% Machine building 5% . 21916 (1999) 13-14 •European Rubber Journal (Quotation of IISRP Statistics).Annual Consumption of NR and Synthetic Rubber 14000 Annual Consumption [1000 metric tons] Natural Rubber 12000 Synthetic Rubber (Solid + Latex) 10000 8000 6000 4000 2000 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 Sources: •IRSG (International Rubber Study Group. different editions •Outlook for Elastomers 1996-97 (Wembley 1998) •Rubber World. various editions •LMC International Ltd. Rubber Statistical Bulletin. 21916 (1999) 13-14 High Performance Rubbers 10% Special Rubbers 30% Oil – and Temperature Resistance of Vulcanizates According to ASTM D 2000 250 225 200 FZ FMVQ 80 % VAc 40 % VAc max.Price and Volume of Rubbers (without Latex) FZ FQ FKM HNBR Q AU/EU EVM Volume Shares High Performance Rubbers General Purpose Rubbers: 82% CR (0.8 Mio t) SBR (2.5 Mio t)Rubbers High Performance Rubbers 1% Special Rubbers 17% EPM/EPDM (0. 3 [Vol %] .9 Mio t) Shares in Turnover BR (2. service temperature [° C] FKM MVQ General GeneralPurpose PurposeRubbers Rubbers Special Rubbers Special Rubbers High HighPerformance PerformanceRubbers Rubbers 175 150 125 100 75 50 0 44 % ACN ACM HNBR EVM AEM CO/ECO 18 % ACN NBR CM CSM (H)IIR EPDM EU AU CR SBR BR NR 20 40 60 80 100 120 140 no requirement Degree of Swelling in ASTM-Oil Nr.7 Mio t) NR (6.7 Mio t) Volume General Purpose Rubbers General Purpose Rubbers: 60% Source: Rubber World.32 Mio t) IIR/X-IIR Special (0.3 Mio t) Price NBR (0. 1 1.9 7. A23.% ] >140 (70) 130 >140 >140 >140 20 bis 50 55 bis 65 80 80 20 bis 100 50 30 3 bis 25 30 bis 50 20 bis 40 15 bis 40 5 10 10 1 2 1 1 1 7 3 4 4 6 5 6 7 6 7 8 9 9 9 1 1 1 8 6 6 2 5 9 9 9 8 9 10 9 9 10 10 10 Ozone Price Resistance Rating [€/kg] 1. Obrecht „Introduction“ . W.4 28.5 3. Synthetic.1 3.4 3.9 6.5 9.5 7. Rubber 3.8 3. Service Low Temperature temperature performance Tg Rating T max. Rating [° C] NR SBR BR EPDM IIR NBR CR CM CSM EVM AEM ECO AU VMQ ACM HNBR FKM FMVQ FZ -72 ca. Vol.2 2.3 2. VCH Weinheim 1993.8 125 500 21 19 20 28 21 30 20 22 25 30 30 28 31 35 31 36 34 37 39 Performance Index Rating E-SBR and S-SBR may not be evaluated according to these criteria as SBR is designed for high Tgs (improvement of wet skid) *Ullmann‘s Encyclopedia of Industrial Chemistry.8 6.Evaluation of Vulcanizate Properties 1 2 3 4 5 6 7 8 9 10 Improvement Criteria of Evaluation: • Maximal Service Temperature • Low Temperature Flexibility • Oil Swell • Mechanical Properties • Ozone Resistance Evaluation of Vulcanizate Performance* Rubber Max.7 2.1 1.1 43. -40 -120 -60 -60 -40 -39 -25 -25 -35 -35 -50 -30 -120 -35 -26 -20 -70 -65 8 6 10 5 6 5 4 3 3 4 4 5 4 8 4 3 2 8 8 [° C] 80 95 85 145 135 125 115 140 135 170 170 130 80 250 170 160 250 215 180 1 3 2 6 5 5 4 6 5 8 8 5 1 10 8 6 10 9 8 Mechanical Properties Tear Rating Resistance [MPa] 25 22 20 24 15 22 22 15 16 14 15 15 25 10 14 25 14 10 16 10 7 6 8 3 7 7 4 4 3 4 4 10 1 3 10 3 1 4 Oil Swell (ASTM 2000-90) Rating [Vol. 0 100.Correlation of Rubber Price and Vulcanizate Performance 45 40 35 FZ HNBR MVQ FKM ACM EVM AU NBR AEM EPDM ECO CSM CM IIR CR FMVQ Performance Index 30 25 20 15 10 5 0 0. 10.3 2.246.1 1 NR BR SBR 10 100 1000 Price of Rubber [€/kg] Ranking of Top 10 Tyre Producers Rank Company Sales of Tyres Share of Tyres [%] 95.500.7 3.534.598.0 12. S.5 118.2 68.2 3.08. 184.3 88.2 7.2 7.8 3.705.0 81.2 20 15 10 5 0 Capitalization of Shares Sales Bridgestone Michelin Goodyear Sums: Total Sales: 55.0 54.7 3.5 1.2 2.425.0 61.2 1. 28-30 Source: FAZ 18.0 71.0 12.247.1 8.8 0.0 72.6 18.0 4.1 5. vol. Oktober 2002.470.5 2.0 * Dunlop is not included ** Goodyear und Sumitomo operate in NA und WE in 75/25 joint ventures (Dunlop) Source: European Rubber Journal.5 19.7 6.469.0 2.6 1.1 -13.5 60.950.9 Return Market on Shares Sales in [%] Tyres [%] [%] 6.4 -4.6 5.901.3 1.9 [Mio US $] 1 2 3 4 5 6 7 8 9 10 11 Michelin Bridgestone Goodyear * Continental Sumitomo** Pirelli Yokohama Cooper Tire Toyo Kumho Hankook 13. no.7 49.2003 Continental .0 86.272.8 1.4 2.0 74.9 18.7 39.5 2. J.2% Source: R.7 2 2. 3. Freudenberg Group Tomkins plc.097 KMT ISP Elastomers 2. Toyoda Gosei Co.1 Zeon Corporation 3.2% Petroflex 3. Ltd.7 5.7% Goodyear 5. IISRP 49th AGM Moscow 2008„Globalization of Synthetic Rubber Industry“ Petro-China 3.8 3. Phoenix AG *) not available Source: European Rubber Journal 184.3% Michelin 3.3% Total: 12.9 *) *) *) *) 2.8 *) 1.2% Bridgestone/Firestone 2.7% Others 30% Exxon Mobil 5.8% Nizhnekamskneftekhim Inc.Ranking of Top 22 Producers of Technical Rubber Products (without Tyres) Rank Company Company Site France Japan Germany UK US US Sweden Germany US US Japan Japan Germany Japan US US Australia Japan Japan US Japan Germany Sales 2001 [Mio US$] 2156 2065 2060 1855 1500 1477 1446 1270 1160 1122 1120 987 900 897 812 808 759 750 703 695 670 662 Return on Sales [%] *) 0. SRI Consulting. Yokohama Rubber Co Ltd. Sumitomo Rubber Ind. Dana Corp. Parker Hannifin Cooper Tire & Rubber Trelleborg AB Continental AG Federal Mogul Corp.2% Sibur 5.3 *) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Hutchinson SA Bridgestone Corp. Toyo Tire Rubber Co.3% JSR Corporation 5.9 September 2002 Producers of Synthetic Rubber and Capacities Lanxess 8.8% Dow 4. Mark IV Automotive GenCorp. Metzeler Automotive Profile Syst.6% . Tokai Rubber Industries Ltd.7 5. Inc.5% Polimeri 4. Ltd.2% Sinopec 5. Chang. Ansell Ltd.6 *) *) 1.3 *) 8. Goodyear Tire & Rubber NOK Inc.1% Korea Kumho 4.7 *) 1. EPDM BR. CSM.% Moisture Content: < 3 ppm Moisture Content: < 3 ppm Stripper Dewatering screw Waste Air Waste Water Condenser Flash Vessel Ethene Hexane Purification Propene Reactor External cooler steam PHControl Antioxydant Stripping aid Oil Waste water Expeller Air bed Dryer Purification Abwasser Dryer Dryer Baler Modifier Reactivator Purification/ Drying Purification/ Drying Wrapper EASC VOCl3 Hexane ENB . L-SBR. BIIR. H-NBR.% wt. CR.Chemical and Technological Features of Rubber Manufacturing Processes Chemical Aspects Radical Polymerization Ziegler/NattaPolymerization Anionic Polymerization Cationic olymerization Polyaddition and Polycondensation Polymer Modification Technological Features Emulsion E-SBR. EPDM G-EPM G-EPDM G-BR** IIR Q AU. ACM. H-NBR* AU Q * Technology not established (only patents for the hydrogenation of NBR-latex) ** Technology not established (only patents for the gas phase polymerization of butadiene) Flow Diagram of an EPDM Solution Process Water Condenser Settler AzeotropicDestillation Temperature: 35-65°C Temperature: 35-65°C Pressure: 5-10 Pressure: 5-10bar bar Residence Time: 30 Residence Time: 30min min Solids 10 SolidsContent: Content: 10-12 -12wt. EVM Solution EVM Dispersion EVM Bulk AEM EVM BR* Q Gas-Phase BR. NBR. CSM. E-BR. CM. EPM. EU CIIR. FKM. IR ECO. CO EPM. FZ EU CM. Stereoregularität Waste Water Waste Air Emulsion Solution 2 3 2 10 5 5 Dispersion Slurry 8 8 5 10 5 5 Bulk 1 3 9 8 10 8 Gas-Phase 10 5 5 10 10 5 8 10 5 0 0 5 Sum Ranking: Prerequistes: 28 27 41 39 45 (Gas-Phase) > Dispersion > Bulk >> Emulsion > Solution comparable running times Available Vulcanization Methods for the Different Types of Rubber Example Sulfur “R“.Rubbers NR BR CR SBR NBR HNBR IIR XIIR EPDM EPM FKM CM MVQ XXX XXX XX XXX XXX XXX XX XX XX X (X) Method of Vulcanization Peroxide X (X) X XX XX XX XXX XX X XX Resin X (X) (X) (X) (X) (X) XX XX X X (X) Other (X) (X) XX (X) (X) (X) (X) XX (X) XX X XX “M“-Rubbers Other Rubbers . Solids Cont.Evaluation of Rubber Manufacturing Processes Polymerization Process Aspect Viscosity Heat Removal max. 1/1000 TStheor.350 10 20 covalent TSexpt. Oxford 3.4 0. Plasticity and Structure of Matter“ University Press.1/1000 of the theoretical values Sources: R. New York (1984) Schematic Presentation of the Deformation of a Rubber Network Type of Bond Bond Energy [ KJ/Mol] 350 350 282 272 266 < 266 C-C C-O C-N C-S-C C-S-S-C -S-S-S-S- Type of Bond Bond Energy [KJ/Mol] 260 .Influence of Vulcanization Method and Crosslinking Density on Tensile Strength (unfilled NR-Vulcanisates) 30 Tensile Strength [MPa] 20 10 Sx S1 C C C C accelerated sulfur cure TMTD-cure peroxide cure high energy radiation cure 0 0. Kautschuk und Gummi.2 1. de Dekker „Elasticity. Dinges. physical . Houwink.6 0. = 1/100 . Batzer „Polymere Werkstoffe“ Georg Thieme Verlag Stuttgart. Kapitel 2 in H. H.8 1. K.0 1. Auflage (1971) K.4 Reciprocal chain length 1/Mc x 10-4 • For high moduli and high tensile strength the vulcanization method and the length of rubber chains between two crosslinking sites are decisive factors • There is an optimum in tensile strength for Mc ~10.000 g/mol • The tensile strength of rubber vulcanizates is only 1/100 .2 0. •…….. fibres and fabrics •Covulcanisation of layers •Tensile Strength •Elongation at break •Static and dynamic moduli •Shore A Hardness •Abrasion Resistance •Compression Set •Cut growth Resistance during dynamic stress •Heat-buid-up •Electical conductivity • ……. •…….and ageing •Adhesion to cord.. •…….Influence of Compound Ingredients on Vulcanizate Performance Filler Rubber •Oil Resistance •Low temperature flexibility •Resistance to heat. Vulcanization Method . 1. oils and grease) • Need for mastication prior to compounding • bad wet skid performance • Poor resistance to heat ageing Physical Properties: Tg: 1. Areas of Application and Important Grades • NR-Production –NR-Latex and Latex Finishing –General Features of NR and Hevea brasiliensis –NR Grades and Specifications • Chemical and Physical Properties of NR –Solution Fractionation of NR –Mastication of NR –Crystallization (Spontaneous-and Strain induced) • Chemically Modified NR-Grades –CV-Grades –SP-Grades –ENR-Grades • Vulcanization of NR NR: Microstructure and Property Profile Positive: • Low price and good ratio of price versus performance • Standardized NR-grades • High level of mechanical properties (Tensile Strength. degree of crystallinity: Strain induced crystallization -72° C ~ 97% + 30 ° C -25° C ~ 30 % . Modulus Abrasion) • Good Dispersability of Fillers (due to high viscosities at the start of the mixing cycle) • Low rolling resistance (truck tyres) • High abrasion resistance (truck tyres) • Slow spontaneous crystallization • Significant strain induced crystallization 5 H3C 2 3 C 1 CH2 CH 4 CH2 Negative: • Poor resistance to swelling with hydrocarbons (fuels.4-cis-content Tm (equilibrium): max. rate of crystallization: max.2. Natural Rubber • Microstructure and Property Profile • NR-Market –Designation of Grades and Glossary –Development of Market and Price –NR-Production. SMR 50) Standard Chinese Rubber (SCR 5. Rubber Statistical Bulletin. „Rubber. different editions • Consumption 2001-2005: LMC international Ltd. Wembley. TSR 20. different editions • Outlook for Elastomers 1996-97 (Wembley 1998) • Rubber World. SCR 50) General Purpose Grade Air Dried Sheet Ribbed Smoked Sheet Special Grades: OENR Oil Extended NR L-Grades „Light“ Grades (with colour specification) produced by the selection of latices and removal of carotinoids by latex creaming. SMR 10. and intenisve wash etc. TSR 50) Standard Malysian Rubber (SMR 5. SMR 20. SCR 20. addition of Na-HSO3. 21916 (1999) 13-14 • European Rubber Journal (Quotation of IISRP Statistics).NR: Designation of Grades and Glossary General Purpose Grades: TSR SMR SCR GP ADS RSS Technically Specified Rubber (TSR 10. Latex) 14 12 Naturkautschuk Synthesekautschuk (Fest + Latex) 10 Mio tons 8 6 4 2 0 1880 1900 1920 1940 1960 1980 2000 2020 Source: • IRSG (International Rubber Study Group. March 2005“ . SP-Grades „Superior Processing“ (Sol/Gel-Blends) CV-Grades „Constant Viscosity“ NR obtained by the addition of hydroxyl amin prior to latex finishing ENR Epoxidized NR NR: Annual Consumption (incl. SCR 10. Ohm. Rodgers.534 75% 6. Rubber. 562-591 • LMC International Ltd.40% 1.5.58% 1997 India China Sri Lanka Vietnam 570 9. Version 1. R. January/February 2011.60% 113 1. R.Source: European Rubber Journal. Baranwal.00% 56 0.175 13.942 22.80% 2004 741 8.40% 0.841 21% 346 5.90% 1.90% 110 1. Rubber April 2005 .70% 92 1. Stuttgart/New York Thieme-Verlag 1998 LMC International Ltd.. Rubber April 2005 1997 Thailand Indonesia Malysia 1. 16 NR: Production 3500 x 1000 metric tons 3000 2500 2000 1500 1000 500 Malaysia Indonesia Thailand others 0 1985 1990 1995 2000 2005 Sources: 1980 • K.60% 2004 2.530 25.7% Source: Römpp Lexikon Chemie.50% 1.40% 400 6.070 17.20% 1.988 34.60% 0.90% 1997 Ivory coast Philippines Camerun Cambodsha Brasil Liberia Burma Nigeria 87 1. Fell.10% 423 4.80% 0.40% 60 1. vol 21. 4th ed.934 31.60% 585 6. Natural in Kirk-Othmer Encyclopedia of Chemical Technology.20% Total 4.105 70% 1.40% 0.90% 49 35 25 21 13 0. B.193 20% 1. R. NR: Application Areas Tyres 71% Automotive (other than tyre) 2% Shoes 4% None automotive 5% Others 7% Latex-Products 11% Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 Use of NR in Truck Tyres Year 1974 1981 1983 1985 1990 1994 Tread [wt.%] NR 45 60 77 86 86 100 SBR 21 12 7 5 5 BR 34 28 16 9 9 Side Wall [wt.%] NR 48 44 58 62 75 60 SBR 37 19 6 BR 15 37 36 38 25 40 Carcass [wt.%] NR 71 84 100 100 100 100 SBR 20 11 BR 9 4 The major application of NR is in truck tyres Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 NR: Production Share of smallholders in rubber production: Thailand Indonesia India Malaysia Brasil Sri Lanka Ivory Coast 95% 83% 83% 81% 70% 33% 29% Source: International Rubber Study Group Source: http://www.therubbereconomist.com Area cultivated per smallholder: Number of trees: Annual tappings per tree: Total number of tappings per year: Annual yield: Annual earnings: Earnings/different source*: Source: NR-Production by smallholders: 1,25 ha; 625 trees in total; 520 trees under tap 180/a 95.000 tappings for 625 trees/a 850 kg/a ca. 250 €/a (0,30 €/kg) 1020 €/a (1,2 €/kg) K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 *Broadcast in German TV (ZDF) “Mission“ about Charles Goodyear on 17.10.2004 As of today, only Bridgestone, Michelin und Goodyear run NR-plantations Features of the Rubber Tree (Hevea Brasiliensis) • Botanical Family: • Habitat: –Height: –Temperature: –Humidity: –Rain fall: –Soil: Euphorbiaceae Equator + 15° < 300 m 25-30° C > 70% 1800-2000 mm/year good drainage (not at the bottom of vallleys) • max. age of tree: • Height of tree: • tapping age of tree: •Tappings: • Yield per tree: • Yield per tap: • density of trees: • Rubber yields: –Plantation: –Maximum yield: –Smallholder: 30-40 Jahre (plantation), 100 Jahre (rain forest) 20 m (plantation), 40 m (rain forest) 5-7 years every 2nd day = 180 days/year 1-2 kg/a 5-11g 500/ha 400-1.200 kg/ha 1.000 kg/ha 3.000 kg/ha 850 kg/ha • Fungal infection: • Spread of fungus: Dothidella Ulei (Yellow leaf blythe) so far, endemic and restricted to Brasil Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer, Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 Features of NR-Latex • Total solids concentration:(25) 30-40 wt. % (dependent on many parameters) • Rubber content: 90 - 95 wt. % of total solids • Particle diameter: 150-3000 nm (dependent on many parameters) • Gel content: dependent on many parameters (latex age, finishing method) • Molar mass: 105-107 g/mol (not constant, dependent on many parmaters) • Latex stability without the addition of additives (NH3, formaldehyde, boric acid, phenolates, Na2SO3 (0,05 Gew.%), etc.) latex coagulation occurs as a consequence of encymatic decay Latex Finishing • Dilution of the latex to 15-20 wt. % solids • Removal of heavy impurities such as sand by sedimentation • Removal of impurities such as wood, leafs, insects, etc. by filtration • Latex fractionation for the removal of carotinoids for „L“ (light = colourless) grades • Addition of: • Na2SO3 (0,15 wt.%) for pale-crepe-grades • [HONH3]2 SO4 for CV- grades (“Constant Viscosity“) • Discontinuous latex coagulation with formic or acetic acid (5 wt. %) in pH-range 5,0 - 5,2 • Completion of coagulation by maturing for 12-16 h • Mechanical water removal by riffle mills (6-9 passes) • Drying in smoke at 60° C/1 week for RSS-production (“RSS” = Ribbed Smoked Sheet) • Drying in air at 40° C/2 months (“ADS“ = Air Dried Sheet) NR: Range of Grades Latexconcentration centrifugation, creaming, evaporation of water Acid Coagulation (factory) Acid Coagulation (Plantation/Smallholder Sheet-Material (RSS, ADS) Natural Coagulation of latex „Cup lump“ „Smallholder‘s lump“ SMR 5 60% Baled or Crumb Rubber wet and dry blending processes 40% field grades Sales latex (60 wt. % solids) SMR L SMR CV 50 SMR CV 60 SMR GP SMR 10 SMR 20 Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 Comminution Process: multi-stage wet blending process with mechanical generation of crumbs, crumb blending and washing with subsequent crumb drying at 100-120°C/4-5 h is used for the homogenization and purification of cup lumps NR: SMR-Grades und Specifications • The content of none rubber like residues is an important quality criterium for NR • As a consequence, the content of impurities is a feature in the designation of NR grades NR Grade Strainer Residue [wt.%] (mesh width: 45 mm) SMR 5 0,05 SMR GP 0,10 SMR 10 0,10 SMR 20 0,20 SMR 50 0,50 Besides NR purity, price is also an important factor for the selection of an appropriate NR grade. As a consequence of price and quality, the ranking of NR grades for tyre building is as follows: SMR 20 > SMR 10 > SMR GP > SMR 5 > RSS NR: Vulcaniaztion of Different SMR-Grades Typ Impurity Level Monsanto-Rheometer (160° C) Delta F [J/cm2] TS 2 [min] 29,4 2,2 33,9 1,8 37,2 1,5 40 1,3 41,1 1,2 t90 [min] 11,6 9,7 7,8 6,8 6,8 SMR CV SMR L SMR 5 SMR 10 SMR 20 The impurities in NR perform like a vulcanization accelerator ACS 1- Compound NR Stearic Acid ZnO Sulfur: MBT 100 phr 0,5 phr 6,0 phr 3,5 phr 0,5 phr With increasing impurity level, the following features are observed: • reduction of scorch time • reduction of vulcanization time • Increase of crosslinking density Source: K. Baranwal, R. Ohm, R. R. Fell, B. Rodgers, Rubber, Natural in Kirk-Othmer Encyclopedia of Chemical Technology, vol 21, 4th ed., 562-591 (ISO 1658: Natural Rubber - Test Recipes and Vulcanization Characteristics, International Organization for Standardization, Geneva, Switzerland, 1973 6 0.5 1 1 3 1.9 12.: bale 1 2 3 4 5 6 Soluble portion share [wt.0 3.0 2.2 2.7 15.62 0.5 8.6 0.4 19.0 12.2content [%] 0.5 1 1 3 1.7 0. 283-314 • NR has a broad distribution of molar masses (“polydispersity“ or “physical inhomogenity“) • The polydispersity increases with the age of the tree • NR fractions with a low molar mass have a higher content of 1. Technol. Bayer.8 6.0 2. Incremental addition of methanol Fraction Nr.5 1 1 3 1.4 4.4-trans content [%] 2.7 1.6 0.5 1 1 3 1.3 - 1.5 0.16 0.Chemical and Physical Composition of NR Solution fractionation of NR by sequential coagulation: 1.0 - Viscosity (toluene/25° C) [dl/g] 11.5 1 1 3 1.7 3.%] 100 24.9 1.4-trans moieties than the fractions with a higher molar mass (“chemical inhomogenity“) NR: Vulcanization with Multifunctinal Isocyantes NR (TSR 5.5 - Source: Rubber Chem. Technol.6 1 0 HHHH CCCC 3333CCCC 100 3 3 1.0 5. 82.5 1 1 3 1. Angew.6 1 0 OOOO 100 50 3 3 1.5 7.6 1 15 100 3 3 1. Defo 700) Carbon black/Corax N 2200 Stearic Acid Zinc oxide Antilux 654 IPPD (Vulkanox® 4010 NA) TMQ (Vulkanox® HS/LG) Mineral oil/Enerthene 1849 Sulfur TBBS (Vulkacit® NZ) Desmodur® TT HHHH HHHH CCCC HHHH CCCC CCCC HHHH NNNN [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] NNNN 100 3 3 1. 257-272 HHHH NNNN SSSS SSSS HHHH NNNN HHHH 3333 3333 HHHH CCCC OOOO OOOO CCCC NNNN 3333 TBBS (Vulkanox® NZ) 3333 Desmodur® TT (TDI Uretdione) .6 1 25 100 50 3 3 1.5 0. 57. Chemie 59 (1947) 9. 104 (1984) Source: Rubber Chem.6 1 0 100 3 3 1.6 1 10 NNNN CCCC OOOO CCCC 3333 HHHH NNNN NNNN HHHH CCCC 3333 IPPD (Vulkanox® 4010 NA) First Hint on NR-Vulcanization with Diisocyanates from O. Preparation of a NR solution in toluene 2.9 1. 99 27.30 4.4 0.NR: Vulcanization with Multifunctional Isocyantes NR (masticated TSR 5) Carbon black (Corax N 220) Desmodur TT Fmin Fmax-Fmin t10 t80 t90 Tensile Strength Elongation at break M50 M100 M200 M300 Shore A Härte/23° C Shore A Härte/70° C Rebound/23° C Rebound/70° C DIN-Abrasion [%] [%] [mm3] [dNm] [dNm] [min] [min] [min] [MPa] [%] [MPa] [MPa] [MPa] [MPa] 100 0 0 0. 28-31 „Improved natural rubber processing and physical properties by use of selected compounding additives“ .4 75 133 NR contains polymer bound functional groups (-NH2.0 66 59 155 100 0 25 0.2 480 1.7 7.4 66 102 100 50 10 1.9 3.6 0.94 1. -CONH2) which react with isocyanates Mastication of NR 184 kJ/mol *C C* Pentachlorothiophenol 343 kJ/mol C* *C Degree of Mastication 2.60 25.1 8.30 7.2 40 38 69 78 327 100 0 15 0.06 0. M.0 68 65 55 60 123 100 50 0 1.7 635 1.34 7.7 6.53 17.5 2.08 21. Clarke.07 25.41 4. November 2009.34 6.0 14.54 24.2'-Dibenzamidodiphenyl-Disulfide (DBD) S S SH Cl Cl NH Cl Cl Cl O O HN 0 100 Temperature [° C] 200 • At low temperatures (<120° C) mechanical chain scission prevails • At temperatures >120° C thermo-oxidative chain scission prevails • In the temperature range 100-130° C the mastication effect shows a minimum • By the use of mastication additives the mastication of NR is accelerated (oxidation catalysts and radical scavengers) • Pentachlorothiophenol is an effective mastication aid.4 3.26 0.47 9. Rubber World.71 15.9 1.77 8. Hensel.78 36. -COOH. -OH.5 2.96 4.8 565 1.22 4.06 15. disulfides as well as Fe-complexes are used for the acceleration of NR mastication Source: C.82 6.20 0.7 1.4 2.8 605 0.18 6.6 0.0 2.8 2.56 19.24 15.3 650 0. it is banned in WE • Today.2 43 45 74 81 183 100 0 0 0.96 20.9 5.8 540 1.23 17.21 7.74 15.3 13. Eisele Intorduction to Polymer Physics. Vol. R. stearic acid) NR: Dependence of Crystallization Rate and Crystallite Melting Temperature on Storage Temperature 1000 40 melting temperature [° C] -50 -30 -10 10 30 20 10 0 -10 -20 -30 -40 -50 -30 -10 10 30 half time [h] 100 10 1 storage temperature [° C] storage temperature [° C] Source: U.. Baranwal. 4th ed.g. Rodgers. Rubber. Springer-Verlag 1990 Source: K. R. R. B. 562-591 . 21. Ohm.NR: Crystallization at -25° C 35 30 Crystallinity [%] 25 20 15 10 5 0 0 5 10 15 20 25 30 Pale Crepe pale crepe after acetone extraction time [h] • The Shore A Hardness of NR increases due to crystallization during storage at low temperatures • NR can only be processed in the uncrystallized state • Decrystallization can be achieved by storage at elevated temperatures (40° C-50° C) • The decrystallization in the interior of bales needs 2 weeks at 30° C • The maximum degree of crystallinity of unvulcanized NR is ~ 30% • NR contains impurities which accelerate the speed of crystallization • The crystallization accelerators can be removed by acetone extraction (e. Fell. Natural in Kirk-Othmer Encyclopedia of Chemical Technology. Stress/Strain-Performance of Unfilled NR.and SBR-Compounds) 25 20 NR SBR Tack-Index 15 10 5 0 0 20 40 60 80 100 120 temperature [°C] .and SBRVulcanizates (gum stocks) 30 25 stress [MPa] 20 15 10 5 0 0 200 NR SBR Strain induced crystallization 400 600 800 1000 strain [%] Dependence of Tack on Testing Temperature (Unvulcanized NR. the viscosity of NR increases to a greater extent than for synthetic IR (storge hardening) • It is assumed that the viscosity increase of NR is caused by the chemical reaction of polymer bound –NH2 and polymer bound –CH=O groups • By the addition of hydroxylamine to the NR latex prior to latex coagulation –CH=O groups are chemically eliminated •CV-Grades (“Constant Viscosity“) exhibit an improved storage stability . no mastication required Blend with NR-gel (“SP”-Grades) Improved processability of NR-compounds Epoxydation (ENR) Improved oil resistance Improved wet skid Improved silica interaction Source: K. 562-591 NR: CV-Grades H H O + H2 N H . Ohm. Baranwal. Natural in Kirk-Othmer Encyclopedia of Chemical Technology. R. R. Rodgers. Rubber.Increase [MU] SMR 20 IR/Natsyn 2200 (IR / Ti) 5 10 15 storage time [days] 20 • During storage at ambient and elevated temperatures.H2 O H H N H 10 9 8 7 6 5 4 3 2 1 0 0 Mooney. B. Fell. R.. 4th ed. vol 21.Chemically Modified NR-Grades Modification Hydroxyl amine (“CV”-Grades) Application improved compounding. NR: CV-Grades Mooney-Viscosity ML1+4 (100° C) 140 130 120 110 100 90 80 70 60 50 0 0.08 before hot air ageing after hot air ageing Hexanediamine [mol/kg] H H O + H2 N NH2 H Specification of CV-Grades H + O Grade Ml 1+4 (100° C) Minimum 45 55 65 54 Maximum 55 65 75 55 . %] H H C O .05 0.2 hydroxyl amine [wt.1 0.04 0.15 0.06 0.02 0.H2O + H2N OH H H C N OH NR CV-Grades (“Constant Viscosity“) are obtained by the addition of hydroxylammonium chloride to the latex prior to latex finishing .2 H2 O H H N N H H CV 50 CV 60 CV 70 LV 50 NR: CV-Grades Increase of Mooney Viscosity [%] 70 60 50 40 30 20 10 0 0 0. 0 .8 560 15 52 17 -5 6 21 2.N] 100 30 59 7.9 25. 1 ASTM-Oil No.8 27.8 27.0 100 30 59 8. 2 ASTM Oil No.0 100 30 56 6.1 550 78 44 17 66 114 191 27. 3 Air permeability/23° C [phr] [phr] [phr] [phr] [MPa] [MPa] [%] [%] [° C] [%] [%] [%] [%] [1018 x m4/s.ENR: Dependence of Properties on the Degree of Epoxidation 40 20 0 Epoxidation with peracids in the latex stage Tg [°C] -20 -40 -60 -80 O O O 0 20 40 60 80 100 Degree of Epoxidation [%] Epoxydation of NR has the following effects: • Increase of polarity (Reduction of the swelling in oil) • Increase of Tg (Improvement of wet skid and reduction of gas permeation) • Resistance to ageing is unchanged (as bad as for unmodified NR) • Processability is reduced (supposedly this problem has been solved) Source: Ullmann‘s Encyclopedia of technical Chemistry ENR: Dependence of Vulcanizate Properties on the Degree of Epxidation NR ENR 25 (Degree of Epoxidation: 25%) ENR 50 (Degree of Epoxidation: 50%) Carbon black (N 220) Shore A Härte/23° C M300 Tensile Strength Elongation at break Elasticity/23° C Goodrich HBU CS/24h/70° C Volume Swell (70h/70° C) ASTM-Oil No.9 590 25 60 46 73 28 108 8. 5 0.0 5.4 2.5 - Source: K. B.0 2.0 - 100 50..%] [wt.5 1. Baranwal.0 2. 562-591 .0 - 100 50.%] [phr] SP 20 20 80 0 SP 21 40 60 0 SP 22 50 50 0 SP 23 80 20 40 SP 24 80 20 0 SP-grades have the following advantageous properties: • reduced die-swell • Increased extrusion out-put • Reduced roughness on surface and edges Source: BP 880739. C.2 0.8 0. Ohm.NR: SP-Grades • SP-Grades (“Superior Processing“) are obained by blending crosslinked NR with uncrosslinked NR in the latex stage.0 4.1957. Fell.5 2.0 6.7 5. Inv.0 3.: 28.0 2.33 0. • The crosslinked NR-latex (NR-gel) is obtained by sulfur cure in the latex • The SP-series of grades comprises different blend ratios of ucrosslinked and unrosslinked NR as well as oil extended grades Grade Precrosslinked Uncrosslinked Oil NR NR [wt.0 3. Rubber.) Sulfur Sulfur (Semi EV) (EV) Peroxide Capped Di-IsoCyanate 100 50. R.0 - 100 50.0 NR (SMR 5) N 330 Oil ZnO Stearic Acid Sulfur TBBS CBS TMTD Santoflex 13 TMQ DCP Novor 924 Caloxol ZDMC ZMBT [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] 100 50.0 2. vol 21.0 5.0 5.0 5. Appl.4 2.0 0.: B. Natural in Kirk-Othmer Encyclopedia of Chemical Technology. 4th ed. Natural Rubber Producers‘ Association.03. Rodgers. R.0 3. R.0 2.8 0.0 3.0 2.0 4.0 4. Sekhar „Improvement in the Preparation of Superior Processing Rubbers“ NR: Impact of Vulcanization Systems on Vulcanizate Properties Schwefel (conv.0 2.5 2. Baker.22 30.2 390 67 68 36 10 24 61 2. July 21-23-1981 NR: Dependence of Vulcanizate Properties on Vulcanization System Sulfur (konv. MRPRA.28 21. L. England • Novor Application Data Sheet.34 24. Rubber Manufacture and Technology Seminar.08 28. Kuala Lumpur. Solid Tyres. ADS-5H. Inc. Novor Vulcanizing Systems: Their Technical Development and Application Areas. R. NR Technical Bulletin. I. Marcel Dekker. (Malaysian Section).H2 O N N N O O NH O HN O O .4 310 72 51 34 11 49 Capped Di-Isocyanate 70 2. England • C.NR: Vulcanization with A Capped Diisocyanate (Novor 924) O N N O Novor 924: TDI based diisocyanate Novor 950: MDI based diisocyanate Due to health and safety reasons Novor 924 has been replaced by Novor 950 N O O NH O HN O O N O Thermal Cleavage O N N O N O H O C N O N C O H O N O Tautomerization Tautomerization O N H O H O H O N O H . Barlow „Rubber Compounding“ 2nd edition.1 485 77 106 32 14 54 Sulfur Peroxide (EV) 67 2.60 24.0 460 66 90 30 .) Shore A Hardness/23° C M100 [MPa] Tensile Strength [MPa] Elongation at break [%] Rebound/23° C [%] Fatigue to Failure [kZ] Goodrich HBU [° C] CS/24h/70° C [%] ∆ TS (7d/100° C) [%] 65 2. Brickendonbury. Chapter 7. Brickendonbury. Rubber Consultants. P.H2 O N Sources: •F. S. page 96-98 • Vulcanization with Novor 924.8 515 70 223 29 27 73 Sulfur (Semi EV) 65 2. 4-Isoprene Poly-trans-1.4-Isoprene IR grades and chemical differences between NR und IR: NR cis-1. Prior. Rubber Chemistry and Technology. M.2.2000 3) WO 02/48218 A1 (Michelin).4-Isoprene C C4 C Poly-cis-1.11.: 13. 3. 526-604 2) Data sheet of Hüls AG: “Vestogrip“ (Production by Karbochem / South Africa: ca. Producers. Laubry. S.2.: P.4-Isoprene Type of IR Catalyst Trade Name Cariflex IR-309 Natsyn 200 Vestogrip IR 3) 2) 1) 1) Solvent unpolar (benzene) unpolar hydrocarbon Hexane/Additive unpolar hydrocarbon Microstructure cis-1.: 28.2001 Sources: . Walters. Vol 52. Catalysts and Microstructures • Price.Properties • Vulcanizate properties of NR and IR • Compound and Vulcanizate Properties of Poly-3. Marsh.11. Saltman.4-content [mol % ] Need for Mooney adjustment before use Gel functional groups 98 yes yes yes Li IR Ti Nd 93 97 99 no mastication needed - 2. Erf.and IR. Synthetic Polyisoprene (IR) Contents: • Differences between IR and NR • IR-Grades.2.: P. Prior.3. Polyisoprene.2. H. A. W. Erf.493 97 0 0 0 0 7 3 60 99 - Li Ti Li Nd 1) E. Schoenberg. S. and Production Capacities • Comparison of Unvulcanized NR. J. Laubry.000t) 3) WO 02/38635 A1 (Michelin). Synthetic Polyisoprene (IR) Isoprene H 3C C2 1 3 Poly-3.4 1.4 trans-1. Chang. Mitzushima / Okayama Pref.5 0 1980 1985 1990 1995 2000 2005 2010 IR NR (RSS) Company Goodyear Kraton Polymers Kauchuk Sterlitamak Nishnekamskneftekhim Togliattikauchuk JSR Corporation Zeon Corporation Karbochem Total Capacity [kt] Plant Location Beaumont/Texas/USA Rotterdam-Pernis/Nederland Sterlitamak/Russia Nishnekamsk /Russia Togliatti Kashima / Ibaraki Pref. Newcastle / Natal /South Africa Capacity [kt] 90 25 100 200 130 36 40 3 624 Source: R.5 2 1.IR: Development of Prices.5 1 0. IISRP 49th AGM Moscow 2008 „Globalization of Synthetic Rubber Industry“ Comparison of NR and IR: Stress/StrainStress/Strain-Curves of Unvulcanized Polyisoprene Compounds 9 8 7 Stress [MPa] 6 5 4 3 2 1 0 0 NR (SMR 5) High cis-IR/Ti (97%) Low cis-IR/Li (93%) 100 200 300 400 500 Strain [%] . Producers and Production Capacities 3 Price [US $ / kg] 2. SRI Consulting.J. 8 27.4-Polyisoprene 100 phr CB (Corax N 330) 50 phr HAR-oil 10 phr Zinc oxide 3 phr Stearic acid 2 phr CBS 1 phr Sulfur 2 phr Compound Properties ML 1+4(100° C) [MU] t10/150° C [min] C [min] t90/150° C) Vulcanization (30 min/150° Shore A Härte (22° C) Shore A Härte (75° C) M 100 [MPa] M 300 [MPa] TS [MPa] εb [%] Cut growth resistance [N/mm] Residual elongation [%] Rebound / 22° C Rebound / 75° C tan δ/25° C tan δ/75° C [%] [%] 77 13.26 0.6 (1995) 430-434“Compounding for Wet Grip“ .4-Polyisopren-Kautschuk)“ Source: P. Roch (Goodyear) KGK 48.11 Source: Data sheet of Hüls AG „Vestogrip (3.4-content (NMR): ML 1+4 (100° C): Tg ca.and Vulcanizate Properties of NR and IR Compound Properties NR Mastication Mixing cycle Die swell Tack Green strength Li + + + - IR Ti + + + - Nd + + + + + + + Vulcanizate Properties NR Modulus Tensile Strength Cut growth resistance Rebound Elastivity Abrasion resistance Li - IR Ti - Nd + + + + + + + + + + Poly-3.5 67 52 2.4-Isoprene: Compound and Vulcanizate Properties 3.1 8.7 510 25 20 2 44 0. 60 % 65 MU -8° C 3.Evaluation of Compound.4 14. and leather finishing (X-SBR) • Latex dipping process for improvement of cord adhesion • Manufacture of dipped articles such as protection gloves etc. paper-. (NR.3. textile. Overview on Emulsions Rubbers • Emulsion Rubbers and Features of the Emulsion Process • Essentials of the Emulsion Polymerization • Mechanism of Emulsion Polymerization • Kinetic Aspects of the Emulsion Polymerization • Flow Diagram of Continuous Emulsion Polymerization • Flow Diagram of Latex Finishing • Finishing of CR-Latex • Legal Aspects of Water Usage Emulsion Rubbers and Features of the Process Features of the Emulsion Process Advantages: • high reactor output • good heat removal • low viscosities • high solids • high molar masses • high reproducibility Emulsionrubber E-SBR NBR CR ACM FKM Latex Coagulation electrolyte electrolyte freezing electrolyte electrolyte Disadvantages: • Waste water • Product impurities (residuals from emulsifier and coagulants) • no water resistant catalysts available (Stereospecifity) Application Areas for Rubber Latices: • Carpet backing. NBR.0. CR) . volume 1 not in monomer droplets . 1975 • H. M. Lovell. S. Wiley 1998 monomer loaded micelles and • Blackley. Gerrens. Emulsion Polymerization. E. El-Aasser.Principles of Emulsion Polymerization Emulsifier Monomer Initiator Polymerization Wasser Monomer emulsion Polymer dispersion (Latex or rubber latex) Mechanism of Emulsions Polymerization Monomer containing emulsifier micelle Diameter: 5-10 nm concentration: 1021 lw-1 Latex particle Particle diameter: concentration: 10-500 nm 1017 lw-1 M M M M Monomer droplet Diameter: concentration: M M 0. Emulsion Polymerization.1-10*10 -6 m 1013 lw-1 M M M M M M Literature: Polymerization occurs only in • P. Advances in Polymer Science. Wiley 1998 Blackley. E.4.Phases in Emulsion Polymerization Phase I 80 70 Phase II Phase III Arbitrary Units 60 50 40 30 20 10 0 Surface tenison pressure polymerization rate 0 20 40 60 80 100 Monomer Conversion [%] Literature: P. El-Aasser. M. Emulsion Polymerisation.6 [n]= 0. Lovell. Emulsion Polymerisation.5 number of latex particles [lw-1] effective emulsifier concentration [lw-1] Initiator concentration [lw-1] propagation rate constant [l * mol-1 * sec-1] average concentration of radicals per particle [without dimension] monomer concentration in latex particle [Mol * l-1] . 1975 H. S. Fortschritte der Hochpolymerforschung Kinetic Aspects of Emulsion Polymerization Phase I: Phase II: NL and Vbr increase „free“ emulsifier reduces surface tension NL und Vbr remain constant the monomer concentration in latex particles remains constant the latex particles grow and soap coverage decreases surface tenison increases the monomer droplets have disappeared the monomer contained in latex particles is consumed the number of latex particles remains constant Phase III: Number of latex particles formed: x y NL = k * (E-CMC) * I Polymerization rate in Phase II: VBr = NL * kw* [n]* [M] Prediction by the Smith Ewart Theory: NL: E-CMC: I: kw: [n]: [M]: x = 0. Gerrens. y = 0. 000 t 100.000 t Puffertank Coagulants Additives (oil.000 t 300.000 t 100. NBR) Wash water Mass Balance: Latex volume : Rubber (25%): Water serum (75%): Wash water: Waste water: 400.000 t 400. etc) Washtank Coagulation tank Dewatering screw dryer Waste water treatment Baler and packaging .Flow Diagram of a Continuous Emulsion Polymerization (E-SBR) Recovered styrene Mixer/Settler Vapour condensation Waste water treatment Recovered butadiene Butadiene Styrene Aqueous emulsifier solution Hydroperoxide Aqueous catalyst solution Mixer/Settler Brüdenkondensation Stripping column Wate water treatment Flash evaporation Abstoppkessel Polymerisa -tionskessel Polymerisa -tionskessel Polymerisa -tionskessel Polymerisa -tionskessel Polymerisa -tionskessel Short stop Vapour Latexstorage Latex AO Flow Diagram of Latex Finishing (E-SBR. I. 45 (1997) Supplement. 2612 Source: W. 1990. 2432 Abwasserherkunftsverordnung (AbwHerkV) “Legislation on the provinence of waste water" Of July 3rd. I. 1654 Abwasserabgabegesetz (AbwAG) “Legislation on Charges for the emission of polluted water“ of November 6th. 1987. BGB1. I. 1997 . 1990. Guhl und U. 5th. 1986. S. Chem.I. BGB1. Wiley-VCH Verlag GmbH. Tech. S. S. Werner. 1578 Trinkwasserverordnung (TrinkwV) “Legislation on the quality of drinking water and on water which is used in food production” of December. BGB1. Nachr. D-69469 Weinheim. BGB1. Lab. S.stripped Latex Finishing of CR-Latex dryer dewatering rolls Latex-surge tank Acidic acid Freezing roll Powdering Chopper packaging Waste water treatment Legal Aspects of Water Surveillance in Germany Wasserhaushaltsgesetz (WHG) “Legislation on the regulation of the water household" of September 23rd. It has to be used in a sustainable manner for the benefit of the community as well as for the benefit of individuals. Negative impacts have to be avoided. Wiley-VCH Verlag GmbH. 45 (1997) Supplement. I. Lab. S. Source: Nachr. 2432 By law. in 1990 one “pollution unit“ was fixed at 70 DM. BGB1. I. BGB1. According to this law. Chem. 1997 . 1997 Legal Aspects of Water Surveillance in Germany “Legislation on Charges for the emission of polluted water“ of November 6th. 1654 Water is a natural ressource. 1986.Legal Aspects of Water Surveillance in Germany “Legislation on the regulation of the water household“ of September 23rd. Chem. 1990. Source: Nachr. 45 (1997) Supplement. Tech. Tech. D-69469 Weinheim. Wiley-VCH Verlag GmbH. D-69469 Weinheim. Lab. S. one pollution unit was defined to correspond to: • 50 kg O2 (COD) • 3 kg Phosphorous • 25 kg Nitrogen • 2 g organic halides • 20 g Hg • 100 g Cd • 500 g Cr • 500 g Ni • 500 g Pb • 1 kg Cu • etc. Everybody who uses water is obliged under the necessary circumstances to act in a careful and responsible manner in order to avoid water pollution and negative impacts on the properties of water. 3. COD = 0 BOD = 0 COD = BOD COD < BOD BOD < COD Which equation does not make sense? COD: Chemical Oxygen Demand BOD: Biological Oxygen Demand Legal Aspects of Water Surveillance in Germany Explanation: COD = 0 BOD = 0 no impurities present which can be chemically oxidized (very pure water) no biologically degradable substances present (substances which are not biodegradable might be present) all impurities are biodegradable this is not possible The impurities are only partially biodegradable COD = BOD COD < BOD BOD < COD . 2. 4. 5.Legal Aspects of Water Surveillance in Germany 1. Market. Emulsion-SBR (E-SBR) • Overview –Microstructure and Property Profile –Market –Application Areas. Products and Important Grades –Producers and Production Capacities • Polymerisation –Polymerization Recipe („Cold Rubber“) –Ingredients of a Polymerization Recipe –Sequence of Reaction Steps –Copolymerisation of Styrene und Butadiene –Influence of Chain Modification Agents • Product Properties –Tg –Influence of None Polymeric Residues on Compound and Vulcanizate Properties Microstructure of E-SBR 4 2 HC HC 3 CH 1 2 4 CH2 CH 2 1 CH2 3 CH CH2 1 3 C H2 2 CH CH 4 CH CH2 1 2 CH2 1.4-trans Vinyl Styrene .4-cis 1.1.3. 000 200.000 104.500 255.000 20.0 Mio t 3.000 195.000 120. Sumitomo Chemical Comp.000 60.000 190.000 200.500 90.000 100.000 76.000 Sum Market: Capacity: Capacity utilization: 2.000 35. Inc.000 336.000 486.000 267. Korea Kumho Hyundai Taiwan Synthetic BST Elastomers Gadjha Tunggal Quenos Apar und Synthetics &Chemicals V/O Raznoimport SINOPEC und Petro China Site Baton Rouge Houston Port Arthur/Odessa Sarnia Pto. Shell Dwory Chemopetrol HIP Petrohemija Combinatul Petrochimic Neftochim JSR Mitsubishi Kasei Corp.000 74. San Martin Duque de Caxias/Triunfo Altamira La Wantzenau Schkopau Ravenna Pernis Oswiecim Kralupy Zrenjanin Onesti Burgas Kawasaki Yokkaichi Tokuyama/Kawasaki Chiba Ulsan Daesan Kaohsiung Mab Ta Phut. International Institute of Synthetic Rubber Producers.000 295. Rayong Altona Bombay/Bareilly Omsk/Sterlitamak/Togliatti/Voronezh Lanzhou/JiLin Country Capacity USA USA USA Can. IISRP. Argentinia Brasil Mexico France Germany Italy Netherlands Poland Czech Rep.000 75.902.000 105.000 53. Gral.000 120. Zeon Corp.000 50.9 Mio t 51% 3. .000 60.000 40.000 65. Modulus. Abrasion Resistance) • Good wet skid properties (dependent on amount of incorported styrene/Tg) • short sequences of incorportated styrene (low hysteresis losses and low rolling resistance) • Availability of high Mooney-grades which allow for high loadings of mineral oil (oil extended grades with reduced price) • Great variety of standardized grades • Many competitors/low price (commodity) Negative: • poor ageing resistance • poor resistance to swelling in oils • no variation of microstructure • low / no profits / no R&D-activities Application Areas in Western Europe Tyres 72% Others 2% Buildings Shoes Automotive 5% 5% 8% mechanical parts 8% E-SBR: Producers and Production Capacities Produer Copolymer (DSM) Goodyear Ameripol Synpol Bayer Petroquimica Argentina Petroflex/Coperbo Negromex Bayer France Dow Enichem.000 20.000 60. Crotia Rumania Bulgaria Japan Japan Japan Japan Korea Korea Taiwan Thailand Indonesia Australia India USSR China 150.E-SBR: Property Profile and Application Areas Positive: • good mechanical properties of filled vulcanizates (TS.000 Source: Worldwide Rubber Statistics 2001. 000 100.03.E-SBR: Producers and Capacities in Europe (without Latex Capacities): 700 600 500 Company Lanxess France Dow Enichem.000 40.000 Production [t] Sum Dwory Chemopetrol HIP Petrohemija Combinatul Petrochimic Neftochim Oswiecim Kralupy Zrenjanin Onesti Burgas Poland Czech Republic Croatia Rumania Bulgaria 580.000 295.000 120.000 415. Dow (prior owner: Shell) Site La Wantzenau Schkopau Ravenna Pernis Country France Germany Italy Netherlands Capacity 45. 14th edition IISRP (International Institute of Synthetic Rubber Producers.2004) Lanxess shuts down E-SBR production in La ‚Wantzenau effective by July 2008 Source: Worldwide Rubber Statistics 2001.000 2000 2002 Market Volume in WE: Capacities in WE: Formal Capacity Utilization in WE: 666 k t 415 kt 160 % Dow Chemical shuts down ESBR-Plant in Pernis/ end of March 2004 (Chemical Week of 24. Houston (1999) . IISRP. International Institute of Synthetic Rubber Producers. Range of E-SBR Grades Cold Rubber Hot Rubber High Styrene Rubber number of grade assignation 1000 1500 1600 1700 1800 1900 Cold Rubber without Carbon Blackadditives Masterbatch X X X Oil-extension (<14 phr) X Oil extension (>14 phr) X X - Hot Rubber X - High styrene rubber X Source: The Synthetic Rubber Manual. Inc.000 120.000 76.000 400 300 200 100 0 1990 1992 1994 1996 1998 Sum 340.000 104.000 20. % wt.% .% 1.5 37.01 0.% wt.4 wt.5 23.5 37.5 N 110 N 330 4 76 S: staining NS: none staining NAPH: HAR: naphthenic oil highly aromatic Source: The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers.03 wt.02 0.% wt.% t-DDM 23.16 wt. dark colured technical rubber goods 1507 23.5 5 47.% wt.% wt.5 30-35 NS - - - - 1707 1712 1721 1609 1808 23.5 23.5 0. dark colured technical Abrasion resistant compounds für retreading tyre treads.5 0. transportation belts.5 49-55 49-56 50-55 61-68 48-58 NS S S S S NAPH HAR HAR HAR HAR 37.5 40 23.% 0.%] 1500 1502 23.2 9.5 23.% wt.03 0.5 30-35 NS - - - - 1509 23.07 wt.04 0.% wt.E-SBR: Selected Grades E-SBR Styrenegrade content [wt.5 ML 1+4 (100°C) [MU] 50-52 50-52 Antioxydant Mineral Oil System grade loading [phr] S NS - Carbon Black grade loading [phr] - Remarks & Application Areas General purpose rubber for tyre treads and for technical rubber goods uncoloured technical goods Compounds with good processability (calandered and injection moulded products) E-SBR with low ash content and low water swell (cables and electronic industry) lught colourd rubber goods (hoses and profiles) Tyre treads. Houston (1989) E-SBR: Recipe for Cold Rubber Production Monomers: Butadiene Styrene Modifier: Reaction medium: Water Emulsifier System: K-salt of disproportionated rosin Na-salt of methylen-bis-naphthalinsulfonic acid Initiator-System: p-Menthylhydroperoxide FeSO4 * 7 H20 Di-sodium salt of ethylenediaminotetraacetic acid Na-salt of Formaldehydesulfoxylate Na3PO4*12 H2O 65. E-SBR: Ingredients of Polymerization Recipe I (Emulsifiers) Disproportionation of Abietic Acid CH3 Na-Salt of Methylene-bis (Naphthalin-sulfonic Acid) (Baykanol PQ(R)) H CH3 COOH Abietic Acid CH2 SO3 Na 2 Na + SO3 Na Pd CH3 CH3 CH3 + H CH3 COOH H CH3 COOH + H CH3 COOH Dehydroabietic Acid Dihydroabietic Acid Tetrahydroabietic Acid E-SBR: Ingredients of Polymerization Recipe II p-Menthanehydroperoxide (p-MHP) CH2 CH2 CH3 O CH3 O H Oil soluble hydroperoxide CH3 CH CH CH2 CH2 Na-Formaldehydesulfoxylate Na-Hydroxymethanesulfinate H O S H Ethylenedinitrilotetraacetic Acid (EDTA) O O CH2 N HO O CH2 CH2 CH2 N CH2 O OH CH2 OH O Na + Reducing agent H O Sequestering agent for Fe-Ions HO . S* + n Monomer R .R P.S .Mn* + HS .+ Fe3+ Fe2+ + oxydized reducing agent R-O-Mon* Growth Reaction: R-O-Mon* + n Monomer P* Regulation of Molar Mass with Mercaptanes: P* + HS .Mn* R .H + P* Termination Reaction: P* + P* P.E-SBR: Sequence of Reaction Steps Redox Initiation: R-OOH Fe3+ R-O* + Fe2+ + Reducing agent + Monomer R-O* + OH.H R .R R .H + R .4 140 105 70 35 0 0 0.P E-SBR: Influence of Thiols 100 175 Gel content [wt.4 Tert-dodecylmercaptane [phm] Tert-dodecylmercaptane [phm] .2 0.S .S* Transfer Reaction: P* + R-H R .2 0.S .%] 80 60 40 20 0 (ML 1+4 (100°C) [ME] 0 0.S* + R .Mn . %] 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Copolymerization Parameters (Styrene = M1.%] 80 Copolymerization Parameter: = 0.7 r2 = 1. %] k11 k12 k22 k21 E-SBR: Copolymerization of Butadiene and Styrene (Integral Styrene Incorporation) 100 Integral Styrene Content [wt. Butadiene = M2) r1 = 0.78 r1 (Styrene) r2 (Butadiene) = 1.4 As a Consequence of these copolymerization parameters there is no azeotropic composition r1 = r2 = Styrene Content of Monomer Feed [wt.39 60 Ideal (random) Copolymerization for Monomer Feed Styrene/Butadiene: 30/70 40 Monomer Feed Styrene/Butadiene: 30/70 Polymerization Temperature: + 50°C Hot Polymerisation .E-SBR: Styrene/Butadiene-Copolymerization (Differential Styrene Incorporation) Styrene Content of Polymer [wt.20°C (Cold Polymerisation) 20 0 0 20 40 60 80 100 Monomer Conversion [%] . 4-trans Vinyl [%] [%] [%] 0. Houston (1989) .8 23.7 14.4 19.6 20.5 62.6 71.2 21.8 7.0 Source: The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers.E-SBR: Distribution of Styrene Sequences in E-SBR 1502 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 Copolymerizationparameter Styrol = M1 Butadien= M2 r1 = 0.8 27.7 r2 = 1.4 Probability [%] r1 = r2 = k11 k12 k22 k21 9 10 11 12 Number of Styrene Units E-SBR: Microstructure Polymerizationtemperature [°C] -20 5 50 100 BR-Microstructure 1.4-cis 1.6 79.0 51. Krylene 1500* Krylene 1712 mod.E-SBR: Dependence of Tg on Styrene Content 100 80 60 40 expt.27 wt.581 (1950) Influence of None Polymeric Residues on Compound and Vulcanizate Properties: Analytical Data Product Mw [g/mol] Mw/Mn ML 1+4 (100°C) [ME] 45 51 52 54 Al [ppm] 655 1 Tg [°C] -51 -53 -50 -50 chloride [ppm] 0.46 3.74 Na [ppm] 1105 910 1502 355 137. 21. data Fox-Flory-equation Tg of atactic polystyrene Tg [°C] 20 0 -20 -40 -60 -80 -100 Tg of E-BR Tg: Tg1: Tg2: wn: Fox-Flory-Equation 1 w w2 = 1 + Tg2 Tg Tg1 Tg of copolymers in K Tg of homopolymer 1 in K Tg of homopolymer 2 in K weight fraction of copolymers 1 und 2 0 20 40 60 80 100 Styrene Content [Gew.33 0. Fox.045 Krylene 1500 mod.5 phr of Krynol 1712 contains 37. Sci.9 2.280 429.20 acetoneextract [wt.* Krylene 1500 Krynol 1712 mod.69 3.4 32.3 30.* Krynol 1712 * Modification of latex finishing (coagulation and crumb wash) in order to obtain a rubber with a reduced content of residues with low molar mass .% oil waterextract [wt..%] 0. J.%] 0.5 phr oil ==> 27.23 0.%] 6.170 716.079 0. J.110 0.210 740. Flory. Appl.20 3. Krynol 1712* Product 424.41 0.51 3.760 Ash cont. (850°C) [wt.230 0.%] Source: T.41 0.33 0. G. P.23 0.1 Krylene 1500 mod. 9 72 64 22 33 68.1 18.0 10.0 10.5 410 2.75 0.3 425 2.9 11.Influence of None Polymeric Residues on Compound and Vulcanizate Properties: Compound Composition Krylene 1712 Krylene 1500 mod.75 50 77.6 69 63 25 38 103.3 71 64 27 42 68.13 25.55 103.9 1.3 35.8 38.3 11.3 10.5 9.2 0.5 7.0 2.5 12.13 25. Krylene 1712* mod.0 67.13 25.5 1.9 480 2. Krylene 1500* [phr] [phr] [phr] [phr[ 103.0 8.1 0.55 68.3 18.8 9.2 0.5 0.13 25.2 4.75 0.0 0.5 1.0 0.0 0.8 71 64 25 36 Compound-Mooney ML1+4 (100°C) [MU] Rheometer (160° C) ΜL ∆F ts1 t50 t90 Vulcanizate Properties: Tensile Strength Elongation at break M100 M300 Shore A Hardness/23°C Shore A Hardness/70°C Rebound/23° C Rebound/70° C [dNm] [dNm] [min] [min] [min] [MPa] [%] [MPa] [MPa] [%] [%] .0 2.3 * Modification of latex finishing (coagulation and crumb wash) in order to obtain a rubber with a reduced content of residues with low molar mass Influence of None Polymeric Residues on Compound on Vulcanizate Properties Krylene 1712 Krylene 1500 mod.75 2.9 1.5 0.75 50 80 20.0 8.0 80.2 17.75 2.5 0.9 470 2.1 0.3 6.6 17.5 2.75 2.1 39.8 7.3 4. Krylene 1500* Carbon black N 339 Carbon black N 234 Mineral oil TMQ IPPD DTBD Stearic acid Zinc oxide Sulfur CBS DPG [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] 103.0 71.5 1.3 68.75 2.5 2.0 10.75 50 73.75 50 80 20.9 1.9 1.5 1.0 80.5 0.5 11.2 12.2 4. Krylene 1712* mod.7 8.7 14.0 0.1 37.75 0.3 4.75 0. 5 g/cm3) High compound price Modest resistance against chemicals and oils Crystallization at low temperatures poor ageing resistance at elevated temperatures . Glass Transition Temperature.3.2. volume E20/Teil 2. Johnson. 49 (1976) 650-702 CR: Property Profile and Application Areas Positive Aspects: • • • • • • • • • • • • High loadability gute Vulkanisationsfähigkeit Adjustable crystallization rate Good vulcanizate properties Good dynamic properties High weather an ozone resistance Good adhesion to metals Good resistance against fungi. Polychloroprene (CR) • Overview – Property Profile and Application Areas – Producers and Poroduction Capacities – Grades and Application Areas • Manufacturing – CR-Microstructure – Monomer Manufacturing Processes – Basic Features of Polymerization Recipes • Influence of CR-Microstructure on Chemical and Physical Properties – Crystallization. Houben Weyl-Müller Makromolekulare Stoffe (1987). 842-859 . CR-Vulkanization • Rubber Grades – Standard Grades – Sulfur Grades – Precrosslinked Grades • CR-Vulcanization – Mechanism • Substitution of CR Sources: . S. Rubber Chem. R.W. mould and bacteria Fair insulation properties Excellent fire resistance Low gas permeability Broad range of grades Negative Aspects: • • • • • High density (2. Obrecht. Technol.P. HCl HCl/CuCl (30-60° C) + NaOH/85° C .CR: Producers and Production Capacities (2010) Producer Denki Kagaku Kogyo KK Lanxess DuPont Tosoh Chonquin Changshou Chemicals Shanxi Syntheic Rubber Co Pidilite Showa Denko KK Nairit Scientific Industrial Capacity Site 100 75 45 32 28 25 25 20 10 Omi/Japan Dormagen/Germany Pontchartrin/USA Nanyo/Japan Chongquing/China Datong/China India Kawasaki/Japan Yerewan/Armenia Butadiene Acetylene X X X X X X X X X Total 360 Plant Closures Stagnant CR-Consumption in WE and USA Growing Consumption in South-East Asia Producer DuPont Bayer Capacity Site 30 50 25 25 Maydown/N.HCl + NaOH (85°C) Cl H2C CH CH2 + Cl H2C C Cl C CH2 Cl HC CH CH CH2 Only DuPont. K.3 (Chloroprene) Acetylene Route (1930) 2 HC CH CuCl/NH4Cl/HCl Nieuwland Butadiene Route (Gas phase chlorination / 1956) H 2C CH CH CH2 + Cl2 Cl Cl Cl + (ca. Erf. Distillers Co. Knapsack AG.:21.-Ireland Louisville/USA Houston/USA Grenoble/France Source: Various Press Releases Polimeri (BP) Monomer Manufacturing Processes 2-Chlorobutadiene-1.1961 Erf.1956. 40 %) HC CH CH2 Side products: chlorinated C8-Compounds Tetrachlorobutane CuCl Cl Cl H2C CH CH CH2 .: W. Prior. . Lanxess und Denki produce DCB 2-Chloroprene DE 1149001. Ltd. Prior. 60 %) Cl 2.: F.03. Kaiser. Vogt.3 (DCB) Cl H2C C CH + Cl2 Cl H 2C C Cl CH Cl CH2 CH2 CH2 CH CH CH2+ CH2 CH CH CH2 (ca.3-Dichlorobutadiene 1.07. H. J. Bellringer . Weiden 1-Chloroprene (impurity) GB 804254.:10. precrosslinked grades and sulfur grades) Application Areas of Rubber Grades Profiles 11% Belts 12% Cables 21% Hoses 44% Adhesive Grades Conveyor Belts 12% DCB-Content of Monomer Feed [phm] CR: Influence of Polymerization Temperature on Microstructure CH2 1.4-trans[%] 94.4 1.4-cis [%] 3.2 [%] 1.4 > 89% > 95% Tg [° C] Tm [ ° C] -45 105 -20 70 Rubber.4-trans content are an important factor .4 [%] 0.5 93.0 1.5 4.3 1.4 H CH2 C 3 C CH2 H 2 C CH2 Cl 1.8 4.5 91.4 1.5 88.and Latex Grades 85 0 10 50 60 70 20 40 30 Polymerization Temperature [° C] 80 For commercially available CR-grades small differences in the polymerization temperature and in the 1.4-cis C CH2 C C C CH2 H CH2 H Polymerization temperature [° C] +12 +30 +42 +57 +75 1.4 cis-1.1 1.2 1.4 1.5 5.8 8.8 1.5 1.CR: Grades and Aplication Areas CR Application Areas (2006) Latex applications 5% Rubber Applications 60% Polymerization Temperature [°C] Latex based adhesives 5% Solvent based adhesives 30% 50 45 40 35 30 25 20 15 10 0 0 1 2 3 4 5 6 7 Latex Grades Rubber Grades (Standard Grades.5 93.2 1.5 3.4-trans Cl Cl 1.0 1.2 Cl CH2 C 2 3 3.4-trans-Content [Mol %] 95 90 Adhesive grades Microstructure trans-1. 3-Dichlorobutadiene Water Disproportionated abietic acid NaOH or KOH Na-methylene-bis(naphthalinsulfonate) n-dodecylmercaptane Potassiumpersulfate Na-Anthrachinon-2-Sulfonate Sulfur Dimethacrylates of alkanediols Polymerization temperature [° C] Monomer conversion [%] Adhesive grade 100 100-200 2.1 1 10 100 1000 10000 Storage time [h] Source: U.85 Latex grade 100 100-200 2.2-1.0125 5 .0 0.2-1.05-0.3-0.5 0.0 0.5-1.Hi) Hi t1/2 20 30 40 50 60 70 80 0.5 0.5-1.85 Standard grades 90-100 0 .05-0.5-5.5-5.85 Sulfur grades 90-100 0 .3-0.5 0.0125 0.2-1.0 0.0 0.0 0.1 1 10 100 1000 0.85 CH3 + CH3 + CH3 CH2 SO3 Na 2 Na + SO3 Na Na-Methylene-Bis(Naphthalinsulfonate) (Baykanol PQ R) H CH3 COOH Dehydroabietic Acid H CH3 COOH Dihydroabietic Acid H CH3 COOH Tetrahydroabietic Acid CR: Determination of Crystallization Rate Dependence of Shore A Hardness on Crystallization Rate He Shore A Hardness Mercury dilatometry for the determination of crystallization rate (Tc =-5°C pretreatment: 30 min at 80°C) 0 10 Volume [mm3] He-Hi 1/2(He.05-0.3-0.10 100-200 2.0 0.0 0.0 0.0 0.3-0.2-1.5-5.05-0.3 30-50 70 .0 0.5-1.7 0.7 0.7 0.3-0.5 0. Eisele: Internal Bayer-Reporting System Storage time [h] .5-5.7 0.-parts] Chloroprene 2.0125 0.0 0.05-0.10 100-200 2.0125 20-50 60 .0125 30-50 60 .20 60 .85 Precrosslinked grades 100 100-200 2.2-1.5-1.CR: Basic Features of CR-Polymerization Recipes Recipe Ingredients [wt.3-0.0 0.7 0.7 30-50 60 .0 0.5 0.5-1.0 0.0 0.5-5.1-0. T bol [°C] 45 35 25 15 5 .35 .37 .36 101 100 .38 3 12 15 10-1 0 3 6 9 12 15 DCB-Content of Monomer Feed [%] DCB-Content of Monomer Feed [%] .CR: Crystallization Rate and Crystallite Melting Temperature Dependence of t1/2 on Storage Temperature (Baypren 210.34 103 45 Polymerizationtemperature [°C] 102 35 25 15 5 t 1/2 [h] 0 6 9 Tg [°C] .33 .31 . Pretreatment: 1 h / 60°C) 30 Crystallite melting temperature [° C] Dependence of Crystallite Melting Temperatures on Polymerization Temperature 80 70 60 50 40 30 20 10 0 -60 -10 40 25 20 t1/2 [h] 15 10 5 0 -20 -15 -10 -5 0 5 10 15 20 Storage Temperature [° C] lowest figures highest figures Polymerization temperature [° C] Source: U. Eisele „Introduction to Polymer Physics“ Springer Verlag Dependence of Tg and Crystallization Rate at -10°C on Monomer Feed and Polymerization Temperature Sym. 112 CR Carbon black (N 762) Polyetherthioether Vulkanox DDA Vulkanox 4010 NA Stearic acid Magnesium oxide Zinc oxide 100.0 2. Measurements at .0 30 5. Murray.5 4.5 0.0 0.10°C 500 lcanizates B.5 0.0 5.2475-1975 Compounds.5 2.5 phr phr phr phr phr phr phr Influence of Plasticizers (CR-grade: Neoprene® W (~ Baypre® 210) 300 250 200 Neoprene® W + mineral oil t1/2 [h] 10 5 0 100 80 60 40 20 0 Baypren 110 VSC (slowly crystallizing) t1/2 [h] 150 100 50 0 -20 -15 -10 -5 0 5 10 15 20 Neoprene® W + Butyloleate Temperature [°C] 0 20 40 60 80 100 Source: Baypren 210 (normally crystallizing) R. M. Unvulcanized CRCompounds and CR-Vulcanizates at . 110 100 B. J.0 0.0 75.0 phr phr phr phr phr phr phr phr 0 600 700 800 t1/2 [h] (unvulcanized CR) Dependence of Crystallization Rate on Blending Ratio of Two CR-Grades and on Type of Plasticizer 25 20 15 Unvulcanized ISO. D. 110 VSC s 400 CR-bases vu t1/2 [h] 300 U nv ul ca ni ze d 200 Un d ize n a lc vu CR nd ou p m -c o C R B.Crystalliaztion Rates of Unvulcanized CR. Technol. 34 (1961) 668-685 “First and Second Order Transitions in Neoprene“ .0 10. Detenber Rubber Chem . 210 0 100 200 300 400 500 KA 8418 B.10°C CR Stearic acid Magnesium oxide Phenyl-2-Naphthylamin Carbon black (N 772) Zinc oxide (active) Vulkacit® NP 100 0. 1.3 .Chloro .Dichloro .1.Dependence of Compression Set (CS) of Different CRGrades on Storage Temperature CS (168 h / variable temperatures) 100 90 80 70 60 50 40 30 20 10 0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 DCB-containing rubber grade (Baypren® 110) DCB-free rubber grade (Baypren® 210) CR Adhesive grade (Baypren® 320) Temperature [°C] Bayer-Brouchure: „Chloropren-Kautschuk von Bayer: Der vielseitig einsetzbare Werkstoff“ Recipe Features which are specific for Different CR-Rubber Grades Cl 2 .3 .3 .Butadiene CH2 CH CH2 Cl CH2 • Standard CR-Grade S S S S S • Sulfur Grade Sulfur S S S CH3 O O O CH2 O n CH3 CH2 • Precrosslinked CR-Grade Dimethacrylate CH2 .Butadiene CH2 Cl 2. S .S -)2 + Mn P .CS .S .S* + R .R P.S .CS .S* + RO .CS .H R .R + nM + HS .S* RO .CS .H + R .Mn* RO . vulcanizates based on xanthate modified CR exhibit better mechanical properties than mercaptane modified CR CR: Influence of End Groups on Vulcanizate Properties ISO-Compound 2475 CR 100.5 phr CR-grade with xanthate end groups Mercaptan modified CR-grade 16 Vulcanization: 40 min/150°C 22 Tensile Strength [MPa] 30 40 50 60 70 80 90 100 110 15 14 21 M300 [MPa] 13 12 11 10 20 19 18 10 11 12 13 14 15 ML 1+4 (100°C) Modulus M300 [MPa] .M n* R .Molar Mass Control by Mercaptanes and by Xanthogendisulfides Molar mass control by mercaptanes P* R .S .Mn* + (RO .0 phr ZnO active 5.CS .5 phr MgO 4.S* + (RO .Mn .CS .0 phr Carbon black N 762 30.Mn .0 phr Vulkacit NPV/C 0.S .S .S* R .S -)2 Molar mass control by Xanthogendisulfides results in the formation of polymer molecules with two identical (xanthate) end groups.CS .CS .CS .Mn* + HS .S* Molar mass control by Xanthogendisulfides P* RO .0 phr Phenyl-2-Naphthylamine 2.S . As a consequence. Xanthate end groups participate in vulcanization.0 phr Stearic Acid 0.S .CS .OR + RO .OR RO . 5 phr MgO 4. the Mooney viscosity of sulfur modified CR can increase or decrease. Sulfur grades can be vulcanized by the addition of ZnO and/or MgO (without the addition of accelerators). Compounding and Vulcanization: During compounding residual sulfur bridges are broken down "Mastication". the number of dangling chain ends is reduced and vulcanizate properties are improved. . timing belts) Production: CR-Sulfur Grades are obtained by two consecutive production steps (1. Detroit October 8-11. V-belts. In the 2nd production step. As a consequence of the chemical breakt down of the sulfur bridges dithiocarbamate end groups are incorporated. poly-v-belts. As a consequence. Polymerization and 2. As a consequence.0 phr Stearic Acid 0.5 phr Vulcanization: 40 min/150°C 250 Cycles until failure [kcycles] 200 150 100 50 0 52 54 56 58 60 62 64 66 68 Strain Amplitude[%] Source: R.0 phr Carbon black N 762 30.0 phr Vulkacit NPV/C 0. Critical Aspects: During storage.0 phr Phenyl-2-Naphthylamine 2.. belts which meet the requirements of different applications are a major application area (conveyor belts. Chemical break down of high molar masses) In the 1st production step chloroprene and sulfur are copolymerized. Heat resistance of vulcanizates based on sulfur modified CR is inerior to that of standard CR.0 phr ZnO active 5.Dynamic Resistance of CR-Standard Grades (Monsanto Test) Xanthate modified CR-Grade (Baypren 121) Mercaptane modfied CR-grade (Baypren 110 VSC) unaged 7 days / 100°C unaged 7 days / 100°C ISO-Compound 2475 CR 100. These end group participate in vulcanization. The copolymers obtained have a high molar mass and long sulfur bridges. the molar mass of the copolymers is reduced by a break down of sulfur bridges (peptization). 1991 CR-Sulfur Grades S u Cl v w Cl S NR2 C S ( CH2 C CH CH2 ) S (CH2 C CH CH2 ) x Sy C NR2 Application: Vulcanizates which are based on CR sulfur grades perform particularly well in dynamic applications. Musch presented at the 140th ACS Rubber Division Meeting. 2 20 min-1 1.0 phr phr phr phr phr phr phr phr .Production of CR-Sulfur Grades 1) Copolymerization of Chloroprene and Sulfur Cl CH2 C CH CH2 + S8 2) Chemical break down of high molar masses by the use of disulfides.2 0.6 8 Incorporated Sulfur 10 Mastication time [min] Mastication: Mill size: Friction: Revolutions: Width: Amount: 200 x 400 mm 1:1. particularly Thiuramdisulfides Cl Sa ( CH2 CH CH2 )n S Sw ( CH2 v S NR2 S S S NR2 Cl CH CH2)x Cl Sa ( CH2 CH CH2)n S v S S NR2 NR2 S S Sw ( CH2 CH CH2) x Impact of the Amount of Incorporated Sulfur on Mastication and Ageing Performance 50 ML 1+4 (100°C) [ME] 48 46 44 42 40 38 36 34 32 30 0 2 4 6 Baypren 510 80 Change of M100 (7d/100°C) [%] Baypren 610 70 60 50 40 30 20 10 0 0 0.0 5.0 0.4 0.2 mm 600 mg Sulfur [phm] Compound Ingredients: CR Ruß (N 762) Polyetherthioether Vulkanox DDA Vulkanox 4010 NA Stearic acid Magnesium oxide Zinc oxide 100 75 10 2.5 0.5 4. Die swell Rubber Compound = de do x 100 Ungelled (soluble) CR d0 de . The two blend components are produced separately by emulsion polymerization. CR-Gel Application: Unvulcanized CR compounds which contain CR gel exhibit good processing features. particularly a low die swell. By the latex blending process a good dispersion of the gelled CR paricles in the soluble CR phase is achieved. As a consequence. These end groups are active in vulcaniaztion. the two latices are blended. CR sulfur grades are vulcanized by the use of ZnO and MgO (+ Stearinsäure) without using accelerators. CR-Sulfur grades can be considered as "rubber bound intermediates“ which are known from theoretical considerations on the mechanism of sulfur cure. Prior to finishing.Vulcanization of CR-Sulfur Grades H H H N S S H H C S Sx S N CR-Sulfur grades (which are fully commercially available) contain dithiocarbamate end groups which are attached via sulfur bridges. CR sulfur grades exhibit a critical stability of Mooney viscosities during storage particularly at elevated temperatures. H C N S S S Sx S N SH S N Precrosslinked CR-Grades Production: Precrosslinked CR-rades are blends of gelled CR and ungelled (soluble) CR. Major application areas are extruded articles (wiper blades as well as window and door seals In these applications CR is being substituted by EPDM and TPEs. ZnCl + O NH CH2 S CH2CH2 S S N CH3 Ethylenethiourea (ETU/Vulkacit(R) NPV) "cyclic Dithiocarbamate" (Vulkacit(R) CRV) NH CH2 CH2 CH2 CH O CH2 O NH S NH Cl CH2 CH2 CH2 CH CH2 S NH NH CH2 CH CH2 S CH2 CH2 CH CH2 CH2 CH2 CH2CH2 End groups which participate in CR-Vulcanization S S Sx S S O R Xanthate end groups are present in in xanthate modified CR Dithiocarbamate end groups are present in sulfur modified CR - NR2 CH2 CH2 CH2 CH CH2 S + ZnCl + .Properties of Precrosslinked CR-Grades 20 50 Tensile Strength [MPa] 0 10 20 30 40 50 60 70 46 Die Swell [%] 42 38 34 30 26 Gel content [wt.ZnCl2 + CH2 CH .% %] 18 16 14 12 10 0 10 20 30 40 50 60 70 Gel content [wt.% %] Mechanism of CR-Vulcanization according to Pariser/Du Pont S Cl CH2 CH CH2 CH CH2 Cl NH S NH CH2 CH CH2 S + Vulcanization of CR Cl Chemicals for CR-Vulcanization S + NH NH NH NH CH2 CH2 CH2 CH2 CH2 CH2 CH NH NH + ZnO . service temperature [° C] MVQ 225 200 FZ 175 150 125 100 EU 75 50 0 20 40 60 80 100 120 140 no requirements AU FMVQ Resistance to high temperatures 80 % VAc ACM HNBR NBR AEM to high temperatures. 3 [Vol %] .Substitution of CR 250 FKM max. Volume Swell in ASTM-Öl Nr. flame resistance Resistance CM CSM Price EVM Resistance to dynamic stress (H)IIR EPDM CR SBR BR NR max. Nitrile Rubber (NBR) • Overview – – – – – – – – – – NBR-Microstructure Basic Features of NBR and Range of NBR Grades Application Areas of NBR and Market Producers and Production Capacities Range of NBR Grades Dependence of Properties on Acrylonitrile Content Emulsifiers Initiator systems Molar mass regulation Copolymerization • Polymerisation • Product groups and Properties – Standard grades – Carboxylated grades – Precrosslinked grades • Vulcanization and Vulcanizate Properties NBR: Microstructure C C N N 2 HC HC 3 CH 1 2 4 4 CH2 δ+ δ− CH2 CH CH CH2 3 CH CH 2 C N C H2 CH2 1 CH 2 CH 2 1 1.4-cis 1.4-trans Vinyl Acrylonitrile . 6 20. greases and fats •High kevel of mechanical properties •High abrasion resistance especiall for carboxalated grades • Broad range of grades • Low gas permeability • Low price level / high competition Negative: • Maximal service temperature: < 110 °C (Criterium: 1000 h / εb=0.Dependence of the Microstructure of Incorporated Butadiene Moieties on Polymerization Temperature Polymerizationtemperature [°C] -20 5 50 100 Microstructure of Butadiene Sequences 1.8 23.4 19.4-trans Vinyl [%] [%] [%] 0.8 7.6 71.0 51.5 62.4-cis 1.8 27.6 79.0 Source: The Synthetic Rubber Manual (International Institute of Synthetic Rubber Producers. fuels. Houston (1989) Standard grades Basic Features of NBR Fast curing / Low mould fouling (Injection moulding) slow cure peroxide cure Special grades X-NBR Precrosslinked NBR NBR/PVC-Blends NBR-powder grades liquid NBR -HO-terminated -COO-terminated -NH2-terminated NBR mit bound antioxydant Positive: • Low degree of swelling in oil.2 21.5*εb0) • Standard grades are not applicable for outdoor use (contrary to NBR/PVC-Blends) .7 14. NBR-Application Areas in Western Europe Automotive 35% Rubber Goods (without automotive) 34% Rubber modification of Thermoplastic and duroplastic polymers 11% Adhesives 1% Others 4% Cable and shoes 5% wiring 5% building 5% 300 Volume swell [%] 250 200 150 100 50 0 NR SBR CR NBR 0 14 21 7 time in ASTM-ÖL3 [days] NBR:Market.und Development 450 400 350 Consumption [j/y] 300 250 200 150 100 50 0 19 85 19 90 19 95 20 00 20 05 20 10 . updated in July 2010) Zeon Tokuyama / JP Kawasaki /JP Louisville / USA Houston / USA Barry/Wales / GB (Baton Rouge / USA) La Wantzenau / FR Leverkusen / DE Sarnia / CAN Triunfo / BRA Yokkaichi / JP Porto Torres / IT Altamira / Mexico Ulsan Goodrich Goodyear BP (Copolymer) Polysar Bayer Polysar Petroflex Lanxess JSR Polimeri Paratec Korean Kumho Lucky Gold President Eliokem Nitriflex PASA S&C Sibur Negromex/Uniroyal Hyundai Kaoshing / Taiwan Sandouville / FR Goodyear Valia /Gujarat . %] 45 40 35 30 25 20 15 20 30 40 50 60 70 80 90 100 125 Mooney Viscosity ML 1+ 4 (100°C) without pretreatment (DIN 53523) . April.NBR: Production Capacities (European Rubber Journal 181. no no 4. 10 1999. S.Indien Goodyear Duque de Caxais / BRA Santa Fe Bareilly Omsk 45 20 35 28 15 15 100 35 25 30 35 30 25 20 16 15 11 25 10 5 2 424 Nipol Nipol Hycar Chemigum Breon (Nysin) Perbunan / Krynac Perbunan Perbunan / Krynac Perbunan JSR NBR Europrene Paratec Kumho NBR Chemigum (Powder) Chemigum (bales) Nitriflex/Nitriclean Total: NBR-Standard Grades 50 Acrylonitrile content [wt. %] . Taylor J. 581 (1950) 40 50 60 70 80 90 100 Acrylonitrile content [wt.80°C TgPAN = + 100°C *Gordon M. 3 (aromatic/naphthenic) ASTM Öl Nr.%] NBR: Dependence of Volume Swelling on Acrylonitrile Content 90 80 Expt.NBR: Dependence of Tg on Acrylonitrile Content 100 80 60 PAN Tg [°C] 40 20 +0 -20 -40 -60 -80 -100 0 10 20 30 E-BR e ng a R o om C f er m s de a gr l a ci Gordon-Taylor-Equation* TgCopolymer = w1*Tg1 + w2*Tg2 TgE-BR = . Conditions: 14 days Fuel B and C: 20°C ASTM-Oils: 140°C vvvvvWeight Change[%] 70 60 50 40 30 20 10 0 -10 0 5 Fuel C (Isooctan/Toluene: 50/50) Fuel B (Isooctan/Toluene: 70/30) ASTM Öl Nr. Sci. J. S.. 1 (paraffinic) 10 15 20 25 30 35 40 45 50 Acrylonitrile content [wt.. Appl.. 21. %] Source: Rubber. 3 Synthetic Ullmann‘ s Encyclopedia of Technical Chemistry.%] 20°C Acrylonitrile content [wt. Vol A 23 (1993) Dependence of Compression Set on Acrylonitrile Content 50 Compression Set (70 h/100°C) [%] 40 30 20 10 0 0 5 10 15 20 25 30 35 40 45 50 Acrylonitrile-content [wt.%] Source: Rubber. Vol A 23 (1993) . 3 Synthetic Ullmann‘ s Encyclopedia of Technical Chemistry.Dependence of Shore A-Hardness and Rebound on Acrylonitrile Content 90 80 Shore A Hardness 70 60 50 40 0 5 10 15 20 25 30 35 40 45 50 75°C 50 40 75°C Rebound [%] 20°C 30 20 10 0 0 5 10 15 20 25 30 35 40 45 50 Acrylonitrile [wt. S* + n Monomer R .5 27.H + R .H R .S* + R .4 3.H + P* Deactivation: P* + P* P.4 31 37.NBR-Polymerization: Activation of Polymerization.3 32.3 36. C14 ges. C18 ges.8 24.5 2.1 0.5 26.S . 3.1 37.S .7 40.R R . C18 unges.2 32.+ Fe3+ Fe2+ + oxydized Reducing agent R-O-Mon* Growth reaction: R-O-Mon* + n Monomer P* Molar Mass Regulation by Mercaptanes: P* + HS .Mn* + HS . Na-Salz (Baykanol PQ(R)) SO3 Na 2 Na + SO3 Na Sulfates.und Sulfonates (Examples) Na-Laurylsulfate Na-Alkylarylsufonate Na-Alkylsufonate (Texapon) (Marlon) (Mersolat) CH2 .5 34. Molar Mass Regulation and Deactivation Redox Initiation: R-OOH Fe3+ R-O* + Fe2+ + Reducing agent + Monomer R-O* + OH.S* Transfer Reaction: P* + R-H R .Mn* R .P Emulsifiers for NBR-Polymerization Disproportionated Abietic Acid CH3 CH3 CH3 CH3 Pd H CH3 COOH H CH3 COOH + H CH3 COOH + H CH3 COOH Abietic Acid Dehydro abietic acid Dihydro abietic acid Tetrahydro abietic acid Partially hydrogenated tallow fatty acids Producer Brand name BAX Holm Oleon Unichema Cognis AG IS/1 THT 1618W Radiacid 40 Prifac 5910 Edenor C1618 C14 ges.8 31.5 35.3 33.R P.6 28.S .6 1.1 Methylen-Bis (Naphthalinsulfonsäure).Mn . %] Source: W.Activatator Systems for NBR-Polymerization “Organic“ Activation System p-Menthylhydroperoxide (p-MHP) CH2 CH2 CH3 CH CH CH3 O O H “Inorganic“ Activation System (NH4)2 S2O8 Ammoniumperoxodisulfate CH3 Na-Formaldehydesulfoxylate Na-Hydroxymethanesulfinate H H O O S O Na + CH2 CH2 CH2 N CH2 HO CH2 CH2 OH H Ethylenedinitrilotetraacetic acid (EDTA) O O HO HO O Ion-(II) sulfate Fe SO4 CH2 N CH2 CH2 CH2 N CH2 O OH CH2 OH CH2 CH2 OH Triethanolamine Copolymerization Diagram for the Copolymerisation of Butadiene/ACN. r2 = 0. r2 = 0.(for incremental conversions) Acrylonitrile content of polymer [wt. Berliner Union Verlag .28 50°C: r1 = 0. 38+5 Gew. Butadiene = M2) 5°C: r1 = 0. Nitrilkautschuk.02. 62+ 5 Gew. %] 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Azeotropic Composition Ideal Copolymerisation Copolymerization Parameters (ACN = M1.% r1 = r2 = k11 k12 k22 k21 Acrylonitrile content of monomer feed [wt.% Butadiene: ca.04. Hofmann.42 Azeotropic composition: (calculated for 5°C) Acrylonitrile: ca. NBR: Dependence of Integral Copolymer Composition on Monomer Conversion Acrylonitrile Content of Polymer [Gew. Butadien = M2): r1 = 0.% 5 wt.% 50 wt. Berliner Union Verlag NBR: Dependence of Incremental and Integral Acrylonitrile Content on Monomer Conversion Acrylnitrilonitrile content of polymer [wt.28 Acrylonitrile content of monomer feed: 60 wt. Hofmann.% Copolymerizatin parameters: r1 = 0.02.% 33 wt.3 Gew. %] Incorporation of ACN during batch-polymerization 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Incremental composition Integral composition Monomer Feed: Acrylonitrile: 73.% 10 wt.023.% 38 wt.% 20 wt. unless polymerization is performed in the azeotropic monomer composition Monomer conversion [%] . r2 = 0. r2 = 0.% Butadiene: 26. Nitrilkautschuk.% 40 50 60 70 80 90 100 Monomer Conversion [%] W.7 wt. %] 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 Modellierungsparameter (ACN = M1.30 For the production of a NBR-grade with a high chemical homogenity one or both of the two monomers (ACN respectively butadiene) have to be incrementally added during the course of the polymerization in order to compensate for changes in the composition of the monomer feed.% 28 wt. 5 23 21.8 34 29. Cleveland.NBR: Dependence of Tg on Polymerization Parameters (Batch-Polymerization) Sample Bound Polymerization ACN temperature [wt.9 32.2 28. R.3 0.7 TDM / Phillips Chevron Amount of TDM [phm] • For NBR-Production C12-Mercaptans are efficient molar mass modifiers • Tert.6 0. Ohio.1 0.%] A B C D E F G H I K 38. Landi (Uniroyal) Presented at a meeting of the Divison of Rubber Chemistry of the American Chemical Society.4 ACN-addition during polymerization + - Monomer Tg Conversion Lower Tg Upper Tg [%] >57 >57 >57 >57 >57 >57 >57 >57 >57 57 -46 -49 -64 -61 [°C] 5 5 5 50 50 50 50 50 50 50 [°C] [°C] -19 -22 -33 -13 -26 -32 -33 -40 -53 -31 Batchwise NBR-Polymerization may result in chemically inhomogenous blends which exhibit two separate Tg-peaks Source: V.8 25.8 44.5 0.4 0.-Dodecylmercaptane (TDM) is specifically important • TDM by Chevron Phillips is based on propene-tetramers • TDM by Lanxess is based on isobutene-trimers . October 12-15 (1971) Rubber Chemistry and Technology Influence of TDM-Quality on the Efficiency of Molar Mass Regulation 160 140 Mooney Viscosity ML1+4 (100°C) 120 100 TDM / Lanxess 80 60 40 20 0 0 0.2 0.1 31. Jp 07 316 126 Jp 07 316 127 Jp 07 316 128 DE 102007024009 Company Zeon Zeon Zeon Lanxess Priority 27.12.Molar Mass Regulation by TDM Based on TIB 1. TIB.6'-Pentmethylheptanthiol-4 SH Patent No. and Rubber Composition .6.6.4.MeerweinRearrangement + H + + .H+ + "Triisobutene (TIB)" 2.1994 27.12.1994 (Jp) 29.03. TDM-Production by the Addition of H2S to TIB H2S / Cat.6-pentamethylheptan-4-thiol Preparation of 2.12.6-pentamethylheptan-4-thiol Preparation of 2.2.1993 (Jp) 29.1994 (Jp) Patent Title Unsatuarated Nitrile/Conjugated Diene copolymer.4. process for Producing the same.4.2'.05. + "Triisobutene (TIB)" 2. Thermal Decomposition of TDM-End Groups CH3 H3C C CH2 CH2 CH CH CH2 S C CH2 H3C C CH3 CH3 H3C CH3 CH3 C CH3 CH2 C CH3 CH3 CH C CH3 CH3 CH3 Vulcanization CH2 CH CH + CH2 SH TDM derived end groups result in: • • • Acceleration of speed of cure Reduction of free (dangling) chain ends / Improvement of mechanical properties During vulcanization TIB is released which causes odour Patent No. EP 0692496 EP 0779300 EP 0779301 Company Zeon Zeon Zeon Priority 30.6.08.1994 27.08.Production by Isobutene-Oligomerisation 2 + + Wagner.4.6.2.6-pentamethylheptan-4-thiol TDM-Mischung: Herstellung und Anwendung Reaction of Incorporated TDM-End Groups During Vulcanization 3.2007 Patent Title Preparation of 2.1994 22.2. 00 60.2007 22. K.05. DE 102007024011 DE 102007014010 DE 102007024010 Company Lanxess Lanxess Lanxess Priority 22.00 20.2007 22.00 100.Ions retarding: Mg-.00 120.00 40. Ca.Ions Patent No.00 Ion-Number (IN) .00 80.05.2007 Patent Title Nitrile Rubber with Specific Ion Number Nitrile Rubber with Specific Ion Number Nitrile Rubber with Specific Ion Number Dependence of NBR-Properties on Content of Metal Ions cCa Ion-Number = 3 40 + cMg 24 _ cNa 23 + cK 39 ppm Atomic Weight 70 Mooneyscorch MS5 (120°C) [min] 60 50 40 30 20 10 0 0.05.Dependence of NBR-Properties on Content of Metal Ions cCa Ion-Number = 3 40 + cMg 24 cNa 23 + cK 39 ppm Atomic weight weight _ Influence of Ions on Speed of Cure: accelerating: Na-. Rubber Degradating rubbers H O S H O .0 2 O C C + + 2 R-H C Avoidance of phenoland amine based antioxydants (=radical scavengers) H O X-linking efficiency = Number of x-links PeroxidePeroxide-functions Theoretical X-linking efficiency 1 >1 <1 H O H O Type of Rubber M .Rubber R .Dependence of NBR-Properties on Metal Ion Content cCa Ion-Number = 3 40 + cMg 24 _ cNa 23 + cK 39 ppm Atomic Weight 10 9 8 M300 [MPa] 7 6 5 4 3 2 1 0 -20 0 20 40 60 80 100 120 Ion-Number (IN) NBR: Peroxyde Curable Grades Rubber O O 2 C O (R*) NBR Crosslinking efficiency 1. 5 17 67 3.3 260 4.5 1.0 5.4 2.5 2. %.2 7.2 71 16.8 310 4.3 16.5 2.6 72 19.0 71 15.6 4.8 2.5 1.% ACN)* [phr] Zinc oxide [phr] Stearic acid Vulkanox OCD TMQ Vulkanox MB-2 Carbon black (N 550) Carbon black (N 772) Dioctylphthalat (Vestinol/Hüls) Etherthioether (Vulkanol OT) Vulkalent E Sulfur (Rhenocure IS-60-50) Vulkacit CZ Vulkazit NZ Vulkacit Thiuram Perkadox BC 40 (Akzo) Vulcanization t [min]/T [° C] EV 1 100 5.7 15.9 70 18. MR: 14%) Vulcanization of NBR: Results of Compound Study Vulcanization System ML1+4 (100° C) ts t90 Shore A TS εb M100 M300 [ME] [min] [min] EV 1 78 3. ML 1+4 (100°C): 50 ME.0 0.0 12/180 * Perbunan NT 1845 (ACN.0 2.4 7.5 365 4.0 50 5.3 12 -60 -49 EV 2 EV 3 Peroxide 87 1.0 40 5.5 1.5 80 30 50 20 6.0 4.5 1.9 310 4.5 1.3 0.4 16 -62 -60 20 77 0.2 13.5 2.0 2.0 1.0 25/160 16/160 Peroxide 100 1.0 0.3 1.0 0.0 0.0 1.0 25/160 EV 3 EV 2 100 100 5.4 17.0 14 - [MPa] [%] [MPa] [MPa] [%] [%] [%] [° C] [° C] [%] CS (70h/100°C) CS (70h/120°C) CS (70h/125°C) Brittleness Point Tg CS (24h/-20° C) .3 20 31 -62 -53.Vulcanization of NBR: Compound Study Ingredients NBR (18 wt. 18 Gew. Int. H.A Theoretical Approach“ Ibarra..Carboxylated NBR (X-NBR) C C N COOH N Carboxl-containing monomers: • Methacrylic acid • Itaconic acid • Maleic Acid Advantages: • • • • • • • • • High tensile strength High moduli Good dynamic performance (cut growth resistance) High abrasion resistance Disadvantages: Scorchiness of Compounds Cost of ZnO2 in relation to ZnO high Compression Set high heat-built-up bei dyn. C. K. Rubber Chemistry and Technol. N. L. Vol 3. Appl.. MgO. 30 (1957) 1347 Crosslinking Reactions of Carboxylated Elastomers“ . Alzorriz. Sc. • The following metal oxides are used: CaO. J.H2O • Vulcanization with metal oxides is used for X-NBR and CSM. Sources: Eisenberg. 48: 580-586 (1999) Naskar.. 2 (1974) 147 „Clustering of Ions in Organic Polymers . Beanspruchung Reduced ageing resistance Application ApplicationAreas: Areas: ••Spinning SpinningCods Codsund undspinning spinninghoses hoses •• high highperformance performanceshoe shoesoles soles •• pump stators / Pump pump stators / Pumpseals seals •• belts belts •• Hydraulic Hydraulichoses hoses Chemistry of Vulcanization with Metal oxides C CH3 CH3 _ _ OOC _ _ C OOC COO 2+ COO Zn + ZnOH 2+ ZnO CH3 Zn_ 2+ ZnO Zn _ _ + C COO _ OOC ZnOH COO CH3 _ _ CH2 H3C OOC C C CH2 CH2 CH3 C CH2 CH2 CH3 C CH2 CH3 C CH2 CH3 8 CH2 C COOH CH2 + ZnO . ZnO and ZnO2 • For scorch safety ZnO2 is superior over ZnO • Usually. A. D. Pol. Vol 80.. Macromolecules. Basu. vulcanization with metal oxides is combined with sulfur cure • Dual vulcanization results in a „hybride-network-structure“ • In a hybride network chemical as well as physical networks are present.. Polym. S. Debnath. M. 1725-1736 (2001) Brown. P. X .0 0 9.0 11.8 11.0 15.7 εb [%] Abrasion Index Ageing at 70h/121° C ∆ elongation [%] CS [%] Precrosslinked NBR Properties: Properties: ••Reduction Reductionof ofdie dieswell swell ••Increased dimension Increased dimensionstability stabilityafter afterextrusion extrusion ••Improvement of surface quality of extruded/calendered Improvement of surface quality of extruded/calenderedarticles articles ••Increase of Moduli Increase of Moduli ••Improvement Improvementof ofCS CS ••Reduction Reductionof ofTS TS ••Reduction Reductionof ofelongation elongationat atbreak break Precrosslinked NBR High Mooney NBR Krynac 34.5 83 5.and Vulcanizate Properties of NBR and X-NBR X-NBR NBR Fmin.5 21.0 21.5 10.0 10.5 430 493 .5 2 1 5 Fmax.3 67 1.7 4.0 10.0 18. ts t90 t95 Shore A M100 M200 M300 TS [MPa] [MPa] [MPa] [MPa] [min] [min] [min] [Nm] 100.Compound.8 8.2 78.1 50.7 2.NBR NBR CB (N 660) Dibutylphthalate Stearic acid Wingstay 29 Sulfur TMTD MBS Zinc oxide 100 0 40 5 2 1 0.35 27.2 500 73 .0 8.0 2.2 11.0 86.5 2 1 5 50 50 40 5 2 1 0.5 2 1 5 0 100 40 5 2 1 0.0 415 159 .8 6.6 25.42 34.3 3.0 60.7 7.30 14.0 80 4.0 18.1 0 100.0 50.80 Precrosslinked NBR-grades provide for high dimensional stability after extrusion which is only matched by standard NBR-grades with considerably increased Mooney viscosities . 5 1. [%] Die swell /linear [%] Fmin.3 1.8 677 40 54 13 34 20 30 80 70 44 47 5.6 5.95 1.58 5.5 19.5 1.% ACN) NBR (34 Gew.0 1.5 1.0 1.4 4. KALIS-Nr.9 0.8 1.7 31.77 10.5 30 10 0.7 16.5 30 10 0.3 1.1 488 39 61 12 28 .5 1.31 12.7 3.2 2.2 5.% ACN) Zincoxide Stearic acid TMQ (Vulkanox HS) Carbon black (Corax N 550) Vulkanol 81 Sulfur TBBS (Vulkacit NZ) TMTD (Vulkacit Thiuram) * Precrosslinked NBR Krynac VP KA 8769 Krynac 34.5 1.0 1. Marinelli/Welle.5 5.2 0.5 1.0 1.44 13 1.57 53 55 50 52 1. 10.5 30 10 0.4 15.2 5.76 4.5 1.6 6.68 4.64 4. 2000 Precrosslinked NBR: Results of Compound Study NBR* (34 Gew.15 11.0 1.1 1.Precrosslinked NBR: Compound Study NBR* (34 Gew.3 1.48 57 54 1.85 5.63 1.8 16.4 1.5 40 60 3.% ACN) Compound-ML [ME] Mooney-Relax.5 1.5 2.9 3.0 1.3 1.0 1.5 563 560 39 39 56 57 13 13 32 30 40 60 51 5.% ACN) NBR (34 Gew.61 51 49 1.77 1.4 14.5 Zincmethylmercaptobenzimidazol Lanxess Source: Bayer AG.: 9588 vom 05. [min] ts1 t90 [min] t95 [min] Shore A/23° C Shore A/70° C [MPa] M100 M200 [MPa] M300 [MPa] Tensile Strength [MPa] Elongation at break [%] Rebound/23° C [%] [%] Rebound/70° C CS (70h/23° C) [%] CS (70h/100°C) [%] 10 90 42 5.5 31.5 30 70 3. [dNm] [dNm] Fmax.8 42.31 6.5 20 80 3.5 30 10 0.84 5.0 1.50 Lanxess Henkel KGaA Lanxess Degussa Lanxess Kali Chemie Lanxess Lanxess phr phr phr phr phr phr phr phr phr phr phr 10 90 3. Overview on Solution Rubbers • Features of the Solution Process • Definition of “Solution Rubbers“ • Isolation of Rubbers from their Solutions – Dry Finishing with Extruders – Dry Finishing with Heated Mills (under vacuum) – Solvent Removal by „Steam Striping“ – Expeller Screw for Mechanical Water Removal from Rubber Advantages: • Use of water sensitive catalyst systems (Z/N. polymer modif.4-BR Solution Rubbers . Examples Rubber Ti-BR Ni-BR Co-BR Nd-BR Li-BR L-SBR EPM/EPDM CM/CSM HNBR IIR Reaction Medium solvent solvent solvent solvent solvent solvent solvent solvent solvent solvent Catalyst/Process Z/N* Z/N* Z/N* Z/N* anionic anionic Z/N* polymer modif. anionic.4.or total adiabatic processses are applied Disadvantages: • low content of solids • high viscosities • reactor fouling • waste air • waste water (depending on finishing technology) • high drying costs for recycled solvents (depending on finishing technology) Definition of Solution Rubbers and Examples A “solution rubber” is prepared in the presence of an organic solvent in which the rubber is either dissolved or dispersed. cationic) • evaporation cooling • low cooling costs if semi. cationic * Z/N = Ziegler-Natta Catalysis Solution-BR High-cis1. : B. Bredesen. Craig.04.: 16. K. von der Linden. C. G. Gilius. R. Johnson Dry Finishing with Hot Mills (Under Vacuum) Dry Finishing: Recovery of rubbers from their solutions by direct evaporation under vacuum with „heated mills“without the use of steam Source: DE 4032598 (Bayer AG) Prior.: D.1992 Inv. K. W.: 30. C. W.1977 Inv. Goth .Dry Finishing with Extruders (Under Vacuum) Dry Finishing: Recovery of rubbers from their solutions by direct evaporation with extruders without the use of steam Vent for Devolatilizing Srew press US 4124306 (French Oil Mill Machinery) Prior.11. Schleimer Expeller Screw for Mechanical Removal of Water from Rubbers After steam stripping a dispersion of rubber crumbs in water is otained. Slaby .1970 Inv. K.19990 Inventor: W.12.-O.: 13. Before thermal drying water is removed mechanically Source: US 2003007709 (Bayer AG) Prior. L.: 14.592. Ludlow Waste water Process for Precipitating Polymers US 5266211 Bunawerke Huels GmbH Prior.09. Wagner. Breuker. B. Moeller.07.06. Schweigler H.: 20.Solvent Removal by Steam Stripping Isolation of CSM from Solution Stripping unit Dewatering (expeller) screw Steam Steam PHControl Stripping aid oil Antioxydant Expander screw US 2. E. Goebel.: 05.1947 Inventor: J. Neuner In order to obtain rubber crumbs a cutting device is often attached at the end of a dewatering screw Source: US 3672641 (French Oil Mill Machinery) Prior. T.: N. H.: R.2001 Inv.814 (Du Pont) Prior. Vinyl • BR: Overview – – – – Property Profile and Areas of Application Microstructure.4-cis content • Low glass transition temperature Negative: • Poor resistance to heat and ageing • High degreee of swelling in fuels.2. • Brod spectrum of applications(tyres. TRP. golf balls) • Dependence of strain induced crystallization on 1. Overview on Polybutadiene Rubbers (BR): CH2 CH2 CH CH CH CH2 CH2 CH CH CH CH CH2 CH2 1. Glass Transition Temperature and Crystallization Producers and Production Capacities Market.4-cis 1.4-trans CH2 CH CH2 1.1.4. Tgs etc. modification of thermoplastics.and Solution Viscosities • Performance Requirements for Tyres and Impact Modification • Comparison of Production Technologies for High-cis-BR • Summary Property Profile and Areas of Application Positive: • Low price and good performance/price-ratio • Broad range of BR-grades with different molar masses. oil extenison.bzw. oils and greases • high gas permeability •Spontaneous crystallization Application Areas Technical Rubber Products 5% Rubber Toughening 23% Tyres 71% Golf ball cores 1% .und Market Development • Application of BR for Tyres and for Impact Modification (HIPS/ABS) – Comparison of BR grades in Tyre Performance • Unvulcanized Compound Properties (Green Strength and Tac) • Vulcanizate Performance (Dynamic Performance and Abrasion Resistance) – Comparison of BR-Grades for the Impact Modification of Thermoplastics (HIPS/ABS) • Principle of Rubber Toughening • BR Branching and Viscosity of Solutions • Correlation of Mooney. 2.3 18. Thorn-Csanyi.8 * aliphatic.BR: Microstuctures and Glass Transition Temperatures 1 1 CH2 4 CH2 CH 1 3 3 2 CH2 2 CH2 2 CH CH 4 CH 4 CH CH 3 CH2 1.7 17.7 18. Vinyl Catalyst Tg Li* -93 Co -106 Ni -107 Ti -103 Nd -109 E-BR** -80 Microstructure (according to manufacturer‘s product specifications) [%] 1. Technol.4-cis 1.7 1.7 4. H.4-trans CH2 1.4-cis 1.1 -100 -80 -60 -40 -20 0 Temperature [°C] Source: U.4-trans Vinyl 36-38 52 10-11 97 1 2 97 2 1 93 3 3-4 98 1 <1 12.6 <1 0.1 17.-D. (1977) 222-230 Crystallization Rate of Unvulcanized and Vulcanized BR (Nd catalyzed BR) 100 Raw Rubber Vulcanizate t 1/2 [min] 10 1 0.9 68.0 5.4 4.4 11.) [%] Vinyl/1H-NMR*** Vinyl/FT-IR*** Vinyl/Metathese*** 10.bzw. Rubber Chem.8 Microstructure (according to Thorn-Csanyi et al. Springer-Verlag 1990 .0 1. Luginsland.6 0. Eisele Introduction to Polymer Physics.4 10. cycloaliphatic aromatic solvents without polar additives ** Polymer Handbook/Polymerisation temperature: 25°C *** E.9 1. 4-cis-content [%] BR: Producers and Production Capacities 500 450 400 350 Capacity [kt] 300 250 200 150 100 50 0 iz D hn ow ek T am ha ila sk nd ne fte ch im La nx es G oo s dy ea r M ic he lin Si no pe c B S/ FS K um ho er i ol im sa hi Ze on ot he rs ib ur be U C TS R S JS R A P Source: IISRP Worldwide Rubber Statistics 2001 / Amendments 2011 N .4-cis-Content on Crystalization Rate and Melting Temperature of Crystallites 250 0 Melting temperature of crystallites [° C] 200 t 1/2 (-20° C) [min] Nd Ni Co Ti -5 Nd Ni Co Ti 150 -10 100 -15 50 -20 0 90 92.4-cis-content [%] 1.5 95 97.5 100 1.BR: Impact of 1.5 100 -25 90 92.5 95 97. Yeochin. GaoQiao. Kralupy. Beaumont. Louisville. FR Korea Kumho. Cabo. DE Petroflex. Yeosu BS/FS. CZ Ube.2 Mio t) Ni-BR 38% HIPS/ABS-Market (0. Caojing ASRC (Michelin). Texas Sinopec. La Lanxess. JP Nizhnekamskneftechim Michelin. Ravenna. Chiba. Tx 0 50 100 150 200 250 300 350 400 Li Ni Ti Co Nd Li/Co/Nd Ni/Nd Capacity [kt] BR: Application Areas Application Areas of BR Technical Rubber Goods 5% HIPS/ABS 23% Tyres 71% Golf balls 1% not assigned 7% Li-BR 7% Nd-BR 8% Tyre Market (2. Lake Charles. Schkopau. FR Dow. Ky Goodyear Tyre&Rubber Co. Dormagen. Port Jérôme. IT Lanxess. Bassens. SA. Orange. BR Lanxess.Selected BR-Producers and BR-Grades Polimeri.68 Mio t) Li-BR 48% Ti-BR 18% Co-BR 22% Co-BR 52% . DE Chemizna Dwory.. 0 phr 3.: KA 34287e. Co-. Edition 10. Li-) Zinc oxide Sulfur Stearic acid Carbon black (NBS 378) TBBS Oil (ASTM Type 103) Vulcanization: 100.0 phr 0. Order No.0 phr 1. Ti-.98 ASTM Designation: D 3189 .90 „Standard Test Methods for Rubber-Evaluation of Solution BR .9 phr 15.0 phr 60.Anatomy of a Passenger Tire and Use of BR Tread SBR/BR: 70/30 Sub Tread NR/BR: 80/20 Sidewall NR/BR: 60/40 Rim Cushion NR/BR: 80/20 Carcass NR/BR: 90/10 Apex NR/BR: 80/20 Source: Comparison of BR-Grades for the Application in Tyres (ASTM-Compound 3189 – 90) BR (Nd-.5 phr 2.0 phr 145° C/35 min Source: Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group. 98 Tack of Unvulcaniuzed BR-Compounds 350 Li-BR time until separation [sec] 300 250 200 150 100 50 0 100 Ti-BR Co-BR Nd-BR Improvement 1000 10000 critical load for separation [g] Source: „ Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group. Order No.Green Strength of BR-Compounds 5 4 3 2 1 0 0 250 500 750 1000 Stress [MPa] Li-BR Ti-BR Co-BR Nd-BR Strain [%] Source: Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group. Edition 10.: KA 34287e.: KA 34287e.98 . Edition 10. Order No. 4 65 49 23 85 33 [° C] [mm/kc] [cycles] 27 1.1 64 45 33 85 33 36 1. dry Asphalt.3-Dienes“ Makromol. Wilson „Recent Advances in the Neodymium Catalysed Polymerisation of 1.Vulcanizate Properties of BR Grades BR Grade Vulcanizate properties Tensile Strength Elongation at break M300 Shore A-Hardness Rebound DIN-Abrasion Pendulum -Skid Asphalt.. J. Macromol.4-cis BR: Dynamic Performance of BRVulcanizates (Monsanto Fatigue to Failure Test) Number of Kilocycles until Failure 40 35 30 25 20 15 10 5 0 Improvement Ti Ni Co Nd Source: D.5 115 Butadiene Rubber for the rubber industry“ Bayer AG Rubber Business Group.0 480 8.0 66 47 52 89 35 18 5.4 525 510 8. Edition 10. 273-288 (1993) . Symp.0 50 8.98 1.6 63 47 27 85 33 32 6.6 63 14.: KA 34287e.3 400 9.5 13. wet Dynamic properties Goodrich-HBU De-Mattia crack growth Monsonto-FTF/ε =100% Source: “ Nd [MPa] [%] [MPa] [%] [mm3] 15.9 460 Co Ti Li 13. 66. Order No. Chem. -J Renner.4-cis BR: Abrasion Resistance of BR-Vulcanizates (DIN-Abrasion) 50 45 Ti-BR Ni-BR Co-BR Nd-BR Improvement Abrasion [mm3] 40 35 30 25 20 0 Source: 5 10 Modulus at 300% elongation [MPa] 15 D.3-Dienes“ Makromol. Schade. Heckmann (BASF) „Predictive property Adjustment“ Kunststoffe international 7/2010. 66. W. 273-288 (1993) Phase Morphology of Rubber Modified Thermoplastics and Thermoset Resins Grafted Shell „Compatibilizer“ Hard Phase (coherent phase or matrix) Soft (dispersed) Phase Rubber Modified Thermoplastics Soft Phase BR BR EPDM EPM NBR Hard Phase SAN PS SAN PP PP Examples ABS HIPS AES EPM/PP NBR/PP The impact resistance of hard and brittle thermoplastic and duroplastic polymers is improved by rubber particles Prerequisites for an efficient impact modification are: 1) good dispersion of the rubber phase in the matrix 2) good mechanical bonding across the phase boundaries 3) x-linking of the rubber phase Source: C. Chem.1. H. Wilson „Recent Advances in the Neodymium Catalysed Polymerisation of 1. Macromol.. J. Symp. 36-39 . %] Source: Rubbers as Impact Modifiers for Plastics Bayer AG Rubber Business Group Order No.%] 40 20 20 ho he 0 -40 -20 0 20 Temperature [° C] Source: H. Schwager (BASF). 10 Viscosity [mPa*s] 5 7 9 Solid Contents of BR solution [wt.: KA 34271e . pp. 406-414 „New Polymers from New Catalysts“ Impact of Branching on Solution Viscositiy of Li-BR in Styrene 100000 10000 1000 100 10 1 HX 565 Mooney: 65 HX 501 Mooney: 40 HX 530 Mooney: 65 Degree of Branching: 50-55 Degree of Branching: ca. Ebara. Kunststoffe 82. Polymers for Advanced Technologies 4. Johoji. H.Influence of Rubber Content on Notched Impact Resistance of EPM/PP-Blends Notched impact resistance [kJ/m2] 80 52 47 37 33 25 60 Rubber content [wt. Sasaki. T. 499 (1992) T. 18 Degree of Branching: ca. Order No.43 wt.2% / toluene) colour colourless Tack yes Green strength yes Strain induced crystallization yes dynamic resistance yes Abrasion resistance yes - The performance profiles for HIPS/ABS und for tyres differ significantly .: KA 34271e Performance Requirements for the Application of BR in Tyres and HIPS/ABS Property Performance Requirements for tyres for HIPS/ABS Tg as low as possible as low as possible Vinyl content > 1 Mol% Gel content not crical <500 ppm Solution viscosity <21 mPas (5. Rubber Business Group.% in toluene) [mPa*s] 260 240 220 200 180 160 140 120 100 80 L br in an ear ch a ed nd BR sli g gr htl ad y es Li-BR (commercial grades) Co-BR (commercial grades) 60 40 20 0 0 10 Star shaped BR 20 30 40 50 60 70 80 Mooney-Viscosity (ML1+4/100°C) [MU] Source: „Rubbers as Impact Modifiers for Plastics“ Bayer AG.Correlation of Solution and Mooney Viscosities of Different BR-Grades Solution Viscosity (5. High-cis-BR Production Technologies Transition Metal Solvent Residence time Conversion Tendency towards gel formation Heat removal Solids Content Molar Mass Control agents Formation of 4VCH Transition metal content Co Ni Ti Benzene Toluene 120 <95 low Nd Hexane Aliphatics 100-120 <100 Very low fully adiabatic 18-22 no low 100-200 Benzene. Nd-BR is advantageous from two points of view: • Tyre applications (particularly tyre treads) • Production technology For the impact modification of thermoplatics (HIPS and ABS) • Li-BR and Co-BR are superior • for Nd-BR a highly branched grade with a low solution viscosity is required . Benzene Toluene Toluene (Aliphatics) Hexane 150 120 [min] [%] 55-80 high partially adiabatic 14-22 yes high [ppm] 10-50 <85 high partially partially adiabatic adiabatic 15-16 11-12 yes high 50-100 no Very high 200-250 Positive feature Formation of 4-VCH by a Diels-Alder-Reaction Butadiene 4-Vinylcyclohexene (4-VCH) Summary From the different BR grades. Preparation and Properties – Integral Rubber • Green Tyre Technology • Recent Developments in S-SBR Technology Towards Improving Tyre Performance –Functionalisation of S-SBR Selected Milestones in Rubber History with a Special Emphasis on Anionic Polymerization Charles Goodyear discovers the vulcanization by sulfur John Dunlop patents pneumatic tire Matthews. Hsieh. L. Strange (England).2. Marcel Dekker Inc. New.4. York.up of commercial productions using anionic initiators by Firestone. P. Harries (Germany) and Schlenk (Germany) discover sodium as a catalyst for polymerization 1914-18 Start-up of Methyl-Rubber production in Germany (2. Shell and by Phillips Petroleum Source: H. Quirk. Anionic Polymerization. LiBR and S-SBR With a Special Emphasis on Integral Rubber • Selected Milestones in Rubber History • Capacities of Multi-Purpose Solution Plants • Origins of S-SBR Technology and Basic Features • Chemical Aspects of the Anionic Polymerization and Consequences – Reaction Mechanism and Catalyst Costs – Vinyl-Content and Impact on Tg – Branching and Impact on Processability – Styrene/Butadiene-Copolymers.3-dimethylbutadiene/Na-catalyst) 1926 Butadiene rubber developed in Germany (Buna) 1929 Ziegler discovers BuLi to be a polymerization catalyst 1929 First laboratory scale E-SBR by Tschunkur & Bock (Buna S) 1936 Ziegler describes the features of the anionic polymerization 1938 Invention of redox activation by Bock (“cold E-SBR“) 1939-45 BR-production in Russia (catalysts based on Na and K) 1952 Start-up of R&D into diene base rubbers/Li-metal by Firestone 1960ies Start. R. Basel 1996 1839 1888 1910 . Principles and Practical Consequences. 000 30. Hydrogenated polymers incl. E-SBR incl. batch isotherm one shot > 20% narrower Until today. US 3681304. TPE‘s Plant Location Western Europe EniChem Bayer Michelin Repsol Qimica Fina Polymers Dow Ravenna Grangemouth Lillebonne Bassens Santander Antwerp Schkopau Louisville.500 30. TPE‘s Americas ASR Bridgestone/Firestone Bayer Goodyear Petroflex Negromex incl. Tx Cabo Salamanca Altamira Oita Tokuyama Yokkaichi Yeochon Kaohsiung Newcastle Remarks Origin of basic technology Firestone/Asahi Phillips-Petroleum technology origin not assigned incl.000 360.000 80. US 3558575. the technologies have merged and there are only small differencies in the technologies of the leading companies Basic Patents: Firestone: Phillips: Bridgestone: US 3317918.000 110. TPE‘s incl. Ky Lake Charles Orange Orange Beaumont. SiCl4. US 3502746 JP 75-015271 .Capacities of Multi-Purpose Solution Plants* (BR/S-SBR-SBS-TPE‘s) Capacity [kt] 100.000 180.000 60.000 145.000 80. US 3787377 US 3458490.000 120.000 10.-Bu-Li cyclohexane glymes DVB.000 296. CA 966949.000 35. OS 2134656.500 Origin of S-SBR-Technologies and Basic Features Feature Initiator Solvent Randomizer branching agent/chain end coupling short stop process temperature control sequential monomer addition Vinyl content of BR-moieties molar mass distribution of base polymer n-Bu-Li n-hexane none DVB water continuous adiabatic butadiene ~ 10% broader Technology Firestone/Asahi Phillips sec. TPE‘s Others Korean Kumho Taiwan Synthetic Dow (Carbochem) Total Capacity * Source: IISRP Worldwide Rubber Statistics 2001 2. FR 1539429.000 48. US 3726844.000 30. FR 1539427. US 3438952. US 3205211.274. TPE‘s incl.000 80. TPE‘s incl. FR 1546396.000 85. BE 718549.000 incl. US 3726844. TPE‘s Japan Asahi Japan Elastomer Nippon Zeon JSR incl.000 30. SnCl4 stearic acid discontinuous.000 125.000 210. Mechanism of the Anionic Polymerization Initiation: R Li + + CH2 R Li + Chain growth: CH2 R Transfer reactions: Termination reactions: Li + CH2 + n ideally none ideally none R Li + n • Under ideal polymerization conditions.5 Monomer Conversion X Living Polymerization: Rational for Uniform Terminology T. T. E. Ittel. Darling. M. M. Matheson. Chemistry. • All polymer chains are initiated at the start of the polymerization and all chains grow up to total monomer consumption. S.0 0 0.. Haddleton. Moad. D. R. there is neither chain transfer nor termination reactions and the active species are truly living. P.r. v. Davis. jr. Rizzardo. A. G. Journal of Polym. R. Fryd. 1706-1708 (2000) . D. • The resulting polymer molecules have a narrow molar mass distribution and a high chemical homogeinity Features of a “Living Polymerization“ nMonomer DP = Molar Mass (Mn) [g/mol] nInitiator * f X nMonomer * MWMonomer Mn = Mn C m = = = 0 n Monomer * MGMonomer nInitiator * f nInitiator * f m *X + C X DP: degree of po0lymerization number average of molar mass Mn: X: monomer conversion nMonomer : amount of monomer [moles] MWMonomer: molar mass of monomer amount of initiator [moles] nInitiator : f: functionality of initiator u. Gridnev. Vol 38. A. w: amounts of initiator nInitiator = u nInitiator = v nInitiator = w u<v<w 1. Impact of the Gegenion and of the Solvent on the Vinyl-Content Gegenion Microstructure (Benzene) cis-1.4 1.4 trans-1. Casper in Ullmann‘s Encyclopedia of Technical Chemistry G.2-insertion: P Li X X X X + P + Li X X Solvent Microstructure cis-1. 801 . P. Müller in Houben Weyl. • Star shaped polymers are obtained by the coupling of low molar mass polymers. Sylvester u.Impact of Initiator Concentration on Molar Masses and on Catalyst Costs Costs for for Bu-Li [Pf/kg rubber] Costs BuLi [[Pf/kg] 25 20 15 10 5 0 0 50000 100000 150000 200000 250000 300000 350000 400000 Basis of calculation: • 65 DM/kg BuLi (4 DM/mol BuLi. S. Makromolekulare Stoffe.4 trans-1.2[%] [%] [%] 35 10 15 6 55 25 40 35 10 65 45 59 1. Methoden der organischen Chemie. Band E 20/Teil2. Therefore star shaped polymers are bound to be more expensive than standard rubbers at the same molar mass.4 1. MwBuLi: 61 g/mol) • Ideally “Living Polymerization“ Molar mass [g/mol] Molar mass [g/mol] Consequences from the living nature of the polymerization: • Catalyst costs increase with decreasing molar masses.2[%] [%] [%] 35 35 0 55 52 9 10 13 91 Hexane Toluene THF Sources: Ether with two coordination sites R.4-insertion: P Li + Li + P Li Na K Cs - 1. J. R. Mark..0 10 100 Ether [mol/mol Li] Source: Ullmann‘s Encyclopedia of Technical Chemistry Impact of the Vinyl Content of Li-BR on Tg +0 -10 -20 -30 -40 VI-BR Range of commercial Vinyl-BR grades Tg [° C] -50 -60 -70 -80 -90 -100 0 10 20 30 40 50 60 70 80 90 100 Standard-Li-BR (without modifiers) Vinyl-Content [%] S. F. New York. J. 1986. T. L. Aggarwal. J. Plenum Press. G.1 1. „Advances in Elastomers & Rubber Elasticity.Dependence of the Vinyl-Content on Polymerization Temperature and Modifier (Type and Concentration) 90 80 DME 30°C DME 50°C DME 70°C THF 30°C THF 50°C THF 70°C Modifier: DME: Dimethoxyethane THF: Tetrahydrofuran Vinyl-Content [mol%] 70 60 50 40 30 20 10 0 0. H. p. Marker. 17 . Lal a. E. A. L. Livigni. Eds. Fabris. Hargis. 4-cis 1. on wet Syenite-Glass Surface Branching by the Copolymerization with Divinylbenzene Copolymerization with multifunctional monomers (DVB): R n CH2 Li + R n CH Li + + R n CH2 Li + R n CH Li + .4-trans 10 40 50 47 26 27 64 21 15 66 18 16 88 7 5 SBR 1712 18 8 74 Wet Skid Performance (Laboratory) Portable Test Device* 84 Retreaded Tyre Concrete Asphalt Abrasion Resistance 109 104 120 100 70 70 140 95 90 100 92 92 80 93 93 - 100 100 100 * Road Research Laboratory Instrument.Li-BR: Dependence of Wet Skid and Abrasion Resistance on Vinyl Content Vinyl-BR Vinyl Content 1. 000 g/mol and 1 branch with MW>80. Hsu.: 4 SiCl C Li + Coupling with SiCl4: • Reduction of Cold-Flow • low viscosity of BR-solutions • Application for HIPS and Bulk-ABS • Highly filler loaded rubber compounds with good processability and high ShoreA Hardness (roll covers. Futamura. A.01. Many patents in this area.) 4 (SnCl4 as alternative) Coupling with SnCl4: + Si + 4 Li Cl exclusive úse is for tyres. Matrana „Asymmetrical Tin-Coupled Rubbery Polymers and Method of Making“ (Star shaped rubbers with at least 3 brances.CalanEx.: 19. SnCl4 etc. W.Branching by Chain End Coupling Chain end coupling with SiCl4. L. Eisele.: A.Injection Spinpression dering trusion moulding drawing moulding Viscosity Improvement Narrow molar mass distribution Highly branched (Star shaped) 100 101 102 103 Broad molar mass distribution 104 105 106 Shear rate [sec-1] Source: U. during compound preparation the Sn-C bonds seems to break and the bound rubber content is increased. Springer Verlag 1990 . for example: US 6271317 (Goodyear) Prior. S. Halasa. tyre beads etc. Introduction to Polymer Physics.1998. F. As a consequence hysteresis of vulcanizates is reduced. B. 1 branch with MW <40. Inv.000 g/mol) Impact of Chain Branching on Processability Cold flow Improvement Mooneymeasurement Com. 0 0 54 80 61 8. Sulfur: 1. Mineral oil : 10 phr.06 Mooney-Viscosity ML 1+4 (100° C) [MU] Linear BR has an extremely high cold flow which results in the instability of rubber bales.75 phr.2 40 71 Compound Preparation: BR: 100 phr. Zink oxide: 3 phr. Stearic acid: 2 phr. BR has to be branched in order to improve the stability of bales.000 2.1 16.5 32 77 star branched SiCl4 310. 2): 50 phr. Accelerator: 0.000 188.8 phr.4 16 53 98 64 8.000 1. Ruß (IRB Nr. Vulcanization: 135 °C/35 min .000 158. Properties of Linear and Star Branched Li-BR Li-BR Coupling agent Mw [g/Mol] Mn [g/Mol] Mw/Mn Cold flow [mg/min] ML 1+4(100°C) Compound-Mooney ML 1+4 (100°C) Shore A Hardness S300 [Mpa] Tensile Strength [Mpa] heat-build-up [°C] Rebound [%] linear without 256.Li-BR: Influence of Branching on Cold Flow 14 Linear Chain 12 10 Cold Flow [mg/min] 8 6 4 2 0 0 20 40 60 80 100 Star shaped polymer with 3 branches Divinylbenzene [phm] 0.0 16.03 0. Evaluation by Bayer AG (Wachholz/BPO-IIS-BPSC-SP) .S-SBR: Solution-SBR L-SBR: Market and Market Development Introduction of “Green Tyre Technology by Michelin“ 700 600 500 400 300 200 100 0 1989 1991 1993 1995 1997 1999 2001 Consumption [t] Source: IISRP. Copolymerization of Styrene and Butadiene at Differential Monomer Conversions 100 Styrene content of polymer [wt.7 r2 = 1. %] 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Parameters of copolymerization (styrene = M1. .4 Anionic colymerisation in hexane (Bu-Li/no randomizers/50°C) r1 = 0. %] Copolymerization of Styrene and Butadiene The anionic copolymerization of styrene and butadiene in an unpolar solvent (hexane) yields a block copolymer with the following features: • high chemical homogeinity • narrow molar mass distribution • tapered intermediate sequence Course of the copolymerization in hexane (full batch process): start up of the reaction Butadiene block tapered sequence styrene block For tyre applications block styrene blocks have to be avoided as they cause high hysteresis losses.04 r2 = 11.8 E-SBR S-SBR in hexane Styrene-content of monomer feed [wt. butadiene = M2) Radical copolymerization (emulsion) r1 = 0. 8 0. %] Impact of Randomizers on the Copolymerization Behaviour of Styrene and Butadiene (Styrene = M1. K. Hsieh.%] Cyclohexane.0 5.04 0.0 0.4 0.3 1. R. Sci. Kalnish.1 11. V.04 0.8 15.Styrene/Butadiene-Copolymerisation Differential styrene content in the polymer [wt. Anionic Polymerization.2 0. L.03 4.04 0.5 3. Y.3 0. Butadiene = M2) Total Styrene Content of Polymer [wt. 2215 (1979) .067/1 t-BuOK/n-Buli: 0.3 70 n-Butyl-Lithium t-BuOK/n-Buli: 0.38/1 60 50 40 30 20 10 0 0 20 40 60 80 100 Monomer Conversion [%] Source: H. 21. Zgonnik.3 4.4 2.5 0.0 r2 10.5 0. V. (USSR). Principles and Practical Applications. E. P. Melenevskaya. Denisov. Dolinskaya. Quirk. Polym.7 3.5 12. Inc. Marcel Dekker. 25/75 Styrene/Butadiene T [°C] Benzene Cyclohexane Hexane THF Diethylether Triethylamine Anisol Diphenylether THF THF THF 25 25 25 25 25 25 25 25 -78 0 25 r1 0. %] 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 E-SBR ond rs Ra ize m S-SBR in Hexane Styrene content in the monomer feed [wt. 50° C 0 10 20 30 40 50 60 Vinyl [%] In the variation of the microstructure (vinyl-content) the S-SBR technology has a greater versatility than the E-SBR-technology.. %] Standard Emulsion Technology +10° C + 0° C . (Firestone) 146th ACS meetin in Pittsburgh. PA. USA Impact of Tg on Important Tyre Tread Properties -20 -40 S-SBR (25% Styrene. An alternative to macroscopic blending would be microscopic blending as with integral rubber. J.30° C .10° C 30 20 10 0 Solution technology without randomizers Solution technology with randomizers . Source: H. 55% Vinyl) E-SBR 1516 (40% Styrene) S-SBR (34% Styrene. Hall. E.5% Styrene) E-SBR (15% Styrene) S-SBR (18% Styrene. 10% Vinyl) Emulsion BR Li-BR high cis Nd-BR Decrease of Rolling Resistance and Abrasion Increase of Heat Build Up and Wet Skid Resistance Tg [°C] -60 -80 -100 In order to comply with many conflicting tyre tread properties the preparation of rubber blends is essential in rubber technology.20° C .Tg of S-SBR: The Impact of Styrene and Vinyl Content 40 Styrene Content [wt. 32% Vinyl) E-SBR 1500 (23. .40° C .70° C . Mouri.60° C . 178-185 Routes for the Preparation of Integral Rubbers Integral-Rubber 1 based on butadiene.and modifier addition) butadiene randomizer styrene isoprene Segment: Tg [°C] Medium-cis BR -90°C Vinyl-BR -50°C S-SBR -20°C 3. p. Kautschuk Gummi Kunststoffe 38 (1985). M.4-IR ~ 0°C . H. styrene and isoprene (batch process with sequential monomer. styrene and isoprene (full batch process without the sequential addition of either monomer or modifier) Segment: Tg [°C] Vinyl-BR -90°C S-SBR -20°C 3.The „Integral Rubber“ Concept Li. Nordsiek.4-IR ~ 0°C Integral-Rubber 2 based on butadiene.NR SBR BR 1500 1 10-1 SBR 1700 tan δ 10-2 10-3 Integralrubber -100 -80 -60 -40 -20 0 20 40 60 80 100 Temperature [° C] Integral Rubber is a multi block copolymer the building blocks of which have well defined Tgs Source: K. Kiepert. K. 02. Erf. Hamada 150 Carbon black loaded tread Green tyre Silica Compound L-SBR NR BR Silika Si 69 DPG --- 100 50 0 E-SBR Ruß ++ ++ Abrasion Resistance Wet Skid . Erf.t10 Mechanical Properties Moduli Tensile Strength Tear resistance Abrasion resistance Heat build up Rolling resistance Wet grip Price * fully depreciated plants Green Tyre Technology SiO2 Si OH Si OH CH2 Et-O Et-O Si CH2 CH2 S Et-O S Et-O Et-O Si CH2 CH2 S Et-O CH2 S Performance of the green tyre Rolling Resistance Additional costs for the green tyre Ruß Compound Rubber Filler Silane Additive Raw Materials Mixing Costs Patents: DE 2447614.065.: H.: 27.709. Bridgestone.10.: R. 1991. Klötzer. F.02.1974.: 05. EP 299074. Erf.: M. Prior.04. Prior.10. Takeshita et al. Vulcanization t10 t90 t90 . Prior. Erf. Hamada et al. Prior. DE 3813678. Erf.Performance Comparison of Standard S-SBR with E-SBR in a Carbon Black Compound E-SBR S-SBR Processability Black incorporation time Tack Green Strength + + + + 0 + + + + + +* + + + + + In a carbon black loaded compound there is no real advantage for S-SBR.1987.: K.: 20. Prior. Wolf.: 23. Therefore there was no major breakbreakthrough for S-SBR until the green tyre technology emerged. Prior. S. E.1985. Rauline EP 447066.: 03. emerged.: T. Bridgestone. Shin-Etsu.1987. Erf. Thurn US 4.09.: T.: 25. Degussa. EP 501 227. Michelin. Yoshioka et al. Bridgestone.1991. Burmester. Recent Developments in S-SBR Technology Towards Improving Tyre Performance Functionalisation of SS-SBR • Partial or total substitution of activator • Improvement of silica dispersion • Iprovement of silica reinforcement • Reduction of hysteresis loss • Improvement of wet skid • Reduction of abrasion loss Functionalization of Living Chain Ends OR R1 R n N C 91 C Li + + Si OR CH2 OR R2 Li + R n OR Si OR N C CH2 OR R1 R2 80 EP 1113024 A1. Kondo "Polymer process for making the polymer and rubber composition using the polymer“ .: K. Inv. Bridgestone. H. Prior.1999. Morita.12.: 02. W.: 03. Müller.: T. Graf „Polyether/Diolefin-Kautschuke enthaltende Kautschukmischung“ Incorporation of Aminoisoprene CH3 N CH2 CH2 C CH CH2 CH3 Dimethyl-Aminoisoprene • is incorporated initially at the chain end • it acts as a randomizer during the whole course of the polymerization • the aminoisoprene containing rubber exhibits increased interaction with silica EP 01165641. Bayer AG.Functionalization with Polyether Segments O 2 R n CH2 Li + + Cl + n Cl . Stadler. Morschhäuser. A.2000. Erf. Erf.2 Li Cl O R n n nR DE 10057508. G. Scholl.: 21. W. E. Bayer AG. Prior. M. Mannebach "Kautschukmischungen basierend auf Aminoisopren" .1999.11. Scholl. Prior. Obrecht. Obrecht. Grün.02. Giebeler. Braubach.: T. R. R. : Th. Nentwig.1998.07.: 18. Kelbch WO 02/31028 A1.: 10.: J. J. Engehausen US 6365668.COOH (US 6365668) Sources: US 6252008. Bayer AG.: 07. Prior.OH (US 6252008) X: . Inv. Scholl.: Th. Prior. Erf.: 16. Inv.Functionalization of the Living Chain End with a Polysiloxane Building Block H3C Si O R n CH2 Li + CH3 O Si O D3 CH3 CH3 + H3C H3C Si CH3 CH3 CH3 CH CH3 CH3 3 Si R n O Si O Si O Li + Source: EP 0778 311. W. Bayer AG. Scholl. Michelin. J.-L.1998. 10. Trimbach . Scholl. Trimbach. 2000. Prior. Cabioch „Composition de caoutchouc à base de silice et de polymère diénique fonctionnalisé ayant une fonction silanol terminale“ Modification of S-SBR with Hydroxyl-Moieties X S X SH H X: .11. Trimbach. Bayer AG.1995. U. Eisele. Inv.11. J. R.: T. Prior. S. 4 BR – Influence of Halides on 1.4-cis Content – Reaction Scheme of Butadiene Polymerization by Nd-Catalysis – Mechanism of Nd-Catalyzed Butadiene Polymerization • Technical Options for the Control of Molar Mass in Nd-BR-Production Technically Relevant Catalyst Systems for the Production of High cis-BR BR Catalyst System Molar Ratios cis-1.38 97 97 93 98 Li-BR Co-BR Ni-BR Ti-BR Nd-BR nBu-Li Co(II)Octanoate / DEAC / H20 1 / 7 0-80 / 20-30 Ni(II)Naphthenate /Bu2O.7 / 5 Nd(III)Versatate / DIBAH / EASC 1 / 10-15 / 3 Abbreviations: nBu-Li DEAC TIBA TEA DIBAH EASC n-Butyl-Lithium Diethyl Aluminum Chloride Triisobutyl Aluminum Triethyl Aluminum Diisobutyl Aluminum Chloride Ethylaluminum Sesquichloride .4-cis-Content – Reaction Scheme of Butadiene Insertion • Mechanism of Nd-Catalyzed Butadiene Polymerization – Activity of Rare Earth Naphthenates (Cocatalyst: RnAlCl3-n) – Influence of Solvents – Influence of Molar Neodymium/Chloride-Ratio on 1. Chemistry and Production Technology of Highcis-1.4.HF/TIBA 1 / 100 / 40 TiJ3(OEt) / TiCl4 / TEA 1 / 0.3.4 Content 36 .4 BR: Dependence of Melting Temperature on 1.4-cis Content – Role of Halides and Electron Donors on Microstructure – Trans-1.4 BR with an Emphasis on Nd-BR • Technically Relevant Catalyst Systems for the Production of High cis-1. 4-cis contents.4 . Transition in Precision Polymerization (1997) Part 1. H.4-BR For the achievement of high 1.4-BR cis -1. Ed.4-BR cis -1. . Phys.1. O.4-cis-Content Metal Component of Halide Catalyst System Ti Co Ni Nd F Cl Br J 35 75 87 93 93 98 91 50 98 85 80 10 95. H. W.4-BR trans -1.2 .OEt2 + AlR3 Ni(Oct)2 + BF3 . Chem..4-BR cis -1.7 cis-1. T.4-BR s .4 BR are obtained.1. Pol.BR trans . Fusheng Yu.BR The coordination of electron donors to vacant catalyst sites results in a significant reduction of 1. 18 (1980) 3345-3357 Sources: •Lars Friebe: Diploma Thesis TU Munich 2000 •L. Nuyken. Watanabe.1.4 . Jun Ouyang.Influence of Halides on 1.4-cis contents the presence of a halide source is essential Source: Shiro Kobayashi. Windisch.4-BR trans -1.BR cis . syndiotactic BR or trans-1.1.7 96.BR s .8 96. pages 55-66 Nd(CH2Ph)Cl2 + TIBA Co(Oct)2 + AlR2Cl + H2O Co(Oct)2 + AlR2Cl + H2O + PPh3 Co(Oct)2 + AlR3 + CS2 Ni(Oct)2 + BF3 .4-BR trans -1. Friebe. As a consequence.1. Diene Polymerization. Baogong Qian. 203 (2002) 1055-1064 Role of Halides and Electron Donors on Microstructure Nd(OR)3 Nd(OR)3 Nd(COOR)3 Nd(COOR)3 Nd(COOR)3 Nd(COOR)3 Nd(CH2Ph)3 + TIBA + DIBAC + TIBA + DIBAC + Mg (Allyl)2 + Mg (Allyl)2 + R-Cl + TIBA trans -1.4-BR cis -1. Chem. Obrecht. Masuda.2 .4-Content [%] 98 97 96 95 94 93 92 0 1 2 3 4 Molar Cl/Nd .2 96.OEt2 + AlR3 + PPh3 cis . J. Fasong Wang. 8 . Sci. Macromol.Ratio Source: Zhinquan Shen. Zehnya Hu. 4-BR and Catalyst and Process for Preparing Crystalline High Trans-1. 1995. Polymer Science. polyisoprene and defined amount of carbon black and amorphous silica“ Reaction Scheme of Butadiene Insertion Allyl-Komplex Bd Bd M 8 M 15 M M C C C ` 29 C 22 Bd M 36 M 43 M 54 Bd 60 M C C C C For the achievement of high 1. T. Giarrusso. J.4-trans Content 160 120 80 Data from: US 5134199 Enoxy Chem Ltd. J. J. Source: Porri.4-BR. Poulton "High Trans-1.4-BR: Dependence of Melting Temperature on 1. Verthe. 05. Zanzig. J. The formation of trans-1. Erf. J.4-BR is thermodynamically favourable whereas the formation of 1. Blok. P. GB 2161169 (Asahi) US 4931376 (Asahi) US 5596053 (Bridgestone/Firestone)* Tm [° C] 40 +0 .10.Trans 1. G.trans-content [Mol %] *US 5596053 (Bridgestone/Firestone) Prior. 93 . Vol. H. Kang. Holtzapple „Tire with silica-reinforced tread comprised of trans-1.4 . E. 31.4-BR“ US-A-5089574 (trans-1. 4.: J.: 11. To this site butadiene has to be coordinated in a cisoid mode. Sandstrom. M.4-cis contents. a vacant coordination site on the transition metal is a prerequisite.99 D.4-cis-BR ist kinetically controlled. W. solution-SBR.4-BR-Herstellung/Goodyear) EP-A-1092565 Prior. J.40 60 70 80 90 Goodyear 100 1. 655-670) „Neodymium Catalysts For 1. Porri. Ed. Zehnya Hu. Some Observations On their Activity And Steoreospecificity“ Lu . Polym. Baogong Qian J. 2nd vol.G. Sci. 1988. Ricci. Chem. (Proc. Sm and Eu salts to the oxydation stage +II U m satz [% ] 60 50 40 30 20 10 0 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Source: Zhinquan Shen. 18 (1980)3345-3357 Mechanism of Neodymium Catalyzed Butadiene Polymerization: Influence of Solvents Contrary to other Ziegler–Catalysts. Fusheng Yu. Int.Mechanism of Neodymium Catalyzed Butadiene Polymerization Activity of Rare Earth Napthenates (Cocatalyst: RnAlCl3-n) 100 90 80 70 Only rare earth metals in the oxydation state +III show polymerization activity Al-alkyls reduce Pm.. Pol. Jun Ouyang. Fasong Wang. aromatic solvents have a negative impact on Nd-based catalyst systems Source: F.3-Diene Polymerization. Symp. Transition Metal Catal. Cabassi. L. Friebe. 2004 (2004) Novel investigations and applications for neodymium based catalysts. Anaheim. Lars. United States. Journal of Macromolecular Science. Chem. Pure and Applied Chemistry (2006). O. Windisch.R )3 + 6 H Al Nd (O-CH2.R )3 + 3 Al O Al O Al O Al Nd ( OOC . Polym. Nuyken. 8 . Nuyken.15 EASC 3 Literature: http://dx.H + RCH2 O Al Nd (O-CH2. Polymer Preprints (American Chemical Society. 6) Friebe. Mueller.Mechanism of Neodymium Catalyzed Butadiene Polymerization O Nd O R3 R1 R2 3 H Al Cl Cl Al Al Et Et Cl Et NdV 1 DIBAH 10 . Lars. 2) Friebe. Oskar. Obrecht. Lars. Nuyken. Werner. Journal of Macromolecular Science. 227th ACS National Meeting. Oskar. Werner. Obrecht. Oskar. Heike. Part A: 4) Friebe. 484-494. Windisch. 839-851. W. Windisch. Lars.3-butadiene initiated by neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride: kinetics and conclusions about the reaction mechanism. Lars. Macromolecular Materials and Engineering (2003).R )3 + 3 H Al Nd (O-CHR. Molar mass control by diethyl zinc in the polymerization of butadiene initiated by the ternary catalyst system neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride. Polymerization of 1. 3) Friebe. Nuyken. 1-154 (Review). 288(6).4-butadiene)/poly(e -caprolactone) blend. Obrecht. Windisch. H. Heike. Macromolecular Science. 9) Friebe. 43(1). Neodymium Neopentanolate and Neodymium Bis(2-ethylhexyl)phosphate in Ternary Ziegler Type Catalyst Systems With Regard to their Impact on the Polymerization of 1. Obrecht. Nuyken. Obrecht. 841-854. Novel investigations and applications for neodymium based catalysts. Werner. Werner. 5) Friebe. Julia M. Pure and Applied Chemistry (2004). Phys. March 28-April 1. Heike. Division of Polymer Chemistry) (2004). (2006) 204. Windisch. Reaction Scheme of Butadiene Polymerization by Nd-Catalysis 1) Formation of Nd-Alcoholate by the Reduction od Nd-Versatate Nd ( OOC . Werner. Part A: Pure and Applied Chemistry (2006).1007/12_094 Neodymium-Based Ziegler/Natta Catalysts and their Application in Diene Polymerization 1) Friebe. Heike. In situ preparation of a compatibilized poly(cis-1. Werner. Oskar. A42(7). tert-butyl benzene and toluene in the polymerization of 1. Heike. Oskar. Mueller. Oskar. Nuyken. CA. Julia. Nuyken. Windisch. Werner. 245-256. Sci. Oskar. A Comparison of Neodymium Versatate.doi. Lars. Werner. Comparison of the solvents n-hexane. Nuyken. Obrecht. 7) Friebe.. 203(8).3-Butadiene. Oskar. Nuyken.R )3 + 1 Al O 2) Formation of a Nd-Hydrodo Compound (Precursor of Active Nd-Species) (R-CH2-O)3 Nd + H Al (R-CH2-O)2 Nd . 8) Friebe. 758-759. 43(6). Obrecht. Lars. Obrecht.H CH3 + H2C CH3 Source: L.org/10. Oskar. Part A: Pure and Applied Chemistry (2005). 45(1). Nuyken.3-Butadiene Initiated by Neodymium Versatate/Triisobutylaluminum/Ethylaluminum Sesquichloride: Impact of the Alkylaluminum Cocatalyst Component. A41(3).R )3 + H Al CH3 (R-CH2-O)2 Nd CH2 C H CH3 (R-CH2-O)2 Nd + R-CH2-O Al H (R-CH2-O)2 Nd . 203 (2002) 1055-1064 . Lars. Macromolecular Chemistry and Physics (2002). Polymerization of 1. Obrecht. Obrecht. 1055-1064. Abstracts of Papers. Lars. Adv. Macromol. 11-22.3-butadiene with the Ziegler catalyst system neodymium versatate/diisobutylaluminum hydride/ethylaluminum sesquichloride. Werner. Journal of Macromolecular Science. 8 . Friebe. O. Nuyken. H. Phys.Macromol. Obrecht.H + AlR 3 (R-CH2 . Chem. Chem. O. Friebe. Windisch.Macromol. 203 (2002) 1055-1064 Reaction Scheme of Butadiene Polymerization by Nd-Catalysis 5) Formation of polymerization active Nd species (cationic Nd allyl complex) and first butadiene insertion AlR3 Cl Nd Cl R AlR3 Nd Cl Cl R AlR3 + Nd ClAlR3 Cl R - AlR3 ClAlR3 + Nd + Nd ClAlR3 Cl + Nd ClAlR3 Cl R - Cl R AlR3 R AlR3 AlR3 Source: L. 203 (2002) 1055-1064 . W. Obrecht. Phys.O)2 Nd Al2Et3Cl3 Cl2 Nd CH3 Source: L. Nuyken.O)2 Nd 4) Halogenation of the Nd-Allyl Compound CH3 (R-CH2 .O)2 Nd . Windisch.Reaction Scheme of Butadiene Polymerization by Nd-Catalysis 3) Hydride transfer and Formation of a Nd-Allyl Compound CH3 (R-CH2 . H. W. 8 . 000 L. Friebe. Dezember 2. 30. Nuyken. DIBAH 4.0. W. 203 (2002) 1055-1064 . Windisch. H. H. Neodymversatate 5.Reaction Scheme of Butadiene Polymerization by Nd-Catalysis 6) Control of Molar Mass by Al-Alkyls and by Al-Hydrido Compounds Nd L L R Nd L L R + H Al H Nd L L + R Al + Al Nd L L + R Al Active “living“ polymer chain (attached to Nd) inactive “dormant“ polymer chain (attached to Al) Source: L.Macromol. Windisch. 50 Addition Sequence: 1. W. Hexane 2. Obrecht. O.0. Mechanism of Nd-Catalyzed Butadiene Polymerization Experimental Conditions: Solvent n-Hexane Butadiene 1. Journal of Macromol.0. 4. Nuyken.20 mmol/l EASC 0.0 mmol/l nDIBAH/nNd = 10. Obrecht. 10. Butadiene 3. Chem. EASC Polymerization temperature: 60°C Conversion/time-plots Monomer Conversion [%] 100 80 0 -1 Plot for 1st order monomer consumption 40 20 0 0 50 100 150 200 250 nDIBAH/nNd = 10 nDIBAH/nNd = 20 nDIBAH/nNd = 30 nDIBAH/nNd = 50 ln(1-x) 60 -2 -3 -4 -5 0 50 100 150 200 250 300 nDIBAH/nNd = 10 nDIBAH/nNd = 20 nDIBAH/nNd = 30 nDIBAH/nNd = 50 time [min] Time [min] Sources: Lars Friebe: Diplomarbeit and der TU München. Phys. Sci. O.85 mol/l NdV 0. 20. 8 . 6. Friebe.13 mmol/l (nCl/nNd = 2/1) DIBAH 2. 5 Dependence of PDI (Mw/Mn) on Monomer Conversion nDIBAH/nNd = 10 nDIBAH/nNd = 20 nDIBAH/nNd = 30 nDIBAH/nNd = 50 difference of refraction index Indices Difference in Refractive 6 6 . O. O. Phys.5*105 1. Chem. Windisch.7 2 2 .5 3 5 .0 4 3 .0 0 10 5 5 . Phys.5*105 2. Friebe. H.2 7 . Macromol. Windisch. Nuyken. Chem.0 3. 8 . mol-1] 1.0 2. Friebe: Diploma Thesis at TU Munich.5 1.Macromol. December 2000 L. Obrecht. Friebe: Diploma Thesis at TU Munich.5 2. H.8 Monomer Conversion [%] 65 65 30 30 35 35 40 40 45 45 50 50 55 55 60 60 Elution time[min] Source: L. 203 (2002) 1055-1064 e lu t io n t im e / m in Mechanism of Nd-Catalyzed Butadiene Polymerization Dependence of Mn on Monomer Conversion Formal Number of Polymer Chains formed per Nd-Atom 2.8 20 30 40 50 60 70 80 90 100 4 . 203 (2002) 1055-1064 . Friebe.5*105 0 0 10 20 30 40 50 60 70 80 90 100 Monomer Conversion [%] nDIBAH/nNd = 4. W.0*105 0.000 L. Nuyken.7 1 2 .6 3 0 . 8 .Mechanism of Nd-Catalyzed Butadiene Polymerization Dependence of Molar Mass Distribution on Monomer Conversion c o n v e r s io n / % 8 2 .5 Mw/Mn 3.0 1.4 4.1 5 0 . Obrecht. W.0*105 nDIBAH/nNd = 10 nDIBAH/nNd = 20 nDIBAH/nNd = 30 nDIBAH/nNd = 50 16 14 12 10 8 6 4 2 0 0 10 20 30 40 50 nDIBAH/nNd = 10 nDIBAH/nNd = 20 nDIBAH/nNd = 30 nDIBAH/nNd = 50 Molar Mass Control with Al-Component Mn [g . December 2.4 nDIBAH/nNd Source: L. Therefore in Nd-BR technology molar mass has to be controlled by: • Nd/Al-ratio • Monomer/Nd-ratio • Monomer Conversion • Polymerization temperature G. Wilson.-parts of butadiene] Monomer Conversion [%] Comparison of Technologies for the Production of High cis-1. solids concentation Molar mass regulator Formation of VCH Residual transition metal Content [ppm] Partially adiabatic Partially /isothermal adiabatic 14-22% 15-16% yes high 10-50 yes high 50-100 Advantage * Formation of VCH by Diels-Alder-Reaction Butadiene Vinylcyclohexene (VCH) . Polymer 1993.3 700 600 500 400 300 200 100 0 50 40 30 20 10 0 0 20 40 60 80 100 Nd (mmol/100 wt.Technical Options for the Control of Molar Mass in Nd-BR Production Influence of Polymerization Temperature Contrary to Catalysts based on Co. 3504-3508 900 800 Influence of Monomer Conversion 60 M.1 0. Dallas 1988 „Synthesis of cis-1. Rubber Div. 34.25 0.15 0.05 0. 3 (1982) 33-55 Molar Mass (Mv) [kg/mol] ML 1+4 (100°C) 0 0. Ni and Ti. B.16.4-Polybutadienes by rare earth catalysts“ 2500 Molar Mass (Mv) [kg/mol] 2000 1500 1000 500 0 0 10 20 30 40 50 60 70 80 90 Polymerization Temperature [° C] Influence of Butadiene/Nd-ratio D. J.2 0. Stollfuss ACS. Sylvester.4-BR Co Solvents Benzene Toluene Aliphates 150 min 55-80 % high Ni Benzene Hexane Toluene 120 min < 85% high Ti Benzene Toluene 120 min < 95% low Partially adiabatic 11-12% none very high 200-250 Nd N-Hexane Cylcohexane 100-120 min < 100% Very low fully adiabatic 18-22% none low 100-200 Residence time Monomer conversion Gel formation process Max. Bruzzone ACS Symposium Series No. for Nd-based catalysts there is no agents for the control of molar mass available. 4. Capacities. Termonomers. Producers. Ethene/Propene-Co. Brand Names and Production Technologies • Production Technologies (Flow Charts) – Solution Process – High Temperature Solution Process – Gase Phase Process – Comparison of Manufacturing Technologies • Metallocenes – Ovewrview on Metallocene Patents – Metallocene Activation – Comparison of Catalyst Costs Ethene/Propene-Co.4. EPM (15%) EPDM (85%) Ethene/Propene-Copolymers Major areas of application: • • Ethene/Propene/Diene-Terpolymers (30% of grades are oil extended) Oil additives Impact modification of thermoplastic polymers (PP) Major areas of application: • • • Technical rubber goods Cables and wires TPEs .and Terpolymers (EPM/EPDM) • Overview – EPM and EPDM. Range of Grades and Property Profiles • EPDM-Production – Chemistry of Polymerization .und Terpolymers (EPM/EPDM) Method of Vulcanization EPM Peroxides EPDM Sulfur Peroxides Phenol resins etc. Market. 4-HD .EPDM-Termonomers Relative polymerization rates of termonomer double bonds in Vanadium catalysed polymerizations 5-Ethyliden-2-norbornene (ENB) Dicyclopentadiene (DCPD) ~ 40 : 1 ~ 15 : 1 1.0 time [min] ENB DCPD 1.0 4.0 5.0 6.0 3.0 2.4-Hexadiene (HD) Criteria for the selection of the termonomer: ~5:1 • Large reactivity difference of double bonds during polymerization • Low impact on the reduction of the polymerization rate • Low impact on the reduction of the molar mass during polymerization • Sufficiently long scorch time and high crosslinking efficiency during vulcanization • Low termonomer costs Impact of the Termonomer on the Curing Characteristics ENB DCPD HD 70 60 Torque [Nm] 50 40 30 20 10 0 0 1. 5 %/a Source: European Chemical News 10. 700 EPDM Consumption (world) 600 55 . peroxides and others – high loadability with extender oils and fillers (reduction of compound price) – good mechanical properties of vulcanizates – good weathering and ozone resistance (outdoor applications) – good electrical insulation (low salt content) – Low density Disadvantages: – low resistance to oil and chemicals – fair ability to covulcanization – low resistance to fungi and bacteria Main Application Areas of EPM/EPDM 6% 15% EPDM-Consumption / kt 13% 9% 500 400 300 200 100 1987 1988 1991 1986 1989 1990 1992 1993 1994 1995 0 Automotive production (world) 50 16% 41% 45 Automotive Thermoplast Modification Building Technikcal Rubber Goods Electro/Electronics Oil Additives 40 Market: 1. März 2005. 13 Automotive Production / Mio.Property Profile of EPM/EPDM based Vulcanizates Advantages: – good price/performance-ratio – high maximum service temperature – good low temperature performance – broad spectrum of grades (oil extended grades etc.) – ability for vulcanization with sulfur.050 Mio t (2004) Growth rate: 3. 7 .12 Mooney Viscosity: [MU] 16 .5 -60 -62.75 1.% ENB Ethene content [wt.5 -65 40 45 50 55 60 65 70 Tg(EPDM) = Tg(EPM) + 1.2°C/wt.%] 50 .2001 . M.%] Source: M.3 4-7 ENB-Content: [wt.5 -50 -52.90 [ML 1+4 (125°C)] Oil Content: [phr] 0. 30. HCM 40 of 16.%] 0 8 . 50. 25. Hoch.Range of EP(D)M-Grades Ethene Content [wt. Arndt-Rosenau. Bayer-Report ARO 1.60 60 .20 20 .02. 100 Dependence of Tg on the Ethene.5 EPDM/2% ENB EPDM/1% ENB EPM /0% ENB Tg [°C] -55 -57.and the ENB-Content (V-catalysed commercial products) products) -45 -47. Q . EVM. LSBR. CR. CM. ACM.Dependence of the Cristallinity on the Ethene Content and on the Polymerization Temperature of V-Catalysed EPM 30 35-39°C 25 20 15 10 5 0 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Enthalpy of fusion [J/g] 40-44°C 45-49°C 50-54°C 55-59°C 60-64°C 65-70°C Ethene content [wt. EVM Solution EVM Dispersion EVM Bulk AEM. HCM 40 of 16. CO IIR EPM/EPDM Q Q (G-EPM/EPDM) AU.FKM. CSM. E-BR. NBR. EU CIIR. M. (H-NBR) AU. FZ EU CM. Bayer-Report ARO 1.02.2001 Chemical and Process Aspects in EPM/EPDMManufacturing Technologies Chemical Aspects free radical Polymerization Ziegler/NattaPolymerization anionionic Polymerization cationic Polymerization Polyaddition und Polycondensation Polymermodification Process Features Emulsion E-SBR. Hoch. BIIR. Arndt-Rosenau. (ENM) Gas-Phase BR (G-BR) EPM/EPDM BR.%] Source: M. CSM. H-NBR. IR ECO. J. antioxidants sterically hindered phenols. BPCC H2.Features of the EPDM-Manufacturing Technologies Source: R.W.P. D. DEAC Borane (MMAO) PDCAE. Lee. Riedel. mineral oil fraction with high b. Ziegler/Natta CGC/Borane CGC-Catalyst VOCl3. Hussein. Cann.VO(OR)3. (NH3) Stearic acid. Zilker. Nicoletti. Bai. VCl4. Pillow. T. J. ZnEt2. GAK 6/1997 (50) 478-483 Process Solution Slurry High temperature solution (Dow) Gas phase (UCC) Ziegler/Natta V(acac)3 Al-Alkyl CHCl3 H2 ? ? - Solvent: Catalyst System Catalysts: Cocatalysats: Reactivators: Modifier: Short stos: Antioxidans: Stripping aids: Oil: Propene/ethene Hydrocarbon mix. TCAE. A. K. V(acac)3. p. J.D. J. X. Sylvest. Presentation at FLEXPO `97 . F.H. phosphites water soluble polymers etc. R. - Hexane Reactivators: PDCAE Cl O BPCC Cl O Cl C2H5 O O C4H9 9 Cl Cl Cl TCAE O O C 2H 5 Cl Cl Cl Cl Speculation on the Active Species in the Vanadium-Catalysed EPDM-Polymerization +V VOCl3 +IV VCl4 +III VX3 + R2 AlX {R2VX} Aktivator heat {R2V } heat + + R2AlX2 - +II VX2 + R3 Al [R2V] R2AlX [RVX] R3Al {homogeneously soluble species} [heterogeneous species] Source: K. water. TiCl4 EASC. Japan Yeochon. Indien 180 85 135 35 100 90 60 55 91 85 60 25 45 40 40 30 30 10 Vistalon Keltan Nitriflex EP Nordel-IP Elastoflo (UCC) Buna EP G Buna EP T Royalene / Trilene Dutral Mitsui EPT JSR EP Esprene KEP total capacity 1076 Source: European Chemical News 10. Niederlande Triunfo.% < 3 ppm baling Drier drier EASC VOCl3 /VCl 4 3/1 Packaging Hexane VNB/ENB . Deutschland Orange. Texas Marl. Louisiana Notre Dame de Gravenchon Geleen. Louisiana Ferrara. Südkorea Jilin. Japan Kashima. Brasilien Plaquemine. Japan Chiba.EPDM Producers. Capacities (kt) and Brand Names Exxon DSM DPDE Lanxess Lion Copolymer Polimeri Mitsui JSR Sumitomo Kumho Petro China Nizhnekamsk Herdillia Baton Rouge. China Nizhnekamsk. Texas Geismar. März 2005. exposure limit/MAK: Smell limit: 146°C 1 ppm 3-5 ppm Waste water Azeotropic destillation Condenser Flash drum Stripper Waste air dewtering screwg Propene Hexane Ethene destillation Polymerization reactor Steam Settler Steam oil drier Antioxydant PHControl Expeller destillation drier Waste water Stripping aid Waste water drier Precoller -32/-35°C Water Modifier Reactivator Process Features Propene precooling: Temperature: Pressure: Residence time: Soldis conc. Russland Maharashtra. Japan Yokkaichi.: H2 O: -32°C/-35°C 20-65°C 5-10 bar 6-15 Min. 3 -7 Gew. Italien Chiba. Louisiana Seadrift. 13 EPDM-Solution-Process with Fully Flooded Reactor Water containing azeotrope Condenser Settler External cooling loop ENB Boiling point: Max. 3 4.0 2.catalyst are required.7 9.1 <1 4.7 31 31 6.) Condenser In the Dow-HT-Process low amounts of CGC.10. 855-859 .3 48.1 Activation by MAO (molar excess of MAO: 10. Publications etc.8 82.0 EPDM # 2 8.6 9.) Plant location: Plaquemine/Lousiana Destillation Solvent and monomer High boiling residue (ENB.9 1. Ethene Propene ENB Metal Content of Commercial EPDM Activation of Metallocenes Cl Zr Cl Alkylation R Zr R Product V Ti Fe Dow-CGC <1 1.0 22.4 <1 5.000 . G.3 4.000 fold) Activation by Borane/Borates: (with molar B/Zr-ratios) R Zr + EPDM#6 A Source: J." packaging Purification Purification Purification Temperature: Ta: Pressure: Residence time: MMAO Borane 40 .8 1. 12/98. etc.6 440 <1 1. Pillow (Dow) „Ethylene Elastomers made using Constrained Geometry Catalyst Technology“ Kautschuk Gummi Kunststoffe 51.9 <1 2. The catalyst is not washed out and no steam stripping is applied („leave-in-catalyst“) Flashdrum Evaporator Evaporator Ta Antioxidant (AO) Polymerization reactor baler Ageing drum Scavenger "Insite-Kat.Dow‘s High-Temperature Solution Process (Source: Dow-Patents.8 1.80 °C 80°C (>130°C) 9-15 bar < 20 Min.8 5.4 8.7 4.3 2. AO.8 63 Al Ca Na Sum 1.0 <1 EPDM #3 EPDM #4 EPDM #5 1.7 64 160 64 <1 1.1 584.8 184.7 1. 5 37 . Me2Si N Ti X X V-Catalysis CMe3 Impact of Cristallinity on Low-Temperature Compression Set of EPDM-Based Vulcanizates DOW-Insite-Cat.5 18 8.%] 56 58 60 62 CH2 CH2 CH2 CH 2 ZrCl2 EBTHI-Cat.Crystallinity of Metallocene-Based EPDM 30 25 Enthalpy of fusion [J/g] 20 15 10 5 0 40 42 44 46 48 50 52 54 Ethene Content [wt. Low-Temperature-Compression-Set [%] 100 90 80 70 60 50 40 30 20 10 0 8. 5 10 .5 0 32 . EPDM/CGC (Dow) Enthalpy of Fusion [J/g] .5 47 . CH2 CH2 CH2 CH2 DOW-Insite-Cat.0 0 37 . 5 21 12 35 0 3 5 7 7 Me2Si N CMe3 Ti X X EPDM/V-Cat. flexibility.5 . 1-8 February 1999 ($ 12m charge for replacing the purge unit) Comparison of EPM/EPDM-Manufacturing Technologies Ranking: 1-10.UCC‘s EPDM-Gas-Phase-Process (now Dow) Flow-Chart: US 4994534 Filter Compressor Plant location: Seadrift/Texas Temperature: Pressure: Residence time: < 90 °C (40°C-60°C) 9-15 bar 0. which are superior in the production of specificgrades grades . 1= modest.1 h Cooler ENB Fluidizing Aid Suported Catalyst Purification Desactivation Monomer degassing unit Patents: Product EP 1099715 EP 1099473 EP 1086995 EP 1083192 US 6180738 WO 0000333 WO 9965953 Ethene Propene Modifier Purification Purification Purification ENB Boiling point: Maximum exposure level: Smell limit 146°C 1 ppm 3-5 ppm Baling of Product etc. but providea ahigher higher flexibility. ••The TheHT-solution HT-solutionand andthe thegas-phase gas-phasetechnology technologyare arelow lowcostcosttechnologies. but provide are inferior in investment and operation costs. which are superior in the production of specific technologies. 10=excellent Process Process Economy EPM EPDM Low Mooney High Mooney Oil Extended Grades Solution V-Catalysis Slurry V-Catalysis HT-Solution Gas-Phase CGC/Dow V-Catalysis 4 10 10 10 5 7 5 10 10 8 10 10 7 10 10 10 3 3 10 10 0 0 10 0 Process Flexibility Overall Process Performance 42 46 48 53 36 43 20 30 ••The Thewell wellestablished establishedvanadium vanadiumbased basedsolution solutionand andslurry slurryprocesses processes are inferior in investment and operation costs. Source: „Carbide starts up Seadrift plant with new technology“ European Chemical News. AlR3 or MAO) R Zr R Activation by MAO Activation by borates and boranes R Zr + A . 09. Karjetta vom 29. .Metallocene-Patents 1980-2000 (Oct. 2 ar l e 2B ay er xo ec Ex re Bo BP n Ho WPIDS-Recherche Dr.and WOWO-Patent Applications 200 150 100 50 0 hs t Do w BA S Ph F il l i ps T ar Mi go ts ui r Pe tr o l Sh el l UC C M on Mi ts t el ui Ch l em Id em . AlR3 or MAO) R Zr Cl Alkylation (BuLi.Appl. 2. i ts u DS M al i s Fi na EN Mo I b il Du P Ci b a on t Ge i Al b e gy m Nr . 2000) 250 Number of Patents (US) + Pat. 2000 Activation of Metallocenes Cl Zr Cl Alkylation (BuLi.923 Documents USUS-Patents and EPEP. C.1987) BASF Exxon Exxon (Turner) (Kaminsky) (Ewen) EP 69951 (09.1988) Fina (Ewen.1.1980) (06. LLDPE. LLDPE. Jr. J.07.1981) Hoechst (Kaminsky) MAOMAOBorateActivation Activation* Activation HDPE.01.1990) Hoechst (Spaleck) MAO-Activation HDPE. Razavi) EP 4858821 (12. Welborn. i-PP * H. a-PP HDPE.: 30.1991 „MAO-Activation of Bridged Metallocenes“ . EP(D)M EP 351392 (15.12..08.11. A. Ewen US 5324800 (Exxon) Prior.und Single-Site-Catalysts 1.07. i-PP. s-PP. Bis Cyclopentadienes X Zr X B Zr X X Me2C ZrCl2 Me2Si ZrCl2 B = Bridge EP 35242 EP 129368 EP 468537 (29.Cossee-Mechanism of Metallocene Catalysed Olefin Insertion R Zr + CH2 CH2 R Zr + CH2 CH2 R Zr + CH2 CH2 R + Zr CH2 CH2 Key Patents in Metallocene. COC HDPE.1983) (30.06. 07.1991) MAOActivation S-PS EP 416 815 (31.und Single-Site-Catalysts 1. Isoelectronic Bicyclopentadienyl Systems E X Zr X E E = N.03.05.Key Patents in Metallocene. Mono-Cyclopentadienyl Systems Ti MeO MeO OMe Me2Si N Ti CMe3 (IV) X X Ti RxE X X E= N. EPDM Key Patents in Metallocene.08.1997) Nova Chemicals (Spence) MAO-/Borate. EPM.01. PP.1989) Exxon MAO-/BorateActivation HDPE LLDPE EP(D)M ES US 5132380 (12.1995) Lyondell WO 96/34021 WO 98/01455 (25.1994) Lyondell US 5554775 (17. LLDPE.04.09. LLDPE.2.1995) Hoechst AG (Herberich) WO 98/50392 (08.08.MAO-/BorateActivation Activation Polyolefins HDPE.1985) Idemitsu Kosan US 5206197 Dow (04.07. O Ti NR2 III X X EP 210615 (29. PP PE. PP HDPE.12.09. EPDM.und Single-Site-Catalysts 2.1991) Dow WO 96/13529 DSM (Lovocat) Borate-Activation PO MAO_/BorateActivation HDPE LLDPE EPM . COC HDPE.1995) (05. 1.1993) Shell US 5539124 (19. EPM. P N B R´ B R´ Zr R X X Y B X Zr X B Y Cl Cl B Zr P Ph Ph Cl SiMe3 Cl Me P Me2Si Ph Me Me ZrCl2 N R EP 638593 (02.1998) Dow EP 420436 (13.1996) Lyondell Bayer AG (Ostoja-Starzewski) WO 97/2351 (22. PP.12. PP Polyacetylens . 1995) Lyondell Alternating Polyolefins Olefin/CO-Copolymers („Carilon“) Polyacetylens Polyolefins. 04.und Single-Site-Catalysts 3.1. LLDPE Key Patents in Metallocene.und Single-Site-Catalysts 2.12. Mono Cyclopentadienyl Systems F F F F t-Bu t-Bu P t-Bu F Ti N CH3 CH3 N C N N Ti CH3 CH3 O Ti N P X WO 2005/005496 DSM MMAO-Activation EP(D)M WO 2008/095687 DSM MMAO-Activation EP(D)M US 6063879 (29.1983) Shell WO 92/12162 (27.Key Patents in Metallocene.1992) Mitsui Toatsu EP 606125 (08.1992) Sumitomo JP 5230133 (19. HDPE.02.1990) Exxon EP 571945 (29.1997) Nova MMAO-Activation PE.1993) Shell US 5637660 (17.01.10.05.04.2. Post Metallocenes Ar P Pd P Ar Ar X´ N Ar Ar N X Ti X t-Bu t-Bu Ar S X X Ti O O N O O N X Zr X X EP 121965 (05. 1996) DuPont (Brookhart) polar/unpolar Copolymers.[O .1998) Mitsui HDPE.CH3]n.O . Post Metallocenes R R´ N M R´ R N X R R X´ N Cl N N Fe Cl N O Cl Ti O Cl N M = Ni.000-10. EPM EP 1881014 (10.2.Al .Al(CH3)2 (CH3) Al .05.2006) Mitsui EPM. Pd WO 96/23010 (24.[O . LDPE DuPont (Brookhart) BP EP 0874005 (24.und Single-Site-Catalysts 3.Key Patents in Metallocene.or dichlorides • MAO is an efficient scavenger for impurities (Polymerizations performed in the presence of MAO are very robust towards impurities) .CH3]n.20 MW : 2. 01.000 fold molar excess of MAO is needed in solution polymerizations • A 50-100 fold molar excess is needed for supported catalysts (gas phase) • MAO is capable of alkylating metallocenedichlorides • MAO is able to abstract chlorides from metallocenemono.01. EPDM HDPE. (PP) HDPE(PP) Features of the Activation by MAO Chemical Structure of Methylalumoxane (MAO): (CH3)2 Al .000-2.Al .500 Features of the activation by MAO: • The details on the mechanism of the activation by MAO are not known • A 1.O .Al(CH3) O n : 6 . Activation of Metallocenes by Boranes and Borates Abstraction of Alkyl-Anions by Borane and Borates R Zr F F F F F F H Ph F F F Borane F F F F _ R -R - B F F F F F N+ Me Me B F F F F Anilinium Borate 4 _ R Zr + Ph + Ph Ph B F F F 4 Triphenylcarbenium Borate • For the Activation of metallocenes molar quantities of borane/borates are required • Polymerizations activated by boranes/borates are very susceptible to impurities Activation of Metallocenes R Zr R.RH - R F5 R Zr + Ag+1/2 R2 + BPh4 N Ph Me F F F F F F F F B F F F F F F F R Me A - Ph Ph Ph A . W. F. JACS 113.1987 04. Rausch. J.F5 B A : F F - . Turner Erfinder: H. Bochmann Turner (1990) (1986) 1987 1987 M.02. W. C. D. Turner „Ionic „IonicMetallocene MetalloceneCatalyst CatalystCompositions“ Compositions“ F5 FF . Jordan Turner M. J. Chien (1991) Ph T.02. 3623) F5 R -R - Ag + BPh4 H Ph Me N+ Me A + Ph A Ph +R B F5 F5 +R +R CH3CN +R . W. Marks (1991.F EP (Exxon) EP468 468537 537 (Exxon) Priorität: Priorität:1987 1987 EP 561 479 (Exxon) Priorität: EP 561 479 (Exxon) Priorität:1987 1987 Nicht Nicht oder oderschwach schwachkoordinierende koordinierendeAnionen Anionen "NCA"oder "NCA"oder"WCA" "WCA" (insbesondere: (insbesondere:Tetrakis(Pentafluorophenylborat) Tetrakis(Pentafluorophenylborat) US Priorität: US5599761 5599761(Exxon) (Exxon) Priorität:04.1987 Erfinder: H. F F F F F F F F Si F F F FF B B F FF F F F F F F F F F F F F F F FF F F F F F EP 468537 (Exxon) WO 01/08691 (Bayer AG) Prior. Windisch EP 111927 (Bayer AG) Prior. Prior.: Becke. Hlatky Inv. Prior. 1989 CGC-Activation by boranes (Dow/Stevens) EP 705 269. Obrecht EP 561479 (Exxon) WO 01/10124 (Bayer AG) Prior.: 18.1998 Inv.: Becke. Prior.: 30.2000 Inv.: 09.07.80 Activierung of Cp2ZrRCl by MAO (Hoechst/Kaminsky) EP 69951.: 30. 01. 1987 US 559 976.81 Activation of metallocenes by Alkyl/R<C6. 06.Alkyls R >C8 .09. 30.: 31.: 30.01.1987 Prior.03.01.: Becke.1987 Prior. Mager. 02. 06.: Turner.: 24.Al-Oxanen (Exxon) Activation of CGCby MAO (Dow/Stevens) EP 416815. 04.: 24. Prior. Prior. Mager. Windisch. Kahlert. Hlatky Inv. EP 1066296 (Bayer AG) Prior.09.89 [Cp1MXn]+ [BR4]- Activation by borates (Dow/Stevens) 1990 Activation by boranes (Fina/Ewen) EP 427 697.: 24. Schmid.Key Patents for the Activation of Metallocenes Year of Priority 1980 Activation of Cp2ZrCl2 by MAO (BASF/Kaminsky) EP 35242.1999 Inv.2000 Inv.89 1985 Activation of metallocenes by borates (Exxon/Turner) EP 468 537.01.12. Prior.: Turner. Windisch. 1993 Activation of metalloenes by Al.: Becke.Al-Oxanes (Montell) 1995 Non Coordinating Anions F F F F F FF F FF F F F F F F F F F F F F F F F F F FF F F F 4 - F F F F F F F F F F B F F F F F F F F F F F F F F F F F F F F F F F F B B F F . Prior. Prior.: 10. Denninger. Denninger. Prior.: 23. 29. Denninger.08. Zahalka . 10.: 14. Prior. Kahlert.08. 1993 CGC/Diene-activation by boranes (Dow/Stevens) EP 705 269. 1987 Ionic metallocene catalyst comosition EP 418044.06. Obrecht.: 11.87 [Cp2MX]+ [BR4] EP 561 479. 00 Et(Ind)2ZrMe2 Cocat.75 DEAC 1.00 Borate 3.Pat.20 164.30 MAO 151.65 6. [EUR/kg] Exxon.Comparison of Catalyst Costs Example Plant 1 [EUR/kg] Plant 2 [EUR/kg] Exxon.00 TEA 0.45 DCPEE 2.Pat. Reactivator Total Cat-Costs [EUR/100 kg] [EUR/100 kg] [EUR/100 kg] EASC 3.70 [EUR/100 kg] 2. Catalyst [EUR/100 kg] VOCl3 0.25 Et(Ind)2ZrCl2 13.50 V(acac)3 1.25 •• MAO-activation MAO-activationof ofmetallocenes metallocenesis isnot noteconomical economicalin inaasolution solutionprocess process •• Borate-activation results in catalyst costs which are comparable Borate-activation results in catalyst costs which are comparablewith with Vanadium-systems Vanadium-systems •• For Foran animprovement improvementin inoverall-economy overall-economymetallocene-technology metallocene-technologyhas hasto tobe be combined with process improvements combined with process improvements •• Increased Increasedcatalyst catalystcosts costsmight mightbe becompensated compensatedby bythe theimproved improvedproperty property profile of new products profile of new products .00 5.25 3. Market Shares.and Halo Butyl Rubber CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 CH2 C n CH3 CH CH2 CH2 C CH3 20 CH3 C 19 39 CH3 C 29 30 H3C CH C 2 23 H3C 45 CH3 C 27 CH 28 CH2 Butyl Rubber (IIR) CH 2 35 CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n 123° 15 CH3 CH CH2 CH2 C X CH3 38 CH3 CH 2 21 16 CH3 CH 2 26 Standard Angle: 109.4-trans Tg: ca.5° X = Cl: Chloro Butyl Rubber (CIIR) X = Br: Bromo Butyl Rubber (BIIR) CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH CH2 CH CH2 C CH3 CH3 n Basic Features: Isoprene content: 0.2.4.5.and Halobutyl Rubber Abbreviations: Butyl Rubber: Bromo Butyl Rubber: Chloro Butyl Rubber: Brominated Isobutene Paramethylstyrene Rubber: IIR-Terpolymer (mainly with Divinyl benzene): IIR BIIR CIIR BIMS XLIIR Contents • Overview – Products.5 . Producers and Range of Grades • Polymerization Mechanism and Production Technologies – Standard-Butyl Rubber (IIR) – Halo Butyl Rubber (XIIR) • Vulcanization and Vulcanizate Properties Butyl. Property Profiles and Areas of Application – Market.5 Mol% Incorporation of Isoprene: random 1. Butyl. -72°C Mw/Mn: 3-5 CH2Br CH3 Brominated Isobutene-co-p-Methylstyrene Rubber (BIMS) Isobutene-Terpolymers . and Halo Butyl Rubber (X)IIR: Property Profile and Areas of Application Property Profile Positive: Tyres Others Chewing gum 4% Pharmaceutical Adhesives Automotive 3% 1% 1% 5% • Low gas permeability • high resistance to heat and vapour • high resistance to chemicals • good insulation properties • good covulcanization (XIIR)) • product purity (grades without antioxydants) Negative: low elasticity /highly damping Areas of Applications: 86% Source: CHEManager 20/2006. Seite 8 (GIT Verlag Darmstadt) • XIIR based Innerliners (passenger tyres) • IIR b ased tubes (truck tyres) • bladders (IIR) • ABC-protection clothes • Cable and wiring • Pharmaceutical stoppers • Adhesives and sealants • absorbers for noise and fenders • chewing gum Butyl and Halobutyl Rubber (X)IIR: Grades CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 CH2 C n CH3 CH CH2 CH2 C CH3 Butyl Rubber (IIR) X2 (Cl2 / Br2) CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n CH3 CH CH2 CH2 C X CH3 Halo Butyl Rubber (XIIR) X = Cl: Chloro Butyl Rubber (CIIR) X = Br: Bromo Butyl Rubber (BIIR) Advantages of XIIR over IIR: • Higher speed of vulcanization •Improved covulcanization without deterioration of basic IIR properties .Butyl. a.4-cis-BR NR EPDM 10 SBR NBR/28 ACN NBR/33 ACN NBR/38 ACN IIR 1 0 -75 -50 -25 0 25 50 Temperature [° C] 75 100 0.1 0.80 €/kg ca.00305 0.Characteristic Features of IIR based Vulcanizates Air permeability of vulcanized rubbers (50 phr SRF.000): IIR: XIIR: Sum: 700 600 IIR XIIR Sum .0029 0.2. Producers and Production Capacities Main Areas of Application: Market Growth (Basis: 2. without plasticizers) Temperature [° C] 70 100 (50 phr SRF.a. + 1.Total butyl [kt] X X X X X X (X) X X X X 414 252 180 50 45 80 300 200 100 0 19 79 19 82 19 85 19 88 19 91 19 94 19 97 20 00 Lanxess Nizhnekamsk Togliatti Sinopec Japan Butyl Co. + 2.2 % p.003 0.00295 0.a. 1. Total Capacity 1. 2 €/kg ca.3 %/ p. without plasticizer) 80 Rebound Elasticity [%] SBR NBR NR EPDM 40 IIR 20 Luftdurchlässigkeit(Q x 10exp8) Rebound 60 50 1.041 . 12/92 Bayer AG -KA 34 166) (X)IIR: Market. (90%: •XIIR: •IIR: •IIR: •IIR: •XIIR: •BIMS: Tyres and Tyre Production) Inner liners Truck tyre tubes heating bladders ca. Market Development. 3.0031 1/T x 10exp4 Source: Butyl And Halobutyl Compounding Guide For Non-Tyre Applications.3 % p.4-cis BR 60 1.5 €/kg Pricing (1996): Consumption [kt] 500 400 Production capacities (2008) Company Exxon Butyl Halo. 1993) CH3Cl compressor dryer compressor AlCl3solution drum Ch Br lorb om uty bu l tyl Al2O3 Cond enser H2O “catalyst cocatalyst drum“ H2O „slop isoprene“ Storage tank for „mixed feed“ Storage units for IIR-slurry in water Reactor Steam.Range of Commercial IIR and XIIR Grades Range of Standard Butyl Grades 100 90 80 Mooney Viscosity ML (1+8) 125°C Mooney Viscosity ML (1+8) 125°C 70 60 50 40 30 20 10 0 0 2 4 6 8 10 Content of double bonds [Mol%] 100 90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10 Halogen Content [Mol%] Range of XIIR Grades IIR: Flow Chart of Slurry Polymerization (Kirk-Othmer Encyclopedia of Chemical Technology.Isoprene drying unit .Flashunit Strippingunit NH3EtheneHeat exchangers Isobutene. Volume 8. Fourth Edition. 968.924.1 h Conversion of monomers: Isobutene 75 .85 % Concentration of IIR-Slurry 25 .0 wt.35 wt.60 h Additives: Antiagglomerants: (Stearic acid/Zn-stearate) 0.4 t/h*Reactor Operation time of reactors: 18 .128.45 °C Polymerization temperature: -90 °C bis .% -discolouring: alkylated Phenylene Diamines -None discolouring: phenolic AO (+ alk. Volume 8.710.1.4 . US 2. US 4.474.Features of IIR Production Technology Slurry polymerization AlCl3 HCl (Exxon) H2O (Lanxess) Diluents: CH3Cl (Exxon and Lanxess) „mixed feed“(GUS) Make-up of AlCl3-solution 30 . US3.% Reactor output: 2 . 1993 US 2.752.068.100 °C Residence time 0.15 wt. US 4.95 % Isoprene 45 .356.051.491. Phenyl phsophites) -chewing gum: without AO catalyst Sources: mixed feed Process: Catalyst: Cocatalysts: Ethylene (gas) Ethylene (liquid) Inlet and Drain for light hydrocarbon wash catalyst Kirk-Othmer Encyclopedia of Chemical Technology. US 5. US 2. Fourth Edition.312 IIR: Reaction Scheme of Cationic Polymerization Formation of Cation: AlCl3 AlCl3 + + HCl H2O + H + AlCl4 H + + AlCl3OH CH3 - Initiation of Polymerization: CH3 + H + AlCl4 + CH2 C - CH3 C CH3 + AlCl4 - CH3 CH3 CH2 C CH3 n Chain Propagation (Growth) Reaction: CH3 CH3 + CH3 C AlCl4 + CH3 + CH2 C AlCl4 - n CH2 C CH3 H - CH3 Transfer Reaction: CH3 CH3 H CH2 C CH3 n + CH3 CH3 CH3 CH n CH2 C AlCl4 +CH2 C CH3 CH3 - CH3 H CH3 CH2 C CH3 CH3 + C + CH3 C AlCl4 - CH3 CH3 Termination Reaction: CH3 CH3 H CH2 C CH3 n CH3 CH2 C Cl + AlCl3 CH2 C AlCl4 CH3 + - H CH2 C CH3 n CH3 .076.02-0.5 .491.532.% Antioxydants: 0. Kennedy. Pol.IIR: Living Cationic Polymerization Generation of Carbo Cation: R . Sci.0 6.5 4. Adv. Trivedi. 113-151 .5 7.0 4.Cl + MX n Initiation: CH3 R + R + + MX n+1 CH3 - + CH2 C CH3 CH3 + n R CH2 C + MX n+1 - Propagation: CH3 R CH3 CH3 R CH3 CH2 C CH3 n CH3 CH2 C + CH2 C MX n+1 CH3 + - CH2 C MX n+1 - CH3 CH3 CH2 C n Reversible Termination: CH3 CH3 R CH2 C CH3 n CH3 CH2 C + MX n+1 - R CH2 C CH3 Cl + MX n CH3 CH3 MXn (Metal halides) and R-Cl used for the preparation of Isobutylene based blockcopolymers: BCl3 and TiCl4 Cl Cl Cl Cl Cl Influence of Polymerization Temperature on Molar Mass (Polyisobutylene / without Isoprene) 13 107 -25 -50 -75 -90 -106 -120 -143 EtAlCl2/H2O AlCl3/H2O γ-Strahlung Mn [g/mol] 106 105 Molar Masses: BF3/H2O 104 3. D.5 3 1/T *10 [K-1] 6.5 5. (1978) 28. P.0 5.0 γ-Strahlung > EtAlCl2 > BF3 > AlCl3 Source: J. steam merants Caustic soda Source: Kirk-Othmer Encyclopedia of Chemical Technology. 1993 CH CH2 CH2 C . 1993) CH3 CH2 C CH3 CH3 CH2 C CH3 XIIR: Mechanism of IIR-Halogenation CH3 CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 C n CH CH2 CH2 C X2 CH3 CH3 Reaction Conditions: Solvent: IIR-solids Ratio of Halogen/Isoprene: Reaction temperature : Residence time: Stripping-Vapour : Antioxydants / stabilizers: Hexane 20 .HX CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 X CH2 C n Source: CH3 Kirk-Othmer Encyclopedia of Chemical Technology. US 4513116. US 4681921. US 3099644. Volume 8. US 4650831. US 4288575. Volume 8. US 4384072. Fourth Edition.%: 1:1 Mol/Mol 40 – 60 °C lh 2 .HX CH3 CH3 X Patents: US 2631984.2 kg/ kg XIIR Ca-Stearate.XIIR: Flow Chart of IIR-Halogenation Storage tank Halogenation reactor Br2 bzw. US 5681901 CH2 X CH2 C n CH CH2 CH2 C CH3 . US 4554326. Fourth Edition. Cl2 IIR-solution in hexane Neutralization reactor Addition of AO Hexane water X-IIRSlurry in water Antiagglo. Epoxydized Soy bean oil (ESB) CH3 H X CH2 C n + X C CH2 CH2 C CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH3 H CH2 C n X CH3 + X C CH2 CH2 C CH3 .25 wt. US 4632963. 4-BR C C X-linking efficiency = Number of crosslinks Peroxide Functions Theoretical Crosslinking efficiencies 1 >1 <1 EPDM EPM NBR IR CR IIR PE PP 1) Type of Rubber M .5 10. A.5 <<1 1.4 .5 - * IIR-Terpolymer mit Divinylbenzol (XLIIR) Source: C. Moakes.7 1.0 0. Früh. TU Hannover 1995 Properties of Sulfur.Rubbers R .Crosslinking Efficiencies in Vulcanization by Peroxides (Dicumyl Peroxide) Rubbber O O 2 C O + C O (R*) X-linking efficiency ~ 100 1) 12.0 1.5 0.5 1.and Peroxide Cured IIR and XLIIR IIR IIR -Terpolymer* N 762 Hard Clay Polarite 102R/EEC Int Pb3O4 Stearic acid Bis(t-butylperoxy-isopropyl)benzene Trimethylolpropanetrimethacrylate Dibenzoyl chinone dioxime Dibenzo thiazyldisulfide Polysar Butyl 402 Polysar Butyl XL 10000 Carbon black Silicate Silanised calcinated Clay Perkadox 14-40 B/Akzo Sartomer 350/Sartomer Actor DQ/Kawaguchi Vulkacit DM / Lanxess 6 1 100 50 130 10 1 100 50 20 80 1 1.5 1.Rubbers Degradating polymers Dissertation Th.0.0 <<1 2 + 2 R-H Vi-BR (98% Vinyl) SBR cis 1. Bayer „Polynotes“ No B11 „An Improved Seal for Chemical Condensers Based on Polysar Butyl Terpolymer“ . 0 155 6.8 75 83 7.5 15 78 95 8.2 76 6.8 Vulcanization of BIIR by Peroxides CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n CH3 CH CH2 CH2 C CH3 CH2 C CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n CH3 CH CH2 CH2 C CH3 CH3 X CH3 + DCP .21 0.0 0.) Shore A Härte (23°C) S100 [MPa] Elongationat break [%] Tensile Strength [MPa] Compression Set (70h/105°C [%]) Hot air ageing (100°C/96h) Shore A Härte (23°C) S100 [MPa] Elongation at break [%] Tensile Strength [MPa] Electrolyte permeability (g*mm/day*m2) Ethylenglycol g-Butyrolactone Dimethyl formamide IIR 105 4.8 110 8.and Peroxide Cured IIR and XLIIR Butyl Rubber Grade Compound Properties Compound Mooney (ML 1+4/100°C) Mooney-Scorch (125°C) [min.8 1.0 7.2 0.38 1.2 X* CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 C n CH3 CH3 CH2 C CH3 X CH2 CH3 CH2 C n CH CH2 CH2 C CH3 CH CH2 CH2 C CH3 CH2 .8 XLIIR 98 6.5 105 7.Properties of Sulfur.] Vulkanizate Properties (160°C/12 min.0 81 6. Bayer AG.0 1.0 1.25 1. Waddell (Exxon) „Isobutylenkautschuke im Kraftfahrzeug: Eine Literaturübersicht. GAK 9/1999-Jahrgang 52.5 0. Rogers. 670-682 .0 1. W.0 10 5 190 30 100 50 1. Rubber Business Group KA 34166.Vulcanization of BIIR by ZnO/NN‘-m-Phenylene Bismaleic Imide CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n CH3 CH2 C CH3 CH2 C n CH3 CH CH CH2 C CH3 C C O N CH3 CH CH2 CH2 C CH2 C CH3 CH2 O X + ZnO .5 160 25 100 50 5 10 1.5 180 15 100 50 5 1. 12/92 J.5 180 20 Source: Butyl and Halobutyl Compounding Guide for Non-Tyre Applications.0 5 180 3 100 50 5 1.0 1.ZnOHX CH3 CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n CH3 O CH CH CH2 C CH3 C N C CH3 CH2 C CH3 CH3 CH2 C CH3 CH2 CH2 C n O CH3 CH CH CH2 C CH3 IIR and XIIR: Methods of Vulcanization and Vulcanizate Properties IIR (Lanxess Butyl 301) XIIR (Bromo butyl Carbon black (N 330) Carbon black (N 774) Zinc oxide Lead Oxide (Pb3O4) Stearic Acid Sulfur MBT Benzochinondioxim PF-Resin (Amberol) CR (Baypren 110) Dicumyl peroxide Zinc oxide Dicumyl peroxide BMI (HVA 2) temperature time [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [phr] [° C] [min] 100 50 5 1.5 180 4 100 50 5 1. ed. H.0 6 150 12 100 50 5 6 1. 9 15.2 13.5 10. 670-682 Influence of Oil Loading on Properties of BIIRVulcanizates BIIR Carbon black Paraffin Oil Resin Stearic Acid MBTS Zinc oxide Sulfur Polysar Brombutyl 2030 N 660 Sunpar/Sunoco Inc. W. ed.9 680 53 100 50 DCP/BMI 88 14 54 0.6 530 68 100 50 Chinon 94 7 64 2. Rogers.2 12.8 400 68 100 50 Resin 82 >30 64 1. Waddell (Exxon) „Isobutylenkautschuke im Kraftfahrzeug: Eine Literaturübersicht.9 5. black (N 774) [phr] [phr] [phr] [phr] 100 50 S/MBT 91 17 66 2.1 12.19 10.3 3 0.5 1.8 590 12 100 50 ZnO 83 16 48 0. Pentalyn A / Hercules Vulkacit DM / Lanxess 100 60 4 1 1. GAK 9/1999-Jahrgang 52.5 325 28 100 50 ZnO/BMI 89 16 58 0.8 8. Rubber Business Group KA 34166.4 580 58 100 50 DCP 88 12 40 0.5 100 60 7 4 1 1. black (N 330) Carb.IIR und XIIR: Methods of Vulcanization and Vulcanizate Properties IIR XIIR Carb.5 16.6 360 13 Vulcanization Compound Properties ML 1+4 (100° C) [MU] MS5 (125° C) [min] MS5 (135° C) [min] Physical Properties Shore A Hardnes [MPa] M100 M300 [MPa] Tensile Strength [MPa] Elongation at break [%] CS (70h/150° C) [%] Source: Butyl and Halobutyl Compounding Guide for Non-Tyre Applications. 12/92 J. Bayer AG.12 9. H.3 3 0.5 . 8 1.3 3 0.Influence of Oil Loading on Properties of BIIRVulcanizates Butylkautschuk-Typ Paraffinöl Mischungseigenschaften Compound-Mooney (ML 1+4/100°C) Mooney-Relaxation (MR30) [%] Monsanto-Tack [N] Vulkanisateigenschaften (160°C/12 min.7 5.3 3 0.2 8.5 650 0.9 670 0.5 2.1 4.0 Influence of Carbon Black Loading on BIIR Vulcanizates BIIR Carbon Black Paraffin Oil Resin Stearic Acid MBTS Zinc Oxide Sulfur Vulkacit DM / Lanxess Polysar Brombutyl 2030 N 660 Sunpar/Sunoco Inc. Pentalyn A / Hercules 100 60 4 1 1.3 10.3 BIIR 7 62 5.3 3 0.3 3 0.0 58 40 9 29 3.1 2.9 1.5 100 0 4 1 1.) Zugfestigkeit [MPa] Bruchdehnung [%] S 50 [MPa] S 100 [MPa] S 300 [MPa] Shore A Härte/23°C Shore A Härte/70°C Rückprallelastizität/23°C [%] Rückprallelastizität/70°C [%] Luftdurchlässigkeit/70°C (DIN 53536) [m2/s*Pa]) BIIR 72 5.5 100 40 4 1 1.3 3 0.5 100 30 4 1 1.5 .4 60 47 9 30 2.5 100 20 4 1 1. 647 0.0 0. Jones.8 3.9 2.3 6.9 42 2.3 13.5 40 0 60 60 7 4 1 3 1.9 11.8 5.8 39 27 11.3 2.9 1. H.4 1.215 100 30 56 7. Properties and Uses“ paper 16A10 presented at IRC ‘85 Kyoto.900 0.3 6.1 865 0.8 2.5 60 0 40 60 7 4 1 3 1.7 1.4 55 43 10 32 2.0 0.5 0.3 7.190 100 20 51 7. A Comparison of Their Chemistry.0 0.) Tensile Strength [MPa] Elongation at break [%] M50 [MPa] [MPa] M100 M300 [MPa] Shore A Hardness/23°C Shore A Hardness/70°C Rebound at 23°C [%] Rebound at 70°C [%] Air permeation at 70°C/E+17 [m2/s*Pa]) tan δ / 0°C (Roelig-test) tan δ /70°C (Roelig-test) 100 60 72 5.8 730 0.0 0.5 80 20 60 7 4 1 3 1.2 7.3 7.8 3.0 0.863 0.5 1055 0.39 0.251 100 40 62 7.7 0.Influence of Carbon Black Loading on BIIR Vulcanizates BIIR (Butyl rubber 2030) Carbon black (N 660) Compound Properties Compound-Mooney (ML 1+4/100°C) [%] Mooney-Relaxation (MR30) Monsanto Rheometer MDR 165°C minimal torque [Nm] [min] t50 t90 [min] Maximal torque [Nm] Vulcanizate properties (160°C/12 min.5 13.7 39 2.0 0.178 100 0 40 7.4 46 33 10.2 44 2.1 2. Walter “Bromobutyl and Chlorobutyl.809 0.0 0.151 Influence of (X)IIR/NR-Blend Ratio on Vulcanizate Properties BIIR CIIR NR Carbon black (N 660) Paraffin oil Pentalyn A* Stearic acid Zinc oxide MBTS Sulfur 100 0 0 60 7 4 1 3 1. R. J.0 0. Hopkins.4 13. International Rubber Conference .7 975 0.2 3.5 60 40 60 7 4 1 3 1.8 1.8 1.8 49 2.2 7.3 1100 0.14 0.5 100 0 60 7 4 1 3 1.6 22 17 13.78 0.945 0.2 33 23 12.7 0.7 3.6 0.5 Source: W.6 1.9 6.5 80 0 20 60 7 4 1 3 1.2 0.58 0.4 1.1 4.5 40 60 60 7 4 1 3 1.3 5.27 0.4 0. 7 5.0 465 5.7 620 620 560 560 490 580 7.9 5.7 9.3 10.1 14.4 7.7 9.1 15.7 8.Influence of (X)IIR/NR-Blend Ratio on Vulcanizate Properties BIIR [phr] CIIR [phr] NR [phr] Unaged: M300 [MPa] Tensile Strength [MPa] Elongation at break [%] Aged (168h/100° C) M300 [MPa] Tensile Strength [MPa] Elongation at break [%] Air permeation at 50psi/65° C (Q x 10-8] Adhesion at 100° C Self adhesion / tack [kN/m] Adhesion to NR [kN/m] Fatigue to failure after ageing at 168h/120° C [kcycles] 100 100 4.8 10.7 8.7 8.3 0.6 9.2 16.9 0.9 11.8 72.2 3.8 3.8 4.9 640 2.9 0.7 9.1 5.2 365 7.6 15.4 7.5 1.6 5.5 6.6 3.8 10.8 2.0 550 2.3 14.7 12.7 10.8 420 5.3 320 9.0 1.8 370 13.0 10.0 61.9 .7 4.4 9.7 23.4 5.3 9.2 20.2 9.9 80 20 80 20 60 40 60 40 40 60 40 60 5.0 0.7 1.1 7.9 4.9 740 770 6.5 10.3 14.8 475 13.2 7. Rubber Specialities: Performance Profiles of Vulcanizates Maximal Service Temperature 100 80 Processability 60 40 20 0 Low Temperature Performance Mechanical Properties Ozone Resistance Silicon Rubber Hydrogenated Nitrile Rubber Fluoro Rubber Ethylene-Vinylacetate-Copolymers Oil Swelling .5. World Market Asia 22% USA 45% Top price: Growth: Return on Sales: 20 .000 h 240 h 48 h 232°C 260°C 288°C 316°C Properties of FKM-Vulcanizates: Areas of Application: Positive: •Excellent resistance to ozone. 11 November 2003 Producer Du Pont DuPont-Showa Trade names Viton/Kalrez Market Share [%] 43 Site Deepwater.0 1.72 Maximum Service Temperature: 3. AL Capacity* [kt] 3.000 h 1. Logothetis „Chemistry of Fluorocarbon Elastomers“ Prog. L. Fluoro Rubber (FKM / FPM) Bond C-H C-F Bond energy [J/mol] 413 485 Radius of atoms [A] 0. BE Gendorf. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons A.50 EUR/kg (correlated with F-content) ~ 500 €/kg (Kalrez) 8 . Jp Kawasaki.1.10% p. 15.000 t 20 . DE Spinetta.37 0. capacity utilization: 80-100% ..0 1. Jp Chiba. a.and weather •High service temperature •Low oil swell •High resistance to chemicals and acids •High flame resistancy 60 % 10 % 10 % 20 % 30-40 % 30-40 % 10-15 % ~5% 4. Jp Chiba. NL Utsonomiya. Polym. 251-296 (1989) Fluoro Rubber: Market.0 2. Vol. Jp Decatur. I Osaka.0 1.5 % 10 % Automotive (75% in Europe) Aviation and Aerospace Chemical planty s (Fume treatment of incineration and power plants) rest O-Rings and seals crank shaft seals hoses and profiles Modification of polyolefins pipes and tubings rest Rubber goods: Negative: •High price •Poor low temperature flexibility (except Kalrez) •Poor resistance to amines and bases •Poor compounding •Necessity to oven ageing after vulcanization Sources: J. Producers and Capacities Market: Prices: 2002: ca.0 1.0 Dyneon Solvay (Ausimont) Daikin Kogyo Asahimont Asahi Glass Unimatec Fluorel Tecnoflon Daiel Aflas Noxtite 22 15 10 5 5 Zwijndrecht.1 2. Jp Jp 2. Sci. NJ Dordrecht. 14.25% WEurope 33% Source: Kunststof En Rubber.0 Estimated total capacity: 20 kt.5.0 2. UV.0 1. . Vol. Volume swell [wt.%] benzene gear oil 21°C 121°C VDF/HFP 65 20 171 VDF/HFP/TFE 67 15 127 VDF/HFP/TFE/CSM* 69 7 45 TFE/PMVE/CSM* 71 3 10 TFE/P 54 180 Copolymers Tg [°C] -18 -8 -5 -19 -2 (0) Storage in motor oil which contains amines (163°C) Benzene/21° C Gear Oil/121° C Volume Swell [%] 160 140 120 100 80 60 40 20 0 60 65 d reduction of elongation at break [%] 10 0 -10 -20 -30 -40 -50 -60 -70 -80 0 200 400 HNBR FKM (68% F) 70 75 600 800 1000 Fluorine Content [wt. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons A. Sci. Polym.%] time [h] . Logothetis „Chemistry of Fluorocarbon Elastomers“ Prog. 251-296 (1989) FKM: Performance of Standard Grades Fluorine Cont.t% ] 40 60 Z 40 us ho s orp er s) r Am olym P bbe (ru TFE HF P 60 X HFP 80 20 Y Copolymers fluorine cont. 14.%] VDF [%] 33 55 22 TFE [%] 33 23 12 20 VDF TFE/P VDF/HFP VDF/HFP/TFE VDF/HFP/TFE/CSM* TFE/PMVE/CSM* *Cure Site Monomer X Y Z Soures: HFP [%] 33 22 65 J.% wt F[ VD 20 Fluorine containing monomers H F C H F C F F C F C F C F CF3 C F F 80 VDF [w . [wt. L.%] 54 65 67 69 71 TFE 80 60 40 TFE [wt.FKM: Composition of Standard Grades HFP ] . Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons Range of FKM-Grades and Vulcanization Ageing Resistance in Media with Basic Additives Vulcanization with Peroxides peroxidisch Vulcanization with Bisphenols Vulcanization with Diamines Aflas Viton A PVDF Viton B.5 TFE/VDF/PMVE TFE/VDF/HFP H F F F F F F H VDF Vinylidene fluoride (59% fluorine) HFP Hexafluoropropene (76% fluorine) TFE Tetrafluoroethylene (76% fluorine) PMVE Perfluoromethylvinyl ether (69% fluorine) P Propen 1 1.5 2 H Hydrogen content [wt. GF Viton GLT Kalrez PTFE 75 55 65 Fluorine Content [wt.FKM: Glass Transition Temperatures H F F CF3 F F F O F CH3 H CF3 Glass transition temperature [° C] 0 -5 -10 -15 -20 -25 -30 -35 0 0.%] Source: J. %] . Smith.. 56. CaO und PbO. Plazek. Angew. Gummi Kunst. Macromol. W. Schmiegel. Choy.-J. 2065 (1996) . 866 (1983) D. Polym. Angew. 137 (1978) CF2 CH CF CH2 CF2 W. Macromol. L. 31. Zinbo.. Technol. M. F. J. J. Kelley. W. 10. 53. ‚E. Sci. R. 137 (1978) W.. 76/77. Fogiel.HF CF3 CF2 CH CF CH CF2 2. 39 (1979) FKM: Vulcanization with Bisphenols 1. which are used in "capped form" (such as carbamates) in order to increase scorch resistance CF CF 3 3 CF3 CF2 CF2 CF3 CH CF CH CF2 CH CF CH CF2 H2N R NH2 CF2 CH CF CH2 CF2 NH R NH . 56. O. Crosslinking with Bisphenols ( such as Bisphenol AF) in the presence of BTPPC (Benzyl triphenyl phosphonium chloride) BTPPC acts as phase transfer catalyst and is often referred to as "accelerator" + CF3 HO CF3 n CF3 CF3 HO CH CF CH CF2 CF3 O CF2 CH CF CH2 CF2 O OH + CH2 P + Cl . Appl.HF CF2 CF3 CH CF2 CH2 CF2 .. W. Kuzenko.. Technol.1. III.. Gummi Kunst. Sci. N. Guttenberger. C. Neppel. J. W. Schmiegel. 31.HCl HO CF3 O CF3 n CH2 P + CF3 CF2 CF2 CF3 CH CF CH CF2 CF3 CF3 Sources: T. Schmiegel. L. Chem. Theodore. v. Carter. Schmiegel. Chem. J. Sci A-2. 61. 39 (1979) CF3 A. I. CF3 CF2 F CH2 CF2 CH2 CF2 . M. CaO and PbO CF3 CF2 F CH2 CF2 CH2 CF2 . W. 333 (1975) W. H. 76/77. von Meerwall.HF CF2 CF3 CH CF CH CF2 2.2HF CF2 CH N R N CH2 CF2 CF2 CF3 CH CF CH2 CF2 CF2 CF3 CH CH2 CF2 Diamine cure yields crosslinks which are liable to hydrolysis (not steam resistant) CF3 CF2 CH N R N CF2 CF3 CH CH2 CF2 CF2 CF3 CH CH2 CF2 H2O O CF3 CF2 CH O CH2 CF2 NH2 R NH2 CH2 CF2 Sources: W. W. Rubber Chem. Polym. Elimination of HF by MgO.. Polym. Su. J.HF CF2 FKM: Vulcanization with Diamines CF3 CH CF2 CH2 CF2 . Chu. 133 (1972) O A.. Symp.. 866 (1983) A. Kaut. Elimination of HF by MgO. Kaut. N. Crosslinking by Diamines. Rubber Chem. FKM: Vulcanization with Peroxides CF CF3 CF CF2 CF2 3 CF2 CF2 CF2 CF2 CF2 n CF CF2 CF2 Br J C H2J2 C F2J2 CF2 Br/J-Content: 0,5-1 wt.% J-( C F 2 ) - J 4 -6 Type of bond C-F C-H C-Br C-J Bond energy [kJ/mol] 480 405 270 200 CF2 CF2 CF2 Br CF O CFBr CHBr CF2 CF2 Br CF2 CF2 Br • C-F bonds have a high bond energy. As a consequence, F-radicals cannot be abstracted by peroxides and FKM with high fluorine contents (> 70 wt.%) cannot be vulcanized by the use of peroxides. •For the vulcanization of FKM with F-contents > 70 wt% special cure sites are required. For this purpose bromine and iodine are incorporated into FKM. C-Br and C-I bonds have a lower bond energy thqn C-F bonds. Therefore Br- and I-radicals can be abstracted by the use of peroxides. • Br- and I- based cure sites are incorporated by chain modifiers and by special comonomers which contain Br- and/or iodine. In the presence of Br- and I- containing compounds (modifiers and monomers) the polymerization proceeds as a „living radical polymerization“ (this probably was the first example of a living radical polymerization). During the course of the polymerization Br- and I are incorporated as end groups. During peroxide cure of Br- and I- containing FKM and during subsequent annealing toxic compounds are released which contain bromine and iodine. Source: D. F. Lyons GAK 3/2005, Jahrgang 58 „ Einfluss der Molmasse auf die Eigenschaften von Bisphenol-AF-vernetzten Fluorkautschuken“ FKM: Vulcanization •The method of FKM-cure depends on the fluorine content. •Copolymers based on vinylidene fluoride and propene (Aflas) are crosslinked by the use of peroxides. •Fluoro rubbers with a fluorine content<70 wt.% (such as copolymers based on VDF and HFP) are liable to HF-elimination which is a prerequisite for the vulcanization with diamines and bisphenols. MgO and Ca(OH)2 are added to the rubber compound in order to react with HF which is eliminated during vulcanization. •FKM vulcanizates which are cured by diamines and bisphenols contain double bonds. As a result, their resistance to heat and ageing is inferior to FKM without double bonds. Also, diamine cured FKM is liable to hydrolysis. •Fluor rubbers with a fluorine content > 70 wt. % (FKM which contains no or only a small amount of VDF) cannot elimiminate HF. Therefore vulcanization cannot be achieved by diamines or bisphenols. FKM with F-contents > 70 wt.% requires special cure site monomers which enable peroxide cure. Source: J. Scheirs „Modern Fluoropolymers“ High Performance Polymers for Diverse Applications John Wiley & Sons 5.2. Silicon Rubber (Q) CH3 ( Si CH3 O CH3 Si CH3 CH3 O Si CH CH2 O ) n VMQ O ) n MQ Grade MQ VMQ PVMQ FMQ Tg [° C] - 120 - 120 - 120 - 69 Tm [° C] - 45 - 45 - 70 CH3 ( Si CH3 Vulcanizate Properties: Positive: Low temperature performance High temperature resistance Low dependence of properties on temperature changes Ozone-, UV- and Weather resistance Hydrophopic character Physiological inertness Low reistance against acids, bases, vapour and hydrocarbons (significant improvement with FMVQ) Mechanical properties RTV: poor HTV: better / DVR ! High gas permeability CH3 ( Si CH3 O Si CH CH2 O ) n PVMQ Negative: CH3 ( Si CH3 O CH2 CH2 Si CH3 O CF3 ) n FMQ Bond energies Si-O C-O C-C C-S S-S [kJ / mol] 444 339 348 272 266 Silicon Rubber: Properties and Application Areas Haushalt 20% Application Areas: Automotive industry 40% Pharmaceutical- and medical rubber goods Rubber goods with food contact Medical Applications 25% Machine building 15% Cable insulation Adhesives Temperature [°C] 90 121 150 200 250 315 Sources: duration 40 years 10-20 years 5-10 years 2-5 years 3 months 2 months Moulded articles Hoses, sealants (Automotive, Machine building and E&E) •K. Polmanteer, Rubber Chemistry Technology, Vol 61: 471-502“Silicon Rubber, its Development and Technological Progress“ •T. Maxson GAK 12/1995, Jahrgang 48, 873-884 „Fluor-Silikonkautschuk“ •D. Klages, U. Raupbach, GAK 4/1995, Jahrgang 48, 49-51 „Fluorsilicon-Kautschuk: Ein sehr moderner Werkstoff“ •E. L. Warrick, O. R. Pierce, K. E. Polmanteer, J. C. Saam, Rubber Chemistry Technology, Vol 52: 437-526 „Silicone Elastomer Developments 1967-1977“ •Winnacker/Küchler Chemische Technik, Prozesse und Produkte. Bd. 5 Organische Zwischenverbindungen, Polymere. Wiley-VCH, 2005 Producers Capacities and Silicon Rubber Market Manufacturer* Site SiloxaneCapacity [kt] 260.000 110.000 110.000 40.000 65.000 95.000 90.000 30.000 60.000 Rhodorsil® Silopren® KE, Sylon® Elastosil® Silicone RubberBrand Name Silastic® Dow Corning Carollton, USA Barry, GB Momentive (formerly: GE + Bayer) Waterford, USA Ohta, Japan Leverkusen, DE Shin-Etsu Wacker Isobe, Japan Burghausen, DE Nünchritz, DE Rhodia Rousillon, FR S Western World (2000) 850.000 *Evonik and Crompton are active in this market without proprietary siloxane production Japan 25% Nordamerika 44% Year 1995 /t: ~ 110.000 ca. 3,5 % / a; 2005 ~ 200.000 LSR ca. 10 % / a Consumption Europe 31% Growth rate 2005: Source: Winnacker/Küchler Chemische Technik, Prozesse und Produkte. Bd. 5 Organische Zwischenverbindungen, Polymere. Wiley-VCH, 2005 Silicon Rubber: Production Synthesis of Silicium: SiO2 + C Si + CH3 Si Cl Si CH3 H3C Si O H3C H3C CH3 n Cl Si CH3 Cl + 4 H2O Si O O Si CH3 CH3 Si O O Si CH3 CH3 CH3 CH3 D4 D3 CH3 2 CO Rochow-Process: 2 CH3-Cl + Cl - HCl H3 C O H3C Si O Si H3C H3C H3C Si CH3 O n Dn Silicon Rubber: Production H3C O H3C Si O Si H3C H3C O Si O Si CH3 CH3 15 % CH3 CH3 85 % O CH3 Si CH3 O n CH3 Si CH3 OH Katalysatoren: Säuren, Lewis Säuren, Saure Silikate, Basen Übliche Temperaturen: KOH 140° C NaOH 170° C After short-stopping of the „polymerization“ residual monomers are removed under vacuum. For standard grades residual monomer contents are specified < 1 wt.% (for specialities: <0,5 wt.%) CF3 H3C Si O Si H3 C O O CH3 Si O Si CH3 CF3 H3C H2C O H3C Si O Si CH2 O CF3 CH2 CH3 CH2 HC O H3C Si O H3 C Si CH CH2 O CH2 CH Si CH3 O Si CH3 CH CH2 Si O Si CH3 C H2 CF3 Modified silicon rubbers are obtained by the copolymerization with the respective cyclic monomers. As a consequence multibloc copolymers are obtained initially. At extended reaction times randomization occurs. Silicon Rubber: Vulcanization HTV-Kautschuk Chain length [nSi] Viscosity processing 10.000 Greasy/Highly viscous Transfer moulding Extrusion Transfer Moulding predominantly 1C- und 2C-systems 110 -300 ° C Liquid Rubber 1.000 Highly viscous Transfer moulding RTV-Rubber 200 liquid / pourable Crosslinking method Peroxides Addition Cure temperature predominantly 2C-Systeme 110 - 200 ° C RTV-1: Condensation RTV-2: Addition 25 - 150 ° C Vulcanization Method Condensation at room temperature (RTV) Platinum catalyzed hydrosilylation at low or elevated temperature C) (RT to 80° C, LSR: 110-200° High temperature-Vulcanization with peroxides (HTV: 120-180° C) Products Silanol containing Silicon rubbers Silicon rubbers with silanol and vinyl groups MQ, PVMQ, MVQ, FVMQ . Et Metal carboxylates are often used for catalysis : Metals: Carboxylates: Pb. Zn. Octoate. Fe Sn Ba.4 ROH R R Si O O R Typical mulftifunctional alkoxysilanes are: OR RO Si OR OR RO R Si OR OR RO OR Si OR OR O ( Si OR O ) n R = Me. Hexoate. Laurate. Ca Naphthenate.RT-Vulcanization of Silicon Rubber (2K-System) 1a) Condensation of polysiloxanes which contain silanol groups by multifunctional alkoxysilanes R R Si R R Si R OH OH RO OR Si OR HO OR HO R Si R R Si R R Si O Si O Si R R R Si . Acetate Typical examples are: Tin-(II)-octoate und Dibutyl tin dilaurate in the presence of chloroacetic acid RT-Vulcanization of Silicon Rubber (1K. Zr.CH3COOH R R Si R O Si O Si R R Si O O Si R R R R Si R O O C O C O R Si R For the condensation reaction the catalysts quoted under 1a) are being used.und 2K-Systems) 1b) Condensation of polysiloxanes which contain capped silanol groups by multifunctional alkoxysilanes R Si R O O C CH3 RO Si RO CH3 OR OR CH3 CH3 O C O R Si R + H 2O . Sb. H2 R Si R R O O Si O Si O O R R Si R For the condensation reaction the catalysts quoted under 1a) are being used. 10 ppm) ( CH3 Si CH3 CH3 ( Si CH3 CH3 O ) Si n CH2 CH2 O ) Si n CH3 O O Inhibitors: .RTV-Vulcanization of Silicon Rubber (2K-System) 1c) Condensation of polysiloxanes with silanol groups by means of multifunctional silanes (with evolution of hydrogen) R Si R R OH H O Si O Si O H HO R R Si R . Application for Bladder coatings LT-Vulcanization of Silicon Rubber (1K und 2K-Systems) 2) Platinum catalyzed hydrosylization (50-150° C) CH3 ( Si CH3 CH3 ( Si CH3 CH3 O ) Si n CH H O ) Si n CH3 CH2 O O Pt-Compounds as H2PtCl6 (ca. 770 8. 20-24 .00 12.00 12.097.563.(HTV) and platinum catalysed LTVLTV-Cure Cost Factor Raw materials [$/pound] Vulcanization time [sec] Overhead-Costs [$/h] salaries [$/h] Hours per shift Shifts per week Number of nests per mould Weight per article + 10% loss Number of articles per week Material consumption per week Raw material costs per week [$] Total cost per week [$] Cost per article [$] Savings per article [%] Financial result per year [$] Increase of financial result [%] HTV 3.400 1.45 14.5-Dimethyl-2.31 1.25 230.55 0 LTV 5.286.00 10 8 3 59.2 H* R Si R O R Si R O R Si R R Si R O R* Si R O R Si Si R R O R Si R O R Si R* O R R Si Si R R R R R Si R O R R Si R O Si O R R Si Impact of Vulcanization Method on Cost of Articles Comparison of PeroxidePeroxide.609.62 Source: Rubber World.849.00 10 8 3 59.5-bis(t-butyl peroxy) hexane 354 379 Di-t-Butylperoxide R Si R O R Si R O R Si R Peroxide .4-dichlorobenzoyl)Peroxide 271 Di-Benzoylperoxide 340 Di-Cumylperoxide 2.76 420.45 1.5 7200 885 3.01 21.) 234 Bis(2.23 0 44. S.31 8.50 120 60.5 14.HT-Vulcanization of Silicon Rubber 3) Peroxide Cure (120-180°C) Typical Peroxides Temperature °F (t1/2) = 1 min. 12/1994.00 60 60.857. and HNBR-Production • Producers and Production Capacities • Chemical and Physical Properties • Comparison of NBR.3.und Peroxide crosslinked Vulcanizates • Performance of HNBR in Power Transmission Belts HNBR: Microstructure N C C N δ− CH2 CH H3C CH2 H H CH CH C C H2 H2 δ+ C CH 2 CH 2 1 N Butylidene-Moiety Ethylidene-Moiety Nitrilo-EhylideneMoiety . Property Profile and Appliecation Areas • Catalytic Hydrogenation of NBR • Sequence of Process Steps in NBR. Hydrogenated Nitrile Rubber (HNBR) Range of Products: HNBR (partially and fully hydrogenated grades) XHNBR Low-Tg-HNBR Low-Mooney-HNBR Overview: • Microstructure.and HNBR Properties »Speed of Ageing »Tg »Crystallization »Stress/strain-Performance • Vulcanizate Properties of Sulfur.5. Pumps Roll Covers Oil well Packers . acrylonitile content) • excellent mechanical properties of vulcanizates (high TS.HNBR: Property Profile and Application Areas Positive: • Broad range of grades (Mooney. high abrasion resistance and high dynamic resistance) • high oil resistance (depending on acrylonitrile content) • good adhesion to fibres and cords (Covulcanization) • Low temperature flexibility • High filler loadability of compounds Negativ: • Max. service temperature < 155°C • High Tg >-30°C • Bad incorporation of softeners • High price (~ € 20/kg) HNBR: Application Areas and Articles Expansion Joints 45% Blow Out Preventer 15% 25% Ship Couplings Riemen Kabel 7% 4% 4% Dichtungen Sonstige Schläuche Ölförderung Rotor/Stator. degree of hydrogenation. Catalytic Hydrogenation of NBR Selective Hydrogenation of C=C bonds C C N H2/Catalyst C C N N Requirements for Hydrogention Catalyst: • Selective and quantitative hydrogenation of C=C. Their use implies the payment of licence fees.NH3 C N H HNBR Grades with Low Mooney Viscosities During hydrogenation the Mooney viscosity increases by a factor 2. DE 3227650. DE 3921264. large amounts of catalysts are required for the cross-metathesis of NBR. Due to high stickiness the production of NBR-grades with a Mooney viscosity > 30 MU is not possible.50) Unselective Hydrogenation of Nitrile-Groups Results in Gel Formation H C NH2 + HN . Therefore the range of standard HNBR viscosities was limited to >60 MU until recently. DE 3541689.515. EP 134023. US 4.464. US 4337329. Pd/BaSO4 (DE 3229871. EP 298386.503. DE 3540918.196. Cross-metathesis of NBR with olefins allows for the production of NBR with Mooney viscosities < 30 MU. DE 3433 392. Pd/C. In-situ hydrogenation of theseNBR-feedstocks yields HNBR-grades with Mooney viscosities < 60 MU. DE 2539132. DE 3529252. US 4. EP 0298386) Relative prices of noble metals [€/g]: Rh (150) > Ru (75) > Pd (12. Metathesis catalysts which are robust towards nitrile groups are protected by patents. DE 3046008. US 6084033) Heterogenous(Supported) Catalyst Systems: N Pd/SiO2. R C C N N Catalyst R CH 2 H C C N C N . Pd/CaCO3. US 4510293. US 4384081.double bonds in the presence of nitrile groups without gel formation • Low catalyst loadings and/or catalyst recovery Homogenous Catalyst Systems: (PPh3)3 RhI Cl and (PPh3)4RhI H (US 3700637. As a consequnece of low TONs. Langfeld.Catalysts without Activity in NBR-Metathesis * PPh 3 Cl PCy3 Cl Cl PCy3 Ciba-Catalyst S Cl Cl Ru Ph Ru PPh 3 BH 3 P Ru P 2Ph Cl 2 K Ph + Grubbs-I-Catalyst Cl Ru P + BF 4 R1 - PCy3 Cl Ru PCy3 Ph BH 3 Cl PCy3 Piers-Catalyst SnCl3 Cl Cl Ph R2 R3 Catalyst from Prof. C. Kellner. Schneider. Dissertation TU München Catalysts which are Active in NBR-Metathesis* („Number of Catalytic Steps (TON)“) Mes N N Mes Mes N N Mes Mes N N Mes CF 3 COO Ru Cl Cl Ru Cl R1 P + Cl Ru PCy 3 CF 3COO O R2 R3 Buchmeiser-Nuyken-Catalyst TON = 8 / 23°C Piers-II-Catalyst TON=12 / 55°C Grubbs-II-Catalyst TON=40 / 23°C Mes N N Mes Mes N N Mes Mes N N Cl Mes Cl Ru Cl Cl Cl O Ru N Cl Ru N O NO 2 Br Grubbs-Hoveyda-Catalst TON=53 / 23°C Grela-Catalyst TON=78 / 23°C Grubbs-III-Catalyst TON=120 / 23°C Br *Sources: Julia-Maria Müller. Berke' s group (University of Zurich) Fürstner-(I)-Nolan-Catalyst (Umicore) 2Ph P N Ph Ph P Ph Ph + Cl SnCl 3 2- + Ru SnCl3 Cl Ph Ru SnCl 3 Cl N 2 Catalyst from Prof. Gantner. M. MSc-Thesis TU München. Berke' s group (University of Zurich) *Source: Julia-Maria Müller. Berke' s group (University of Zurich) 2 Catalyst from Prof. MSc-Thesis TU München. M. MSc-Thesis TU München . Dissertation TU München. Dissertation TU München. K. Sequence of Process Steps in NBR and HNBRProduction NBR-Production: Sequence of Process Steps: Emulsionspolymerization Removal of residual monomers Latexcoagulation + crumb wash Mechanical dewatering Thermal drying Bale pressing Bale wrapping Packaging and storage HNBR-Production: Sequence of Process Steps Make-up of Hydrogenation catalyst solution Catalyst recovery Bale cutting Cemement preparation- Removal of oxygen and hydrogenation dilution Catalyst recovery Solvent removal by evaporation Wet solvent stripping Mechanical dewatering of crumbs Thermal crumbdrying Bale pressing Bale wrapping Packaging and storage HNBR-Producers and Capacities Producers and Capacities Company Site Zeon Lanxess Total Takaoka Houston Leverkusen Orange Japan USA Germany USA Capacity [t] 2.600 11.000 3.800 2.000 3.400 Markt.und Marktentwicklung 14000 12000 10000 Consumption capacity 8000 6000 4000 2000 0 1992 Volume [t] 1994 1996 1998 2000 2002 2004 . [wt. H.Ageing of Unvulcanized NBR and HNBR (Increase of Mooney Viscosity ML 1+4/100° C)) 1+4/100° +1 +0 -1 -2 -3 ln Vbr -4 -5 -6 -7 -8 2. Uschold. [wt. U.%] Data for Ethene/Acrylonitrile-Copolymers from: R. Buding. Angew.%] Acrylonitrile Cont. Thörmer. Symp. Obrecht.0 180 2. I. Eisele. B.8 100 80 3.6 120 2. 145/146 (1986) 161-179 (2373) „Hydrierter Nitrilkautschuk: Ein Werkstoff mit neuen Eigenschaften“ NBR Hydriergrad: 0 % HNBR Hydriergrad: 96 % HNBR Hydriergrad: 99. Z. 25 (1974) 205 . Polym.0 60 3. Szentivani. Makromol Chem. E. Finlay.5 % Tg of HNBR and NBR 100 80 60 40 E/ACN-Copolymers HNBR (fully hydrogenated) 100 80 60 40 20 0 NBR Tg [°C] 20 0 -20 -20 -40 -60 -80 -40 0 20 40 60 80 100 -100 0 20 40 60 80 100 Acrylonitrile Cont. J.2 40 1/T *103 [K-1] T [° C] Source: W. Appl.4 160 140 2. P. J. [wt. E. J. 57 (1962) 483-498 Influence of ACN-Content on Crystallinity of HNBR (DSC) 16 14 1. Faucher. A. Nielsen. [wt. J. Whitman. Pol. Sci.* 100 80 60 40 20 0 -20 -40 Ethene/Vinylchloride-Copolymers Tg [° C] 20 0 -20 -40 0 20 40 60 80 100 0 20 40 60 80 100 Vinylacetate Cont. DSC-Aufheizung 40 50 60 Acrylonitrile Content [wt. %] . R.%] Ethene/Vinylacete Copolymers: L. DSC-Aufheizung Crystallinity [%] 12 10 8 6 4 2 0 0 10 20 30 2.%] Source: Vinylchloride Cont. Pol. D.Tg of Ethene/Vinylacetate.und Ethene/Vinylchloride-Copolymers 100 80 60 40 Ethene/Vinylacetate-Copolymers Levapren Nielsen et al. Sci. 42 (1960) 357-366 Ethene/Vinylchloride Copolymers: F. Reding. %] .Tgs of Ethylene-Copolymers 100 50 0 Tg [°C] -50 -100 EPM HNBR EVC EVM -150 -200 0 10 20 30 40 50 60 70 80 90 100 Comonomer Content [wt.%] Influence of Nitrile Content on Tg of HNBR 100 50 0 Tg [°C] -50 -100 ? 0 10 20 30 40 50 60 HNBR (fully hydrogenated) NBR -150 70 80 90 100 Acrylonitrile Content [wt. : Appl. Obrecht J. Szentivanyi.9% 4. W.: Appl. 50. Appl. sulfur vulcanized) 12 10 stress [MPa] 8 6 4 2 0 0 Source: U.% ACN. (11 Hz) -22 DSC -24 -26 -28 -30 -32 -34 0 20 40 60 80 100 Tg [°C] Degree of Hydrogenation [%] Source: U.and Peroxide-Crosslinked HNBR Vulcanizates“ 100 phr HNBR 0.07 phr Schwefel 2. %) -20 dyn. Sci. Szentivanyi. Pol. Pol.Dependence of Tg on Degree of NBR-Hydrogenation (ACNCont. 185-197 (1992) „Correlation Between Network Structure and Properties of Sulfur.07 phr DTDC* * Dithiodicaprolactam 11. Sci. Symp. Z. Appl. unfilled. mech. Polym.0% 7. Z.63 phr TMTD 2. W.0% 1.and Peroxide-Cured HNBR Vulcanizates“ Influence of Residual Double Bond Content on Stress/StrainProperties of HNBR-based Vulcanizates (34 wt. Eisele. Symp. Polym. Obrecht J. 185-197 (1992) „Correlation Between Network Structure and Properties of Sulfur.9% 0. 50. Eisele.5% 100 200 300 400 500 600 700 strain [%] .: 34 wt. 8 50 NBR 0.5 wt .1 -200 -150 -100 -50 0 50 100 Temperature [° C] NBR and HNBR: Impact of ACN-Content on Stress/Strain-Properties of Unvulcanized Raw Rubbers 0.2 wt.% 28 wt.% 38.1 0 0 1000 2000 3000 19.6 HNBR 45 40 35 18.4 0.Dependence of E‘ and E‘‘ on Temperature (HNBR with 38.1 wt.% 33.5 wt.5 0.2 wt.9 wt.% 28 wt.% 34.% 48.% ACN) 10000 1000 E' and tan δ [MPa] 100 E' E'' 10 1 0.7 0.% 39.% 30 25 20 15 10 5 0 0 500 1000 1500 elongation [%] elongation [%] .2 0.3 wt.% Stress [MPa] stress [MPa] 4000 0.% 49 wt.3 0.9 wt. %] .8 0.%] Influence of Extention on Permanent Elongation of Fully Hydrogeanted.8 % 60 40 20 0 39.6 0.2 % 34.9 % 0 20 40 60 elongation [%] ACN-content [wt.2 0 0 10 20 30 40 50 Acrylonitrile Content [wt. Unvulcanized HNBR (Variation of ACN-Content) extension 160 140 120 100 80 60 120 280% permanent elongation [%] permanent elongation [%] ε = ε bleibend 48.4 0.98 Kautschukdefinition 18.0 % 40 20 0 0 100 200 300 400 120% 80% 28.Influence of ACN-Content of Unvulcanized NBR and HNBR on Maximum Stress (Yield-Stress) on “True“ Tensile Strength 300 "True" Tensile Strength [MPa] 250 200 150 100 50 0 Yield-Strength [MPa] 1 0.3 % 100 80 200% ASTM D 1566 . 5 Fmax [N] 56.4 Vulcanizate Properties Sulfur Core (Press 160° C/20`) Peroxide Cure (Press 180° C/15`) Shore A Härte (23° C) 72 Shore A Härte (70° C) 69 M 100 [MPa] 3.0 phr 0.and Peroxide Cured HNBR (Partially and Fully Hydrogenated) HNBR-Grade (Therban) 1706 S ACN-content [wt.5 Mooney-Scorch (120° C) [min.and Peroxide Vulcanization on Properties of Partially Hydrogenated HNBR H-NBR Sulfur Stearic acid ZnO MgO OCD ZMB-2 N 550 TMTD CBS 100.3 60 66 14 51.8 26 295 36 68 10 27 54 65 73 71 6.%] 33.7 Residual double bond cont.7 M 300 [MPa] 27 TS [MPa] 510 elongation [%] 38 Rebound [%] Compression Set 73 70h/-10° C [%] 70h/23° C [%] 73 70h/100° C [%] 70h/150° C [%] Hot air ageing 55 D/D0 (150° C/ 5 d) [%] D/D0 (150° C/24 d) [%] Degree fo vol.%] 60 ML 1+4(100° C) [MU] Compound Properties 64 Compound Mooney/ ML 1+4(100° C) 12.%] 4.3 RDB-content [Mol.3 60 66 14 51.5 phr 1706 S HNBR-Grade (Therban) 33.Influence of Sulfur. Swelling in Fuel 100*(V/V0 -1) (48h/50° C) [%] 75 1706 S 33.4 M 100 [MPa] 8.7 ACN-content [wt.] 12.2 72 70 5.0 phr 1.7 4.0 phr 0. [Mol.6 17.0 phr ZnO 2.5 0.4 63 74 16 52 72 70 5.8 M 300 [MPa] 14.4 phr N 550 45.5 phr Perkadox 1440* 7.5 phr 1.4 Fmax [N] Vulcanizate-Properties 72 Shore A Hardness(23° C) 69 Shore A Hardness (70° C) 3.4 phr 45.7 Tensile Strength [MPa] 27 Elongation [%] 510 Rebound [%] 38 Compression Set 70h/-10° C [%] 73 70h/23° C [%] 70h/100° C [%] 73 70h/150° C [%] Hot Air Ageing D/D0 (150° C/ 5 d) [%] 55 C/24 d) [%] D/D0 (150° Degree of Vol.%]4.0 phr 0.0 phr TAIC 1.0 phr 2.0 phr 2.0 phr ZMB-2 0. swelling in fuel 100*(V/ V0-1) (48h/50° C) [%] 75 1706 S 33.0 phr 2.4 M 200 [MPa] 8.9 17.8 M 200 [MPa] 14.7 4.3 ML 1+4(100° C) [ME] 60 Compound Properties Compound Mooney [ML 1+4(100° C)] 64 Mooney-Scorch (120° C) [min.0 phr DDA 1.] 56.6 17.7 24 280 34 12 28 59 70 .2 1706 34.0 phr Vulcanization time: 15 min Temperature: 180° C Annealing: 6h/150° C Perkadox 1440 Bis(t-butylperoxyisopropylbenzol 40%ig Vulcanizate Properties of Sulfur.8 26 295 36 68 10 27 54 65 Vulcanization time: 20 min temperature: 160° C H-NBR 100.0 phr MgO 2. 4 2. Conditions Frequency: Strain Ampli tude: Attenuation mode: Rate of crack growth: 4 Hz 20% sinuoidal 1/co (dc/dn) 1 0.3 2.Performance of HNBR in Power Transmission Belts log t/h for ε b = 50% Materials used for power transmission belts Leather SBR CR 10.2 2. Mezger.000 200 180 160 140 120 100 [° C] HNBR / peroxide cured HNBR / sulfur cured 100 CR 1. D.5 2. Achten “Therban: The high performance elastomer in power transmission systems” 9.1 -1 2.1 -20 0 20 40 60 80 100 Source: M.000 10 2.6 10 -3 ( 1 -1 K ) T 1000 rate of crack growth HNBR (Sulfur cured) HNBR (Peroxide cured) CR 100 10 HNBR Tear-Analyzer-Test / Exp. Tagung “Zahnriemengetriebe” am Institut für Feinwerktechnik und Elektronik-Design der TU Dresden Temperature [° C] . Prio. Über Äthylen/Vinylacetat-Copolymerisate und ihre Vernetzung. Du Pont USI Lanxess Mitsui High pressure Elvax High pressure Vynathene Solution Solution Levapren 1000 pressure [bar] 100 Solution process 100-500 bar 50-120°C Emulsion process 10-100 bar 30-70°C High pressure process: • Preferred mprocess for EVA (thermoplastic polymers with VAc-content <40 wt. UV-. Asch. CM. Kolwert. Casper.) Oil additive Shoe soles Negative: fair mechanical properties Low temperature flexibility (depending on VAccontent) Fair oil resistance Range of products limited to ML 1+4 = 20 . Prio. E. NBR) Rubber modification of thermoplasts (PVC.06.5.4. Methanol Vinylacetate content [wt.1989. Kautschuk und Gummi. Baaade. Bartl.: H. Jahrgang 14. and weather resistance Maximum service temperature 175°C High filler loadability FRNC-applicability (Flame resistant non corrosive) Resistance to water/glycole Braod range of grades No necessity for post cure in oven Application Araeas: Automotive.: 11. B.and engineering: seals and membrandes Hoses in high temperature environment FRNC-products: cables and floorings Sound protection FRNC Conveyor belts Hot Melt and pressure sensitive adhesives Protecting foils Blending component for HNBR.05.1993. Zimmermann EP 0632067 (Bayer AG). Sutter. H.: 01. Erf.%] Emulsion Process: • Preferred process for latices with high gel content (paints) • Monomer conversion: ~ 100% High Pressure Bulk Process: US 5089579 (Bayer AG). Prio. Sylvester. A. K-P. EPDM. J. SAN. W. Steiger. W.: R. Erf. Obrecht . 12.% radical polymerization in solution Random monomer incorporation Low molar masses Significant degree of short chain branches Positive: Ozone-. W.1989. Erf. 2 (1961) WT 23-32 Production Routes Towards EVM and EVA 10000 Producer Process High pressure bulk process 750-3000 bar 120-300°C Products Exxon. Wolf. 40-90%) • Monomer conversion: 60. R. PC etc. BP.: B. G. Will. TPU.%) • Monomer conversion: < 20% • Molar mases decrease with increasing VAc-content 10 Solution process: EVM-Rubbers 1 0 20 40 60 80 100 • Preferred process for EVM-r rubbers (VAc-cont. W. Peter. W.: 30.70% • Solvents: t-Butanol. A. High pressure Escorene Mitsui ctc. Obrecht. EVM: Profile of Properties and Applications O O C CH3 O O C CH3 O C CH3 O VAc-content: 40-90 wt. Meurer. Obrecht Solution Process: US 4937303 (Bayer AG).35 Vulcanization only peroxides Source: H. Baade. EVM: Physical Properties Thermoplast 100 Rubber Enthalpy of fusion (DH)[J/g] Glass Transition Temperature (Tg) [°C] 80 60 40 20 0 -20 -40 0 20 40 60 Vinyl acetate content [wt. 4 O nCH3 10000 20000 h 1000 1000 h The addition of acid scavengers such as carbodiimides and isocyanates does not improve hot air performance 100 200 190 180 170 > 170° C 160 150 140 137° C 130 120 110 temperature in ° C .] 80 100 Temperature of Fusion (Fp)[° C] 100 80 60 40 20 0 -20 -40 0 20 40 60 Vinyl acetate content [wt.HAc CH3 O O CH3 weight loss [wt.%] 350 °C time till elongation becomes <50 % in h Elastostab H 02 Stabaxol P 200 O H3C O O n N H OCN N C N 106 Temperature [°C] NCO n n = ca.%] 80 100 EVM: Maximum Service Tempeature 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 200 300 400 500 600 O O O O CH3 .%. 4 100000 O N C N 135 N O H n n = ca. 9 19 80 20 1.2 7.2 6.5 phr 6.0 phr 1. 2mm) Shore A Härte (23° C) S 100 MPa] Elongation at break [%] Tenjsile Strength [MPa] Compression Set 70h/100° C 70h/125° C 70h/150° C [%] [%] [%] 40 20 1.4 280 12.0 phr 2. Mai 1992 Hot air ageing (14d/150° C) [%] ∆F/F0 x100 [%] ∆D/D0 x100 ∆H/H0 x100 [%] Storage in SAE Oil90 (3d/150° C) ∆F/F0 x100 [%] ∆D/D0 x100 [%] ∆V/V0 x100 [%] -26 -19 69 -12 -4 47 -8 -4 31 8 2 13 6 8 3 10 -12 -4 .%] 0 0 20 40 60 80 100 Vinyl acetetate content [wt.2 300 11.2 17 45 24 1. DKG-Bezirksgruppentagung.2 6.6 20 25 41 -10 2 11 71 5.2 21 70 20 1.0 phr 65.7 23 25 41 -3 -2 10 74 5.5 phr 7.6 20 50 23 1.0 phr 1.0 phr 2. Rohde DKG-Bezirksgruppentagung NRW in Bad Honnef 07.5 21 24 46 10 -7 15 72 4.0 phr 7.-08.5 27 31 51 -8 -15 14 no post vulcanization storage in hot air 1) 2) Styrenated Diphenyl amine (SDPA) Dioctylsebacate (DOS) 3) 1.3 6.0 phr 1. Rohde.7 275 13.3 6.-butylperoxyisopropyl)benzene (Perkadox 14/40) Source: E.6 19 60 25 1.8 22 26 40 -11 -2 12 68 4.6 20 23 38 -12 -2 9 68 4.%] Compound properties Mooney ML 1+4(100° C) C [min] t10/180° t90/180° C [min] C [N] FH-FL/180° Vulcanised properties (ISO-Stab Nr.2 6.1 17 75 5.3-Bis(tert.7 300 10.4 285 12.0 295 11.-08. 2. NRW in Bad Honnef.5 phr 2.0 phr 10 min 180° C Vinyl acetate content [wt.EVM: Dependence of Oil Swell and LOI (Limiting Oxygen Index) on Vinyl Acetate Content Storage time in SAE-oil SAE 90 (3 d/125°C) 80 Delta F/F0 x 100 [%] LOI according to ASTM-D 2863 60 Al2O3: 190 phr Limiting Oxygen Index (LOI) [%] 60 Change of Properties [%] Delta D/D0 x 100 [%] Delta V/ V0 x 100 [%] 50 Al2O3: 0 phr 40 40 20 30 0 20 -20 10 -40 0 20 40 60 80 100 Vinyl acetate content [wt. 07.%] Source: E. Mai 1992 EVM: Dependence Properties on Vinyl Acetat Content EVM MgO Stearic acid Carbon black/N 550 Vulkanox DDA 1) Plasticizer DOS 2) Plasticizer ODTM PE-Wax Aktiplast PP TAIC Peroxide (40%ig) 3) Vulkanization time: Temperature: 100. Corp.Pazur. Magg.8 3. A.6 170 22.8 14 14 20 -7.8 -26 +5 50 50 3 60 58 1. H.1 190 24 12 17 27 -3. Nordic Rubber Conf.2 81 12. Köge. Michigan H. Carbon black/N 550 50.75 phr 7. J. Ferrari.0 phr 1) Rhenogran P 50 var.1 CS 72 h / 150°C [%] 63 31 CS 168 h / 150°C [%] 71 50 0 0 50 100 150 200 250 300 strain [%] 10 9 8 torque [dNm] 7 6 5 4 3 2 1 0 = 75 % of total cure Sources: cycle time for IM H. Chem.6 9.0 phr MgO 10.7 78 10.0 phr ZnO 2.5 -10 -29 +4 25 75 4.3 -37 +6 75 25 1. L.) Storage in ASTM oil Nr.5 40 40 1.5 14 9 15 -1. Denmark 0 20 40 60 80 100 120 140 160 180 200 220 240 time [sec ] .5 -21 +3 100 6 20 32 1. Meisenheimer.3 165 18.6 11.0 145 18. Welle.0 phr TAIC 1.4 11.2 80 12. Grand Rapids.0 phr Peroxide (40%ig) 2) Vulcanization time: 15 min Temperature: 177° C Anealing: 16 h 1) 2 Therban 1707 Levapren 500 Rhenogran P 50 Compounc properties Relative compound price ML 1+4(100° C) [ME] C [min] t2/177° t90/177° C [min] Vulcanized properties Shore A Härte (23° C) S 100 [MPa] Elongation at break [%] Tensile Strength [MPa] Compression Set 70h/23° C 70h/150° C 70h/175° C [%] [%] [%] 100 100 123 1.5 77 8. 3 (7d/150° C) ∆F/F0 x100 [%] ∆D/D0 x100 [%] [%] ∆V/V0 x100 -10 -4 +24 -17 -11 +34 -36 -29 +49 -50 -34 +67 -56 -45 +83 EVM: Influence of Post Cure on Physicals 15 10 Stress [MPa] th wi 5 p e ur tc s o t ou th i w r cu st o p e O-Ring: Mechanical properties without post with post cure cure Tensile Strength [MPa] 10. Kautschuk Gummi Kunststoffe.6 10.0 phr Carnuba Wax 2.6 -12 +2 Carbodiimide Vulcup 40 KE Hot air ageing(14d/150° C) [%] F/F0 x100 [%] D/D0 x100 [%] H/H0 x100 Source: Test Report WR 26/83 (Mobay.5 10. Meisenheimer.7 240 26 12 20 27 -2.5 12 17 25.0 80 13.5 80 99 1. 52 (1999) 724 P. 165th Spring Meeting.8 [%] 285 230 εb M100 [MPa] 1. ACS Rubber Div.EVM/HNBR-Blends EVM/HNBR 100. 2005.5 11. 2003 (Titleist) 68 [MPa] 12.08.1991 (Bridgestone) US 6426387.2001 (JSR) US 6525141.5 46 61 -5 -29 8 Hot air ageing (14d/150° C) [%] F/F0 x100 [%] D/D0 x100 H/H0 x100 [%] Storage in SAE-oil 90 (3d/150° C) ∆F/F0 x100 [%] [%] ∆D/D0 x100 [%] ∆V/V0 x100 -8 -4 31 -13 -6 13.01. EP 1227121.: 11.4 [%] [%] -10 2 11 77 72 13. Brown.1 . Prior. 2mm) Shore A Härte (23° C) Shore A Härte (150° C) Tensile strength Elongation at break M 50 M100 Rebound/23° C Rebound/100° C [MU] 500 100 3) 500HV 100 1.92 23 „Acrylate-Reinforcing“ is used for golf ball cores based on high ART based “Golf-Ball-Core“-Patents EP 0496947.EVM: „Acrylate Reinforcing Technology“ (ART) Z in c d ia c ryla te S a re t 6 3 3 S a rto m e r 7 0 5 O H2C 1) 1. Technical Report TR 552.04.9 500HV 100 1.2001 US 6517451.5 9.0 35 10 1.92.8 175 4. Prior. A.17 vom 22.0 20 6. Prior.2 10.01.: 29.2000 (Taylor Made Golf Co.: 07.2-BR CH C O 2 Zn 2+ Levapren grade Levapren TMQ N 762 ZnO ZMB-2 Ficon 153 1) Saret SR 633 2) Vul-CUP 40 KE Compound properties Mooney ML 1+4(100° C) Vulcanized properties (ISO-Stab Nr. Prior.2001 (Bridgestone) US 6270428.5 80 6.: 04.02.08.0 20 6. Polysar Rubber Corporation. 2. Prior.05.8 (liequid rubber) 2) Zn diacrylate 3) For further ompound ingredients see „Stuey on variation of vinyl acetate content“ Source: T.7 -22 -29 12.6 43 62 1 -8 6 77 73 20.6 [%] 285 [MPa] [MPa] 4.5 26.: 02.0 35 10 1. Prior.: 24. Producers and Brand Names Market. Phase Morphology and Property Profile Nomenclature and Range of Available Grades Selection of Commercially Available TPEs. The hard phase is only physically and never chemically crosslinked The soft phase can either be uncrosslinked or crosslinked Soft Segment Hard Segment Scheme of the Phase Morphology of A-B-A.20 Positve: • Good vulcanizate properties at low / moderate temperatures • No compounding and vulcanization know-how necessary • Short cycle times no time consuming vulcanization • Recycling of waste (due to thermo labile/reversible crosslinks) Negative: • High permanent set after (tension set.Interaction Glassy Hardening (vitrification) Ionomers Type of bond covalent physical Bond energy [kJ / Mol] 260 . (A-B)n and (A-B)xMultiblock Copolymers Examples for physical crosslinks • • • • Hydrogen bonds /Crystallization Dipol/Dipol . compression set) • Poor mechanical properties at elevated temperatures (tensile strength.6. Areas of Applications and Prices Phase Morphology of Rubber Modified Thermoplastics and Thermoset Resins Comparison of Technological Properties of Different Classes of Engineering Polymers – Dependence of Shear Modulus on Temperature – Dependence of Residual Elongation on Original Elongation – Comparison of Technological Properties of Chemically and Physically Crosslinked Rubbers (Data from Product Data Sheets) • TPE-O and TPE-V – PP-Performance and Price of EPDM/PP-Blends – Mechanical Properties • Advanced technologies for the production of PP-based TPEs • TPEs from the viewpoint of a producer of technical rubbber goods TPE: Phase Morphology and Property Profile A coherent soft or rubber phase (coherent matrix) is representative for most TPEs The hard phase which contains the physical cross-links is dispersed within the soft phase.350 10 . Thermoplastic Elastomers (TPE) • • • • • • Principle of Physical Crosslinking. compression set) • Deterioratioon of mechanical properties in appropriate solvents • High heat-build-up in dynamic applications • Limited range of grades (particularly no soft grades available) • Anisotropic properties of injection moulded articles (particularly for TPEs with uncrosslinked rubber phase) . Polyether-Urethanes COPE based on aromatic Polyesters (Terephthalates) PBT´/ PTHF. Stratley Consultants Selection of Commercially Available TPEs. SIBS) Polyester-Urethanes.Nomenclature and Range of Available TPEs Examples mechanical and reactor-blends (unvulcanized) TPE-O EPM / PP EPDM / PP EPDM / PP NBR/ PP NBR / PVC EVM / PVC ACM / PVC HNBR / PA HNBR / PBT NBR / PA EVM / PA EVM / PBT SBC (SBS. SIS. PET / PTHF PEBA based on PA 6 and PA 12 Thermoplastic Polyolefins (dynamically vulcanized) Olefin TPE-V Polyblends1 PVC based blends (without dynamic vulcanization) High Performance TPE-V Thermoplastic Elastomers (without polyolefines (dynamically vulcanized) Styrenic Block-Copolymers TPE-S Multi-BlockCopolymers2 Polyurethane Block Copolymers TPE-U Copolyester Block Copolymers TPE-E Polyamide Block Copolymers 1 Consists of an elastomer finely dispersed in a thermoplastic matrix 2 Rubber and thermoplastic segments are chemically bonded by block. SEBS. SIS. Producers and Brand Names Type of TPE TPE-O (reactor blends) TPE-V PVC-based blends High performance TPE-V TPE-S SBS. SEBS SIBS TPE-U TPE-E TPE-A Hydrogen bonds / Crystallization Crystallization Hydrogen bonds / Crystallization Ionomer Crosslinking Principle Crystallization Crystallization Dipol/Dipol Producer UCC Bassell Exxon AES (Advanced Elastomer Systems) AES (Advanced Elastomer Systems) Denki KK Zeon Shell BASF Firestone. Polimeri Dow Kaneka Boston Scientific Innovia Bayer BASF Goodrich DuPont Toyobo Atochem Dow Du Pont Brand Name Flexomer® Spherilene® Exxtral® Santoprene® Geolast® Denka LS® ? Kraton® Styrolux® Sibstar® Taxus® SIBS® Desmopan/Texin® Elastollan® Estane® Hytrel® Pelprene® Pebax® Estamid® Surlyne® Glassy hardening (vitrification) .or graft copolymerization TPE-A Sources: SRI Elastomers Overview 2008. 5 PP/EPM-Reactor Blends PP/EPM-TPE-V SBC SBS SIS SEBS TPE-U (TPU) TPE-E (COPE) TPE-A (PEBA) Price [€/kg] 0.50 1.30 3.70 2.30 1.1 (January 2002) Schematic Presentation of the Dependence of the Shear Modulus on Temperature 104 103 102 101 100 10-1 Tg of Rubber Phase Temperature Softening Temperature of Thermoplast Phase Shear Modulus [MPa] Tempeature of Use Temperature of Processability . 12% W.60-3.00-4.50-4. Application Areas and Range of Prices WO-TPE-Market: 1.5 5 8 5 4.00-2.60-7.5 Mio t SBC Areas of Application Hoses 5% Cables 3% Medical Appl.20 2.005 Growth [%] 195 135 36 62 20 7.40 3.-Europe:: 576a t (2001) TPE Type SBC's TPO's TPV's TPU's COPE's COPA's Sonstige Sum Source: 2.TPE: Market.5 455.no.00 3.90-1.5 226 172 59 79 30 10 576 3 5 10.00-3.50 1.30-1. 3% Adhesives 12% Automotive 32% IRP 18% Shoe 15% TPO-V TPU COPE PEBA Rest TPOBlends Asphalt Mod.00 European Rubber Journal 184.000 2.50-1. 50 0 50 Temperature 100 150 200 .100 7 5 6 4 3 2 1 Shear Modulus [MPa] 8 .50 0 50 100 Temperature [° C] 150 200 Target Reality Schematic Presentation of the Dependence of the Shear Modulus on Temperature for Different Engineering Polymers 104 103 102 101 100 10-1 .Dependence of Modulus on Temperature: Target and Reality 104 Shear Modulus [MPa] 103 102 101 100 10-1 -100 . 50 0 50 100 150 200 8. PP. TPE 6. Unvulcanized Rubber (Polycarbonate. PMMA) 3. Elastomer (crosslinked) 5. Thermoplastic (Polystyrene. Rubber Modified Thermoplastic 4. (A-B)n und (A-B)xBlock Copoymers stress [MPa] Residual elongation A-B Block Copolymers strain [%] .100 7 5 6 4 3 2 1 2. TPE 7. Elastomer (crosslinked) 8 .PA) Temperature Schematic Presentation of Stress/Strain Diagrams of Block Copoymers elongation A-B-A. Thermoplastic Polymer Shear Modulus [MPa] 103 102 101 100 10-1 .Dependence of Shear Modulus on Temperature for Different Engineering Polymers 104 1. Dependence of Residual Elongation on Original Elongation for Different Engineering Polymers εResidual ) [%] 300 εresidual = εoriginal 200 residual elongation ( TPE-O (EPDM / PP: 60/40) 100 ASTM D 1566 . exposition time. the deformation is 25%.% styrene NR/BR-tyre tread (with filler) vulcanized gum stock (unfilled NR) εoriginal ) Compression .h2 ho.h1 h2 h1 ho.Set ho h1 h2 CS = ho. h1.98 „Definition of Rubber“ TPE-V (EPDM / PP: 78/22) 0 0 100 original elongation ( 200 300 [%] SBS with 27 wt.h1 x 100 [%] ho In compression set (CS) measurements ho . In order to achieve the same deformation „ho-h1“ the pressure has to be adjusted to the degree of x-linking . and exposition temperature are well defined (DIN. ASTM).h2 ho. Most commonly. compression. 4 880 54 47 660 12 650 75 60 60 62 21 5 90 53 88 44 5.5 490 38 72 75 S hore A S hore D T e nsile S tre ngth [MP a ] 10 to 80 10 to 35 71 52 75 92 44 93 42 40 380 32 880 20 1200 34 500 45 450 E longa tion a t bre a k [% ] 300 to 800 CS (22h/ 70° C) CS (24h/ 70° C) CS (22h/ 100° C) CS (70h/ 150° C) 5 to 30 5 to 40 5 to 40 30 (H N BR . FKM) 715 485 380 Technologische Eigenschaften von TPEs und von Hauptvalenzelastomeren klassische Elastomere PEBA TPO 100 TPU COPE SBC 0 200 Gebrauchstemperatur [° C] -100 0 50 Shore A Härte 80 30 100 40 50 60 70 Shore D Härte 80 .5 350 60 8.Comparison of Technological Properties of Chemically and Physically Crosslinked Rubbers (Data from Product Data Sheets) S BC P rope rtie s Cla ssica l E la stome rs S BS S IS T P E -U S E BS E ste r E the r T P E -A T P E -E T PO me ch. T PV T PV E P D M/ P P E P D M/ P P E P D M/ P P ble nd (pa rtia lly (highly x-linke d) x-linke d) 78 25 79 40 36 63 51 32 15. 5 1 1.PP-Performance and Price of EPDM/PP-Blends 180 7 TPE-V (EPDM / PP-blend. Sasaki. 1996 TPE-O and TPE-V: Basic Properties Properties TPE-O (Mechanical PP/EPDM Blend) 78 12 650 75 TPE-V (PP/EPDM-Blend with partially crosslinked EPDM-phase) 72 5.5 350 60 TPE-V (PP/EPDM-Blend with highly crosslinked EPDM-Phase) 75 20 490 38 Shore A-Hardness Tensile Strength [MPa] Elongation at break [%] Compression Set (22 h /70° C) [%] Volume Swell in ASTMOil Nr. highly crosslinked) 160 6 Performance [arbitrary units] 140 Melting temperature [°C] 5 120 TPE/SEBSBlends 100 4 TPE-V 3 80 (EPDM/PP partially cross-linked) 60 2 TPE-O (mechanical blends) 40 PP-Properties: PP-Properties: • Low Price 20 • Low Price •• High Softening Temperaure High Softening Temperaure •• Good Ageing Resistance Good Ageing Resistance (Residual Catalyst Content) (Residual Catalyst Content) 1 TPE-O (ReactorBlends) 0 20 40 60 80 100 0 0 0. 406-414 „New Polymers from New Catalysts“ Price [$/kg] Source: Robert Eller Associates. pp. Johoji.5 2 Isotacticity [%] Source: T. H. T. Polymers for Advanced Technologies 4. Ebara. 3 [Vol%] soluble 90 50 Uncrosslinked rubber phase Crosslinked rubber phase n ctio e r i w D Flo of n ctio e r i w D Flo of . Inc. Res. Systems (April 1992) "Polypropylene" Sources: Supported catalyst Product outlet Cooler Removal of residual monomer Propylene Ethylene purification purification Temperature: Pressure: Residence time per reactor: < 90 °C (40°C-60°C) 9-15 bar 0.4 17 72 39 1. W.1 h packaging Source: T. of recycles 2 3 5 M100 [psi] Tensile Strength [psi] Elongation at break [%] 650 1530 495 630 1520 500 620 1500 505 600 1590 535 20 Shore D Hardness: 50 15 Shore A Hardness: 87 10 Tensile Strength [MPa] 35 30 25 20 15 10 5 0 0 Particle diameter [ µm] 5.) ANTEC `91. 33 (1994) 449-479 ** Chem.0-1. Klimek (Quantum Chemical Corp. 1382-1384 .5 .TPE-O and TPE-V: Mechanical Properties Properties 1 no.5 Stress [MPa] 5 Shore A Hardness: 64 0 0 400 200 Elongation at break [%] 600 100 200 300 400 500 Elongation [%] TPE-O: PP/EPM-Reactor-Blends Gas Phase Technology PE* UCC BASF BP Hoechst Exxon Amoco Montell PP** Montell Fina Phillips Solvay UCC BASF Amoco/Chisso Sumitomo ventilator Filter Filter ventilator Cooler * Ind Eng. Polymers for Advanced Technologies 4. Schwager (BASF). H. “Dynamic Blending” stands for the solvent free blending process during which a chemical reaction occurs. “Dynamic Vulcanization” is used for vulcanization reactions (without solvent) with simultaneous shearing. 499 (1992) T.Properties of PP/EPM.%] Source: H. pp. Kunststoffe 82.Reactor-Blends 1000 900 800 E-Modulus [MPa] 700 600 500 400 300 20 30 40 50 60 Catalyst Fragmentation during Polymerization Catalyst System A Catalyst System B Rubber Content [wt. Johoji. Sasaki. 406-414 „New Polymers from New Catalysts“ Preparation of TPE-Vs by Reactive Processing Blending Definitions: 1) 2) 3) 4) 5) “Reactive Processing” stands for a chemical reaction in the course of which polymers are modified without the use of solvents. Ebara. T. Every vulcanization method can be performed dynamically Resin cure was the first vulcanization method applied for the production of EPDM/PP based TPE-V . 190° C 2) Addition of dimethylol resin at 185° -190° C (5 Min.190° C (5 Min.) 3) Addition of the catatalyst SnCl2 x 2H20 (2 Min.Preparation of a TPE-V by the Dynamic Vulcaniztion of a EPDM/PP blend with Phenol Resin 1.) 2) Addition of more SnCl2 x 2H20 at 185° .) OH PP CH 2 CH2 EPDM .190° C (5 Min.) OH PP CH2 CH 2 OH Preparation of a TPE-V by the Dynamic Vulcaniztion of a EPDM/PP blend with Phenol Resin 1b) Preparation of block copolymer by the reaction of “activated PP” with EPDM OH PP CH2 CH 2 OH + EPDM 1) Addition of EPDM and additional Phenol Resin at 185° . Preparation of a PP/EPDM-Block Copolymer in order to partially compatibilize PP and EPDM 1a) Reaction of PP with Dimethylol Phenol Resin in order to “activate” PP OH PP + HOCH 2 CH2 OH 1) Melting PP at 185° . 1 0 170 66 50 2 0.4 0 45 5 5 0.2 107 390 54 185-190° C Polypropylene 5 min.) 2) Addition of of more SnCl2 x 2H20 at 185° .2 0 149 36 0 50 2 0.67 0 10. 1b) to 2) do not occur in a sequence of reactions.4 0 50 0 0 0 10. the series of reactions from 1a).1 0 157 170 50 2 0.4 0 50 0 1.) PP PP Phase CH2 OH CH2 EPDMEPDM Phase In reality. 2 min. NBR + Aminino terminated NBR Dimethylolphenol resin + 5 min.190° C (5 Min.3 10. SnCl2 .Preparation of a TPE-V by the Dynamic Vulcaniztion of a EPDM/PP blend with Phenol Resin 2) Addition of PP und EPDM with subsequent vulcanization of the EPDM-Phase OH PP CH2 CH2 EPDM 1) Addition of EPDM and PP at 185° . 2 H2O Tensile Strength M100 E-Modulus Elongation at break Permanent elongation [MPa] [MPa] [MPa] [%] [%] . 0 0 0 50 50 0 0 0 7. which are well separated but rather in a concurrent fashion Compatibilising Effect of Dimethylolphenol Resins in Dynamic Vulcanization of PP/NBR-Blends Polypropylene Dimethylolphenol resin SnCl2 .5 15.190° C (5 Min. 2 H2O 185-190° C 5 min. 5 0.5 2. 2 H2O 5 min Polypropylene 5 min NBR + Aminino terminated NBR Dimethylolphenol resin + SnCl2 . Mater. O.06.5 3. Eng. 288. W.94 19.2 wt.25 0.2 67.38 21.8 33 330 20 37. Obrecht.% PF-Harz/0.1 456 480 70 Reactive Blending von EPDM/SAN: Results SAN EPDM Reactive Processing 2 wt. N. N. Steinhauser.: 06.25 7.75 3.5 1.13 1.38 1. Macromol.4 45 5 6.75 4.81 0.2001.25 6. 2003. Nuyken.5 9.5 33.56 22. Vierle.5 2.78 0.2 221 500 50 62.%] Sources: • M.69 0. Steinhauser. 2 H2O 5 min Tensile Strength M100 E-Modulus Elongation at break Permanent elongation [MPa] [MPa] [MPa] [%] [%] 25 1 0. Inv.75 23.5 0.0 15.: M.13 17. 209-218„Blend Preparation by Reactive Processing .13 0.13 0.Compatibilising Effect of Dimethylolphenol Resins in Dynamic Vulcanization of PP/NBR-Blends 185-190°C Polypropylene 5 min Dimethylolphenol resin 2 min SnCl2 .6 15. Nuyken. Vierle: MSc Thesis TU Munic December 2001 • DE 10127402.0 15.5 7.7 92 400 33 50 2 0.7 16.28 0. O.3 56. Bayer AG. Obrecht • M.2 320 490 63 75 3 0. W. Prior.6 22.5 17. Vierle.5 0.% Catalyst/130°C (without fillers/without oils) EPDM-grade: EP T 2370 (Lanxess) elongation at break [%] Tensile Strength [MPa] 1000 100 10 1 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 EPDM-content [wt. Stein. M. autoclavable. K. IL cooperates in the performance of tests towards the replacement of soft PVC in medical devices A. J. Coates. Modern Plastics.Advanced technologies for the production of PPbased TPEs 608 R R2 Zr R1 ataktisches Polymer 622 R Preparation of PP-Blockcopolymers by the use of the „Waymouth-Catalyst“ The length of building blocks is determined by the ratio of propagation rates versus Rotation rate Source: R. L. Wood. Advanced technologies for the production of PPbased TPEs Cl B Zr Et Et P Cl Cl Cl B Zr Cl Cl P Et Et Cl Cl Temperature Polymers with high tacticity atactic polymers PP-based multi-block copolymer Preparation of PPPP-based multiblock copolymers by the use of Donor/Acceptor Metallocenes (Ostoja Starzewski) Starzewski) . September 1999. Y. flexible olefins meet tough medical demands“ demands“-SingleSingle-Site metallocene catalysts yield autoclavable. A-L. Ling. resistant. highhigh-clarity elastomers with cost/performance benefits of flexible PVC. T. D. Borkowsky Stepol `94. K. Ding. Khare. Mogstad. Khare. Fischer. 1994 "Stereospecific Polymerization and Copolymerization of Functionalized Olefins" 595 R R2 Zr R1 R Isotaktisches Polymer BP/Amoco started to manufacture PPPP-based multimulti-block copolymers in the pilotpilot-plant scale in California (Menlo Park) Baxter Healthcare Corp. S. Plastics. Waymouth. Milano June 6-10. Round Lake. 9494-99 „HeatHeat-resistant. S.. Aladyshev PP-Based TPE 6 Elast.06.02 Dateiname: S14308sd (Graph 1) 0 0 200 400 600 800 Abb.PP-Based TPE 10 4 Komplex modulus (G*) [MPa] G' 10 3 Elastomeric PP Schubmodul (MPa) 10 2 G'' 10 1 10 0 -120 10 0 -80 -40 0 40 tan δ 10 -1 10 -2 -160 -120 -80 -40 0 40 Temperatur[° (°C) Temperature C] Sample from Prof. Dehnung [%] strain (εε ) [%] Sample from Prof. Aladyshev .PP 2 2] ] Spannung [N/mm stress σσ[N/mm 4 2 Probenform: S1-Stab Anlieferzustand: Platte Meßdatum: 05. Eisen/Haifa . Eisen/Haifa Temperature [° C] Temperatur [°C] PP-Based TPE 6 HAIFA-1 HAIFA-2 2] ] Spannung σ[N/mm [N/mm stress σ 4 2 2 0 0 100 200 300 400 500 600 700 800 900 Dehnung ε [%] [%] strain ε Sample from Prof.PP-Based TPE Komplex modulus (G*) [MPa] komplexer Schubmodul [MPa] 10 4 G' G' G" HAIFA 1 G" HAIFA 2 10 3 10 2 10 1 10 0 10 -1 10 0 -120 -80 -40 0 40 80 10 -1 tan(δ) 10 -2 10 -3 -160 -120 -80 -40 0 40 80 120 Sample from Prof. Range of Products and Proeprties – – – – – Limited availability of soft grades with Shore A Hardness < 50 Open questions on the production of composites High hysteresis which results in p high permanent set (after elongation and compression) Losses on dynamic stress bei dynamischer Beanspruchung Irreversible damage of articles if service temperature is increased above threshold temperature .TPEs from the Viewpoint of a Producer of Technical Rubber Goods • Reduction of Manufacturing Costs – Reduction in number of raw materials and associated costs for logistics (ordering.) – Reduction/elimination of compounding costs including energy savings – Significant reduction of cycle time and increase of output (seconds instead of minutes) – Cost reduction by recycling of waste (no costs for incineration and land fill) • New Technology for Rubber Processors – Installation of equipment for the processing of thermoplastic materials – Know-how in thermoplastics and their processing not available – Know-how for the compounding and processing of rubbers becomes abundant • TPE. transportation and storage. 7. Test Questions Please do not forget to write your name on each page of the questionnaire Family Name Given Name 1 Which Abbreviations Are Used for the Following Rubbers? Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Rubber Polybutadiene Polychloroprene Chlorinated Polyethylene Chlorosulfonated Polyethylene Ethene/Propene/Diene-Terpolymers Ethene/Propene-Copolymers Epoxydized Natural rubber Fluororubber Acrylic Rubber Synthetic Polyisoprene Isobutene/Isoprene-Copolymers Styrene/Butadiene-Copolymers Natural Rubber Silicon Rubber with Viny Groups Butadiene/Acrylonitrile-Copolymers Brominated Isobuylen/Isoprene-Copolymers Vinylmethylsilicon Rubber, which also contains fluorine Polyphosphazene modified with perfluorinated alcohols Standardized NR from Vietnam Smoked Sheets based on NR Abbreviation Family Name Given Name 2 Please Assign the following Rubbers to the Correct Position in the Matrix: ACM, BIIR, BR, CM, CSM, EVM, FKM, HNBR, IIR, SBR Chemical Features Radical Polymerization Ziegler/NattaPolymerization anionic Polymerization Cationic Polymerization Polyaddition und Polycondensation Polymermodification Family Name Given Name 3 Process Features Emulsion Solution Dispersion (slurry) Mass or Bulk GasPhase Which of the Curves Matches the Performance of the Materials Mentioned Below ? 300 Residual Elongation [%] 1 200 2 3 4 5 6 0 100 200 300 100 0 elongation [%] Nr.: Questions 1 2 3 4 5 6 7 8 9 10 Thermoplastic Polymer ? Unvulcanized HNBR at 20°C ? Unvulcanized HNBR at 120°C? Unvulcanized BR with Mn = 10 kg/mol at 50°C ? Unvulcanized BR with Mn = 500 kg/mol at 20°C? SBS at 20°C? SBS at 120°C TPU at 20°C NR (unfilled and vulcanized) at 60°C NR (filled and vulcanized) at 60°C Answers Family Name 4 Given Name Natural Rubber Please Mark „RIGHT“ or „WRONG“ Nr.: Frage 1 2 3 4 5 6 7 8 9 10 Unvulcanized NR does not crystallize Today, Malaysia is NR-Producer No. 1 For NR plantations China is ideal. For NR plantations Brasil is ideal. A smallholder earns ~ 10000 €/a SMR 20 is a NR-grade with high purity SMR CV vulcanizes faster than SMR 10 NR has to be masticated before use IR has to be masticated before use For the mastication of NR, mastication aids have to be used Right Wrong Family Name Given Name 5 Natural Rubber Please Mark „RIGHT“ or „WRONG“ Nr.: Frage 1 2 3 4 5 6 7 8 9 10 A tyre tread based on NR performs well on a wet road A tyre tread based on NR exhibts a low rolling resistance The vulcanizateion of NR with peroxides yields good dynamic properties NR has a lower Tg than ENR NR can be vulcanized with multifunctional isocyantes CV grades can be vulcanized with diisocyantes NR can be vulcanized with phenol/formaldehyde resins NR based compounds have a higher tack than SBR-based compounds NR crystallizes at 35°C NR crystallizes faster at -50°C than at -20°C Right Wrong Family Name Given Name 6 Synthetic Polyisoprene Please Mark „RIGHT“ or „WRONG“ Nr.: Question 1 2 3 4 5 6 7 8 9 10 The mechanical properties of IR do depend on the 1,4-cis-content Li-based catalysts produce IR with a high 1,4-cis-content Nd-based catalysts produce BR with a high 1,4-cis-content Ti-based catalysts produce IR with the highest 1,4-cis-content Tg of IR does not depend on 1,4-cis content IR has to me masticated before use IR can be crosslinked with diisocyantes IR with a high 3,4-content is good for tyres with a high wt grip IR with a high cis-1,4-content provides tyres with good wet grip Poly-1,4-trans-Isoprene has a lower Tg than Poly-1,4-cis-Isoprene RIGHT WRONG Family Name Given Name 7 Emulsion Rubbers Please Mark „RIGHT“ or „WRONG“ Nr.: Question 1 2 3 4 5 6 7 8 9 10 The term "emulsion" is used for a dispersion of polymer particles in water The term "latex" is used for a dispersion of rubber particles in water Polymer dispersions are obtained by slurry (precipitation) polymerization Latices are obtained by emulsion poymerization Latices with a solids content > 50 wt. % can not be made The addition of emulsifier increases the stability of latices The addition of emulsifier increases the stability of emulsions At freezing temperatures latex stability is higher than at 23°C At elevated temperatures (>100°C) latex stability is higher than at 23°C The addition of electrolytes increases latex stability Right Wrong Family Name Given Name 8 Pollution of Water and Air: Please Mark „RIGHT“ or „WRONG“ Nr. 1 2 3 4 5 6 7 8 9 10 Question COD = 0 BOD = 0 BOD = COD COD < BOD BOD < COD There are no biodegradable emulsifiers Emulsion rubbers yield considerable amounts of water water Dry finishing of solution rubbers does not cause water pollution Rubber recovery from a solution by steam stripping causes waste water Emulsion rubbers cause air pollution Right Wrong Family Name Given Name 9 Crystallization of Rubbers Please Mark „RIGHT“ or „WRONG“ Nr.: 1 2 3 4 5 6 7 8 9 Frage Additives can increas the rate of crystallization Additives can reduce the rate of crystallization SBR is a crystallizing rubber NBR is a crystallizing rubber NR is a crystallizing rubber Rubber compounds crystallize slower than raw rubbers Vulcanizate crystallize faster then the respective rubber compounds Strain induced crystallization is a wanted property Low temperature performance of vulcanizates is improved by spontaneous crystallization 10 The compression set performance of vulcanizates at low temperatures is is improved by spontaneous crystallization Right Wrong Family Name Given Name 10 Crystallization of Rubbers Please Mark „RIGHT“ or „WRONG“ Nr.: Question 1 2 3 4 5 6 7 8 9 10 SBR exhibits spontaneous crystallization NBR is a crystallizing rubber CR is a crystallizing rubber The rate of CR crystallization depends on polymerization temperature NR is a crystallizing rubber Spontaneous crystallization is a wanted property Strain induced crystallization provides high abrasion resistance The rcrystallization rate of CR depends on temperature The crystallization rate of rubbers shows a temperature maximum The crystallization rate of rubbers shows a temperature minimum The rate of crystallite nucleation increases with increasing temperature The rate of crstallite growth decreases with increasing temperature The rate of crystallization of vulcanizates can be monitored by Shore A measurements Right Wrong Family Name Given Name 11 NBR Please Mark „RIGHT“ or „WRONG“ Nr.: Frage 1 2 3 4 5 6 7 8 9 10 NBR which is polymerized under azeotropic conditions has 2 Tgs NBR which is polymerized under azeotropic conditions has 1 Tg A batch polymerization with incremental monomer addition can result in 2 Tgs Low monomer conversions result in NBR with chemical heterogenity High amounts of emulsifier improve chemical homogenity High amounts of modifier improve chemical homogenity Rebound of NBR increases with the content of acrylonitrile The degree of oil swelling increases with acrylonitrile content Shore A hardness of NBR vulcanizates dempend on acrylonitrile content The compression set of NBR vulcaniaztes depend on acrylonitrile content Right Wrong Family Name Given Name 12 ° C ………..° Family Name Given Name 14 . acrylonitrile.: Frage 1 2 3 4 5 6 7 8 9 10 Right Wrong The properties of NBR depend on the emulsifier used for polymerization The properties of NBR depend on the electrolytes used for latex coagulation The tendency to gelling increases with increasing polymerization temperature The tendency to gelling decreases with increasing polymerization temperature Molar masses increase with increasing monomer conversion Molar masses do not depend on monomer conversion Molar masses do not depend on modifier level Molar masses decrease with increasing amounts of modifier Molar masses increase with increasing amounts of modifier The properties of NBR depend on the modifier used Family Name Given Name 13 NBR In the literature you find the following Tgs for polybutadiene (BR) and polyacrylonitrile (PAN: BR (Li-catalysis) BR (Ti-catalysis) BR (Nd-catalysis) BR (emulsion polymerization) PAN -90° C -100°C -110°C -80° C +100° C Please select the relevant Tgs and calculate the Tg of an NBR grade which contains 50 wt..NBR Please Mark „RIGHT“ or „WRONG“ Nr.% acrylonitrile. The calculated Tg is: is: ………. Question The properties of CR do not depend on the temperature of polymerization Vulcanization with ETU* results in crosslinks which contain 1 sulfur atom CR-based adhesive grades contain 2-3-Dichlorobutadiene-1.NBR: Please Mark „RIGHT“ or „WRONG“ Nr.3 CR rubber grades are polymerized at a lower temperatures than CR adhesive grades 5 CR-latices can not be coagulated with electrolytes 6 CR crystallinity is disturbed by copolymerized sulfur 7 Mercaptane modification results in higher tensile strength of vulcanized CR than the modification with xanthogendisulfides 8 The ageing resistance of vulcanized CR sulfur grades is higher than those of mercaptane modified CR grades 9 CR-sulfur grades have to be masticated prior to use 10 Precrosslinked CR grades are used for vulcanizates with good dynamic performance 1 2 3 4 Right Wrong Family Name Given Name 16 .: Frage The compatability of NBR and PVC depends on acrylonitrile content Vulcanizates based on NBR perform well in ozone containing air 3 Vulcanizates based on CR perform well in ozone containing air 4 NBR/BIIR-Blends are useful for innerliners 5 Blends based on NBR and EPDM are compatible 6 Sulfur cure of NBR/HNBR-Blends result in high temperature resistance 7 Precrosslinked NBR yields compounds with low die swell 8 NBR can be vulcanized with phenol/formaldehyde resins 9 The swelling of NBR vulcanizates in oil increases with acrylonitrile content 10 The swelling of NBR vulcanizates in oil decreases with acrylonitrile content 1 2 Right Wrong Family Name Given Name 15 CR Please Mark „RIGHT“ or „WRONG“ Nr. : Question 1 2 3 4 5 6 7 8 9 10 Tg of HNBR does depend on the degree of hydrogenation The rebound of HNBR vulcanizates depends on ACN content HNBR and EVM are fully compatible at all copolymer compositions The compatibility of PVC and HNBR depends on the acrylonitrile content of HNBR Compatibility of HNBR and EVM depends on the vinyl acetate content of EVM The crystallinity of HNBR depends on acrylonitrile content Ethene sequences are prone to crystallization Tg of amorphous PE is at -200°C Tg of amorphous PE ist at + 0°C Unvulcanized HNBR with a low acrylonitrile content performs like a TPE Right Wrong Family Name Given Name 17 HNBR: Please Mark „RIGHT“ or „WRONG“ Nr.HNBR: Please Mark „RIGHT“ or „WRONG“ Nr.: Question 1 2 3 4 5 6 7 8 9 10 Pd-Catalysats can be used for the selective hydrognation of C=C bonds in NBR Raney-Nickel can be used for the selective hydrogenation of C=C bonds in NBR Li[AlH4] can be used for the selctive hydrogenation of C=C bonds in NBR NN=NH can be used for the selective hydrogenation of C=C bonds in NBR Supported catalaysts can be recovered by centrifugation Supported catalaysts are not quantitatively recovered after hydrogenation Homogeneous catalysts can be recovered by filtration Ethene and acrylonitrile can be radically copolymerized Metallocenene-based catalysts readily copolymerize ethene and propene In the hydrogenation on NBR. gel formation is a major problem Right Wrong Family Name Given Name 18 . and soft phase have to be mechanically coupled Hard.IIR. CIIR and BIIR: Please Mark „RIGHT“ or „WRONG“ Nr. Question The hard phase is not crosslinked The hard phase is crosslinked The soft phase can be polar The soft phase can be crsslinked Tg of soft phase > Tg of hard phase Tg of soft phase < Tg of hard phase Hard.and soft phase have to be compatible Dynamic vulcanization can be performed in a twin screw extruder 10 Dynamic vulcanization can be performed on a mixing mill 1 2 3 4 5 6 7 8 9 Right Wrong Family Name Given Name 20 .: Question At a polymerization temperature of -100°C molar masses of IIR are too high At a polymerization temperature of 23°C °C molar masses of IIR are too low IIR is a feedstock for the preparation of BIIR NR/BIIR-Blends are used for the production of innerliners IIR has a good performancde in the covulcanization of layers BIIR has a good performancde in the covulcanization of layers IIR can be vulcanized by the use of peroxides BIIR can be vulcanized by the use of peroxides Bladders which are used for the vulcanization of tyres are based on resin cured IIR 10 Bromination of IIR is performed in CH3Cl 1 2 3 4 5 6 7 8 9 Right Wrong Family Name Given Name 19 Thermoplastic Elastomers: Please Mark „RIGHT“ or „WRONG“ Nr. 98 22 Carbon black (N 220) [phr] Shore A Hardness/23°C Modulus300 [MPa] Tensile Strength [MPa] Elongation at break [%] Rebound/23°C [%] Goodrich HBU [°C] CS (24h/70°C) [%] Volume swell (70h/70°C) ASTM-oil Nr.Please assign the Curves 104 Schubmodul [MPa] 103 4 3 2 1 5 6 7 8 9 102 101 100 10-1 -100 Nr. 3 [%] Rubber A Rubber B Rubber C modification 59 56 7.0 Family Name Given Name Air permeation/23°C [1018 x m4/s.8 6.8 560 15 52 17 -5 6 21 1. 1 [%] ASTM-oil Nr.8 27. 2 [%] ASTM oil Nr.N] 27.% BR ? Which of the curve(s) matches the performance of SBS ? 21 Which series of modified rubbers and which modification results in the following properties Rubber A Rubber B Rubber C [phr [phr] [phr] 100 30 100 30 100 30 59 8.1 25.: Frage 1 2 3 4 5 6 7 8 9 10 -50 0 50 100 Temperatur 150 200 Number of curve(s) Which curve(s) matches the performance of unvulcanized NR ? Which curve(s) matches the performance of unvulcanized SBR ? Which curve(s) matches the performance of vulcanized SBR ? Which curve(s) matches the performance of unvulcanized NBR ? Which curve(s) matches the performance of vulcanized NBR ? Which curve(s) matches the performance of isotactic Polypropylene? Which curve(s) matches the performance of Polycarbonate? Which curve(s) matches the performance of atactic Polytyrene? Which curve(s) matches the performance of ABS with 30 wt.0 .9 550 590 78 25 44 60 17 46 66 114 191 73 28 108 8.9 27. 0 1.0 5.8 -80 -107 23 Please Assign Rubber A and Rubber B Rubber A Rubber B Compound Properties ML 1+4(100° C) [MU] C [min] t2/177° C [min] t90/177° Vulcanizate Properties Shore A Härte (23° C) Modulus 100 [MPa] Elongation at break [%] Tensile Strength [MPa] Compression Set 70h/23° C 70h/150° C 70h/175° C [%] [%] [%] 100 123 1.8 18.6 -103 98 1 <1 <1 0.7 -106 97 2 1 93 3 3-4 4. 3 ∆F/F0 x100 [%] [%] ∆D/D0 x100 ∆V/V0 x100 [%] Family Name -10 -4 +24 -17 -11 +34 -36 -29 +49 -50 -34 +67 -56 -45 +83 Given Name 24 .4 Vinyl/Metathese*** 10.3 -37 +6 75 25 99 1.6 -12 +2 Rubber A Rubber B Heat ageing (14d/150° C) [%] F/F0 x100 [%] D/D0 x100 [%] H/H0 x100 Oil swelling (7d/150° C) ASTM-Öl Nr.5 14 9 15 -1.4 4.5 77 8.6 10.9 68.7 17.5 11.5 -21 +3 100 32 1.6 11.0 80 13.1 17.4-cis 36-38 1.Which Metal is used for the production of BR in order to obtain the Properties below ? 1 1 CH2 4 CH2 CH 1 3 3 2 CH2 2 CH2 2 CH CH 4 CH 4 CH CH 3 CH2 CH2 Metal Microstructure [%] 1.7 -109 12.7 240 26 12 20 27 -2.2 81 12.0 145 18.6 9.3 165 18.3 18.5 10.7 78 10.9 1.7 Tg -93 97 1 2 1.6 170 22.8 -26 +5 50 50 58 1.8 14 14 20 -7.5 -10 -29 +4 25 75 40 1.4 Vinyl/FT-IR*** 11.1 190 24 12 17 27 -3.4-trans 52 Vinyl 10-11 1 Vinyl/ H-NMR*** 10.5 12 17 25.2 80 12.6 0. 0 2.0 10.5 430 493 [%] [%] .3 3.1 0 100.Please Assign Rubber A and Rubber B Rubber A Rubber B Fmin.2 500 73 .2 11.0 86.0 18.0 8.8 11.0 80 4.: 1 2 3 4 5 Hard phase Soft phase Family Name Given Name 26 .0 50.6 25.0 0 9. Fmax.7 4.7 2.2 78.5 83 5.0 60.3 67 1.5 10.42 34.8 8.35 27.0 11.0 21.7 25 Rubber A Rubber B Elongation at break [%] Family Name Given Name ∆ Dehnung CS (70 h/121°C) Please assign 5 polymer blends for which the scheme below applies Hard phase (coherent phase or matrix) Soft phase (dispersed phase) Nr.0 415 159 .0 10.1 50.5 21.7 7.0 18. ts t90 t95 Shore A Modulus100 Modulus200 Modulu300 Tensile Strength Abrasion Index Ageing at 70h/121° C [MPa] [MPa] [MPa] [MPa] [min] [min] [min] [Nm] 100.0 15.8 6.30 14. 7 8.3 6.2 17 B 24 1.2 300 11.4 285 12.3 320 9.5 27 31 51 -8 -15 14 C) Hot air ageing (14d/150° [%] ∆F/F0 x100 [%] ∆D/D0 x100 ∆H/H0 x100 [%] Storage in SAE Oil90 (3d/150° C) [%] ∆F/F0 x100 ∆D/D0 x100 [%] [%] ∆V/V0 x100 Family Name Given Name -26 -19 69 -12 -4 47 -8 -4 31 8 2 13 6 8 3 10 -12 -4 Please Assign Rubber A and Rubber B Rubber A [phr] Rubber B [phr] Unaged: [MPa] M300 Tensile Strength [MPa] Elongation at break [%] Aged (168h/100° C) M300 [MPa] Tensile Strength [MPa] Elongation at break [%] Air permeation at 50psi/65° C (Q x 10-8] Adhesion at 100° C Self adhesion / tack [kN/m] Adhesion to NR [kN/m] Fatigue to failure after ageing at 168h/120° C [kcycles] 100 80 20 60 40 40 60 Rubber A 4.0 550 2.7 15.2 6.0 14.5 21 24 46 10 -7 15 72 4.6 0.6 20 C 23 1.8 10.5 10.8 61.6 20 25 41 -10 2 11 71 5.8 Family Name 16.4 9.7 740 620 560 490 6.7 20.3 10. 2mm) Shore A Härte (23° C) S 100 MPa] Elongation at break [%] Tenjsile Strength [MPa] Compression Set 70h/100° C 70h/125° C 70h/150° C [%] [%] [%] A 20 1.8 23.3 0.2 5.7 275 13.8 420 5.9 19 F 20 1.6 19 D 25 1.0 295 11.8 370 13.1 17 Rubber Variation 75 5.8 22 26 40 -11 -2 12 68 4.2 6.0 Given Name Rubber B 28 .2 15.3 6.7 23 25 41 -3 -2 10 74 5.2 7. 2.7 300 10.6 20 23 38 -12 -2 9 68 4.8 14.2 21 E 20 1.2 6.2 6.8 14.4 8.9 7.Which Series of Rubbers Yields the Properties Given in the Table Below? Rubber Compound properties Mooney ML 1+4(100° C) C [min] t10/180° C [min] t90/180° FH-FL/180° C [N] Vulcanised properties (ISO-Stab Nr.1 8.0 12.7 7.4 280 12.9 9.4 7.6 9. 5 10.8 8.9 680 53 54 0.9 5.5 1. black (N 774) [phr] Vulcanization Compound Properties ML 1+4 (100° C) [MU] MS5 (125° C) [min] MS5 (135° C) [min] Physical Properties Shore A Hardnes M100 [MPa] [MPa] M300 Tensile Strength [MPa] Elongation at break [%] CS (70h/150° C) [%] 48 0.2 13.4 580 58 40 0.6 360 13 29 .Please Assign Rubber A Family Name Rubber A Given Name 100 50 ZnO 83 16 100 50 DCP 88 12 100 50 DCP/BMI 88 14 100 50 ZnO/BMI 89 16 Rubber A [phr] Carb.12 9.19 10.5 325 28 58 0.2 12.
Copyright © 2025 DOKUMEN.SITE Inc.