Chapter5 Katanga Supergroup

March 18, 2018 | Author: ChristineNyambe | Category: Sedimentology, Geology, Petrology, Rocks, Earth & Life Sciences


Comments



Description

Chapter V: Provenance ages of the Neoproterozoix KatangaSupergroup (Central African Copperbelt), with implications for basin evolution1 S. Master1*, C. Rainaud1, R. A. Amstrong2, D. Phillips2,3 & L. J. Robb1 (1Economic Geology Research Institute-Hugh Allsopp Laboratory, School of Geosciences, University of the Witwatersrand, P. Bag 3, WITS 2050, Johannesburg, South Africa, *[email protected] 2 PRISE, Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia 3 Present Address: School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia) Abstract: New age data on detrital zircons and micas are presented from key units within the Neoproterozoic Katanga Supergroup, which hosts the major stratiform Cu-Co deposits of the Central African Copperbelt. Detrital zircon ages indicate a mainly Palaeoproterozoic (between 2081 ± 28 to 1836 ± 26 Ma) provenance for the Katanga basin, derived from the Lufubu Metamorphic Complex of the Kafue Anticline and the Bangweulu Block to the north of the outcrop belt. Detrital zircons and clasts from the Grand Conglomerat glacial diamictite indicate a source from the Palaeoproterozoic metavolcanic porphyries and granitoids of Luina Dome region, which was a basement high during Nguba Group deposition. Minor zircons of Mesoproterozoic age may have been derived from the Kibaran belt. Finally, 40 Ar/39Ar age data from detrital muscovites from Biano Group siltstones give a maximum age of sedimentation of 573 Ma, strongly supporting previous models that the Biano Group was deposited in a foreland basin of the Lufilian Orogen. 1 This paper will appear in Special issue Journal of African Earth Sciences, (Eds.) Robb, Cailteux, Sutton, in press. 126 1. Introduction The Neoproterozoic Katanga Supergroup is the host of the major stratiform sediment-hosted Cu-Co deposits, as well as numerous other deposits of Cu, Pb, Zn, U, Au, Fe etc., which constitute the Central African Copperbelt in Zambia and the Democratic Republic of Congo (D.R. Congo) (Robert, 1956; Mendelsohn, 1961a). In spite of its great economic significance there have been, up to now, few age data bearing on the deposition of the Katangan Sequence. We present here new SHRIMP U-Pb data on the ages of detrital zircons from Katangan sediments, as well as some preliminary 40 Ar-39Ar data on detrital muscovites from the uppermost Katangan beds. These data give information on the age and likely nature of the source regions for the Katangan sediments and provide age constraints on upper Katangan (Biano Group) sedimentation (see Figure 1, Table 1). Figure 1. Simplified geological map of the eastern part of the Lufilian Arc in the Central African Copperbelt (after François, 1974), showing sample localities. 127 Katanga Supergroup Group Subgroup Formation Member Biano Kambove Dipeta Musoshi Fungurume Kundelungu Kiubo Kalule Nguba Monwezi Muombe Petit Conglomerat Grand Conglomerat Roan Mwashya Upper Roan Lower Roan Table 1. Lithostratigraphy of the Katanga Supergroup (modified after Wendorff, 2003, and Cailteux, 2003). 2. Regional geological setting In the Central African Copperbelt, the oldest pre-Katangan basement consists of a Palaeoproterozoic magmatic arc sequence, comprising the Lufubu Schists and intrusive granitoids, dated at between 1994 and 1873 Ma (Rainaud et al., 2004). Basement rocks are overlain unconformably by quartzitic and metapelitic metasedimentary rocks of the pre-Katangan Muva Group, which were deposited after 1941 Ma, based on the ages of detrital zircons (Rainaud et al., 2003). The Nchanga Granite is the youngest intrusion in the pre-Katangan basement (Garlick & Brummer, 1951; Garlick, 1973). It is an unfoliated coarse-grained peraluminous biotitic alkali granite with A-type geochemical characteristics (Tembo et al., 2000). SHRIMP U-Pb dating of zircons from the Nchanga Granite has yielded a concordant age of 877 ± 11 Ma, regarded as the age of the intrusion (Armstrong et al., 2004). The Nchanga Granite is nonconformably overlain by the Katangan sequence. 128 3. The Katanga Supergroup The Katangan sequence consists of metasedimentary rocks traditionally divided into the Roan, Lower and Upper Kundelungu Supergroups (Cailteux et al., 1994; François, 1995). Current lithostratigraphic practice in the D. R. Congo is to subdivide the Katanga Supergroup into the Roan, Nguba (exLower Kundelungu) and Kundelungu (ex-Upper Kundelungu) Groups, which are further subdivided into several subgroups (Cailteux, 2003). More recently, Wendorff (2001a,b; 2002a,b; 2003a) has proposed a new lithostratigraphic scheme, in which the Katanga Supergroup is subdivided into the Roan and Guba Groups, with two additional lithotectonic units, the Fungurume and Biano Groups, which he proposed were deposited syntectonically in a foreland basin during deformation of the earlier Katangan groups during the Pan-African Lufilian Orogeny. Wendorff (2003b) also uses the term “Kundelungu Group” to include the lower parts of the old “Upper Kundelungu” Supergroup, the Ks1 and Ks2 of Cailteux et al. (1995), which Wendorff (2003a) had included as the upper part of his “Guba Group”. In this paper, we adopt the lithostratigraphic scheme and terminology of Wendorff (2003b), except that we use the name “Nguba Group” instead of “Guba Group”, following the recommendations of Cailteux (2003), and existing practice among Katangan geologists. The lithostratigraphy of the Katanga Supergroup, as used in this paper, is summarised in Table 1. a. Roan Group The lowermost Roan Group of the Katanga Supergroup, subdivided into the mainly siliciclastic Lower Roan and the mainly dolomitic Upper Roan Subgroups (Table 1), consists of conglomerates, quartzites, arkoses, shales, siltstones, dolomitic shales, and anhydrite-bearing dolostones. The Roan Group is overlain unconformably by the Mwashya Subgroup, which forms the base of the Nguba Group. 129 Conglomeratic and arkosic sedimentary rocks at the base of the Lower Roan Subgroup of the Roan Group at Nchanga Mine nonconformably overlie the Nchanga Granite. Previous petrographic studies have indicated that there are pebbles and zircons from the Nchanga Granite in basal Roan conglomerates, suggesting that the lower Roan sediments are derived by erosion of a basement that included the Nchanga Granite (Garlick & Brummer, 1951; Binda, 1972; Garlick, 1973). A suite of detrital zircons from a cross-bedded Roan arkose above the contact with the Nchanga Granite, was extracted and dated by Armstrong et al. (2004). U-Pb SHRIMP dating of these detrital zircons reveals two distinct age populations, one at around 2.0 to 1.8 Ga (corresponding to the age of the Palaeoproterozoic basement), and the other at 880 Ma (corresponding to the age of the Nchanga Granite) (Armstrong et al., 2004). This unequivocally proves that the Nchanga Granite provided detritus to the Lower Roan, and sets a firm upper limit of c. 880 Ma for the age of the Katanga Supergroup. The Upper Roan Subgroup is dominated by chemically precipitated and clastically reworked (mainly dolomitic) carbonate rocks and evaporites (anhydrite and gypsum), with few siliciclastic rocks. The depositional age of these rocks is poorly constrained except that they are intruded by numerous metagabbroic sills and dykes, which have given an age of c. 750 Ma (Armstrong et al., 2004). Hence that is a minimum age for the Upper Roan Group. At the base of the Upper Roan Subgroup, the Ore Shale Member (which hosts most of the mineralization in the Zambian Copperbelt) is cut by microcline-bearing metamorphic veins, which were dated from two localitiesRoan Antelope Mine (now Luanshya, Zambia) and Musoshi Mine in D.R. Congo – using the Rb-Sr dating technique (Cahen et al., 1970). The two results taken together were interpreted by Cahen et al. (1984) to give a minimum age for the Roan Group of 870 ± 42 Ma. If the Rb-Sr ages of the microcline veins are accepted, then the age limits for the Roan Group are as follows:- Lower Roan Subgroup: maximum age c. 880 Ma; minimum age 130 6 ± 8. If the Rb-Sr ages of the microcline veins are regarded as unreliable.6 Ma. (2003) of two gabbroic bodies in the Solwezi area. which consists of basalts and basaltic andesites.. 1973. Wendorff. NW Zambia. Recent dating by Barron et al. yielded ages of 745 ± 7. Key et al. Cailteux et al. minimum age c. utilising SHRIMP U-Pb dating on zircons (Armstrong. It consists mainly of carbonates and black shales. since it rests with an erosional unconformity on upper Roan Group rocks.870-42 = 838 Ma.. 880 Ma and c. but contains a thin pyroclastic unit with associated stratiform banded magnetite/haematite iron formations. 750 Ma. 1978). 750 Ma.g. which are consistent with them being part of the extensional mafic magmatism associated with the Mwashya Subgroup (Kabengele et al.. 1975. 2003). 2001. This is the first accurate date for any Katangan lithological unit.Grand Conglomerat Formation The diamictite of the Grand Conglomerat has long been known to be a glacial tillite (Cahen. 2000. as well as on older basement.8 Ma and 752. Cailteux et al.. 2001). then the Roan Group was deposited sometime between c. In western Zambia. and passes conformably into the Grand Conglomerat in places (Cahen. 2003a). is now regarded as the lowermost subgroup of the Nguba Group. 2003). Nguba Group. c.Mwashya Subgroup The Mwashya Subgroup.. Liyungu et al. which form a regional stratigraphic marker (Lefebvre. 880 Ma.. 1978. The evidence for a glacial origin of this diamictite rests on the common and widespread occurrence (in more than 20 localities) of polymictic subrounded to subangular faceted clasts with striations. in the Mwinilunga area. 131 . Nguba Group. b. Key and Banda (2000) have mapped a several hundred metres thick volcanic unit within the Mwashya Subgroup. Upper Roan Subgroup: maximum age c. formerly regarded as forming the top of the Roan Group (e. These volcanics have been dated at 760 ± 5 Ma. 2003b). the Lwavu Formation. 2001). 1974. In the Chambishi Basin.West Lunga Formation To the southeast of the Mwinilunga area. comprising shales.g. Because of the absence of subglacial striated pavements. One of the porphyritic lavas in this area has been dated at 735 ± 5 Ma with the U/Pb SHRIMP technique on single zircon. Studies of the isopachs and facies in the Grand Conglomerat indicate that thin continental glacial moraines were situated in the north of the Lufilian arc. d. diamictites. Diamictites of the Grand Conglomerat are interbedded with turbidites. 2003a. the generally massive.. the 26 m thick Grand Conglomerat is conformable with black shales and turbidites (109 m thick) of the underlying Mwashya Subgroup. Binda & van Eden. Muombe Subgroup of Wendorff. 1936.e. 1973. 1998). Binda and van Eden. siltstones. and the presence of associated varved shales with dropstones (Vanden Brande.. 1973. 1974).sometimes in multiple sets. unbedded.. strongly deformed and poorly differentiated Katangan rocks of the West Lunga Formation. banded iron formations and porphyritic volcanics. 1978. Museu. 2000. 132 . 2001). poorly sorted and fine-grained matrix-supported nature of the diamictite. Benn & Evans.. Liyungu et al. 1987). in borehole MJZC/9. very little is known about palaeoflow directions of the Neoproterozoic glaciers which deposited the Grand Conglomerat. François. have been provisionally correlated with the Lower Kundelungu Supergroup (Liyungu et al. dolomites. Nguba Group. and are interpreted to have formed by sediment gravity flow processes in a glaciomarine basin (e. 1963. while to the south deposition was in the form of thicker glaciomarine facies (François.b). which corresponds to the upper part of the Nguba Group above the Grand Conglomerat (i. but its exact stratigraphic position with respect to the Grand Conglomerat is problematical (Armstrong. Cahen. or Plateaux Subgroup of the Kundelungu Group. Cahen. 2003a. with very thin (< 1 cm) shaley interbeds. 1936. previously called “RAT”. Fungurume Group The Fungurume Group is a newly defined unit in the Katanga Supergroup. and is overlain by a cap carbonate (the “Calcaire rose”). f. Ku3 (Cailteux. Katanga.e. 1995). and may overlie the Nguba Group with an erosional unconformity (Wendorff. like the Grand Conglomerat. 1973). Vanden Brande. The shales show evidence of exposure and desiccation in the form of mudcracks. also of glacial origin (based on the abundant and widespread presence of faceted and striated clasts of both intrabasinal and extrabasinal origin. 2003b). D. It consists of continental red beds of the Mutoshi Formation. also known as Ks3 (François. 2003a). Biano Group The Biano Group (Wendorff. comprising olistostromes deposited by subaqueous sedimentgravity flows (Wendorff. The Petit Conglomerat diamicitite is. Here the uppermost Katangan sedimentary rocks consist entirely of red siltstones which are rippled. regarded as a syntectonic foreland basin fill (Wendorff.b). 133 . the Dipeta Formation consisting of marginal marine mixed clastic and carbonate rocks.R. which rests unconformably on the Nguba Group. 1978). Some of the ripples are flat-topped. g. Kundelungu Group. and indicate modification during falling water levels. and the Kambove Formation. was examined in outcrops 8 km NE of Gombela. and have been reworked as mudchip conglomerates in rippled siltstones.Petit Conglomerat Formation The Petit Conglomerat Formation forms the base of the Kundelungu Group. Groupe du Biano (François. The uppermost Katangan sediments of the Biano Group in the Kundelungu Plateau consist entirely of red siltstones which are ripple marked. Congo. in the Kundelungu Plateau National Park. Plateau Group (Wendorff. 2003a). 2003). 2001). R. R. Kundelungu Plateau National Park. D. with minor modes to the west-northwest and north (Figure 3). Kundelungu Plateau National Park. Congo. showing ripple cross-laminations. The polymodal palaeocurrents (based on 53 measurements on current ripples from 8 stations) were mainly southerly and southwesterly. Figure 2. Congo. and they are current ripples.The ripples show internal cross laminations (Figure 2). 8 km NE of Gombela. Photograph of a thin-section of a ripple-marked siltstone (sample KPM3). which glisten on bedding plane surfaces. 1959. 134 . from the Biano Group. Thieme. 8 km NE of Gombela. D. Figure 3. The red siltstones of the Biano Group may correlate with the uppermost redbeds within the Luapula Beds of northwestern Zambia (Abraham. Each concentric ring represents one percent of the measured population of the data set. and contain abundant detrital muscovites (Figure 4). Rose diagram showing palaeocurrent trends measured from 53 sets of current ripples in siltstones from the Biano Group. 1971). These siltstones are unmetamorphosed. Age calculations and plotting were done using Isoplot/Ex (Ludwig. Photomicrograph of sample KPM3. Johannesburg. using conventional techniques.Figure 4. Canberra. 4. Highly discordant data were not discarded but evaluated case by case. 1980). Muscovites were separated at the the Hugh Allsopp Laboratory. (1995). The separation of zircons was carried out at the Hugh Allsopp Laboratory.5 Ma. 40 Ar-39Ar analyses were performed at the Australian National University. Tetley. only isotopic ratios that are 10% or less discordant were considered as reliable age indicators.g. Johannesburg. Canberra. 2003). Analytical techniques U-Pb analyses were performed on the SHRIMP I at the Australian National University. In the age interpretations. The irradiation canister was 135 . Packets containing degassed potassium glass were placed at either end of the canister to monitor the 40 Ar production from potassium (e. South Africa and extracts were purified at the Australian National University. 2000) and all ages are quoted with errors at 1V. showing abundant detrital muscovite laths (arrowed) which are curved due to compaction between smaller detrital quartz grains. Crystals were placed into an aluminium irradiation canister together with interspersed aliquots of the flux monitor GA 1550 (age = 98. The SHRIMP analytical procedure used in this study is similar to that described by Claoué-Long et al. South Africa. Spell & McDougall. Most of the samples have zircons almost exclusively of Palaeoproterozoic age with a few younger ages. 1999). and were not taken into account during the discussion. (39Ar/37Ar)Ca = 7. Konkola (sample KNS7). The other 48 analyses plot in a 136 .35 %. Australia. 5. plotted on the concordia diagram.9 x 39 Ar/37Ar. Lower Roan Subgroup Detrital zircons from four arkosic sandstone samples of the Lower Roan Subgroup from Musoshi (samples SPOTMU and MUS3). K/Ca ratios were determined from the ANU laboratory hornblende standard 77-600 and were calculated as follow: K/Ca = 1. The reported data have been corrected for system blanks. Correction factors for interfering reactions are as follows: (40Ar/39Ar)Ca = 3. however. Results are shown in concordia plots Figures 5 and 6 and are listed in Tables 2 and 3. The canister. fluence gradients and atmospheric contamination. mass discrimination and radioactive decay. which reduced neutron flux gradients to < 2% along the length of the canister.14)x10-4. Results a.050 (± 0. The error on the J-value is ± 0. Out of 55 analyses on SPOTMU. and the Chambishi Basin (sample RCB2/4) (Figure 1) were U-Pb dated with the SHRIMP.50(± 0. excluding the uncertainty in the age of GA1550 (which is ~ 1%). Decay constants are those of Steiger and Jäger (1977). 54 zircons (55 analyses) from SPOTMU and 10 zircons from MUS3 were analysed. (40Ar/39Ar)K = 0. New South Wales. Errors associated with the age determinations are one sigma uncertainties and include errors in the J-value estimates. Lucas Heights.irradiated for 504 hours in position X34 of the ANSTO. HIFAR reactor. was inverted three times during the irradiation. The discordant analyses are.86 (± 0. which was lined with 0. Mass discrimination was monitored by analyses of standard air volumes.005). The calculated ages have been additionally corrected for reactor interferences. 7 were more than 10% discordant.01) x 10-4 (McDougall & Harrison.2 mm Cd to absorb thermal neutrons. Four analyses show different ages and different degrees of concordancy. out of 50 analyses. The two remaining analyses are Mesoproterozoic in age at 1301 ± 46 Ma (analysis 4. For the sample RCB2/4. from 1996 ± 15 Ma to 1836 ± 26 (Table 4.1) and 1152 ± 65 Ma (analysis 17. 137 . Figure 8). due to technical problems related to the SHRIMP. 14 out of 18 analyses plot on the concordia diagram in a cluster with Palaeoproterozoic ages ranging from 1813 ± 28 Ma to 2062 ± 38 Ma. The same cluster is found with the sample MUS3 (Figure 6) with 207 Pb/206Pb ages ranging from 2066 ± 20 Ma to 1883 ± 21Ma. 18 were completed and could be plotted on a concordia diagram (Table 5.1). 14 analyses) yielded a similar detrital zircon age range to the Musoshi samples. The sample from Konkola (KNS7.2).large cluster of 207 Pb/206Pb ages ranging from 2081 ± 27 Ma to 1789 ± 35 Ma.1 and 17. Figure 7). Two ages are Neoproterozoic with 891 ± 199 Ma (115% concordant) and 908 ± 40 Ma (analyses 13. Congo (sample SPOTMU).Figure 5. R. 138 . D. D. 206Pb/238U vs 207Pb/235U concordia plot of ages (Ma) of detrital zircons from lower Roan Group arkose at Musoshi Mine. Figure 6. R. 206Pb/238U vs 207Pb/235U concordia plot of ages (Ma) of detrital zircons from lower Roan Group arkose at Musoshi Mine. Congo (sample MUS3). Zambian Copperbelt (sample RCB2/4).8 m depth. Zambia (sample KNS7). in the Chambishi Basin. 206Pb/238U vs 207Pb/235U concordia plot of ages (Ma) of detrital zircons from lower Roan Group arkose from borehole RCB2. Figure 8. 1467.Figure 7. 206Pb/238U vs 207Pb/235U concordia plot of ages (Ma) of detrital zircons from lower Roan Group arkose at Konkola Mine. 139 . 116 0.3444 0.00038 0.1240 0.00043 206 204 0.0024 0.0074 0.43 34 36 167 83 48 37 25 36 20 30 200 53 124 118 58 127 20 69 51 97 78 128 93 35 193 84 86 41 42 Pb/ Pb 0.161 0. % 140 .0078 0.697 3.268 0.368 5.1197 0.642 0.12 0.0035 0.98 0.0040 0.1140 0.1182 0.0079 0.694 5.72 0.1134 0.0098 0.00040 0.3301 0.509 5.203 0.95 0.323 5.00037 0.266 0.00174 0.0090 0.0014 0.1173 0.313 0.164 0.0082 0.570 2.990 5.97 0.678 5.0013 0.00047 0.3558 0.733 6.3480 0.0127 0.00041 0.370 0.3251 0.70 0.726 0.383 5.3241 0.107 5.0132 0.0011 0.81 0.609 1.149 0.2918 0.0086 0.3583 0. 3.0216 0. U Th Th/U Pb* spot (ppm ) (ppm ) (ppm ) Table 2.320 0.0136 0.0044 0.00044 0.253 0.3607 0.0073 0.0030 ± Pb/ U 1887 1977 1908 1870 1724 1852 1993 1748 1535 1837 1114 1999 1455 1885 1851 1293 2085 1863 1958 2037 1896 1707 1928 2006 1742 1948 981 1987 1858 238 206 95 114 283 57 64 84 122 79 78 83 34 181 52 51 75 208 157 68 76 69 57 49 54 84 121 132 37 85 120 1925 1945 1882 1908 1864 1942 2109 1880 1343 1840 1790 795 1587 1914 1962 1814 1964 1839 1966 2075 1938 1810 1949 2035 1850 1986 1651 1974 1992 65 66 105 40 47 55 62 53 42 57 36 61 37 41 48 38 67 37 47 48 43 39 40 52 35 42 34 61 50 Ages (in M a) 207 Pb/ 235 ± U ± Pb/ Pb 1949 1928 1904 1923 1837 1948 2012 1931 1570 1882 1887 1203 1706 1887 1888 1873 1943 1842 1942 1974 1902 1823 1908 2009 1852 1969 1773 1994 1963 206 207 40 49 65 24 34 35 45 39 56 46 22 67 32 24 35 25 75 36 41 27 25 25 24 34 27 24 27 38 36 ± 98 102 98 98 103 99 110 95 71 95 90 39 85 103 109 94 102 100 103 111 104 98 105 103 100 102 86 98 103 Conc.00042 0. 206 f 206 % denotes the percentage of Pb that is com m on Pb.0011 0.0025 0.0038 0.184 0.3323 0.556 0.0013 0.156 0.163 0.1173 0.197 5. 0.1220 0.1105 0.947 0.1144 0.1188 0.148 0.238 0.0036 0.313 0.150 0.79 0.3515 0.0024 0. 67 79 82 145 138 66 44 96 81 129 411 157 410 311 121 36 45 142 128 134 178 305 199 64 373 28 258 79 47 Grain.00001 0.3386 0.3529 0.675 0.0105 ± 5.2790 0.3200 0.00014 0.3390 0.12 0.70 0.0076 0.127 5.2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 84 85 492 213 116 94 57 87 65 62 584 303 364 277 141 399 46 180 115 231 187 336 225 80 514 236 266 97 109 1.140 0.79 1.00037 0.17 0.210 0.0028 0.0069 0.00007 0.00054 0.817 5.00062 0.913 0.00045 0.3711 0.0013 0.79 0.24 2.1177 0.021 5.483 0.562 0.648 5.597 0.114 0. 204 206 C orrection for com m on Pb m ade using the m easured Pb/ Pb ratio.1227 0.00024 0.3352 0.00028 0.665 f 206 % Pb/ U 0.0117 0.0081 0.00167 0.0072 0.1104 0.666 0.0040 0.545 6.0114 0. 2.220 0.952 4.1170 0.1253 0.0101 0.406 0.165 0.253 0.0107 0.0026 0.1124 0.3456 0.3566 0.00073 0.1313 0.1213 0.0015 0.0088 0.52 1.1189 0..1218 0.3507 0.1176 0.3521 0.00049 0.93 0.88 0.0014 0.00023 0.0026 0.411 5.256 5.1140 0.812 6.07 0.0109 0.00022 0.3797 0.2315 0.0021 0.3303 0.0081 0.11 0.1135 0.635 2.282 0.155 0.11 1.0023 0.269 4.417 5.590 0.3870 0.353 0.0098 0.68 1.13 1.239 R adiogenic Ratios 207 Pb/ 235 U ± Pb/ Pb 0.3622 238 206 0.N otes : 1.536 2.3561 0.85 0.0029 0.153 0.015 0.524 5.1199 0.0139 0.91 0.0012 0. 4.748 0.341 0.209 1.265 0.618 0.00035 0. 0.19 0.828 0.58 0.0064 0.2 2 3 3.1128 0.1184 206 207 U ncertainties given at the one s level.0033 0.00022 0.00170 0.0139 0. For % C onc.09 0.00075 0.0101 0.778 5.0041 0.692 0.767 5.77 1.00106 0.147 0. 100% denotes a concordant analysis.1157 0.231 5.0085 0.0110 0.1182 0.214 0.00021 0. Sum m ary of SHRIM P U-Th-Pb zircon results for sam ple SPO TM U.234 0.341 1.414 2.1135 0.136 5.429 0. 56 0.16 1.193 0.225 0.0091 0.05 0.70 0.3033 0.0015 0.512 6.161 0.00010 0.515 0.57 1.3501 0.00030 0.0038 0.08 0.129 0.0024 0.17 0.770 0.0078 0.168 0.017 0.0015 0.3290 0.69 0.0030 0.3308 0.1220 0.824 5.1114 0.0035 0.0081 0.00050 0.0007 0.153 0.0096 0.3423 0.0026 0.0078 0.194 0. % 141 .0674 0.0090 0.716 5.3313 0.1148 0.1211 0.0099 0. 100% denotes a concordant analysis.375 0.459 1. 516 1838 640 1881 2044 1804 1874 1876 1884 1816 1937 1867 1885 1958 617 1001 2027 2043 2074 1977 1701 1766 1548 1847 2011 1998 Pb/ 238 U 206 27 76 33 65 64 57 71 55 72 47 91 55 57 63 24 55 55 73 68 70 66 67 44 72 57 71 420 1885 1708 2044 2018 1834 1898 1911 1935 1859 2053 1952 1864 1927 1599 1842 2053 2002 2120 2077 1845 1921 1872 2033 2048 2015 16 55 34 46 49 44 51 40 47 38 68 41 43 45 33 44 40 54 52 47 38 46 39 44 44 44 Ages (in Ma) 207 Pb/ 235 ± U ± Pb/ Pb 880 1904 1830 2048 2003 1854 1871 1939 1930 1842 1974 1934 1882 1913 1751 1857 2039 1989 2081 2051 1789 1933 1852 1989 2017 1994 206 207 31 36 22 25 28 27 36 24 40 24 43 24 25 29 27 38 23 30 28 26 35 30 25 23 26 27 ± 18 98 87 100 102 98 103 97 101 102 109 102 98 102 83 98 101 101 104 103 107 99 102 105 103 102 Conc.3676 0.3354 0.132 0.0013 0.3370 0.0065 0.0115 0.55 0.00032 0.13 1.00024 Pb/ 206 Pb 204 15.0069 0.160 0.64 196 52 156 132 56 81 42 70 47 93 43 108 92 89 189 56 136 73 91 103 34 52 72 142 67 61 0.99 1.157 0.449 6.0093 0.23 0.3709 0.0112 0.19 1.135 5.0032 0.0013 0.00004 0.99 0. 1.00014 0.1146 0.1187 0.092 6.179 0.00066 0.205 0.3740 0.218 0.0013 0.1248 0.368 f206 % 0.192 0..24 0.1178 0.0014 0.00026 0.188 0.151 0.0093 0.1485 0.3397 0.2815 0. For % Conc.0020 0.765 6. U Th Th/U Pb* spot (ppm) (ppm) (ppm) 0.1180 0.1172 0.00111 0.182 0.00015 0.0143 0.1219 0. 4.128 0.634 0.69 1.0013 0.312 5.1191 0.402 0.0018 0.0100 0.0012 0.0103 0.633 0.76 0.1208 0.49 0.00080 0.225 6.288 6.0012 0.206 5.524 5.1266 0.3452 0.158 0.144 0. Summary of SHRIMP U-Th-Pb zircon results for sample SPOTMU (cont.162 0.00012 0.0008 0.3641 0.0106 0.227 0.0084 0.0009 0.0026 0.1158 0.00041 0.00995 0.58 1.535 4.074 0.0087 0.3342 0.0045 0.Notes : 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 2203 115 507 351 123 206 92 178 100 225 93 269 230 209 605 150 320 164 205 253 89 135 178 385 146 149 1.197 0.071 0.00005 0.1212 Radiogenic Ratios 207 207 Pb/ Pb/ 235 206 U ± Pb Uncertainties given at the one s level.455 0.292 0.1118 0. 2202 178 285 66 133 204 137 123 158 255 109 205 217 217 952 184 219 162 144 107 84 94 214 61 153 96 Grain.04 1.186 0.3483 0.1260 0.316 0.1126 0.1193 0.1164 0.00030 0.0024 0.3668 Pb/ 238 U 206 0.985 5.688 5.182 0.577 4.0088 0.194 6.387 0.0013 0.1214 0.227 0.3472 0.0012 0.233 2.710 5.3750 0. 206 Pb that is com m on Pb.385 5.186 5.00 1.42 0.0113 0.259 0.0013 0.1056 0.00135 0.092 6.217 1.0085 0.489 1.1247 0.95 0.149 0.00015 0.696 0.00024 0.3893 0.212 0.609 5.966 0.065 6.00091 0.063 1. 3.3537 0.70 1.00008 0.00021 0.0098 0.0093 0.).3750 0. 2.1161 0.20 0.0092 ± 1.00041 0.00034 0.00063 0.228 0.3731 0.061 0. f 206 % denotes the percentage of 204 206 Correction for com m on Pb m ade using the m easured Pb/ Pb ratio.3802 0.748 5.380 5.95 1.0018 ± Table 2. 145 0.395 0.3435 0. For % Conc.558 5.1 584 461 1338 564 55 191 61 95 124 310 Pb/ 206 Pb Grain.441 1.533 6. Summary of SHRIMP U-Pb zircon results for sample MUS3.0104 0.1 10.0075 0.0041 0.3671 0.1188 0.1184 Radiogenic Ratios 207 207 Pb/ Pb/ 235 206 ± U ± Pb Uncertainties given at the one s level.180 0.253 1.0078 0.57 0.247 0.3385 0.57 0.3366 0.053 6.0017 0.1152 0.000229 0.02 0.0112 0.377 5.69 0.15 0.206 0. 206 f206 % denotes the percentage of Pb that is common Pb.264 5.000074 0.1 3.3421 0.11 0.21 0.749 2.000431 0.639 1. 0.0015 0. 204 206 Correction for common Pb made using the measured Pb/ Pb ratio.075 6.605 6. U Th Th/U Pb* spot (ppm) (ppm) (ppm) 204 Table 3. 0.000356 0.001023 0.604 0.24 f206 % 0. 4.049 0.1219 0.000010 0.1 8. % 142 1883 21 100 1953 25 96 1908 9 100 1950 15 103 1973 61 101 1984 29 103 1939 100 98 2066 20 97 1995 20 101 1932 19 105 206 207 .0014 0.0064 0.1198 0.859 0.35 1.1168 0.3638 0.225 0. 2.1 9.0098 5.0006 0.000135 0.0020 0.128 0.3727 0.1196 0.0133 0.0012 ± 1879 1871 1904 2016 2000 2042 1897 2004 2015 2024 37 43 36 43 58 53 65 49 63 47 1881 1910 1906 1984 1987 2013 1917 2035 2005 1979 23 27 20 24 45 32 63 29 35 26 Ages (in Ma) 207 Pb/ Pb/ 238 235 U ± U ± 206 Pb/ Pb ± Conc.418 6.173 0.1211 0.0123 0.1 2.1226 0.202 6.000289 0.165 0.243 0. 3..000010 0.1 4.0013 0.1 6.000156 438 1036 56 249 58 122 76 109 107 187 1.3669 0.0091 0.1 7.3688 Pb/ 238 U 206 0. 100% denotes a concordant analysis.0010 0.307 0.1277 0. 228 243 444 220 24 80 27 44 54 127 0.Notes : 1.02 0.0134 0.042 0.019 0.0088 0.46 0.1 5.3646 0. 1193 0.1171 0.61 0.0093 5.154 0.58 0.0090 0.1198 Radiogenic Ratios 207 207 Pb/ Pb/ 235 206 ± U ± Pb Uncertainties given at the one V level.1207 0.3361 0.0009 ± 1979 1997 1999 2022 499 1868 1775 1938 1976 2033 1792 1692 1928 1961 1929 31 31 39 31 12 43 41 56 56 53 42 42 44 47 44 1971 1971 1998 1995 779 1893 1839 1926 1953 1999 1852 1758 1930 1971 1941 17 16 22 16 29 25 27 35 31 29 26 28 25 26 25 Ages (in Ma) 207 Pb/ Pb/ 238 U ± 235U ± 206 1962 1945 1996 1966 1694 1920 1912 1913 1929 1963 1920 1836 1932 1982 1953 6 6 15 7 79 13 25 33 20 19 19 26 14 13 14 101 103 100 103 30 97 93 101 103 104 93 92 100 99 99 Pb/ Conc.1227 0.0021 0.06 0.450 5.115 0.1205 0.19 f206 % 0.161 0.50 0.10 0.0066 0.0010 0.1 3.3169 0.59 1.0111 0.153 0.41 0.000384 0.152 6.110 0.1 14.0005 0.152 0.160 5.3486 0.155 0.1039 0.1 1.0004 0.35 0.1 11.3708 0.000254 0.0081 0.1 13.1176 0.691 5.847 6.3555 0.19 0.0012 0.51 253 210 60 251 83 232 100 87 99 126 147 114 136 84 118 0. 4.966 5. 0. 2.163 0.0009 0.195 4.0085 0.000017 0.1 2. 100% denotes a concordant analysis. 204 206 Correction for common Pb made using the measured Pb/ Pb ratio.74 1.43 0.000010 0.226 0.1182 0.3684 0.0084 0.3488 Pb/ 238 U 206 0.0016 0.000008 0.92 0.664 5.0065 0.000117 0.0805 0.000038 0.000010 0. Pb ± % 206 207 143 . 3.1204 0.0098 0.49 0.0084 0.30 0. 456 498 186 365 1458 230 102 132 176 137 283 421 307 126 158 Th Th/U Pb* Grain.02 0.0092 0.1 8. For % Conc.000315 0.646 5.3630 0.02 0. 206 f206 % denotes the percentage of Pb that is common Pb.1 7.0012 0.164 0.115 5.29 0.0016 0.65 0.1 9.1 12.000013 0.0117 0.42 0. Summary of SHRIMP U-Th-Pb zircon results for sample KNS7.0004 0.0021 0.761 0.1123 0.1 10.33 0.000061 0. U spot (ppm) (ppm) (ppm) Table 4.130 1.0009 0.0065 0.203 0. 0.3594 0.0013 0.000118 Pb/ 206 Pb 204 0.0043 0.1 4.68 1.3506 0.1184 0.1176 0.3588 0.1 6.000144 0.612 472 125 615 881 663 307 227 248 320 414 295 333 212 311 Notes : 1.23 0.1 15.0117 0.964 5.71 0.01 0.05 1.03 8.970 6.0008 0.3002 0.3204 0.02 0.000186 0.1217 0.209 0.176 0.1171 0.59 0.060 0..3636 0.114 0.1 5.005180 0.153 5. 0106 0.94 1.2462 0.1144 0.223 0.1160 0.000288 0.83 0.1 15.000033 0.5 189.3111 0. 204 206 Correction for com mon Pb made using the measured Pb/ Pb ratio.646 5.0105 0.5 564.164 0.3618 0.000010 0.655 1.06 0.16 1.356 * * * * * * * 4.38 1.08 0.000216 0.3809 Pb/ 238 U 206 0.1 637.000379 0.3420 0.56 1.7 720.3 222.5 233.0017 0.50 0.64 218 266 70 131 71 220 25 199 145 93 63 141 187 65 124 61 21 58 37 64 39 82 80 81 109 0.177 0.1 5.1 16.3663 0.0131 0.137 0.0057 0.18 0.95 0.3335 0.000219 Pb/ 206 Pb 204 0.1 25.0082 0.0029 0.0026 0.1 9.1169 0.244 0.9 79.0148 0.3785 0.466 5.000813 0. U Th Th/U Pb* spot (ppm) (ppm) (ppm) Table 5.2 298.4 180.3807 0.099 0.8 240. 100% denotes a concordant analysis.4020 0.0125 0.0025 0.3418 0.000740 0.884 5.0059 0.1 23.3089 0.0076 0.1230 0.95 113.000062 0.72 1.0017 0.Notes : 1. * No 207Pb/206Pb or 207Pb/235U data available as 207Pb peak was not measured 389 273.0071 0.3576 0.6 528 129 530.30 0.100 0.156 0.13 1.0074 0.46 0.35 0.1 21.0127 0.3 185.7 221.000333 0.10 0.3721 0.1 24.10 0.156 0.7 203.528 5.0782 0.5 335.0062 0.0096 0.34 0.63 0.1 12.0844 0.1 20.909 2.1274 0.1142 Pb/ 206 Pb 207 * * * * * * * 0.1198 0.21 120. 3.0131 0.53 0.08 0.14 0.000367 0.4 393.86 0.141 0.170 1.1 4.4 119.0053 ± 1735 1934 1746 1419 1895 1814 1022 1645 1901 2069 1896 1855 880 2012 1972 2019 1049 1991 1951 2080 1971 2039 2178 2042 2081 Pb/ 238 U 206 Uncertainties given at the one s level.3 407.37 0.0124 0.905 5.3429 0.206 0.000158 0.000185 0.3 307 132.1 6.000396 0.127 0.0066 0.1 73.26 1.043 0.30 0.53 1.1109 0.1766 0.1 2.51 133.8 235.3499 0.2 19.6 Grain.0017 0. 0.27 0.61 0.0688 0.1194 0.2907 0.61 1.000040 0.0079 0.35 f206 % 0.1 117.0008 0.806 4. 4.000591 0. 206 f 206 % denotes the percentage of Pb that is com mon Pb.54 0.58 0.1717 0.0093 0.48 1.398 5.1 13.0103 0.11 0.5 83.000228 0.1 150 148.698 * * * * * * * Radiogenic Ratios 207 Pb/ 235 U ± * * * * * * * 0.05 0.3535 0.1165 0.8 232. For % Conc.4 183.93 1.1 166.0020 0.865 5. Summary of SHRIMP U-Pb zircon results for sample RCB2/4 38 36 41 29 45 35 32 40 38 48 60 41 18 50 46 70 36 62 61 59 50 48 61 44 46 1816 1947 1804 1373 1895 1848 981 1783 1890 2066 1905 1925 888 1959 1896 1986 1083 1931 24 20 27 27 33 21 65 25 25 33 35 26 18 36 28 40 35 55 Ages (in Ma) 207 Pb/ 235 ± U ± Pb/ Pb ± Conc.1 11.000538 0.0032 0.1 7.3728 0.02 1.000050 0.7 492.2 137.1 8.78 1.072 1.3677 0. % * * * * * * * 1910 17 91 1962 11 99 1871 26 93 1301 46 109 1895 41 100 1886 16 96 891 199 115 1948 15 85 1877 26 101 2062 38 100 1914 25 99 2000 21 93 908 40 97 1903 45 106 1813 28 109 1953 30 103 1152 65 91 1867 87 107 206 207 144 ..01 0.1148 0.1 3. 2.8 246.469 6.3 123.429 6.166 0.59 0.3250 0.1154 0.0027 0.6 119.0079 0.000067 0.000159 0.25 0.0102 0.2 18.0085 0.0010 0.3 672.2 178.0010 0.1204 0.981 5.61 0.000038 0.1 14.4 162.276 0.2 260.1462 0.000062 0.1 10.08 0.238 0.0094 0.0020 0.0013 0.787 5.61 0.3579 0.9 1191 127.0098 ± 0.7 0.6 119.000315 0.3 0.1172 0.0693 0.000364 0.8 318 1.06 0.1 17.0014 0.628 4.133 0.1 22.17 0.0016 0.2 570. 5.0011 0. 1 41.0110 0.3944 0.1 46.3 403.80 0.34 460.39 328.0096 0.1 40.31 0.3092 0.19 247.1 44.1 233.1 27. 2.29 0.000482 0.9 1466 191.0105 0.000727 0.45 0.97 0.7 327.0100 0.5 76.000526 0.1 28.1 32.2 103.2 577.28 0.37 5.9 675. C orrection for com m on Pb m ade using the m easured For % C onc.3974 0.88 0.3538 0.003623 0.000254 0.2 107.9 125.57 1.3286 0.0089 0.8 0.9 312. % 145 .51 42 416 70 34 154 86 111 40 122 94 148 110 13 128 55 100 250 198 111 100 184 44 201 107 61 0.6 1.2 345.46 0.14 0.000176 0.41 0.0121 0.4 204.000155 0.000359 0.000744 0.1 38.0058 0.3147 0.8 246.3755 0.1 66.000196 0.3702 0.36 1.37 0.42 0.78 188.0200 0.44 0.1 39.5 110.39 0.19 0.5 164 85.4 202 184.39 0.2199 0.001071 0.000039 0.1 35.1 48.1 43.0088 0.24 U Th Th/U P b* (ppm ) (ppm ) (ppm ) Table 5.6 293. 4.48 1.9 168.43 0. spot 134.2 0.44 f 206 % 0.1 45.82 248.7 155.000898 P b/ 206 Pb 204 0.3477 0.3536 0.0081 0.7 0.0166 0. 204 206 Pb/ Pb ratio.9 63.75 0.6 300 746.000245 0.0107 0.0099 0.0095 ± * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiogenic R atios 207 P b/ 235 U ± * * * * * * * * * * * * * * * * * * * * * * * * * P b/ 206 Pb 207 * * * * * * * * * * * * * * * * * * * * * * * * * ± 1924 1764 2161 1947 1711 2431 1737 1953 2200 1952 1831 2055 1730 2840 2024 2030 2013 1815 1957 2143 2157 1282 2049 2857 1966 P b/ 238 U 206 U ncertainties given at the one s level.3566 P b/ 238 U 206 0.3 8.69 0.000136 0.4 327..3548 0.0112 0.4581 0.35 95.0093 0.5536 0.1 29.3253 0.71 1.06 0.3040 0.8 232.N otes : 26.3526 0.3078 0.000226 0.1 42.39 0.3 568.000245 0.1 30.0090 0.4067 0.21 0.1 31.4 40.0073 0.29 0. 5.1 34.62 0.25 0.0116 0.77 0.6 475.27 0.1 47.3983 0.57 0.000374 0.0116 0.75 1.7 279.1 50.0159 0.1 392. 0.2 507.000807 0.0072 0.22 1.28 0.5 0.5576 0.3689 0.3666 0.76 0.000231 0. * N o 207Pb/206Pb or 207Pb/235U data available as 207Pb peak was not m easured 101.000063 0. Sum m ary of SH R IM P U -P b zircon results for sam ple R C B2/4 47 33 54 55 36 71 46 51 48 53 40 47 100 69 53 42 37 36 43 56 41 31 45 60 45 Ages (in M a) 207 Pb/ 235 ± U ± P b/ Pb * * * * * * * * * * * * * * * * * * * * * * * * * 206 207 ± C onc.0145 0. 100% denotes a concordant analysis.7 93.0067 0.9 125.5 156.7 44. 3.1 49.000132 0.60 0.1 G rain.3741 0.61 0.84 0.000241 0.1 33.58 0.16 0.6 110.1 36.8 285.000285 0.1 37. 206 f 206 % denotes the percentage of Pb that is com m on Pb.10 0.000302 0.04 0.0078 0. 50m) at Shituru Mine yielded three xenocrystic zircon grains with U-Pb SHRIMP ages of 1870 ± 15. Another sample (S27-S32) of Mwashya tuff from borehole S1 (depth 104. which consists of massive diamictite with mainly small lithic clasts.. These detrital zircons have ages ranging from Palaeoproterozoic to Neoproterozoic (Table 7. An attempt was made to date zircons from these pyroclastics (sample S11). supported in an argillitic matrix. We dated a suite of detrital zircons from a composite sample of the Grand Conglomerat from the borehole at Kipushi Mine (sample K30-41.70m to 106. are best developed at Shituru Mine near Likasi. Congo (Lefebvre. but they turned out to be entirely xenocrystic. together with larger granitoid clasts up to 15 cm across.Grand Conglomerat At Kipushi Mine. R. 151-207 m). 1974)..Mwashya Subgroup In the Mwashya Subgroup. Nguba Group.b. mainly mafic lapilli tuffs and agglomerates of tholeiitic subalkaline basaltic composition. between 1 and 10 mm. 1047 ± 25 and 983 ± 50 Ma (Table 6). 2003). with ages ranging from 3225 to 1068 Ma (Rainaud et al. the pyroclastics. 146 . and 1025 ± 86 – 822 ± 42 Ma (4 zircons). reflecting inheritance from Palaeoproterozoic and Kibaran rocks. In this horizontal borehole. 138 m of steeply dipping Kakontwe carbonates overlie the >118 m thick Grand Conglomerat. D. 2003). c. the Grand Conglomerat in the Nguba Group is intersected in borehole KHI 1150/34/HZ-S (Tshileo et al. but it was only 88% concordant. Nguba Group. Figure 9). One zircon gave an age of 729 ± 50 Ma. as follows: 1945 ± 15 – 1846 ± 22 Ma (6 zircons). 36 42 55 86 0.83 0. Ages (in Ma) 207 Pb/ 235 ± U ± Pb/ Conc.043 0. Pb ± % 206 207 1020 19 1029 16 1047 25 97 993 18 990 21 983 50 101 1849 29 1859 18 1870 15 99 Pb/ 238 U 206 147 .00006 0.1 3.0060 1.1144 Radiogenic Ratios 207 207 Pb/ Pb/ 235 206 ± U ± Pb 1.755 1.1715 0..108 0.0009 Table 6.00008 Pb/ 206 Pb 204 Pb/ 238 U 206 0. f206 % denotes the percentage of Pb that is common Pb. For % Conc. 4. 164 306 89 Th Th/U Pb* Grain.0017 0.055 0.11 0. 100% denotes a concordant analysis.238 0.1 0.0009 0.0719 0.75 1. Correction for common Pb made using the measured Pb/ Pb ratio.00048 0.1666 0.0033 0. 206 2. U spot (ppm) (ppm) (ppm) ± 0.0034 0. Uncertainties given at the one s level.0742 0. Summary of SHRIMP U-Th-Pb zircon results for sample S27-S32. 204 206 3.1 2.11 0.651 5.218 276 248 Notes : 1.3322 f206 % 0.13 0. 1 2.0734 0. 204 206 3.1 9.0118 0.55 1.04 2.169 0. Pb ± % 206 207 32 21 18 25 26 43 25 39 25 16 1963 773 786 1866 897 1081 1956 1025 1831 757 Ages (in Ma) 207 Pb/ 235 ± U ± 1.1 7.1241 0.000341 0.000381 0.0030 0.0081 0.039 0.1042 Pb/ 238 U 206 0.46 1.93 0.0724 0.1 3. 100% denotes a concordant analysis.96 0.000468 0.1274 0.1178 0.0107 0.57 0.1 11. For % Conc.0013 0.001586 0.178 0.061 0.001748 0.1192 0. Correction for common Pb made using the measured Pb/ Pb ratio.0825 0.213 0.Notes : 1.818 5.000026 0.77 0.146 0.034 Radiogenic Ratios 207 Pb/ 235 ± U ± 0.0636 Pb/ 206 Pb 207 0.900 5.1173 0.3639 0.0016 0.1878 0.1141 0.1 14.045 0.0031 0.16 0.1 5..000150 0.0042 0.25 0.282 1.141 1.21 0.745 5.1* 12. except for * where correction for common Pb 238 206 made using the measured U/ Pb and 207Pb/206Pb ratios following Tera and Wasserburg (1972) as outlined in Compston et al.55 1.0015 ± 2001 754 773 1884 872 1109 1966 920 1799 678 758 1969 1913 639 Pb/ 238 U 206 51 20 18 40 18 44 45 31 41 14 24 44 57 16 - 27 34 18 1949 1915 659 - - 104 91 94 102 91 108 101 73 96 68 1928 25 102 1916 28 100 729 50 88 1923 827 822 1846 960 1025 1945 1258 1866 997 32 50 42 22 71 86 15 84 18 37 Pb/ Conc.1 13.53 0.1109 0.0021 0.65 0.0084 0.3566 0.80 0. Uncertainties given at the one V level. U Th Th/U Pb* spot (ppm) (ppm) (ppm) Table 7.80 0. f206 % denotes the percentage of Pb that is common Pb.0092 0.1 6.0024 0.16 1.1128 0.152 0.0665 0.000141 0.914 0.000036 0.1181 0.1 10.1534 0.16 0.0711 0.72 0.419 1.861 1.0013 0.1 116 187 214 187 953 87 273 94 294 1772 58 145 200 569 1.033 0. Summary of SHRIMP U-Pb zircon results for sample K30-41 148 .0027 5. (1992). 206 2.107 5.1 8.0034 0.3220 0. 4.000090 0.00 0.0025 0.3395 0.103 0.43 0.0018 0. 224 179 140 187 762 46 151 136 296 278 90 149 155 416 Grain.910 1.0014 0.0035 0.000135 0.03 0.000308 Pb/ 206 Pb 204 0.219 0.1448 0.73 61 27 30 77 142 17 107 19 115 188 10 63 80 66 0.37 0.000282 0.0012 0.120 0.168 5.3572 0.06 0.067 1.0056 0.0083 0.3455 0.0016 0.590 0.1 4.0095 0.000101 0.65 1.54 f206 % 0.1248 0.0010 0.23 0.0667 0.0032 0.00 0. Nguba Group.R. Congo. Figure 10). Pb/ U vs Pb/ U concordia plot of ages (Ma) of detrital zircons from a composite sample of the Grand Conglomerat. The results of laser probe spot fusion of seven individual detrital muscovite grains show a range of 40 Ar/39Ar ages between 638.6 ± 4. therefore they were analysed using single-step laser fusion. with one age of 1478. Figure 11). D.1 Ma (Table 8. intersected in borehole KHI 1150/34/HZ-S. These ages range from 1977 ± 11 – 1780 ± 37 Ma (45 zircons) and 1219 ± 113 – 1176 ± 62 Ma (2 zircons). d.9 Ma and 572. 50 detrital zircons from the same sample (KPM3) were dated using U-Pb (SHRIMP). at depths of between 151 and 207 m (sample K30-41).3 ± 3. 149 .8 ± 5.206 238 207 235 Figure 9.9 Ma. The detrital muscovite grains were too tiny to allow for step heating.of these. at Kipushi Mine. using the laser 40 Ar/39Ar technique. 47 ages were <±10% discordant (Table 9. Biano group Detrital muscovites from these red siltstones of the Biano Group near Gombela were dated. Figure 10. R. Congo. 150 . Congo Figure 11. Kundelungu Plateau National Park. D. 206Pb/238U vs 207Pb/235U concordia plot of ages (Ma) of detrital zircons from a red siltstone of the Biano Group (sample KPM3). D. 8 km NE of Gombela. R. Histogram showing 40Ar/39Ar ages of individual detrital muscovite grains from a red siltstone of the Biano Group (sample KPM3). Kundelungu Plateau National Park. 8 km NE of Gombela. 68 0. x10-16mol 40Ar (%) 40 41.45 38.081 0.40 38.18 123.197 0. Errors are reported as 1V uncertainties.5E-4.010249 ± 0.35 0.018 0.0008 0. 36 37 39 37 40 39 40 3.9 ± 151 .94 39. ( Ar/ Ar)Ca = 7.073 0. Table 8.48 0.076 0. All data are corrected for mass spectrometer backgrounds.2 600.0015 0.38 0.76 Ar/39Ar 40 0.160 0.00 99.0019 0.6 582.26 Ar*/39Ar 1.02 98.0006 ± 0.060 0.45 97. No.000031 2.235 1.5 1478.0011 0. 40 Grain Step No.224 0.58 98.6 601.67 98.0012 0.018 0.400 0. Ca/K conversion factor = 1.600 1.00 41. Correction factors: ( Ar/ Ar)Ca = 3.8 596.027 ± Ar/39Ar 0.54 37.27 ± 638.55 124.039 0.058.00 1.0006 0.139 0.890 99.185 0. O K = 5. 39 Ar Ar/39Ar Laser Probe Analytical Results for Single Detrital Muscovite Grains from Sample KPM3.0028 0.057 0.42 36.9 9.36 0.89 38.081 0.00 1.39 0. Weighted average of J from standards = 0.034 0.009 0.0015 36 0.406 2.032 Ar/39Ar 0.0019 0.19 ± 37 0.153 0.Fusion Fusion Fusion Fusion Fusion Fusion 2 3 4 5 6 7 1.9 Age (Ma) 3.0016 0.00 1.00 1.9 4.0005 0.9.00 1.4 5.86E-4.51 0.23 0.00 1.098 0.061 Ca/K 0.82 36.27 0. 2.109 0.051 ± 2.35 0.114 0.0003 0.0005 0. ( Ar/ Ar)K = 0.1 3. Errors associated with the ages include the 1V uncertainty in the J-value.775 1.3 572.36 0.925 1.69 Vol 39Ar Rad.19 39.27 0.543E-10 Fusion 1 Cum.020 0. 0.084 0.1 5.76 99.42 37.276 0.0 5.103 0.59 38. mass discrimination and radioactive decay. line blanks. 0153 0.29 0.103 1.119 1.141 0.777 6.000112 0.000781 0.523 0.1 6.201 0.0066 0.3533 0.0098 0.25 0.579 1.060 0.961 5.0037 0.3281 0.126 0.54 0.0016 0.1 5.449 5.3498 0.1 20.165 1.2131 0.598 5.1147 0.25 0. 100% denotes a concordant analysis.1 18.176 0.1162 0.314 0.0082 0.0075 0.1 4.46 0.847 1.000164 0.191 1.3530 0.585 5.011 3.0013 0.1115 0.1244 0.1 19.1 22.001540 0.194 0.0043 0.412 1.1132 0.878 1.1 16.1165 0.853 5.211 0.0027 0.3324 0.1127 0.0809 0.3815 0.1129 0.145 1.1116 0.000082 0.0018 0.0013 0.41 0.549 5.156 0.513 4.51 0.000128 0.000189 0.3569 0.1 25.0017 0.000275 0.363 5.0053 0.0109 0.20 0.81 0. 125 102 56 92 79 97 72 99 136 104 109 118 31 104 44 53 86 41 36 29 117 65 111 81 0.196 0.0023 0.1150 0.000508 0.326 5.1 2.0024 0. Summary of SHRIMP U-Pb zircon results for sample KPM3 0.1093 0.1089 0.0029 0.1146 0. 3. 1.0257 0.1115 0.214 5.1 8.3088 0.001038 0.19 2.3459 Pb/ 238 U 206 0.0094 0.1 11.1 14.0016 0.97 0.175 0.184 0.1 13.019 2.0127 0.13 0.0070 0.000 5.1107 0. 4.0015 0.76 0.1 3.1088 Pb/ 206 Pb 207 Uncertainties given at the one V level.0022 0.000187 0.159 0.279 0.1 7.1 12.1149 0..56 1.3564 0.1 21.000318 0.297 0. % 1880 20 104 1899 25 97 1812 30 109 1843 43 106 1851 26 109 1874 27 104 1886 25 105 1689 41 45 1865 24 112 1824 30 108 1847 24 106 1788 63 101 1874 156 100 1904 37 91 1825 89 104 1884 84 97 1825 72 104 1809 39 103 1782 38 104 1219 113 102 1873 20 101 1881 36 103 1878 18 98 1780 37 108 206 207 152 .1153 0.1 263 235 130 192 179 195 141 575 338 236 265 299 73 295 106 137 205 105 90 79 276 156 255 166 Pb/ 206 Pb Grain.709 1.29 0.0023 0.1106 0.0022 ± 25 26 36 33 30 32 30 22 27 29 67 37 88 24 52 50 46 27 35 48 20 27 21 29 Ages (in Ma) 207 Pb/ 235 ± U ± 1949 42 1916 1850 40 1873 1967 61 1893 1961 46 1904 2025 50 1941 1950 52 1914 1977 51 1933 756 16 1037 2083 46 1976 1965 47 1897 1954 124 1903 1799 37 1794 1864 74 1869 1735 27 1813 1890 51 1859 1829 47 1855 1904 52 1866 1860 35 1836 1858 54 1823 1245 33 1236 1884 32 1879 1934 37 1908 1847 34 1861 1915 39 1851 Pb/ 238 U 206 Pb/ Pb ± Conc.158 0.190 0.887 1.037 0.0097 0.Notes : 1.000477 0.223 0.000746 0.3317 0.3345 0.000622 0.597 1.001588 0.479 5.694 1.0023 0.1 9.21 0.1 10.0016 0.172 Radiogenic Ratios 207 Pb/ 235 U ± 0.0045 0.042 0.3589 0.000505 0.205 0.000267 0.182 0.38 0.239 5.75 f206 % 0.000164 0.0107 0.899 1.66 0.899 1.3341 0.17 2. 206 f206 % denotes the percentage of Pb that is common Pb.373 1.0110 0.3555 0.174 0.917 1.211 0. U Th Th/U Pb* (ppm) spot (ppm)(ppm) 204 Table 9. For % Conc.0052 0.78 0.1 24.377 5.300 4.44 1.000302 0.253 5.0106 0.0077 0.99 1. 2.1141 0.3691 0.3353 0.0063 0.000129 0.127 0.0015 0.0018 0.000469 420 323 143 304 200 369 267 596 139 277 225 348 86 265 111 121 265 96 91 293 329 179 398 327 1.0054 0.1146 0.72 0.36 0.415 0.3220 0.0108 0.3435 0.0098 0.25 1.0088 0.294 0.523 5.0096 0.162 0.760 5.000236 0.3540 0.0071 0.100 5.1036 0.1150 0.1 23.000451 0.3395 0. 204 206 Correction for common Pb made using the measured Pb/ Pb ratio.283 5.3407 0.1 15.1154 0.0110 0.0082 ± 5.0011 0. 160 0.1142 0.0096 0.3749 0.0105 0.000203 0.13 0.0019 0.1 49.206 0.0111 0. 3.738 5.047 1.24 1.0121 0.1214 0. 4.1 46.137 0.620 5.197 0.1155 0.0015 0.147 6.0121 0.1136 0.342 5.1 45. U Th Th/U Pb* (ppm) spot (ppm)(ppm) Table 9.1 47.000081 0.1119 0.127 0.166 2.1 38.3279 0. For % Conc.0014 0.0029 0.521 5.186 0.1 48.1109 0.141 0.0069 0.28 0.209 0.32 0.1968 0.1 30.276 0.0018 0.18 1.000229 0.0064 0.015 5.0018 0.0008 0.20 1.387 0.1 42.3466 Pb/ 238 U 206 0.1138 0.1146 0.148 5.1134 0.1 31.000185 0. 238 175 185 206 192 162 328 279 134 65 221 247 117 142 136 153 211 325 105 195 312 249 156 26 120 Grain. 204 206 Correction for common Pb made using the measured Pb/ Pb ratio.1 43.1149 0.02 0.000108 0. % 1883 26 99 1830 37 100 1844 41 99 1888 23 104 1814 29 108 1830 31 106 1849 24 106 1916 18 102 1867 29 105 1803 49 113 1861 25 105 1854 28 99 1977 11 104 463 118 144 1874 26 107 1878 29 102 1861 28 106 1888 22 94 1858 29 105 1892 20 101 1858 14 101 1864 17 101 1888 19 96 1176 62 99 1900 23 101 206 207 153 .3541 0.1 182 142 177 148 225 149 349 233 126 68 211 235 415 329 128 121 170 275 97 110 277 272 143 64 93 1.3631 0.558 0.1091 0.000062 0.0089 0.1136 0.06 0.29 75 57 68 68 91 63 143 104 55 30 90 95 161 37 57 53 76 112 42 53 116 110 57 13 41 0.000010 0.3549 0.1138 0.3460 0.41 1.17 0.1152 0.1 35.28 0.143 0.144 0.0012 0.533 5.0089 0.20 0.06 0.1 41.414 5.000033 0.000136 0.3149 0.085 0.1158 0.226 1.142 0.1 50.3394 0.43 1.3338 0.000038 0.728 5.96 1.0018 0.157 0.691 5.02 f206 % 0.0015 0.0080 0.21 0.0072 0.000376 0.0093 0.3572 0.1 28.000001 0.000058 0..3563 0.0025 0.308 1.3261 0.059 5.32 0.3448 0.3292 0.0018 0.139 0.0068 0. 100% denotes a concordant analysis.000113 0.0133 0.07 1.3519 0.000174 0.0792 0.0009 0.645 5.589 5.1 29.000034 0.0017 0.1 37.1 36.0099 0.1 27.1 34.0078 0.10 0.138 0.0131 ± 5.3398 0.Notes : 26.1 40.3525 0.192 0.0013 0.000202 0.000108 0.0018 0.303 5.13 0.0023 0.000010 Pb/ 206 Pb 204 0.05 0.317 5.77 1.846 5.187 0.3244 0.17 0.17 0.11 0.1 32.1173 0.229 Radiogenic Ratios 207 Pb/ 235 U ± 0.02 0.052 0.160 0. 206 f206 % denotes the percentage of Pb that is common Pb.1155 0.169 0.0102 0.460 5.0012 0.1102 0.0015 ± 1857 1828 1819 1969 1954 1938 1958 1954 1968 2036 1944 1835 2052 667 1997 1910 1965 1765 1947 1916 1884 1886 1811 1158 1918 Pb/ 238 U 206 35 45 38 32 32 31 33 44 53 57 44 40 42 17 63 51 47 36 49 58 46 39 43 50 63 1869 1829 1831 1930 1887 1886 1906 1936 1919 1923 1904 1844 2015 623 1937 1894 1914 1822 1904 1904 1872 1876 1847 1164 1910 24 32 30 21 23 23 21 26 32 39 27 27 22 29 36 31 29 24 30 33 26 23 26 42 36 Ages (in Ma) 207 Pb/ 235 ± U ± Pb/ Pb ± Conc.56 0.0024 0.09 0.000351 0.167 0.0074 0.000105 0.1119 0.1131 0.0018 0.1 39.000122 0.0011 0.27 1.0093 0.09 0.000073 0.235 0.250 0.08 1.1155 0.1140 0.00 0.000498 0. 2.0083 0.523 5.1 33.1127 0.05 1.175 0.05 0.1163 Pb/ 206 Pb 207 Uncertainties given at the one V level.1 44.17 0.0563 0.37 0. 1. Summary of SHRIMP U-Pb zircon results for sample KPM3 0.0017 0.069 5.0030 0.29 0.521 5.0015 0.0091 0.87 0.0067 0.91 1.3507 0.409 5.853 1.0029 0.3571 0.3715 0.0092 0.94 1.000010 0.3542 0.58 0.159 0.05 0. 2 Ga) ages.. 1984). 1300 to 900 Ma). This indicates that the Roan sediments were not derived from the same sources as the Muva quartzites (which are interpreted to have formed as a molasse to the Kibaran orogeny. 2. The age spectrum of detrital zircons from the Lower Roan Subgroup does not show any older Palaeoproterozoic to Mesoarchaean (c. 1999) and the Nchanga Granite.. thus the Archaean and early Palaeoproterozoic rocks of the Congo Craton may not have outcropped to provide detritus into the Katangan basin. which provided the bulk of the detritus for the Roan sediments. possibly derived from the Kibaran Belt (Cahen et al. Discussion a. The ages of detrital zircons from the Lower Roan sediments indicate that their source region consisted mainly of Palaeoproterozoic rocks dated between 1790 and 2081 Ma (derived from the Palaeoproterozoic Lufubu Metamorphic Complex and Bangweulu Block magmatic arc terrane. which is older than 950 Ma (Cahen et al. Tack et al. 2004). deriving components from the Congo Craton.. 2003). Rainaud et al. The Muva sedimentary rocks in the Copperbelt region must have been present only as a thin veneer over the Palaeoproterozoic magmatic arc rocks of the Lufubu Metamorphic Complex. 1961. with minor contributions from some younger Mesoproterozoic to early Neoproterozoic rocks (c. 154 . The lack of recycled detrital Archaean and older Palaeoproterozoic zircons derived from the Muva sedimentary rocks also indicates the relative unimportance of the Muva quartzites in the provenance of the Roan sediments. 1970). 1984.6.2 to 3.. At the time of Roan sedimentation. 1999. Rainaud et al.. the Congo Craton west of the Kibaran belt was covered by the Mbuji-Mayi (Bushimay) succession (Raucq. Lower Roan Subgroup Deposition of the Katanga Supergroup started at some time after 880 Ma. 2004).. Quartzite pebbles and boulders in the Roan-Muliashi Basin (Lee-Potter. such as those obtained from detrital zircons in the Muva quartzite south of Mufulira (Rainaud et al. 1993) may have been derived from erosion of the thin veneer of Muva quartzites. 1961) and Nchanga (McKinnon and Smit. be noted that the composition of the clasts in the Grand Conglomerat at Kipushi is different from the usual assemblage of clasts found in the Grand Conglomerat elsewhere within the Lufilian Arc. Porada. S of Luiswishi (Cailteux et al. such as those in the Lufubu Metamorphic Complex (Rainaud et al. occurring together with less abundant clasts of granitic and basic rocks (François. 2003) confirm the presence of abundant rounded and faceted quartzite clasts in the Grand Conglomerat in these areas. the relative sparsity of quartzite pebbles in the Roan sediments indicates that the source region. which have a clast population dominated by quartzites (see below). b. 1978). 155 . The presence of abundant monocrystalline euhedral to subhedral quartz crystals. This would be consistent with active faulting in the provenance area. 2004).. formerly covered by a veneer of Muva quartzite.. Jordaan. 1989. together with some polycrystalline quartzite clasts recorded from Lower Roan aeolian quartzites at Musoshi Mine (Master.. Master. exposing the Palaeoproterozoic basement which dominated the sediment supply. 1999). Nguba Group. 1961.Grand Conglomerat Formation The petrography of the Grand Conglomerat at Kipushi indicates that it contains numerous clasts derived from a mixed plutonic (granitic and amphibolitic) and metavolcanic (quartz porphyry schist) terrain. 2003b). Tembo et al. Recent observations by the senior author from outcrops at Shituru (Ngoie. which is dominated by the presence of quartzite pebbles derived from the Kibaran Belt or from the Muva Supergroup.. 1973. indicates an origin from metamorphosed volcanic quartz porphyries. It should. the Chambishi-Nkana Basin (Garlick.g. 2003). 1961b). By comparison with the diamictites of the Grand Conglomerat. some attached to crenulated biotite schist. 1961). Cahen. however. 1993. NW of Kakanda and SE of Fungurume (Mbuyi. and supports models for the deposition of the Roan Group in an active continental rift (e.Mendelsohn. had been uplifted and eroded. 1993).. up to 2. One of these clasts is a white porphyritic granitoid. It is also possible that the porphyritic granitoids found in the Grand Conglomerat of the Kipushi district may have been derived from some unknown porphyritic intrusions. Leon de Jonghe. was intersected in the Grand Conglomerat at a depth of 194. In borehole KHI 1150/34/HZ-S at Kipushi Mine. from the Luina Dome towards Kipushi. close to the Zambian Border (Gysin. 1935.75 m. 1993).In glacial tillites. 156 . 2003) would yield a glacial transport vector for the Grand Conglomerat trending roughly 150 km west-southwesterly from the Luina Dome. The Grand Conglomerat intersected by surface borehole CK73 drilled in Zambia close to Kipushi Mine contains exotic granitic clasts.. (Figure 12) The distinctive feldspar-porphyritic granitoid clasts in the Grand Conglomerat of the Kipushi district are thus glacial indicators. which are now buried under the thick pile of Katangan thrust sheets. comm. pers. distinctive clasts whose origin is pinpointed exactly are known as glacial indicators (Norman Smith. containing large (up to 1 cm long) white euhedral feldspar phenocrysts. comm. 1998). 150 km maximum northward translation of the strata at Kipushi during the thrusting of the Lufilian Orogeny (Jackson et al. pers. Restoring the ca. 1933. similar in composition and age to the intrusions of the Luina Dome. pers... but farther to the west. but is known to outcrop on the Luina Dome in the Democratic Republic of Congo.3 cm long. a 15 cm long boulder of a porphyritic biotitic granitoid with large white euhedral feldspar phenocrysts. comm. and point to apparent west-northwesterly glacial transport for a distance of about 100 km. This granitoid variety is completely unknown on the Copperbelt in Zambia (Pier Binda. In the present study. since pebbles derived from the 157 . R. just as they were during Roan Group deposition. or the younger Lufubu Schists from Kinsenda Mine on the flanks of the Luina Dome (which have an age of 1873 ± 8 Ma. as well as distinctive porphyritic granite and metavolcanic quartz porphyry clasts. Rainaud et al. Photograph of a feldspar-porphyritic granitoid clast in the Grand Conglomerat from Kipushi Mine. These granitoids from the Luina Dome. The ages of zircons from the Grand Conglomerat at Kipushi indicate a provenance from the Palaeoproterozoic Ubendian basement. D. at the northern end of the Kafue Anticline. Congo. Thus the age of detrital zircons. and gives an imprecise age of 729 ± 50 Ma. the Palaeoproterozoic rocks around the Luina Dome. the youngest zircon is only 88% concordant. 2004). could be the source of the detrital zircons in the Grand Conglomerat having ages of 1846 ± 22 Ma and 1866 ± 18 Ma. indicate that the Grand Conglomerat near Kipushi had a source region near the Luina Dome. in a restored pre-tectonic position about 150 to the ENE..Figure 12. This is consistent with the age of the Grand Conglomerat being less than 760 ± 5 Ma (see above). The age of the youngest detrital zircon would set an upper limit for the age of the Grand Conglomerat. 1991). This indicates that during deposition of the Grand Conglomerat.. Porphyritic granitoids of the Luina Dome have been dated at 1882 +23/-19 Ma (Ngoyi et al. as well as from Kibaran granite sources and Neoprotrozoic sources. were exposed on the surface as a basement high. seem to be absent from the Kipushi diamictites. 2002). the quartzite pebbles that are so abundant in the Grand Conglomerat regionally. Armstrong et al.2 Ga to 3. Because the Grand Conglomerat from Kipushi appears to have a different clast population from the rest of the Grand Conglomerat outcrops in the Lufilian arc. 158 . 1988. 2. the 880 Ma Nchanga Granite... Kinsenda and Konkola mines. 1994). 2004).. 2003).. or the c.g. which have ages ranging down to 1 Ga (Cahen et al. or the 820 ± 7 Ma Ngoma gneiss (Hanson et al. and from granites associated with a phase of magmatic activity preceding Katangan deposition (e. and did not originate entirely as an anticlinal fold above a basement-involved frontal ramp during thick-skinned thrusting associated with the Lufilian Orogeny. as was proposed by Daly et al.Luina and Konkola Domes are abundant in Lower Roan conglomerates at Musoshi. then older recycled zircons derived from these quartzites will be found. For example. The younger group of detrital zircons. 1978). of late Mesoproterozoic to Neoproterozoic age could be derived from granitoids of the Kibaran Belt. the ages of detrital zircons from the Kipushi area may not be fully representative of the provenance.. Sedimentological evidence thus indicates that the Kafue Anticline was a basement high during both Roan and Nguba (ex-Lower Kundelungu) Group deposition.2 Ga) which are present in Muva quartzite from the Zambian Copperbelt (Rainaud et al. Kokonyangi et al. Thus we suspect that if a similar study of detrital zircons were undertaken on samples of the Grand Conglomerat where it is typically dominated by quartzite clasts.. 2004). (1984).. 843 Ma Lusaka Granite (Barr et al. 1984.. The oldest Palaeoproterozoic detrital zircon age of 1945 ± 15 Ma from the Grand Conglomerat could be derived from units similar to the Samba Porphyry and associated metavolcanics. which have an age of 1964 ± 12 Ma (Rainaud et al. and so are any recycled older Palaeoproterozoic to Archaean zircons (c. Idaho. chert. carbonate. diamictites in the Gariep and Saldania Belts. 750 to c. taken from borehole KHI 1150PVSSW.1 m thick. and the Gubrah Member in Oman (Fanning and Link. 2002) and the ca. the stratigraphic position of the younger volcanic unit is in doubt. The clasts consist of quartz (both mono. These clasts are mainly of intrabasinal derivation. Thus the Grand Conglomerat can only definitely be given a maximum age of 760 ± 5 Ma. Evans. shale.. Here the Petit Conglomerat is 24. South Africa (Fölling & Frimmel. then they are all probably around 710 Ma in age. This allows only a broad correlation of the Grand Conglomerat with other Neoproterozoic glacial diamictite units such as the Chuos diamictite in the Damara Orogen.and polycrystalline). South Australia (Kaufman et al. (2001). Kundelungu Group. If these various Neoproterozoic glaciations are part of a global “snowball earth” Sturtian glaciation. and consists of a fine-grained biotitic siltstone with a few scattered clasts. they may also be diachronous. with some contribution from basement granitoids (orthoclase). spanning about 50 Ma from c. c. 700 Ma (Fanning and Link. similar to acritarchs described from Kundelundu beds by Hacquaert (1931a. which is the age of two accurately dated Sturtian glacial diamictites. indicates that the rock was deposited in glaciomarine conditions.Petit Conglomerat Formation Our petrographic studies of the Petit Conglomerat are confined to samples from Kipushi Mine.00 m. ranging up to a maximum size of 5 mm. 750-700 Ma Sturtian diamictites of the Adelaidean Supergroup. This fine-grained gritty siltstone facies of the Petit Conglomerat is a further indication of the general southward decrease in 159 . Namibia (Hoffmann & Prave. However. 2003. Hoffman et al. 1996). and altered orthoclase.21 and 75. the ages of the volcanic units in the Nguba Group bracket the age of the Grand Conglomerat between 760 ± 5 and 735 ± 5 Ma. as noted above. the Scout Mountain Member of the Pocatello Formation. 2003).According to Key et al. The presence in this rock of acritarchs (of planktonic origin). 2000).c) and Choubert (1932). However.b.5 mm across. rather than in a continental moraine. at depths between 55. 2004).. 1997. about 0. just north of Lake Mweru. and rare clasts of gneiss. 1935) of varied compositions: quartz. Cahen (1978) distinguished two facies in the Petit Conglomerat: a southern diamictite facies with small (<2 cm) clasts. 7°55’-8°10’S). among these. which contains much larger and more abundant pebbles in the north (Cahen. and c. granites. rhyolites. 1959. Recent petrographic and geochemical studies on the Petit Conglomerat and other sedimentary rocks of the Nguba Group (Batumike et al.pebble size that has been recorded in the Petit Conglomerat.these include quartzite. siliceous oolites. and is only bracketed between 735 ± 5 Ma. 620 Ma. and a northern mixed diamictite and conglomerate facies. 1978).. quartzites and metaconglomerates from the Mporokoso Group (Andersen and Unrug. alaskites from Kapulo (André. and from the Kibambale volcanic complex to the north (Dumont and Cahen. and a derivation from the Kibaran Belt and Bangweulu Block to the northwest and northeast of the Katangan basin. sandstones and shales. where it is also a lot thicker (up to 80 m in the Lukafu area. and pisolitic black cherts (Andre. 1971. 1978). 2002. 1987). In the Kapulo area of NE Katanga (28°40’-29°40’E. Thieme. amygdaloidal lavas. 2002). many faceted and striated clasts were observed (Grosemans. In this case... the age of the Petit Conglomerat is not yet well constrained. Cahen. the age of uraninites from veins in thrust zones that 160 . Batumike et al. 1984). basic rocks. alaskites. rhyolite. 2001). 1935. mica schists.. agates. Vanden Brande. a distinctive and heterogeneous suite of clast types (up to a maximum diameter of 30 cm) have been recorded from the Petit Conglomerat diamictite. 1976. Vanden Brande. 2003) support the north-south facies variations. Kabengele et al. porphyries. 1936. Many of the clasts originated from the adjacent Kibaran Belt to the northeast. 1978). From the available radiometric data. 1976). 1936). metaconglomerates. the clasts are clearly derived from the adjacent Bangweulu Block to the east: rhyolites and porphyries from the Marungu or Luapula porphyries (Abraham. quartzites. the age of volcanics in the West Lunga Formation in the Nguba Group (Liyungu et al. with large clasts (up to 1 m granite clasts described by Grosemans. as well as from the forebulge surrounding the foreland basin (the Bangweulu Block). the Calcaire Rose. may be correlated with the Ghaub diamictite and Rasthof cap carbonate in the Otavi Group of the Damara Orogen. The younger ages (1219 ± 113 and 1176 ± 62 Ma) overlap with the 1134 ± 8 Ma age of the Lusenga hornblende syenite.. 2003a). Biano Group Detrital muscovites from the red siltstones of the Biano Group show a spread of laser 40 Ar/39Ar ages over 900 Ma (between 1478 and 573 Ma) indicating that these muscovite grains have not been reset since sedimentation. The Petit Conglomerat and its overlying cap carbonate. rather than the earlier models which regarded it as having been deposited in an aulacogen (e. The Biano Group thus appears to have been derived from a source terrain comprising the Bangweulu Block (consistent with the measured palaeocurrent directions). Thus these sediments are likely to have been deposited in a foreland basin ahead of the Lufilian orogenic front. having been derived from erosion of the orogen itself. Porada. Wendorff. but that they retain the primary ages derived from their parent rocks.. 2004). 1989).2 Ma (Hoffman et al. Namibia. 1973).g. 1979. which intrudes the Mporokoso Group on the Bangweulu Block (Brewer et al. 1991.. 1979.g. d. 1984). 2002b. 2001a. and from a terrain (the Lufilian arc) which had undergone metamorphism from 638 to 573 Ma. The older ages (1977 ± 11 – 1780 ± 37 Ma) span the age range of magmatic arc rocks of the Bangweulu Block. Rainaud et al.. 2004).. and this timing strongly supports models which regard the Biano Group as being deposited in a foreland basin to the Pan-African Lufilian orogeny (e. 161 . which are thus constrained to be terminal Neoproterozoic and/or early Palaeozoic in age. including the basement in the Copperbelt (Brewer et al.affect the Katangan stratigraphy to the top of the Kundelungu Group (Cahen. which are dated at 635.5 ± 1. Ngoyi et al.. Furthermore. the Biano Group has two main ages of detrital zircons. The youngest detrital muscovite age of 573 ± 5 Ma is regarded as the maximum age for the sediments of the Biano Group. Andersen & Unrug.b.. derived from the Metamorphic Lufubu Complex of the Kafue Anticline and the Bangweulu Block to the north of the outcrop belt. indicate the relative unimportance of the Muva quartzites in the provenance of the Roan Group. The relative scarcity of Muva quartzite clasts. as well as. which were derived either from the Kibaran Belt. Conclusions The new SHRIMP U-Pb data on the ages of detrital zircons from sedimentary rocks of the Neoproterozoic Katanga Supergroup. The size distribution and nature of clasts in the Petit Conglomerat indicate a north-to-south transport direction.2 Ga older Palaeoproterozoic and Archaean recycled zircons (that are known to be abundant in the Muva). give information on the age and likely nature of the source regions for the Katangan sediments and provide age constraints on upper Katangan (Biano Group) sedimentation. or from a cover of Muva Supergroup rocks to the north of the Katangan depository. Minor zircons of Mesoproterozoic age may have been derived from granitoids of the Kibaran belt. which was a basement high during Nguba Group deposition. Detrital zircon ages indicate a mainly Palaeoproterozoic (between 2081 ± 28 and 1836 ± 26 Ma) provenance for the Katanga basin. Elsewhere in the Lufilian Arc. 162 . more locally. and the preliminary 40 Ar-39Ar data on detrital muscovites from the uppermost Katangan beds. Detrital zircons and clasts from the Grand Conglomerat glacial diamictite in the Kipushi area indicate a source from the Palaeoproterozoic metavolcanic porphyries and granitoids of the Luina Dome region. from the Nchanga Granite. as well as the total absence of any >2. which was derived mainly from a block-faulted Palaeoproterozoic basement region from which a relatively thin veneer of Muva quartzites had been stripped away by erosion.7. the Grand Conglomerat contains abundant quartzite clasts. near the western end of the Kafue Anticline. Detrital zircons and clasts from Roan Group sediments indicate a source from the Palaeoproterozoic granitoids of the Kafue Anticline. corresponding to the diminution in size and abundance of extrabasinal clasts (derived from the Kibaran Belt and the Bangweulu Block). strongly supporting previous models that the Biano Group was deposited in a foreland basin of the Lufilian Orogen. The ages of detrital zircons in the Biano Group indicate a provenance from the basement plutonic granitoids. K. L. Andersen. of the Bangweulu Block. 8. D. Geodynamic evolution of the Bangweulu Block.. 40 Ar/39Ar age data from detrital muscovites from Biano Group siltstones give a maximum age of sedimentation of 573 ± 5 Ma.A. Congo) for access to drillcore. 152 pp. northern Zambia. R. 25. The stratigraphical and structural relationship of the Kundelungu System. (1959). (1984). Gécamines and SODIMICO (D. R. Finally. Univ. as well as from younger intrusive complexes. Leeds. 187-212. Phil. Thesis. which were exposed in the forebulge flanking the Katangan foreland basin. M. SM is grateful to Prof. D.S.. References Abraham. ACKNOWLEDGEMENTS We are grateful to Anglovaal (Zambia) and Claus Schlegel for supporting this study and for permission to publish this data. Precambrian Res. 163 . We thank ZCCM and KCM (Zambia). Prof. Eriksson is thanked for a thorough and helpful review of this paper. Unrug. Plateau Series and basement rocks in the MidLuapula valley. Kabengele and Flungu Musendu for logistical support on the Kundelungu Plateau. Northern Rhodesia. . A.J. Unpubl. granulites and volcanic samples from Zambia.B.P. Etude aérophotomorphologiques et pétrographique du Katangien de la mosaïque contrôlée de Kapulo au Shaba. Roser. M. Lubumbashi. D. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. M. L. ANU. In: Contributions 164 . M.A. Armstrong. Batumike. D. M.. Libre de Bruxelles. Batumike. 75-77.H. (2004).A. Canberra.W.C. In: Contributions presented at the 3rd IGCP-450 Conference. B.B. Cailteux. Rep. CD-ROM.W.J.André. Armstrong. J. J. (1978). Robb.. (this issue). Kampunzu. geochemistry and age of gabbroic bodies in the Solwezi area. Geochronology of syntectonic granites from central Zambia: Lusaka Granite and granite NE of Rufunsa. (2002). (1976).W. Geochemical investigations of Nguba and kundelungu Groups. Armstrong. (2003). Belgique. Master. Mémoire de licence. Ann. Namibia. Earth Sci.... Cahen. Hitzman.. L.. 11th Quadrennial IAGOD Symposium and Geocongress 2002. Univ. J. Soc.. Ion microprobe (SHRIMP) dating of zircons from granites. northwestern Zambia. (2000).L. Nguba and Kundelungu Groups. A99-160. Conference and Field Workshop Lubumbashi 2003.... L. Katangan Belt (Congo): Lithostratigraphy and petrography. S. géol. Barron. (2003). R. Zambian Copperbelt.. R.H. Cailteux.J. 100. A. Petrology.W. Lobo-Guerrero.. Extended Abstracts. J.A.. R.R. 47-54.L. Broughton. Barr. Ledent. and constraints on the maximum age of the Katanga Supergroup. 22-26 July 2002. Belg. Congo. PRISE Job No. D. A. Windhoek. Afr. Geochronology of the Nchanga Granite. Kampunzu. Katangan Supergroup (Congo): Provenance and tectonic setting. L. Binda. On the age and petrogenesis of the microcline-bearing pegmatite veins at Roan Antelope and at Musoshi 165 . Delhal.E. géol. Arnold. (1998). M.. Minér. (1970).S. Soc. Zambia. Les mixtites anté-cambriennes de l'est du Zaïre: Mise au point intérimaire. Cahen. Cahen. Evans. Zambia. 734 pp. Glaciations anciennes et dérive des continents. Montreal. (1963). Binda.a. Rapp.L. 24th Int.. mise au point. Precambrian Geology. Brewer.. Report 79/5. (1979).. centr. D. D. Afr. 1972.. D. post-date tout le Katangien. 1-11. Haslam.A.presented at the 3rd IGCP-450 Conference. Géol.. Benn. 151-168. P. London. P. Zambia. L. Paleogeogr. Conference and Field Workshop Lubumbashi 2003... J. Dept.. Cahen. 12. Mus. centr. Rapp. Congo. London.. roy. Congr. (1972). van Eden.F.L.G. Belg. Lubumbashi. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite). Dépt.I. 179-186.. Tervuren. Institute of Geological Sciences. J. Geol. D.P. Mus. Paleoclimatol.J. Sect.W.. Ledent.R. Glaciers & Glaciation. (1974). Ann. D.. Rb-Sr age determinations in the Bangweulu Block. L. Ann. Paleoecol. L'uraninite de 620 m. 89-93. 35-38. L. 33-64. (1973). H. Darbyshire. Davis.. A. Afr. 86(1). (1978). 1. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. Zircons of the Nchanga Granite and overlying metasediments. roy. 1977. Luapula Province. B19-B84. Cahen. Géol. Ann. Min. L. (2003). A.. Binda. (2003b). Lubumbashi. J. (2003a). IGCP No. Cailteux. The Luiswishi stratiform Cu-Co deposit and geological context.. Clarendon Press. J..(Copperbelt of Zambia and S-E Katanga). Mus. D.J.B. Vail. Kapenda. R. M. Sci. Lubumbashi. J. In: Contributions presented at the 3rd IGCP-450 Conference. (1994). Batumike.L..T.B. Lithostratigraphy of the Mwashya Subgroup in Congo (Central African Copperbelt). Lubala... Cailteux. Conference and Field Workshop Lubumbashi 2003.L. Mazau. Katekesha. Cailteux.. Comment from the Organizer. D. Lubumbashi. Kampunzu. J. Ngongo.M. K.R. N..L. 204-205. Ledent. Cailteux. J. J. Zaire and Namibia (Special Issue). Bonhomme. F. W. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. in the Central African copper-cobalt metallogenic province.... P. Cahen. J.. D. with special reference to the Luiswishi area. Tshiauka. Earth Sci. 19(4). Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. Oxford.. 65. 83-87. 450.B.). Ann. Ngoie Bwanga.. Conference and Field Workshop Lubumbashi 2003. 207-209. Lithostratigraphical correlation of the Neoproterozoic Roan Supergroup from Shaba (Zaire) and Zambia. 265-278. In: Kampunzu. Conference and Field Workshop Lubumbashi 2003. Centr.R. IGCP No. 512 pp. Kaunda. In: Guide-Book to the Field Trip.H. Delhal. Wendorff.H.M. J. D... J. (1984). Kampunzu.L. (Eds. Intiomale.R. R.. 166 .. Afr. A.. Kankomba. A. 43-68. roy. D. Snelling. C. 450. In: Guide-Book to the Field Trip. The Geochronology and Evolution of Africa.. Congo. géol.. T. M.. M. Congo. Afr. Neoproterozoic belts of Zambia. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana.R.. Congo.H. W. The Lufilian arc and Irumide belt of Zambia: results of a traverse across their intersection. Compston.K.. Fanning.A. Roy. Claoué-Long. September 2003.. J.. Paléontologie et Hydrogéologie.D. Mus.. (1995). M. (1978). Geological Society of America Abstracts with Programs... Les complexes conglomératique de la bordure sud-orientale de la chaïne kibarienne et leurs relations avec les couches katangiennes de l’arc lufilien. O. Afr.. American Journal of Science.P. 347-433. and paleomagnetic constraints upon the Neoproterozoic climatic paradox.K. J. M. Namateba.. 1977. 33(6). A. Link. Naidu. Kasolo.. Musiwa. geochronological. SEPM Special Publication. C. Fanning.. W. Afr. C.. D. Ng'ambi.M. 167 . Min. P. Stratigraphic. Kent. J.Choubert. 311-318. B. C. V. Dépt. Hardenbol. (2003).. Bulletin de la Société Belge de Géologie.C.. P. P. Aubry. 389. L. Evans. Ann. 54. M. Roberts. Mumba. 111-135. 4. (1932). Nouvelles recherches sur les algues du niveau du “Calcaire rose oolithique” du Kundelungu supérieur du Congo belge (Province Orientale du Katanga). J.. B. S. C.. Coward. Earth Sci. M.. Chakraborty. 700 Ma U-Pb SHRIMP age for Sturtian (!) diamictites of the Pocatello Formation. Geochronology Time Scales and Global Stratigraphic Correlation. pp.. (Eds. 300. (1984). Two carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar-39Ar analysis. Cahen. p. Géol. Centr.). M.. Dumont. 42. D. 63-70. (2000). 1-21 Daly. Southeastern Idaho.. Rapp. P. Tervuren. In: Berggren. P. pp. Geology of the Zambian Copper Belt. Geol. 14.D. W. J. Soc.G. L. Serv. (Ed. pp. Spec. (1973). Étude géologique.H. P. Brummer. (1976). Garlick. Dépt. M. François. Garlick. Zaire.. (2002). New York. In: Mendelsohn. IGCP Project 302. pp. Géol. In: Wendorff. géol. Ann. K. 46. Grosemans. (1961). Basin Research.. Tack. Garlick. (Eds.. (Ed. Garlick. P. 1-20. 455-474.). Musée Royal de l’Afrique Centrale. H. 168 . François. 5. W. W.. The Nchanga granite.. 38-57. Belgique. Geol. 223-352. W. Frimmel. A. Fölling. Econ.A. (Ed. 478-497. (1973).Fleischer. 101. Gneisses and Related Rocks. In: Wolf. L'extrémité occidentale de l'arc cuprifère shabien.). Publ.G. London. Macdonald. (1935).G.)..E. Ann. Likasi. Namibia and South Africa. R. F. 69-88. Afr. The Geology of the Northern Rhodesian Copperbelt. Shaba. Gécamines. 120. Chambishi. (1951). In: Lister. Haldane.J. (1995). S. Late Proterozoic Belts in Central and Southwestern Africa. 6. Elsevier. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts. L. Mines Comité Spécial du Katanga. The age of the granites of the Northern Rhodesian Copperbelt. 3. 281-297. Contribution à l’etude du conglomérat de base (petit conglomérat) du Kundelungu supérieur...G. V. Vol.G. Sci. A. Tervuren. Symposium on Granites. Problèmes relatifs au Katanguien du Shaba. pp.) Handbook of Strata-bound and Stratiform Ore Deposits. Science. 13(3-5). D. Hanson. Nat. 131-136. Natuurwetenschaplijke Tijdschrift.L.J. Geologic evolution of the Neoproterozoic Zambezi Orogenic Belt in Zambia. (1998)... (1931b). Wilson. Soc. belge Géol. 41. Gysin.. M. R. roy. 135-150. Bull. Col. (1988). A. and Schrag. Halverson. Nieuwe fossielen uit een kalksteen van het Kundelungu-systeem van Katanga (Belgisch-Congo). Hydrol. Séances de la Soc. et Hist. Nat. (1931c).. Phys. Inst. T.. Hacquaert. Earth Sci. C. A. A.L. H. 52. M. 281.P. 281-284. P.. M.F. Recherches géologiques et pétrographiques dans le Katanga méridional. R. (1931a).. Wardlaw. 16.. (1933). Deformed batholiths in the Pan-African Zambezi Belt. Kaufman. Ontdekking van fossiele Groenwieren in het Calcaire rose (Kundelungu-systeem) van Katanga. Geology. Afr. 259 pp. 243-246. 1134-1137. Munyanyiwa. Hacquaert. belge. Sc.E.. 169 . Essai de classification des granites du Katanga méridional d’après l’étude planimétrique des coupes minces.J. Présentation de fossiles découverts au Katanga dans le Calcaire rose (système du Kundelungu) au Katanga.L. T. 18.. Mém. J. 6(1). 1342-1346. et Méd. Hacquaert.J. (1935). Hoffman. Natuurwetenschaplijke Tijdschrift. A. G. 13.S. R.P. 117-119.Gysin. Hanson..E. A Neoproterozoic snowball earth. Paléontol. Zambia: Age and implications for regional Proterozoic tectonics. Genève. Wilson. (1994). Schandelmeier. F. Kaufman. Kabengele. Le magmatisme du plateau des Marungu (secteur de Pepa-Lubumba.. Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katangan Copperbelt.Signification géodynamique dans l'évolution de la chaîne Ubendienne.T.A.L. (1961). M. nord-est du Shaba.-H. Balkema. 11. Narbonne.P. Macdonald. Jackson.N. Jordaan. M.M. G. Mashala. 170 . B. central Africa..R. Kabengele.. R..R..B. G.J. 115(3). Hoffmann. Loris.. In: Contributions presented at the 3rd IGCP-450 Conference. In: Matheis. M. The Geology of the Northern Rhodesian Copperbelt. Crowley. Congo. 314-330. Nkana. S..) Current Research in African Earth Sciences. (2003).A. Geol. Isotopes.M. N. 69-74. (Ed. ice ages.. (1996).R. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. America Bulletin. J. Acad.). Congo).H. Lubumbashi. Condon. 297-328. Prave. Rotterdam. Namibia: constraints on Marinoan glaciation. Soc. Woad.. (1987). J. D. Conference and Field Workshop Lubumbashi 2003. Communications Geological Survey Namibia. G.T. Geochemistry of the Lower Mwashya pyroclastic rocks in the Likasi-Kambove area (D. 94. (1997).. and terminal Proterozoic earth history.. Cabanis... Geology. USA. (2003). Zaïre)- Caractéristiques pétrologiques et géochimiques. (2004). M. Lubala. 817-820. Natl.J. O. D.Hoffmann. London. Bowring. 13-16. Hudec.. Sci. Knoll. 77-82. A. (Eds. 66006605. 32(9).. M. K. A.-H. U-Pb zircon dates for the Neoproterozoic Ghaub Formation. Proc. Warin.R. T. A. A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones. In: Mendelsohn. K. . J. R. Lefebvre. 103-122. (2003). Ann. Baluba.. J. Le district du cuivre.. (1975). J. Macdonald. Liège. Zambia. Les roches ignées dans le Katangien du Shaba (Zaïre).. K. 96. Lefebvre. Shaba. R. U-Pb SHRIMP geochronology and geochemistry of granites. Armstrong. et al. Afr. Armstrong. (Eds.. Yoshida.Key. à Shituru. Mosley.. CD-ROM. Banda. Zaire. Kampunzu. 33 (3-4).).J. 107 pp.J. Annales de la Société Géologique de Belgique. London. R. Géol. Okudaira. (2001). Somwe..B. Liyungu. Surv. J.. In: Mendelsohn. (2000). Gisements stratiformes et provinces cuprifères. M. NW Zambia and its potential for copper mineralization. Magmatic evolution of the Kibarides Belt (Katanga. F. 503-528. J. R. A. Belgique. Lefebvre. Géol. Rep. Earth Sci. 47–73. M. (1974). Key. Banda. Soc. Kokonyangi. (1973).). N. J. 197-218. The Western arm of the Lufilian Arc. The Geology of the Kalene Hills area. Extended Abstracts. (1961).. Geol. Namibia.. M. P. V. J. The Geology of the Northern Rhodesian Copperbelt. J. Belg. 343-351. A. Congo) and implications for Rodinia reconstruction: field observations. A. (Ed. 98. Mineralisations cupro-cobaltiferes associées aux horizons pyroclastiques situés dans le faisceau supérieur de la Serie de Roan.J.. 22-26 July 2002. 11th Quadrennial IAGOD Symposium and Geocongress 2002. Présence d'une sédimentation pyroclastique dans le Mwashya inférieur du Shaba méridional (ex-Katanga). Njamu. Windhoek. Soc. 171 .. Lee-Potter. T.B. F. P.. In: Bartholomé. Njamu. Macdonald. T. F.N. S. (Ed. 218-219. I. Special Publications. Mosley. (Ed. Geochronology and thermochronology by the 40 Ar-39Ar method. Oxford University Press. (1999).. Kalulushi. D. F. New York. (1961b).. Macdonald.R. Users Manual for Isoplot/Ex version 2. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. P. Rep. IGCP No.. Geol. with implications for Katangan stratigraphy. 450. 351405. Master. A folded Nguba-Kundelungu section. 523 pp.M. F. (1993).R. Smit. Mbuyi. Geology of the Mwinilunga area. J. Harrison. London. K. 110. (1961). London. Mendelsohn. Zambia. Congo. Zambia. (2001). In: Guide-Book to the Field Trip. (Ed. In: Mendelsohn. (2003). Lubumbashi.Liyungu. F. 288 pp.) (1961a). a geochronological toolkit for Microsoft Excel. M. The Geology of the Northern Rhodesian Copperbelt. F. Copperbelt Field Conference. McDougall. Roan Antelope. McKinnon.J. Berkeley Geochronology Center. Preliminary observations on the sedimentology of the Roan Group at Musoshi (Zaire) and Konkola (Zambia). London. Nchanga. Banda.3. In: Mendelsohn.). Ludwig. 23-31 July 1993. 172 . 1a. A. 36 pp. Conference and Field Workshop Lubumbashi 2003. IGCP Project 302: The structure and metallogenesis of Central African Late Proterozoic Belts. D. K.). The Geology of the Northern Rhodesian Copperbelt. Second Edition. Surv. Abstracts. The Geology of the Northern Rhodesian Copperbelt. Mendelsohn.. N. (2000).. Macdonald. F.M. 234275. -P. Congo. M. R. (this issue). Master. Master. (2003). C.. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. Nature and geochronology of the Palaeoproterozoic basement in the Central African Copperbelt. P. Demaiffe. In: Guide-Book to the Field Trip. Sci. 173 .. L. 450. 11-14. Sér. H. 1427-1430. Afr. 165-168. Conference and Field Workshop Lubumbashi 2003.. C.... 313. (2003). In: Stanley. Balkema.. C. Age tardiubendien (Protérozoïque inférieur) des dômes granitiques de l'arc cuprifère zaïro-zambien. P. Rainaud. A. Ngoie. Journal of the Geological Society. (1987). Ann 1985-1986. J. Ngoyi.A.. L.A. J. Robb. Dumont. Pan-African rifting and orogenesis in Southern to Equatorial Africa and Eastern Brazil. A fertile Palaeoproterozoic magmatic arc beneath the Central African Copperbelt.. F. pp. Rapp.). Acad. (2004). C..C. Rainaud.Museu.J..A. K. Paris. 103-136. II. Lubumbashi. roy. The Mwashya Subgroup at Shituru. Tervuren (Belg. Precambrian Res.. Considérations sur l'origine du Grand Conglomérat de base du Kundelungu inférieur au Shaba (République du Zaïre).B. Rotterdam.)..A.J. D. Rainaud. (1989). Volume 2. C. Robb. Earth Sci. (1999). Dépt. IGCP No. Armstrong. et al. Afr.R. D. 83-89. Master. S. (Eds. Liégeois. (1991). centr. Mus. Mumba.J.. L. Armstrong.. R. Géol. Armstrong. S. London. Robb..C. Mineral Deposits: Processes to Processing. 44. 214-215.J. Min. S. R.A. Porada. 160.. A cryptic Mesoarchaean terrane in the basement to the Central African Copperbelt. R. .. J.211.and cosmoschronology. Géologie et géographie du Katanga y compris l'étude des ressources et de la mise en valeur. Kampunzu. McDougall. Annales du Musée Royal de l’Afrique Centrale. Earth and Planetary Science Letters. 359-362. p.R. T.. (1999). 85.. L. A. Spell. Nouvelles acquisitions sur le système de la Bushimay. Kampunzu. Zambia. MacDougall. (2003).. Jäger. Afr. 156 pp. (2000). 69.. Earth Sci. M. 85. M. Bruxelles. Tack.. Fernandez-Alonso. E.Raucq.M.. I..B. Tembo. Deblond. 403-425. 28(2). F. 198. Wingate. Géol. 174 . 30(4A). J.L... Critical assessment of recent unpublished data supporting a single and united geodynamic evolution of the Sao Francisco-Congo-Tanzania cratonic blocks in the Rodinia configuration. Geochemical characteristics of Neoproterozoic A-type granites in the Lufilian Belt. Thermal neutron interferences in the 40 Ar-39Ar dating technique. Musonda. Sci. Hayez. H. Afr. 28. N. Steiger. Tetley. Chem. Journal of African Earth Sciences. Characterization and calibration of 40 Ar/39Ar dating standards.. Journal of Geophysical Research. 7201-7205. F. Geol. P. H. M. 620 pp . Tembo. R. Earth Sci. A. (1956). (1977). B. A. (1970).. Robert. République Démocratique du Congo. Heydegger. 75–76.. (1999). Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia.B. 36.. (1980).H. I. Porada. 189 . Subcommission on geochronology: convention on the use of decay constants in geo. R.K. M. IGCP No. 21st IAS-Meeting of Sedimentology. Congo. (2001a). 19-22. 32. P.5 September 2001. (1971). Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. Geological Survey of Zambia. (Eds. Vanden Brande. pp. 395-396. Rand Afrikaans University. SE Quarter. M.G. et al. D. Mines Comité Spécial du Katanga. 51-69. Palaeozoic of Zambia and the Democratic Republic of 175 . 25 pp. In: Guide-Book to the Field Trip. central Africa. Lisse. Conference and Field Workshop Lubumbashi 2003. Walisumbu. Wendorff. 16th International Sedimentological Congress. (2001b). Lubumbashi. The Kipushi Zn-Pb-Cu deposit. Wendorff. Wendorff. Wendorff. Megabreccias of the Katangan orogen (Neoproterozoic-Lower Palaeozoic of Central Africa): criteria for re-interpretation as synorogenic conglomerates. 450.Thieme. Neoproterozoic-L.M. C. Abstract. Netherlands. W.. M. 6. Tshileo. Abstracts Volume. (2002b). Johannesburg. Explanation of Sheet 1028. (1936). A. New exploration criteria for ‘megabreccia’-hosted CuCo deposits in the Katangan belt.). Kaluendi. 210213. Serv. (2003). Switzerland. Swets & Zeitlinger Publishers. South Africa.. Davos. 3 . Mineral Deposits at the Beginning of the 21st Century. Ann. Synorogenic conglomerates and evolution of foreland basins in the external fold-thrust belt of the Katangan orogen. J. K. (2002a). The Geology of Musonda Falls Area. In: Piestrzynski. P. Etudes géologiques dans le feuille Lukafu. Evolution of the Katangan belt foreland basins: Neoproterozoic-Lower Palaeozoic of Zambia and the Democratic Republic of Congo. Report No. R.Congo. South African Journal of Geology. Wendorff. Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. M. Stratigraphy of the Fungurume Group. (2003a). In: Contributions presented at the 3rd IGCP-450 Conference. 16th International Sedimentological Congress. 106. South Africa. Congo. Abstracts Volume. Johannesburg. 47-64. Democratic Republic of Congo. Conference and Field Workshop Lubumbashi 2003. Conglomerates and sedimentary megabreccia (olistostrome) in Roan-Mwashya succession in Mufulira. (2003b). NeoproterozoicLower Palaeozoic. 397-398. Copperbelt of Zambia. Rand Afrikaans University. Wendorff. M. 94-97. Lubumbashi. 176 . D.evolving foreland basin succession in the Lufilian fold-thrust belt.
Copyright © 2025 DOKUMEN.SITE Inc.