BORETS COMPANY LLCBORETS RESEARH & DEVELOPMENT CENTER VARIABLE SPEED DRIVE CONTROLLER "ARGUS" OPERATING MANUAL 2013 TsRKF 656437.019 OM. 1 The following abbreviations are used throughout the document: AR - Automatic restart SCADA - Automated control system LAU - Lightning arrester unit Commissioning - Commissioning LCD - Liquid crystal display UL - Trip on underload OL - Overload protection UFCC LLC - Universal frequency converter controller (Low level controller) ARGUS - Variable speed drive controller Tubing - Tubing FC - Frequency converter motor - Induction motor PMM - Permanent magnet motor AOM - Alarm operation mode VSD - Variable speed drive SCADA - Upper level system DHG - Telemetry system - Step-up transformer ESP system - Electric submersible pump system OGPD - Oil and Gas Production Department ESP - Electric submersible pump Step-up transformer TsRKF 656437.019 OM. 2 1.1 Controller's functions VSD and motor operation modes control and protection functions are carried out by the software of the variable speed drive ARGUS controller (ARGUS). ARGUS controller is the upper level controller, it sets operation modes, carries out certain protection functions, and provides interface with operator, LLC controller, integrated auxiliary equipment and external automated control system (SCADA). Detailed list of parameters, commands and settings, the structure of on-screen menu of the ARGUS controller are described in Sections 2, 3, 4. 1.1.1 Motor operation control functions: Controller provides: operation with induction and permanent magnet motor; motor switching on and tripping in manual control mode by the operator or in automated control mode (including, using the program with preset motor operation / shutdown time intervals); remote motor switching on and tripping on SCADA command; automated and manual control of motor speed using the ARGUS keypad without tripping the VSD and remote control on SCADA commands; operation using the program with individually preset motor operation and shutdown time intervals; automatic motor switching on with adjustable delay time when voltage is supplied or when voltage is recovered in accordance with the standard; smooth acceleration and braking of motor with the set rate; acceleration with omission of resonant frequencies when changing ESP system frequency (operation with the set minimum frequency and frequency hopping bandwidth); changing of the motor rotation direction (reversal), also without VSD tripping by smooth deceleration to zero and smooth acceleration up to the set frequency; motor braking with backspin with its further startup for direct rotation (backspin picking up mode); automatic frequency shift at the output depending on the analog input signal; automated maintaining of the set motor current value by changing the output frequency with possibility of motor current control; automated current optimization when reaching the set frequency (selection of optimum voltage after ESP system has reached the steady state mode); automated system unlocking mode using jogging mode ("heavy" and reverse startup); system running up mode with heavy motor startup using jogging mode with the set "jogging" frequency; "stirring" mode (to prevent depositions on pump stages); 1.1.2 Protective functions 1.1.2.1 motor tripping with automatic restarting (AR): TsRKF 656437.019 OM. 3 on DHG signal indicating that pump intake pressure is above or below the set value. separately adjustable delay time for tripping immediately after startup (except for low insulation resistance protection. contact pressure gauge) with restart (AR). when supply voltage is above or below the set values.1. manual unlocking of VSD tripping. door opening protection).5 Each protection is provided with: selection of active (ON) and inactive (OFF ) condition.2. 1.1. on signal from contact pressure gauge. ESP system may be allowed to operate with insulation resistance reduction below the setting.1.3 motor tripping and startup locking: in case of unauthorized access to the power box of the cabinet.2. TsRKF 656437. provided that the response speed of the current overload protection trip is automatically increased. 1. 4 .2. on reduction of insulation resistance of the Step-up transformer–cable – motor circuit below the set value (recommended 30 kOhm). 1. the controller shall support motor tripping with AR: on DHG signal indicating that the set motor temperature value is exceeded. adjustable delay time for protection activation (except for low insulation resistance protection.019 OM. adjustable AR delay time.2. selection of protection mode (except for protections for maximum current load. when communication with DHG is lost.4 motor startup locking: in case of voltage recovery with incorrect phase sequence.1.6 AR function is provided with: selection of active (ON. when the selected motor current imbalance setting is exceeded. interlocking of AR when the set number of allowed restarts is exceeded. selection of restarts number. adjustable delay time of protection activation after its operation. 1. LOCKED) and inactive (OFF ) condition. when the selected voltage imbalance setting is exceeded. on DHG signal indicating that motor vibration acceleration is above the set level.when underloading in-phase current component of any phase with selection of the minimum phase current.2.2 When variable speed drive is provided with surface telemetry units of the sensor system. door opening protection). Note.1. on EXTERNAL LOCKING signal. 1. when overloading any phase with selection of the maximum phase current in accordance with the adjustable time-current characteristic via separate selection of the desired current settings and overload time. and AR locking or without AR. in case of backspinning with selection of the frequency exceeding the allowable value. low insulation resistance. instantaneous values: linear voltage. active power (total and of each phase). apparent power (total and of each phase).3. 1. daily and monthly maximum power.3. reactive energy with accrued total.7 Prevention of operation modes switching. Unified Power Quality Index. opening of the power box doors (in case of unauthorized access). insulation resistance of the Step-up transformer – submersible cable – motor circuit. 1. TsRKF 656437. uptime from the moment of the last startup in hours and minutes or time remaining to the startup in minutes and seconds.1 Monitoring and display of current values of parameters and characteristics on ARGUS display: supply voltages of three phases and their imbalance. current date and time. total energy in conducting direction with accrued total. 5 . motor rotation speed.1. motor condition (on . provided with electric meter: active energy in conducting direction with accrued total. condition of the VSD with indication of the reason for this condition. event log with daily (00-00 to 24-00) recording of power consumption (active and apparent power) and uptime per day. currents of three motor phases and their imbalance. current value of the power factor (cos φ). phase sequence at the VSD output. when operating in the automated control mode. operation of specific protections. motor vibration level at the axes Х and Y.019 OM.off) using DHG.2 Monitoring and display of the preset and the current values of parameters on ARGUS display in VSD.3 Monitoring and information functions 1. reactive power (total and of each phase). pressure at the pump intake and discharge. phase sequence at the VSD input. current value of actual motor load in per cent of active current rated value. protections switching on / off and changing of settings without entering password. current time and current date (on electric meter display). registered by VSD controller and transmission to the upper level. 1.1.3 Monitoring and display on electric meter display and ARGUS display in VSD.2. heat sink temperature.1.1.3. power factor (total and of each phase).1.1. equipped with surface DHG units: motor winding temperature. formation temperature. rotation speed measurement unit. m. containing information on motor switching on and tripping reasons: total ESP system run life. which value entered the zone that triggered a protection function. min. old and new value of changed setting. m. well pad number. when setting was changes.1. total number of ESP system starts. including remote adjustment using SCADA command. current date and time. manufacturer. date of manufacture of ARGUS. current power factor values. Set operation parameters and accumulated information are stored.1. during 360 days. In real time with adjustable time interval a recording is made in a memory unit.3. 6 . ESP system running depth.3. when no power is supplied. current values of supply voltage.4 Information reading and transmission functions transmission of the set operation parameters. type. when no external power supply source is available. DHG type. motor type. current consumption of DHG. 1. power up and power off time. pump system parameters (if sensor system is used). current values of motor current. current and accumulated information into the SCADA system using the RS-485 interface. parameter. TsRKF 656437. transmission of accumulated information to the USB reader device. number. number. current load values. clock adjustment is provided. oil and gas field (OGF) number. mA. type. Step-up transformer voltage.1.5 Real time clock operate autonomously.1. V. - 1. manufacturer. date of manufacture of VSD.4 VSD controller provides display and chronological recording of 50000 last changes of ESP system condition. 1. m3/day. ESP system head.1. the information can further be converted on PC into Microsoft Office Excel format using a USB port. date and time. VSD type. recording step.5 Process parameters settings well number. number of the changed setting.019 OM. ESP system capacity. transmission of accumulated information to PC via СОМ-port using the RS-232 interface. ARGUS controller description is provided in TsRKF .6 Cyclic operation mode of the ESP system.1 General provisions Variable speed drive controller (ARGUS) provides: . provided that the software continuity is preserved. Automatic switching over from cyclic operation mode into continuous operation mode.- feeder number.5 Pump operation on the boundary of pump underload (prevention of tripping due to pump underload in terms of head.6. front panel of operator's interface is installed on the VSD front door. 1. In terms of design. TsRKF 656437.6.1. .6. All information required for operator is shown on LCD display on the front panel in text format.implementation of various motor control algorithms. Other controller modifications may be manufactured.browsing of current values of operating parameters of motor and VSD.2 Mode for surveying / scanning of well inflow – the mode for determining the maximum possible well production rate at the current moment of time and adjustment of the ESP system for the maximum production rate.1 Automated startup of ESP system in accordance with the pre-set program. . pump underload in terms of gas etc. Data entry is carried out with keypad using menus.хххххх.ххххх.1. . ARGUS software allows using several types of menu.1.019 OM.6.1. ARGUS is a complete system.6 Functions of intelligent control system 1. 1. 7 . ARGUS controller is used as standard.6. sufficient to cool the motor.6.reading of ESP system operation history.1. provided that the appropriate conditions for continuous operation mode are available.1. 2 Controller 2. 1. both those already used in serial VSD manufactured by BORETS COMPANY. and other menus. including "sparing commissioning" with minimum possible pump flow rate.reprogramming of ARGUS and LLC without VSD tripping.4 Avoiding emergency operation modes of ESP system. Description of its front panel is given below.).1. 1. made to specific customer's requirements. 1. 1.3 Efficient power consumption (automated optimization of power consumption) in all operation modes. . with two interfaces connected to it: RS232 and USB to connect with SCADA system and reading of accumulated information from the controller. Figure 1 Front panel of ARGUS controller The ARGUS controller front panel is provided with: .2 Front panel of ARGUS controller Front panel of ARGUS controller is shown in Figure 1.two VSD control buttons "START".2. .four keypad control buttons "ENTER". "HELP".15 pin connector "PORT". 8 . TsRKF 656437.ten digital buttons of membrane keypad ("0" – "9"). which displays information in text format.LED indicator "PREHEATING". . 20 characters in each line.019 OM. "CANCEL". . "STOP".four line liquid crystal display. "ALT". .LED display "ALT". . protection parameters.1 9. command) .range of possible values.1 Name of subfolders Current parameters Settings Settings I Settings U Other settings DHG settings Analog inputs settings REG settings TsRKF 656437. The "Reference" column of each of the table of the list provides reference to the comment clause in Section 8 "Description of the displayed parameters and system operation modes" The complete list of parameters. ARGUS software supports various types of menu. . 3-rd and 4-th level.1. Table 3. auxiliary equipment. .1. Controller menu provides access to the parameters via multilevel structure of subfolders (as in controller "Borets PMM").1.explanation of abbreviations and brief description of the parameter.factory setting of the parameter's value. meeting the specific requirements of the customers and allowing it use in serial VSD manufactured by BORETS COMPANY. as they are shown on LCD display.3 9. 3.the list of parameters having the same designations. used in operation with submersible system. applicable only to the selected configuration. The columns of each of the tables of the list provides the following information: . motor.1. All the messages related to ESP system operation are shown on LCD display in text format. hereinafter referred to as "window". which may have nested menus of the 2-nd.1 9. there are parameters. .1 Controller menu 3. . setting system operating modes.reference to a more detailed description of the parameter. Menu contains 15 items at the 1-st level. commands and settings.3 ARGUS controller menu Controller menu provides established operator's access to viewing equipment condition.1. depending on the type of VSD. when entering specific equipment configuration.1.019 OM. Menu is made in a way that.1. display shows the parameters. setting. . Menu structure is given in Table 3.4 9.5 9.measurement unit. Reference to the parameters list 9 9 9. The complete list of menu parameters is given in Table 1 A (see Appendix A).1.1 Menu structure Menu structure is given in Table 3.parameter appearance (parameter. LLC.2 9. All operations on data entry into controller are carried out using its keypad. Information is displayed in 4 lines.1.6 9 . applicable only for specific configuration and execution of the equipment. 9 0 0 9.7.12.5 0 0 0 9. 9.019 OM.5 9.6 9.12.1.2 9.1.12.7 0 0 0 0 0 0 0 0 9.3 0 9.1 9.External devices Settings Measurement units Date and time Configuration of VSD Settings of motor Settings of SS VSD technical data sheet DHG technical data sheet SDHG SurfDHG DHG configuration Commands Change password Calibration SCADA Language LCD Electric meter Readings Current day Previous day Current month Previous month Current year Previous year Total Quadrants Current day Previous day Current month Previous month Current year Previous year Total Settings Information Parameters Basic Power Other Commissioning parameters TsRKF 656437.12.5 0 0 0 0 0 0 0 0 9.12.4 9.3 9.1.3 0 9.12.12 0 0 9.2 9.8 9.12.1.1.1.12.7 9.13 10 . 0 9.1.16 0 0 0 0 11 .1.Intelligence Parameters Commissioning Optimization Gas lock Pulses Working submergence Deposits Intelligence Service Variable speed drive Settings Coefficients Analog inputs Condition Parameters Motor LL controller Parameters Condition Autonomous operation Тaut.op.019 OM.14 0 Error! Reference source not found.3 0 0 0 0 0 0 0 0 0 0 0 9.15.15. 9.14.min DHG Adjustment settings Condition Parameters RS DHG USB stick Read history ARGUS programming FCC programming Accept settings TsRKF 656437.1 0 0 9.1.3 0 0 0 Error! Reference source not found.15.15 0 9.2 9. 9. 2 Buttons function in the menu 3.1. Switching to editing mode is possible only after password entry. TsRKF 656437.1.Changing of Cursor movement one line up parameters values.2. .3. Use ENTER button to switching from the last level viewing mode to editing of parameters and settings 3.1.1. change the password to 0000.viewing of lists of parameters.2. Table 2 Operation type Button Execution of Viewing Editing Calibration commands 0…9 Digit entry Cursor movement .Changing of the Cursor movement current symbol to the one line down one line down next value Moving to the Moving one character Moving to the next window to the right next window Moving to the Moving one character Moving to the previous window to the left previous window Moving to the Exit from editing. Execution of Moving to the ENTER next menu level saving the entered command next calibration value step Moving to the Exit from editing.3 Editing mode allows changing settings values within the given ranges.calibration of the insulation resistance measurement channel. while still in editing mode. one line up Cursor movement . If the value of the entered setting is beyond the possible range.performance of commands from submenu "Commands".1 Buttons functions are changed depending on the type of operations with the menu.editing of settings. 12 . Moving to the Calibration exit CANCEL previous menu without saving the previous menu without saving level entered value level the results Switching from the digit entry mode to the Alt arrows navigation mode Display of Moving one character parameter to the left Help reference information for 2 seconds START MOTOR STARTUP (if no wafer type switch is available) STOP MOTOR SHUTDOWN (if no wafer type switch is available) 3. .2. . There are four types of operations with the menu: .2 In "viewing" mode operator can view elements lists in menu windows. Buttons functions depending on the type of operations are given in Table 2. To cancel the password. settings and system operation history.019 OM. then. if the password was not cancelled. operator is suggested possible limiting values. 1.019 OM.1."I PMM."AUT".1.3.3.3 Line "IPMM. "^". the main window is displayed on LCD.3. .1."DOOR" – indicating that the VSD door is open. Symbol "^" indicates that motor is running at increased speed to remove gas locks. 3.5 The lower line may show the following symbols: ." ".kOhm" – insulation resistance. Symbol "".4 Line "R. . A" may display symbol "".7 Moving from the current parameters window to other menu windows is carried out by pressing the "ENTER" button. .1 When powering the controller."PRG" – indicates VSD operation mode. after that. . 3.3. The first three line of the main window display the parameters: .1. " " or " !! " – accordingly indicate that decrease of the rotation speed or sudden decrease of the dynamic level of the formation fluid in the well in auto adaptation mode."<!<" or ">!>" – indicates that the VSD is in standby mode for automatic startup.6 The list of the current parameters may be viewed in the main window.when Step-up transformer transformer stage voltage is set high above the required value.."REL" – indicates that independent automatic circuit breaker QF5 release has operated. This happens: . kOhm" may display symbol "". due to undervoltage. .. rpm" may display the following symbols: "". . If the voltage is higher. TsRKF 656437. its booting is started (it takes about 2 minutes). 3. The main window is different from other menu windows. Additional indications area may display the following information symbols. variable speed drive is running at the increased frequency converter current. if lower – variable speed drive can not reach the required rotation speed. "" indicates that the Step-up transformer voltage is not optimum. Symbol "~" indicates that variable speed drive is operating in motor acceleration or deceleration mode.8 LCD displays only the information applicable to the selected equipment.1. 13 ."DHG" – indicating that the variable speed drive operates with the telemetry system.the fourth line is the status bar. . which indicates undercurrent.2 Line "No.3. "~"."R. .3.1. 3. rpm" – rotation speed. 3.when incorrectly selected configuration of the drive engineering package is lacking power for the variable speed drive provide the required rotation speed of motor.3 Entry into the 1 type menu 3."No."MAN". 3.3.1. A" – motor current. "". since it has additional indications on the right side of the window.3. .1. . appearance of which shows that insulation resistance is below the set value.3. Status bar displays current date and time or current condition (reason for drive start failure. if yellow lamp is constantly on). 3.">>>" or "<<<" – motor rotation direction. 1. | DEP configuration | ESP| DEP configuration | Head| Settings | Lrunning| Settings | Cross section mm2 | DEP configuration | VSD type | Settings | Other settings | Mode | Service | VSD | Settings | Inp. Equipment parameters.1.. Step-up transformer.trans.019 OM. kW motor nominal current. V motor idle current. | DEP configuration | Unom. TsRKF 656437.. V1) Total voltage of motor and cable (Umotor + Ucab.V | DEP configuration | motor settings| Umotor + Ucab. kVA Primary voltage of Step-up transformer transformer. | DEP configuration | Ixx| DEP configuration | motor settings| COSnom. A. Table 4. check the compliance of the existing settings with the factory settings or enter "Restore factory settings" command. Installation depth. 14 . V Field number Well pad number Well number Nominal pump capacity Pump head.V | Settings | Usec. | Settings | Well pad No. mm² VSD type Operating mode Input filter Rotary switch motor type motor nominal power. rpm | Settings | Other settings | Rotation dir.enter ESP system equipment parameters into ARGUS in accordance with Table 4. filter | Service | VSD | Settings | Rotary switch| DEP configuration | motor type | DEP configuration | Pnom. | Settings | Other settings | No. m Cable cross section.4. | .trans. m. kVA| Settings | Uprim. If required.Procedure for calculation of the secondary winding tap of the Step-up transformer transformer is described in Appendix B. Nominal power factor of motor motor rotation speed motor rotation direction Step-up transformer nominal power.| | DEP configuration | Inom.) Navigation in menu Service | VSD | Settings | Menu appearance Commands | Commands | Service | VSD | Settings | U mains| Settings | Field No. entered in ARGUS Parameter name Menu appearance Restore factory settings Unlocking Nominal mains voltage.1 Preparing VSD for switching on . V Voltage of Step-up transformer secondary winding tap.| Settings | Рnom. | Settings | Well No. A motor nominal voltage. 019 OM. 15 .TsRKF 656437. manufacturer (manufacturer's code).4. Software data: version. .type. 8. settings applicable to the specific configuration of the equipment is entered into ARGUS and LLC. manufacturer. 8. manufacturer. which is determined by the selected VSD: Borets VD40 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-1170 Borets VD50 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-1170 Borets VD80 1VEDBTх-117 2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-1170 х5VEDBTх-117 х12VEDBTх117 х5VEDBTх-117 х12VEDBTх117 5VEDBTх-117 х12VEDBTх117 TsRKF 656437. . serial number.1. settings and technical data sheet information is entered into its memory: .1.type. serial number. displayed on the LCD of the ARGUS controller.1 VSD equipment configuration ARGUS software is designed for controller operation with various types of VSD.type. date of manufacture of ARGUS.3 motor type is selected from the list. generation date.2 Description of the displayed parameters and operation modes of the system Detailed description of the parameters and operation modes of the submersible system.1 VSD type is selected from the list: Borets VD80 Borets VD40 Borets VD250 - Borets VD500 Borets VD160 Borets VD300 Borets VD50 Borets VD105 Borets15-400 8.2 LLC type is selected from the list: Direct start FC – FCC controller or UFCC Drivers controller Rockwell Smooth start 8. this information is shown on display as parameters. LLC firmware installation date and version. date of ARGUS "protection" firmware installation in the appropriate software. When preparing the system for start.019 OM. Borets VD250 х1VEDBTх-117 х2VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-1170 х5VEDBTх-117 16 . date of manufacture of LLC. date of manufacture of VSD. LLC and motor. serial number. During manufacturing or service maintenance of VSD.1. 8. and technical data and data on design features and version of "protection" software in DHG software.019 OM.nominal power. sensors configurations. transmitted via internal interface into ARGUS and shown on display as an average three phase linear voltage value Umains =(Uab+Ubc+Uac)/3. 8.2. These data are given in sufficient detail in the menu tables (see Appendix A and B).х12VEDBTх117 Borets VD105 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-117 х5VEDBTх-117 х12VEDBTх117 Borets VD160 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-117 х5VEDBTх-117 х12VEDBTх117 Borets VD300 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-117 х5VEDBTх-117 х12VEDBTх117 Borets VD500 х1VEDBTх-117 х2VEDBTх-117 х11VEDBTх103 х11VEDBTх130 PVEDNх-1170 х5VEDBTх-117 х12VEDBTх117 Borets15-400 motor The following motor technical data sheet settings are entered while preparing for startup: . nominal voltage. . nominal power factor (for induction motor only). serial numbers of surface and submersible parts of DHG. TsRKF 656437.2 Mains parameters Description of parameters and related settings is given below 8. .type. 17 . idle current.nominal current.1 Input voltage. Mains voltage and frequency are selectable. these data may be shown on the display as parameters in accordance with the selected DHG type.4 DHG type is selected from the list: DHG .1. date of manufacture.none DHG SPT-2 DHG SPT-1 DHG Elekton DHG BST1 DHG Weatherford DHG SKAD DHG BST5 DHG SPT1_25 DHG ViewPoint DHG Novomet DHG IRЗ-2 DHG Elekton-3 DHG TT37 Name plate data about manufacturer. Current value of the input voltage is changed in UFCC. since precision is ensured by hardware). 18 . .delay time of switching on / tripping of the VSD after operation of protection. . The following are entered as settings: . . The procedure is implemented in PMM VSD with UFCC.1 Procedure for VSD output voltage generation The procedure is selected in ARGUS menu.protection operation mode.compensation factors of the measured voltage.active power consumption.3 Phase sequence of mains voltage Monitoring of phase sequence is carried out in ARGUS using the signals from the phase sequence indication unit PSIU.hardware protection on exceeding the maximum linear voltage Umains max=542 V. .2 Input voltage imbalance. 8. all the mains parameters. VSD and LLC. during startup after maintenance and repair work 8. .threshold value of imbalance in % from the nominal voltage. Adjustment of output voltage to control permanent magnet motor is carried out by PWM converter under control of UFCC in accordance with the voltage in DC buses or output current (depending on the setting or by automatic selection).019 OM.2.4 Power consumption VSD versions. 8. Adjustment of output voltage to control induction motor is carried out by PWM converter the TsRKF 656437. .3.3 VSD output voltage Current value of the output voltage is measured in UFCC and shown on the display.operation mode of protection on exceeding the threshold. depending on the selected types of motor.2.selection of the mains voltage and frequency 380 V /50 Hz or 480 V /60 Hz . Information about this parameter is relevant for VSD with smooth starter."Sine" and "Sine+" modulation of output voltage.UFCC contains the parameters. including: .protection with variable threshold within ±15% from the nominal. and the following protection settings are entered to provide operation of protection functions depending on the mains voltage: .protection on reduction by more than 25% from the nominal value. . .protection on exceeding the threshold 25% from the nominal value. The procedure is implemented in PMM VSD with UFCC. The following can also be entered: . from the following: . ."6 step" commutation producing trapezoidal form of output voltage.2. .power factor are transmitted from the meter to the ARGUS using internal interface RS485 Meter type is selected from the list: SET Merkuriy Energomera 8. equipped with standard electric meters.switching on / tripping time after operation of protection. (in UFCC correction is not provided. 8. after startup or in case of alternative automatic restarting after power loss.power consumption. 8.2. 8. .0.output voltage imbalance protection threshold in % from the nominal value. .1 In PMM VSD with UFCC with "6 step" commutation is calculated using the formula: Uuv=Uvw=Uwu=Udc*0. 8.Udc – average voltage in the VSD direct current bus for the period.2.1.1. averaged for the commutation time of the measured current. 8.4.tripping and AR delay time in case of output voltage imbalance.4 Output voltage imbalance The menu has the following settings .3.3.2. 8.3 With "Sine PWM" modulation."Sine PWM" modulation of output voltage. N=256 – number of measurements per period. 8. Using the value measured during the period in 128 points.74 – factor of the form of the linear output voltage.Uwu.816 – factor of the output current form. 5 and 7 harmonics).3 With "Sine PWM" modulation.hardware protection on exceeding voltage in DC buses Umax.3.019 OM.74. the calculations are made using the formula in 0. the DC bus voltage is measured.1 In PMM VSD with UFCC with "6 clock" commutation is calculated using the formula: Iu=Iv=Iw=Idc*0. is implemented in UFCC. 8. where: Idc – current amplitude in the direct current loop.3.3.4 Output current Current value of the VSD output current is measured in UFCC and shown on the display.4.1 Current value of the output current 8. and the known PWM modulation factor.4. output voltage is calculated for the given point.dc=765 V. Output current is measured using the signals from the current sensors.4.w)=SUM(In2/N) where: In – instantaneous current.3 Output voltage protection settings: .1.2 Output current protection settings TsRKF 656437. the current value of the output current is calculated using the formula: Iout=Iu (v.4.2 With "Sine" and "Sine+" commutation. output voltage is calculated using the DC bus voltage with frequency of 45-50 kHz with account of the current PWM conversion factor. which is used to calculate motor consumption parameters. with measurement rate of instantaneous output current of 45-50 kHz. 8.Uvw.3. 8.linear output voltages Uuv. 8.2 Current value of the output linear voltage 8. installed on the direct current bus and output buses. Adjustment of induction motor speed is carried out using output voltage or current.816. Software used for this procedure carries out continuous harmonic analysis of the output current (1. where: .Selection of the operation mode for the output voltage imbalance protection. 0. .2 With "Sine" and "Sine+" commutation. . 19 .same as in 6-clock commutation. . Implemented in PWM VSD with UFCC with built in output filter (VSD Borets-15-400). corresponding to the technical data sheet value of Step-up transformer parameters: .1 Cable insulation resistance In the menu. wu)*Iu (v. . depending on VSD power. which is calculated or selected from the table with account of the cable length and nominal parameters of motor: voltage.reduction of Rins.7.Iu (v. 8.failure of the current sensor Rins. wu) – current value of the linear output voltage (8.8. min=20-35 kOhm.019 OM. and: . the current parameters display the cable insulation resistance value Rins.2 Motor current protection settings: TsRKF 656437.2 . protection functions: . Imot calculation accounts for losses in Step-up transformer and cable. correspondingly With "Sine" and "Sine +" commutation. U2avot –voltages of the primary and the secondary Step-up transformer windings.Hardware protection from exceeding the maximum allowed value of output phase current.8 motor parameters 8.w) – current value of output current (8... 8. 8.apparent nominal power of Step-up transformer.1 motor phase current The displayed motor phase current is calculated using the following formula: Imot = Iout / Кavot where: Iout.Step-up transformer primary voltage. 20 . power (Appendix B) 8.3) .w) where: . .5 VSD output power VSD output power is calculated using the formula: Р out = √3*Uuv (vw.7) I nom.2 Cable insulation resistance protection Condition menu displays the following Rins. which can be measured by VSD using two methods: VSD hardware or DHG equipment. since precision is ensured by hardware). 8. current. .7 Cable parameters 8.6 Step-up transformer parameters Menu contains the settings.4). Кavot = U2avot / U1avot multiplying transformation ratio of Step-up transformer.no calibration is carried out for the insulation resistance measurement channel in ARGUS.Step-up transformer secondary winding tap voltage. (in UFCC correction is not provided. where: U1avot.8. Protection operates with Imax =(1. 8.VSD output current. in the submersible DHG unit.Uuv (vw. Compensation factors settings for the measured voltage.1.7. down to minimum allowable value Rins. which are calculated by the software on the basis of the corresponding technical data sheet data. AR delay time with motor current imbalance.AR delay time at overload (underload).Initial acceleration speed – speed setting for normal acceleration.3 Motor currents imbalance The following protection settings are available in the menu: motor current imbalance protection threshold in % from the nominal value.8).number of AR on OL and UL.8. . . pump stops pumping the fluid. cosφ mot is calculated using the 1-st harmonics. in % from the nominal current. 8.motor current value. .tripping delay time at overload (underload) after startup. 8.5. - 8.selection of the protection operation mode in case of overload (underload).5 motor load Motor "Load" parameters is displayed in the current mode and is calculated using the following formulae.nom)*100 [%] where: Imot. .8.acceleration time – time required for motor to reach the set values of steady state mode.8. .1 In permanent magnet motor cosφ is taken equal to 1 and PMM load =(Imot / Imot. 8.rotation direction – symbol on display indicates the current forward or inverse phase sequence of the output voltage. selection of the operation mode for the motor current imbalance protection.tripping delay time at overload (underload). imbalance trip delay time. Imot. 8. rpm is displayed The menu provides entry of the following rpm settings: .8. – current value of the motor phase current (8. The following settings are made for operation of the protection functions: .2 When controlling induction motor using "Sine" and "Sine +" procedures and "Sine PWM" modulation. which cause equipment breakdown: overload protection (OL) and underload protection (trip on underload UL).3).The menu provides for two types of motor current protections.nom. Current value No. which is the starting point for reaching the steady state mode.019 OM. . In case of underload. rpm. which may be changed.98 – for motor nominal current. Imot with "Sine" and "Sine+".1. load is calculated using the formula: motor load =(Imot* cosφ mot / Imot.rotation speed setting – number of rpm in the steady state mode. motor seal failure. motor current is below the nominal value. the current value is calculated with account of the 5th and the 7th harmonics.nom* cosφ nom)*100 [%] where: cosφ nom =0. 21 . which causes overheating of winding. imbalance trip delay time after startup. – motor nominal current is entered using the setting from the technical data sheet (8.5. motor current exceed the maximum nominal current.4 motor operation modes Motor control in steady state mode implies maintenance of the set motor rotation speed No. motor and pump are not cooled.8. TsRKF 656437. which may lead to motor overheating. determining the protection threshold. . burning of cable. In case of motor overload. . With "Sine PWM" modulation in PWM VSD with output filter, harmonic current components are negligible and are not accounted for 8.8.5.3 In idle mode, load is determined as: Load min=(1.3*Iхх*0.35/ Imot.nom)*100 [%] where: Iхх – motor idle current, 1.3 – factor, accounting for minimum mechanical load on motor shaft, 0.35 – cosφ with minimum mechanical load on motor shaft, 8.9 Energy consumption parameters with load applied The following parameters are displayed: Рact.cons.=√3*Iout*Uout*cosφ – active power consumption, Fp= Imot 1 / Imot – power factor, Еcons.=Рact.cons.* Т – consumed active energy. where: Рout vsd Table 8.1 contains formulae for the implemented output voltage generation procedures Table 8.1. Formulae for calculation of energy parameters of ESP system Commutation method Рact.cons. Fp Еcons. "6 step" √3*Iout*Uout close to 1 Рact.cons.* Т (PMM VSD, PMM motor) "Sine" and "Sine+" √3*Iout*Uout*cosφ Imot1 / Iout "Sine PWM" cosφ where: Iout,Uout –see 8.3, 8.4, Imot1 -1-st current harmonic, - 8.10 DHG parameters 8.10.1 Information The menu contains the following information: DHG condition: "DHG failure" SDHG technical data sheet, containing the information about the submersible unit SurfDHG technical data sheet, containing information about the surface unit DHG configuration, displaying TSM sensors configuration - 8.10.2 Current parameters The menu displays the following current parameters of DHG operation: pressure at pump intake and discharge vibration in three space axes temperature at pump intake and discharge motor winding temperature. 8.10.3 DHG protection settings The following protection settings are entered in the menu: - selection of the protection operation mode (on|off); - protection on maximum and minimum pressure at the pump intake - protection on motor maximum winding temperature TsRKF 656437.019 OM. 22 - protection on minimum insulation resistance in the cable - delay time for tripping on operation of protection for allowable pressure, motor temperature, vibration, - delay time for AR on low pressure, motor winding temperature, allowable vibration. 8.11 Adjustment settings Provisions are made for entry of settings, adjusting allowable changes of parameters when controlling the production process: - deviation of pressure from the set value - rpm increase, when adjusting rotation speed - time interval of adjustment - pressure change rate when performing pressure adjustment 1. 2. 3. 4. 5. 6. 7. 8.12 SCADA settings The following settings are made in the menu: - SCADA type from the list, suggested in the menu: No SCADA SCADA Surgut NG N3 SCADA Region - 2000 GPRS modem SCADA MODBUS2 SCADA MODBUS3 SCADA Lukoil-3S - SCADA address in the telemetry system - data exchange rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 - switching on of recording in SCADA - 8.13 Service settings Service settings include the settings providing convenient operator's interface environment: setting of the display parameters – input language, brightness, contrast, selection of units for parameters display – pressure, frequency, temperature selection of the menu type, calibration corrections 8.14 Additional inputs When using additional analog inputs, the following settings are made in the menu: - protections operation modes on signals from analog inputs, - delay time for protective trips and AR - maximum and minimum protection levels, - maximum and minimum physical signal levels for automatic setting of the appropriate measurement range, 8.15 Operating technical data sheet Technical data sheet data for the well pad, well, cable for identification of information, read from ARGUS (see cl. 9) 8.16 VSD operation time counters This group includes displayed information parameters indicating continuous operation of the system: number of VSD trips on protection operation, number of starts, total operating time and idle time. TsRKF 656437.019 OM. 23 8.17 Operating modes The settings for the following operating modes are entered in the ARGUS menu: "Startup", "Shutdown", "Acceleration and braking", "Jogging mode", "Startup with backspin", "Gas locks removal", "Stirring", "Maintenance of one of the set parameters", "Intelligent mode". 8.17.1 Startup Operator's actions to startup the system are allowed only after the VSD and the controllers have reached the allowable temperature range (see cl.). The next step is selection of the menu type and entry of the settings required for the startup and normal operation in manual, automatic or program mode. Availability of settings depends on the selected equipment type. 8.17.1.1 The algorithm for PMM startup by PMM VSD with "6 step" commutation is as follows. On STARTUP command, the PMM rotation condition diagnostics is carried out. If PMM is rotating in the direction reverse to the set direction, with the speed, exceeding the allowable for startup with backspin, it is prohibited to carry out the startup. If PMM is at a standstill, which is indicated by static condition of comparator unit of UFCC, which are used to determine the condition of PMM rotor rotation, voltage is generated at the VSD output, which with the set rate creates rotating magnetic field in the PMM (six positions per period) and the torque with the set current. PMM rotor is started from the initial position and accelerates to the set rotation speed If PMM did not start rotating during the time, set by the time current characteristic, which is possible at increased load, then the current is automatically, in 3-4 stages, increased until PMM starts rotating. Threshold value is limited with maximum current hardware protection, operation of which disables the startup mode. 8.17.1.2 Induction motor startup algorithm with "Sine" and "Sine +" commutation is as follows. Starting torque of motor with this commutation type (PMM VSD, UFCC) is set by the initial voltage setting, which is changed by voltage / rotation speed ratio, and starting current. Current increase is monitored and limited in the same way as it is done for VSD startup. 8.17.1.3 Induction motor startup algorithm with "Sine PWM" commutation is similar to that described for "Sine" and "Sine+" with the difference that, total acceleration time and maximum jamming time at the startup are set. 8.17.2 Jogging mode Motor jogging startup mode (or "Unlock" mode for PMM) is used when the system is jammed. In this mode the startup is carried out by programmed reversing of rotation direction with the set torque. The following settings are made: jogging mode time, number of jogs, current protection values, phase sequence, parameters, setting the maximum jog current values. With "Sine PWM" commutation, the values of the prohibited frequency range are additionally entered. 8.17.3 Acceleration and braking TsRKF 656437.019 OM. 24 PMM VSD when braking PMM.17. motor rotation speed increases by the set value and is maintained during the specified time. . no energy is produced. VSD uses the entered value to generate time distributed sequence of rotation speed settings for LLC controller and monitors their observance. When startup conditions occurs. The following settings are made for the mode: . the setting allows selecting one of the parameters. rpm is reduced to the initial value. . Monitoring of the startup condition occurrence is carried out by rotation speed or output current. The settings specify the mode and the values of the rotation speed and startup current with backspin. The following settings are made for the mode: . increased rpm remain constant. This condition may arise either with complete draining of the fluid column above the pump or by braking motor backspin. The settings specify the mode and the values of the startup rotation speed with backspin. Startup from the backspin condition is carried out when reverse rotation speed is decreased to the set minimum. UL condition persist. With motor backspin.rotation speed change value.gas lock removal time 8. and braking is carried out in rotation speed pickup mode with further switching over to the normal mode.5 Gas locks removal When enabling UL protection (trip on underload). .two values of rotation speed change (can not exceed the value.Enabling of the mode.shaking intervals.6 Shaking "Shaking" mode is used to clean the motor from deposits by sudden decrease of its rotation speed with further recovery of the rotation speed.4 Startup with backspin Motor backspin may occur. 8. operator enters new speed setting value and time for reaching the new value. 25 . The latter is implemented by short circuiting output phases of VSD using frequency converter keys.17. frequency and phase synchronization of the motor rotation speeds and commutation of output phases is carried out.7 Maintenance of one of the parameters In this mode. which is used for automatic control of: TsRKF 656437. 8. .019 OM. 8.17. when operating ESP system is tripped.17.Enabling of the mode. specified by the setting) and the appropriate rates of the change. If UL conditions no longer exist. the energy generated by PMM is dissipated either in the connected braking resistors unit (in PMM VSD for cavity pumps) or in submersible cable (in PMM VSD for ESP pumps). PMM and motor braking techniques are different. accordingly. the startup mode is then switched on. until UL protection operates.To change the current rotation speed. .number of shakes. If during this time. UL protection is triggered. Intellectual control mode implies entry of the settings for factors for static and dynamic parameter deviations during control. where: .18 Protection settings The menu provides two types of protection operation modes settings: "On/Off" and "Off/Lock/AR". specified by the setting. motor returns to the reached speed. 8. VSD operation events history may be viewed on the display. optimum power consumption. decreased or increased until the current reaches the set value. supporting AR mode. accordingly. the command allows testing indicator lamps and fan operation. after its operation (with AR – operation after the last startup) VSD startup is interlocked and in order to restart it. . the current value of which is measured by LLC. motor rpm are automatically.19 Commands "Test" command. History limits are marked by the words: "Beginning of the history". The test ends in a minute after it was started or by pressing the "Cancel" button. If protection is enabled. which are selected by operator or automatically per the specified criteria: prevention of underload. automatic adjustment of output current and voltage of VSD are carried out.21 USB stick This menu allows selecting commands for the operations with the USB stick. If rotation speed has reached the maximum.the controller successively displays indication symbols.green. . Changing of factors settings may be carried out without VSD tripping. TsRKF 656437. . . motor current.On" – protection enabled.AR – protection enabled with restart of VSD specified number of times (from 1 to 5) after protection operation. red and yellow lamps are successively switched on on the door.019 OM. until operation in these modes is completed. 8. in intelligent control mode.Off – protection disabled. "Unlocking" command need to be entered. or gas locks removal mode is required. In rotation speed maintenance mode. 26 . "End of the history". when it is increased or decreased due to load variations. 8. . head maintenance. allowable load on motor etc. In current maintenance mode. Minimum rotation speed is set in pressure maintenance mode.Lock– interlocking of restart for protection functions. pump intake pressure. When it is executed: .Read history – event log history is read. When this value is reached.- rotation speed.fan is switched on. Maintenance of the selected parameter is interrupted when acceleration and braking mode is enabled.20 Event log (history) When this menu is selected. . and the current did not increase to the setting value. 8. 22. 8. the appropriate LED indicator lights up on the TCB board. 8. However. 8. 2 failure" – multiple failure of temperature sensor 1 or 2. DHG contains the list of protections against electrical parameters exceeding the allowable limits (including those caused by the equipment malfunction). TCB board. FCC programming using USB stick are selected to install ARGUS or FCC firmware version. failure of UFCC board.error" – FCC comparator unit condition failure. err.22. "Temp.22 Condition of equipment Menu Condition of VSD.22.Accept settings – settings are read from the USB stick 8. 8.22. readings of which are used for adjustments.9 "Phase break" – main voltage phase break. 8." – the output current value at VSD startup is not increased.ARGUS programming. 8. which are related only to the units and elements. if any thyristor module is not switched on when control command is sent.22. Possible protections operation reasons are provided. of power circuits and signals paths of these sensors. 8.22.13 "Rins. the appropriate LED indicator lights up.6 "Temp. its power circuits are faulty or sensor's signal path is damaged. ground fault of any of the VSD output phases. Appears in case of record ROM failure in UFCC. .22. failure" – failure of insulation resistance measurement channel.22.7 "H. there are protections.5 "Overheat" – protection operates.2 "THYR protection" – failure of thyristors of power rectifier. TCB power circuit. 8. Determined in VSD.22. 1 failure". In case of short circuit in the power circuit or overload on PdRK board.3 "SWB protection" – failure of IGBT modules in the switchboard. if insulation resistance between any of the output phases and cable sheath is below the acceptable value (35 kOhm)..10 "No protocol" – no record of VSD parameters measurement is kept. accordingly. approaches zero in the current parameters of current value. Main voltage is measured by UFCC controller. Appears during automatic testing of VSD before startup due to UFCC failure or when mains voltage range is exceeded. 27 . short circuit of the switchboard power circuit. ARGUS. brige failure" – failure of IGBT module in switchboard or short circuit in the switchboard power circuits. PWM modulation circuit is used to change output voltage in PMM VSD.1 "Ipwm sens. 8.22.1) 8.019 OM. conf. It means that load (motor) is not connected. shown on the display. 8.22. when "SWB protection" signal recurs (8. 8.12 "motor conn.22. Measuring resistors board in PMM VSD.22. This clause provides description of these protections. TsRKF 656437.4 "I GND Protection" – operates when the difference between the VSD output currents exceeds 10% from the nominal current I nom. sens. when the frequency converter heat sink temperature exceeds 95ºС according to the measurements of at least one of the two temperature sensors installed on the heat sink. sens. At that.8 "Choke failure" – short circuit of choke coil in PWM circuit. fail. PdRK driver board. Registered. choke inductance loss. Protection operates when the sensor. accordingly.11 "Comp. sens. A current sensor is used in this circuit.22. 8." – failure of PWM current sensor. included in the VSD. Protection operates in case of failure of any current sensors in output circuits of VSD. their power circuits. 20 "LLC failure" – fault in exchange between ARGUS and LLC in series 15 VSD.22 "WAFF failure" – failure of VSD operation modes waffer type switch on the front door.22.22. 8." – VSD insulation resistance measurement channel was not calibrated. when digital devices on the board do not respond when they are addressed via internal I2C interface.17 "I2Cpot failure" – no communication via I2C line in UFCC board with any of the integrated circuits of digital potentiometers. Occurs when connection with the LCD driver is lost. 8.19 "FC RS timeout" – timeout on exchange line LLC and ARGUS longer than 8 minutes (PMM VSD and longer than 15 min in series 15 VSD) 8. 8. 8. 8.22.019 OM.15 "Dig.22. 8. without determining its cause. fail.18 "FCC fault" – restarting of FCC processors with 40 seconds interval.14 "Rins. 8. Occurs when UFCC board is faulty. TsRKF 656437.16 "Analog FCC failure" failure of analog paths for normalization and conversion in UFCC board. 28 . FCC failure" – failure of digital analog section of FCC controllers.8.22.22.22.22.23 "LCD failure" – failure of ARGUS liquid crystal display.22. 8. RS failure" – fault in exchange between ARGUS and SCADA.21 "Rect. cal.22. Reference Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Rpm/H z rpm kOhm A V min % kW h MW•h V V % % motor rotation speed motor backspin speed Insulation resistance motor current Current date Linear network voltage Mode end time Number of starts motor load Power consumption motor run life Power consumption ARGUS software version Analog input 1 voltage Analog input 2 voltage Current imbalance Network voltage imbalance 0 65535 0 0 3500 0 0 65535 9999 0 150 0 01.4 29 .. % P.01. % Uin.kW motor run life. % TsRKF 656437.. and the settings given below in the list (up to the next asterisk) enable setting of the protection. imbal.2001 0 480 380 0 65535 0 0 65535 0 0 65535 0 0 65535 0 0 65535 0 0 65535 0 1 99. min Number of starts Load.01...2001 01.01. Parameters format in column “Menu item short name” corresponds to that of LCD display.9 Menu parameters list Table 9.1 Ainp.kOhm Imotor.rpm Rins.1. settings and commands. symbol «*» is related to the protection setting with an option to select an operation mode (Off/Interlock/AR).99 1407 0 10 0 0 10 0 0 100 0 0 100 0 8.2. the number of symbols «□» preceding the name stands for the number of jumps to the next menu level (from 1 to 4) before opening the list of parameters.1 contains the menu parameters list.V Mode end time. Menu item short name Parameter Measure ment unit Menu item full name Minimum Maximum value value Factory setting 0 9 <Current parameters> Speed Nturb. Table 9.019 OM.А Date U in. h W.2 I imbal.2001 01.MW`h Software version Ainp. Setting Setting Setting Setting Setting Setting Setting A s min motor overload protection motor overload current motor overload delay time for tripping motor overload AR delay time Number of OL AR motor underloading protection switching on motor underloading motor current Off/Interlock/AR 0 0 120 0 3000 1 3000 Off/Interlock/AR 0 9999 AR 9999 20 5 5 Off 30 .atm Pd.1 <Settings> 9.g Vibr.. Z.°C Td. Y.g Vibr.°С Ti.99 0 99.mA SS version Parameter Parameter Parameter Parameter Parameter ESP.t. min VSD run life. m3/day сosφ Pi.g Vibr. h Ileak.t.99 0 99.1 <Settings I> *OL I OL. protections number Startup run life. Parameter m3/day Parameter Parameter atm Parameter atm Parameter °C Parameter °С Parameter °С Parameter °С Parameter g Parameter g Parameter g Parameter g Parameter min h mA Output voltage imbalance Number of UL shutdown time intervals Number of OL shutdown time intervals Number of miscellaneous protections shutdown time intervals motor run life after the last startup motor idle time Current leakage SS version ESP system capacity сosφ Pump intake pressure Pump discharge pressure motor temperature Pump discharge fluid temperature Oil temperature Pump intake fluid temperature Vibration along axis X Root-mean-square vibration along axes X and Y Vibration along axis Y Vibration along axis Z Phase sequence 0 0 0 100 65535 65535 0 65535 0 600000 0 65535 0 99.99 -300 300 -32768 32768 -80 32000 -80 300 0 99. A OL dl.1. A TsRKF 656437. X.019 OM.g Phase seq. OL.99 0 99.°С Т oil. % UL number OL number Parameter Parameter Parameter % Misc.atm Tm.Uout. imbal.999 0 1000 0 999.. XY.°С Vibr.98 0 0 0 0 0 0 0 0 0 0 СВА 1 1. min OL AR number *UL I UL.1 9.999 0 65535 0 65535 0 0.trip.s AR dl.99 СВА/АВС 0 0 0 0 0 0 0 0 0 0. .AR dl. Umin.. imbal. imbal.t...s Uinp.s AR dl. % Uinp.% I imbal.trip..t.UL dl.s *Umin prot.dl..dl. min Setting Setting Setting Setting Setting Setting Setting A s min I imbal.t.. imbalance Umin protection delay time for tripping after start Network voltage imbalance delay time for 0 3600 Off/Interlock/AR 0 100 0 60 Off/Interlock/AR 100 125 0 60 Off/Interlock/AR 0 20 0 60 Off/Interlock/AR 0 20 0 60 0 300 0 3600 0 3600 5 AR 75 5 AR 110 5 AR 20 5 AR 20 5 5 15 5 31 .. s *GasLck removal dNgas.imbal.t.1. s min rpm s motor underloading delay time for tripping motor underloading AR delay time Number of UL AR Current imbalance protection Current imbalance Current imbalance delay time for tripping Current imbalance AR delay time Current imbalance delay time for tripping after motor start Overload delay time for tripping after motor start Underloading delay time for tripping after motor start Gas locks removal mode motor rotation speed change value motor high rotation speed keeping delay time 0 600 0 3000 1 21 Off/Interlock/AR 0 25 0 60 0 300 0 0 0 3600 3600 15 5 3600 5 Off 100 5 Off/On 50 1 40 60 3 AR 25 5 5 500 600 1.dl.AR dl.trip.imbal.t.% Umin dl. s Setting Setting s s UL dl.dl. s OL dl. min Umin dl.t. % Uout. min UL AR number *I imbal.s TsRKF 656437.t.trip.s Uout.s *Umax prot.s Setting Setting Setting Setting s 9.t.s *Uinp.pr. Uinp.2 Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting s % s % s % s % s min s s Umax protection delay time for tripping after start Protection switching on at low network voltage Minimum network voltage Umin protection delay time for tripping Protection switching on at high network voltage Maximum network voltage Umax protection delay time for tripping Network voltage imbalance protection Network voltage imbalance Network U imbalance delay time for tripping Output voltage imbalance protection Output voltage imbalance Uout. imbalance delay time for tripping AR delay time at Uout.t.t. s I imbal.019 OM.t..dl. imbal. UL. prot. Uout.rpm Ngas dl.t.trip.t. imbal.t.2 <Settings U> Umax dl.trip.s *Uout.trip. Umax. prot. % Umax dl.imbal...t.imbal. I imbal..t. min Setting CPG dl. PRG. Rins.time.trip.min AR number ImaxП Setting Setting min TsRKF 656437. protections AR number AR zer. Setting Setting Setting Setting Setting Setting Setting Setting N init. Setting Setting rpm AR dl. Initial rotation speed at controlled acceleration Imax protection or PMM has not accelerated Imax AR delay time and PMM has not accelerated Imax AR number and PMM has not accelerated 250 4200 1000 1000 <<</>>> MAN/AUT Off/On 30 500 Off/Interlock/AR 0 999 0 >>> MAN On 50 Off 0 0 0 300 60 0 999 15 0 0 9999 9999 Off/On Off/Interlock/AR 5 5 Off 1 1 1 On Off 500 4200 Interlock/AR 1500 AR Off/On 1 1 1 1 0 9999 9999 60 600 25 15 5 32 .overload. Time.min. prot. Mode *Rins.kOhm *CPGP CPG dl. accel.rpm *Imax prot. min *PRG Oper. *Instab.019 OM.t.tripping after start 1. min Rot. ImaxП.. min *D PROT. min Pause PRG...dir.t.. prot.3 9.3 <Other settings> Rpm/H z Rotation speed setting in rpm Time to reach preset rotation speed at min acceleration Rotation direction Operating mode Insulation resistance protection kOhm Insulation resistance setting Contact pressure gauge protection s Contact pressure gauge delay time for tripping AR delay time by a signal from the contact min pressure gauge Contact pressure gauge delay time for tripping s after start AR number at miscellaneous protections operation min Time to zero AR number meters Program mode enabling min Program operation time min Program operation pause min Alternative start time Door protection Instability protection Speed Setting Accel.t. min Sw on dl.t.s Setting Misc.t.1.s Setting Setting Setting Setting Setting Setting Setting CPG AR dl. Hz/s Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting rpm rpm h Hz Hz Hz/s Hz/s Backspin protection Backspin protection Start current at backspin below which start is permitted Backspin rotation speed below which start is permitted External operation locking Control Rotation speed change value at stirring Mode "Stirring" enabling Mode "Stirring" time Number of stirrings The first stirring frequency The second stirring frequency The first stirring rotation speed The second stirring rotation speed Off/On Off/On On Off 0 24.°C Setting Setting Setting Setting s min Тmotor dl.prot.trip.g Setting Setting Vibr.s Setting Setting Setting Setting Setting Setting s min TsRKF 656437.t. prot..99 0 0 3000 0 On by I 500 Off 1 1 50 50 5 5 Off/On by I/by U 60 1800 Off/On 1 99 1 9 30 200 30 200 1 15 1 15 1.atm Pmin dl....s Тmotor AR dl.t.t...4 <DHG settings> *Vibr. AR dl. dl.rpm *Stirr. Tstirr.. min *Pmin prot. g °C atm atm s Vibration protection Maximum vibration Delay time for tripping at too high maximum vibration AR delay time at too high maximum vibration Motor temperature protection Maximum motor temperature Delay time for tripping at maximum motor temperature AR delay time at maximum motor temperature low pump intake pressure protection Minimum pump intake pressure Maximum pump intake pressure for startup Delay time for tripping at minimum pressure Off/Interlock/AR 0 9999.t. dNstirr.lock.rpm *Ext... Рmin. min *Тmotor prot. Tmotor.1 0 60 0 300 Off/Interlock/AR 0 160 5 60 Off 125 0 60 0 300 Off/Interlock/AR 0 299.00 Off 0. Setting Setting Ibacksp. *Backsp.99 0 60 5 60 Off 40 80 5 33 .4 9. Hz F2stirr.decel.А Setting А Nturb.trip.t.trip.*Backsp.number F1stirr.g Vibr. Hz V1stirr.s Vibr.min Stirr..99 0 299.1. Ctrl.Hz/s V2stirr.atm Рmax..019 OM. °C Setting Setting s °C Tmax dl.Pmin AR dl.. Setting Setting s An.5 9.inp..t.s ТmotorMin.% UAn.s UAn.. min UAn.1.t.inp.1min.trip.t.t.s Setting Setting s s AR delay time at low pump intake pressure Delay time for tripping at minimum pressure after motor start motor minimum temperature enabling startup motor delay time for tripping at maximum motor temperature after motor start Delay time for tripping at vibration after motor start 0 3000 60 0 0 3600 160 5 120 0 0 3600 3600 5 5 1.1 AR number Setting Setting Setting Setting V s min UAn.1nom An..2min.2nom Setting Setting Setting % V V TsRKF 656437.inp..2 dl.1dl. s *UAn.inp..t.2max.inp.t..inp.inp.2 AR number Setting Setting Setting Setting V s min UAn.s Vibr. min Setting min Pmin dl.1 prot.t.% An.t.inp.1 dl..2 prot.5 <Analog inputs setting> *Uan.1max. s Setting s An.2dl.dl.019 OM.inp.% Setting % An.inp.t. Protection by a signal from analog input 1 Maximum level of protection actuation by analog input 1 Delay time for tripping by analog input 1 AR delay time for tripping by analog input 1 AR number by analog input 1 protection Delay time for tripping by analog input 1 after start Protection by a signal from analog input 2 Maximum level of protection actuation by analog input 2 Delay time for tripping by analog input 2 AR delay time for tripping by analog input 2 AR number by analog input 2 protection Delay time for tripping by analog input 2 after start Minimum level of protection actuation by analog input 1 Minimum level of protection actuation by analog input 2 Nominal level by analog input 1 Nominal level by analog input 2 Off/Interlock/AR 0 0 0 0 9999 120 300 9999 0 60 Off/Interlock/AR Off 0 5 1 5 15 Off -9999 0 0 0 99999 120 300 9999 0 5 1 5 0 60 15 0 9999 0 0 0 0 9999 9999 9999 0 0 0 34 .s UAn. min UAn.1 AR dl.inp.inp.trip.inp.% UAn. Setting An.inp.t.inp.inp.2 AR dl. trans.99 500 4200 500 4200 0 999. rpm Nmin adj. input 2 Communications module CPG availability DHG type Setting Parameter Parameter Parameter Setting Parameter External sensor unit availability Analog input 1 availability Analog input 2 availability Communications module Contact pressure gauge availability DHG type Meter types list No/Yes No/Yes No/Yes type No No No No/Yes No/Yes No/Yes No/Yes No/Yes Current selection No No No No No TsRKF 656437.6 <ADJ settings> *Adj. Lrunning.1.1. Ppump Adj.2 <External devices> Electric meter EFC availability SS availability Radio channel Setting Parameter Parameter Parameter Electric meter availability External frequency converter availability Soft starter availability Radio channel availability ESU availability An.3 <Settings> Well No.. m Usec...atm Nmax adj. rpm Iadj..6 9..А Setting Setting Setting Setting Setting atm rpm rpm А Automatic adjustment enabling Required pump intake pressure motor maximum rotation speed at adjustment motor minimum rotation speed at adjustment Current in current adjustment mode Parameters list 0 299. See the item ?Polyans k 3 9.99 by rotation speed 90 1500 1500 5 2 9.V Recording step. Field No.019 OM. min See the item Setting Setting Setting Setting Setting Setting m V min Well number Well pad number Field number Installation depth Transformer secondary winding voltage Parameter recording step 0 1 1 0 380 0 65535 65535 65535 9999 5000 9999 0 1 1 0 983 120 35 . input 1 An. Well pad No. meas.unit T meas. unit P meas... Off Drive engineering package configuration 9..01.01.trans.2029 00:00:00 23:59:59 Off/On Setting Setting Setting Setting 5 Variable speed drive controller type m3/day m V А kW Motor type ESP system capacity ESP head DHG type motor nominal voltage motor nominal current motor nominal power See the item See the item Types list 0 0 Motors list 2000 5000 DHG types list 100 4000 10 1500 1 500 0 0 See the item 380 18 8 36 . mA Uprim.5 <Date and time> Date Time Summer time/winter time Setting Setting Setting Current date Current time Daylight saving enabling VSD type Setting Motor type ESP. kVA Cross section.019 OM. mm2 Setting Setting mA V Leak current measured by Zenith type DHG Transformer primary winding voltage Setting Setting kVA mm2 Step-up transformer transformer nominal power Cable cross section 12 700 10 380 0 1 2000 200 0 1 Measurement units 9.А Pnom.4 <Measurement unit> N meas..kW TsRKF 656437.unit An.unit 8 380 Setting Setting Setting Setting Setting motor rotation speed measurement units Current protection measurement units Analog input protection measurement units Pressure measurement units Temperature measurement units 3.V PnomStep-up transformer.6 <DEP configuration> DHG type Unom. unit I meas.DHG Icons.inp.V 01. m Setting Setting Setting Inom. m3/day ESP head.2001 01..1 rpm/Hz А/% V/% atm / psi / MPa ºС / ºF rpm % % atm ºС 4 9. s Fnom. delay time for tripping Т2 characteristics Ampere-second.s I2 off. Тaccel. motor Fnom..s Jog numb. cutoff current I1 characteristics Ampere-second.s I3 off.99 0. s Starting voltage level motor start frequency PMM start mode ? “Jog” mode time Number of jogs Acceleration time Deceleration time Voltage waveform Current limiting in acceleration mode motor nominal frequency VSD input voltage Number of pole pairs Prohibited zone frequency 5. Fproh. Istart.1 Induction motor settings 9. Uwaveform *Iaccel..% Setting % T1off. 0 99.V Power factor Starting current level Maximum jamming time..s Decel.Hz VSD Uinp.Hz Setting Setting Setting Setting Setting Setting Setting Setting s Hz V *Jog Tjog.. V Setting Setting Setting Setting Setting Setting Setting Setting TsRKF 656437.A Setting A I1 off. /Off 1 20 1 15 5 125 ? ? 6clock/Sin/Sin+ Off/On 0 200 1 1 3 500 15 100 IFF 10 4 30 ? Sin+ On 50 see 380 2 30 37 .% Setting Setting s % T2off./Freq.82 100 5 100 03 50/60 100 4000 0 1 50 350 1 20 50 200 2 24 IFF/RIFF/Pfreq.s Ustart. cutoff current I3 characteristics Ampere-second. delay time for tripping Т1 characteristics Ampere-second. Prot. delay time for tripping Т3 characteristics motor nominal frequency Umotor+Ucable.% Fstart..Iidle curr.1 50 250 120 1 50 60 250 20 150 1 50 60 250 4 200 1 60 1 50 380 0.V COSnom.Hz Umotor+Ucab.% Setting Setting s % T3off.019 OM.. Hz Idle current Setting Setting Setting % s % Hz s s s Hz V Hz Ampere-second.6. cutoff current I2 characteristics Ampere-second.zone.% Tjamm.1 <motor settings> Pole pair numb.. 20 9999999 0 0 2 01. ms Jamm.3 <VSD technical data sheet> ARGUS No.201 0 38 . % motor start mode PWM frequency Network frequency Initial frequency after power off Protective tripping function Switchboard initial voltage Voltage ripple threshold on diode bridge Switchboard reference voltage Phase sequence 0 6 sine/6clock/6clock+/tr apez. % Accel.12. V Upulse.01.6.time. ms SS jamming Motor overloading by jamming Maximum starting current 5.019 OM.200 0 9999999 9999 9999 31. Setting Setting Setting Setting Setting Setting Setting Setting Setting kHz Hz V V V Setting Setting Setting Setting Setting Setting Setting 9.1 Sine 70 Common 1 % s ms s % % Soft starter operation mode SS starting moment SS acceleration time SS boost.start. V Phase seq.tripping Uswitch init. 70/80/90/100/105/112/120 Common/direct/revers e/swing/push 1 3 50/60 50 3 30 Off/On 10 600 10 99 0 500 СВА/АВС 0. time.. Hz Setting Hz Prohibited zone width Pumping type Ustart. TsRKF 656437. s Ijamm. kHz Fnetwork.zone.2 1 2 1 2 1 100 70 3 99 30 200 8 500 130 1 2 2 20 2 150 80 Technical data sheet Parameter Parameter Parameter Parameter Parameter ARGUS serial number Variable speed drive controller type ARGUS manufacturer's code ARGUS date of manufacture Variable speed drive serial number see 5 Off 100 20 200 СВА Soft starter settings 9.% Setting Setting % Power key modulation waveform Starting voltage level *Jog F PWM. 5.% Imax. ARGUS type ARGUS manuf.3 0 0 0 01.2 <SS settings> SS mode Start. Prot.6.Wproh..Hz Fpickup *Netw.. V Uswitch ref.. ARGUS date VSD No.moment. s Boost.01. 6.°С SDHG No. SDHG date Parameter Parameter SDHG pr.2 <SurfDHG> TsRKF 656437.200 0 9999 9999 31.4.VSD type VSD manuf.5 Parameter g SDHG manuf.4.Max. m3/s SurfDHG manuf.019 OM. Parameter Parameter Parameter PpumpMax.201 9. that can be measured by flow meter Minimum ESP capacity. °C Parameter ºС Tfluid Max.4 <DHG technical data sheet> DHG technical data sheet 5. Parameter Parameter ºС 99.6.6.12.6 0 999.01.4 9.g Information on DHG submersible part Maximum vibration measured by DHG 5. that can be measured by flow meter DHG surface unit manufacturer's code See the item 0 0 0 0 0 0 0 Information on DHG surface part 9.99 0 0 65535 0 0 0 65535 3 0 0 See the 39 .01.20 9999999 0 2 01.2001 31.2029 DHG submersible part data exchange protocol number 1 255 DHG submersible part design type code 1 255 Software version for DHG submersible part 0 65535 Maximum pump intake pressure that can be measured by DHG 0 65535 Maximum motor temperature that can be measured by DHG -32768 32768 Maximum pump intake fluid temperature that can be measured by DHG -32768 32768 DHG submersible part number 0 9999999 0 2 Pdisch.atm Parameter atm ESPmax.1 <SDHG> Vibr.12. m3/s Parameter m3/day ESPmin. Parameter m3/day Parameter Maximum pump discharge pressure Maximum ESP capacity. No. 0 5. SDHG design SDHG software No.99 DHG submersible unit manufacturer's code Manufacturers list SDHG date of manufacture 01. VSD date Note VSD type as per the manufacturer’s classification VSD manufacturer's code VSD date of manufacture Note Parameter Parameter Parameter Parameter 0 0 01.01.atm Parameter atm TmotorMax.max. Pump intake/discharge fluid temperature Availability of the sensor. X sensor Vibr. XY sensor Rins.s T par. SurfDHG date SurfDHG pr. Root-mean-square vibration along axes X and Y Availability of the insulation resistance sensor 40 .2029 1 255 1 255 0 65535 0 65535 0 65535 0 65535 0 ? 0 0 0 0 0 0 0 65535 0 -32768 32768 0 5. ms Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter ms s ms TmodeRins. ms Т meas. ms Parameter ms Tfluid disch. Max.019 OM. Rins. sensor Parameter Parameter TsRKF 656437.12. SurfDHG design SurfDHG software No. Vibration along axis Z Availability of the sensor.7 Availability of pressure sensor on the pump intake Availability of motor temperature sensor Availability of pump intake fluid temperature sensor Availability of the sensor. Vibration along axis Y Availability of the fluid flow sensor Availability of the sensor The pump discharge pressure Availability of the sensor. meas. DHG surface part number SurfDHG date of manufacture DHG surface part data exchange protocol number DHG surface part design type code Software version for DHG surface part Single bit transmission period Insulation resistance measurement time DHG parameters measurement time Time to switch to insulation resistance measurement mode Maximum pump discharge fluid temperature that can be measured by DHG 0 9999999 01.4. Vibration along axis X Availability of the sensor.°С Parameter °С 9.. T bit. Y sensor Flow sensor Parameter Parameter Parameter Parameter Pdisch.3 <DHG configuration> DHG sensors configuration Ppump sensor Tmotor sensor Parameter Parameter Tfluid pump sensor Vibr.. No.item SurfDHG No. Z sensor Parameter Parameter Vibr.6.. sensor Parameter Tfluid pump discharge sensor Vibr.2001 31.01. SCADA type Variable speed drive address in the telemetry system baud Data exchange rate Data exchange protocol number in the telemetry SCADA list SCADA address list 0 Rate list Protocols list 4 3 See the item See the item See the item See the 41 .8 <Calibration> Rins.1 9.7 <Commands> Delete the history Unlocking Factory settings Test Meters reset Phasing Record Startup <Change password> Command Command Command Command Command Command Command Command Delete the history Unlocking Factory settings restoration VSD test All meters reset Testing phase sequence on VSD output Record Startup Change password 6. kOhm Parameter Setting kOhm kOhm Insulation resistance Rinsulation correction.Ileak sensor Toil sensor Parameter Parameter Availability of leak current sensor Availability of oil temperature sensor 6 9.7. kOhm 0 0 9999 9999 8 9.9 <SCADA> SCADA type Setting SCADA address Setting Baud-rate Protocol # Setting Setting TsRKF 656437.019 OM. Correction.1 <Change password> Password 1 Password 2 Setting Setting Operator password Engineer password 0 0 9999 9999 0 0 7 9. 2 9.1 Wa+d.kVrА*h Parameter Wр-d.019 OM.1 9. Current day. Parameter kWA* h Previous day. Reactive energy.10 <Language> Russian English 255 Off/On Setting Setting Indicator brightness Indicator contrast 10 0 0 255 255 70 100 11 9.1.12 <Electric meter> 9.kVrА*h Parameter kWA* h kWA* h kVrA* h kVrA* h Current day.kWA*h Parameter Wa-d.12. Conducting direction. Reverse. Reactive energy.kWA*h Parameter Wр+d.kWA*h TsRKF 656437. Active energy. Conducting direction. Current day. Active energy. Current day. Active energy. 0 999999 0 42 . Conducting direction. Reverse.12.Recording from SCADA system Recording from SCADA Setting Parameter Parameter 9 Russian-language menu selection English-language menu selection ARGUS LCD 9. 0 999999 0 0 999999 0 0 999999 0 0 999999 0 11.12.1.1 <Readings> Main readings of electric meter 11.11 <LCD> Brightness Contrast item On Language selection on LCD 9.2 <Previous day Wa+pd.1 <Current day> Electric meter data on current day 11.1.1. 019 OM. Previous month.MVrА*h Wр-y. Reactive energy. Active energy. Conducting direction. Current month. Reactive energy.5 <Current year> Wa+y. Current year.1. Current month. Previous day.MVrА*h Parameter MVrA*h Parameter MVrA*h Current month.MWA*h Parameter MWA*h Parameter MWA*h Wр+y. 0 0 65535 65535 0 0 0 0 65535 65535 0 0 43 .MWA*h Wa-y. Reverse.1. Active energy.12.MWA*h Parameter MWA*h Parameter MWA*h Wр+m. Reactive energy. 0 0 65535 65535 0 0 0 0 65535 65535 0 0 11. 0 999999 0 0 999999 0 Previous day.MVrА*h Parameter MVrA*h Parameter MVrA*h TsRKF 656437. Reverse. Current month. Active energy. Conducting direction.1.kWA*h Parameter Wр+pd.MWA*h Parameter MWA*h Parameter MWA*h Wр+pm. Active energy.4 9.1. Active energy.3 9. Reverse. Reactive energy. Conducting direction.MWA*h Wa-m. Reactive energy.1. Reactive energy. Active energy.MVrА*h Wр-pm. Previous month.kVrА*h Parameter kWA* h kVrA* h kVrA* h Previous day. Conducting direction. Reverse. 0 0 65535 65535 0 0 0 0 65535 65535 0 0 11. Reverse.kVrА*h Parameter Wр-pd. Conducting direction.12. Conducting direction.1.MWA*h Wa-pm. Reactive energy. Previous month.MVrА*h Parameter MVrA*h Parameter MVrA*h Previous month. Active energy. Current year. Reverse. Conducting direction.3 <Current month> Wa+m.5 9. Reverse. Current year. Current year. Reverse.MVrА*h Wр-m.12. 0 999999 0 11. Reactive energy.4 <Previous month> Wa+pm.Wa-pd. Reactive energy. Current day.kVA*h Parameter kVA*h WрdIV.12. Reactive energy. Previous day. Quadrant IV.kVA*h WрpdIII. Reverse. Previous day.1 <Current day> Electric meter data on current day 11.1.2 <Quadrants> Electric meter quadrants 11. Conducting direction.2. Reactive energy.2 9. Current day.2.2 <Previous day> WрpdI. Reverse.MVrА*h Parameter MVrA*h Parameter MVrA*h Previous year.12. Reactive energy.6 9.2. Previous year.2.2.3 44 . Parameter Parameter Parameter Parameter kVA*h kVA*h kVA*h kVA*h Previous day. Reactive energy. Reactive energy. Quadrant I.1.1.1. Electric meter data on current month 11.12.kVA*h Current day.kVA*h Parameter kVA*h WрdII. Reactive energy.12. Previous year. 0 0 0 0 0 0 0 0 0 0 0 0 Electric meter data on previous day 9.7 <Total> 9. Active energy.MWA*h Wa-py. Conducting direction.7 9.kVA*h Parameter kVA*h 9.12.kVA*h WрpdIV.kVA*h Parameter kVA*h WрdIII. Quadrant IV.kVA*h WрpdII. Previous day. Quadrant II.3 <Current month> TsRKF 656437.2. Active energy.019 OM. 0 0 65535 65535 0 0 0 0 65535 65535 0 0 11. Current day.2 0 0 0 0 0 0 0 0 0 0 0 0 11. Quadrant III. Quadrant I. Reactive energy.12. Quadrant II.MWA*h Parameter MWA*h Parameter MWA*h Wр+py.MVrА*h Wр-py. Reactive energy. Previous year.1 WрdI.6 <Previous year> Wa+py. Reactive energy.11. Quadrant III. MVA*h WрpmIII. Reactive energy.2. Parameter MVA*h Quadrant IV. Current year. Reactive energy. Reactive energy. Current month.MVA*h WрyIV.12.4 0 0 0 0 600000 600000 600000 600000 0 0 0 0 Electric meter data on current year Current year.MVA*h WрyII. Quadrant II.MVA*h WрmII. Reactive energy. Reactive energy. Parameter MVA*h Previous year. 11. Quadrant I.MVA*h WрpmIV. 11.4 <Previous month> WрpmI.2. Previous month.MVA*h Current month. Reactive energy.WрmI. Previous month. Parameter MVA*h Quadrant II. 9. Reactive energy. Reactive energy. Reactive energy. 0 600000 0 0 600000 0 0 600000 0 0 600000 0 Electric meter data on previous month 9.MVA*h TsRKF 656437.019 OM. 11. Reactive energy.MVA*h WрpmIII. Quadrant II. Reactive energy.6 0 0 600000 600000 0 0 45 . Quadrant I. Current year. Quadrant I.6 <Previous year> WрpyI.MVA*h WрmIII. Previous month. Parameter MVA*h Quadrant IV.12. Current month. Parameter Parameter Parameter Parameter MVA*h MVA*h MVA*h MVA*h Previous month.2. Parameter MVA*h Quadrant III.MVA*h MVA* Parameter h MVA* Parameter h Current month. Reactive energy. Parameter MVA*h Quadrant III.MVA*h WрpyII. Reactive energy. Quadrant IV. Quadrant III.MVA*h WрmIV.2. Parameter MVA*h Quadrant I.2.5 <Current year> WрyI.5 0 600000 0 0 600000 0 0 600000 0 0 600000 0 Electric meter data on previous year Parameter MVA*h Previous year. Reactive energy.MVA*h 9.2. Current year.MVA*h WрyIII. Quadrant II.12. meter software Voltage transformation ratio Current transformation ratio Parameter Parameter Parameter Parameter Electric meter design version Serial number Electric meter date of manufacture Electric meter software version 11.number Date of manuf.12. Quadrant II.MVA*h Wa+св.MVA*h WрсвIV.2001 01. Parameter MWA*h The whole period. Parameter MVA*h Quadrant IV. 0 0 600000 600000 0 0 11.01.MVrА*h Wр-св. El.MVA*h Parameter MVA*h The whole period.12.4 0 600000 0 600000 0 01.01. Conducting Parameter MWA*h direction.WрpyIII. The whole period.MVA*h Parameter MVA*h Previous year. Parameter MVA*h Previous year. Parameter MVA*h The whole period. Reverse.7 0 0 600000 600000 0 0 0 600000 0 0 600000 0 0 0 65535 65535 0 0 0 0 65535 65535 0 0 11.7 <Total> Electric meter data (total) WрсвI. Reactive energy. Reactive energy.3 <Settings> U trans. Reverse.MVA*h WрpyIV. The whole period. Reactive energy. Quadrant III. 9. The whole period. Conducting Parameter MVrA*h direction.01.3 9.2. Active energy.MVrА*h The whole period.MWA*h Wр+св. Parameter MVA*h Quadrant III.2. Active energy. Parameter MVrA*h The whole period. Reactive energy.4 <Information> Design version Ser. Reactive energy. Quadrant I. Quadrant IV. Reactive energy.ratio I trans. Reactive energy. Reactive energy.019 OM.MVA*h WрcвII.2001 0 3 46 .2001 01. WрcвIII. 0 0 9999 9999 0 0 Electric meter data 9.MWA*h Wa-св.ratio Setting Setting TsRKF 656437.12. ph1 Parameter Pа.ph3.0000 Electric meter power 9.9.ph1.2001 31.2029 00.01. 2II.kW Pr.12. 3-III.sum Pа.ph2.kW Pr.5.kVr Pc.kVr Pc.12.5.ph2. 3-III.ph3. 2II.sum.12.sum.3 47 .kVA Parameter Parameter Parameter Parameter kW kVr kVA Pquadr.ph2.kVA Parameter Parameter Parameter Pquadr.12.3 <Other> 11.ph3.2 <Power> 9..5.kVr Pc.ph1. 2II.5 11.2 Instantaneous active power by phase sum Instantaneous reactive power by phase sum Instantaneous complex power by phase sum Instantaneous power quadrant by phase sum (1-I. 3-III.ph1. 4-IV) Instantaneous active power by phase 3 Instantaneous reactive power by phase 3 Instantaneous complex power by phase 3 Instantaneous power quadrant by phase 3 (1-I.kVA Parameter Parameter Parameter Parameter Pquadr.00.5 <Parameters> 9.12.kW Pr.ph2 Pа.kVA Parameter Parameter Parameter kW kVr kVA Pquadr.019 OM. 4-IV) 0 0 0 600000 600000 600000 0 0 0 0 0 0 0 600000 600000 600000 600000 0 0 0 0 0 600000 0 Other parameters of electric meter 0 11.ph3 Parameter TsRKF 656437. 2-II.5. 4-IV) Instantaneous active power by phase 1 Instantaneous reactive power by phase 1 Instantaneous complex power by phase 1 Instantaneous power quadrant by phase 1 (1-I.5.1 <Basic> Date Time Parameter Parameter Electric meter current date Electric meter current time Pа. 4-IV) 0 0 0 600000 600000 600000 0 0 0 0 0 0 0 600000 600000 600000 600000 0 0 0 0 0 600000 0 Instantaneous active power by phase 2 Instantaneous reactive power by phase 2 Instantaneous complex power by phase 2 Instantaneous power quadrant by phase 2 (1-I.sum.1 Basic parameters of electric meter kW kVr kVA kW kVr kVA 11. 00:00:00 23:59:59 00:00:00 01.kW Pr.kVr Pc.5. 3-III. Met.2.V Uph.unbal.1.coef. V V V V V V V А А А Network frequency Internal temperature.2_3 dist. Phase voltage by phase 1 Phase voltage by phase 2 Phase voltage by phase 3 Interphase voltage by phases 1-2 Interphase voltage by phases 2-3 Interphase voltage by phases 1-3 Direct sequence voltage Phase voltage harmonicity distortion coefficient by phase 1 Phase voltage harmonicity distortion coefficient by phase 2 Phase voltage harmonicity distortion coefficient by phase 3 Sine interphase voltage distortion coefficient by phases 1-2 Sine interphase voltage distortion coefficient by phases 2-3 Sine interphase voltage distortion coefficient by phases 1-3 Negative sequence voltage unbalance factor Zero sequence voltage unbalance factor Current by phase 1 Current by phase 2 Current by phase 3 Current harmonicity distortion coefficient by phase 1 Current harmonicity distortion coefficient by phase 2 Current harmonicity distortion coefficient by phase 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 . Parameter Uph.. Parameter Iph.Upwr.V Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Uph.А Parameter Parameter Parameter Parameter Parameter Parameter Iph.019 OM. Parameter Uph.3 dist.V Uph. temp.2 dist.V Uph.factor Uzer.1 dist.V Uph.1_2 dist.coef. Parameter Uph.1.2.3.А Iph. Uneg.1 dist.coef.coef.coef.V Uph. Parameter Iph.coef.freq.1_3 dist. Parameter TsRKF 656437.coef.V Udir.coef.А Iph. Parameter Uph.2_3.3 dist.2 dist. Parameter Uph.coef.1_3.3.1_2.factor Iph.unbal. Uph. 2001 31.Ineg.1 0 200 0 1:01:01 23:59:59 1:01:01 0 200 0 0 7 0 0 200 0 01.V I UL Startup.14.3 Parameter Parameter Parameter Parameter Parameter Parameter Negative sequence current unbalance factor Zero sequence current unbalance factor Active power factor (cos φ) by phase sum Active power factor (cos φ) by phase 1 Active power factor (cos φ) by phase 2 Active power factor (cos φ) by phase 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 9.p/min Stop caused by 9.2029 13.load.2 49 .1 сosφ ph.13 <Startup parameters> Startup date Imotor startup.% Aripple.rpm LOADmin.01. time Fstab.019 OM.1 <Parameters> St.01.unbal.14 <Intelligence> Parameters 9. % St.rpm Condition LOADmode StabDate Fstep.01.14.factor Izer.startup.unbal.А Uinp.2001 31.factor сosφ sum сosφ ph.1999 01.2001 -300 300 60 0 100 30 0 200 0 0 200 0 0 0 0 13.11.2 сosφ ph.% Fripple. % Parameter Parameter Parameter Setting Parameter А V % % Startup date 01.2011 motor startup current 0 65535 0 Startup Uinput 0 65535 0 Motor underloading current.% Startup load.12. % of nominal startup 20 100 40 Startup motor load 0 65535 0 13 9. Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter % rpm rpm % Stable load Stable time Stable frequency Algorithm current condition Current timer Stab date Motor frequency variation step in the algorithm Minimum permissible load in the algorithm Ripple amplitude Ripple frequency Stop caused by Auto commissioning 13.2 <Commissioning> TsRKF 656437.12. 13. rpm dFmin.мин Setting min Search dl..t.rpm dLOADmax. rpm rpm rpm rpm motor rotation speed variation step Maximum permissible deviation of average load from a stable value Minimum average load variation rate Number of instantaneous load measurements to calculate average load Number of instantaneous load measurements to calculate an initial array Long frequency variation delay time while searching Short frequency variation delay time at monitoring Short frequency variation delay time while searching Long frequency variation delay time at monitoring Maximum number of F drop cycles when Linst. is lower than Lmin Maximum number of F drop cycles due to ripple Step adjustment factor at load drop Step adjustment factor Step adjustment factor Step adjustment factor Step adjustment factor Rotation speed variation step Maximum rotation frequency step Minimum rotation speed step Maximum rotation speed Minimum rotation speed 6 300 30 0 1 50 100 5 1 0 600 50 0 600 10 0 65535 600 0 65535 5 0 65535 10 0 65535 24 0 0 1 0 0 0 0 255 255 100 10 10 10 10 5 5 2 2 2 2 2 Off/On 6 6 60 60 Off 600 300 3500 6000 30 6 3000 600 50 ..2 Setting Non-stable dl. min Setting h Cmmax Cpmax Kf_lim k1 k2 m1 m2 Setting Setting Setting Setting Setting Setting Setting stepFaut dFmax.019 OM.t. rpm Setting Setting Setting Setting Setting TsRKF 656437.3 9.14.мин Setting min Optim dl.t.t.%/min rpm Setting Setting % %/min NMeas.% LOAD'.1 Setting NMeas. rpm Fmin..3 <Optimization> Fstep. min Setting min Stable dl. rpm Fmax.. s *Pulses Setting Setting Setting *Startup 9.6 <Working submergence> Setting *Working submergence Lperf.s *Gas lock Setting Setting Setting % sec Minimum permissible load Minimum permissible load adjustment factor Minimum difference between stable and minimum persmissible load values Minimum permissible load variation delay time Gas lock prevention 13. Off/On 0 65535 Maximum permissible ripple amplitude at gas instantaneous load Maximum permissible ripple frequency at gas pulse/min instantaneous load min Frequency variation delay time at ripple Ripple prevention % 13.5 5 0 50 65535 10 5 Off Off/On Pulses 9.t.. Krsmax Setting Setting *Optimization Setting Mode selector switch to increase rotation speed step Maximum increment of speed variation step Mode selector switch to optimize well production rate depending on load Off/On Off Off Gas lock 9.14..p/min Pulse dl.14.4 <Gas lock> LOADmin. m Lpump.% LOADfactor Setting Setting % dLOADmin.. min.1 100 1 30 0.019 OM.% LOAD dl.5 0 0 0 Well startup 100 5 60 65535 Off/On 5 120 Off Off/On Off Working submergence meter meter meter meter Working submergence Perforation top depth along the well bore Perforation top depth in the vertical plane Pump suspension depth along the well bore 13.14.5 <Pulses> Agas.4 0 0.t.% Setting Fgas.6 Off/On 100 100 100 5000 5000 5000 Off 2300 2000 1900 51 . m Setting Setting Setting Setting TsRKF 656437. m Hperf.*Fstep increm. m3/day Dyn..adapt.мин Setting Setting AShake.Hpump.water. FadaptQ КadaptL Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Min..m3/day Qmax.fluid.92 100 100 5 Pump shaking 9.. m Pbuff. Pump suspension depth in the vertical plane Killing fluid density Produced water density Oil density water content Gas ratio Saturated pressure Nominal pump flow rate Minimum recommended pump flow rate Maximum recommended pump flow rate Minimum recommended pump flow rate Maximum recommended pump flow rate Step-up transformer transformer efficiency Well production rate adaptive factor Level adaptive factor Minimum permissible pump working submergence Buffered pressure Annulus pressure VSD output filter efficiency Liquid rate Dynamic level Calculate adaptive factors Rotation speed variation delay time Shake prevention Shake prevention mode enabling delay time Maximum permissible ripple amplitude at shake % instantaneous load Maximum permissible ripple frequency at shake pulse/min instantaneous load min 13.March 0..factor Level dl.7 0 Off/On 65535 Off 5 0 100 5 0 60 5 52 .4 0.m3/day Kflow_min Kflow_max Step-up transformer effic. subm..14. level. m >Calc. dl. Q...97 1 1 10 12 12 0.7 0.p/min Setting TsRKF 656437.t.atm VSD output filter effic.% Gas ratio.019 OM..atm Pannul.t.4 5000 1400 1400 1000 100 500 750 1000 1000 2000 1 2 1 2 2 1900 1070 1050 850 0 100 150 80 60 100 0.kg/m2 Rprod.% Setting Fshake.7 0 0 0 0 1000 100 500 1 5000 7000 3 65535 300 0 100 0.kg/m2 Water.. m3/m3 Psatur. min Setting Setting Setting Setting Setting Setting Setting Setting meter kg/m² kg/m² kg/m² % m3/m3 atm m3/day m3/day m3/day m3/day meter min 100 1000 1000 600 0 1 1 15 10 20 0 1 0.7 <Shake> *Shake Shake.kg/m2 Roil.m3/day Qmin. m Rkill.atm Qnom.7 01. min Yes/No Off/On Off/On 380/480 100 3 1 Off/On IP43/IP54 0 0 1 No On Off 380 1000 100 15 Off IP43 4 6 2 400 8 5 1 1 1 Correction coefficients 9. EMF test Inp...1 <Coefficients> Coefficient Iu Coefficient Iv Coefficient Iw Coefficient Ua Coefficient Ub Coefficient Uc V rpm Availability of wafer type switch Nominal EMF test enabling FCC input filter Supply voltage selection Overcorrection rate Number of overcorrections at instability Time to zero overcorrection meter PWM current sensor protection switching on VSD design version by enclosure type PU controller КУД test mode Menu appearance Setting Setting Setting Setting Setting Setting Correction coefficient Ia Correction coefficient Iv Correction coefficient Iw Correction coefficient Ua Correction coefficient Ub Correction coefficient Uc 14.min Setting min Time interval between stirring cycles 0 65535 5 Intelligence 9.1 14. VSD enclosure type PU controller Test mode Menu appearance Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting Setting TsRKF 656437.14. zer.1 <Settings> Wafer type switch Nom. rpm Number of overcorrections Overcorr.1 9. m IPWM sens.1.15.019 OM.1 0 0 0 0 0 0 10 10 10 10 10 10 1 1 1 1 1 1 53 .1.1 <Variable speed drive> <Variable speed drive> 14. filter Unetwork Nmax-Nmin.1.15 <Service> 9.8 14 9.1.15. prot.1.1.8 <Intelligence> 13.15.Tstirr. 1.2.inp. Uout.V PhysMaxUАn.1.1.V PhysMaxUАn.9 No 0 0 0 0 14. I overload. max prot.1. failure Dig. Not accelerated EMF norm.1.3 9. failure IPWM sens.1. FCC fault Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Network maximum voltage protection Maximum output voltage protection motor current overload motor has not accelerated EMF normalizer failure FCC digital part failure FCC analog part failure Diode bridge half-bridge failure Choke failure Heat sink overheating Network voltage protection Backspin FCC fault TsRKF 656437.15. Setting Correction coefficient Rins.V 0 54 .1.inp2.2 <Condition> Temp.sens.inp. FCC failure Analog FCC failure Half-bridge failure Choke failure Overheat Unetwork protection Backsp.inp.2 <Analog inputs> NO NAME PhysMinUАn. fail.1.2 0 0 0 0 No/Yes 999.15. Setting Setting Setting Setting Setting V V V V Availability of analog inputs Physical minimum to analog input 1 Physical maximum to analog input 1 Physical minimum to analog input 2 Physical maximum to analog input 2 1 14.9 999.V PhysMinUАn. THYR protection SWB protection PWM protection I GND protection Imax protection Condition Condition Condition Condition Condition Condition Condition Temperature sensor failure PWM current sensor failure THYR protection SWB protection PWM protection I GND protection Imax protection Unetwork max prot.019 OM.9 999.1.Coefficient Rins. 10 Analog inputs 9.9 999. min protection SS RS failure SS power failure A thyristor ShC B thyristor ShC C thyristor ShC Load ShC Jamming Contactor failure LCD failure Backsp. prot.pulse LLC fault Flow rate sensor failure SS Imax protection Rins. Clock failure LLC RS failure Rect.failure An. sens. Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition FC RS timeout No DEP configuration Phase break Instab.2 min prot. on No synch. OL UL Door protection Press. Umin protection Umax protection I imbal.FC RS timeout No DEP configuration Phase break Instab.RS failure Pwr.Inp. Operation locking Rins. protection SS RS failure SS power failure A thyristor ShC B thyristor ShC C thyristor ShC Load ShC Jamming Contactor failure LCD failure Backsp.failure An. gauge prot.019 OM. Operation locking Rins.RS failure Pwr. prot.Inp.pulse LLC fault Flow rate sensor failure SS Imax protection Rins. OL UL Door protection Press. protection 55 . gauge prot. prot. on No synch.2 min prot. sens. protection TsRKF 656437. prot. Umin protection Umax protection I imbal. Clock failure LLC RS failure Rect. protection Uout.01.А Iv.1 min prot. An.15. U PMM. meter RS failure No el. ARGUS date Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Soft. ARGUS number Parameter atm/mi n А А А V V V TsRKF 656437. An.11. kW NOM.2 0 0 0 0 255 65535 65535 65535 0 0 0 0 56 .99 0 0 5000 0 0 5000 0 0 5000 0 01. ARGUS letter Parameter Parameter P'adj.2 max prot. meter Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Uinp.protection TLCD sensor failure I2Cpot failure WAFF failure An.Uinp.2001 31. Soft.protection TLCD sensor failure I2Cpot failure WAFF failure An.atm/min Iu.2 max prot.2011 0 429496729 0 <Motor> 9. imbal.2011 0 255 0 Current pressure variation rate at adjustment U phase current V phase current W phase current Phase A voltage Phase B voltage Phase C voltage Software version generation date ARGUS software version number as per flow chart 0 99.Inp.Inp. P PMM.А Ua.Inp. imbal.1.2 9. imbal..Inp. 01.99 0 0 999.12.2 <Motor> Settings packet NOM.А NOM. An.3 <Parameters> SoftARGUS progr.10. imbal.01.V Soft.99 0 0 999.2001 31.1 max prot.V Uc. An.Inp.019 OM. Electric meter RS failure No protocol for electric meter 14.2029 13. El. I PMM.2029 06.1.V Ub.15.protection Uout.V ARGUS firmware installation date ARGUS software letter Parameter Parameter Parameter - А kW V Parameter FCC_packet Parameter FCC_In Parameter FCC_Pn Motor nominal voltage 14.12.1 min prot.1 max prot.А Iw.Inp.99 0 0 999. A T2off. I1 off.3.А Parameter А TsRKF 656437.3.POLE PAIR NUMB..Hz Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter А s А s А s rpm rpm Hz Parameter FCC_Kpp Parameter FCC_i1off Parameter FCC_t1off Parameter FCC_i2off Parameter FCC_t2off 0 0 0 0 0 255 255 255 255 255 1 0 0 0 0 Parameter FCC_i3off Parameter FCC_t3off Parameter FCC_Nmin Parameter FCC_Nmax Parameter FCC_kfFormaI 0 0 1 1 0 255 255 65535 65535 99. A T1off.rpm Uab.V Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter rpm V V V °С °С V V V Iu.В Uvw.V Uca. A T3off.99 0 0 100 7200 0 Parameter FCC_tipSU Parameter FCC_tipVD motor nominal frequency 1 0 0 255 255 1 1 0 0 9.1 <Parameters> Parameters 14.1 N.V T1.15.s Parameter Parameter Parameter Parameter Parameter I3 off.019 OM.°С Uuv. Parameter FCC_Nvd Parameter FCC_U1in Parameter FCC_U2in Parameter FCC_U3in Parameter FCC_T1 Parameter FCC_T2 Parameter FCC_U1out Parameter FCC_U2out Parameter FCC_U3out Parameter FCC_I1 0 0 0 0 -128 -128 0 0 0 0 65535 65535 65535 65535 128 128 65535 65535 65535 0 0 0 0 0 0 0 0 0 0 57 .3 <PU controller> <PU controller> 14.3 9.°С T2.s Nmin.V Ubc.V Uwu. rpm I form factor FCC variable speed drive type PMM FCC type motor Fnom. rpm Nmax.15.s I2 off. 15.2001 01:01:01 0 0 0 14. Uout.01.А Iw. 0 0 0 0 0 01. fail. 2 failure IPWM sens. V Uswitch.01. Soft.sens.А А А А V V V V Parameter FCC_I2 0 Parameter FCC_I3 0 Parameter FCC_Ivd 0 Parameter FCC_poN 0 Parameter FCC_logN 0 Parameter FCC_logDate 01.01. V Error UVSD.3.V КУД flags Upulse.V Stirring Software version Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Condition Parameter Software date CRC Rot. Result КУД signals Parameter Parameter Parameter Parameter Parameter Imotor. 2 failure *PWM current sensor failure THYR protection SWB protection PWM protection I GND protection Imax protection Unetwork max prot. max prot.sens.2 <Condition> Temp.А Software version FCC No. THYR protection Condition Condition Condition Temp.2001 Effective linear U of the first harmonics on output 0 КУД flags 0 Voltage ripple on diode bridge 0 Switchboard voltage 0 Error code 0 Effective linear U on VSD output 0 Stirring mode 0 Software version 0 01. Condition Condition Condition Condition Condition Condition SWB protection PWM protection I GND protection Imax protection Unetwork protection Uout.Iv.2 58 .019 OM.2001 КУД software date 01:01 CRC 0 Rotation direction 0 Test result 0 КУД signals 0 Condition 9.01. protection TsRKF 656437.3. FCC date Umotor..2005 0 0 0 0 0 0 0 01.dir. sens.conf. Right rot.wind.3.err.wind.wind. min PU controller operation in independent mode 0 1 0 14. No IPMM Usec. No IPMM Usec.err.3 <Indepen.3.max Left rot. Right rot.4 <Tindepen.4 <DHG> TsRKF 656437. Dig.4 59 .operatio on.wind. Not accelerated motor conn. Temp. Not accelerated motor connection error Dig.conf. FCC failure Analog FCC failure Half-bridge failure Choke failure Overheat U network min U network max Backsp.3 PU controller independent operation time 15 99 15 14.sens.min Usec. FCC fault FC RS timeout No DEP configuration Phase break No protocol Comp.15. 1 failure Test software 9. 1 failure Test software Condition Condition Temp.I overload.15.operation > Setting 9. Left rot. Usec.m> Setting 9.3.15.019 OM.3.4 <DHG> 14. FCC fault FC RS timeout No DEP configuration Phase break No protocol Comp. FCC failure Analog FCC failure Half-bridge failure Choke failure Overheat Unetwork Unetwork Backsp. Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition Condition I overload.err. 4.3 <Parameters> % atm min atm/mi n 14. Z sensor failure Condition Condition Condition Condition Condition Condition Condition Condition Tdisch. Y sensor failure Vibr. 60 . Pump intake/disch.99 2 20 0..4.atm/min Setting Rpm increment percent at adjustment Permissible deviation from preset pressure Adjustment step Pressure variation rate at adjustment Condition 9.4.15. VIBR. Vibr.4.01 99. PROT. Vibration along axis X Sensor failure. sensor failure Tmotor sensor failure Tfluid pump sensor failure Vibr. % dPadj.9.15. Condition Condition Condition Condition SDHG failure Ppump sensor failure Pdisch. Communication failure with DHG submersible part Failure of pressure sensor on the pump intake Failure of pressure sensor on the pump discharge Sensor failure Motor temperature Sensor failure Pump intake fluid temperature Sensor failure..1 0 0 1 99.min Setting Setting Setting P'adj. Рpump min prot.4. P PUMP PROT.2 DHG failure T RPM PROT.03 14.4. max prot.019 OM. Vibration along axis Y Sensor failure. Vibration along axis Z Sensor failure.99 999.1 <Adjustment settings> Adjustment settings dNadj.99 0.2 <Condition> DHG failure Тrpm max prot. fluid temperature DHG service data 14.15...99 9999 0.atm dТadj. X sensor failure Vibr. sensor failure Condition 9.3 DHG version TsRKF 656437. Command ARGUS programming Select No.019 OM. Select No.1 <Read history> Command Please. DHG date DHG date DHG time DHG well pad number DHG well number DHG field number 0 1 0 1 DHG RS settings 9.99 01.16.2 15. 0 999.16 <USB stick> 9.4 <RS DHG> DHG address Vtms232.16.3 <FCC prog. TsRKF 656437. Parameter Setting Setting Parameter Parameter Parameter Soft.4. DHG date Parameter DHG software version DHG date DHG time DHG well pad No. Select No.1 15.12. Field No.2001 31.3 FCC prog.Soft.15. Well No.> Command FCC programming Parameter FCC version v1 0 3 15.4.4 0 0 1 255 7 2 0 5 1 15 9. Select No. Select No.16. Parameter Parameter Parameter Parameter Parameter ARGUS version v1 ARGUS version v2 ARGUS version v3 ARGUS version v4 ARGUS version v5 9.2 ARGUS prog. Select No.999 0 61 .2029 1:01 23:59 0 3 0 3 1 65535 0 65535 1 65535 Parameter Parameter Parameter baud DHG modbus address RS DHG data exchange rate Number of stop bits 14. wait! 9.baud Stop bit 0 9999.01. Select No.999 999. Parameter Parameter Parameter Parameter FCC version v2 FCC version v3 FCC version v4 FCC version v5 0 0 0 0 999.4 <Accept settings> Command Wait! 0 3 TsRKF 656437. Select No. 0 0 0 0 15.999 999.4 62 . Select No.019 OM.Select No.999 999.16.999 9.