Apostila 2 Evaporação

March 17, 2018 | Author: Fernanda Alves | Category: Heat, Temperature, Solution, Evaporation, Calorie


Comments



Description

EVAPORADORES EXERCÍCIOS DE MÚLTIPLOS EFEITOS Oswaldo C. M. Lima, Maria Angélica S. D.Barros, Danilo Rossi Figura 1: Evaporador de tubos horizontais. a) entrada de vapor, b) saída dos gases não condensáveis, c) saída do vapor condensado, d) alimentação do xarope, e) saída do xarope, f) visores, g) saída do vapor Figura 2: Evaporador tipo cesta d) alimentação paralela. b) alimentação contracorrente. c) alimentação mista.EVAPORADORES MÚLTIPLOS EFEITOS Figura 3: Evaporadores de múltiplos efeitos: a) alimentação direta. Figura 4: Sistema de evaporadores para concentração do mel em usina de açúcar . já com o aspecto de um xarope grosso. entre nos evaporadores com um brix de 14 a 18º e deixa o último efeito do evaporador em torno de 65 a 70º brix. ELEVAÇÃO DO PONTO DE EBULIÇÃO E ENTALPIA Figura 5: Elevação do pontos de ebulição para soluções de NaOH . 2. Sobre o processo de evaporação do xarope para obtenção do mel de cana ⇒ O caldo purificado é enviado ao grupo de evaporação de multiplos efeito. Sobre o processo de evaporação multiestágio ⇒ • Perdas de calor para o ambiente desprezíveis • Alimentação direta ⇒ sem bomba (ex: 1-2-3) • Alimentação contracorrente ⇒ com bomba (ex: 3-2-1) – soluções viscosas • Alimentação mista ⇒ com bomba(ex: 2-3-1) • Vapor ⇒ sempre direção direta DIAGRAMA DE DÜRING. que tem como objetivo evaporar a água contida no caldo.Considerações: 1. Em geral. o caldo purificado e clarificado. Dados: Calor específico da alimentação = 0.000 kg/h de uma solução de 8 a 50%. Para aquecimento se dispõe de vapor sob pressão de 1.95 kcal/kg.oC . Determinar a área da superfície de aquecimento e o consumo de vapor do evaporador.4 kg/cm2.Figura 6: Entalpia das soluções de NaOH CÁLCULO DE UM EVAPORADOR DE EFEITO SIMPLES Problema 1: Dimensionar um evaporador para concentrar 5. A alimentação está a 25oC e o evaporador deverá funcionar com um vácuo absoluto de 100 mmHg . 90 ⋅ ( 63. qs = 173.200 kg/h de água a 51.5 .000 C = 800 Kg V = 5. Quantidade de calor necessária para vaporizar 4.5 + 12 = 63. Aquecer a alimentação de 25 oC até a temperatura de ebulição da solução .800 V = 4.2 = 2.150 ⋅ ( 108. a taxa de transmissão de calor será dada por : q = qs + qL = 2. Designando por W a vazão mássica de vapor de aquecimento : q = W ⋅ Lv .800 kg/h .150 kcal/m2.oC Elevação do ponto de ebulição para a solução a 50% em peso = 12oC Coeficiente de transmissão de calor experimental = 1.oC Solução: Deve-se determinar.690 kcal/h .559. 2.559.2 m2 . pode-se determinar as temperaturas das câmaras de evaporação e condensação e o calor latente de vaporização do vapor d'água. .2 O calor a ser transmitido é constituído pelas seguintes parcelas : 1.5 oC : qs = 5. 63.9 kcal/kg. V Balanço total V + C = 5. em que 0. W = 2.5xC = 0. W = q / Lv .oC é o calor específico médio entre o da alimentação e o da solução concentrada.5 ) .85 kcal/kg.386. a área da superfície de aquecimento será : S = q / U ⋅ ∆t .200 ⋅ 568.440 kcal/h .559.08 x 5. S = 2.690 / 533.5 oC : qL = 4.4 kg/cm2 Ebulição da água 100 mmHg Ebulição da solução 50 % 100 mmHg Temperatura (oC) 108.5 = 4.63. a quantidade de água a ser evaporada.5 568.250 kcal/h .200 kg de água por hora.200 Kg Para obter a concentração desejada devem ser vaporizados 4.5 Calor Latente (kcal/kg) 533. a partir dos balanços de massa global e para o soluto. S = 49.7 51.Calor específico do concentrado = 0. Assim : Situação Condensação do vapor 1.h.000 .7 .000 ⋅ 0.5 51.690 / 1. Conseqüentemente. primeiramente.000 Balanço de soluto F 0xV + 0. Desta maneira. C Com os dados de pressão de operação e de elevação do ponto de ebulição.25 ) . ficando determinada a queda de pressão sofrida pelo vapor ao longo dos efeitos. 840 e 900 kcal/h. 1.CÁLCULO DE UM EVAPORADOR DE MÚLTIPLOS SIMPLES Situação 1: . 2 . C o o o o o o o o 1Determina-se a pressão do vapor de aquecimento para o primeiro efeito e a pressão absoluta do efeito ligado ao vácuo.1 kg/cm2 Diferença = 1. Subtrai-se esta pressão da primeira e divide-se a diferença pelo número de efeitos do sistema. O vapor de aquecimento está disponível na pressão de 2 kg/cm2(a) e o vácuo mantido no último efeito corresponde a uma pressão de 0. inicialmente mantida a 90 C .1 kg/cm2(a) .m2. do 1 ao 5 efeito : 390 .Não há necessidade de superfícies de aquecimento iguais . 720 . em todos os efeitos : 1 kcal/kg. operando com alimentação direta.C. C Elevações de temperatura do 1 ao 5 efeito : 1 . 360 .9 kg/cm2 . para concentrar 30. Queda de pressão entre os efeitos: Pressão de vapor de aquecimento = 2 kg/cm2 Pressão de vapor no último efeito = 0.2 . 4 e 6 C Coeficientes de T. considerando-se o “flash” entre os efeitos.000 kg/h de uma solução de 10 a 60 % em sólidos. Dados: Calor específico da solução.Considera-se o “flash” entre os efeitos Problema 2: Dimensionar um quíntuplo efeito. 5 4Através um balanço material.000 .5.000 / 5 = 5.24 kg/cm2 3o efeito : 1.00 % 2o efeito : 3.62 113.000 / ( 15.38 = 1. determina-se a temperatura de ebulição da água pura mediante uma tabela termodinâmica. 1o efeito : 3. determina-se a quantidade de água a ser evaporada em cada efeito.5 0. mediante uma tabela termodinâmica: Vapor 2o efeito 3o efeito 4o efeito 5o efeito 1o efeito P (kg/cm2) t (oC) 2.000 .00 % 4o efeito : 3.00 .000 .000 ) x 100 = 20.0. Determinação da temperatura do vapor de alimentação e da temperatura de ebulição da água pura em cada efeito.48 kg/cm2 5o efeito : 0.0 0.000 ) x 100 = 12.1 x 30. entre o 1 e o último efeito: V + C = 30.000 .0.5.48 75.000 kg/h de água 5Calcula-se a concentração da solução em cada efeito através de um balanço de massa local a partir da quantidade de água evaporada.00 119.38 = 1.000 V = 25.5 0.6 C = 0.38 = 0.00 % 5o efeito : 3.000 .38 kg/cm2 2Calcula-se a pressão em cada efeito subtraindo-se a queda de pressão da pressão do efeito anterior.000 / ( 30.38 = 0. Dividindo-se esta quantidade pelo número de efeitos. Cálculo da quantidade de água a evaporar em cada efeito.62 kg/cm2 em cada efeito: 2o efeito : 1.000 / ( 25.24 105.000 / ( 10.0.0.86 kg/cm2 4o efeito : 0.9 / 5 = 0.000 ) x 100 = 15.6 1. cada efeito deverá evaporar : (CONSTANTE!!!) 0 + 0.000 / ( 20.5.5.000 ) x 100 = 30.000 C = 5.62 .00 % .000 kg/h 25.0 1.86 .000 kg/h Deste modo.Queda de pressão entre efeitos sucessivos = 1.00 % 3o efeito : 3.10 45.38 = 0.000 ) x 100 = 60.86 93. a partir dos balanços materiais global e para o o soluto.48 .10 kg/cm2 3Com a pressão em cada efeito. calcula-se a quantidade total de água que deve ser evaporada para se atingir a concentração desejada para a solução final.0.5.24 . Cálculo da pressão de vapor 1o efeito : 2. 5 7Determinam-se as diferenças de temperatura entre as câmaras de condensação e vaporização em cada efeito.000 kg/h de solução : 30.5 75. evaporar 5.5 = 28 5o 8Calcula-se a quantidade de calor que deve ser fornecida a cada efeito.000 kg de água a 114 ºC . Aquecimento dos 30.Entram 30.8 kcal/kg (tabela termodinâmica).95.2 . em seguida.5 + 6 = 51.5 .6Determina-se.79. a partir das temperaturas de ebulição da água pura. Efeito 1o 2o 3o 4o ∆Tm (oC) 119.000 kg/h de solução que devem ser aquecidos de 90 até 114 ºC .5 . para. nesta temperatura.000 kg/h de água.7 95.51.000 x 1 x ( 114 .2 = 7.5 + 4 = 79. a quantidade de calor requerida será de : .5 = 16 79. normalmente a partir de gráficos do tipo “Diagrama de Düring”.5 = 10.106.2 93.5 45. a partir de balanços de energia individuais que levam em conta as correntes que entram e saem do efeito.6 114 .8 106.5 75. as temperaturas de ebulição da solução em cada efeito. 1o Efeito . Efeito 1o 2o 3o 4o 5o Temperatura da água (oC) 113 105 93. cujo calor latente de vaporização.2 = 106.000 kcal/h Para vaporizar 5.6 .114 = 5.90 ) = 720.5 Temperatura de ebulição (oC) 113 + 1 = 114 105 + 1. é de 530.5 + 2 = 95.5 45. a elevação do ponto de ebulição em cada efeito e/ou. 4 = 2. são obtidos/ /estimados os coeficientes globais de transmissão de calor apropriados às condições de operação de cada efeito.000 kcal/h 4o Efeito Para o 4o efeito passam : 20.5.000 kcal/h 3o Efeito .Para o 2o efeito passam : Q1 = 720.000 kg/h de solução Estes 25.503.000 kcal/h .8 kcal/kg = 2.79.000 kcal/h Para vaporizar 5.000 kg/h de solução da temperatura de 106.95.000 x 543.000 kg/h de água neste efeito será de : 5.000 / 390 x (119.000 x 554 = 2.000 = 3.487.5 ) = 280.5 ºC .5 ºC .374.4 = 2.Como o “flash” já fornece 214. a uma pressão mais baixa e temperatura de 106.6 m2 . estando à temperatura de 114 ºC .000 x 1 x ( 114 .000 = 10.5 ) = 240.Como o “flash” já fornece 195.000 kcal/h Quantidade de calor a transmitir : Q5 = 2.000 kcal/h Sendo 536.530.Para o 3o efeito passam : 25.000 .000 kcal/h .240.195.106.000 kcal/h .682. ∆ S1 = Q1 / U1 ∆t1 = 3. a quantidade de calor a transmitir será de : Q2 = 2.5.550.000 x 1 x ( 106.000 .000 kcal/h 9A partir de informações operacionais da indústria e/ou dados de fabricantes.4 kcal/kg o calor latente de vaporização da água a 95.280.000 .000 x 571 = 2.855.000 = 2. o calor necessário para vaporizar 5.654.000 = 25.000 = 2.5.000 kg/h .717. cedendo uma quantidade de calor de : 25. sofrendo um “flash” que proporciona : 20.000 kcal/h Para vaporizar 5.682.000 = 2.2 .2 para 95.855. ao passar para o 2o efeito.000 x 530. 10- Determina-se as superfícies de aquecimento de cada efeito mediante a relação: A = Q / U.000 kcal/h .000 .4 kcal/kg o calor latente de vaporização da água a 106.000 kg/h de solução “Flash” = 15.000 kg/h de água : Quantidade de calor a transmitir : 5o Efeito Para o 5o efeito passam : 5.000 = 15.000 x 536.∆t .000 .6 . a quantidade de calor a transmitir será de : Q3 = 2.000 + 2.Calor fornecido para o 1o efeito : 2o Efeito . o calor necessário para evaporar 5.000 x 1 x ( 79.214.5.000 kg/h de água neste efeito será de : 5. sofre um resfriamento.000 .2 ºC .000 = 2.5 ) = 214.5 .000 .000 = 20.000 kcal/h .374.51.654.000 kg/h de solução “Flash” = 10.000 kcal/h 30.000 .5 .000 kcal/h 15.000 kcal/h Q4 = 2.575.770.000 kcal/h Sendo 543.5.000 x 1 x ( 95.717.114) = 1.2 ) = 195.000 kg/h de água : 5.770.2 ºC . 5 .51.79.530.6 m2 S3 = Q3 / U3 ∆t3 = 2.5) = 188.1 m2 .2) = 885.8 m2 S4 = Q4 / U4 ∆t4 = 2.000 / 900 x (79.000 / 360 x (114 .106.95.5 .000 / 840 x (95.575.503.5) = 102.2 .2 m2 S5 = Q5 / U5 ∆t5 = 2.487.S2 = Q2 / U2 ∆t2 = 2.5) = 324.000 / 720 x (106. _________________________________________________________________________________ Variáveis P (kgf/cm2) TEB0 (ºC) H2O evap (kg/h) x (p/p) ETE (ºC) TEB (ºC) ∆Tm (ºC) ∆Hvap (kcal/kg) h sol (kcal/kg) Hvap (kcal/kg) Q (kcal/h) U (kcal/h. 90ºC h0 .m2 oC) S ou A (m2) VAPOR 0 1 2 EFEITOS 3 4 5 Solução inicial: 10% . Determinar as características de funcionamento da instalação.Distribui-se a queda de temperatura global igualmente entre os efeitos.450 e 2.000 kcal/m2hºC . com o objetivo de se avaliar a concentração da solução em cada efeito. a partir das pressões do vapor de aquecimento para o primeiro efeito e do efeito ligado ao vácuo.900 .39 = 92 ºC 3o efeito : 92 .Não se considera o “flash” entre os efeitos Problema 3: Deseja-se concentrar 15.000 kg/h de uma solução de NaOH de 10 a 50 % .9 kcal/kgºC . O soluto tem calor específico médio de 0.52 = 118 ºC 118 / 3 ≈ 39 ºC Queda de temperatura em cada um dos 3 efeitos : 2. Temperaturas de cada efeito : 1o efeito : 170 .660) / 760 = 0. supondo a existência apenas de água a evaporar.39 = 52 ºC 3.Há necessidade de superfícies de aquecimento iguais .Situação 2: .t3 = 170 . de 660 mmHg (g) . .Determina-se. inicialmente mantida a 40 ºC . 1.39 = 131 ºC 2o efeito : 131 . inicialmente. Os coeficientes globais de transmissão de calor são 2. 2.Distribui-se a água total evaporada igualmente entre os efeitos. pode-se determinar. em um evaporador tríplice efeito com alimentação mista. O vapor de aquecimento é saturado a uma pressão de 8 kg/cm2 e o vácuo no último efeito. a temperatura em cada efeito. Temperatura do vapor d'água a 8 kg/cm2 : 170 ºC Temperatura do vapor d'água a (760 . a diferença global de temperatura sob a qual a bateria de evaporadores irá operar. Desta forma.13 kg/cm2 : 52 ºC Diferença global de temperatura : ∆t = to . As diferenças efetivas de temperatura em cada efeito podem ser determinadas da seguinte forma: Seja q1 a quantidade de calor a transmitir no 1o efeito. en ) Do “Diagrama de Düring” para NaOH : Diferença global efetiva de temperatura : e1 = 49 ºC . Pode-se escrever: q2 = U2 S ∆T2 (b) Dividindo-se ( a ) por ( b ) : ou ainda: q1 / q2 = U1 S ∆T1 / U2 S ∆T2 .000 kg/h 12. ∆T1 ∆T2 ∆Tn = =. Para n efeitos : ∆T1 ∆T2 ∆Tn = =.000 .000 ) x 100 = 21. mediante a relação: ∆T = ( to .000 / 3 = 4. (1) e3 = 8 ºC ∆T = 118 .( e1 + e2 + e3 + .Quantidade total de água a evaporar para concentrar a solução de 10 a 50 % : Quantidade de água a evaporar em cada efeito : Concentração da solução em cada efeito : 12. que por superfícies iguais se transmitem quantidades iguais de calor.000 kg/h 2o efeito : 1.. e2 = 6 ºC .. determina-se a elevação do ponto de ebulição em cada efeito e calcula-se a queda global efetiva de temperatura.4. a relação anterior ( 2 ) toma a forma: .4.4. Pode-se escrever: q1 = U1 S ∆T1 (a) Seja q2 a quantidade de calor a transmitir no 2o efeito. = 1 1 1 U1 U2 Un (3) ...500 / ( 15.500 / ( 11. S a sua superfície e U1 o seu coeficiente global de transmissão.500 / ( 7...000 ) x 100 = 13. ou seja: q1 = q2 = q3 = .43 % 1o efeito : 1..( 49 + 6 + 8 ) = 55 ºC 5. em primeira aproximação.000 ) x 100 = 50 % 4. = q1 q2 qn U1 U2 Un Pode-se supor..000 .Com base nestas concentrações.63 % 3o efeito : 1. q1 / q2 = U1 ∆T1 / U2 ∆T2 (2) ∆T ∆T2 1 = q1 q2 U1 U2 ..tn ) . = qn Assim.000 . S a sua superfície e U2 o seu coeficiente global de transmissão. As incógnitas são a quantidade de vapor vivo necessária e a água a evaporar em cada efeito. A equação que torna possível a solução do sistema é obtida do balanço material global do solvente. a distribuição de temperaturas..000 Desta forma : ∆T1 = 15 oC . Diferenças reais de temperatura em cada efeito [relação ( 4 )] : ∆T1 ∆T2 ∆T3 55 = = = 1 1 1 1 1 1 + + 2. = = 1 1 1 1 1 1 + +. as temperaturas de funcionamento de cada efeito.+ U1 U2 Un U1 U2 Un (4) Através da equação ( 4 ) pode-se então determinar os ∆T1 .Estabelece-se o balanço térmico em cada efeito..450 2. Se o número de efeitos é igual a n . resultam n equações com (n + 1) incógnitas.900 2. efetivos e.Balanço Térmico em cada Efeito : .A queda global efetiva de temperatura se reparte entre os diferentes efeitos na razão inversa dos coeficientes globais.. em ºC . etc. ∆T3 = 22 oC Portanto. será a seguinte : Efeito 1 2 3 Alimentação ETE 49 6 8 ∆T 15 18 22 T Calandra (oC) 170 88 + 18 = 106 60 + 22 = 82 T Solução (oC) 170 – 15 = 155 82 + 6 = 88 52 + 8 = 60 40 T Condensador (oC) 52 6. .450 2.900 2. a partir destes. ∆T2 . ∆T2 = 18 oC .000 2. em primeira aproximação. de acordo com a relação (3) escrita sob a forma: ∆T1 ∆T2 ∆Tn ∆T = =.. utilizando-se as temperaturas e concentrações estimadas anteriormente na determinação das entalpias das correntes envolvidas. 5 + 0. quando não encontrada em tabelas. em que c é o calor específico médio do soluto e t sua temperatura na solução. Em uma tabela de vapor d'água : T(oC) 170 106 82 52 Hvapor (kcal/kg) 662 641 632 619 hcondensado (kcal/kg) 171 106 82 52 Entalpia da solução na alimentação e em cada efeito .9 x 40 = 40 1 2 3 alimentação 50 13.hsoluto + (1-χ ). NaOH .: Entalpia da água → tabelas termodinâmicas à temperatura da solução A entalpia do soluto.78 x 60 = 58 0.5 x 139.86 x 88 = 87 0.t .Diagrama Entalpia / Composição . E2 e E3 as quantidades realmente evaporadas em cada efeito e W a quantidade de vapor que deve ser fornecida ao 1o efeito.1363 x 88 + 0.ou : Efeito Solução (%) T Solução (oC) 155 88 60 40 Entalpia {χ.10 x 36 + 0.43 10 Obs.Sejam E1.hágua }(kcal/kg) 0.5 x 150 = 145 0. Quadro resumo de entalpias: Efeito 1 2 3 alimentação vapor vivo Hvap (kcal/kg) 641 632 619 662 Hliq(kcal/kg) 106 82 52 171 Hsol (kcal/kg) 145 87 58 40 .2143 x 54 + 0. pode ser determinada mediante a expressão: hsoluto = c.63 21. BALANÇO TÉRMICO : Energia Fornecida = Energia Desprendida 1o Efeito F2*H3 + z∆Hvap=F3*H1+E1*Hvap(1) (1). E2 e E3 juntamento com a equação (13). em que: z é a vazão de vapor vivo da caldeira Mas: F0=F1+E2 (2) F1=F2+E3 (3) Então: F2=(F0-E2-E3) (4) Substituindo os valores e equação (4) em (1): (15000-E2-E3)*58+z*(662-171)=3000*145+E1*641 (5) 2o Efeito F0*H0+E1*∆HLV(1)=F1*H2+E2* Hvap(2) (6) Substituindo os valores temos: 15000*40+E1*(641-106)=F1*87+E2*632 (7) Mas: F0=F1+E2 (8) Então substituindo (8) em (7) temos: 15000*40+(641-106)*E1=F1*87+E2*632 (9) 3o Efeito F1*H2+E2*∆HLV(2)=F2*H3+E3* Hvap(3) (10) Isolando F1 de (8) e substituindo em (10) e de (4) temos: (F0-E2)*87+E2*∆HLV(2)= (F0-E2-E3)* H3+E3* Hvap(3) (15000-E2)*87+E2*(632-82)=(15000-E2-E3)*58+619*E3 (11) (12) Com as equações (5). 12000=E1+E2+E3 (13) Resolvendo temos: E1=5792 kg/h E2=3288 kg/h E3=2920 kg/h z=7408 kg/h . (9) e (12) podemos recalcular as vazões de vapor E1. 8 .Se.000 kg/h) são superiores a 10 %. até que as diferenças sejam menores que 10%.7. .Se o desvio entre as superfícies calculadas e as supostas (deveriam ser iguais) for da ordem de 2% . . recalculando-se as concentrações em cada efeito utilizando-se essas quantidades. o procedimento deve ser repetido a partir da 3a etapa. cujos valores devem estar próximos e cuja média será considerada a área de projeto dos três evaporadores. resolvido o sistema de equações. os valores calculados para a evaporação em cada efeito forem diferentes dos iniciais.Procedimento Final : Como as diferenças entre os valores das quantidades evaporadas em cada efeito e o valor base inicialmente considerado (4. Convergindo o processo. repete-se o procedimento desde o cálculo das concentrações (3a etapa). Estima-se então as quantidades de calor trocadas em cada efeito e as superfícies de aquecimento necessárias para as quedas de temperaturas admitidas. considera-se como área de cada evaporador a média das superfícies encontradas. segue-se o procedimento. determinando-se as quantidades de calor trocadas em cada efeito e as respectivas superfícies de aquecimento.
Copyright © 2024 DOKUMEN.SITE Inc.