API Calcs Rev1 (Version 2)

March 23, 2018 | Author: Jake Sparrow | Category: Pipe (Fluid Conveyance), Elasticity (Physics), Volume, Pressure, Mechanics


Comments



Description

PIPING CALCULATIONSName Code Sec Calculations Min Thik Pipe B31.3 304.1.2 O.D. tm = Pressure of Pipe (MAWP) 570 7.2 New P = Pressure of Pipe (MAWP) 570 7.2 Old P = 2SE[t-(2xCRxYRS)-c] D Blanks B31.3 304.5.3 tm = dg 3P 16SE Xmin (Required Leg) for socket/slip on Flanges B31.3 328.5.2 328.5.4 Leg = 1.414 x Throat Fillet Welds Throat = .707 x Leg tc = .5tr or .7 tmin (Required Throat) for branch Conns. PD (+C) 2(SE+Py) I.D. tm 2SE(t-c) D = P(d+2c) (+C) 2[SE-P(1-y0] (This is "Design" Pressure per B31.3) c=corrosion allowance Flanges (This is "MAWP" per 570) (+C) Allowable Press - Table 1A and Table 2 Min Thick - Table 1A and Tables 7-27 B16.5 Max Hydro Press - Par 2.5 - 1.5 x system design press rounded to 25psi Flanged Fittings B16.5 Annex D Flanged Fittings B31.3 574 304.1.2 11.2 Flanged Fittings B16.5 Annex D Valves Min Thk B31.3 574 304.1.2 11.2 Hydro Press Pipe B31.3 345.4.2 Hydro Press Fittings B16.5 Air Press Pipe B31.3 Joint Eff / Quality Factor B31.3 Tables 1A and 7 thru 27 - New/Cold, if info to calculate is unknown. Old/Corroded: tm = 1.5 PD 2 SE t= 1.5 Pcd (2S-1.2Pc) t m= 1.5 PD 2SE Min press P T = 1.5 PST S Use 7000 for S if unknown (Calculated) New/Cold: Use 7000 for S if unknown (Calculated) Use 7000 for S if unknown (Calculated) (+C) ST = Stress Value/test Temp S = StressValue/Designe Temp Min Press =1.5 x 100% Flange Rating (Round to the next 25PSI) 1 Min for NPS 2 and under and 2 min for NPS 2.5 - 8 345 B16.5 Corrosion Rates 570 Castings: Table 302.3.3C / Piping: Table A-1A / A-1B (Add NDE See table 302.3.4) Meas Thk = .75tm A=¶R2 tm =Min wall from charts 6.1.1 Dist Appart = 1.75 dtm Tables 13-28 7.1.1 RL = tactual - trequired CR d=ID (LT)CR= Turn Spec. Area = A=¶R2 SEC. IX 3 min 10 and up Pnuematic 1.1 x P Diameter = .35 dtm Flanged Fittings Areas Below Min t Tension Tests (+C) QW.152 tinitial - tactual Years (ST)CR= 2 or .7854 D Reduce Spec. Area = Width x Thickness Tensile Strength = Load / Area Load = Area x Tensile Strength Must be 2X thickness for given material in Table 331.1.1 PWHT (Branch Connections) Sketch 1 - Branch thickness + fillet throat B31.3 331.1.3 tprevious - tactual Years Sketch 2 - header thickness + fillet throat Sketch 3 - greater or branch + fillet throat or repad + fillet throat PWHT (Branch Connections) B31.3 331.1.3 Sketch 4 - header thickness + repad thickness + fillet throat Sketch 5 - same as sketch 1 MAXIMUM ALLOWABLE STRESS, KSI, FOR METAL TEMP Nominal Composition TYPE/ GRADE SPEC NO. PRODUCT FORM MINIMUM TENSILE, psi MINUMUM YIELD, psi -20 to 100 150 200 SA36 SA53 58,000 60,000 36,000 35,000 14.5 14.5 S/B plate, sheet smls. pipe 14.5 C-Mn 15.0 15.0 15.0 C-Si SA106 B smls. pipe 60,000 35,000 15.0 15.0 15.0 C SA179 26,000 11.8 11.8 11.8 C-Mn-Si smls. tube 47,000 1Cr- /5 Mo SA193 B7 bolting (<2.5") 125,000 105,000 25.0 25.0 25.0 16Cr-12Ni-2Mo SA193 B8M2 bolting (<2") 95,000 75,000 18.8 18.8 18.8 C SA214 wld. tube 47,000 26,000 10.0 10.0 10.0 C-Si SA234 WPB fittings 60,000 35,000 15.0 15.0 15.0 18Cr-8Ni SA240 304 plate 75,000 30,000 18.8 18.8 15.7 18Cr-8Ni SA240 304H plate 75,000 30,000 18.8 18.8 15.7 18Cr-8Ni SA240 304L plate 70,000 25,000 16.7 16.7 14.3 16Cr-12Ni-2Mo SA240 316 plate 75,000 30,000 18.8 18.8 17.7 16Cr-12Ni-2Mo SA240 316L plate 70,000 25,000 16.7 16.7 14.1 C SA283 C plate 55,000 30,000 13.8 13.8 13.8 30,000 13.8 13.8 13.8 25,000 16.3 16.3 14.3 1 C SA285 C plate 55,000 18Cr-8Ni SA312 TP304L smls. pipe 16Cr-12Ni-2Mo SA312 TP316L smls. pipe 70,000 25,000 16.7 16.7 14.1 1Cr-1/5 Mo SA320 L7 bolting 25.0 25.0 SA333 6 smls. pipe 105,000 35,000 25.0 C-Mn-Si 125,000 60,000 15.0 15.0 15.0 11/4 Cr-1/2 Mo-Si SA335 P11 smls. pipe 60,000 30,000 15.0 15.0 15.0 1Cr-1/2 Mo SA387 Gr12 Cl2 plate 65,000 40,000 16.3 16.3 16.3 C-Si SA515 70 plate 70,000 38,000 17.5 17.5 17.5 C-Si SA516 55 plate 55,000 30,000 13.8 13.8 13.8 C-Mn-Si SA516 60 plate 60,000 32,000 15.0 15.0 15.0 C-Mn-Si SA516 65 plate 65,000 35,000 16.3 16.3 16.3 17.5 17.5 C-Mn-Si SA516 70,000 70 plate 70,000 38,000 17.5 5083 plate 40,000 18,000 10.0 10.0 Aluminum Al SB309 Hastelloy G30 40Ni-29Cr-15Fe-5Mo SB582 N06030 plate,sheet,strip 85,000 35,000 21.3 21.3 20.0 40Ni-29Cr-15Fe-5Mo SB626 N06030 wld. tube 85,000 35,000 18.1 18.1 17.0 Hastelloy B2 65Ni-28Mo-2Fe SB333 N10665 plate 110,000 51,000 27.5 27.5 27.5 65Ni-28Mo-2Fe SB619 N10665 wld. pipe 110,000 51,000 23.4 23.4 23.4 65Ni-28Mo-2Fe SB622 N10665 smls pipe 110,000 51,000 27.5 27.5 27.5 R60705 bar 80,000 55,000 20.0 20.0 16.6 13.0 11.0 Zirconium 95.2Zr+Cb SB550 95.2Zr+Cb SB551 R60702 plate 55,000 30,000 13.0 95.2Zr+Cb SB551 R60705 plate 80,000 55,000 20.0 20.0 16.6 95.2Zr+Cb SB658 R60702 wld. & smls. pipe 55,000 30,000 13.0 13.0 11.0 95.2Zr+Cb SB658 R60705 wld. & smls. pipe 80,000 55,000 20.0 20.0 16.6 4 9.6 16.2 21.1 12.1 15.5 11.1 10.0 10.0 25.4 15.8 11.3 12.0 10.8 13.3 10.5 16.7 11.5 10.5 11.0 7.8 10.6 21.0 15.5 27.0 25.0 15.3 16.1 25.6 23.0 14.6 15.8 12.9 11.0 15.8 10.8 15.0 6.1 11.8 18.5 14.5 27.2 11.8 13.8 13.0 15.0 9.0 15.4 23.4 10.8 13.3 16.1 6.6 13.0 15.1 10.0 14.6 14.9 12.2 10.5 17.0 15.6 26.3 16.0 20.3 10.0 15.0 15.7 10.8 16.1 6.4 11.9 .7 12.6 26.8 13.1 10.5 27.8 9.0 15.0 25.0 15.8 13.4 23.0 4.5 11.6 14.0 23.5 17.1 11.4 16.0 25.4 13.6 22.7 14.3 13.2 12.7 14.0 15.0 25.0 9. FOR METAL TEMP.0 6.3 10.2 12.6 12.9 11.0 15.9 10.8 11.8 18. OF ===> 250 300 400 500 600 650 700 750 800 14.2 11.3 16.4 9.0 15.2 10.4 13.3 10.8 13.0 15.3 16.5 15.9 11.1 12.3 7.0 15.4 17.0 15.8 11.0 9.5 17.6 25.8 18.4 10.0 25.4 27.0 15.8 18.5 27.6 25.8 11.2 26.0 9.0 9.0 9.7 14.6 13.STRESS.5 17.9 11.0 15.0 14.6 14.2 12.3 7.0 4.5 14.1 22.3 15.1 11.7 11.3 16.7 14.4 23.8 13.3 12.0 10.7 10. KSI.8 9.0 15.0 15.0 18.0 6.0 18.0 13.5 17.0 14.8 13.0 6.8 9.8 22.8 15.0 15.9 13.0 11.8 9.0 9.4 13.9 10.0 18.8 13.0 25.8 11.0 15.5 16.3 16.6 14.0 15.0 15.8 18.1 10.0 10.5 14.4 11.5 17.4 10.3 12.0 15.3 16.8 11.5 15.0 9.7 10.8 16.0 15.8 13.5 17.0 14.2 14.8 18.1 10.5 14.8 13.1 12.0 14.4 10.1 12.3 12.6 14.8 10.0 15.3 12.3 16.5 17.8 13.3 16.0 25.8 18.9 10.8 15.5 17.2 12.8 13.9 10.5 27.8 11.8 12.8 27.4 13.8 13.1 25.9 12.3 16.4 10.5 27.5 27.4 23.8 10.6 17.2 16.9 14.8 13.0 14.4 13.8 15.8 26.8 10.8 16.4 9.9 12.8 13.5 13.6 14.5 17.3 16.8 14.0 15.1 10.3 16.0 15.6 14.0 25.0 15.0 10.4 13.0 10.5 27.2 25.3 12.7 15.3 17.7 10.0 25.8 13.8 15.0 15.0 15.0 25.8 11.3 10.0 10.2 26.0 10.5 14.7 17.8 9.3 17.8 26.6 14. 8 5 8.5 2.9 1.1 4.cont'd ==> 850 900 950 1000 4.5 14 13.5 8.8 7.0 9.5 10.8 1.3 6.9 7.5 2.5 2.9 7.0 6.8 15.5 4.5 4.5 4.9 6.7 6.2 10.7 6.5 9.5 17.7 6.2 15.4 11.7 6.5 9.2 4.5 1050 1100 1150 1200 1250 7.4 6.6 2.5 3.8 9.2 2.5 9.6 11.8 9.5 7.6 4.7 5.2 11.7 11.8 5 3.0 12.4 8.7 6.3 6.1 8.2 10.4 7.5 4.2 11.8 2.6 9.8 1.5 2.0 1.5 8.4 10.5 2.4 10.5 8.3 6.5 9.8 6.5 4.8 18.5 .5 2.5 8.5 18.8 1.4 6.7 10.5 11.1 9.3 4.8 18.3 11.8 18.1 4.5 8.0 9.0 9.4 5.3 7.5 4.5 2. 1300 1350 1400 1450 1500 3. 2.7 2.8 1.7 1.4 4.1 2.9.1 3.9. 2.3 1.3 1.3 1.4 3.7 2.8 1.3 . 050 0.109 - - - 0.134 - - - 0.068 1/4 0.75 0.083 0. 16.134 0.120 - - - 0.218 0.203 3 3.D.00 0.218 0.00 0.562 0.049 - - - 0.091 1/2 0.312 0.250 0.154 2 1/2 2.083 0.165 0.065 - - - 0.148 - 0.312 0.083 - - - 0.250 0.250 0.109 3/4 1.375 24 O.188 0.250 0.083 0.083 - - - 0.250 0.75 0.840 0.250 0.875 0.109 - - - 0.500 0.237 5 5.065 - - - 0.660 0.065 0.216 3 1/2 4.330 0.315 0.120 - - - 0.405 - 0.00 0.250 0.109 0.145 2 2.165 - 0.156 0. 22.120 - - - 0.00 0.375 0.50 0.00 0.065 0.109 0.900 0.D. SCHED.226 4 4.Nominal NOMINAL WALL THICKNESS FOR: Pipe Outside SCHED.438 0. 24. SCHED.365 12 12.00 0.375 .083 0.188 0.375 14 O.133 1 1/4 1. SCHED.109 - - - 0.218 0.375 20 O.307 0.188 0.D.250 0.277 0. SCHED.258 6 6. SCHED.140 1 1/2 1.065 0.109 - - - 0.375 0.065 0.280 8 8.134 - - - 0.065 0.00 0.065 0.D.D.113 1 1.322 10 10.375 18 O. 14.180 - 0.625 0.165 0.375 0.250 0.540 - 0.188 0. 20.375 22 O.156 0.500 0. Size Diameter 5S 10S 10 20 30 STD 1/8 0.312 0.120 - - - 0.D.375 0.375 0.675 - 0.563 0.50 0.375 0.375 16 O.188 0.109 0.250 0. 18.625 0.088 3/8 0. 312 0.500 - 0.625 0.500 0.00 - - 0.00 0. 32.312 0.312 0.625 0.D.00 - - 0.312 0.500 0.312 0.D.375 28 O.D.00 - - - - - - . 30. 36.D. 34.26 O.250 0.500 - 0.625 0.D.375 34 O.375 30 O.312 0.500 0.D.00 - - 0. 28.00 - - 0. 26.625 0. 42.00 - - 0.500 0.375 32 O.D.312 0.375 42 O.375 36 O. 337 - 0.147 - - - 0.147 0.375 1.875 0.322 8 0.125 1. 0.432 - 0.109 1/2 - 0.216 3 - 0.318 - - - 0.500 16 O. 0.154 0.562 - 0.276 - - - 0.875 0.154 - - - 0.562 0.656 0.068 1/8 - 0.145 1 1/2 - 0.500 0.094 1.844 1.218 1.258 5 - 0.594 0.031 1.500 0.594 0.719 0.200 - - - 0.938 1.500 0.562 18 O.280 6 - 0.500 1.750 0.688 24 O.438 - 0.095 - - - 0.375 0.218 - - - 0.281 1. SCHED.095 0.594 0.091 3/8 - 0.203 2 1/2 - 0.500 - 0.154 2 - 0.226 3 1/2 - 0.140 1 1/4 - 0.500 0.719 0.300 0.D.219 1.125 0.406 0. NOMINAL WALL THICKNESS FOR: Pipe SCHED.D.337 0.594 20 O.250 0.500 1. SCHED.500 1.D.113 3/4 - 0.531 1. 0.406 12 0. EXTRA SCHED.000 0.126 0.119 0.191 - - - 0.318 0.375 - 0.179 0.276 0.000 1.812 2.218 0. 0.179 - - - 0.D.500 1.812 0.D. SCHED.Nominal SCHED.191 0.438 14 O.432 0.365 10 0.688 0.844 1.500 0. 40 Size 60 STRONG 80 100 120 140 0. 0.750 - 22 O.133 1 - 0.938 1.844 1.438 0.237 4 - 0.500 0.625 1.500 0.031 1.126 - - - 0.500 0.D.200 0.300 - - - 0.969 0.750 0.062 .562 0.812 0. 0.156 1.375 1.119 - - - 0.088 1/4 - 0. D.500 - - - - - 42 O.688 32 O.D. - 0.D.- 26 O. - 0. - 0.D.500 - - - - 0.500 - - - - 0.D.D. - 0.750 36 O. - - - - - - .D.500 - - - - - 30 O. - 0. - 0.688 34 O.500 - - - - 0.500 - - - - - 28 O. 281 0.382 0.188 0.312 1.438 0.719 0.250 0.875 1.625 0.552 0.400 0.436 0.344 - .600 - - 0.674 0.344 0.750 0.906 0.969 - 2.406 - 1.125 - 2.781 - 1.125 1.375 0.000 1.308 0. XX 160 STRONG - - - - - - 0.250 0.294 0.531 0.864 0.NESS FOR: SCHED.000 1.358 0.219 0.594 - 1. - - - - - - - - - - - - - - . 79 0 6 28.864 Volume (in3) Gallons 0 2 3.9 0 16 182.9 0 8 50 0 10 78.9 0 12 113.356 0 4 10.Length (ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Size (in) Area (in2) 1 0.7 0 18 233.7 0 20 291 0 22 355 0 24 425 0 26 501 0 TOTAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 gallons barrels .1 0 14 137. in. Rem.75 ins.11 0. Corrosion Rate = in.15 0. T-Last.25 0.1 0. HEADS: T-Nom. Thk. Rem.65 29 0. Remaining Life = in. T-Min.542 in.API Remaining Life Formula SHELL: T-Nom. Loss. in. in. Thk. yrs. Age. Loss.1 in. 0. yrs.00 Head(ipy) 0. in.5 0. CA.003 36. 0. CA T-Min. in. T-Last. .25 0. in.75 0. Shell(ipy) 0.008 18. . 0 235 09/18/96 0.tmin 0.2 51 ENTERED DATA Earliest Latest DATE 01/31/83 02/28/90 Meas 0.360 0.1 220 31.460 0.750 0. yrs mils Rate .tmin 0.240 0.7 1716 TMIN DATE 05/30/01 . Rate diff last Meas ut & tm Meas Tmin (mils) 50.670 4.721 CALCULATED DATA Date Diff Corr Last UT Tmin Diff.125 CALC'D DATA Yrs to days to Tmin tmin 4.1 220 31.1 140 Meas Meas Meas Meas Meas Meas Meas CALCULATE TMIN DATE (or THICKNESS at a TMIN DATE) Calculated by: One Thickness Meas.CALCULATE CORR RATE & TMIN DATE Calculated by: 2 Thickness Meas's when Corr Rate is Unknown ENTERED DATA Earliest Latest DATE 04/01/97 04/01/01 Meas 0.240 0. & a Known Corr Rate ENTERED DATA Date of Last Corr.460 CALCULATED DATA Date Diff Corr Last UT Tmin Diff.100 7. yrs mils Rate .100 7.0 29 7.1 140 0. . 5 1645 07/02/04 4.CALCULATED DATA Yrs to Days to TMIN Tmin Tmin DATE 7.0 2559 01/02/07 CALCULATED DATA Yrs to Days to TMIN Tmin Tmin DATE 4.5 1645 07/02/04 . 3 345.5 375 is (1.4.5 for flanges. unless this would cause an overstress condition at test temp verify with B16.5 P × S t S where Pt = P= St = S= minimum test gage pressure design gage pressure stress value at test temperature stress value at design temperature see table A-1 for allowable stress values P= St = S= Ptmin = Pt = 250 23300 17800 1.ASME B31.3 for pipe .31 = St/S NOTE!!!!!! Shall NOT exceed 6. and B31.2(b) Hydrotest Temperature Correction Pt = 1 .5 x P) 491 is corrected for temperature Pt MUST be greater than Ptmin. on at test temp Return to Menu . 3 304.63 0.409 P= 1572 psig MAX allowable pressure relief case: as per para 302.4 for current thickness 0.3 Material Information Pipe OD Wall Thickness 8.2(a) Straight Pipe Under Internal Pressure Maximum Allowable internal pressure calcs according to B31.1.2.4 7.e.409 inches tmin= 0.000 inches t = where: t= P= D= S= E= Y= Di= minimum Process Information Operating Pressure 1480 Relief Pressure 105 Operating Temp. 160 P×D 2( S × E + P × Y ) thickness internal gauge pressure outside diameter of pipe stress value for material (table A-1) quality factor (table 302.ASME B31.807 minimum thickness for pressure specified .1.3.409 inches inches Corrosion Allowance 0.1) inside diameter of pipe t= psig psig F 0.5) 1 0. 17.409 P= 2090 psig 15 ksi (i.409 inches including corrosion allowance max allowable WORKING pressure for thickness specified w/out corr allowance Thickness 0.4) coefficient (table 304. 1 D/6 t if t<D/6 use table otherwise use value from formula Material Ferritic Austenitic 100 20 20 200 20 18.438 0.9 1 1.5.9 1 0.85 0.4 .1 100% x-ray Y Coefficient from sec 304.1.5 0.5.or pressure specified Return to Menu S allowable stress in ksi according to B31.8 0.3 tables Temp F carbon grB 1 1/4Cr 1/2mo single butt weld w/ radiograph as 341.48 900F or lower 0.7 E 0.4 0.409 0.4 Y calculated 950 0.1 100% x-ray double butt w/ radiograph as 341. 5 15.7 700 16.7 0.8 .3 2.6 800 10.3 16.300 20 18 400 20 17.7 Y calculated 1000 1050 1100 1150 0.7 0.7 0.7 0.5 500 18.8 15 900 1000 1100 12.4 0.4 0.5 0.9 17.2 600 17.8 6. 1.enter DATA IN BOXES FOR CALC'N P= 2SEt/(D-2tY) Internal Design Pressure. Para.067 Pressure Design Thickness. inches D= 20.2 .2 . excluding quality or joint factors (E=1 if seamless pipe) Y= 0. psig t= 0.3. 304.CALCULATE PIPING MAXIMUM PRESSURE Chemical Plant & Petroleum Refinery Piping.00 Outside Diameter of Pipe. 304.1. Y=0. inches SE= 15000 Allowable Stress.3 Straight Pipe Under Internal Pressure.1.40 Coefficient from Table 304.4 for all Ferritic Steels up to 900° F P= 101 psig. ASME B31.1. per ANSI B31. 0.20 .Thickness is UT 0.02 corrosion allowance . enter DATA IN BOXES FOR CALC'N P= (2St/D)xExF Internal design pressure in psig S= YIELD strength in psi t= Nominal wall thickness of the pipe in inches D= Nominal outside diameter of the pipe in inches E= Seam joint factor.18 Nominal wall thickness. para 841.8.00 for seamless pipe T= 1.00 P= 473 psig per ANSI B31.CALCULATE PIPING MAXIMUM PRESSURE Gas Transmission and Distribution Piping Systems.00 Temperature derating factor from Table 841.8 P= (2St/D)xFxExT Internal Design Pressure.00 Lonlgitudinal joint factor from Table 841. TYPE C = 0. Construction Type B factor = 0.00 Nominal outside diameter. 1. Part 195. except for off-shore platforms P= psig .72.60.1.106 Straight Pipe Under Internal Pressure. 304.1 CALCULATE PIPELINE INTERNAL DESIGN PRESSURE 49 CFR. for 250°F or less T=1.60 Construction type design factor from Table 841.111.2 .113.112. para 195. inches t= 0. psig S= 35000 Specified minimum yield strength D= 16. ANSI B31. F= 0. inches F= 0.50 E= 1. E=1 for all seamless pipe F= Design factor. TYPE C = 0.50 .60.ype B factor = 0. min = 0.000 e = 0.000 .851 s = 29.5S = 30.6 CA = 0 0.75 S = 20000 E = 0.Pipe Sleeve Minimum Thickness P = 1900 Do = 10.797 ts.524 1.594 ts = 1. in basic allowable stress for sleeve material at pipe design temperature from ASME B31.5 S . psi Joint Efficiency of the longitudinal welds (0. inch < 1. in distance from the centerline of the sleeve to the centerline of the pipe (run pipe thickness + sleeve thickness)/2 minimum thickness of the sleeve.6 if no backing strip is used.65 if a backing strip is used corrosion allowance.3 Table A-1. psig Outside diameter of pipe being sleeved + 1 (assume that sleeve thickness is 1/2" as initial guess and iterate as required). in sleeve thickness. 0.eve Minimum Thickness Pipe design pressure. inch run pipe thickness. the allowable stress from B31.8 ksi.67 ksi. tm . ASME B31. Note: For A36 Plate (most commonly used blind material).3 is 17. Can increase by 1/3 if they are used for short duration loads (hydrotests) to 23.3 allows 1/3 higher allowable 1 Quality factor 0 Corrosion allowance 8 ID of gasket (inches) Tm = d g tm= 3× P +c 16 × S × E 0.503 Minimum thickness allowed for the blind.Blind Thickness Calcuations From ASME B31.5.3 Section 304.2 Fill in yellow portion P= S= E= c= dg = 500 Design Pressure or Hydrostatic test pressure (psi) 23670 Allowable strss (psi) per ASME. . 897 9.065 8.875 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 3-00 PJP 1 2 3 3 3 4 5 6 7 8 9 10 10 11 12 13 14 14 15 15 15 16 16 16 18 18 19 20 20 21 21 22 23 23 23 23 25 25 26 27 27 27 30 Pressure 5246 600 3179 3179 3179 3210 4725 600 600 600 600 4598 4598 4598 3837 425 1100 1100 5400 5400 5400 1100 1100 1100 2258 2258 dia 6 2 10 8 6 12 2 2 2 2 2 10 6 10 10 6 12 6 8 4 4 12 8 6 6 4 ID 4.062 9.5 0.375 0.75 3.25 0.5 .187 10.939 1.5 4.939 9.5 2.75 0.065 12 6.5 6.503 1.5 11.939 8.5 3.125 0.875 3.1/8 1/4 3/8 1/2 5/8 3/4 7/8 0.5 2.813 5.5 6.625 3.897 1.75 1.625 4.5 3.5 3390 3390 104 104 4638 3411 3411 3411 3411 6240 6240 3179 90 90 90 400 14 10 4 2.375 6.981 6.062 4.939 1.939 1.75 4.5 10.625 4.065 6.625 36 16 3.625 0.938 7.062 6.5 3 10 3 3 2 6 3 6 36 16 3 3 14 10. 3-00 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 1000 18 18 . 134 1.134 0.778 1.767 0.114 0.671 1.961 0.602 0.427 0.762 0.784 0.class 2500 150 1500 1500 1500 900 2500 150 150 150 150 1500 1500 1500 1500 300 300 300 1500 300 1500 300 300 300 1500 1500 1500 1500 150 150 1500 1500 1500 900 300 2500 2500 2500 150 150 150 300 Min Thick 0.197 .575 0.580 0.120 0.935 1.352 1.291 0.823 1.134 0.083 0.714 0.745 0.000 2.566 0.294 1.566 1.134 0.134 1.575 0.931 1.390 1.051 0.129 0.349 1.998 0.093 0.081 0.729 0.886 0.729 1.931 0.473 0. 000 0.000 0.000 0.300 1.000 0.000 0.000 0.000 0.000 0.602 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .000 0.000 0. PMG App 8. 707 + CA 3 ×P ×D (t s o .249 1.CA ( × S ) + o × E 0 .000 × D P t = s s = 2 P ×Do 2 t s .45 CA = 0. min = 0.1 0.322 ts = 0.5S = 30.125 S = 20000 E = 0.500 e = 0.411 ts.CA ×e ) 2 .5 XOM Lap Patch P = 260 Do = 9.328 s = 21. 5 XOM Lap Patch Fill in yellow portion Pipe design pressure. in distance from the centerline of the sleeve to the centerline of the pipe (run pipe thickness + sleeve thickness)/2 minimum thickness of the sleeve.3 Table A-1. psi Joint Efficiency of the longitudinal welds (fillet-weld joint efficiency is 0. in sleeve thickness. inch run pipe thickness. 707 + CA 3 ×P ×D (t s o .p 8.5 S × D P = s = 2 P ×Do 2 t s .CA ×e ) 2 . psig Outside diameter of pipe being sleeved + 1 (assume that sleeve thickness is 1/2" as initial guess and iterate as required).45) corrosion allowance. inch < 1.CA ( × S ) + o × E 0 . in basic allowable stress for sleeve material at pipe design temperature from ASME B31. 75 shroud OD 0.4685 actual gap < 0.125") maximum gap 8.Annular Space 1/8" (0.125" ? .594 shroud thickness 0.625 pipe OD 10. 030 Inches Use Min.230 0.718585 calculated 0.1875 -0. t = Actual Corr. Shell = Actual Corr.4 P tmin= tmin 0.610 Use Sch 40.33t r tr = ts= ts min req. End Plate Weld Efficiency Outside diameter Corrosion Allowance 14 675 150 20.56 in . Allow. t actual Section 2 End Plate c = 0.000 0. Thickness. Ends = 0. C psi A36 Fillet welds in in t Section 1 Tmin = P×R + Ca S × E + 0. Shroud Allowable Stress.20 C= C= 0.OD of Pipe being shrouded Design Pressure Design Temperature Allowable Stress.610 in 0.280 in c min = 0 .1 in psig F psi A106 Gr.45 14 0.718585 used t =d C×P + Ca S×E d= t= -0. 6" pipe 0. Allow.280 d/2 inches. thickness of shell = Actual thickness = 0.318 Inches Inches Inches effected distance= -0.000 20. 243 in in^2 lbs psi in^2 psi psi in Yes.1 psig F psi Fillet welds in in d D 10 12 in in Zcalculated Zused Tmin 1.9823 263. for patch Length of patch Weld efficiencieny Mat.Rectangular Shroud Design Pressure Design Temperature Allowable Stress Weld Efficiency 100 400 20000 0.3 7875 25.4 0.72689 % d D . Allowable Stress Size fillet weld Linear weld length Area Patch Force on patch Allowable Stress Weld area Weld stress Is stress Less than Allowable? Stress / Allowable 675 14 50 12 0.875 Patch on Pipe: Weld stress Pressure inside Pipe Pipe diameter (OD) % of diam.748074 0.55 Corrosion Allowance 0. 88.4 1.49336 6987.45 17500 0.375 psig in % in 67. area is sufficient.8938 178128. . 77 Allowable Stress in Tension of the Cover (psi): Allowable Bending Stress of the Cover (psi): Sall Sbend 16350 24525 --- Yes Design Pressure (psig): Inside Diameter of Clamp (in): Cover Thickness (in): Ear Thickness (in): Ear Width (in): Clamp Length (in): Pressure Force Acting Inside Bore (lb): Pressure Force Acting Between Ear Faces (lb): Distance from Bolt Centerline to Line of Action of Fp (in): Distance from Bolt Centerline to Line of Action of Fe (in): Note Regarding Bolt Load (See Comment) Bending Moment (in-lbs): Moment of Inertia of Cover (in^4): Is Cover Design Adequate? tc = te = Length = We = Fb = Fp = Arm 1= Arm 2= Cover Thickness Ear Thickness Clamp Length Ear Width Bolt Force Pressure Force Moment Arm Distance for F p Moment Arm Distance for F e .14 1.NOTE: This calculation method is based upon the use of a two-piece clamp with two sets of ears 180 degrees apart.46 1.562 12.531 0 M I 54423.66 15667.74 Fp Fe Arm1 Arm2 35547. tc Variables Des_P ID tc te We Length 480 11.125 1 2.626 1.511631 Bending Stress at Cover Near Ear (psi): sigma 20251. sets of ears 180 degrees apart. Fb tc Cover Thickness Ear Thickness Clamp Length Ear Width Bolt Force Pressure Force Moment Arm Distance for F p Moment Arm Distance for F e te Arm 1 Fp Fe Arm 2 Length We . 764911 in WC Input Input Output Output .130973 pressure 0.5 diamter area 1.Calculat PSI From Weight in ounces weight oz 0.02763107 psi 1.2 inches 0.03125 pounds 0. 405 1.875 8 2.0007 0.0014 0.0007 0.0014 0.0007 0.0014 0.0014 0.315 1.462 0.5 4 4 2.34 3.41 2 8 2.0014 0.25 8 1 1.606 1 12 0.00175 0.0014 0.939574 .0014 0.0014 0.75 8 5.0007 0.00112 0.625 8 1.000875 0.0007 0.125 12 0.875 9 0.25 8 3.0014 0.0014 0.0014 0.0014 0.75 4 9.0007 0.334 0.33 3.75 8 2.5 8 4.0014 0.875 14 0.08 % Yield 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 40 40 40 40 40 40 40 Elongation (inch/inch) 1st pass 2nd pass 0.0014 0.96 3.0014 0.00112 0.233 1.00112 3rd pass 0.5 8 1.66 4 8 11.0007 0.00112 0.5 4 8.763 1.00112 0.00112 0.000875 0.75 5.0007 0.5 2.00112 0.000875 0.75 4 4.9 1.375 6 1.0014 0.00112 0.0007 0.509 1 8 0.00112 0.969 1.373 0.125 7 0.0014 0.25 7 0.00112 0.581 1.00112 0.0007 0.00112 0.0007 0.0014 0.0014 0.0014 0.068583 2.75 5 1.51 3 4 5.75 8 10.25 2.856 1.0014 0.00112 0.25 8 7.0014 0.1 3.25 4 7.69 3.00112 0.00112 0.0014 0.5 12 1.00112 0.0014 0.0014 0.0014 0.00112 0.79 1.56 2.00112 0.0014 0.08 1.0007 0.97 3.0014 0.0007 0.155 1.0007 0.0007 0.81 4 4 11.0014 0.00175 0.0014 Recommended Torque (ft-lbs) 1st pass 2nd pass 149 166 241 265 361 394 529 573 511 744 798 721 1009 1076 945 666 1065 706 1129 627 1003 861 1377 1083 1733 989 1583 1344 2151 1648 2637 1488 2380 2383 3813 3302 2975 4019 3649 6571 6026 8409 6211 8441 7848 10437 9751 12715 11929 5284 4760 6431 5839 10514 9642 13454 9938 13506 12556 16699 15601 20345 19087 14979.77 2 4 2.93 3 8 6.0007 0.75 16 0.0014 0.375 8 1.0014 0.375 12 1.00175 0.5 8 8.00112 0.43 2.25 12 1.44 2.0007 0.663 1.0014 0.125 8 0.0014 0.492 1.073 1.0007 0.78 1.0014 0.00112 0.00112 0.75 10 0.0007 0.Bolt Dia Bolt Pitch Bolt Area (inch) (thread/inch) (inch^2) 0.25 8 thread at 50%YIELD lower is slightly lower than a 3 in 4 thread at 50% yield area piR^2 3 7.0007 0.0014 0.0014 0.0014 0.0007 0.0014 0.97 upper is halfway between 3 and 3.5 7 1. 14.1 .2 7. ended Torque (ft-lbs) 3rd pass 1332 1411 1254 1721 2166 1978 2689 3296 2975 4766 6605 5950 8039 7298 13142 12052 16818 12422 16882 15695 20874 19501 25431 23859 K factor multyplier 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 50 Yield vs elongation yield % 20 30 40 50 60 70 80 0.00175 pipe id 10.5 pressure 3000 thrust 259770.2 bolt a 6.5 force/bolt 4995.581 rectangle circ 32.9867 t 0.375 a 12.37001 stress 21000 lbs in^2 eld vs elongation elongation inch/inch 0.0007 0.00105 0.0014 0.00175 0.0021 0.00245 0.0028 25 12 1.375 8 1.0021 541 1082 1584 0.25 8 3.0021 1443 2308 0.00105 0.08 1.00168 0.125 7 0.0021 1658 2653 0.00168 0.0021 0.5"<d=<4" B7 = 105000 psi 95000 psi B7M = 80000 psi B16 = 105000 psi 95000 psi Other = 0 psi (leave zero value if not used) Bolt Dia Bolt Pitch Bolt Area (inch) (thread/inch) (inch^2) 0.373 0.0021 1116 1786 0.0021 1815 2905 0.875 8 2.875 9 0.00168 0.663 1.78 upper is halfway between 3 and 3.34 3.00126 0.125 8 0.00105 0.00168 0.25 4 7.00105 0.33 3.00168 0.00105 0.875 14 0.0021 0.00105 0.44 2.75 5 1.606 1 12 0.405 1.00168 B7 60 Recommended Torque (ft-lbs) 3rd pass 1st pass 2nd pass 250 279 403 444 604 661 887 961 856 1247 1338 1208 1691 0.00168 0.0021 0.0021 0.75 8 2.00105 0.96 3.78 1.462 0.69 3.51 3 4 5.00105 0.77 2 4 2.0021 0.0021 0.00168 0.0021 0.5 2.93 3 8 6.0021 2763 4421 0.25 2.00168 0.25 8 1 1.08 % Yield 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 0.0021 0.00105 0.00168 0.00168 0.25 8 thread at 50%YIELD .492 1.00105 0.0021 0.00168 0.0021 0.00168 0.0021 0.0021 0.0021 2494 3990 0.581 1.0021 0.155 1.00168 0.763 1.00105 0.0021 0.0021 3995 6392 0.56 2.75 16 0.00105 0.43 2.619048 Enter Stud Type: Enter % of Yield: Elongation (inch/inch) 1st pass 2nd pass 0.625 8 1.073 1.0021 0.00105 0.79 1.00105 0.66 4 8 11.0021 0.0021 0.9 1.00168 0.81 4 4 11.00105 0.5 12 1.334 0.0021 5536 4988 6738 6118 8813 8082 11278 10413 14151 13156 17497 16347 21317 19999 8858 7980 10781 9789 14101 12931 18045 16660 22642 21050 27996 26154 34107 31999 20090.0021 0.75 8 10.Yeild Strength: For d=<2.0021 2254 3606 0.0021 0.5 8 4.315 1.0021 0.969 1.00168 0.0021 0.0021 0.00168 0.856 1.233 1.00168 0.0021 0.125 12 0.75 8 5.00105 0.5 7 1.00168 0.00168 0.375 6 1.5 8 8.00105 0.75 10 0.00105 0.25 7 0.00105 5931 0.00105 0.375 12 1.00168 0.00105 0.75 4 9.00168 0.00168 0.5 4 4 2.00105 0.00105 0.75 4 4.00168 0.0021 0.97 3.0021 0.00105 0.5" For 2.5 4 8.1 3.00105 0.0021 1051 1682 0.41 2 8 2.0021 0.0021 1183 1892 0.00063 0.5 8 1.0021 0.25 8 7.509 1 8 0. 939574 14.1 .068583 2.lower is slightly lower than a 3 in 4 thread at 50% yield area piR^2 3 7.2 7.75 5. 19 0.19 0.19 0.19 0.19 New hardware.19 0.19 0.17 0..25 K factor 0.19 0.19 0.19 0.19 0. Hardware in bad cond. Hardware in bad cond. Bolt type multyplier B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 B7 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 105000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 95000 50 0.19 0.19 0.19 0.19 0.19 0.19 0. well lubr.19 0..19 0. unlubricated.19 0.625 0.19 0.19 0. well lubr.19 0... well lubricated Hardware in good cond. well lubr.19 0.00175 Yield vs elongation yield % 20 30 40 50 60 70 80 .19 0.875 1804 2232 2366 2102 2885 3631 3317 0 5526 4988 7990 11072 9975 13477 12236 17626 16164 22556 20825 28302 26312 34994 32693 42634 39999 0.19 0.19 0.15 0.19 0. Hardware in fair cond.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.21 0.19 0.K factor: % ended Torque (ft-lbs) 3rd pass Enter K: 1.19 0.19 0.19 0. . eld vs elongation elongation inch/inch 0.0021 0.0014 0.0007 0.0028 .00105 0.00245 0.00175 0. 8 98.61 SG = 1. Assume Do = 0.2298 Finally.5 11/32 56.33 NG Use other formula Assume Do = 0.140625 Q= 17.47 0.25 in Q= 7. use Do = 3/8" Steam Flow Through Orifices Discharging To A Steam Flow (l Orifice 5 10 Diam.4 9/32 37.3 1/8 7.58 1/16 1.38 What is Q? Do/Dp exp 4= 0.8 47. psi psi 1/32 0.4 5/32 11.4 5/16 46.86 2.8 7/16 91.6 58.019775 Do/Dp exp 2= 0.7 21 7/32 22.581595 Therefore.7 1/4 29.8 37.7 14.9 28.3 3/32 4.164873 Do = 0.6 3/16 16.2 5.5641 gpm psi in in Assume Do/Dp < 0.4 115 15/32 105 131 1/2 119 150 .406046 So Do/Dp > 0.5 9.4 70.2 13/32 78.1 84.Flow through an orifice Q Do h Dp C = flow in gpm = diam of orifice in inches = differential head at orifice in feet of liquid = diam of pipe in inches = discharge coefficient If Q = 20 dP = 80 Dp = 1 Do = ? C= 0.8 Solve for h: 102.7 3/8 67.33 Do*Do = 0. 7 119 162 212 268 331 400 476 559 648 744 847 is: 150 psi 3.3 25.53 2.3 45.4 100 156 226 307 401 507 627 758 902 1059 1228 1410 1604 .5 38.3 94 153 212 272 85.1 8.6 23.5 34 43.4 97.7 52.3 127 183 249 325 412 508 615 732 859 996 1144 1301 250 psi 6.1 62.7 0.45 13.9 76.4 17.1 114 185 257 329 101 135 221 306 391 119 159 259 359 459 138 184 300 416 532 158 211 344 478 611 180 241 392 544 695 pressure 125 psi 3.3 53./hr.4 11.1 20.8 55.4 46 75 104 133 45 60.1 76.8 19.1 67.9 25.7 2.4 140 191 250 316 390 472 561 659 764 877 998 200 psi 5.1 124 172 220 70.2 29.5 10.1 56.9 15.8 3.6 35.1 24.12 2.8 6.3 13.2 15 24.3 8.ugh Orifices Discharging To Atmosphere Steam Flow (lbs.3 33.9 82.7 34.) when steam gauge 15 25 50 75 100 psi psi psi psi psi 0.8 6.7 81.94 1.1 98 136 173 56.4 97. 4 29.8 67 119 186 268 365 477 603 745 901 1073 1259 1460 1676 1907 .300 psi 7. 5 1.133 0.322 0.75 14 14 16 16 18 18 20 20 22 22 24 24 26 26 28 28 30 30 32 32 34 34 36 36 42 42 Schedule Standard 0.750 - Velocity (ft/s) 6210.25 0.375 0.563 6 6.7 17.500 0.140 0.75 1.3 0.438 0.375 0.375 0.322 0.109 0.375 0.216 0.258 0.688 0.2 3391.675 0.2 73.5 4 4 4.088 0.280 0.154 0.9 1161.4 105.1 2.6 12.375 0.5 0.7 17.2 2.088 0.594 0.6 0.7 35.1 4.315 1.068 0.4 236.05 1 1.091 0.365 0.375 0.25 1.688 0.405 0.375 0.375 0.2 3391.133 0.068 0.6 1848.226 0.7 0.625 10 10.280 0.258 0.7 47.5 3.4 0.7 35.688 0.5 3.5 3.6 1848.406 0.145 0.5 2.7 47.66 1.9 1161.113 0.2 7.237 0.3 Schedule 40 0.75 12 12.1 4.4 - Capacity (GPM) .375 0.8 408.8 408.203 0.365 0.9 2 2.4 0.625 8 8.6 1.5 0.226 0.109 0.0 0.Outside Nominal Diameter Pipe Size (in) 0.5 5 5.0 173.113 0.0 173.375 0.375 0.237 0.5 0.562 0.9 1.875 3 3.4 236.125 0.375 2.091 0.5 1.216 0.140 0.0 1.154 0.5 0.145 0.7 27.4 105.6 2.375 0.7 27.2 1.9 0.5 661.8 0.375 0.84 0.6 12.203 0.5 661.2 7.4 0.54 0.375 0.2 73.375 Velocity (ft/s) 6210.6 1. 9 8.500 0.375 0.4 39.500 0.7 30.2 2511.5 83.844 0.0 0.3 2.1 199.179 0.5 0.4 816.500 Velocity (ft/s) 9721.6 1.750 0.276 0.154 0.000 1.126 0.191 0.7 4.0 - Schedule 120 0.147 0.119 0.179 0.1 199.432 0.154 0.719 0.7 19.300 0.318 0.4 0.5 2.5 83.500 0.4 13.594 0.4 39.218 0.125 1.500 0.0 1.7 1.9 1.5 1507.3 1.500 0.500 0.6 4927.500 0.7 5.094 1.GPM) Schedule XS 0.7 275.375 1.5 7.126 0.3 1.7 0.2 21.1 - .191 0.4 1.500 0.2 2.500 0.3 53.4 0.6 0.4 1.938 1.6 1.2 1.625 1.2 1.100 Schedule 80 0.219 1.095 0.812 - Velocity (ft/s) 34.6 14.5 7.500 0.5 3.119 0.2 1.031 1.300 0.7 119.8 0.7 30.318 0.500 0.7 275.7 4.500 0.2 490.500 1.4 816.7 2.7 3.7 19.337 0.3 53.337 0.200 0.438 0.844 1.375 0.7 119.9 2.562 0.218 0.5 0.6 4927.2 2511.500 0.200 0.4 13.218 - Velocity (ft/s) 9721.147 0.9 3.500 0.276 0.500 0.095 0.9 3.688 0.2 490.500 0.500 0.432 0.5 1507. 5 5.2 16.552 0.864 0.2 1.600 0.969 2.250 0.0 157.781 1.000 1.9 99.400 0.219 0.2 - Schedule XXS 0.674 0.2 27.3 1199.308 0.312 1.4 3.0 24.625 0.9 3.344 0.382 0.436 0.594 1.875 1.125 1.7 1.5 65.4 198.7 6.750 0.7 9.406 1.4 2385.438 0.719 0.8 676.0 251.9 45.2 18.125 2.9 - .3 38.531 0.188 0.5 334.344 - Velocity (ft/s) 2087.4 559.2 4.358 0.Schedule 160 0.3 84.9 143.294 0.250 0.7 9.8 1252.375 0.906 1.8 371.7 2.000 - Velocity (ft/s) 7076.281 0.4 1.6 2. 75 1 1.375 0.5 0.5 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 42 .125 0.5 2 2.Nominal Pipe Size 0.25 0.25 1.5 3 3. 001326 0.375 1.5 0.875 3.258 0.109 0.5 4 4.54 0.006002 0.594 0.477364 0.791683 5.547599 0.226 0.375 2.154 0.000395 0.28 0.033248 0.5 0.948311 0.375 4. Area Sch.203 0.147 0.003703 0.375 0.000723 0.280584 40 0.547599 0.34741 0.75 12.05005 0.237 0.326322 0.625 8.375 1.5 .957545 0.200627 0.237 0.432 0.088405 0.322 0.179 0.14 0.5 0.66 1.9 2.5 0.029908 0.5 0.154 0.268432 0.119 0.5 0.5 0.406 0.276 0.095 0. Area Sch.5 0.375 5.5 0.405 0.227185 1.5 0.068659 0.375 9.930178 2.258 0.375 2. 40 (ft2) 0.138929 0.010387 0.126 0.28 0.315 1.133 0.203 0.318 0.322 0.375 2.75 - X-Sect.5 0.688 0.109 0.5 0.113 0.000395 0.003703 0.000723 0.66637 0.532 0.Outside Diameter 0.625 10.375 2.191 0.675 0.5 0.068 0.785398 0.00211 0.001326 0.375 0.154 0.804994 6.2 0.145 0.337 0.051338 0.033248 0.023303 0.014138 0.375 6.145 0.375 6.05 1.3 0.200627 0.564405 1.091 0.491807 - X Strong 0.218 0.75 14 16 18 20 22 24 26 28 30 32 34 36 42 X-Sect.091 0.777127 0.115066 5.5 0.375 3.14 0.462891 0.00211 0.5 0.688 0.216 0.34741 0.777303 0.023303 0.226 0.365 0.93942 1.068 0.5 5.014138 0.088405 0.021105 0. Standard 60 (ft2) 0.365 0.84 1.138929 0.688 0.563 6.375 0.088 0.088 0.622952 0.010387 0.5 0.438 0.216 0.113 0.051338 0.133 0.006002 0.068659 0.375 4. 219 0.498683 0. Area Sch.179 0.000252 0. 120 (ft2) 0.029432 0.5 0.218 0.375 0.000497 0.25 0.5 1.126345 0.079839 0.045869 0.095 0.594 1.268432 1.126 0.406 1.012272 0.154 0.969 2.001626 0.031 1.885247 3.317108 0.917476 2.000976 0.719 0.147 0.844 0.625 1.029432 0.000497 0.281723 0.227185 1.432 0.3 0.003171 1.760982 1.753014 0.57625 1.003003 0. Area Sch.938 1.188 0.344 - .219 1.344 0.168433 80 0.375 0.586943 5.408846 3.276 0. XS (ft2) 0.061722 0.181019 0.852212 1.125 1.754993 2.008908 0.630296 0.125 1.96895 2.781 1.003003 0.008908 0.045869 0.317108 0.X-Sect.181019 0.079839 0.264463 160 0.318 0.594 0.000252 0.125 2.447894 0.165048 0. Area Sch.688 0.976078 4.001626 0.405282 2.119 0.417989 1.126345 0.705592 0.218 - X-Sect.375 1.000976 0.337 0.531 0.191 0.536215 120 0.438 0.844 1 1.719 0.113561 0.625 0.812 - X-Sect.012272 0.75 0.25 0.438 0.518486 0.117193 1.921752 1.004995 0.004995 0.020506 0. 80 (ft2) 0.061722 0.2 0.681339 9.094 1.57625 1.241442 5.020506 0.312 1.127461 2.281 0.939574 6.562 0.071631 0.906 1.5 0. 875 0.028852 #VALUE! 0.017107 0.559246 0.13695 1.308 0.417584 1 0.054188 0.718399 2.007339 0.024629 0.034145 X-Sect.674 0.003623 0.895285 1.382 0.101458 0.001957 0.146744 0.4 0.864 0. 160 (ft2) 0. Area Sch.004379 0.407105 1.358 0.001174 0. Area Sch.037554 0.682704 0.394063 0.090037 0.000346 0.002043 0.001027 0.257794 1 0.0066 0.130794 0.294 0.6 0. XX Strong XXS (ft2) 0.75 0.015522 0.064467 0.253165 0.009764 0.X-Sect.436 0.012321 0.630296 - .552 0. 08 Material Constant [Km] 9840 Natural Freq [Fn] = 319.91 Ratio = Fw/Fn <0.8.57 0.82 Wake Frequency [Fw] = 32.26 (IN) 10 YES Material: 304 SS Selected [U] Dim:(IN) 8 Type of Shank: TAPERED Well Tip O.02 0.8 = 0. 3. Red requires entry 4.36 Length at Max V (IN) = 8.80 [Fn] at 1000F = 295.: (IN) 7 Well Constant: [Kf] 2.10 Ratio at 1000F <0.11 Max [U](Stress) (IN) = 46. Ratio of Wake Frequency/Natural Frequency must not exceed 0.D.00 NOTES: 1.84 1. 2.47 Max Velocity (FT/SEC)= 678.1905 10 87. Enter [Kf] and [Km] from tables.THERMOWELL VIBRATION AND STRESS ANALYSIS TAG NUMBER: JOB NUMBER: PROCESS DATA THERMOWELL DATA Fluid Name: Fluid State: Flowrate: (LB/HR) Temperature: (DEG F) Pressure: (PSIG) Specific Gravity: Viscosity: (CP) Density: (LB/FT3) Specific Vol (FT3/LB) Pipe ID: (INCHES) Velocity (FT/SEC) Actual U Dim: Support Ring: H/C VAPOUR 144000 500 650 0.8 = 0. Orange is optional . 6875 3.08 1.37 0.25 2.ELEMENT Kf Kf SIZE (IN) Tapered Straight 0.53 0.45 1.875 4.316 SS Hast.01 2. B Hast.05 2.FROM ASME PERFORMANC LIQUID VELOCITY (f/s) = VAPOUR VELOCITY (f/s) = NATURAL FREQ(Fn) @70F = SQRT(E*Y) = WAKE FREQUENCY = TYPICAL MAX VELOCITY TABLE [U] DIM 4 7 10 13 16 Material VAP VEL LIQ VEL(f/s) 192 99 70 60 35 35 22 22 14 14 Constants (Km) Inconel Aluminum Naval Brass CS.24 0.8 0.95 FORMULAS .304.5625 3.375 2.44 2. C Monel C-1018 Titanium 9250 316 7280 9840 9640 9400 8850 9310 9940 MAX U DIM(STRESS)@1000F= MAX VEL FOR SELECTED U = . 64*U^2) ----- .FROM ASME PERFORMANCE TEST CODE .4 SQRT(28500000/0.051*W/(d2*density) Q(Fn) @70F = Kf/U^2*SQRT(E*Y) = Kf/U^2*9913.290) = 9913.4/(2.8*TIP OD*Kf*9913.0509*W/(d2*density) 0.116*P)/(1+R^2/(1-R^2))) 0.5/V*SQRT(SV(10000-0.TEMPERATURE MEASUREMENT 0.64*(VELOCITY/TIP OD) RESS)@1000F= SELECTED U = 37.4 2. 91-9-20 FROM POWER TEST CODE . at design temperature. THICKNESS OF SHELLS UNDER INTERNAL PRESSURE . TMIN = >T = 0. P= internal design pressure R= inside radius of shell course under consideration. 1 UG-27 (c) Return to Menu (1) Circum. Joints) t=PR/SE-0. P= internal design pressure R= inside radius of shell course under consideration. req'd Thickness of shell. S = maximum allowable stress value. req'd Thickness of shell. psi. UG-32 & APP.6P t= Min.7 0. in. in. Stress (Long.006 or (2) Longitudinal Stress (Circumferential Joints) t=PR/2SE+0. DIV 1. S= maximum allowable stress value.7 0. psi.ASME Sect. VIII Div. UG-27 & APP. See UG-53 for ligaments.003 The minumum thickness will be the greater thickness circumferential stress or longitudinal stress.ASME VIII. 1 & ELLIPSOIDAL HEADS.375 14500 0. in. See UW-12 for welded shells. Do not use yield or tensile stregnth values as in API 653 calculations. E = joint efficiency.375 14500 0.4P t= Min. 1 .006 " NOTE: The value of S is selected from the allowable stress tables and for the appropriste d Section 2D ot the ASME code. in. t= 165 0. E= joint efficiency t= 165 0. thickness used = 0. tbl. 1 psi APPENDIX 1 CALCULATIONS (using OD) FOR SHELL t = PRo/(SE+.5 for 1:1 See App.09 in K= 1 Design pressure Static head of liquid in vessel Specific gravity of liquid Hydrostatic head Maximum allowable stress. corroded t = PR/(2SE+. new or as inspected ID for head at skirt.437 in Act.4t) = Use App. 1-4.347 in th= 0. shell Joint efficiency.5 in Act.85 Eh = 0. 1 in P = SEt/(R+. 1 in P = SEt/(R+.0 for 2:1. thickness used = 0. = 1. 1 in P = SEt/(R-. head OD for head ID for head at skirt.4t) = P = SEt/(Ro+.330002 psi Ss = 13800 psi Sh = 13800 psi ts= 0.2P) = P = 2SEt/(KD+. new or as inspected Thickness head. 1 in P = SEt/(R-. head Thickness shell.85 Do = 121 in D= 120 in D= 120.41 in fa = 0 in C= 0.4P) = Use App. new t = PDK/(2SE-.1)) = P = 2SEt/(KDo-2t(K-. corroded Thickness head.1)) = P = 2SEt/(KDo-2t(K-.6t) = Use App. UG-27 CALCULATIONS (using ID) FOR SHELL Circumferential Stress (Longitudinal joints).2t) = #DIV/0! #DIV/0! in psi Using OD.1 for other K values. new t = PR/(2SE+. new t = PR/(SE-.4t) = Use App.2t) = Using ID. 1 psi Corroded New APPENDIX 1 CALCULATIONS FOR ELLIPSOIDAL HEADS Using ID. shell Inside radius.2P) = P = 2SEt/(KD+. corroded Factor for ellipsoidal heads.6P) = Use App. 1 psi Longitudinal Stress (Circumferential joints). 1 psi Use App.1)) = #DIV/0! #DIV/0! in psi #DIV/0! in 0 psi .437 in R= 60 in R= 60. 1 psi Longitudinal Stress (Circumferential joints).09 in Es = 0. 1. corroded Outside radius. shell Maximum allowable stress. new t = PDoK/(2SE+2P(K-.VESSEL: 7-E-3 P= 63 psi Hs = 120 in Sg = 1 Ps = 4.1)) = #DIV/0! in 0 psi Using OD. 1 in Use App. corroded t = PR/(SE-.4t) = Use App. corroded Forming allowance Corrosion allowance Joint efficiency. .6t) = Use App.6P) = Use App. corroded t = PDoK/(2SE+2P(K-. 1 psi Circumferential Stress (Longitudinal joints).83 for 3:1.18 in Ro = 60. 1-4. corroded t = PDK/(2SE-.4P) = P = SEt/(Ro+. shell Inside radius shell.4P) = Use App. new or as inspected Thickness shell. SHELL MAXIMUM ALLOWABLE PRESSURE (MAP).2t)-Ps = #VALUE! -4. HEAD P = SEt/(R-.2t)-Ps = #DIV/0! #VALUE! psi DESIGN THICKNESS SHELL DESIGN THICKNESS HEAD t = PRo/(SE+.Ps = P = 2SEt/(KD+.MAXIMUM ALLOWABLE PRESSURE (MAP). HEAD P = SEt/(R-. (MAWP). (MAWP).4t) .4P)+C = #VALUE! in t = PDoK/(2SE+2P(K-. SHELL MAX ALLOWABLE WORKING PRES.4t) .Ps = P = 2SEt/(KD+.1))+C+fa = psi #DIV/0! .33 psi MAX ALLOWABLE WORKING PRES. S= maximum allowable stress value. MAWP = <P = 289. P= internal design pressure R= inside radius of shell course under consideration. psi.25 48000 1 . Joints) P= SEt/R+0.14 23. req'd Thickness of shell.25 48000 1 P= 289.Return to Menu (1) Circum. in. req'd Thickness of shell.14 23. E= joint efficiency P= 577.1163 or (2) Longitudinal Stress (Circumferential Joints) P=2SEt/R+0.6t t= Min.1 psig ress tables and for the appropriste design temperature in yield or tensile 0. in. P= internal design pressure R= inside radius of shell course under consideration. E= joint efficiency 0. psi. in.3692 The design pressure will be the lesser pressure of circumferential stress or longitudinal stress. Stress (Long. S= maximum allowable stress value.2t t= Min. in. corroded tial joints).0 for 2:1.5 for 1:1 tial joints). .. new . in . 528 L / Do = 1. Enter this value in cell B41 below. Select modulus of elasticity.05 psi Step 6. This work sheet calculates the allowable external pressure for a cylindrical vessel having a known outside diameter. Note: For definition of a line of support. Outside diameter. move vertically downward to determine the value of factor A.00011 Step 4. wall thickness. 4. use the horizontal projection of the end of the line as the point of intersection. b. If A falls past the right end of a material/temperature line. If L / Do is greater than 50. The material charts start on page 624. Subpart 3 for the material being considered.023 Step 3. c. Enter known values. ASME Sect. 3. Enter Figure G at the value of L / Do in Step 2 above. d. If L / Do is less than 0. Pa = (4B) / 3(Do/t) = 5. Move horizontally to the line for the value of Do / t calculated above. From the point of intersection in step b. Determine factor A a. (scroll down) Value of factor A = 0. If A falls to left of the material/temperature line.Thickness of cylindrical shells under external pressure. see ASME Section VIII. Part D of the ASME Code opened to Subpart 3 (page 621) Step 1. Subpart 3. paragraph UG-28. Material designation for the vessel Design temperature Outside diameter Vessel shell thickness Section ll. 1. t = Section length between lines of support. at . Move vertically upward to an intersection with the material/temperature line for the design temperature. move horizontally to the right and read the value for B. (scroll down) Value of factor B = 2000 Step 5. Figure G (page 622 & 623). paragraph UG-28(b). It is assumed that external stiffeners are adequately designed. and length between lines of support. c. 2. b. From this point of intersection. Calculate ratios. If factor A falls to the left of the material/temperature line. Gather the following information and reference materials prior to using the worksheet. Enter the value for factor A at cell B29 below. VIII. E. Determine factor B a. L= 132 inches 0.25 inches 135 inches Do / t = Step 2. enter the chart at L / Do = 50. Part D. enter the chart at L / Do = 0. Pa is calculated using the modulus of elasticity. Part D. E. Using the value of A from step 3. Go to ASME Section II. 5. Do = Shell thickness.05.05. enter the applicable material chart in Section II. Maximum allowable external pressure using factor B. skip this step and scroll down to step 6. No factor B. E.If factor A falls to the left of the material/temperature line. at the design temperature. Pa is calculated using the modulus of elasticity. E= 2.90E+07 Step 7. Maximum allowable external pressure using modulus of elasticity. Pa = (2AE) / 3(Do / t) = 4. Select the modulus of elasticity and enter its value in cell B52 below.03 psi . E. at t Do L Pa internal P external .asticity. at . E.asticity. Calculation for Clamp Evaluation for Maximum Localized External Pressures (Thin tube under uniform lateral external pressure.25 in Length of shell 2 E 2.807*(E*t2)/(L*r)*( ((1/(1-v2))3 * t2/r2)1/4 (Formula 19.25 69791 0. Sixth Edition) Define Given Parameters L 1.Formulas for elastic stability of shells) Define Constants: A=0.10 7062 .3 unitless Poisson's Ratio (for Steel) Define Maximum External Pressure Equation qmax=0.15 19462 0.71428 in 4 4327878 lbs/in Then qmax=(A4B/C *t10 )1/4 Define Constant K: K= (A4B/C) 4 18 K= 2.90E+07 lbs/in Modulus r 4.327015 unitless C=r2 2 C= 18. Table 35 -.20 39951 0.30 110092 0.35 161853 0.326 in Radius t ? in Wall Thickness v 0.807*E/(L*r) A= B=(1/(1-v2))3 B= 1. Roark's Formulas for Stress.49E+25 lbs /in Define Maximum External Pressure in terms of Wall Thickness Then qmax=(K*t10)1/4 Thickness Max External t (in) Pressure (psi) 0. 79 Vessel Length (TT) = 228.85 in Chord Area (As) = 17.00 in Drum Area (At) = 19.9059 ************ ***************** ************ 60. D 18 b 5 H1 5 H2 5 H3 100 D K1 Ze f(Ze) 0.0019362 Liquid Level H1 27193 cubic feet 203415 gallons 4843 barrels Liquid Level Vertical Cylindrical Tanks All Units are in feet Diameter.Vessel Volume Calculator b Horizontal Cylindrical Tanks All Units are in feet Diameter.63 (L) = 42. b = 1/4D Volume 27143 cubic feet 203046 gallons 4834 barrels Liquid Level 51.00 in H/D L/D As/At 0.555556 1 1 0.9999768 1.97 | .9999768 Liquid Level For elliptical 2:1 heads. L 100 b 5 H1 18 K1 Ze Zc f(Ze) f(Zc) For elliptical 2:1 heads. b = 1/4D Volume 0. D 18 T/T Length.8500 0.00 in Liq Height Diameter (H) = (D) = Chord Length Liquid Volume = 337.555555556 1 0.7141 0. 97 30.65 18.Not toScale Estimated Part. Head Vols Dished Only ASME flanged & dished 2: 1 Ellipsoidal Hemispherical 5C-31 Liquid Volume Gallons Pounds 12.25 cu ft cu ft cu ft cu ft Dished Only ASME flanged & dished 2:1 Ellipsoidal Hemispherical .64 61.01 Estimated Full Head Vols 13.264 22968.63 65.47 20.29 cu ft cu ft cu ft cu ft 2757.20 32. . L D Liquid Level H2 b H3 b H1 INCHES FROM BTOM OF DRM 228 inches Horizontal Drum Liquid 60 ________ inches 51 inches . 97 30.97 337.26 .Not toScale Two Heads + partial Drum Vol.48 gallons 350.62 356.95 368.97 337. = cubic feet 12.97 337.64 61.65 18.97 = = = = 1 cubic feet = 7.62 399.29 + + + + 337. . FT. 0 0 5 58 10 163 15 20 25 30 35 297 454 628 817 1017 LIQ VOL GALS 0 432 1218 2224 3395 4699 6110 7609 .INCHES FROMLIQ VOL BTOM OF DRMCU. 40 45 50 55 60 1227 1444 1667 1893 2121 9178 10801 12465 14157 15864 5C-31 LEVEL VERSUS VOLUME 35000 30000 VOLUME (GALS) 25000 20000 15000 10000 5000 . 0 0 50 100 5C-31 LEVEL (in) WEIGHT (LBS) 5C-31 LEVEL VERSUS WEIGHT 0 0 10 5C-31 LEVEL (in) . of bolt 1..354 t = d(CP/SE + 1.9Whg/SEd3)1/2:= required thickness for pressure 1e.000 psi for SA193 B7 y = gasket seating stress ( on surface of gasket).505 Wm2 / Sa = 241.5.275 x 2.5 /23.2 b 0.276" = required thickness for gasket seati .51 in2 W ######### W = (Am + Ab) x Sa/2 = (10.24 x 3 x 210) 1c.380 x 20.380 x 3. Calculate required flange thickness for pressure t 2..785 x (20.064/2)2 Wm2 ######### Wm2 = 3. reaction diameter (G or d) and moment arm (hg) per Table 2. distance from bolts to effective gasket reaction point 1b.064 C = factor for attachment method.000 for Monel/Teflon spiral wound Bolt D-bolt circle dia. Calculate effective gasket width (b).243 )] 1/2t = 2.3 for bolted flat head P = design pressure.275 lb 1d. 23.380 b = 0. 1 (no welds) m = gasket factor.14GmP) Wm1 ######### Wm1 = (0. 0 psi for gasket seating case S = allowable stress of manway cover material.785G2P + (2b x 3. Calculate Bolt Load (W) for gasket seating condition Ab 21.24 x 10.000 psi for SA-193 B7 Sb = allowable bolt stress at operating temperature.329 Ab = available root area of bolts: 24 x 3.000 psi for SA-181 E = Joint Efficiency.24 x [(0 + 1.000 = 4. 10.000 = 241.255 hg = (Bolt D . Determine required manway thickness 1a.14 x 0.626 / 23.34) x 23.626 lb Wm1/Sb 7.24) 2 x 210) + (2 x 0.000/2 = 366.26 in2 Wm2/Sa 10. Calculate required thickness for gasket seating t 2. 15.961.240 G = Rf .607 Wm1 / Sb = 97.505 Sa 23000 Sb y Bolt D Rf OD G ID 23000 10000 24.156 N=(Rf OD-G ID)/2: Distance of id of gasket to OD of flange G 20. Raised face OD Gasket ID: d = diameter of effective gasket reaction point Root dia. 23. 0.26/(15.75 21 18.688 1.51 + 21.000 x 1 x 20.2b: diameter of effective gasket reaction point (same as d) hg 2. 3 for Monel/Teflon Am = larger of Wm1 /Sb or Wm2/Sa Sa = allowable bolt stress at ambient temp.14 x 20.14 x (1.5 x (N/2)1/2 N 1.000 = 10.MANWAY NOZZLE CALCULATIONS 5C45 Deprop C P S E m Am 0.2731 t = 20.9 x 366.3 375 15000 1 3 10.G)/2: hg = gasket moment arm. 210 psi for pressure case. Calculate Bolt Load (W) for pressure condition W ######### W = Wm1 = 0. use higher value ective gasket reaction point 76" = required thickness for gasket seating. this is the controlling thickness .9Whg/SEd3)1/2 Where: t = required manway thickness. calculated for both design pressure and gasket seating conditions.on spiral wound tmin => = d(CP/SE + 1. use higher value .t seating conditions. Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0. Based on ASME Section VIII.Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal.06 times the inside crown radius.328 inches . Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt.1P) where t = minimum required thickness of head. psi Enter values: P= L= S= E= 35 psi 146 inches 13800 psi 1 Calculated thickness. The calculations below are for pressure on the concave side. It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data. psi E = joint efficiency S = maximum allowable stress value. torispherical. t= 0. inches P = internal design pressure. or hemispherical. These are also commonly refered to as 2:1 elliptical heads. paragraph UG-32(e) t = (. Thickness calculation for torispherical head. inches L = inside spherical or crown radius.885PL)/(SE-0. 06 times 's best to consult vendor . torispherical. ckle radius is 0. ameter of the skirt.ellipsoidal. 665SE. These are also commonly refered to as 2:1 elliptical heads. Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0.365L or P is less than 0. The calculations below are for pressure on the concave side. inches P = internal design pressure. or hemispherical. It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data.2P) where t = minimum required thickness of head. Thickness calculation for hemispherical heads. Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. t= 0. Based on ASME Section VIII. psi Enter values: P= L= S= E= 4500 psi 6. psi E = joint efficiency S = maximum allowable stress value. paragraph UG-32(f) t = (PL)/(2SE-0.8 inches 30000 psi 1 Calculated thickness. code formula is valid. inches L = inside spherical or crown radius. .06 times the inside crown radius. torispherical. therefore.Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal.518 inches t is less than 0. : ellipsoidal. ameter of the skirt. torispherical. uckle radius is 0.06 times t's best to consult vendor . .8865659 inches Operating conditions govern therefore use t1 2. y= Gasket O.D.14bGy = Bolt load required for operating conditions W m1 = 331340 lbs. and Seating Stress. Enter the decimal equivalent of fractions in a 3. table 25.1 in Appendix 2 of the ASME Cod Gasket Handbook. Section VIII. for from table 2-5. COVERS. sketch (j) and sketch (k) of Part UG Vessel Code. table 2-5.375 46. Appedix 2.191 inches = 230212 lbs.2.25 Effective gasket seating width. bo N= 0. S= Calculated values: Bolt area. ASME Sect. 17500 psi A= Ab = 5. VIII bo = 0.50 inches Basic seating width. Gasket Factor. Division 1.. Fi = Design pressure. Se 2 0. single bolt Total bolt area Diameter at location of gasket load reaction 48. This program calculates the minimum require circular heads.28bGmP Head thickness based on operating conditions t1 = Head thickness based on gasket seating t2 = 0. D.75 9000 47. FLAT UNSTAYED CIRCULAR HEADS.CALCULATION FOR THICKNESS OF BOLTED. AND BLIND FLANGES Enter values: Bolt circle diameter Nominal bolt size Number of bolts Gasket Factor. covers. m.25 b= 0.D. UG-34.. Sb = Allowable stress for head at design temp. 2 ASME Sect VIII Initial bolt load for seating gasket W m2 = 3.D. App..375 44. psi inches inches inches inches psi 2. and blind flanges of the t Fig.785G2P + 6.. The basic gasket seating width. b in Appendix 2 of the ASME Code or table UA and manually entered at the cell location. Gi = Sealing Face O.375 47. P= Allowable bolt stress at ambient temperature. Go = Gasket I. 20000 psi 4. . m= Seating stress.334 in 2 17.75 52 3.5 115 inches inches NOTE: 1. y.191 inches 2.368 in G= 46.625 0.2.88 inches Width used to determine basic seating width. Fo = Sealing Face I. All formulas and tables in the Lamons Hand the ASME Boiler and Pressure Vessel Code. y. and Seating Stress. ables in the Lamons Handbook are taken from Appendix 2 of Pressure Vessel Code. Division 1. for a given gasket material are obtained pendix 2 of the ASME Code or table UA-49. bO.2 SME Code or table UA-49.51 in2 Bolt area selected 16.2 in the Lamons Gasket Handbook at the cell location. Section Vlll. AND BLIND FLANGES lates the minimum required thickness for bolted. Bolt area req'd for seating Am2 = W m2/Sb = 16. flat unstayed and blind flanges of the type shown in and sketch (k) of Part UG-34 in the ASME Boiler and Pressure VIII.567 in2 . in cell C24 must be selected from table 2-5. Division 1.57 in2 Bolt area req'd for operating Am1 = W m1/Sb = 11. equivalent of fractions in all dimensions.1 in the Lamons eating width.. 2P) where t = minimum required thickness of head. inches P = internal design pressure.92 Calculated thickness. Torispherical: Inside crown radius is equal to the outside diameter of the skirt and the knuckle radius is 0. inches D = inside diameter of head at skirt. Ellipsoidal: Inside depth of the head minus the skirt is equal to one fourth of the inside diameter of the skirt. psi Enter values: P= D= S= E= 220 psi 120 inches 13750 psi 0.Formed vessel heads in Sterling Chemicals will generally fall into one of three categories: ellipsoidal.0. paragraph UG-32(d) t=(PD)/(2SE . The calculations below are for pressure on the concave side. t= 1. or hemispherical. Based on ASME Section VIII.045 inches . These are also commonly refered to as 2:1 elliptical heads. It will not be readily apparent in the field whether a head is ellipsoidal or torispherical so it's best to consult vendor drawings and data. Thickness calculation for ellipsoidal head. torispherical.06 times the inside crown radius. psi E = joint efficiency S = maximum allowable stress value. 06 times est to consult vendor . ter of the skirt. e radius is 0. torispherical.psoidal. paragraph UG-28(b)) * cross sectional area of existing stiffening ring Step 1. paragraph UG-29. Determine factor A a. Open ASME Section II. The calculated moment of inertia can be compared to the moment of inertia of a corroded or damaged stiffening. Enter the right hand side of the applicable chart at the value of B determined in step 2 above. b. Move left horizontally to the material/temperature line for the design metal temperature. Determine the required moment of inertia. The charts begin on page 624. Subpart 3 to the applicable chart for the stiffener material under consideration.45E+07 Cross sectional area of stiffener. Factor A = 0. UG-29) Step 2. (ASME VIII. Part D.39 in 40 inches L s is defined as one half the distance from the stiffener center line to the next line of support above plus one half the distance from the stiffener center line to the next line of support below. Factor B calculated B= 5107 Step 3.3125 External pressure P= 15 Modulus of elasticity for material E= 2. Shell O.D. At the point of intersection. Part D.15 in Step 5. Calculated value of factor A for factor B below chart. . Information and reference material needed to perform this calculation include: * ASME Section II.00042 Step 6. for stiffening ring material at design temperature * outside diameter of shell * shell thickness * distance between lines of support (see ASME Sect. For values of B falling below the left end of the chart. As = Ls= inches inches psi psi 2 2. Is= 4 12. go to step 5.This worksheet calculates the required moment of inertia for a stiffening ring attached to a cylindrical shell under external pressure. d. VIII. c. E. Do = 169 Shell thickness t= 0. Required moment of inertia using A from step 5. Enter known values. Subpart 3 * modulus of elasticity.0004 Step 4. move down vertically for the value of A.The calculation is performed in accordance to ASME Sect. A= 0. VIII. Enter that value in cell B38 below. 67 in .Is= 4 12. ndrical shell inertia of a I. paragraph he stiffener e to the next . fr1 = 0. 3. paragrap following constraints apply to the use of this work sheet: 1) only circular openings in straight cylindrical shells. d= Design temperature Allowable stress for shell mat'l Sv = Calculated values: required shell thickness Required nozzle thickness Area available in shell Area available in nozzle projecting outward Area available in nozzle projecting inward A3 = 480 O F 96 in. 40 psi Corrosion allowance 0. A= 1. . Reinforcement is adequate. Reference ASME Sect. 2) axi perpindicular to shell axis. 0.396 or A2 = 0.Reinforcement requirement for openings in shells without reinforcing elements.574 in A1 = 0.542 or A1 = 0.005 in.125 in. and 3) axis of opening intersects shell axis. VIII.5 in.375 in. Nominal thickness of shell.216 in. tn = Allowable stress for nozzle mat'l Sn = 15000 psi Finished diameter of opening. Reinforcing area required. strength reduction factor.770 in Available area is equal to or greater than area required. t = Nominal thickness of nozzle wall.00 2 0.164 in.23 0 Total available area = 2 0.183 A2 = 0. Given values: Design pressure Inside diameter of vessel. 13800 psi 0. 0. rence ASME Sect. VIII, paragraph UG-37. The straight cylindrical shells, 2) axis of opening is Shell joint efficiency Nozzle inserted through shell, y or n Nozzle abutting shell, y or n Distance nozzle projects beyond inner wall, h= strength recuction factor, fr2 = 0.85 n y 0 1.00 Use larger value, A1 = 0.542 Use smaller value, A2 = 0.23 SCROLL DOWN REINFORCED OPENINGS: SEE ASME VIII, UG 37.1 20 E 5 10" VESSEL: NOZZLE: VESSEL PARAMETERS (at Nozzle Location) P = 1975 psi Design pressure R = 4.313 in Outside Radius S = 20000 psi Allowable stress value in tension E= 1 Joint efficiency, Table UW-12 t= 0.6 in Nom. thickness vessel wall, new or as measured t = 0.538 in Nom. thickness vessel wall, corroded tr = PR/(SE-.6P) = 0.396 in Req. thickness based on circ. stress NOZZLE PARAMETERS O. D. = 3.62 d= 2.62 d = 2.745 tn = 0.5 tn = 0.438 trn = PRn/(Sn-.6P) = 0.129 F= 1 E1 = 1 h noz = 0 h= 0 h= 0 weld leg = weld leg = in in in in in in Nozzle outside diameter Finished diam. of circ. opening (noz. ID, as is) Finished diam. of circ. opening (noz. ID corroded) Nominal nozzle wall thickness, new (or as inspected) Nominal nozzle wall thickness, corroded Req. thickness of seamless nozzle wall Correction factor = 1 for all; integrally reinforced openings (see fig UG-37) = 1, for opening in plate, see UW-12 if any part passing through welds dist. nozzle projects beyond inner surface of vessel dist. noz. projects (use for calcs, no reinforcement element) dist. noz. projects (use for calcs, with reinforcement element) in in in 0.5 in 0.5 in Outward nozzle leg weld (in) Inward nozzle leg weld (in) ALLOWABLE STRESS & CORROSION ALLOWANCE Sn = 21300 psi Allowable stress in nozzle @ temperature Sv = 20000 psi Allowable stress in vessel @ temperature Sp = 0 psi Allowable stress in reinforcing element plate @ temperature c = 0.063 in Corrosion allowance STRENGTH REDUCTION FACTORS N 1.00 1.00 0.00 0.00 fr1 = fr2 = fr3 = fr4 = For nozzle abutting vessel wall (Enter Y for yes, or N for no) = Sn/Sv for nozzle through vessel wall = Sn/Sv = (lesser of Sn or Sp)/Sv = Sp/Sv AREA CALCULATIONS - NO REINFORCING ELEMENT, CORRODED A41 = A43 = A1 = A1 = 0.25000 0.00000 0.38770 0.29307 in^2 in^2 in^2 * in^2 A1+A2+A3+A41+A43= A2 = A2 = A3 = A= 0.83011 0.67567 0.00000 1.08773 in^2 in^2 * in^2 in^2 " * " Denotes value used in area calculations for A1, A2 1.31337 >= A, Opening adequately reinforced. AREA CALCULATIONS - WITH REINFORCING ELEMENT ADDED, CORRODED Dp = te = 0 in 0 in Outside diam. of reinforcing element Thickness reinforcing element A= A1 = A1 = A2 = A2 = 1.08773 0.38770 0.29307 0.83011 0.67567 in^2 in^2 * in^2 in^2 in^2 A1+A2+A3+A41+A42+A43+A5 = A3 = A41 = A42 = A43 = A5 = 0.00000 0.00000 0.00000 0.00000 0.00000 in ^2 in ^2 in ^2 in ^2 in ^2 Zero input - reinforcement not specified openings (see fig UG-37) passing through welds ent element) . . . . Y = minimum yield strength rength in in psipsi T = minimum tensile strength trengthininpsi psi E = joint efficiency Use E=0. Calculated minimum thickness.426T = 8946 psi S= t= 0.472T for all other courses.3. 10400 psi 8946 psi 0. Use smaller of 0.426T for bottom and 2nd course.3.1 of API 653 Enter Values D= H= C= Y= T= G= E= Value of S selected. 38 24 1 13000 21000 1 0. Calculation based on this formula: t = (2.472T = 11440 9912 . ft. No. Use E=1.Minimum Thickness For Welded Tank Shell.88Y or 0.7 if original E is unknown.I.7 ft.0 when away from welds by 1 inch or 2t. API 653 Date: 7/14/2014 Where: F. psi psi 0.8Y = 0. t = minumum acceptable thickness in inches D = nominal diameter of tank in feet H = liquid height from bottom of corroded area or floor in feet C = course number ( C=1 for bottom course ) G = specific gravity relative to water (G = 1.0 for water) S = maximum allowab le stress in psi.6 D H G)/S E from 2.8Y or 0.88Y = 0.379 in. Use smaller of 0. way from welds by 1 inch or 2t. psi psi .m and 2nd course.
Copyright © 2025 DOKUMEN.SITE Inc.