Aluminium and Its Alloys

March 17, 2018 | Author: Vignesh Nayak | Category: Heat Treating, Annealing (Metallurgy), Alloy, Rivet, Welding


Comments



Description

Downloaded from http://www.everyspec.com MI1-HDBK-694A(MR] 15 December 1966 MIUTARY STANDARDIZATION HANDBOOK ALUMINUM AND ALUMINUM ALLOYS n MISC Downloaded from http://www.everyspec.com DEPARTMENT WASHINGTON OF DEFENSE 25, D. C. MIL-HDBK-694A(MR) Aluminum and Aluminum Alloys 15 December 1966 1. This standardization with established procedure. 2, This publication military standardization handbook was developed by the Department of Defense in accordance was approved on .15 December handbook series. 1%6 for printing and inclusion in the .. 3. This document provides basic and fundamental information on alu”minum and aluminum alloys for the guidance of engineers and designers of military materiel. The handbook is not intended to be referenced in purchase specifications ezcepl /or inforrnutiond purposes, nor shall it supersede my speci[icalion reyuirerneqts. 4, Every effort has been made to reflect the latest information on aluminum and aluminum alloys. It is the intent to review this handbook periodically to insure its completeness and Users of this document are encouraged to report any errors discovered and any recurrency. commendations for changes or inclusions to the Commanding Officer, U. S. Army Materials Research Agency, Watertown, Mass., 02172. Attn: AMXMR-TMS. Downloaded from http://www.everyspec.com MlL=ttDBK=694A[ Mll] 15 December 1966 Preface This is one. of a group of handbooks covering design and construction of military equipment. metallic and nonmetallic materials used in the form, technical information and data The purpose of this handbook is to provide, in condensed of direct usefulness to design engineers. The data, especially selected from a very large number of industrial and government publications, have been checked for suitability for use in design. Wherever practicab~e the various types, classes, and grades of materials are identified with applicable government specifications. The corresponding technical society specifications and commercial designations are shown for information. The numerical values for properties listed in this handbook, which duplicate specification requirements, are in agreement with the values in issues of the specifications in effect at the date of this handbook. Because of revisions or amendments to specifications taking place after publication, differ from those shown in current specifications. In connection the values may, in some instances, with procurement, it should be understood that the governing requirements are those of the specifications of the issue listed in the contract. Wherever specifications are referred to in this handbook, the basic designation only is shown, omitting any revision or amendment symbols. This is done for purposes of simplification and to avoid the necessity for making numerous changes in the handbook whenever specifications are revised or amended. Current “Department issues of specifications should of Defense Index of Specifications in the text is based be determined and Standards. by consulting ” the latest issue of the The material into four sections: Section Section Section Section Comments Army Materials 1 II III IV on the literature listed in the bibliography. It is subdivided - Aluminum in Engineering Design Standardization Documents Typical Properties of Aluminum and Aluminum A11OYS Specification Requirements. They should Mass. 02172. be addressed to Commanding Attn: AMXMR-TMS. Officer, U. S. on this handbook are invited, Research Agency, Watertown, 111 .,. Downloaded from http://www.com .everyspec. .’ ‘<o”’ ““d”” “. . . . . ... . . . . .. . . . . ... . . . . . Wrought Alloy s. .”. 7. . ““+” . .c. . . . . ..’””. . +“-s ““” “’... .. . .0. . . . . . . . ...””’ . . . . . . .. .. . . . 15. . .. . .. . . Types Available . . . . . . . . . . . .’ Affecting Formability . . Riveting . 1 1 1 2 2 2 2 2 2 3 3 3 5 5 8 8 8 8 8 9 9 9 9 9 11 12 12 13 13 13 13 14 14 14 15 ALUMINUM IN ENGINEERING . ..”””. . . . . . 14. . . . . .. MACHINABILITY . .””” “. . . ... . . Casting Alloy s.. . .. . . ... . . . . 9. . . . . . . . . . . .. .. . . .. . .’” . . . . Wrought Alloys .. . . . . . . JOINING .. 1. . . . . . . . . . . CLASSES OF ALUMINUM 3. . Physical Properties .. . . . . . . .. . . . Factors .. Factors Affecting Machinability . . ... . . Effects of Heat Treatment. . .””””“-” ””-” v . .. .. .. . “. . . . . .“’ . . . . . . . .. .. .. 17. . . . 6.. . .. Adhesive Bonding . .” “’”” .. . . .. . .. ~ . . 20. . . . . . . . . . . .. . . . . . . . . .”” . . . . 16. . . . . Factors Affecting Corrosion Resistance . 10.”.com MILHDBK=694A[MR] 15 December 1966 .. . 23.. . “ “... . . .””.00. DESIGN . . .. . . . . . 8. .. . .. . 18..”. Effects of Quenching . .. . . . . . . . 2.” SELECTING ALUMINUM ALLOY... . . . . . . .’. “.. .. . . . .. .’” . . . . . . . . . . . . . Brazing . .” CORROSION RESISTANCE .. Soldering .- Contents Paragraph Preface Section . .. . . ... .. . . . . . .”. . . .. . . . . . . Temper Designation . . .. . .-+ 000”. . . . . .. . Choice of Alloy s. . . . . . .Downloaded from http://www.”! TEMPER DESIGN ATION SYSTEM.. . . I. . . . . . .. . . . ... . .. . .”” ‘ . . .. . . .. . .. FORMABIL. . .. . .. .. . . . . . . . .”. . . . .sc”’”. . . . . . . . . .. .everyspec.”””” . . Mechanical Properties . .c.. .ITY 12. . .“”.. . . . . 22.. .“. i. . . . . . . . “.s . .... S. . ...” . . . .. .. . . . 21. .”. .. . . . .. . .. .“””” PROPERTIES OF ALUMINUM ... . ...””’. . .. . . . 13. . . .. . . . . .. . . . . .. Welding . .. . .”. Protective Finishes .-” ... HEAT TREATMENT . . . .. . .. . .”” ..’ ~ ~ ~ . .. . . ~ ~ .. .. . . . . Characteristics . . . .’. 19. . . . . . ... . . .. . . . . 4.. GENERAL .. . . . .”-” . . ... . Casting Alloy s. .. . . Page 111 . . . . . . .. “Pure’’ Aluminum . . .. . . 11.’ ‘“””” .. . . . . Joining Methods ... . . . 24. . .occ. . . . .. AND ALUMINUM ALLOYS . . .”. . Economic Considerations . .””’ . . . 111. . . . . . . . . . . . . . . . . . . . Properties and Characteristics . . . . . . . . . . . . . . . . . . . . . American Society for Testing and Materials Specifications . . . . . . . . .everyspec. . . . . . Typical IV. . . . . . . . 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Society of Automotive Engineers Specifications . . . . . . . 28. . . . . . . . Page 17 17 17 26 30 31 67 95 GeneraI . . . . . . . . . . . . . . . . . . Bibliography . . . . .com MI1-HDBK=694A[MR] 15 December 1966 Paragraph Section 25. . . . . . Specification Requirements . . . . . . . . Section Section 11. . . . 26. . vi . . . . . . . . . . . . . . . . .. . . . . . . STANDARDIZATION DOCUMENTS . . . . . . . .Downloaded from http://www. . . . Government Documents . . . . . N’. . Wrought Alloys Typical Effect Typical Typical Typical Typical Typical Typical Typical Physical to Specification) . . . . .. . . . . . . . . . . . . . Metal Condition at Driving . xl. . . . . . on Yield Strength on Elongation (Tensile) .. . .com M11=HDBK=694A[MR] 15 Docamber 1966 ILLUSTRATIONS Figure Id 2. VII. . . . . . . . .. . . . . . . . . . . . . . . 5.. XIII. . . . 111. . ..Cross Reference Limits Limits . .. 0 0 . . . . . . . . . . . . of Permanent and Semi-Permanent . Coefficient of Temperature Effect Effect Effect on Thermal of Linear Tensile . . . .Downloaded from http://www. . . . 3. . Reference Reference . . . . Expansion of Temperature of Temperature of Temperature on Ultimate Strength . .. . . . . .. . II. Moduli of Elasticity Fatigue Strengths at 75° F . . . . . . ! .. . . . . ~ . . . . . . . ~ . . . . Combinations of Rivet Alloy and Structural . . . . . . . . xv. . . . . Page 1 3 4 10 Wrought Aluminum Physical Suggested Rivet Property and Aluminum Alloy Designations Ranges . . . . . . . . . VI. v. – Wrought Products of Wrought Alloys of Sand Cast Alloys Mechanical Mechanical Properties Properties . . . ~ . . . . I . ..Cross Composition Composition Alloys . . . . .Cross . . . .. . . . . . Page 32 33 34 36 37 39 43 44 46 48 50 51 52 55 56 of Cast Aluminum Alloys of Wrought Aluminum (Alloy (Alloy to Form) Alloys . . . .. . . Properties of AIuminum Alloys . .”ll TABLES Table 1. . . . . . . . . Ix. .. . . . x. . . . .. 0 . . ~ . . . . . . . . . . . VIII. . ~ . . . . . .. . . ~ . . . . XIV. . . . . .’. .everyspec.. Casting Chemical Chemical Wrought Alloy s . vii . . . . . . . . . . . . XII. . .. 4. . . Typical Mechanical Property Values . . . . . . . . . . . . . . . Typical Mechanical Properties Mold Casting Alloy s. . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . xx. . . . . .com JILHDBK-694AIMR) 15 December 1966 Table XVI. . . .Downloaded from http://www. . . XIX. . . .Relative . .everyspec. XXIII. .Relative Strengths Strengths Rating Cold Bend of Wrought Alloys by Characteristics Joints . . . . . . . and Uses of Wrought Aluminum Alloys Vlll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . of Butt Welded Joints. . . . . . . . . XXIV. . . . Applications Characteristics for Casting . XXI. . . . . . Page 57 57 58 58 59 59 60 61 63 64 — Approximate Forging Typical Typical Typical Radii for 90-degree -. XXII. . XVIII. .. . . . . . Weldability Casting Typical Principal for Cast and Wrought Products Rating by Characteristic Alloys Alioys . . . . . . . . . Alloys Tensile Tensile . . Shear Strengths Ratings of Spot Welds . . . . . . . . . . . XVII . of Gas-Welded . . . . . . . . . . . . . . . . . . Typical Mechanical Properties of Die Casting Alloys . . . . . . . . . . . . . . . . . . . . . . . . xxv. . . . . . . . . . . from the ultraviolet end of the spectrum through the visible and infrared bands to the electromagnetic wave frequencies of radio and radar. nitrogen. Typicol Mechanical Property Volues .while high-strength alloyed aluminum will sometimes become pitted as a result of localized galvanic corrosion at sites of alloying-constituent concentration. milled. and ready availability.000 Wrought 80. percent Limit. This is about one-third the weight of iron at 0. is slightly heavier than magnesium at 0. ease of fabrication.000 13. factors rather As a heat conductor.— FIGURE 1. the tensile strength of aluminum can be made to approach 100. method known to the found rymsn. or zinc. or Aluminum is readily turned.com Mll=HDBK=694A[MRj 15 December 1966 Section Aluminum in i Design Engineering GENERAL ~. min. Figure 1 shows some typical mechanical property values required by current Government specifications.9 million to 11.000 6 varies markedly Modulus of Elasticity 9. and silicon.163. As a conductor of electricity. with the addition of small amounts of such alloying elements as manganese. In its commercially pure state. They are also utilized for their high electrical and thermal conducti vities. psi Endurance min.e. magnesium.4 million (usually taken as 10. having a tensile strength of approximately 13.Downloaded from http://www. corrosion resistance.i. corrode uniformly . As a reflector of radiant energy. it can be rolled’ to any thickness. forged. silicon. min.000 psi. aluminum is a -relatively weak metal.28 pound and copper at 0. However. Aluminum is easily fabricated .everyspec. aluminum ranks high among the metals. ) Aluminum alloys weigh about 0. psi Yield Strength. (Aluminum is the most widely distributed of the elements.500 24. bored. high strength-to-weight ratio. hammered. in which a thin. its reflectivity in the visible range is over 80 percent. As an example. except for oxygen. aluminum is excellent throughout the entire range of wavelengths. OOOpsi. Aluminum alloys are used in engineering design chiefly for their light weight. Characteristics. stamped.one of its It can be cast by any most important assets. and relatively low cost..32.066. Pure aluminum will form a continuous protective oxide film . aluminum competes favorably with copper. Corrosion resistance of aluminum may be attributed to its self-healing nature. or machined at the maximum speeds of r Property Tensile Strength. md somewhat lighter than titanium at 0.000 72. cast 42. psi Elongation. invisible skin of aluminum oxide forms when the metal is exposed to the atmosphere.3 million) . copper.1 pound per cubic inch.000 22. on a poundfor-pound basis the power loss for aluminum is less that half that of copper – an advantage where 1 weight and cost are the governing than space requirements. Although the conductivity of the electric-conductor grade of aluminum is only 62 percent that of the International Annealed Copper Standard (lACS). and with the proper heat treatment and/or cold working. extruded. It is especially useful in heat exchangers and in other applications requiring rapid dissipation. and paint finishes. which often can be of considerable importance in the cost of handling. finished. The mechanical properties of the heat-treatable types may be improved by quenching from a suitable temperature and then aging. The aluminum alloys specified for casting purposes contain one or more alloying elements. much overlapping of properties exists among the various alloys thus making available a large number of compositions from which to choose. Pure aluminum exhibits poor casting qualities. Therefore. the overall cost shouid be judged in relation to the finished product. alloys have wide property Many aluminum ranges as a result of tempers attainable through treatment. tube. gas. With these wide ranges.specially developed for aluminum . rod.) Most aluminum alloys 6. polished. Types Available. Finally. both thermal and mechanical. Special compositions have been developed for particular fabrication processes such as forging and extrusion. except for applications where good electrical conductivity. Advantages in the processing of aluminum can materially contribute to the reduction o’f the cost of the end item. vitreous enamels . alloys for casting. electrochemical. The mechanical properties of tire non-heat-treatable” type may be varied by strainhardening. it is employed chiefly in wrought form. the maximum of afiy one element not exceeding 12 percent. and equipment required for the product. or by strain-hardening followed by partial annealing. sheet and plate. High strength. or high resistance to corrosion are important. the economies effected may be more than enough to overcome other cost disparities. aluminum can be coated with a wide variety of surface finishes for decorative as well as protective purposes. In the fabrication of aluminum products.can be applied. the properties of the aluminum can be enhanced and its working characteristics improved.com MLHDBK-694A[MR] 15 December 1966 which most machines are capable. Coupled with these assets are the advantages of light weight. ease of fabrication. and should not be determined by the price of the base metal alone. or resistance welding. and alloys for the manufacture of wrought products. wire. its aluminum is not heat treatable. can be obtained by selectiotl of suitable cornposi:ion and heat treatment. especially desirable properties may be obtained by a combination of heat treatment and strain hardening.and three-digit numbers. and permits the selection of the most economical method. Aluminum casting alloys are usually identified by arbitrarily selected. With the heat-treatable alloys. (Alloys for casting are normally different from those used for rolling. and thus have limited utility in engineering design. Both have relatively low strength. mechanical properties may be varied by strain hardening (cold work). 5. storage. This increased selection provides for a greater latitude in the choice of fabricating techniques. The ease with which the metal can be machined. others are designed to be heat treated to improve their mechanical properties and dimensional stability. together with good ductility. Pure However. ‘! Pure” Aluminum. Commercially pure aluminum is available as foil. shipping. 2. The cost of aluminum is relative. and is adaptable to automatic screw machine processing. Pure aluminum is available both as a high-purity metal and as a commercially pure metaI. CLASSES OF ALUMINUM AND ALUMINUM ALLOY 3.) All types are produced in a wide variety of industrial shapes and forms. Wrought Alloys.everyspec. and other working. material. used for wrought products contain Iess than 7 percent of alloying elements. Casting Alloys. Aluminum can be joined by almost any method riveting. labor. and as extrusions and forgings. including “pure” metal. Some alloys are designed for use in the as-cast condition. bar. brazing. Economic Considerations. or assembly of the end item< 4. and adhesive bonding. (See table 1. By the regulation of the amount and type of elements added. Aluminum is available in various compositions. commercial designations of two. 2 . In addition to the more common chemical. As with casting alloys.Downloaded from http://www. wrought alloys are produced in both heat-treatable and non-heattreatable types. These designations are sometimes preceded by a letter to indicate that the original alIoy of the same number has been modified. forging. arc. and assembled permits a reduction of the time. . . 2218. . and Silicon . . . . . .00% minimum and greater r Copper Aluminum Alloys grouped by major Alloying Elements Manganese Silicon . 9. IX and X. 8. and modulus of elasticity of aluminum alloys decrease with rising temperatures. . . . . . . Maior Alloying . . . . . . . . hardness. . . extruded shapes. . . . . Magnesium Magnesium Zinc . . . . . . . . . . tube. Wrought Aluminum rrnd Aluminum Alloy Designations The principal wrought forms of aluminum alloys are plate and sheet. . . . . . . . . . . . . . and 10 in QQ-A-596 for permanent-mold castings. . Those properties which may asaume importance in considering particular applications are indicated in tables VI and VII. . . . of Table . The wide range of mechanical properties of aluminum alloys depends upon composition. . . . . . and other factors. . . . . rod. lxxx N. . . . . . . . . . Element 2XXX 3XXX 4XXX 5XXX 6XXX 7XXX 8XXX 9XXX 111or are . . This prefix is dropped when the alloy becomes standard. and 4032 in QQ-A-367 for forgings. . . the second digit indicates modifications of the original alloy (or impurity limits). . . . . Some aluminum alloys begin to soften and weaken appreciably at temperatures as low as 200°F (93°C). heat treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . It is. . . . . . . . (See tables VII!. 900°F (482”C) to 1200°F (649°C).com MI1=HDBK-694A[MR] 15 December 1966 ALUMINUM ASSOCIATION DESIGNATIONS FOR ALLOY GROUPS (iJAA Aluminum . . . and classes 3. . . The ranges of the physical properties of aluminum are shown in figure 3. . . . . . . . Some alloys have been developed especi dly for high-temperature service. bar. . . alloy 142 in QQ-A-601 for sand castings. . . cold working. . . (See table II. essential to define the form of material in addition to the alloy. the last two digits identify the aluminum alloy or indicate the aluminum purity. Mechonicol Properties. . . Physical Properties. . therefore. . These include alloys 2018. . . . Other Elements Unused Series . . The first digit indicates the alloy group. . .) Wrought aluminum alloys are designated by four-digit numbers assigned by the Aluminum Association. but their numbers are prefixed by the letter X. . . . . FIGURE 2. . . wire and forgings. . . . . . . . foil. . . Elongation increases with rising temperatures (until just below the melting point when it drops to zero). . . (~ Only compositions conforming to those registered with The Aluminum Association listed in the chemical composition should bear the prefix ‘‘AA”. . . . . . . .99. . The system of designating alloy groups is shown in figure 2. . . . . . Aluminum alloys are restricted in use to only eIevated temperatures because of moderately their relatively low melting point. . . . . Chemical composition limits of wrought aluminum alloys are given in table HI. . . . . . . . Tables IV and V provide a cross reference between designations under Government and industrial standards. . .everyspec. . . . . . .) The strength. . . . . . . . . . . . others maintain strength fairly well at temperatures up to 400°F (204°C). . Some properties may also vary appreciably in identical compositions according to the type of product or processing history. . . . . . . 3 PROPERTIES OF ALUMINUM 7. . . . . . Experimental alloys are also designated in accordance with this system. . . . . . .Downloaded from http://www. . -which are of interest when considering aluminum for some applications at elevated temperatures.40 0.com MIL-HDBK=694A[MR] 15 Decembar 1966 PHYSICAL Ronqe Property cast Alloys 2. and endurance limit is based on 500 million cycles of completely reversed stress.29 to 0.0% aluminum Values for electrical and thermal conductivity depend upon the composition and condition of the alloys. F. The mechanical properties of aluminum tend to improve as the temperature is lowered.095 to 0. Suitably treated. Brinell hardness number is for a 500-kg load with a 10-mp ball. elongation refers to gage length of 2 inches. an aluminum alloy containing a relatively high percentage of silicon may be specified Greater than any other metal. Both are also decreased by heat treatment. Reflectivity FIGURE 3.102 30% to 60% About l/3 that of steel.21 to 0. Alloying elements other than silicon have Iittie effect on the expansion of aluminum. 44.R.9% aluminum Thermsl Conductivity (cgs units at 77 deg. and212 deg. Used for shields.093 to 0.53 for 99. Where a low coefficient of thermaI expansion is desirable. and 46 of the Bibliography.0 to 14. and aging. using the R.95 per 0. minimum creep rates may be compared. Unless otherwise stated. which show stress versus time for total deformation in percent for various temperatures. as in engine pistons.2 Roughly double that of ordinary steels and cast irons substantially greater than copper-alloy materials.) 11. cold work. are contained in References 16. From the design curves.82 0. there is a corresponding increase in strength and elongation. Both are increased by annealing.107 21% to 47% Wrought Alloys 2. Considerable amounts of silicon (1270) appreciably decrease the dimensions changes induced by varying temperatures.Downloaded from http://www. . aluminum sheet of high purity may yield a reflectivity for light greater than 80%.56 About 0. Values for the various properties of aluminum alloys are given in Section II (typical values) and Section 111 (specification requirements). Notes PROPERTIES Specific Gravity Weight (pounds cubic inch) Approximately 173pounds per cubic foot. and wave guides in radio and radar equipment. Physical Property Ronges Creep and stress-rupture data. reflectors.70 to 2.) 0. Tests at temperatures down to -320°F (-196°C) show that with a decrease in temperature.everyspec. Thermal Expansion (average coefficient between the range of 68 deg. 17. the tensile and compressive yield strengths correspond to 0.0%) aluminum. Moore tv~e of machine and specimen.0 10. and no evidence of low-temperature embrittlement.57 to 2. F.2 percent offset. Electrical Conductivity (International Annealed Copper Standard) About 59% for 99. and decreased by adding alloying elements to pure (99. There is also an increase in modulus of 4 elasticity (table XI) and in fatigue strength (table XII).8 to 13. Normally. Poisson’s Torsional tensile ratio psi . designation indicates the degree of strain-hardening. 10. . Should some other variation of the same sequence of basic operations be Applied to the same alloy. Applies to products which acquire some temper from shaping processes not having special control over the amount of strain-hardening or thermal treatment. . Usually. -o -H TEMPER DESIGNATION SYSTEM 9. . i. . are usually tested full size. These specimens serve as controls of the metal quality. tensile properties of commercial wrought materials are based on test data obtained on l/2inch diameter test specimens cut from production materials. . . . yield strength yield strength percent of .33 as significantly influencing the characteristics of the product are indicated. The tensile properties of cast alloys (tables XIV. strength The mechanical properties of wrought alloys (table XIII) may be affected appreciably by the form. . are obtained from tests on l/2-inch diameter test specimens cast under standard conditions of separately solidification. the properties of test specimens cut from a single casting may vary widely.3 x 106 3. Subdivisions of the basic tempers. Applies to products which strain-hardened more than the are desired final amount and then reduced in strength to the desired level For alloys by partial annealing. but their properties do not necessarily represent those of commercial castings. . . As Fabricated. .so that thick. The temper designation shall follow the four-digit alloy designation and shall be separated from it by a dash. the -H2 tempers have approximately the same ultimate strength as the corresponding -H3 tempers. and intermediate sections are represented . bar. and rod. and direction of fabrication.. Temper Designations.. 65 Ultimate torsiona~ ultimate tensile strength. that age-soften at room temperature.. thin. . apply to alumiand compres. as well as tube. . 55 percent of . For wrought products.will be at least 75 percent of the strength of the sepa.com M11+ID6K=694A[MR] 15 December 1966 The following num a!loys: values generally tension .Downloaded from http://www. . (The properties may be higher or lower depending on the factors that influence the rate of solidification in the mold. The following temper designations indicate mechanical or thermal treatment of the alloy. Annealed. resulting in different characteristics. . The basic temper designations are as follows: -F and subdivisions Modulus of elasticity sion). These designate specific sequences of basic treatments. and XVI). such as wire. . the average strength of several test specimens taken from various locations in the casting . No. the -H2 tempers have approximately the same ultimate strength as the corresponding -H 1 tempers and slightly higher elongations. For other alloys. The types of test specimens acceptable under Government specifications are illustrated in Fed. . Test Method Std. 151. The number following this designation indicates the degree of strain-hardening remaining after the product has been partially annealed. .e. wrought products. are indicated by one or more digits following the letter. and then Partially -H 2 Strain-Hardened Annealed. . recrystallized (wrought products Applies to the softest temper of only). which have their Applies to products increased by strain-hardening strength with or without supplementary thermal to produce partial softentreatments The -H is always followed by two ing. . . thickness. where required. rately cast bars. then additional digits are added to the designation. . depending on their locat]on within the casting. 2024-T4. . but only operations recognized . . ) Likewise. XV.everyspec. Basic temper designations consist of letters.9 x 106 0. as ordinarily reported. there are no mechanical property limits. . Small sizes.. . . psi . . Strain-Hardened (Wrought Products Only). or more digits. The first digit indicates the specific combination of basic operations as follows: Applies to Only. . -H 1 Strain-Hardened products which are strain-hardened to obtain the desired mechanical properties without supplementary thermal The number following the treatment. Modulus of rigidity. The -T is always followed by one or more digits. -H234. Zero has been assigned to indicate degrees of control of temper.Downloaded from http://www. Treated to Produce Stable Thermally Tempers Other than -F. or in which the effect of cold work in flattening or straightening is recognized in applicable specifications. -H32 temper. Numeral 9 designates extra hard tempers. -H19. respect. An unstable temper applicable only to alloys which spontaneously age at a room temperature after solution heat-treatment. gradually age-soften at room temperature. 1 through 7. Fabricated From -H114 -H134. or mechanical property limits negotiated between the manufacturer and purchaser which are not used widely enough to justify registration with The Aluminum Association. -H254. -O. unless stabilized. -T Applies to products which are strainhardened less than the amount required for a controlled H 11 temper. respect. Numerals 2 through 10 have been assigned to indicate specific sequences of basic treatment. -H36 temper.l Stabilized. -H274. but for 6 -H112 . etc. -H38 temper. The digit following the designations -H 1. -H294. -H24. -W 1/.everyspec. The following tions have been in all alloys: -Hill three-digit -H temper assigned for wrought designaproducts which there are mechanical property limits or mechanical property testing is required. aging is indicated. between -O and 4 by the numeral 2 (quarter hard). Materials having an ultimate strength about midway between that of the -O temper and that of and 8 temper is designated by the numeral 4 (half hard). respect. Applies to products which are strainthen stabilized by hardened and low temperature heating to slightly lower their strength and increase The designation applies ductility. -H311 Applies to products which are strainhardened iess than the amount required for a controlled H31 temper. supplementary strainwith or without hardening to produce stable tempers. those for the two-digit -H temper designation to which it is added. -H39 temper. or -H. -H18. -H395 -O temper -H12.com MI1-IWBK-694A[MR] 15 December 1966 -H3 Strain-Hardened and the. -H16. -H34 temper. degree of strain-hardening. between 4 and 8 by the numeral 6 (threequarter hard). -H354 -H174. This designation applies to products which are cold worked to improve strength. as follows: -T2 Annealed (Cast Products Only). Applies to products which are thermally treated. This designation is specific only when the period of natural for example. -H28. indicates that the degree of control of temper or the mechanical properties are different from. respect. Applies to products which acquire some temper from shaping processes not having special control over the amount of strainhardening or thermal treatment. when used. -H394 -H195. Numerals 1 through 9 may be arbitrarily y assigned and registered with The Aluminum Association for an alloy and product to indicate a specific degree of control of temper or specific mechanical property limits. -H14. to the magnesium-containing only alloys which. -H26. -T3 Solution Heat-treated and then Cold Worked. The third digit. The hardest commercially practical temper is designated by the numeral 8 (full hard). Designates a type of anneaiing treatment used to improve ductility and increase dimensional stability of castings. and -H3 indicates the final. -H2. but within the range of. designa— The following three-digit -H temper tions have been assigned for: a. -H374 -H194.2 hour. -w Solution Heat-Treated. respect. Patterned Embossed or Sheet b. Tempers between -O (annealed) and 8 (full hard) are designated by numerals. -H334 -H154. The number following this designation indicates the degree of strain-hardening remaining after the product has been strain-hardened a specific amount and then stabilized. -H22. com M11=HDBK=694AIMR) 15 Decembw 1966 -T4 Solution Heat-treated and Naturally Aged to a Substantially Stable Condition. * Applies to products solution heat-treated and artificially aged by the user which attain mechanical properties different from those of the -T6 temper. * -TIO -T62 A period of natural aging at room temperature may occur between or after the operations listed for tempers -T3 through -T IO. 1Y2 to 3% permanent set -T6 Bar and Shapes – 1 to 3% permanent set Applies directly to plate and rolled or cold-finished rod and bar. . Artificially Aged and then Cold Applies to products which Worked. Applies to products which are not cold worked after solution but in which the heat-treatment. to improve mechanical properties and/or dimensional stability. Applies to products which are stress-relieved solution heatafter by compressing treatment. bar and shapes which receive no further straightening after stretching.everyspec. -T8 Solution Heat-Treated. bar and shapes when designated as follows: -TX51O Applies to extruded rod. Control of this period is exercised when it is metallurgically important. effect of cold work in flattening or straightening may be recognized in applicable specifications. bar and receive minor which shapes straightening after stretching to comply with standard tolerances. -T5 Applies to Artificially Aged Only. and then Cold Worked. The tempers are developed for special applications and are not normally considered for military applications. Applies to extruded rod. Heat-Treated and then Sta-T7 Solution Applies to products which bilized. products which are artificially aged after an elevated-temperature rapidcool fabrication process. 6101 -T62. . *Exceptions not conforming to these definitions are 4032-T62. -TX511 Applies to extruded rod. These products re$eive no further straightening after stretching. and then Artificially Aged. 6061 -T62. 6063-T42 and 6463-T42. These may be arbitrarily assigned and registered with The Aluminum Association for an alloy and product to indicate a specific treatment or specific mechanical property limits. are stabilized to carry them beyond the point of maximum hardness. Solution Heat-Treated and then ArtiApplies to products ficially Aged. such as casting or extrusion. -T9 Solution Heat-Treated. but in which the effect of coId work in flattening or straightening may be recognized in applicable specifications. the effect of cold work in flattening is recognized in or straightening applicable specifications. Applies to products which are cold worked to improve strength. The following additional signed for wrought products -TX51 digits have been asin all alioys: Stress-Relieved by Stretching. Additional digits may be added to designations -T2 through -TIO to indicate a variation in treatment which significantly alters the characteristics of the product. Applies to products which are stress-relieved by stretching the following amounts after solution heat-treatmer t: Plate Rod. -TX52 Stress-Relieved by Compressing. Artificially Aged. and then cold worked to improve strength. Applies to products which are cold worked or in which to improve strength. proof growth and/or viding control residual stress. Cold Worked.Downloaded from http://www. are artificially aged after an elevatedrapid-co~l temperature fabrication process. -TX53 Stress-Relieved b~ Thermal Treatment. such as casting or extrusion. The following tw~-digit -T temper designations have been assigned for wrought products in all alloys: -T42 Applies to products solution heat-treated by the user which attain mechanical properties different from those of the -T4 temper. are not cold worked after which solution heat treatment.. and method employed. another form of cold working. Aluminum alloys can be formed hot or cold by common fabricating processes. In some difficult drawing . also the corrosion resistance of thicker sections is generally less critical than that of thinner ones. In general. The heat treatment processes. These alloys can be aged artificially to stabilize them and improve their properties by heating them to moderately elevated temperatures for specified lengths of time. but drastic quenching is not recommended because of the strains produced. (Annealing for obliterating the hardening effects of cold working. the alloying constituents of some alloys (W temper) tend to precipitate from the solution spontaneously. The rate is controlled by proper choice of both type and temperature of cooling medium. The temper chosen usually permits the completion of the fabrication without the necessity of any intermediate annealing. This is called natural aging.of its hardness. which is alloy composition used. precipitation hardening (age hardening). Annealing is used to effect recrystallization. and the rate at which the metal is cooled. Quenching increases the strength and corrosion The structure and the resist ante of the alloy. the thickness of cross section. and is used for items produced from sheet. and small forgings. heat-treated alloys are supersaturated solid solutions that are comparatively soft and workable. (Refer to table XVII which gives the permissible bend radii for 90-degree bends in terms of sheet thickness. annealing consists of heating to about 650°F (343”C) at a controlled rate. it tends to minimize distortion and cracking which result from uneven cooling. alloy 7075 (QQ-A-250/12) in the full heat-treated temper. and annealing. It can be retarded or even arrested to facilitate fabrication by holding the alloy at sub-zero temperatures until ready for forming. as in cold water. essentially complete precipitation. will provide maximum corrosion resistance. in the quenched condition. is the most difficult to form because. the metal hardens and strengthens by reason of the working effect. The slower quench. ‘‘. and unstsble. the changes in tensile strength and other properties can become quite large. the bend radius and the thickness of the metal are also factors that must be considered. are: solution heat treatment. At room temperature. It consists of heating the alloy to a temperature at which the soluble constituents will form a homogeneous mass by solid diffusion. Rapid quenching.) For most alloys. The properties of the alloy are governed by the composition and characteristics of the alloy. A small amount of cold working after solution heat treatment produces a substantial increase in yield strength. which is done in hot or boiling water. tube. Other alloys age more slowly at room temperature. and some loss of ductility. depending on composition. For example. Foctors Affecting Formability. “-O”. The effect on the properties developed will vary with different compositions. In the process of forming. the naturally aged tempers afford better formability than the artificially aged tempers. some increase in tensiie strength. Quenching is the sudden chilling of the metal in oil or water. rind is preferred to a less drastic quench which would increase the mechanical properties. Solution heat treatment is used to redistribute the alloying constituents that segregate from the aluminum during cooling from the molten state. and take years to reach maximum strength and hardness. the 99-percent metal (alloy I1OO.T6”. then quenching the alloy rapidly to retain the homogeneous condition. In cold drawing. 8 distribution of the alloying constituents that existed at the temperate just prior to cooling are “frozen ‘‘ into the metal by quenching. holding the mass at that temperature until diffusion takes place. is used for heavy sections and large forgings. QQ-A-250/1) in the annealed temper. (The corrosion resistance of forging alloys is not affected by the temperature of the quench water. type of anneal desired. extrusions. has the best forming characteristics.) FORMABILITY 12. causing the metal to harden in about four days. Effects of Quenching. commonly used to improve the properties of aluminum alloys.Downloaded from http://www. depending upon the amount of work and on the In bending.com Mll=flDBK-694A[MR] 15 December 1966 HEAT TREATMENT 10. 11.) Most forming of aluminum is done cold. Cooling rate is not important. pure aluminum is more easily worked than the alloys.everyspec. Effects of Heat Treatment. or to remove internal stresses. will also remove the effects of heat treatment. and annealed tempers are more easily worked than the hard tempers. Also. The rate is dependent upon such factors as thickness. limited formability can be effected in the fully heat-treated temper. and adhesive bonding. the diameter and the length of the rivet should be such that the sheet is not damaged during driving. The troublesome ones are soft and ‘[gummy”. the strength requirements. When heat-treatable alloys are to be used for forming. material in one of the harder tempers. Hot forming of aluminum is usualfy temperatures of 300”F (149”C) to 400°F done at (204°C). In general. soldering. small chip size. Also. the material to be joined. These are easier to machine to a good finish in the fullhard temper than when annealed. tend to be gummy. lustrous finish. In more difficult forming operations material in should be used.com M1l-fiDBK=694A[MR) 15 December 1966 operations.W“ temper). riveting requires care in the formation of the rivet holes. in these instances the quenched metal is refrigerated to retard hardening until forming is complete. Riveting is a commonly used method of joining aluminum. When non-heat-treat able alloys are to be formed. or magnesium as the principal added constituents are the most readily machined. (Even alloys containing 5 percent silicon”do not machine to a bright. the higher the elongation value or the wider the range between the yield and tensile strengths. are also unusually machinable. Also. Joining Methods. However. Factors Affecting Machinability. and good tool life. Good machinability is ch aracterized by a fast cutting speed. Machinability is the ease with which a material can be finished by cutting. provided the bend radii are large enough. However. alloys containing copper. producing chips . The machinability of forging alloys are rated in table XVIII. The selection of the proper temper is important when specifying aluminum for forming operations. may that are long and stringy. being specially designed for high-speed screwmachine work. the better the forming characteristics. zinc. When done properly. Wrought alloys that are not heat treated. riveting can produce extremely dependable and consistently uniform joints without affecting the strength or other characteristics of the metal. Other compositions (such as alloy 2011. 15. smoothness of surface produced. and in the choice of the rivet alloy and temper. be required however. brazing. Some aluminum alloys are excellent for machining. QQ-A-225/3). wrought compositions that contain copper as the principal alloying element are more easily machined than those that have been hardened mainly by magnesium silicide. and the cutting rates are slow. containing bismuth and Iead.everyspec. others are mo~e troublesome. Forming is also done in the as-quenched condition on those alloys that age spontaneously at room temperature after solution heat treatment (“. a combination of the shortest possible time with the Iowest temperature which will give the desired results in forming is the best. Maximum formability of the heat-treatable alloys is attained in the annealed temper. As a rule. and its strength is not reduced appreciably.Downloaded from http://www. The selection of the size of rivet is not governed by hard-and-fast rules. In general. The harder alloys and the harder tempers afford better machinability. In general. methods available include riveting. and The the service conditions to be encountered. and the joint does not fail in service. but exhibit a gray surf ace. may be joined by a number of processes. At these temperatures the metal is readily worked. However. may be handled satisfactorily. The choice of method depends on the design. welding. provided the heating periods are no more than 15 to 30 minutes. the diameter should not be less than the thickness of the thickest part through which the rivet is driven 9 MACHINABILITY 13. such as “-H14:”. the temper chosen should be just sufficiently soft to permit the required bend radius or draw depth. Riveting. the shape shouId govern the selection of the alloy and its temper.) Wrought alloys that have been heat treated have fair to good machining characteristics. intermediate annealing between successive draws. A clue to the formability of an alloy may be found in the percent of elongation. Compositions containing more than 10 percent silicon are ordinarily the most difficult to machine. JOINING Aluminum and its alloys 14. in the selection of the size and length of rivets. it is more time consuming and creates bulkier joints than those made by other methods. and in the difference between the yield strength and the ultimate tensile strength. for the annealed temper “-0” less severe forming requirements. regardless of temper. Holes for riveting may be formed by punching. The length (which should be determined by experimentation) should be sufficient to fill the rivet hole after driving. and 7277 in MIL-R-12221. subpunching or subdrilling. The holes shouid be large enough to accept the rivet without forcing but not so large that the rivet will be bent or upset eccentrically. structural metals and rivet alloys that h sve proved satisfactory is shown in figure 4. property requirements. and fabricating costs. 2117. it is generally advantageous to use a rivet alloy having the same properties as the material into which it is driven. from a fabrication standpoint. or by aubpunching and reaming. These Alloys 6053 and 6061 are recommended meet the majority of riveting needs. FIGURE 4. However. The spacing of the holes should be such that the sheets are not weakened by the holes. Suggested Combinations of Rivet Alloy and Structural Metal 10 . it is often necessary to have a somewhat softer rivet to A list of combinations of the permit driving. Drilling is preferred to punching because it does not produce rough edges which might cause cracks to propagate radially from the hole. including corrosion problems. The choice of rivet alloy is influenced by several considerations. followed by reaming is preferred to either because reaming produces a smooth edge. the holes should be smrdl enough so that the rivets will fill them without excessive cold working. 6053. and 6061 in MIL-R-1150. 3003. and forestalls uneven loading on the rivets. Also. However. From a strength standpoint. permits exact aligning of holes. others are heat treated _ the I I \ 2014 Alloy 1100 Structural Metal Rive~ Metol Temper Alloy Temper Any T6 1100 2017 2024 2117 7277 1100 6053 6053 6053 6061 7277 6053 6061 7277 T61 T6 T4 T61 T6 T41 T4 T4 T4 T4 H 14 T61 T31 T31 T3 T41 Before Driving After Driving I m 3003 0 H12* H12* T4 I F T61 5052 6053 I 6061 I T4 I I *Or harder. or that the sheets will bulge or separate.everyspec. for clad sheet because of their high resistance to corrosion and their similarities in solution potential to the cladding material of the sheet. Note: Rivet alloys 11OO.com MI1-HDBK-694A[MR] 15 December 1966 nor greater than three times the thinnest outside part. and 5056 are specified in QQ-A-430. and that the sheet does not buckle. Most aluminum alloy rivets are driven cold in as-received temper. According to general recommendations.Downloaded from http://www. by drilling. 2024. 2017. the spacing (center-to-center) should be not less than three times the hole diameter nor more than 24 times the thickness of the sheet. and is well suited to the production of larger amounts of work. To effect a successful weld. plished with fluxes that dissolve and float the oxides away. or a combination of both. carbon-arc. Not all compositions of aluminum alloy are suitable for welding. The welding of aluminum consists of fusing the molten parent metal together (with or without the use of filler metal). A wide variety of welding methods are employed in the welding of aluminum. or some such means. Rivet ‘Temper H 14 T4 T4 T4 T61 T6 T4 (Slightly higher Condition When Inserted As received Immediately Immediately As received As received As received Hot (850° to 975GF) for heads requiring more pressure. deters the “wetting” action required for coalescence of the metals during welding. removal. and should be reserved for comparatively small Chemical removal is accomamounts of work. and relatively inexpensive.) -J FIGURE just before being 7277 are driven hot. and developed after driving.com MIL-HDBK=694A[MR] 15 December 1966 Rivet Condition Before Driving Rivet Alloy 1100 2017 2024 2117 6053 6061 7277 *Cone-point heads. and XXI. Mechanical removal consists of abrading with a sander. Such a method is fast. The reforming of oxides is prevented during welding and cooling of the weld by the cover of flux or by the use of inert gases to blanket the weld area. The nominal strengths of welds in some specified aluminum alloys are given in tables XIX. It is especially useful in making leakproof joints in thick or thin metal. If greater strengths are required. but it is a manual operation. or of upsetting by pressure (with or without heat generated by the electrical resistance of the metal). The welding of aluminum is common practice in industry because it is fast. equipment used is the same.everyspec. It is the most practical means of penetrating the glass-like oxide coating. this tough coating must be removed (and prevented from reforming) either mechanically. or electrically. atomichydrogen. and the need for cleaning operations to reElectrical move any remaining corrosive flux. and can be employed with either wrought or cast aluminum. Rivet Condition at Driving after quenching after quenching Sheor Strength* Developed. The good thermal conductivity of aluminum aliows the heat of welding to spread rapidly from 16.Downloaded from http://www. easy. ksi 11 34 42 33 23 30 38 driven. and not all methods of welding can be used with them. used in some forms of arc welding. XX. except that it must be modified in some instances to permit slight changes in welding practices. The corrosion-resistant oxide film that protects aluminum. chemically. Welding. while rivets of alloy Figure 5 indicates the condirivet alloys at insertion. consists of the application of a reverse polarity (work negative) of welding current which loosens the oxide by electron emission. a mechanical joint should be substituted for welding. metal-arc. tungsten-arc. tion of the various the shear strengths 5. The 11 . and electric-resistance welding. The suitability for welding and the relative weldability of some aluminum alloys are given in table XXII. Its drawbacks include the danger of leaving voids or blow holes as a result of entrapment of slag. These include torch (gas). and if increased weight and bulk are not objectionable. stainless-steel wool. when quenched from the brazing operation and then artificially aged. It is also Iower in cost than welding. and an elongation in two inches of 9 percent. 17.) As a result. Brazing. lap. in some instances where an age-hardening alloy is used. in that filler metal is melted and flowed into the j~int with little or no melting of the parent metal. Brazeable alloys are available in plate. where minimum general heating. in the range of 900°F (482°C) to 1216°F (658°C). increases the need for care in preventing the melting away of the metal parts that are to be welded. sheet. seam or line welding. the corrosion resistance of brazed aluminum joints compares favorably. it permits faster welding with less distortion. absence of flux. (The brazing alloy melts at about 100”F (38°C) below that of the parent metal. The latter factors. Metal-arc welding is especially suitable for heavy material. Since aluminum gives nq visual indication of having attained welding temperature (that is. In welding applications where a considerable amount of general heating can be tolerated and where an easily finished bead is desired. Brazing differs from welding. The low melting point of aluminum. The carbon arc affords a more concentrated heat source than a gas torch flame. — tube. Tungsten-arc welding has two distinct advantages over other forms of fusion welding.com MIL=HDBK-694A[MR] 15 December 1966 the weld zone. Soldering. and fillet welds are made in thickness of metal from 0t040 up’ to 1 inch. have been responsible for the decrease irr popularity of this process. vertical. Hence. For example. brazing is ideally suited to the joining of thinner material. Welds in plate 2% inches thick are made satisfactorily by this method. unlike solder. and butt or flash welding. The advantages are the result of the ability to concentrate the heat. or overhead 12 positions. and the necessity to use a w~lding ‘flux. and is suited to mass production methods. Gas welding is commonly done with oxyhydrogen or oxyacetylene mixtures. bar. Resistance welding is especially useful for joining high-strength aluminum alloy sheet with practically no loss of strength. The oxyacetylene flame is used most widely because of its availability for welding other metals. In addition. the filler metal is an aluminum alloy. the metal is heated for welding by establishing an arc between the ends of the two pieces to be joined. Seam welding is merely spot welding with the spots spaced so closely that they overlap to produce a gas-tight joint. and very good properties are requirements.05 inch thick or thicker. and welds can be made with almost equal facility in the flat.000 psi. will exhibit a tensile strength of approximately 45. The process can be used for either manual or automatic welding on metals 0. no flux is needed. It includes three main types of processes. The type adopted for assembly operations depends mainly on the form of material to be joined.Downloaded from http://www. Unsound joints are likely to appear in metaI-arc-welded material which is less than 5/64 inch thick. The good electrical conductivity necessitates the use of higher currents in resistance welding.everyspec. Butt.000 psi. the temperature has to be measured by the physical condition of the aluminum instead of its appearance. However. Spot welding is widely used to replace riveting. wire. It can also cause buckling or total collapse of the parent metal if the metal is not supported properly during welding. 3003. rod. gas welding is preferred. requires little finishing. one of the types of inert-gas-shielded arc-welding method should be selected. alloy 6061 (61S). it does not become red. the mechanical properties of the metal can be enhanced by treatment. Soundness of welds is exceIIent and is comparable to that of good gas welding. They are generally confined to alloys 1100. and 6061. in general. and the blanketing of the area with inert gas (argon or helium). to welded joints in the same alloy because. Flash welding. Weld soundness and smoothness of the surface are not as good as other arc-welding methods. differs from spot welding in that it is used only for butt joints. and shapes. Carbon-arc welding is an alternative method for joining material about 1/16 to 1/2 inch thick. a yield strength of 40. this can result in a loss in strength in work-hardened or heat-treated alloys through annealing. However. as does steel). has neater appearance. Aluminum can be joined to aluminum and to other solderable metals by means . The strength of a brazed joint is equivalent to that of the metal in the annealed condition. sometimes classified as a resistance welding process. it joins sheet structures at intervals as required. spot welding. 18. or magnesium silicide (relatively close to aluminum in the electromotive series) exhibit the greatest resistance to corrosive attack. (The peel strength of solder is about 60 pounds per inch.) The relative corrosion resistance of aluminum casting alloys is given in table XXIII. AIuminum and its alloys are inherently corrosion resistant as a result of the oxide film that forms on the surface upon exposure to oxygen. after the surfaces are tinned. On the other hand. may be effected with thermosettin g or or with one of the elastothermoplastic resins. this film is sufficient. the reader should consult MIL-HDBK-132. when there has been a lag between the solution hcz! treating and quenching. As a result. However.in a galvanic couple. The degree of inherent corrosion resistance of the aluminum alloy depends on the composition and on the thermal history of the metal. refer to M1L-HDBK-691(MR). supplementary protection of aluminum can be accomplished by cladding. CORROSION RESISTANCE 20. (Aluminum solder melts at 550°F (288°C) to 700°F ( 371°C) as compared with 375°F (190°C) to 400°F (204°C) for most other solders. . The potential differences between aluminum and. (Copper behaves cathodicly with respect to aluminum . In each instance. . either metal-to-metal or metal-to-nonmetal. depending on the type of adhesive used and the conditions under which it is used. “ADHESIVES”. (These processes are covered briefly in the following paragraphs. they may be joined in the usual manner. that is.Downloaded from http://www. The process consists of applying layers (approximately 2 to 15 percent of the total thickness) of pure aluminum or a corrosion-resistant aluminum alloy to the surface of the ingot. thickness of adherents. electroplating. it is not recommended for joining structural members or for use in moist or corrosive atmospheres because of the low mechanical properties of the solder and the difference in electrical potential between the solder and the aluminum. the alloy is subject to intergranular corrosion through galvanic action. These adhesives can provide tensile strengths up to 7flo0 psi and shear strengths of approximately S000 psi. Protective Finishes. and application of organic or inorganic coatings. are suitable for soldering with an iron. Compositions containing magnesium. Adhesive Bonding. chemical treatment. silicon. The soldering of aluminum is similar to other forms of soldering. For further information on adhesive bonding. but it is somewhat more difficult to perform because of the high thermal conductivity of the aluminum and the presence of a tough oxide film. and the service conditions. cleanliness of surfaces. supplementary protection is required. The thermal conductivity increases the problem of maintaining sufficient heat at the working area to melt the solder. Their peel strengths vary from 10 to 6S pounds per linear inch. ) For additional information on protective finishes. This lag permits excessive precipitation of the alloying elements to the grain boundaries. ) The reliability of the joint will depend upon several factors. Adhesive bonding of aluminum. electrolytic oxide finishing. including tlie type of joint. the anode corrodes. meric compounds. In many instances.Military This publication Handbook Protective Finishes.com MI1-HDBK0694A[MII] 15 December ?966 of a soldering iron or torch. However. method and care in fabrication. alloys containing copper have relatively poor corrosion resistance. includes finishes for aluminum and aluminum alloys. and hot working the ingot to cause the cladding metal to weld to the core. the working area must be kept covered with fluid flux or molten solder to exclude oxygen from the surface and to prevent the formation of a new oxide coating. in some environments. --The tough oxide film may be removed ~y dissolving it with a flux or by abrading it with a soldering iron or other mechanical means. Cladding is probably the most effective means of corrosion protection for aluminum. and an alloy of approximately 60 percent tin and 40 percent zinc. This coating prevents further oxidation of the aluminum beneath the surface. larger parts require the use of a torch to concentrate sufficient heat. 21.everyspec. (Solders for aluminum are specified in MIL-S12214!Q This method of joining is satisfactory for such a@ications as indoor electrical joints. its alloying elements become important when the alloy has not been properly heat treated. In 19.) Thus only small parts (20 square inches or less) which can be preheated. Factors Affecting Corrosion Resistance. inert. QQ-A-250/ 15. They are not suitable for the production of thin (less than 3/16 inch) sections or smooth finishes. Prepsration of the surface however. thermal and mechanical treatment. paint used for protective purposes requires more elaborate surface preparation. It consists of treating the metaI in an electrolyte capable of giving off oxygen. size. good adhesion. The resulting glaze is hard and heat resistant. tolerance. The cladding serves as a protective coating for the core metal. it must be cleaned thoroughly to remove all grease. or other foreign matter. Among these factors are the service conditions’ to be satisfied. and QQ-A250/ 13. as in the selection of any material used in engineering design. After plating. Permanent molds. and the reiative costs of suitable fabricating processes. hard. Some general purpose alloys are available. and these in turn dictate the requirements for composition. many factors must be taken into account to obtain maximum value and optimum performance. These factors dictate the mechanical and physical properties required and the methods of fabrication to be used. SELECTING ALUMINUM ALLOY With few exceptions. the cladding becomes alloyed with the core and is reduced in thickness proportionately. or die) to be used is determined by such factors as intricacy of design. QQ-A-250/5. Choice of Alloys. surface finish. Electrolytic oxide finishing is perhaps the most widely used method for protecting aluminum. It can be used as is.Downloaded from http://www. requires greater care to ensure proper adhesion. The more widely used and readily available compositions are covered by Government specifications. painted. wide tolerances. Having determined the requirements for mechanical or physical properties. hence.com MI1-HDBK-694A[MR] 15 December 1968 subsequent hot working and fabricating. it also affords protection by electrolytic action because the cladding is anodic to the base metal and.everyspec. 14 Vitreous enamels are essentially lead boro. ) Clad sheet and plate are specified in QQ-A-250/3. aluminum alloys are designed either for casting or for use in wrought products. others etch the metal and lower the corrosion resistance by removing the oxide film. . The electroplating process is similar to that used on other metals._ silicates. but on the whole. an etching type cieaner such as one containing phosphoric acid is used to remove surface contaminants and deposit a thin phosphate film. and number of castings to be produced. Some chemical treatments result in the formation of oxide films. using the metal as an anode. compositions are formulated to satisfy specific requirements. and good flexibility is applied. This is followed by the paint. corrodes sacrificially. Then a prime coat such as zinc chromate. and QQ-A-250/18. 22. Sand molds are particularly suited to large castings. and it must be given a coating of pure zinc (by immersion in a zincate solution) as a base for the plating metal. iron. Organic and inorganic coatings range from paints and lacquers to vitreous enamels. (This protection remains even when the metal is sheared or scratched so that the core metal is exposed. yield castings and closer }olerances which are generally of cast with better surface finishes than those from sand molds. The choice of an alioy for casting is governed to a great extent by the type of mold to be employed. Chemical finishes. and finishing. In the selection of aluminum. The film thus formed is an aluminum oxide which is thin. however. the surface is buffed and finished like other metals. and small runs. The type of mold (sand. 23. well suited as bases for paint because they are’ slightly porous. most are adaptabie to a variety of applications. are not as satisfactory as those produced by electrolytic means. the number of items to be produced. These are applied as frit and fired at about 920°F (493°C). Usually. or lacquer. The surface must be buffed to remove any scratches and defects. or dyed. which are complex glasses. Within certain limits. Then weigh the costs of the various methods of production. determine which alloys will satisfactorily meet the requirements. the selection of a specific composition for a particular use may be much simplified. varnish. with good corrosioninhibiting properties. Requirements for chemical finishes are specified in MIL-C-5541A. They are. dirt. but not for both. From these. permanent. Casting Alloys. Although paint for decorative purposes may be applied to the metal after removaI of surface contaminants. select all those alloys that are suitable for use with the proposed method and alternate methods of fabrication. though widejy used. cross section. and minutely porous. either in the as-extruded (-T42) or the artificially aged (-TS) temper. the dies used are not expensive. hardening.everyspec. and finishing.com MIL4WBK-694A[MRJ 15 but the minimum thicknesses which can be produced are about the same. In drawing aluminum. The principal characteristics and uses of wrought aluminum alloys that are covered by Government specifications are summarized in table XXV. Finally. the ease of fabricating decreases as the strength increases. higher accuracy. but it cannot produce as thin sections. closer tolerances. together with their characteristics and their recommended uses. provides adequate strength for some purposes and does no( discolor when given an arrodic oxide finish. In all casting piocesses. Aluminum can be formed by any of the conventional methods. and high yield strength. The choice of an ailoy for a wrought product is influenced almost as much by the proposed method of fabrication. extruded shapes of alloy 1100 and 3003 are often used. Alloys of the non-heat-treatable variety. 24. Alloy 6063. while alloy 6061 has good forming qualities. their initial cost can be justified by the savings in machining and finishing costs. It is a more expensive operation than exbut it yields products with much closer trusion. Permanent molds are also better suited to larger runs because they do not require the pattern equipment or molding operations needed in sand casting. Drawing is much the same as that for other metals. Wrought Alloys. It is cheaper than roll-forming. the price Increases. and are especially useful for producing shapes for architectural assemblies. 3003. such as forming. This method of fabrication makes possible the economical manufacture of more efficient shapes that can withstand relatively higher stresses. Alloy 7075-T6 is often used when high strength is desired. tolerances. the fabrication technique that will provide the greatest economy is governed to some extent by the quantity to be produced. using special forging stock produced in the form of an extruded bar or shape. Hence. or where the forging process is especially adapted for manufacturing the part. to ensure 15 December 1966 that the finished part will have the maximum strength and stiffness. Also. alloys with a high silicon content are useful in the production of parts with thin walls and intricate design. Alloys for extrusion are specially designed for the intended use. keep in mind that for corresponding tempers. When choosing an aluminum alloy for any wrought product. and such items as designing and manufacturing an extrusion die. Too small a radius may cause tensile fracture. tempers will generally produce the desired mechanical and physicaI properties. Aithough they are relatively expensive. Alloy 2014-T6 may also be used. On the other hand. extruded shapes are ready for use after little more than heat treating and straightening. Aluminum alloy for forgings is specified in QQ-A-367. a thickness of 4 to 8 times that of the metal thickness is usually satisfactory. Aluminum may be either press forged or drop forged. and intricate designs. and in high production rate. and lower die cost. economy will indicate the use of alloys with lower strength when their properties are adequate for the intended service conditions. It is therefore necessary in the selection of an appropriate alloy to compare the COStS of the various methods. and 5052. Aluminum extrusions have numerous applications. as by the design requirements for the part to be fabriAlthough a variety of compositions and cated. are commonly used because they can be deformecl to a greater extent before they rupture.Downloaded from http://www. such as 1100. tool radii are Important for proper results. the number of compositions and tempers amenabie to the various fabrication techniques in some instances is limited. but their design requires care to ensure uniform metal flow from both thick and thin sections. Alloys for use with the various types of molds are listed in table XXIV. In addition. Other advantages include ability to produce thinner cross sections. Alloy 2024-T6 is useful for thinner sections. . When high resistance to corrosion is required. draw~ng. resistance to corrosion. Dies are especially suited to long-run production. but it is not as strong as the 707S. taking into account all the processes and tooling that must be employed for each method. 5050. too large a radius may result in wrinkling. though slower than drop forging. the material should be chosen in the hardest temper that will withstand the necessary fabricating operations. but is especially suited to extrusion. joining. also. and forging. that as the strength increases. smoother surfaces. Forgings are used where higher strength is required. affords greater flexibility in design. Press forging. Downloaded from http://www.com .everyspec. Following is a list and aluminum alloy materials processes and items. Range. Generol. Heat-Resisting Alloys. Aluminum and Aluminum Alioy of Aluminum Alloys 1966 Heat Treatment March 1965 October 1964 Welding. Baking and Roasting. Aluminum Surface. This section covers the current specifications and standards prepared by the Government. of Government documents dealing with aluminum MILITARY Specification MIL-A-148D SPECIFICATIONS No. Specification Aluminum Aircraft. Aluminum. Aircraft. Solid (Aluminum Rivet Wire and Rod Pan. Non-Hardening Steels or Alloys. Powdered Flaked. Metal. Alloy). Nickel Alloys. Alloy.everyspec.com MIL=HDBK-694A[MR] 15 December 1966 Section Standardization Ii Documents 25. and Titanium Alloys. #l # Powdered. Spot and Seam ~2 # Impregnants for Aluminum Alloy and Magnesium Alloy Castings Polish. Government Documents. Both the Government and non-government technical societies issue standardization documents dealing with aluminum and aluminum alloy materials and processes. and the Aerospace Materials Specifications (AMS) issued by the Society of Automotive Engineers (SAE). Field and Aluminum Alloy Aluminum with Cover for Gray AC-DC March 1962 May 1962 August January February September January 1951 1953 1960 1965 Aluminum and Aluminum Alloy Tape. MIL-P-1747C INT AMD 2 fiGLl MIL -A-2877B INT AMD 1 #SH # MIL-C-3554 MIL-D-4303A MIL-A-4864A MIL-C-541OB MIL-R-S674C MIL-H-6088D MIL-W-6858C #INT AMD lfi #31 22 May 1961 June 1952 Rivets. (ASG) General MIL-T-6869B MIL-P-6888B MIL-W-7072B January 1963 March 1963 September 1962 Wire. Candler. Aluminum. Aluminum Wool Cleaning Compound. 26.Downloaded from http://www. Egg (Aluminum) 55-Gallon 110 Volts Drum Aluminum. for (ASG) 17 . 600-Volt.?1# MIL-As512A MIL-R-l150~ -. Magnesium. Resistance. Grained and Atomized Title February February Dote 1964 1952 J AN-M-454 . Non-Flame-Sustaining Rivet. the American Society for Testing and Materials (ASTM). #l # Aiuminum Foil Magnesium-Aluminum Aluminum. Round. Blind.com MIL-HDBK=694A[MR] 15 Oecember 1966 Specification No. Grade 7277. Aluminum.Downloaded from http://www. Seamless (For March 1961 April 1959 June 1964 Aluminum Alloys 18 . Metal. Aluminum-Alloy. and Sheet. Fan. 2020 (ASG) 2219 (ASG) 1965 1%4 Aluminum Alloy Plate Aluminum Alloy Plate Aluminum Alloy Sheet. Round 6061. Skiff Type.Seamless. Single Lane. Rocket Motors) Electrodes. Aluminum Aluminum. Light. Aluminum Foil Honeycomb Core Rivets. X8280 (For Recoil Cup Rings) Bridge. Aluminum Al) Impregnation of Metal Castings (including Protractor. Floating. 18 Ft. Construction Date February 1966 – MIL-T-7081D#l# MIL-C-7438C MIL-S-7811 MIL-R-7885B MIL-I-8474B MIL-W-8604#1# MIL-A-8625B MIL-A-882A#l# MIL-A-8920A MIL-A-8923 MIL-T-1OO86D MIL-S-10133B MIL-T-lo794D#l# MIL-C-1108O MIL-A-11267B MIL-B-l1353B#l# MIL-S-12204B MIL-R-12216B MIL-R-12221B MIL-A-12545B MIL-A-12608 MIL-B-13141 MIL-B-13157A MIL-I-13857 MIL-P-14462 MIL-T-15089B MIL-JZ-16053K AMEND 1 #1# H # for Sandwich March 1961 August June 1952 Sandwich Construction. for Aluminum and Aluminum Alloys and Sheet. Tempered April 1962 June 1966 Aluminum Alloy Impacts Aluminum Chips for Hydrogen Charge ML-389/UM) Generation (Aluminum April 1953 December May 1965 December 1954 1953 Boat. Expanded Inspection Process Structural. Design 6002. and Chemically Anodizing For 1963 of Aluminum Alloy Parts.everyspec. Vertical (Steel and Aluminum) Seat. For Process May 1965 October June 1959 Welding of Aluminum Alloys. Aircraft Hydraulic Quality #2if Core Material. Fixed Panel. Aluminum. Title Tube. Range Deflection Graduated In Mils and Meters Tubing. Outlet-Valve. Aluminum Alloy Faces. Aluminum Alloy . With Ice Runners Bridge. Packaging September December June 1960 Reflector. Aluminum Alloy. Corrosion-Resistant Gas Mask Canisters) (For Aluminum Mechanism of April 1951 June 1963 1958 1957 Aluminum Sheet. Bare. Aluminum and Shield Telescoping Lamp. Aluminum Rivet. Extruded Pipeline Sect With Grooved Nipple Welded on Each End Coating. Aluminum-Base-Alloy Casting for outlet Valve-C15 August August 1957 1965 Tubes. Pull-Stem. Solid Aluminum Alloy. Outboard Motor or Oar Propelled Aluminum. Welding. Anodic Coatings.. Solder. February May 1963 December Alclad7079(ASG) Bolted Die 1962 Tanks Liquid Storage. Alloy Foot Type. Title Ladder. Food Handling. Aluminum Cot. Mason-Allen. 4 wheel. SurgicaI Instrument Boiling Type. 1965 Brazing Alloys Aluminum.everyspec. Aluminum Alloy 5086. Aluminum Bowl. Round Seamless (Extruded or Drawn) Aluminum AI1oY Sand Castings. Aluminum Alloy. Platform.Downloaded from http://www. Splint. Aluminum Aluminum Box. Hermetic November June 1961 Sterilizer. Magnesium or Aluminum 19 Steer December . Brows. Aluminum Brazing AlloyClad Aluminum Alloy Castings -High Strength August February Tube. Folding. Drawn or Extruded SeaIing. Adjustable (Passenger Ships) Floor Plate. Two-Piece June 1959 June 1959 1965 Can. Pie. 1965 1966 1963 Aluminum Alloy Forgings. Packing. Structural Shapes Pipe. Upholstered of Aluminum and Aluminum A[ioys February June 1965 1965 1964 Studs. Aluminum Alloy for Direct and Arc Shields (Ferrules) Energy Arc Welding June I and Z Beams. Chair. Processes For Weldrnents.59 Aluminum and Aluminum Alloy Beam and Truss Heat Treated (ASG) Aluminum. Brazing Aluminum. Hand. Channels.com MI1-HOBK-694A[MR] 15 December 1966 Specification MIL-L-17067B MIL-F-17132B MIL-S-17917 MIL-M-17999B MIL-B-19942 MIL-B-20148A MIL-A-21180C MIL-T-21494A MIL-A-22152 AMEND 1 MIL-W-22248 MIL-B-22342A MIL-A-22771B MIL-C-23217A MIL-C-23396 MIL-B-23362 CHANGE 1 MIL-S-24149/5 MIL-S-24149~2 MIL-A-25994 MIL-P-25995 MIL-C-26094 MIL-S-36079 MIL-B-36195A MIL-S-36315 MIL-C-36465 MIL-T-40057A MIL-P-40130B MIL-A-4o147#l#’ MIL-P-40618A MIL-T-43124 #11$ #1# No. Coating. Trucks. Aluminum Aluminum Top Aluminum Wrapping. Table. Aluminum Pan. Electrically and Fuel Heated. for Stored Energy (Capacitor Discharge) Arc Weiding Studs. Stacking. Extruded or Roiled. AIuminum. Aluminum. 1957 1955. Berth. Aluminum Alloy. Nesting November October January November December Parts 1964 1964 1966 1964 1965 Hand. Heat Treatment April 1961 November November August February 1959 19. Parachute Coating Plywood. Expanded. (Aluminum) MS8cS Dote September February August October June 1952 1961 1956 1965 Aluminum Alloy (6061) Rolled Aluminum Alloy Facings Sandwich Construction. Aluminum Alloy Angles. Paddle. Gauze Pad. and Aluminum Alloy Sheets and Plates. (Hot Dip) For Ferrous Disposable Caster March 1963 November 1965 1962 Aluminum. Hospital. Vacuum Deposited September June 1962 Aluminum Frame. Balsa Wood Core Metal. Extension Combination.everyspec. Aluminum Backed Date September May 1956 August 1964 December August 1963 1965 Aluminum and Plastic and Tube. Title Sensitive Adhesive. Aluminum Alloys Readily Weldable for Structures Excluding Armor Welding. Weldable 5083 and5456 Weldable MIL-A-46027C AMEND 1 MIL-A-46063B AMEND 2 MIL-A-46083 AMEND 1 MIL-A-46104 MIL-C-52084 #1# June 1966 August 1966 June 1966 1965 Heat Treatable.Downloaded from http://www. Aluminum Alloy Arnror Resistance. March 1962 November 7001 August Febmary July 1962 1963 MIL-A-52174A#l# MIL-A-52242 MIL-C-52269 MIL-L-54002 Aluminum Alloy Duct Sheet Aluminum Alloy Extruded Rod. Shapes Bridge. Inert-Gas. Three-Way Straight. Tape. 1962 1963 Clamp. Weldable and Tube. Welding. Rod. Hinge. Aluminum Aluminum Alloy Armor -Forged Radiographic Inspection. Light-Tactical Rod. Aluminum Ladders. Steel. AIuminum Alloy Armor. Foot. Aluminum. Tray. October Floating. Aiuminum. Bar and Shapes. Extrudedj 6070 Curb Assemblies. Floating. Weldable Stud. Title Aluminum Dote June 1965 May 1962 November Aluminum Alloys January November December October 1960 1965 1964 1965 1963 Welding. FEDERAL Specification L-T-80A L-T-775 QQ-A-200B QQ-A-2oo/lA SPECIFICATIONS No. Shapes General Specification For Parts “3003 2014 2024 5083 5086 20 QQ-A-’2OO/2B QQ-A-200/3B QQ-A-200/4A QQ-A-200/5A 1964 August 1964 December December 1963 1963 . Welding. Aluminum Alloy Armor Plate. Treadway Bridge. Step. Extruded Aluminum AlloyBar. 1-13 Aluminum Alloy Bar. Extruded. Delivery. Bridge. Spot. Brearlbox. Metal Arc. Soundness Requirements for Fuaion Weldsin Aluminum and Magnesium Missile Components Aluminum Alloy Armor Plate. Pressure Service.com MIL=HDBK-694A[MII] 15 Oecember 196$ specification MIL-B-43341 MIL-W-45205 MIL-W-45206 MIL-W-4521OA MIL-W-45211A MIL-A-45225B MIL-R-45774#1# #1# #1# No. Specification QQ-A-200/6B QQ-A-200/7B QQ-A-200/8B QQ-A-200/9A QQ-A-2oo/loB QQ-A-2oo/llB QQ-A-2oo/12B QQ-A-200/13 QQ-A-225B No.com MI1-HDBK-694A(MRJ 15 December 1966 .-.everyspec.18 1100 3003 ALCLAD 2024 ALCLAD 5083 5086 5052 5456 5454 6061 7075 ALCLAD 7178 ALCLAD 2020 21 7178 September April 1964 1964 7075 2024 2014 Specification Title Date June 1964 June 1964 August 1964 1963 December August 1964 August 1964 August August August 1964 1%4 1964 QQ-A-225/lB QQ-A-225/2B QQ-A-225/3B QQ-A-225/4E! QQ-A-225/5B QQ-A-225/6B -.Downloaded from http://www. QQ-A-250/15C QQ-A-~50/16C August August August August August 1964 1964 1964 1964 1964 Au gust 1964 December December August 1963 1964 1964 1964 1964 1963 1964 1964 September September December September September April 1965 September May 1964 September September December September September September 1964 1964 1964 1963 1964 1964 1964 . Drawn. General Specification For Parts 1-9 1100 3003 2011 2014 2017 2024 5052 til# 6061 7075 Al Alloy Plate and Sheet General For Parts 1. Wire or SpeciaI Shapes Rolled. or Cold Finished. Rod. 5454 5456 6061 6063 6066 7075 7079 7178 Aluminum Alloy Bar. QQ-A-225/7A QQ-A-225/8B QQ-A-225/9B QQ-A-250C QQ-A-250/lC QQ-A-250/2Ei QQ-A-250/3C QQ-A-250/4C QQ-A-250/5D QQ-A-250/6D QQ-A-250/7C QQ-A-25018C QQ-A-250/9D QQ-A-250/10B QQ-A-250/llC QQ-A-250/12C QQ-A-250/13C QQ-A-250/14C -. Flexible. Pigment. Pan. (Electrical Alloy) Aluminum) November December Corrugated (Aiuminum Pipe Fittings. Filler Metal Nickel-Copper Rods. Aluminum Alloy Supersedes ANT 13 General March 1964 WW-T-700C WW-T-700/lC WW-T-700/2C WW-T-700/3C WW-T-700/4C WW-T-700/5C WW-T-700!6C WW-T-816 AMEND 2 August August August August August August August January 1964 1964 1964 1964 1964 1962 1962 1%1 (Number Was Formerly RR-T-791) 22 . Seamless. Conduit. Aluminum. Aluminum Alloy. . Brass or Bronze. and Pot (Aluminum) Powder and Paste. and Aluminum (Screwed) 125-150 pounds Tube. Locknuts and Plugs. Pipe. Drawn. 6062 Tubing. for Rivets Heading Aluminum Alloy Sheet. Pan. Specification For Parts 1-6 Tube 1100 Tube 3003 Tube 2024 Tube 5052 Tube 5086 Tube 6061. Title Dote QQ-A-250/17C QQ-A-250/18c QQ-A-367G QQ-A-371E QQ-A-430 QQ-A-00435 QQ-A-591D QQ-A-596D QQ-A-601C #2# INT AMD 3 #SH# QQ-A-00640 QQ-A-825 QQ-B-655B QQ-N-286A #li# QQ-R-566A RR-K-00190 RR-P-54 RR-P-0090 RR-B-500 TT-P-320 WW-C-540A WW-P-402A WW-P-471A #ti 7079 ALCLADOne Side 7075 September September June 1966 1964 1964 Aluminum Alloy Forgings Aluminum Alloy Ingot (For Remeltin~ Aluminum Alloy Rod and Wire. Iron or Steel.Aluminum Alloy.Downloaded from http://www.com MIL-HDBK=694A[MR] --15 December 1966 Specification No. Aluminum and Magnesium. Rigid. Kettles. Bushings.everyspec. Painted end Cold Use) August 1965 April 1962 May 1964 January 1963 (For Exterior Aluminum Alloy Die Castings Aluminum Alloy Permanent Mold Castings and Semi-permanent May 1966 October 1965 1964 Aluminum Alloy Sand Castings Aluminum Foil (Insulation Reflective Building) October Bus Bar. Copper Aluminum or Aluminum Alloy Brazing Alloys. Welding. *K-Monel May 1965 September August 1959 1956 Aluminum and Aluminum Alloys (Aluminum) March 1964 December Janusry 1957 1965 1964 1965 1961 1960 1964 Steam-J acketed Aluminum Pie (Aluminum Kettle Foil) August January for Paint August Boiler. Metal. Metal. Nipple. Aluminum and Aluminum Alloy Rivet. March 1962 Hex. Boss Connection. February 1961 MS-35202B May 1965 MS-35516 MS-35965 MS-36163 MIL-STD-437A MIL-STD-645A MIL-STD-649 March 1956 September 1959 1960 1958 1965 Determination. F1 at Countersunk Head. Elbow. Hex. Test Coating Chemically Aluminum Folding. Regular Semi-Finished. Treated Hardware. Tube. Butt. Aluminum Aircraft Alloy Gas Welding Date October February 1963 1960 Aluminum and Aluminum 23 .everyspec. Hexagon Head.AMS 4135. Builders. Electric. Without Holes. AMS 4120 Boss Al Dote April 1960 May 1962 May 1962 May 1962 No. . Butt Narrow and Broad. Tee. Head. Hinge.MS-27088A MS-27957 STANDARDS Title Nipple. Brazed. Tube. Boss Bolt. CrossRecessed. 78 Degree. Aiuminum December December December X-Ray Standard for Bare Aluminum Electrode Welds Dip Brazing of Aluminum Alloys Alloy Alumioum and Magnesium Products For Shipment and Storage Preparation July 1963 QUALIFIED -. Machine. Aluminum Alloy. Commercial. Flux. Nut.Aluminum. Aluminum Screw. Aluminum AMS 4121 ASG Aluminum ASG Nut-Hex. Connection. Flat Head. Aluminum Alloy Anodize Finish Nc2A-UN C-2A Corrosion Resistant Aluminum Dish. Solid-Universal Alloy Wire. Template. Moisture Rack. Elbow. Tube. UNC-2A. 600-Volt.. Non-Magnetic Rivet Solid.Downloaded from http://www. Aluminum and Aluminum September October 2 July Aluminum. Aluminum Aluminum Precision Head May 1957 2 February March 1962 July 1964 1960 1962 1963 1961 1956 Nut Plain. Countersunk 100 Deg.Narrow and Broad.com MI1-HDBK-694A[MR] 15 December 1966 MILITARY %ndord MS-9095 MS-9096A MS-9097A MS-9098A MS-9099 MS-9199 MS-9200 MS-16206 MS-16593A MS-17354 MS-20426D MS-20470B MS-25191B . Boss Al Boss Connection. #MIL-S-8879 Thread# Rivet. Solid. Builders. Machine. AMS 4135 Boss 90 Al AMS 4135 BOSS 45 Al Tube . Laboratory Tube. Aiuminum February MS-27959 Hinge. Commercial. Tube Coupling Nut-Plain. A~rcraft fiASG~ Aluminum Alloy Hardware. Number QPL-6888-14 QPL-6939-4 PRODUCTS LISTS Title Polish. Pin. Swage Locking. Close Head Tel. Rubbet Back Aluminum Face OTHER Number AN 123020 thru 123150 AND 10106 Rev 3 AND 10107 Rev 3 AND 10125 STANDARDIZATION Title DOCUMENTS Date Gasket.com MI1=HDBK-694A[MR] 15 December 1966 . Stump Type. Swage Locking. Strip Conditions and Sizes Tempers AND 10126 Rev 1 AND 10130 Rev 1 AND 10131 AND 10132 USAF Spec X-40911 (1) Change 2 1 Aug 1958 AIA-NAS 15161522 AI A-N AS NAS 1525-1532 AIA-NAS 1535-1542 February July 1943 October October 1943 Aluminum Rod and Bar . Pin. Pin.Standard Alloys and Sizes of Round and Hexagon Aluminum Bar . Pull Type. Head (AN509). Tension. 100 Deg.Downloaded from http://www. Aluminum Alloy 100 Deg. Class 1 Rivets Only Pin. Aluminum Alloy 100 Deg. Temper and 1942 1942 Aluminum Bar . Heat Resisting Silicone.. Head (AN509) Tension Pull Type.everyspec. . Aluminum Alloy Protruding Head. AIA-NAS 1556-1562 Pin. Swage Locking. Aluminum Alloy Cloth. Pull Type Close Tel. Al Alloy Protruding Tension.Standard Sizes of Square Alloys. Tension. Covered. Tempers and Sizes of Round and Hexagon (For Welding “Rod and General Use) Aluminum Wire-Standard for Sheet. Close Tel. Coated Glass.Standard Alloy and Temper (24st) and Sizes of Rectangular Rivets. July 1948 October 1963 October October 1963 1963 Tension. Welding. Aluminum Alloy. Close Tel. (Reactivated for Design) Tubing-Standard Tubing . Aluminum-Asbestos. Swage Locking.Standard (24 ST) Round Sizes Sizes Annular April 1948 October October 1942 1945 for Aluminum Alloy Round (5250) for Aluminum Alloy Aluminum Wire-Standard Alloys. Head (MS20426). Blind. Aluminum Alloy (Reinstated) For Requirements of Type B. Swage Locking. Aluminum Aluminum snd Silicone March 1963 March 1965 June 1960 Electrode.— Number Title Date QPL-14276-7 QPL-15599-44 QPL-27347-1 Paint. Close Tel. Stump Type. 24 . 7 -99. 1100. See WW-T-700/5. Rod. Aluminum Alloy Bars. 5083 (X-183). 27.8902 -. 245f3 Identification Marking of Aluminum Magnesium and Titanium Tolerances for Aluminum Alloy and Magnesium AI1ov Wrought Products August 1959 1963 December CANCELLED The following piiation AND SUPERSEDED listed standardization STANDARDIZATION documents issue DOCIJMEN-rS cancelled or superseded since the com- have been that appeared in the previous of this handbook. 184 Fed. December 16. System for Wrought-Aluminum. RoHedDtawn or Cold Finished. and Sheets.0 Aluminum (Annealed) Aluminum 25 . Preparation for Storage Aluminum Alloy Bar. Aluminum Alloy Bars. or Extruded. Aluminum High Purity. Wrought. Rods. Shapes. Cancelled without replacement. Extruded. Round.Downloaded from http://www. Bars and Shapes. and Shapes. Rods and Shapes Extruded. Alloy and Temper Designation See ASA . 7178.H-35. See QQ-A-200/ 12b. See QQ-A-200/10b. Std. 5456. Aging of. Aluminum Alloy Plates Aluminum Products. See Aluminum Alloy Bars. and Wire. Artificial 7079.com M1l-liDBK-694A[MR] 15 December 1966 Number Title Date Ferl. Title Number QQ-A-411 MIL-A-799 MIL-A-8097 MIL-A-8705 MIL-A-8825 MIL-A-8877 MIL-A. Dealing with Aluminum and Aluminum Alloys. Extruded 7079. 5086.1 -1962. 1963. See QQ-A-250/9. See QQ-A-250/18c and Sheet Alclad and Sheet 7178. QQ-A-200/5a. Aluminum Alloy Sheet and Plate Aluminum Aluminum Alloy Plate Alloy Plate See QQ-A-250/17c. Rolled or Extruded 6066. Tube. Rods and Structural Rods. See QQ-A-250/14c. Bare and Alclad 2024 (24 S). Aluminum Plate and Sheet Clad 7178. One Side 7075. seded by Federal Specification QQ-A-225/la. 5456. Super1965. Aluminum Alloy P1ate and Sheets. Std. Aluminum 76S for Aircraft Applications. Shaped Rolled Seamless (Extruded or Drawn). and Structural See QQ-A-200/7b. See QQ-A-200/ 13. Aluminum Alloy. See MIL-STD-649. See QQ-A-250/15c. and Shipment Sections of. See QQ-A-250/6d. 150ctober Aluminum AIIoy Forgings.everyspec. Aluminum Alloy 5086. Society Specifications AM Number -4000C 4oolc Following of Automotive Engineers Specifications. MIL-A-9180 MIL-A-9183 MIL-A-9186 MIL-A-17358 MIL-A-19842 MIL-A-20695 MIL-A-21170 MIL-T-21494A MIL-A-21579 MIL-A-25493 MIL-STD-192A Aluminum Alloy Bars. Title is a list of Aerospace Materials Sheet and Plate Sheet and Plate -99. l. 0. 0.6Zn.25CU.3Mg.25Cr and Plate -2.5CU.6CU.6Zn.50Mg and Plate .5.60Si.6Zn.30CU and Plate .30Cr.7Mg. Alclad. 0. 2. 0.5. 0.5Mg.5CU. 0.4. L6CU.5. O.25CU. 2. 0.lMg.4.65Mn.5. 0.5Mg. O.6CU.4. 25Mg. 1. Edge Bonded Sheet . 0.6Mn and Plate.3CU.30Cr and Plate. 0. Width 48 in.OCU. Sheet Sheet Sheet Sheet .75Mg. Alclad .5CU. and under .4. O. 0. 0. 0.60Si. 0.25Cr and Plate .25Cr and Plate.OMg. 0.60Si. 0. 2.OMg.5CU. 2.4. Sheet Sheet Sheet Plate Plate Sheet Sheet Sheet Plate Sheet Sheet Sheet Sheet Sheet Sheet Sheet Sheet Plate Sheet. Sheet. 0.65Mn.60Si. 5Mg.25CU.60CU.everyspec. 0. Stress-Relief Stretched and Plate . 0.25Cr and Plate. 0. Alclad One Side .6Si.65Mn.06Ti -4.25Cr & P1.6Mn . 0.25Cr and Plate . 2. O.25CU.5Mg.6CU.5.25Cr.5Mg.5Mg.25CX and Plate -3. 0.5Mg.3Zn. Alclad .5Mg.65Mn.LOMg. 1.5Mg. 0. 0.25CU.5. 1. 2CU.30Mn. 0. 0.35Si.25CU. 0. 1. 0.5CU. 15Cr and Plate .6Si.60Mn and Plate .25Cr and Plate.6Zn.5Mg.25CU.5Mg. 0.60Si.60Mg.6Zn.20Mn.5Mg. . Alclad .6Zn.30CU Clad Two Sides .60Mg.2. Alclad . O.5Mg and Plate . 15Cr 26 Title -- .5.25Cr and Plate .OMg.25Cr and Plate .15Cr and Plate .5Mg.35Si. 0. 0. 1.50Mg and Plate .6Mn.LOMg. 0.OMg. 30Cr.25Cr Alclad . 0.0. 0.80Mn.6CU.4. 0. 0. 0.6Mn and Plate.6CU. 1. 0. 17Cr and Plate .25Cr and Plate .25Cr and Plate.8Zn. 0. 5Mg. O. 1.25CU.80Mn. 1. 0.1.4.Laminated. O. 0.25Cr. 0. 5CU.6. 25Mn Foil .60Si. Sheet Sheet Sheet Sheet Sheet Sheet Sheet Sheet Sheet Sheet Plate Plate. Alclad .5CU.5CU.85Si. 0. 2.Stress-Relief Stretched and Plate . 0.5Mg.5CU.4. 0.0.LOMg. Roll Tapered . 0. 1. 5Mg. 1. 0. 0. 5Mg.25Cr and Plate -3. 5Mg. 5Mg. 10V. Alclad . 2. 0. Alclad . 0.l.25Cr and Plate. “0.25Cr and Plate. 1.4.8Zn. Stress Relief Stretched Al clad .25Cr and Plate .5Mg.com MI1-HDBK=694A[MR] 15 December 1966 AMS Number 4003C 4006C 4008C 4010 4012A 4013A 4014 4015E 4016E 4017E 4018A 4019 4020 4021B 4022C 4023C 4024A 4025D 4026D 4027E 4028B 4029B 403 1A 4033A 4034A 4035E 4036A 4037F 4038A 4039A 4040F 4041G 4042F 4043 4044C 4045C 4046A 4047B 4048D 4049D 4051B 4052A 4053 4054A 4055A 4056B 4057B 4058B 4059C Sheet and Plate -99. 0. O. Stress-Relief Stretched . Stress-Relief Stretched Clad One Side . 2.2.6Zn. 0.6.OMg.25 Manganese Sheet and Plate -1. 0. Alclad .4. 0. 15Cr and Plate .4.60Si. 0. 0.6Mn and Plate. 1.6CU. 18Zr. 0.5.4.6.Laminated.8Si. 0.2 Manganese Sheet .3Cr . 0. Surface Bonded Plate Sheet Sheet Sheet Sheet Sheet Plate.25Cr and Plate.4. 0. ‘“Aiclad One Side . Alclad . 2. Stress-Relief Stretched and Plate.6Mn. 2. O.80Mn.6Zn. 0.l. 0. 1. 5Mg.25CU. 5Mg. 0. O.l. 0. 5Mg. 3.0 Aluminum Sheet and Plate -1.5CU.85Si.5Mg.4.6CU.Downloaded from http://www. Alclad . 1. 0. 1. 0.60Mn.4.5CU. 0.l. 5Mg. Drawn. Alclad . 0.0 Aluminum Sheet and Plate . Seamless.6Si. Width 48 in. 0. Drawn-Close Tolerance. Sheet and Plate. 0.80Mn 1.5Mg.4.4. Alclad .60Si. 0.25Cr Forgings Forgings Forgings Forgings Forgings . Drawn. 0. 0.5Cu. 1. Rolled or Cold Finished . Rods.30CU. 25Cr Bars.85Si. Rolled. Alclad .5CU.OMg. Sheet and Pla= .4. 0. 0. Drawn.1.5Mg. Seamless. Drawn -1.25Cr Tubing.5CU..4. Drawn.4.4. Incl. Rolled. Sheet and Plate.25CU. 0. 1. HydrauIic Sheet and Plate . 0. 0.Downloaded from http://www. Seamless.6Zn. or Cold Finished . Drawn -99. 1. Drawn .07Ti 0. L5Mg. 0.5CU. 25Cr Tubing.4.. Alclad . Width Over 60 Inches Bars and Rods. 0.. Rolled. Drawn .4.4.8Mn. and Wire.60Si. 0. Rolled or Cold Finished -99.60Mn. 0.Close Tolerance. 5CU. 1. Seamless. Seamless. Rolled. 0. O.l.2.5Mg. or Cold Finished . 0. 0. or Cold Finished .4. Drawn. Rods. Drawn. 5Mg. 5Mg. Seamless. Drawn. Hydr.4. ..OCU.OCU. Rolled or Cold Finished . Width Over 60 Inches Bars and Rods.5CU. Seamless. 5Mg.60Mn.l. Drawn.8Mn.20Cr 0. Alclad-4.5CU. Hydr. 0. Tubing.50Mg. Seamless. Width 30 in.30CU.everyspec. 1. 7Mnj O.6Mg. or Cold Finished -2. Seamless.60Mn Bars. Seamless.25CU.4. 25Mn Tubing.60Mn. Width Over 48-60 in.20Cr Tubing..5Mg. 0. Width Over 30 to 48 in.5CU. Rolled.30CU.25Cr Sheet and Plate.50Mg Bars and Rods. l. Drawn .l. and Under Sheet and Plate . Width Over 48 to 60 in. Rolled. 0.5CU. 5Mg.l.4Mg 0.60Si. Width Over 30 to 48 in. 0. Wire.60Si.4.5Mg 27 — .60Mn.4CU. and Under Sheet and Plate .4.. Seamless. 1. 1. O.l.60Mn. Seamless. 1. . .5CU. Drawn .5CU.6Si . .80Mn. 0.60Mn.3CU.25Cr Tubing. Round -2. 0.60Mn. 0. 0. 1.OMg.20Cr Bars..60Mn. 5Mg. 1.25Cr Tubing..OMg. Rods.90Si. Incl. 0. 0.5CU. 0.l. 0. 0.5CU. 0.60Mn. Rolled. lMg.OMg.30CU. 5Mg. Drawn Tubing.60Si. O. 5Mg. Wire.60Mn.9Si. Hydr.5Mg. 2.70Mn.5CU. 2.5CU.5.6CU. Sheet and Plate . Width 30 in. 0. Stress-Relief Stretched Bars. Round. Drawn. or Cold Finished -4.5CU. Round . Rods..lFe. 0.4.5Mg. Width Over 48 to 60 in. Sheet and Plate . Rolled or Cold Finished Forgings . 0. Round.2.6Mn Tubing.4.5Mg. 0.5CU.4. 0. 0.50Mg Bars. Incl. Width Over 48 to 60 in. and Wire.4. 0. 0.60Mn Bars.OMg. 1. 1.5CU. Drawn .25CU. Rolled -4. Hydr.30CU.60Mn Tubing. 1. or Cold Finished .5Mg. Drawn . 1.lSi. 0.25Cr Tubing. .5. 1.6CU.5CU. 0.l. 5Mg. O. Irrcl. 1. Seamless. Drawn -4. 25Mn Tubing.6Zn.LOMg. 0. or Cold Finished . 1. Stress-Relief Stretched Bars. O.OMg. 5Mg. Sheet and Plate.4. 2. AIclad .20Cr Bars.30CU. Drawn .6Mg.60Mn.com M11=HDBK0694A[MR] 15 December 1966 AM Number 4060 4061 4062D 4065C 4067C 4069 4070F 4071F 4072 4073 4074 4075 4079 4080G 408 1A 4082F 4083D 4086F 4087C 4088E 409 1A 4092A 4093A 4097 4098 4099 4102B 4103 4104 4105 4106 4110A 4112 4114C 4115A 4116B 4117B 4118D 4119C 4120F 4121C 4122D 4123C 4125E 4127C 4130G 4132A 4134A 4135J Title —- Sheet and Plate. Rods. Hydraulic Tubing Seamless. 5CU. Seamless.30C1 Bars and Rods..5Mg. 5Mg. 0.6Si.20Cr Tubing. 0. Incl.5Mg. 0. Stress-Relief Stretched 0. Rolled . 1. 0. md Under Sheet and Plate. 1.60Mn. L lNi.60Mnj Width Over 60 in. Width Over 60 Inches Tubing.8Si.4. 0. 0. 5Mg. 0. O. 0. 0. 30Cr.5Mg. Incl.60Si.4.5CU.0 Aluminum Tubing. 1. 0. Wire.20Cr Bars.5CU. 0. 0. Drawn . 0. 5Mg.OMg.6Mn Tubing.60hln. 0. 0. 0. 0. 1. 0.6CU.60Mn. Stabilized Trestd 28 .7Si.2Mn.5Mg.2Ti. 12Cr Wire. 0. lTi.4. Heat Treated Hand Forgings and Rings -6. 1.65Mg.OMg.7Si Forgings . L 5Mg.2Cr Sol. O.4CU. Sand . 0.3Mn.60Mn Extrusions .85Si.2CU. 0. 0.30CU. 5Mg. 0. 2Mg.6Zn. Premium Grade . & Overaged Castings.3Cr. lMg. 0.60Si. d. 6Mg.5.3Mn. O. As Cast Castings. O. 5CU.7.3Zn.2Zr. 5Mg. 0. 0. 17Cr Wire.5Si Rod and Wire.3Mg Castings. 2.5Si. Stresses Forgings .3Cr. O.6Mg. O. Spray-Aluminum.2Mn. Castings. Stress-Relief Stretched and Straightened Extrusions.5Mg. 1.2Cr. Tr. Sand . Send . 3Mg. 2.OSi.4. 1. Sand . 0. 3Mg.0 Min Wire . IV. & Overaged Castings. L 2CU. Welding .25Cr Forgings .l. 3.6CU.5Mg. 0.IV. SOL Treated Castings.8Zn.5Mg. Welding .80Mn. 2. 1. 99. 2Mn.6. lV. 3.5Si. 5CU.9CU.2Mn.everyspec. solution 0. Impact . 10V Sand . 0.2QCc Extrusions . 5Mg Castings.30CU.3Cr Extrusions Extrusions .12.3Mg Castings. and Precip.75Mg. 1. 0.3Mg.30CU. Sol. 0.5. 0.9Ni Forgings .8CU.3CU. Stress-Relief Stretched. 0. 11 Precip.5. O. O. 5Mg. O. 1.10Si. l. Sand .2Zr. 0.5. Brazing . Sand -4. 0.OMg.60Si.7Mg Forgings . 4CU. U.6CU. 5CU. L 5Mg. O.3Cr. 0. 1.l. 1. 3. 2.5Mg Castings. O.3Cr Extrusions .3Mn.6CU.6CU.4CU. 0. O.6CU. Premium Grade .20Cr Extrusions .6CU. 0. 0. 0.5Mg. 0.25Cr Extrusions . 1. 0. High Strength.20Cr Extrusions .7CU.2Mn.5.6. 3CU.6Zn. 2Cr.5Mg. 15Ti.12Si Rod and Wire. 0.25Cr Forgings .OCU. Stabilized Castings. 0.4CU. 2Ni.6CU.4CU. Stress-Relief Stretched. Treated.6.10Mg.50Mg Extrusions . lTi. 0.com Ml14iDBK-694A[MR] 15 December 1966 AM Number 4136 4137A 4138 4139F 4140D 4141 4142B 4143 4144 4145E 4146A 4150D 4152G 4153C 4154F 4155B 4156D 4158A 4160A 4161A 4164C 4165C 4168A 4169B 4170 4171A 4180B 4182A 4184B 4185A 4190A 4191A 421OF 4212E 4214D 4215B 4217D 4218B 4219 4220D 4222D 4224 4227A 4230C 4231C 4238A 4239 4240C Title Forgings -4.3Zn.5Mn. 0. Ht. 0. O. O.3Mn. O.5Zn. 0. O.6Zn. Premium Quality . 0. 2Ni. 2Ni.8Mg.60Si. 0. 0.5Mg. 0.2Ti. i. Sand . 2.8Mg. Sol Tr.6. 0.OMg.5Si. O. 0.4.6Zn. 0. Brazing .Downloaded from http://www. 0.0. L 2CU.4. Sand .60Mn. 1. 6. 12Mn. lTi.ONi. 0. L 5Mg.6Zn. Sol.7Si.60Mg Sand . 0. 0. 0.l. 0.60Si. Castings. Stress-Relief Stretched and Straightened Extrusions .OCU. Unstraightened Extrusions . 0. 2.2Si.5Ni Castings.5Mg Castings. Stress-Relief Compressed Forgings .7.5Si.4. 0. Solution and Precip. 0.55Mn Forgings .30CU. 0. 2Ni. Sand . Unstraightened Extrusions -4.6Zn. Sand . 40Si Extrusions . 2.l. 2.4CU.5CU. 2. Sand -4.5. O.6Cu.3CU. Castings.2CU.5Mg Castings. 18Zr. 1. Low Residual G Forgings . 0. 3Zn.20Cr Extrusions -4. O.OMg. 0. Treated Castings. 4CU Wire. 2. Following is a list of ASTM Title Sand Castings. 0.Rolled or Drawn .2CU. Aluminum AI1oY Drawn Seamless Tubes for Condensers and Heat Exchangers 29 . 5CU. Sol. & Precip.(5Si or 8. As Cast . Sol. & Magnesium Prods.5CU.Process and Performance Requirements of AIuminum Alloys Anodic Treatment .Aluminum Rolled or Extruded Standard Structural Shapes Tolerances .7Si. Nit Stress Relieved Mold .com MI1-HDBK=694A[MR] 15 December 1966 -. Aluminum Alloy Aluminum A11oY Permanent Mold Castings. American Specifications. Castings. Treated -7.5Si. Aluminum Alloy Sheet and Plate. Aluminum Alloy Bars. Castings. 0. Treated Mold .5Si. 0.. Aluminum A11oY Extruded Bars.Downloaded from http://www. Castings. Rod. Number B26-6S B85-60 B108-65 B209-65 B21O-65 B211-65 B221-65 B234-65 society for Testing and Materials Specifications. Dyed Coating (Sulfuric Acid Process) Chemical Treatment . 0. Undyed Coating Anodic Treatment .5CU. Alloy Bar. 109OF Fusion Point Point 28. & Precip.Aluminum Alloy Drawn Tubing Tolerances . Castings. Rods. Treated Centrifugal . & Precip. lCU.Aluminum and Magnesium Alloy Extrusions Tensile Testing of Wrought Alum. Shapes and Tubes. Castings. Solution Treated $ermsnent Mold . Castings.Aluminum Base Alloys. Tolerances Tolerances Tolerances Investment Investment Permanent Permanent Permanent Permanent Permanent Title .Aluminum Alloy .Aluminum & Alum. Aluminum Aluminum Dip Brazing. 2CU.5Si) 3. and Wire. Castings. Number 4260A 4261 4275B 4280E 4281C 4282E 4283D 4284D 4285 4286A 4290F 4291B 2201G 2202 F 2203F 2204C 2205J 2355 2420 2450C 2468A 2469B 2470F 247 lB 2472A 2473B 2474A 267 2B 2673 3412A 3414A 3415 3416 Castings.Aluminum Hard Coating Treatment . (). 0.Aluminum .Aluminum and Magnesium Alloy Sheet and Plate . & Overaged Mold .5Si. OSi . 2. 103OF Fusion Aluminum Dip Brazing. Aluminum Welding.3Mg. Wire & Forging Stock .everyspec. Castings.Aluminum for Solderability (Zincate Process) Sprayed Metal Finish . Aluminum Alloy Drawn Seamless Tubes. Sol.7Si . 0.4. Rods. Sol. Castings. Precipitation Heat Treated Mold . 1.3Mg.Aluminum Molten Flux (Dip) Brazing.Aluminum Base Alloys. & Precip.3Mg. Castings.5Mg.3Mg Die . 5Si.9. Castings. As Cast Die . Treated Permanent Mold .Aluminum Base Alloys (Low Electrical Brazing Brazing Flux Flux Flux Flux .7Si. 1. Treated Mold -4.7Si. Except Forgings Plating . & Precip. Sol.. Tr.5Mg. SOI.6Sn. Sulfuric Acid Process.5Si. 0. Die Castings. 3Mg.5Mg.Aluminum Alloys Hard CoatingTreatment .Aluminum Base Alloys (Chromic Acid Process) Anodic Treatment .Aluminum Base Alloys (General Purpose Coating) Resistance Coating) Chemical Treatment . Aluminum. EC-H 14 or -H24 Wire for Electrical Purposes. Rod. Hard-Drawn Compact Round Concentric-Lay-Stranded Aluminum Conductors. Aluminum Alloy Round Welded Tubes. EC-H 19 Concentric-Lay-Stranded Aluminum Conductors Concentric-Lay-Stranded Aluminum Conductors.com MIL-HDBK=694A[MR) 15 December 1966 AM Number Seamless Pipe Aluminum Alloy Title B24 1-65 B307-64 B313-65 B345-65 13361-64 B404-65T B429-65T Drawn Seamless Coiled Tubes for Special Purpose Applications. Steel-Reinforced (ACSR) Compact Round Steel Wire. Pipe. 620 1-T81 Aluminum-Alloy Concentric-Lay-Stranded Aluminum EC Grade Conductors. 500 S-H19 Aluminum-Alloy Concentric-Lay-Stranded Conductors. Aluminum-Clad 30 . EC-H 16 ot -H26 Wire for Communication Cable. Aluminum Bar. Aluminum. Aluminum Alloy Welding Fittings.everyspec. Rectangular and Square Aluminum Steel Core Wire for Aluminum Conductors. and Structural Shapes for Electrical Putposes (Bus Conductors). Factory Made Wrought.Downloaded from http://www. Hard-Drawn Aluminum-Clad Concentric-Lay-Stranded Steel Conductors. Aluminum and. 5005-H19 Aluminum-Alloy Wire for Electrical Putposes.Purposes. Aluminum-Alloy Extmded Wire for Electrical . Aluminum Alloy Extruded Structural Pipe and Tube. Aluminum. Zinc-Coated (Galvanized). SteelReinforced ( ACSR) Aluminum Foil for Capacitors Wire for Electrical Purposes. Aluminum Alloy for Electrical Purposes Aluminum Wrought Ptoducts B230-60 B231-64 B232-64T B233-64 B236-64 B245-63 B258-65 B26 1-63 B262-61 B314-60 B317-64 B323-61 B324-60 B341-63T B373-65 B396-63T B397-63T B398-63T B399-63T B400-63T B401-63T B415-64T B416-64T Wire for Electrical Purposes. Aluminum Alloy Seamless Pipe for Gas and Oil Transmission and Distribution Piping Systems. Steel-Reinforced (ACSR) Rods for Electrical Purposes. Aluminum Steel Core Wire for Aluminum Conductors. Steel-Reinforced (ACSR) Wire for Electrical Purposes. Standard Weight Zinc-Coated (Galvanized). 6201-T81 Aluminum-Alloy Concentric-Lay-Stranded Conductors. Aluminum Alloy Seamless Condenser end Heat Exchanger Tubes with Integral Fins. Aluminum-Coated (Aluminized). Rolled Aluminum Bars for Electrical Putposes (Bus Bars). Steel-Reinforced (ACSR) Stmdard Nominal Diameters and Cross-Sectional Areas of Awg Sizes of Solid Round Wires Used as Electrical Conductors Steel Core Wire (With Coatings Heavier Than Standard Weight) for Aluminum Conductors. and in Section III are defined as follows: Al BHN Cr Cu D EL - Aluminum Brinell Hardness Chromium Copper Die cast Number End Fe Ksi Mg Mn Ni PM s Si Sn Ss Ti TS Ys Zn Permanent extension in gage length measured after rupture and stated as a percent of the original gage length .Endurance .everyspec.Manganese . sizes.Iron .Titanium . The abbreviations used in this section forms. and methods of manufacture.Magnesium . Permanent-mold cast .com MIL-HDBK=694A[MR) 15 December 1966 Section Typical Properties and HI Charucterktics—--=——.Sand cast .Downloaded from http://www.2% offset) . - The properties cited in this Section are average for various and may not exactly describe any one particular product.Tin .Nickel .Tensile strength Yield strength (0. Thousand pounds per square .Zinc inch 31 .Shear strength .Silicon . com TABLE 1. 309 308 306 303 313 314 750 A750 B750 Almag 35 PrecedeM Red X-8 T-1 Tenzaloy ---1-750 A750 B750 4275 360 A360 380 A380 SGIOOB 5C84B SC84A 1290 A356 357 359 A61Z ZG6 IA -1-(6 13) 5 (603 7 (607 1291 71A 327 71) GM70B SC82A zC131A zG32A ZG4Z A renzaloy rernalloy rernallq ‘ernalloy 5 ‘ernall Oy 7 Cl14A 315 311 312 Ternallq Terrm]lq 5 7 z ZC81B ZG3ZA ZG42A SC114A SC114A .4212.Downloaded from http://www. 4285 SG70B + 218 354 C355 A356 357 360 A360 380 A380 384 A612 C6!2 750 A750 B750 Jrnag 35 ‘reeedent cd X-8 ‘-l ‘enzaloy 357 A356 357 — . 4230.12A SC5 1 MIL-A-21180C 43 108 A108 113 122 A132 B13Z E132 F132 142 152 195 B195 214 AZ14 B214 21s 220 319 333 354 355 C355 356 304 40E *3 43 108 33 34 321 328 334 332 39 300 38 380 320 113 122 A108 113 -1-SN122A SCI03A CN42A 4282.3 122 A132 142 195 214 CN4ZA G4A 4220. 4217 4214 C355 -1sC64D SC94A SC51A SC51B SG70A 14281. 4282 4260. 329 w 220 AIIcast W G1OA SC64D 4240 319 333 322 335 323 336 355 356 k5C51A SG70A 4210.12B . 2Q-A-60 Id ASTM B-26-65 ZG61A S5A CS43 A CS7ZA CG1OOA AMS KZ-A-596d AMS ASTM 3-85-60 .everyspec. CZ4Z8 428. CASTING ALLOYS-CROSS REFERENCE SAND CASTINGS PERMANENT PERMANENT MOLDCASTD4GS ASTM B108-65 1 AND SEMI- DIE CASTINGS QQ-A-591. 4221 4231 3?!32 142 B195 A214 B2!4 324 326.3 13 A13 43 C0mmercia3 Designation 13 A13 40 E SAL? 305 310 35. 4261 4204. 50 0.2-7.5 Z.50 0. 0-1.15 0.15 emainder 11. 7 given ).20 0.50 0.35 0.0 0. 0-13.25 ).40-0. 35 percent content m 1.3 2. 40-1.60 0. 50 1.15 0.15 0.50 0.50 0.3 3.50 0.0 11.0 1.25 0.40-0.35 0.35 0.05 }. 5-3.8 1.25 5. 50 .12. 7-2.10 0.15-0.8 ).6 0.10 0.15 1. 5-6.com TABLE Il.0 ).50 0.40 0. 10 0.25 0. 5-7.10 0.15 1.60 0.25 0. O.20 0.50 0. 5-4.30 1. 35 ). O-3. 5-7. 5 $.3( 0.80 1. 50 ). 5 ).40 ).70 0.60 0.15 0.25 0.5 4.2 1. 5-7.15 0. (2) (3) (4) If Copper If the Iron Iron NO Titanium plus Iron content C)Q-A-596 and O.05 0. 4-2.50 0.25 0.60 0. 5-4.0-5.35 0.25 0.80 1.10 0.15 7.6C QQ-A-591 content Nickel ).05 0.25 0.90 6.05 0.0 is desirable.7( 0.35 0.20 0.20 0.20-0. O ). 0-8.05 1.50 0.15 0.35 0. 5 1. 5 l.20 .80 0. O.50 0. 50 !.05 0.0 11.3 0.70 -!. 10 0.25 0.3( 0. 10-0.0-4.25 0.25 0.15 3.8 !).0 1. 5-7.25 0.35 ).10 0.3 0.2. 6 ).5 9. 70-1. 20(4) 5.0 3.5( 0.0 0.0-10.50 0. 5.35 0. o 4.35 1. 50(3) 0.15 (3.05 0.0 5.20 0.70 0. CHEMICAL COMPOSITION LIMITS OF CAST ALUMINUM ALLOYS her E Lch Copper 13 A13 40 E 43 (1) 108 A108 113 SC114A 122 A132 3?132 142 195 B195 214 A214 B214 218 220 319 333 355 C355 356 A356 357 360 A360 380 A380 A612750 A750 B750 Almag Allcast Precedent 71A 35 Red X-8 TI Tenzaloy Ternalloy Ternalloy (1) Values 5.35 3. equal 0.30 0. 35 0. Is-o.15 0.40-0.0 4.5 7.05 . 5-7.35 0. 5-9. 40 percent.5 ).50 0.3 1.15 1. 60 Copper. 0-5.0 1.35 0.15 nents Total 0.15 0.35 1.10 0.10 0.0 !.05 ).60 3. 50 Zi~c. 5-2.0 9.25 0.25 0. 10-0.2 0.60-0.15 0. 30 4. 5-5.35 0.40-0. 2-1. 5-8.20 0.0 3. 50 percenL O.15 0.35 0.50 0.10 0.15 . 10 0.5 1.50-0. 50-1.25 D.65 0.05 0.20-0. 6C 0.3 ).2 3. and QQ-A-601.0 1.20 0.0 0.05-0.0 0.50 0.50 0.3 0.0 3.03 0. 5-10.05 0.0 5. 0-2.25 0. tto 0.0 1. 25-2.60 0. 50 ).50 0. 50 Nickel.8-2. 50 Zinc ).5 6.0-4. 0.10 0.25 0.8 0.0-4.35 0.5-4.0 1.05 0.25 0.50 3.25 0.25 0. 7-2. 0-4.15 0.25 0. 0-1.25 0. 0-3.35 0.Downloaded from http://www.5 6.40-0.5 9. 15 ).0 0:70. 25(4) 1.0 0. 0-7.5 1. 5 3.0 1. 10 1.5 4. 10 0.25 0.0 3. 50-1.50 0.15 O.60 0. O ).25 0.0 I Tita”iwn hr.50 0.03 0. exceeds O.20 0.5 1.0 1. 50 i.60 0.0-3.5 6. 5-9.30 0.35-0.o-lo.5 0. 5-7. 70 1.5 7.20-0.25 ).0 !.35 0.60 0.40 -O.mmium Tin .25 0.0 0. 0-4. 60(2) 1.5 3.0-4. 5-7.50 1.35 ). 5 1.20 0.35 0.15 0.3 1.05 0.05 3.05 ).25 0.35 0.35 0.35 ).05 .05 .80 0.5 2.0 -!3.60 0.15 3.60 0.03 1.50 u.5 3.0 ).4 1.0 0.0 Iron.0 0.25 0.20 .50 0.35 0. O.0 !.35 3. 0-8.20 are taken ?.30 0.5 0. 10 0.50 6. 4C 0.05 ).6 0.0 7.: :0(3) 0.05 ).1.20 0.everyspec.10 0.15 2.0 IO.70-1. 5-4.05 ). 0-6.0-0.40 0.3( 1.10 D.25 0.75-0.0 1.20 0. of at least Gxceeds to have the Manganese to one-half the Iron.50 0.35 0.8 0. 15 0. 10 0. 4-2.30-0.25 0.20 0. 4-1.6 ).3 0.50 0.05 .10 0.70 0.45-0.0 7 Silicon 1.60-0..20 0.60 ).05 2. plus Silicon not to exceed O. 45 percent.25 0.50 0.5 0. 5-7.50 0.50 0.25 0.0 1. 0-5. (J B.( 0.10 0. 50 ). 10 Magnesium.50-1.80 from Iron Magnesium Mangane5e 0.50 0.25 0.2 0.6’ 0.3 1.30 0. 5-5. a Manganese it is desirable differs in that it requires.05 0.5 0.0 ).70 2.05 ).50 0.0 $.35 0.10 0.0 Q. 2-10.15 0.5 9.10 3.23 0.50 0. 50 1.30 1.0-4. 0-13.40 0.35 ).10 o. 0-10.25 0. 15 Tin. 5-10.25 0.35 !).2 1.0 3. O-7.2 3.20-0.5 4.03 O.90-1.60 0. 80(2) 0.25 3.50 3.0 0.15 0. 3-4.92 0. . 10 0.30 0.40-0.15 0. 5-4.15 0. 3 0.40 O. Remainder Remainder Remainder Remaimier 0. CHEMICAL COMPOSITION LIMITS OF WROUGHT ALUMINUM ALLOYS Designation EC(6) 1100 1130(7) 1230{8) 123S 1145(9) 1345 1060 1175(10) 2011 2014 2017 2117 2018 2218 2618 2219 2024 2025 3003 3004 4032 4043 4343(12) 5005 5050 5052 5252 56S2 5154 5254 5454 5155 5056 5356 5456 5257 5457 5557 5657 5083 5086 61o](I3) 6201 6003( 14) =4= 1.15 0.01 0.0 0.50.25 0.20-0.05 ).10 0.05 0.05(181 0.7 Si + Fe Si + Fe Si + Fe Copper Manganese nes Magium ChrOm ium Nickel Zinc Titanimn Othe Each rotal Alun-Iinum(4) Min.2 0.15 0.20 0.25 0.35 0.55 3.05 ).8-4.10 - .10 1.2 0.03 0.03 0:15 0.8 0.50.5 0.50 0.08 0.9-2.05{181 0.10 0.10 0.05 0.8 2.15 0.05 D.8 0.5.05(18) ).5 1.15 .15 0.0 3.03 0.9-1.25 0.05 0.05 ).1-3. 0.02 ).J 0.2-3. 0.10 0.05.2 1.0 1.30 99.10 0.05 D.8 0.40 0.0 0.10 0.7.08 0.0 4.8 0.25 0.9-5.15-0.10 0.04 0.50 0.20-0.40 0.03(19 0.10 0.8-1.10 0.05 ).10 0.10 0.45 99.6 0.40-0.40 Si + Fe Si + Fe 0.20-0.1.20 0.20 0.25 0.everyspec.25 0.10 0.03 0.40 Si + Fe I Si + Fe 0.10-0.3 0.50.20 0.5 0.50-0.15 0.20 0.10 0.10 0.15 D.15 0.10 0.10 0.6-1.20 0.7-2.05 0.25 0.20-0.2 0.5-4.9 1.20 0.5.15 0.03 0.40 0.10 0.O8 0.1.0 4.03 0.05-0.1.03(18) ).05(16 0.1 1.20 0.30-0.15-0.10 0.1.40 0.1-3.35 99. 99.0 0.20 0.9 0.10 ):05(181 ).8 0.8-1.9 2.15-0.05 3.05 0.15-0.01 0.05 ).10 Fe Fe 0.0 0.25 0.03 0.30-0.7 0.15 0.10 0.20 0.40-1.5 0.40 0.5 2.05 ).35.6-0.7 0.20 0.10 0.15-0.20 0.10 0.02 0.25 0.1.25 0.7 1.10 0.8 0.8 0.03 0.1.8-1.7-2.25 0.15 0.20 0.40 0.com TABLE Ill.8 2.65 2.6 0.05 0.02-0.25 0.20 0.5-5.75 Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainddr Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder.45 0.25 0.7 1.0-4.1.8-1.03(19 0.30 99.8-6.2-1.5.05 ~.1.20 0.15 0.10 0.05 0.8 1.05 0.35 0.4-3.30 0.03 0.40.15 0.9 0.8 0.03 0.40.45-0.20-0.45 0.60 99.50 0.05 0.15 0.5 4.8 0.0 1.20 0.0-1.05-0.05 .30.10 0.03 0.15 0.15 0.05 ).45 99.0 3.0-1.02 0.03 ).9 3.9 0.135(161 D.10 0.05-0.5 3.05(181 3.10 0.3 0.2-2.5 1.50 0.08 Si + I Si + Si + 0.10 0.05(181 D.15 0.8 2.50 0.8 3.05(113) 0.25 0.9 3.05 0.15 0.15 0.0 3.10 0.7 1.05(11) ~ ).25 0.Downloaded from http://www.15 0.0 -13.00 99.10 0.1.25 0.2 0.9-1.0 >.0 3.0 0.2-1.1.35 0.05(181 j.15 0.5-4.7 5.9 0.20 0.15 0.0 0.30 0.15 0.8 0.10 0.15 0.05 0.10 0.9 3.30 0.15 0.15 0.05 0.5-5.03 0.3 1.10 0.0 6.05-0.25 0.02 1.25 0.03 0.15 0.05 ).03 0.12 0.35 0.20 0.7 Fe” 0.05 0.35 Si + Fe 0.40 0.50 3.7 0.10 0.15 0.50.40 0.10 0.05 0.10 0.20 0.10 0.10 0.05(16’ 0.1.15 0.40 0.0 0.15 0.40 I 0..8 0.2-2.25 0.30 0.9 0.15 0.50 0.6 0.2-2.10 0.30 11.0 0.45 0.10 0.10 0.05 0.20 Si + Fe Si + Fe 0.6 0.3-1.10 0.0 1.6 4.10 0.10 w * 99.35-0.5 0.20 0.05-0.06-0.3 0.25 0.10 0.2 0.05 ).05 0.05-0.10 0.05(20) 1.20 0.0-1.04-0.0-6.20 0.10 0.05 1.05 0.25 0.20 0.35 0.10 0.15 0.7 0.15 0.5 4.20 0.25 0.50.05 0.05-0.30 0.5-4.0 1.5-6.15 0.10 0.45 1.05(181 3.20 0.3 0.30 0.15 0.10 0.8 3.3 0.45 0.5-4.05-0.20-0.8-8.15 0.9-5.10 0.20-0.2 0.25 0.50.7 0.10 5.50.05-0.0 0.25 0.10 0. Downloaded from http://www.everyspec.com TABLE Designation 6011 6151 6951 6053 6Z53( 6061 6Z62 6063 6463 6066 7001 7039 7072(16) 7075 7076 7Z77 7178 7079 ~1 Zn Mg. 413_. -A-45225@ Silicon 0.6-I. Z 0.6-1. Z 0.20-0.50 (t7) (17) 0.40-0.8 6.40-0.8 0.20-0.6 0.20-0.6 0.9- 1.8 0.35 0.30 Si 0.7 0.50 0.40 0.50 0.50 0.30 0.30 Ill (Continued). CHEMICAL Manganese 0.8 0.20 0.10 COMPOSITION Magnesium 0.6-1.2 0.45- 0.8 0.40-0.08 1.1-1.4 1.0- 1.5 0.8-1.2 0.8-1.2 0.45-0.9 0.45-0.9 0.8-1.4 2.6-3.4 2.3-3.3 0.10 2.1-2.9 1.2-2.0 1.7-2.3 2.4-3.1 2.9- 3.7 2.0-3.8 LIMITS Chromium 0.30 0.15-0.35 0.15-0.35 0.15-0.35 0.15-0.35 0.04-0.14 0.10 0.40 0.)8-0.40 0.15-0.25 0.i8-O.40 0.18-0.35 0.18-0.40 0.10-0.25 0.25 OF ~ickel 0.20 WROUGHT Zinc 1.5 0.25 0.20 0.10 1.6-2.4 0.Z5 0.Z5 0.10 0.25 6.8-8.0 3.5-4.5 0.8-1.3 5.1 -6.1 7.0- 8.0 3.7-4.3 6.3-7.3 3.8-4.8 3.5-5.0 ALUMINUM ritan iurn 0.20 0.15 Others ALLOYS (3) Iron Copper 0.40-0.9 0.35 0.15-0.40 0.10 0.10 0.15-0.40 0.15-0.40 0.10 0.20 0.7- 1.2 l. b-. ?.k 0.10 0.10 1.2-2.0 0.30- 1.0 0.8-i.7 1.6-2.4 0.40- 0.8 0.!0 Each 0.05 0.05 0.05 0.05 0.05 0.05 0.05(5) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Total 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 ~ Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder Remainder 5) 1.0 1.0 0.6 0.35 0.50 0.7 0.7 0.35 0.15 0.50 0.40 0.40 Fe 0.7 0.6 0.7 0.7 0.40 0.40 0.15 0.15 0.10 0.05 0.6- 1.1 0.20 0.10-0.40 0.10 0.30 0.30-0.8 0.30 0.10-0.30 0.10-0.70 0.15 0.15 0.10 0.20 0.20 0.10 0.20 0.20 0.10 O.zo 0.10 0.10 Remainc3er Remainder Remainder Remainder Remainder + 0.20 Zirconium w WI NOTES: (1) Composition as a range. in percent maximum unless shown (5) (6) [7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) Also contains 0.40-0.7 percent each of lead and bismuth. Electric Reflector Cladding Foil. Cladding Also conductor. sheet. on alclad 20Z4. (2) For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis is rounded off to the nearest unit In the last right-hand place of figures used in expressing the specified limit. Analysis is regularly made only [or the elements for which spec>fic limits are shown. except fur unalloyed aluminum. U, however, the presence of other elements is suspected, or indicated in the course of routine analysis, further analysls is Inade to determine that these other elements are not in excess of the amount specified. The aluminum content for unalloyed aluminum not made by a refining process is the tfifference hetwee” 100.000 percent and the sum OF all other metallic elern?nts present in amounts of 0.010 perto the second cent or more each, expressed decimal. (3) on clad 1100 and clad 3003 reflector each of lead sheet. and bismuth. contains aIloy 0.20 -0.6 percent Brazing Bus conductor Cladding Cladding on alclad on alclad ZO14. d (4) 5056. UI 3003, 3004. 5050, 5155, 6061, Cladding on alclad 2219. 7075, 7178 and 7079. Silicon 45 to 65 percent 0.0008 of magnesium for welding content. electrode and filler Beryllium wire only. Boron, maximm 0.06 percent 0.05-0.15; maximum. zirconium O.lO-O. Z5. Vanadium Downloaded from http://www.everyspec.com TABLE IV. WROUGHT ALLOYS - CROSS REFERENCE (ALLOY TO FORM) COmme rcial Alloy Designation 1100(1) 2011 2014 Alclad 2014 2017 2018 2020 202-4 Alclad 2024 2025 2117 2218 2219 Z618 3003 4032 5052 5056 5083 5086 5454 5456 6011 6053 6061 6063 6066 6151 7075 Alclad 7075 klclad one side 7075 7076 7079 7178 Alclad 7178 7277 X8280 Plate Sheet QQ-A-25011 Bar. Rod Shapes and Tube Extruded Bar, Rod, Wire or Special Shapes Rolled, Drawn or Cold Finished QO-A-225/l QQ-A-22513 QQ-A-22514 QQ-A-22515 Drawn Seamless Tube WW-T-700/l Forgings Impact Ext rus ions MIL-A-12545 Rivet Heading Wire QQ-A-430 QO-A-20012 QQ-A-250/3 QQ-A-367 QQ-A-367 QQ.A-3A7 WW-T-700J3 QQ-A-367 MIL-A-12545 QQ-A-430 QO-A-250J16 QQ-A-25014 QQ-A-2S0/5 QQ-A-20013 QQ-A-225/6 QQ-A-430 QO-A-430 QQ-A-367 QQ-A-367 QQ-A-367 QQ-A-250/2 QQ-A-25018 OQ-A-Z5016 OQ-A-250/7 QO-A-250110 QQ-A-Z50/9 OQ-A-20014 QCJ-A-200/ QQ-A-20016 QO-A-200/7 QQ-A-200J 1 QQ-A-2Z512 QQ-A-22517 WW-T-700/2 QQ-A-367 WW-T-700/4 QQ-A-367 5 ww-T-7oof5 QQ-A-430 QQ-A-430 QC3-A-430 MIL-A-1254S QQ-A-250111 QQ-A-20018 QO-A-2oo/9 QQ-A-200110 QQ-A-200111 QQ-A-22518 WW-T-70016 QQ-A-367 W-A-367 QQ-A-367 QQ-A-367 QQ-A-430 QQ-A-430 QQ-A-250/12 C2Q-A-250/13 QQ-A-250118 QQ-A-250/17 QQ-A-250114 QQ-A-250115 MIL-A-11267 QO-A-22519 MU-A-12545 MIL-A-12545 QQ-A-430 QQ-A-200/12 QQ-A-367 QQ-A-367 MIL:R-1222 NOTE (1) : M.IL-A148-Aluminum Foil Downloaded from http://www.everyspec.com M1141DBK-694A[MR] 15 December 1966 .— TABLEV. WROUWTALLOYS -CROSS REFERENCE (ALLOY TO SPECl FlCATlON) Alloy I I Government ASTM B209, B211, B221, B245, B21O, B234 I SAE AA106O t060 I 1100 QQ-A-225/l B211 B209 B316 B209 B234, AA I1OO QO-A-250/l QQ-A-430 QQ-A-O0435 WW-T-700/1 MIL-A-14E MIL-A-12545 MIL-R-5674 2011 2014 AA11OO AA I1OO AA IIOO B210 AAl 100 B316 B211 B221 B211 B247 B221 B24? B221 B209 j AA] 100 QQ-A-225/3 QQ-A-2oo/2 QQ-A-225/4 QQ-A-367 MIL-A-12545 MIL-T - 15089 MIL-A-22771 MIL-A-25994 2014 I C3Q-A-250/3 QQ-A-22515 OQ-A-430 QQ-A-367 CX2-A-250/16 MIL-A-8882 QQ-A-200/3 QQ-A-225/6 QQ-A-250/4 QO-A-430 WW-T-700/3 AA2011 AA2014 AA2014 AA2014 AA2014 AA2014 AA2014 AA2014 AA2017 AA2017 AA2018 -1 4001, 7220 4001, 4062 4003 4003 -. 4153 4121 4134,4135 4028, 4029,4014 4146 4152,4164,4165 4112,4119,4120 4033, 4035, 4037 4086, 4087,4088, 4104, 4097, 4105, 4098, 4106 4099,4103, 4102, 4180 I Alcld 2017 I B211 B316 B247 I ] 2018 2020 2024 ==-1-=B221 B209 MIL-S-781 I 2025 2117 QQ-A-367 B247 B316 ‘--l-+- m B316 B316 B234, I I AA2024 AA2024 AA2024 AA2024 I I I I QQ-A-430 MIL-R-5674 QQ-A-367 MIL-A-8920 QQ-A-367 QQ-A-2oo/l QQ-A-225/2 QQ-A-250/2 QQ-A-430 QQ-A-00434 WW-T-70C!/2 MIL-R-l 150 MIL-M17999 MIL-P-25995 B316 23247 I I AA2117 AA2117 AA2218 4142 1 I I 4031 4132 2218 2219 2618 3003 B209 I 1- AA2219 B221 B211 B209 AA3003 AA3003 AA3003 I 4006, 4008 4065, 4067 B210, 316 B241, B234 AA3003 AA3003 AA3003 I AA3004 B345 3004 4032 I I WW-P-402 C3Q-A-36 B247 B211 B209 B316 B210, B234, B307 AA4032 AA5052 AA5052 AA5052 AA5052 AA5052 AA5052 4145 4114 4015,4016,4017 4069, 4070, 4071 37 4053 4127.4048. 4146 6061 4079. B345 . 4169.4160. 4046 I 4049 Alclad Alclad 7075 One Side 38 . 4044.4047. 4141. B345 B209 AA5454 AA5454 AA5454 AA5456 AA5456 AA5456 AA5456 AA5456 AA5456 5456 6053 B316 B316 B221 B211 B209 B247 B3 1. B234 B241 B22 1 B209 B241 B209 B241. 4026.4161 4115.6 B2 10.18545 MIL-A-22771 7075 QQ-A-250/13 MIL-S-7811 QQ-A-250/18 ASTM B316 B316 B221. 4058. WROUGNT ALLOYS .CROSS REFERENCE (ALLOY TO SPECIFICATION) Alloy 5056 Government QQ-A-430 MIL-R-5674C QQ-A-2oo/4 QQ-A-250/6 MIL-Ji-45225 MIL-A-46027 MIL-A-46083 QQ-A-200/5 QQ-A-250/7 WW-T-700/5 MIL-A-21579 MIL-P-25995 MIL-P-25993 QQ-A-200/6 QQ-A-250/JO MIL-P-25995 QQ-A-250/9 MIL-A-25994 MIL-A-25995 MIL-A-45225 MIL-A-46027 MIL-A-46083 WW-P-402 QQ-A-430 MIL-P1150 QQ-A-200/8 C)Q-A-225/8 QQ-A-250/11 QQ-A-367 WW-P-402 QQ-A-430 WW-T-700/6 MIL-R-1150 MIL-T-7081 MIL-T-10794 MIL-A-12545 MIL-F17132 MIL-M . 4!70 4122. 4083 6063 4156 6066 6070 6151 7001 7075 B247 AA6151 AA6151 4125 B22 1 B211 B209 B247 B316 B247 B209 B204 AA7075 AA7075 AA7075 AA7075 AA7075 AA7075 AA7075 AA7075 AA7075 4154.4116.Downloaded from http://www.everyspec. 4057.17999 MIL-A-22771 MIL-A-25994 MIL-A-25995 QQ-A-200/9 MIL-P-25995 QQ-A-2oo/lo QQ-A-367 MIL-A-25994 MIL-A-12545 MIL-A-46104 QQ-A-367 MIL-A-12545 MIL-A-52242 QQ-A-2oo/11 QQ-A-225/9 QQ-A-250/12 QQ-A-367 QQ-A-430 MIL-A . 4027.4123 4030 4139. B345 B22J B241. B234 B316 B345 B345 B209 B247 B22 1 B241. 4168.4117 4025. 4081. 4045 4170 4039. 4182 AMs 5083 . 4059 5086 5154 5254 5454 B241.com MI1-HDBK-694AIMR) 15 December 1966 TABLE V (Continued). 4080. 345 B209 SAE .AA6061 AA6061 AA6061 AA6061 AA6061 AA6061 AA6061 AA6061 AA606 1 AA6061 AA6061 AA6061 AA6061 AA6061 AA606 I AA6061 AA6063 AA6063 4150. B221 B209 B21O AA5083 AA5083 AA5083 AA5083 AA5083 AA5086 AA5086 AA5086 AA5086 AA5154 4056. 4082. 310 4.6 0. Mg MIL-A-452.7 1105 1195 0.24 695 26 6. (5) Solidus L1quidus iand Cast 43 356 -T51 .926 12.926 11.9 5.n. A-367 ASTM SAE 4137 AMS 00-A-200/12 OQ-A-250/l QCJ-A-367 MIL-A-22771 7 B22 I B209 AA7079 AA7079 AA7079 AA7079 AA7079 AA7178 AA7178 4171 4024 4138. CGS (1) Eng.29 840 30 5.096 0.225 12.34 1160 990 43 36 +.210 13.25 MIL-A-46063 MIL-A-46083 TABLE VI.T4 40E -T5 AIJcast -F Red X-8 -F TenzaJoy A6J2 -F TernalJoy Ternalloy Almag 35 -F B214 -F 0.102 0. AA7277 4052 Zn.100 0. r ALLOYS Melt!ng Point.3 965 1100 0.36 0. ALLOYS .35 IOJ5 38 4.4136 Alclad 7178 7079 MIL-A-8923 QQ-A-200/13 QQ-A-350/14 B209 B22 1 B209 B209 12221 11267 B316 4158 Alclad 7277 XB2!30 Al.421 4.4 1015 1170 0.4 965 1155 -F 0.33 1160 1045 1070 960 960 43 39 40 35 35 4. 7178 W3-A-250/15 MIL-RMIL-A- 4051.33 960 35 4.40 0.34 990 37 4.21 610 21 8.9 1030 1020 1020 1175 J170 1165 13.5 5 7 ().4 12.4 11.-J-4 0.100 0. I. n.com MI1-HDBK=694A[MR] 15 December 1966 WROUGHT .CROSS REFERENCE (ALLOY TO SPECIFICATION) Alloy 7076 7079 Government QQ.3 11.7 13.everyspec.5 J2.107 0.100 0.26 750 0.9 960 1135 .096 0.096 0.Downloaded from http://www. TYPICAL PHYSICAL PROPERTIES Thermal OF ALUMINUM Coef.40 0.660 12.7 1090 1170 J 3.9 1065 1035 1170 1135 C30-A-601) 27 6.101 0.Tb 220 .0 0.7 840 1120 0.37 0.098 0.6 970 1110 990 1190 1185 1175 0.)1 960 35 4. (2) [3) uilcm {4) 10-6.32 1160 930 44 34 3.T7 195 214 142 -T21 -T571 122 -T61 108 -F 113 -F 355 -T51 .4 970 1160 . Lmea Therm.562 12.102 0. lb per Type Deal gnatien Temper cu In Conduc tiv]ty.789 13.40 0.31 900 33 5. ‘F E1ectrlcal Resist % MC-S lvlty Alloy Density.106 0.9 960 1120 0.T6 .010 4.010 4.095 23 7.1 IJ05 1195 0.926 4.097 0.747 12.101 0.093 0.102 0.33 0. Expan.29 840 31 5.097 0.1 12. 158 5.3 1065 995 1170 1150 1000 1000 1035 1035 960 1100 1100 1105 1105 )080 ought 1060 .9 3 .0 12.104 .6 990 1175 OF ALUMINUM Coef.071 5.6 11.T4 .747 7.093 0.1 1195 1215 -HI 8 1100 -o -H] 2011 .31 930 900 34 33 5.097 0.32 930 34 5. TYPICAL PHYSICAL PROPERTIES Electrical Resistivity 7 CGS (1} 0. VF — Alloy 13emit y.098 0.46 0.896 7.0 13.096 0.27 0.4 A108 -F 355 -T51 .660 11.4 1015 1135 1150 1065 1170 1035 1135 1000 1050 319 0.8 11.37 0.3 ALLOYS Melti Point.T5 0.23 C!.34 0.31 0.24 0.1 0.660 7.184 4.224 0.7 11.747 Solidu6 Liquidu ermanent old Cant )Q-A-596) 113 -F 122 0.224 12.53 0.9 1160 990 43 36 4.537 6.107 -F 142 -T571 -T61 B195 . Linear Therm.40 0.098 0.071 12.29 0.0 435 IL-A-10935 1020 1165 e Cant Q-A-591) 13 A13 43 218 B214 A380 380 360 A360 384 0.106 30 %5 965 1160 1155 12.386 613 11.421 4.8 2 .31 900 900 33 33 5. (2) 840 Type ~esignation Temper & (3) p flcm (4) 5.097 0.098 0.T6 .561 11.lin.56 0. Eng.T3 2014 -o .8 13.26 6.36 0.098 13.6 11.102 0.098 0.52 1 540 1 510 59 57 2 .095 0.37 1 340 840 1 070 50 30 40 3 .496 6.34 0.096 0.9 12.8 12.0 0.34 990 36 4 .496 13.23 990 670 1015 695 670 785 841 670 37 24 38 25 23 28 30 23 4.8 5 .098 0.224 5.41 0.Downloaded from http://www.3 13.3 13. lb per cu in.7 0.3 970 990 37 4.4 970 1170 0.945 1045 1070 39 40 4.44 0.T6 0.096 0.53 1 625 1 540 62 61 2 .095 1275 47 23 3.T4 0.0 990 37 4.668 7.102 0. (5) 12.28 810 750 29 27 5.29 0.29 11 90 840 45 30 3 .7 4 .3 12.7 11.099 0.789 12.34 0.310 11.8 in.4 5 .496 12.29 0.29 841 31 5.095 0.5 1065 1080 0.098 -T551 0.096 0.com MI1-HDBK=694A[MR] 15 December 1966 TABLE VI (Continued).23 0.660 11.9 960 1100 1105 J085 1120 1185 1180 1165 1200 Temzaloy Ternalloy Ternalloy 5 7 750 603 607 0.T6 43 -F 356 .T6 2017 -o . The rmal Conduc tivity.everyspec.32 0.35 0. E an.7 1190 1215 995 1190 950 1180 950 1200 40 .2 0.34 0.101 8 0.8 0.101 0.101 0.010 4.T7 0.101 -F 0. 10.T4 . 095 0.3 1080 1200 41 .33 0. CGS (1) Eng.1 5.9 5.4 1170 1160 1100 1055 1205 1205 J200 1180 5050 5052 5056 -0 .37 0.101 0.9 3.2 5254 5357 5454 13.1 1060 1084 1100 J1OO 1100 1165 1115 1180 1184 1190 1200 1190 1210 1195 5456 5557 5657 6053 -o All All .4 5.4 4.3 3.103 0.8 1165 990 1205 1160 1065 1170 All All All 0.3 12.28 0.41 0.096 0.1 12.37 0.100 0.33 0.098 5.8 1060 1180 1180 1070 1180 1215 1215 1205 6061 -o .46 0.Downloaded from http://www.4 5.098 0. TYPICAL PHYSICAL PROPERTIES OF ALIJMINUM ALLOYS All Oy Density lb per cu In.2 13.46 0.1 12.3 13.9 13.097 0.3 13.T87 3003 -o -H12 -H18 3004 4032 .45 0.30 0.4 5.3 4.9 1190 1210 970 950 940 1010 1185 1200 1175 1190 13.2 13. lo%%% (5) 12.39 0.28 0.1 0.4 4.097 0.-H38 -o All All All All All -o -H38 0.098 0.099 0.9 4.28 0.37 0.6 ‘4.4 Meltin $. The rmal Conduc tivlty.27 0.097 0.8 . Type Designation Temper ~& (3) ~*cm (4) Sol.3 10.3 4.096 0.T6 4043 5005 -o All 0.com MIL-HDBK-694A[MR] 15 December 1966 TABLE VI (Continued).3 3. T37 -T62.7 12. J 948 935 1180 1180 1070 1310 840 1070 1070 1070 1190 780 870 40 50 30 40 40 40 44 28 30 4.48 0.097 0.2 13.30 0.1 5.Tb 2117 .3 3.098 0.29 0.099 0.33 1390 1340 960 810 750 810 870 870 960 870 1 160 930 930 810 1310 960 1070 52 50 35 29 27 29 31 32 35 32 43 34 34 29 49 35 40 3.098 0.41 0.32 0.T81.3 13.097 0.9 5083 5086 5154 525.096 0.everyspec.26 0.102 0.2 13.9 6.T4 13.9 4.2 4.3 0.097 0.T6 13. Linear The rm. } 2018 -T61 2024 -o -T4 2025 .2 13. Point.2 13.37 0.39 960 1130 35 42 4.T4 2218 -T72 2219 -o -T31.9 5.39 1340 1130 4070 )130 50 42 40 42 3.098 0. 3 13.097 0.30 0.33 0.9 3.37 0.5 4.45 0.096 0.3 12. (2) Electrical Resist lvlty Coef.30 0.d”s Liquidu tVrought (Cont.4 4.37 0.1 0.1 13.32 0.096 0.101 0.4 4.3 12.40 5.37 I 190 10 70 4 53 404 .1 4.2 13.5 5. lb Type per OF ALUMINUM ALLOYS Thermal Uc - Electrical Resistivity Coe Linear Therm.0 13.9 5.T6 7178 7079 .098 0.098 0.T6 6262 7001 7072 7075 .9 1050 0.1 890 900 0. fAcs ( 3) p J_lcm ( 4) . -%Eng. . II 3. Meltin }= Point.T6 .T62 -T’64 6151 -o .35 1200 4.0 2.1 3.49 0.everyspec.53 0.29 0.J02 0.099 0.098 13.0 1140 0.9 5.41 1205 3.29 0.0 1140 0.0 13.equal volume (1) (2) (3) (4) (5) CGS .9 3.1 13.4 12.o%l:.52 0.Downloaded from http://www. (5) Solidus Jlq uidus 1205 6063 .T6 61o1 -T6 -T61 .46 1390 1340 1070 1010 1510 1540 1510 1570 1420 1130 1190 1190 840 1540 840 870 840 53 50 40 37 57 59 :: 54 42 45 44 31 59 30 31 31 3.6 5.com .9 13.~n.37 0. in.centimeter in length per Copper at 68°F ‘F from 68°F to 212°F at 77°F Standard .T9 .098 0.callcmlcm210Cls.5 2. (2) Designation remper cu.international .2 4.52 0.41 0.0 1)40 0.0 2.098 0. TYPICAL PHYSICAL PROPERTIES # Alloy Density. f.3 3.T4 .1 1100 890 1)95 890 1205 1160 1215 1180 1165 1180 0.7 5.T6 -T42 6066 -o .39 0.T6 . i W14iDBK-694A[MRJ 15 December 1966 TABLE VI (Continued).30 0.3 4.41 0.098 0.microhm Change 42 .btrdin.ec English IACS uocm Average units .102 0.53 13.101 0.T6 -o 0.29 NOTES : at 77° F }ft2/OFlhour Annealed .54 1205 3.0 13.7 13.5 13. 3 11.9 13.9 12.3 14.0 10. /0F Range.0 12.com MI1=HDBK-694A[MR] 15 December 1966 TABLE VII. ‘F 68to 572 68 to 392 Sand Cast (QQ-A-601) 43 356 195 214 142 122 108 113 355 220 40E All cast Red X-8 A612 Ternalloy 7 Almag 35 B214 11.9 12.2 11.Downloaded from http://www.8 13.3 13.6 14.8 Pe cmanent Mold Ca@t (QQ-A-596) 113 122 142 B195 A108 355 43 356 A132 319 750 11.2 13.1 12.9 12.0 12.9 11.4 12.0 12.9 13.0 13.1 13.7 13.5 13.everyspec.4 11.1 J4.3 13.7 14.5 11.9 13.5 11.9 14.4 13.4 11.6 13.3 12.3 11.6 14.6 11.3 12. J 12.5 11.3 14.7 11.9 11.8 12.4 12.0 11.1 12.7 11.0 14.2 13.0 13.0 12.4 13.4 12.4 12.3 12.8 12.3 12.5 12.0 14.7 12. /in.7 13.9 12.9 14.6 11.8 13.7 12. EFFECT OF TEMPERATURE ON THERMAL ~EFFICIENT Average Alloy Type Designation -58 to +68 Coefficient. ) 12.8 11.9 13.3 12.1 13.4 11.3 11.2 13.9 12.9 10.8 10.6 12.9 13. J 13.3 11.0 12.4 12.4 12.4 14.4 13.0 12.1 11.5 13. Temperature 68 to 212 OF LlNEAREXPANSlON 10 ‘6 in.6 13.5 12.7 11.4 13.5 14.9 13.6 11.6 13.0 10.1 12.5 12.3 11.2 13.5 11.9 J3.8 12.0 12.3 1J.5 13.3 13.6 12.5 12.0 13.1 13.0 11.4 14.4 13.9 12.5 11.2 13.8 12.9 10.1 12.7 14.0 12.8 14.5 12.6 12.0 13.1 12.5 13.3 13.9 13.7 12.5 13.4 13.8 13.4 12.4 13.1 11.1 11.8 10.3 12.5 12.5 11.3 J2.4 13.8 13.4 12.2 12.9 11.7 13.2 12.0 12.4 12.9 13.0 12.7 12.5 13.6 13.0 12.6 J3.2 13.7 11.7 13.2 12.0 11.8 12.8 12.9 13.7 13.9 13.7 12.4 11.5 12.4 11.3 13.9 12.7 10.7 Die Cast (QQ-A-591) 13 43 2i0 B214 A380 380 360 A 360 384 10.3 13.7 11.6 13.6 12.1 12.4 Wrought 1100 2011 2014 2017 2018 2024 2025 2117 2218 3003 4032 5052 5056 6053 6061 6063 6151 7075 .3 12.4 12.6 13.6 11.3 13.2 14.4 13.6 11.0 12.4 12.1 12.4 J2.7 14.3 13.8 10.1 11.4 13.9 12.0 12.4 11.0 13.9 12. B 14. T6 .everyspec..T6 -T71 . 13 15 19 10 25 18 14 27 20 18 25 10 11 11 10 : 1: 16 8 19 14 10 18 13 12 14 Wrought 1100 3003 5052 5083 4 .: 133 107 103 79 84 97 81 92 72 77 76 80 55 66 86 68 70 42 50 30 53 32 38 72 49 33 18 32 1? 26 20 22 50 24 20 9 20 10 17 10 12 28 14 12 6 12 7 10 7 8 14 — 356 A132 Die Cast [Q()-A-591) 13 43 218 360 A360 380 A380 384 86 85 89 94 93 94 .: 80 86 94 55 86 16 11 12 10 E 10 122 355 :.T6 .596) 122 142 B195 355 -T551 -T571 -T6 -T51 . 34 49 Permanent Mold Cast (QQ-A .com MI1-HDBK=694A[MRJ 15 December 1966 TABLE WII. TYPICAL EFFECT OF TEMPERATURE ON ULTIMATE TENSILE $TRENGTII Alloy Type Designation Temper -320F -11OF Percent 20 F of Ultimate 212F Strenl 300F !h at 75°F 4001 500 F 600F t700F +75F’ Sand Cast (QQ-A-601) 356 -T51 .Downloaded from http://www.‘3’6 -T7 -T551 92 99 88 93 . 26 30 31 17 38 34 26 43 x 36 16 15 19 15 :.T4 -T6 -F -T21 -T5’il -T61 -T51 .: 81 65 75 69 82 79 86 02 81 68 56 48 47 47 46 50 49 55 46 25 53 64 48 64 60 55 52 30 27 29 26 :.: -o -H18 -o -H] 4 -H18 -o -H34 -H38 -o 189 144 206 164 143 158 144 141 141 115 109 122 109 110 106 106 105 105 104 104 107 103 104 101 101 101 101 77 92 . 90 100 10Q 98 100 74 67 71 74 74 .T7 -T71 126 108 104 100 92 90 95 94 94 83 70 8b 78 88 48 36 46 42 72 67 81 55 30 23 28 25 52 44 41 37 34 27 20 27 16 12 12 11 36 28 25 18 21 17 12 17 : 8 7 20 195 214 142 100 90 118 116 105 106 101 103 100 100 97 97 . T6 -T42 .T4 -T61 -T3 .T3 .everyspec.T6 .T5 .: 79 73 ?0 70 67 68 76 95 :: 56 30 44 29 23 36 31 41 40 41 27 37 37 24 35 42 4J 33 26 25 17 20 12 13 19 16 17 18 17 16 17 17 14 15 17 20 17 13 14 J3 14 6 9 10 9 11 12 11 11 10 9 9 11 10 14 1) 9 10 10 10 4 6 7 7 8 8 8 7 7 7 6 8 7 11 9 7 8 8 6 106 2117 2218 4032 6053 6061 ~ 6063 615J .T6 .T4 -T81 -T86 -T4 -T61 .T6 133 153 138 135 125 J23 110 I 20 108 I09 107 105 105 108 105 103 104 103 119 J05 102 120 128 118 127 J04 104 104 103 J03 J03 io4 -3ZOF -J JOF Percent -20F of Ultimate +212F 85 89 90 92 94 94 9+ 93 84 95 91 86 93 100 89 89 88 80 86 Strength at 75°F +75F +300F +400F +500F +600F +700F 51 57 64 74 . ) DeaignatiOn 2011 2014 2017 2018 2024 Temper . TYPICAL EFFECT OF TEMPERATURE TENSILE STRENGTH ON ULTIMATE — AIIoy Type Wrought (Cont.Downloaded from http://www. 45 .Tb .T6 .com MIL-HDBK=694A[MIIJ 15 Oecernber 1966 TABLE Vlll(Centinued).T6 .— 7075 7079 —.T6 . 2)2F at 75°F’ 1400F +500 I im im 12 12 12 12 33 17 13 12 13 12 8 10 8 8 Sand Cast (QQ-A-601) 356 -T51 .T6 -T71 .T6 -T51 .everyspec. Type Y Dee igna tion Temper -320F -11OF Percent -20F +75F of Yield Streneth .T4 . 21 22 17 18 17 17 1? 16 7 9 b 8 7 6 7 8 11 356 A132 lie Cast DC)-A-591) 13 43 218 360 A360 380 A380 384 95 100 92 100 100 100 100 100 90 94 78 96 96 92 91 96 71 75 56 56 54 67 65 72 43 38 33 30 27 33 30 36 12 16 9 12 10 10 11 10 Vrought 1100 -o -H18 -o -H14 -H18 123 10? 103 100 82 92 90 78 90 64 83 70 18 75 43 33 40 9 58 19 15 30 7 42 12 9 20 4 33 10 7 .T6 -T7 -T551 119 93 99 88 100 100 94 107 103 93 96 89.T6 . TYPICAL EFFECT OF TEMPERATURE ON YIELD STRENGTH A.Downloaded from http://www.T6 -F -T21 -T571 -T61 -T51 . 3003 145 120 122 116 104 107 105 101 103 -76 J 59 46 .— Permanent !dold Cast :C.T7 -T71 108 102 100 100 98 96 84 79 86 83 100 83 93 88 83 100 81 90 48 37 46 37 I00 61 70 42 43 38 26 45 25 21 28 25 67 28 27 23 22 20 14 17“ 195 :: 100 : 17 214 142 100 95 122 107 109 100 104 100 96 100 93 96 10 6 9 8 6 7 122 355 . 78 97 87 83 93 84 63 71 78 57 65 42 42 35 42 31 35 54 34 24 15 21 19 16 18 19 36 15 12 10 12 11 10 11 12 14 —.T6 .V2-A-596) 122 142 B195 355 -T551 -T571 .com M11411DBK-694A[MR] 15 December 1966 TABLE IX. T6 .98 . 26 22 50 9 12 24 14 18 19 14 13 23 14 12 12 12 26 17 11 13 12 12 1 600F 38 16 14 34 5 8 12 6 12 13 9 9 15 ‘7 6 8 I 6 19 12 8 10 9 9 700F T 10 8 20 4 6 9 5 8 : 6 8 6 4 6 5 16 10 6 8 6 6 85 48 40 77 26 2.T6 .everyspec.T6 I 116 126 116 116 115 124 105 119 105 106 106 105 103 100 113 132 110 133 103 104 103 106 -320F 121 118 116 -11OF 100 103 101 Percent -20F 100 100 100 of Yield Strength 300F 100 97 100 100 79 100 87 78 82 44 58 75 87 92 77 78 73 71 80 72 75 78 115 86 64 58 29 44 I at 75°F 400F 500F 62.T6 .T6 .H34 -H38 -o -T3 -Tb . ) 5052 Temper -o . TYPICAL EFFECT OF TEMPERATURE ON YIELD STRENGTH A11oY Type Vrought Cont.T6 .T4 -T61 .Downloaded from http://www. 6151 7075 7079 47 .T42 -T5 . .com M11=IUIBK=694A[MR] December 1966 15 -.. TABLE 1X (Continued).2 42 28 44 43 34 23 50 36 20 38 38 50 31 21 22 16 19 5083 2011 2014 2017 2018 2024 102 101 101 101 93 92 94 96 96 95 94 88 95 2117 2218 4032 6053 6061 6063 1O(J 96 88 103 110 104 102 104 102 95 108 95 90 91 85 ..T4 -T61 -T3 -7-4 -T81 .T6 .T’86 . 5 1 3 1.5 4 5 9 5 7 1 0.T4 .T6 .everyspec.5 5 9 1 0.5 A132 Die Cast (QQ-A-591) 13 43 218 36o A360 380 A380 384 2.5 J 5 2 4 3 0.5 9 8 3 5 3 4 1 5 9 .com MILHDBK=694A[MR] 15 December 1966 TABLE X.Downloaded from http://www.5 0.5 8.+600F +700F +212F .5 0. TYPICAL EFFECT OF TEMPERATURE ON ELONGATION — Alloy ‘rypc Designation Temper -320F -11OF -20F Percent +75F Elongation +300F +400F +500F .5 3 15 20 15 9 3 1 2 8 8 8 30 25 25 12 8 8 6 16 16 16 60 80 75 17 20 20 14 36 36 36 75 195 5 9 1 0.5 1.5 3.5 1 5 4 10 8 10 20 1 1 2 15 19 20 20 30 40 2 3 15 25 33 40 40 55 55 5 10 j5 75 38 50 50 70 70 10 25 60 100 60 60 60 80 80 45 356 i 0.5 1.T6 -T? -T551 0.T6 -F -T21 -T571 -T61 -T51 .T6 -T71 .5 1 5 3 5 4 6 10 J 0.and Cast QQ-A-601) 356 -T51 -T6 .T6 -T51 .5 2 2 2 100 35 214 142 40 30 50 50 50 122 355 Permanent Mold Cast (QQ-A-596) 122 142 B195 355 -T551 -T571 .2 1. 3 4 5 1 8 10 25 4 5 5 JO 2 15 25 40 8 14 8 )5 6 30 30 45 20 30 20 30 25 35 35 45 35 45 30 45 45 40 35 45 40 45 35 45 45 Wrought 1100 3003 -o -H18 -o -H14 -H18 49 32 45 18 44 16 45 15 43 16 10 45 15 40 16 10 55 20 47 16 11 65 65 60 20 18 75 75 65 60 60 80 80 70 70 70 85 85 70 70 70 43 .T7 -T71 1.5 3 1. T6 -T6 .T4 -T81 -T86 -T4 -T61 -T6 . TYPICAL EFFECT OF TEMPERATURE ON ELONGATION Alloy Type Designatim Temper ! Percent -320F -I IOF -20F +75F .T5 .T42 .everyspec.212F ElongatlOn +300 F +400F +500F +600F +7001 Nrought ( Cont. ) 5052 -o -H32 -H38 -o -T3 -T6 .T6 .com MLHDBK=694A[MRl 15 December 1966 TABLE X (Continued).T6 -T6 -T6 30 21 la 30 14 8 25 15 13 22 12 17 19 7 5 27 13 9 13 35 16 9 35 16 14 18 12 16 19 8 6 16 14 9 13 18 18 18 15 19 15 18 45 * 25 20 45 25 15 16 12 11 17 11 11 20 17 9 13 20 20 20 20 22 30 37 65 40 40 60 35 35 28 25 23 27 23 28 35 30 30 25 28 40 40 40 40 60 60 80 80 80 70 45 45 45 40 55 55 55 55 55 70 50 70 60 75 75 75 50 65 100 100 100 100 95 90 65 95 60 75 75 75 75 80 85 70 80 85 80 80 80 50 80 175 120 120 120 120 125 70 100 100 100 100 100 100 110 100 90 90 90 105 105 105 50 65 175 5083 2011 2014 2017 2018 2024 2117 2218 4032 6053 6061 6063 25 20 19 17 33 22 !8 17 11 13 6151 7075 7079 49 .T4 -T61 -T3 .Downloaded from http://www. ernalloy psi JO.5 JO.com MI1-HDBK-694AIMR) 15 Oocamber 1986 TABLE Xl.3 JO.0 10.3 10.3 10. Sand Cant (c2Q-A-6ol -%5 10.3 10.3 Designation Type Wrought Alloy 2017 20J8 2024 Alclad 2024 2025 2117 2218 3003 4032 5052 5056 5083 6053 6061 6063 6066 6151 7075 7079 ModuJua 106 psi .everyspec.0 JO.7 10.4 5 7 1L -!i-E_ Die Cast (QQ-A-591) Wrought All Permanent Mold Cast (C2Q-A-596) All I JO.0 10.4 JO.2 10. TYPICAL MODULII OF ELASTICITY (TENSILE) AT 75° F Type “eBi’nmL-l ‘“l%”’ Alloy 43 356 195 2J4 142 J22 355 220 40 E Allcaat A612 Ternalloy T.3 NOTE : ( 1) For temperatures other than 75° F refer to the following table: MULTIPLIERS FOR OTHER TEMPERATURES Temperature ‘F Percent of MOrJUlOUK at 75 ~ 112 107 102 100 98 95 90 80 -320 -112 -18 +75 +212 +300 +400 +500 I I I 50 .6 10.5 10.7 9.3 10.8 10.4 10.2 10.3 10.0 )0.6 10.3 10.3 10.7 JO.2 9.3 10.Downloaded from http://www.3 10.0 10.0 10. 23.5 17 24 100 5 9 7. 500”F 3.5 24 27 23 24 23.5 12 14 12.T6 .com MIL.5 19 22 19. 400°F 5 8 9 9.5 19 22.5 12 13.5 7.5 9 12 14 19.5 18 21 19.5 9.5 9.5 16 22 Fatig”e 300”F 7.5 20. R.5 12 22 -- 6063 6151 7075 Designation Alloy 3003 2014 2024 5052 6061 7075 Temper -H18 .T4 .5 11.5 20.5 35 39 42 42 43 37 31 19.5 10 8 10 11.5 26 29.5 16.everyspec.5 6.5 30 40 3003 5052 2011 2014 2017 2018 2024 4032 6061 13.5 16.Downloaded from http://www. Moore Rotating Beam Test) Reversed -- 51 .1 1.5 1? 13. ksi Cvcles to Failure Alloy 1100 Temper -o -H16 -o -H14’ -H18 -o -H34 -H38 -T3 -T’6 -T4 -T61 .HDBK-694A[MOJ 15 December f966 TABLE XII.5 II 12 Strength(l).5 17.T6 .5 24 26.5 9.T6 -T4 -H36 -T6 -T6 75% 10 18 20 18.T6 0.5 22 29 10 5.5 ks.0 6.5 22. TYPICAL FATIGUE STRENGTHS-WROUGHT PRODUCTS Repeated Designation Flexure Million Fatigue Strength [1) .T42 -T5 -T6 -T6 .5 23.5 9 10.5 30 34 29 31 30 23 16 15.5 21 18 1+.5 :.5 II 13 22 500 5 8 7 9 10 16 18 20 18 j~ 20 17 20 lb 14 10.5 7 NOTE (1) : Flexural Stress (R.5 11 10.5 5 6 6 4. 45 . .: 17 15 15 12 18 20 13 . . 19 47 120 120 130 . 19 . -T651 -o -T-4. . .T6 26 65 11 45 42 53 60 66 37 24 37 38 “’ 20 18 H 65 70 58 43 48 58 /? 6 6 .T8 -o -T4. 10 2 6 ‘ l/16-in. -T351 -T36 -T. TS ksi 13 16 . EL% l/2-in.~ ksi 5 15 17 20 22 43 45 14 42 60 10 40’ 37 60 10 40. . dia. 45 105 120 - 2017 ‘ 13 18 17 2018 2020 -. TYPICAL MECHANICALP ROPERTIESO FWROUGHTALLOYS Alloy 1100 Temper -o -H12 -H14 -H16 -H18 -T3 . 46 . Hard nees BHN 23 28 32 38 44 95 100 45 105 135 Shear Str ha i 9 10 11 12 13 32 35 18 38 42 18 37 37 41 18 38 39 Fatigue End.T3 -T4.18 41 41 42 18 40 40 41 40 42 35 28 30 . thick 35 12 9 :“ . 8 27 11 - . . . 24 55 59 27 62 70 25 63 61 68 26 62 61 35 T.com MIL=HDBK0694A[MR] 15 December 1966 TABLE XIII.Downloaded from http://www. -T351 -T36 Ult. 2025 2117 2218 2219 llo 70 95 ‘. -T851 -T86.T3 -T4. . -T451 -T6. . .everyspec. 9 18 18 13 20 18 2011 2014 Clad 2014 .T72 .- . . -T451 -T61 -o . 21 20 22 10 Ult.T4 . -T451 -T6.T6 . -T651 -o . Limil t ksi 2 . . . 70 :: 59 No Req uirements 27 70 68 72 11 50 47 57 .T6 -T651 -F -o -T3 -T4. - Clad 2024 -o . . . . . 22 22 12 ..81. . 1 18 14 13 20 20 18 2024 20 18 20 13 22 . 3 7 35 13 25 30 70 95 26 00 30 25 . 60 73 42 82 70 95 - 23 5086 .T83 -T831 -T832 . .T6 -o -H32 -H34 -H36 -H38 -o -H18 -H38 -o -H113 -o -Hill -o -Hill -H112 -o -HI 12 -H311 -F . Ys ksi 48 6 18 21 25 27 46 13 28 31 35 37 22 59 50 21 33 14 21 19 26 19 23 24 33 32 42 Ult. thick 4 30 10 8 5 4 EL v.T5 -T6 .- . l/16-in.T42 . TS kei 58 16 19 22 26 29 55 28 33 38 40 42 42 63 60 42 46 Ten. TYPICAL MECHANICAL PROPERTIES OF WROUGHT ALLOYS Alloy 2616 3003 Temper -T61 -0 -H12 -H14 -H16 -H18 . Limi ksi - 40 20 16 14 10 9 28 35 40 47 55 120 47 60 68 73 7-I 65 105 100 J1 12 14 15 16 38 18 20 21 23 24 26 34 32 25 7 8 9 10 10 16 16 17 18 19 20 20 22 22 4032 5052 25 12 10 8 7 30 18 14 10 8 35 10 15 5056 5083 22 16 14 12 14 12 12 24 22 18 . Herdnea a BHN Shear Str kei Fatigue End. l/2-in.Downloaded from http://www.com MILHDBK-694A[MR] 15 December 1966 TABLE X111(Continued). dia.everyspec.T6 Ult.! 18 13 25 27 35 22 37 30 42 3: 8 7 13 21 31 13 35 27 39 11 23 12 10 17 22 14 22 18 27 8 13 9 8 10 10 9 22 12 12 20 9 10 12 .T4 .: 41 42 41 45 45 47 35 50 5454 5456 6011 6053 %6 6061 6063 -o -o . 17 10 1( 78 81 7 . 10 8 . 77 66 77 66 No Requirements 70 60 - Al clad one side 7075 -o . -T651 . 7076 7079 -T61 -T6.Downloaded from http://www. 84 ’73 73 84 No Req uirementa 60 18 maximum 15 requirement - Alclad 7178 -o .T4 -H12 ( 1) Specification . Limit ksi 16 11 - - 18 12 6151 7075 .T6 -T651O -T6511 -o . dia.T’6 -T651 -F 10 10 8 6 6 . 18 Hard ness BHN 43 90 120 100 Shear Str ks i 14 30 34 32 Fatigue End. Ys ksi 12 30 52 43 z4( 1 ) 70 73 l/16-in. 7 . -T451 -T6.T6 -T651 -F Ult. 10 i 6 145 - 45 - 23 7178 84 73 84 73 84 73 No Req uirements 36( 1) 20(1) 40( ~) 78 6. - .T6 -0 . thick Ult.everyspec. 10 i 6 . - 7277 X82 80 NOTE : . 4 35 54 . -T651 -o . - Mclad 7075 20( 1 ) 36(1) 40( 1) i’z 6. TS ke i 22 52 57 48 40{ 1) Ten.T6 -T651 -F 78 40( 1 ) 40(1 ) 68 2](1) . TYPICAL MECHANICAL PROPERTIES OF WROUGHT ALLOY$ \lloy 6066 Temper -o -T4. 10 8 - 14 . EL% 1I 2-in.T6 -T651 -F 10 10 i i 6 . 77 66 77 66 No Req uirernent 6 22(1) 21(1)” 40( 1) 74 6.com 15 December 1966 TABLE Xlll (Continued). T62 -T7 -F -T21 -T571 . TS ks> 19 .. Hard ness BiiN 40 65 60 70 60 75 90 7’0 50 70 85 80 115 55 75 70 65 Ho 85 75 75 75 70 80 60 85 65 75 —.com Mll+iDBK-694A[MR] 15 December 1966 ?’ABLE XIV.T4 -F : minimum 25 26 8 10 B214 NOTES ( 1) Specification (2) has requirement than O. 5 percent 55 .T4 .5 8..5 3 0.T4 -T51 . Ys ka I 9 21 25 17 25 34 OF SAND CAST ALLOYS r QQ-A-601 Alloy 43 356 Temper -F ..— 85 70 —. Limit ksi 8 20 26 26 30 33 8 8.5 11 195 214 142 12 18 34 20 21 26 32 17 122 108 113 355 /2) 2.T2 -T61 . TYPICAL Mechanical PROPERTIES .?5 19 27 21 l&l(l) 13 1 Ult. El. 220 40E Allcast Red X-8 T] Tenzaloy A612 Te rnalloy Ternalloy Almag 35 5 7 . Ys ksl 8 16 20 24 16 24 32 19 12 18 30 20 40 14 15 23 25 3b 29 26 26 18 24 21 30 22 25 .5 8 7 8 11 8.5 1.5 1 1 Shear Str ks I 14 r Fatigue End.T.5 1:(1) 2 50 14 17 8.T6 .(1) 24 28 35 3B 35 48 35 27 36 30 39 30(1) 34 35 30( 1) 37 40 35(1) 20 .5 7 7.T6 . Comp.5 1.5 65 . 7a 8 3(1) 2 3. F -T55 -F -T51 .5 1..5 16 5 2 L 1.Downloaded from http://www.5 1. 75 ----1.5 5 5(1) 43 )5 lb 24 26 38 30 27 14 19 25 20 22 28 28 26 34 28 22 29 9 8 9 lG 10 8 9 10 II -.35(1) 25 33 32 36 41 z9(1) 25 27 32 27 41 :..everyspec.5 5 2 .T4 -T5 -F -T6 -F .T6 .5 ‘1(l) 4.(1) 9 1 0.T6 -T5 -T5 -T5 -T5 -T5 -F .T7 -T71 1 Ult. Ten. T5 . TYPICAL MECHANICAL PROPERTIES OF PERMANENT AND SEMI-PERMANENT _ MOLD CASTING ALLOYS CX2-A-596 Class 113 122 Temper -F -T551 -T65 -T571 -T61 .T6 -T5 .0 6.5 9 5 4.5 10 9 13 142 B195 x 39 28 30 42 45 36 23 38 32 36 47 34 40 33 37 47 53 23 2. Ys ksi 20 40 36 34 44 20 26 20 17 24 27 40 31 9 27 24 28 43 19 Shear Str ksi 22 30 36 30 35 30 32 30 22 24 34 36 27 16 30 25 28 36 24 Fatigue End Limi ksi 9. EL % 2 0.T7 -T551 -T65 -F .5 0.5 9 10.5 43 356 A132 319 10 .. 5 Hard ness BHN 70 115 140 105 110 Comp.0 56 .2 28 30 35 31 45 18 27 31 40 37 .T5 -T5 -T61 -T61 Ult.0 3.T7 -T5 -F -F -T5 . Tenzaloy Ternalloy Ternalloy 70 95 95 45 11 15 9 750 A214 333 .Downloaded from http://www.0 5.0 3. Ys ksi 19 35 36 34 42 19 26 20 16 24 27 40 31 9 27 24 28 43 19 27 22 21 29 43 10 Ult. 5 0.everyspec.T4 -T6 .5 8.5 3 10 5 6 0. 5 3 4 10 4 3 12 2. 5 9.com MILliDBK-694A[MR] 15 December 1966 TABLE XV.5 1 0.5 2.5 2 2 4 1. TS ksi 28 37 48 40 47 Ten.: 80 70 75 90 105 85 45 80 70 105 125 AI08 355 10 10 10 8 13 11 13.T7 -F -T51 -T6 -T62 -T71 -F -T6 . 5 9.T6 -T7 . 357 A750 B750 F132 C355 A356 3.T6 (6 13) 5 (6o3) 7 (6o7) -T5 -T5 . : !8 20 20 20 13 A13 43 .53 0 .5 .3 3 -5 0’ 2 -4 2-4 4.everyspec.5-3 6-B 6-8 q-n 0. t= 3/16 0 0-1 2-4 0 0-1 3-5 0-1 1-2 3-5 0-1 0-1 4-6 4-6 5-7 0-1 4-6 4-L 7-9 t.5 S-* 1. 2% offset ksi 21 19 14 27 24 25 $: 24 Elongation 2 inches % 2.5-3 0.1.com MLHDBK0694A[MRJ 15 December 1966 TABLE XVI.5 .5 4-6 0-1 1.T4 -T6 -o -T3 -T4 -T81 -o -H321 -o -T4 -T6 -0 .2.5 3 -4 0.5 7-I’2 Alloy 1100 Temper -o -H14 -H18 -0 .5.5 .1.?-7 1.8 5.5 .T6 t= l/16 0 0 1-2 0 0 1.5 .4 7-1[ 5083 2014 Clad 1:2 1-2 2-4 0 1.5 .5 1.1.5 0 3-5 0 0.51.0 8.5 3-5 5.5 .5i.0.— 7075 I .5 3.5 . L]mit ksl 19 19 .5 .1 3-4 o-i 2-4 3-4 1.50 o 0.2 3-4 I .5 —— 2.5 .5 0 0.4 3.1.5 4-7 t=llz — 1-2 2-3 3-6 1-2 1.51. 1/32 0 0 0.53 -I-6 0.5 t.5.218 A360 360 A380 380 SC1 1-1A TABLE XVII.H!4 -H18 -o -H34 -H38 -o -o -T3 .5 2-3 .5 2-4 0-1 0 3-5 3-5 4 -0 0 4 -6 4-6 6.0 3.50 0-1 2-4 3 -= 3003 5052 0 o-) 1.5 .3 3.3 1.2.3 2-4 1-2 j-7 6061 0 o-1 o-1 0 2-4 0 0-1 0.+ 1. Tens]le Strength ks] 43 42 33 45 46 44 47 46 48 Yield strength at O.5.5-3 1.5 3-5 4-6 3.5 2.1 2-3 0-1 1.5 .3. 7 5-)3 — 1-2 2.5 ]n Shear Str ks] 25 25 19 29 26 28 27 28 Fatigue End.55 0 1.5 .l/q 0 0-: 2 --1 0 : . APPROXIMATE RADII FOR 90-DEGREE COLD BEND OF WROUGHT ALLOYS I DeslgnatlOn L Radius t= l/64 0 o o-1 0 o 0.51.5 .1.2 1.53 I 1.2 2.5 0 0 1-2 0 0 1-2 Requ]red on terms t= l/8 0 0 Of sheet th]ckness.5 5-7 .5 2.Downloaded from http://www.5-8 0-1 2-3 0.5-8 8-11 J 3-5 6-9 6-9 9-12 0.5 2.s 0.5 3.5 .5 9.5 .3 5-7 5-7 7-1o 1.5 .5 . TYPICAL MECHANICAL PROPERTIES OF DIE CASTING ALLOYS QQ-A-591 Alloy No.5-3 6-10 t) 7 t=31b 0 0-) 3-5 0 1 -2.5 .5 1-2 O-i 4-6 0 1-2 1.7 4-6 4-6 b-lo o-i 5-7 5-7 8-10 0. 5-6 0 2-4 2-4 3-5 0 3-5 3-5 5-7 20~4 I 5456 0.5 . for softest temper.Downloaded from http://www. 1 3-4 3 -4 1 3-4 3 3-4 1 3 3 1 3 1 }-3 1 1 -2 1 1 2 3 1 3 Machinability 4-3 1 2 2 2 2 2 2 3 2 4-3 3 4-3 4-3 4-3 4 . FORGING ALLOYS .249 Tensile Strength ksi 12 12 11 14 27 58 .500 0.everyspec.RELATIVE RATING BY CHARACTERISTICS Alloy 1100 2011 2014 2014Clad 2017 2018 2024 2024Clad 2117 2218 3003 4032 5052 5056 5083 5456 6061 6063 6151 7075 7075Clad 7079 Strength 4-3 2 1 1 1 1 i 1 3 2 4-3 2 3 2 2 2 3-2 3-2 2 1 1 1 cold Workability 1 -3 3-4 3-4 3-4 3 3 -4 4 2 1-3 Corrosion Resist. TYPICAL TENSILE STRENGTHS OF GAS-WELDED JOINTS Alloy Type Sand Cast (QC2-A-601) Designation 43 214 Wrought 1100 3003 5052 Temper -F -F -H14 -H14 -H34 Thickness.500 0. 3 4 4 4 1 4 4 4 4 1 3 NOTES (1) (2) - : Relative ratings are in decreasing order is rating of merit. TABLE XIX.249 0. First nsm-nber in numbered pairs second number is for hardest.-3 3 3 3 2 2 2 Electric Conductance 2 3 3 3 4 3 4 4 Hardness 4-3 2 1-2 Forga bility 1 3 2 2 1 3 3 3 4 4 : 4 2 4-3 2 3 -2 2 2 3-2 3-2 2 1 4 1 3 1 -3 1-3 3 3 3-4 2-3 .com MIL=HDBK-694A[MR] 15 December 1966 TABLE XVIII.249 0. inch 0. 081 0. 0. TYPICAL TENSILE STRENGTHS OF BUTT WELDEDJOINTS Tensile Filler Metal Alloy 1100 1100 5052 .com MIL-HDBK-694AIMR] 15 Docmnber 1966 TABLE XX.shielded consumable electrode.Downloaded from http://www.025 0.064 I 0.032 0.125 0.H38) to -T4 ) or -T6 ) -T3 -T3 -T6 -T6 ) to ) ) or ) or ) ) 70 100 145 210 300 410 565 775 950 1000 98 132 175 235 310 442 625 865 1200 1625 2024 Clad 2024 7075 Clad 7075 108 140 185 260 345 480 690 1050 1535 2120 . TABLE Combination All Oy Temper 0.5 16 28 34 27 20 51 43 - NOTE (J) : tungsten arc or Argonshielded Using Argon.020 0.102 0.040 55 70 110 150 205 280 420 520 590 3003 3003 5052 5052 6061 -H12) or -H18) to -o ) -H32) or .everyspec.T6 -T5. TYPICAL SHEAR STRENGTHS OF SPOT WELDS Strength Thinnest (minimum).016 1100 -H14) -H18) to 40 XXI. kei Designation Baoe Alloy lJOO 3003 5052 2014 6061 6063 Metal Temper Heat Treatment and Aging 13.051 inch 0.- 59 . T6 4043 4043 4043 A6 Welded Strength Across After Weld.T6 . pounds per spot Shear Sheet in Joint. Brazing.ing Government Designation Gas Weld A B c c c . D D D D D D D D D D a. D . nos) NOTES : (1) - Ratings are defined as follows: A .Generally weldable by all commercial procedure6 and methods.com MI1-HDBK-694A[MR] 15 Oecember 1966 TABLE XXII. 60 .nd Solde. QQ-A-596 Class 1 2 3 4 5 6 -1 8 9 15 Alloy 110-0 2011 2014 2014Clad 2017 2018 2024 2024‘Clad 3003 4032 5052 6061 6151 7075 A D D D D D D D A D A A A D A D B B B B B B A B A A A D A D B B B B B B A B A A A D B D B A B B B A AiB c A-B A A B A D D c D D c c A c A-B c c D A D D D D D D D A D c B B D . B .everyspec.Weldability limited because of crack Beneitivity or 10ss of properties. (Wrought) (See tabie V for cOrresponding spec. PFes cure Weld ‘D ..B D A D D D D D D D A D c A c c c“ c B B A B B D c c c c B B A B B . C .D c c c c B B A B B D c c c c B B A B B B D D D D D D P D D D c D D D D D D D D D D D D D D c c c D D (Permanent and 5emi-per manent Mold cast) Spec. WELDABILITY RATINGS FOR CAST AND WROUGHT PRODUCTS Suitability Weld with inert gas A B : c c B c B D B c B for Welding.C B c B D B c c Relative Arc with flux A B c c c c B c B D B c B Spec.Weldable by special technique.Downloaded from http://www. QC2-A-601 (Sandcast) Alloy 43 356 195 214 142 122 108 113 355 220 Allcast A612 B214 Resistante Weld A B c c “c c B c B D B c c Soldering D D D D D D D c D D D c D Brazing c c : D II D D c D D A D Spec.No common” methods have been developed. ng based on G ase and speed of and quallty of f!nish provided by typical procedure. Ability of liquid fill thin sections. anmfizcd roatang resistance Rated on combined alloy to corrosion. in the case of heat treatable alloys. to take and hold an electroplate standard methods. after prolonged heating at test>ng temperatures. Composite polishlng poltsh:ng Ability applied Rated rat. Allowances are for average Shrinkage requirements WIII vary O( design and dimensions. z . quality of finishing. and tool Ratings. Stress relief anneal for service at 250 brazing or melting. particularly the annealed temper.com i TABLE XXIII . ttlc temperature range. and uniformapplied . on lightness of color. resistance in 5% salt spray test (6) (7) 220 40 E Allcast 319 II Red X-8 T1 Tenzaloy 12 A612 Ternalloy Ternalloy A1mag 35 B214 5 13 7 14 41L-A-10935 B214 4 5 4 1/.? 3 2 z 1 1 5 2 Rating Lased on Iens#le and yteld strrngths at te#tl perature up to 500 F.esistance to f~ot Cracking (3] I 1 1 1 4 4 4 4 3 4 z 5 \ 1 1 i . may have lower rating. CASTING ALLOYS – RELATIVE RATING By CHARACTERISTICS Designation Sand “QQ-A-601 Alloy P&SP Mold Four Die Q-A-591 Alloy Pattern shrinkage Allowance (2) 5132 51 Jt Y Characteristics ?.? I 5 5 5 5 5 5 5 3 3 4 1 I I 1 1 2 QQ-A-596 class ‘r Fs sure ightness —. alloy to flOW readily in mOld and (4) (5) 513. and die cast sand castings. f3ased cm alloy {ASTM 33117). Not applicable to permanent mold Ings. .? ~ 2 4 Fluidity (4) olidifl cation shrinkage Tendancy (5) 1 2 Notes : Rating: I through 5 are relative ratings w!th 1 and 5 the lowest )n each type indicating the highest nf casting. life. 2 2 . to be Iusion welded with G (13) (14) (15) (16) z 2 1 1 5 2 Refers to suitability of a310y 10 withstand temperatures without excessive distortion t401 recommended exceeding 200 F.everyspec. brightness.? 51 JZ Decrease In volume accompanying freezing of alloy and measure of amount uf compen~atmg feed metal requu red In form of risers.n sulfuric acid of coating and base 10 15 13 A13 43 A380 3no 360 A 360 218 SCI 14A 4 5 4 4 5 -f 5 5 4 3 3 J 3 (8) (9) o{ casting by present (lo) (11) (12) ity of clear G lectrolyte. at temperatures F or less. with intricacy (1) 43 7 356 1? 195 214 )42 122 108 113 I 355 6 45 (2) 5132 51 )2 5/32 5132 (3) Ability of alloy to withstand contraction stresses while cool.2 1 J 4 3 3 4 3 4 5 4 1 .— 1 1 1 I 4 5 } 4 3 4 2 3 ) I 1 5 3 z 2 .Downloaded from http://www. Based on ability of material f]ller rod of same alloy.0 3/16 5/ 32 5/32 5132 3/16 3/16 3/)6 3/10 Composite rating based on ease of cutting. C3ther tempers. chip characteri~tics. ng through hot-short or br. based on T6 temper. yes (16) no ye e no yes yea aged no no no no no no no no no OIJY : 3 3 3 3 z 2 2 2 2 z z I i * 3 3 3 3 3 2 5 5 3 3 1 5 (:5) 5 3 3 3 2 only ody on3y O~Y only O~Y 5 5 5 5 5 3 3 2 : 2 i 3 5 2 z 2 2 4 2 13 A13 43 A380 380 36o A360 218 SCI 14A Only d- .RELATIVE RATING BY CHARACTERISTICS us Desknation Die X2-A.Downloaded from http://www.1093’ BZ14 4 B214 yes yes no no no 1 3 3 13 yes ye e ye9 w=d yen yes yes yes aged aged aged aged aged aged ye. CASTING ALLOYS .everyspec.ante (10) 5 4 4 4 z 1 : 3 3 3 3 3 4 4 1 z 4 4 4 4 z 1 z 2 1 z 1 .591 Auoy 43 7 356 8 43 Other Characteristics ) Normally Heat Treated no no 3 3 z z 3 1 4 4 4 : : 3 3 5 5 4 3 2 1 z 2 1 1 3 2 z 3 3 1 1 3 3 3 4 1 1 1 1 1 1 1 1 1 z 3 3 4 4 1 3 4 5 3 3 3 3 1 3 ‘olishing (8) 5 4 5 3 2 1 z z 2 z 3 z z 3 3 1 1 4 4 3 5 1 1 1 1 1 1 1 1 z z 3 5 5 5 5 4 3 3 3 3 1 3 Electroplating (9) 2 z 2 1 1 5 : 1 : 2 2 1 2 4 2 2 z z 2 2 2 z 3 3 3 3 5 4 1 2 4 3 i 3 2 1 1 1 I 5 2 ippea.com d TABLE XX-II! (Continued). 3 4 5 5 5 5 4 3 3 3 3 1 4 Anodize SE$l (11) 2 2 2 z 3 1 4 3 4 4 3 4 4 z 2 : 3 3 3 2 i z 3 2 2 2 2 ! 1 2 3 2 2 i 3 3 5 5 3 3 1 4 Strength at Elevated remperaturea (12) 4 4 3 3 32 1 1 1 Weldlng Suitability (13) 1 1 $ 3 4 : 4 4 2 3 4 2 2 5 4 2 z 2 2 4 4 4 4 4 4 4 4 4 4 z 2 z 4 no no no no no no no no no Brazing 5u3tability (14) limited limited no no no no no no no no no no no no no no ye 6 no no no no yes yes yes yes yes yen yes no no no no no no no ro no no no no no no no d - OY yes yes 195 214 14Z 3 yea no yes yes 2 IZ2 108 113 1 355 6 220 40E A31cast 319 11 Red X-8 T1 Tenzaley lz A61Z Ternalloy 5 Ternalloy 7 14 Alrrmg 35 M3L-A. — Die (QQ-A-591)(’~ 13. TYPICAL APPLICATIONS FOR CASTING ALLOYS Type of Casting Sand (c3Q-A-6ol)~l) General Purpose 43. 6. 214. Almag B214 — 5.9 10 12.B214 218. A\60.13.11.6.40E Tenzaloy. Precedent 71A 43. 16. 36(I 3H4 13. AIJ. 122. 355. 7.8. Strength 142. — —.10’+3< Permanent & Semi-Permanent Mold 2: 3.12.. 14 7.113. A380 360. .5.everyspec. Almag 35.—. 14.Downloaded from http://www. Z18 2-plst Ons 3-pist Ons 9-~ls Ions 10-pi stOns 1S-bearings 19-l>ear]ngs 20-l> earings —- .—. 13.7. NOTES : (1) (z) Alloy Class designation designation — —.18 Pressure Tight Corrosion Resistance 43. 17. 108. 356. 750-bearings A 750-bearings B750-brarings 43..8. 13. 12.10.4. A612. AI!. 195. 380. )60 A 160 AJ80. 43. 355. 43.14.com I TABLE XXIV. 356 195.6. Architectural Decorative and Special Purpose 142-p istOns 122-plstOns 35. A360 384 — IJ. 9. . Red X-8 Tenzaloy A612 Ternalloy 5.8.14. BZ14.13. 355.356. 40 E Allcast T1.356 355. Almag MI L-A-10935 35 (QQ-A-596)(2) . Ternalloy 5. 220.1H Almag )5 Ml L-A. 214. B214 High Temp. Ternalloy 7.— —— —-. Precedent 71A 1. A13.11. 180. —— — ——— d co a9 . A sheet product which combines the high mechanical properties of 2014 with the good corrosion resistance of 6053. Readily weldable. mach- 2018 2218 Both retain strength temperatures. and for a miscellany of parts where high etrength is not required. heavy duty forgings. General structural applications. Excellent resistance to corrosion by salt water. Appreciably higher strength than 1100. weldability. and good ining qualities. qualities. screws. resistance to corrosion. 2011 Excellent free-machining Fairly high mechanical Stock for screw-machine products. and structural applications where relatively high strength is required. 64 . rod. properties.com MIL41DBK=694A[MR] 154ocombor TABLE 1966 PRINCIPAL CHARACTERISTICS AND USES OF WROUGHT ALUMINUM ALLOYS XXV. purpose material for General various structural applications where good strength is required. Now largely superseded by newer alloys Forged pistons and cylinder head for internal -combustion engines. 2014 High mechanical properties including yield and tensile strength. stronger Fairly and harder than 1100 and 3003. and strong fittings. good formability. Most commonly used alloy where high strength is required. General purpose’ alloy where fairly high strength is required. For marine and outside applications. Heat-treatable Alloys qualities. fittings. Readily machinable. Fittings and screw-machine products. For structures requiring high unit strength together with good resistato various corrosive environnce ments. and Fair formability and forging hardnees. nuts. Forged cylinder heads and pistons. Screw-machine products. Alloy Outstanding Characteristics Alloys and low Recommended Use Non-heat-treatable 1100 Very good formability. Suitable for various types of high temperature services. Clad 2014 2017 A bar. 3003 Good formability and weldability. well at elevated 2024 A high strength alloy with mechanical properties intermediate between 2014 and 6061. fatigue.everyspec.Downloaded from http://www. and wire alloy having relatively high strength. Relatively strength but high ductility. Miscel laneous parts where higher strength is needed than that provided by 1100. fuel and hydraulic lines. Bolts. General purpose material for drawing and stamping. very good resistance to corrosion. Gene ral purpose material for drawing and stamping. 5052 Moderate mechanical properties. and a g rest diversity of parts made on autOmatic screw machines. and tanks. 65 . Structual application requiring maximum yield and tensile strength. Applica tiotm mostly confined to propel lers for superchargers and engineu.Downloaded from http://www. 2025 Specialty forging alloy. Marine and outside work.- 7075 Affords limit. Small press forgings and intricate pieces that are difficult to forge in the harder alloys. Good resistance to corrosion.everyspec.y. PRINCIPAL CHARACTERISTICS AND USES OF WROUGHT ALUMINUM ALLOYS Alloy Outstanding Characteristic w Alloys I Recommended Use Heat-treatable Clad 2024 A sheet product which combines the mechanical propertied of 2024 with the corros]on resistance of 1230 aluminum allc. Excellent forging qualities. General purpose material for ordinary forgings. Forged pistons for combustion engines. . 6061 Good mechamcal properties. Superior brazing and welding qualities. workability. forging maximum Not readily quallties. Many small Various extrueion forged parts. internal- 4032 6151 Retains strength temperatures well at elevated Fairly good mechanical properties. Good forming characteristics. General structural purposes.. -. and resistance to corroe~on. Section thickness limited to 3 inches. strength formed. applications. propert~es. and endurance Poorest Clad 7075 A sheet product which combines the mechanical properties of 7075 with improved corrosion resistance.com M11+ID$K0694A[MII] 15 Docombtr 1966 TABLE XXV (Continued). Transportation equipment. Good For structural applications re quiring good strength together with resistance to corroeion. Structural applications where the highest strength together with maximum corrosion reslntance is necessary. Fairly forging high mechanical qualities. com .Downloaded from http://www.everyspec. Longitudinal L LT . (5) (6) (7) (8) (9) (lo) (11) Identification Applicable Applicable Applicable and coiled by the user. for square. Each tabulation of chemical composition shows the maximum allowable percentage of the alloying element. they are omitted (numerals in parentheses). (12) ( 13) (14) to flat sheet and plate only. is indicated in the course of routine analysis. maximum cross-sectional Applicable Applicable to plate and coiled area is 50 square sheet only. and maximum cross-sectional Direction of specimen: P .P aralle 1 to forging flow lines NP . In the tables. For bar. when given. If. The mechanical property tabulation. however. gonal bar maximum thickness is 4. footnotes are repeate: reference is made to explanatory footnotes t in many of the tables. the minimum and the maximum allowable percentages of the elethe minimum values that can be ment. the tests inches. for wire of less than 0.— (1) Analysis elements listing. rectangular. indicates expected unless otherwise noted.everyspec.4ignations of the alloys.Downloaded from http://www. to plate heat treated by user. the presence of other shall regularly be made only for the elements listed.Short Transverse Maximum heat treat Test coupon.000 inches. classification to flat sheet to plate only.Not parallel to forging flow lines . are made on a round specimen These properties are those of the core alloy since machined from the plate. 67 .000 inches. Since these from the tabulations and are included in the following . or octaarea is 36 inches.125 inch diameter.com MI1-HDBK-694A[MR] 15 D@cambar 1966 Section Specification IV Requirements This section contains tabulations of the chemical composition and mechanical property requireThe data are arranged according to the ments for wrought aluminum alloys used by the Government. hexagonal. further analysis shall be made to determine conformance with the limits specified for other elements.. or if a range is indicated. numerical commercial de. (2) (3) (4) Not required For rounds (rod) maximum diameter is 8.Long Transverse ST . sheet and to flat sheet heat treated number. section thickness. for material or less in width.see note (3) for other requirements. For rounds (rods) maximum diameter Cutout specimen. greater than 72 square inches. Non-heat treatable alloys. (20) (21) (22) For cross-sectional areas the time of heat treatment. For cross sectional areas the time of heat treatment. is 6.everyspec.Downloaded from http://www. .com MIL-HDBK-694A[MR] 15 December 1986 (15) (16) (17) (18) (19) Applicable Not required to sheet and plate heat treated % inch by user. or thicknesses greater than 6 inches at the properties shall be as specified in the contract or purchase order.500 inches Tensile and yield strength test requirements may be waived for material in any direction in which the dimension is less than 2 inches because of th’e difficulty to obtain a tension test specimen suitable for routine control. greater than 144 square inches. 68 . or thickness grester than 4 inches at the properties shall be as specified in the contract or purchase order. 006-0.032-0. in.032-0.05 Ti - .0015 0.percent Cr Sn Ni Al 99.031 0.see Cu 0. contain leas than O.05 0.051-0.15 each total 1 (a) .000 Area Sq.000 0.minimum Yield Str is i ! 1 1 Mullen EL Streng min 70 . 0008 0.499 0.H22 and 0.019 0. }13 0.114-0.15 December 1866 CHEMICAL Specification All(a) below . I I Desigru ati cm — MIL-A-148 Foil Specific on Temper —— Annealed Thickness inch O.0040 0.0050 0. 01 percent eaci] Of arsenic.019 0.Downloaded from http://www.009-0.013-0.031 0.499 0.031 0.0030 0.020-0.everyspec.000 0. Tensile Str ksi —— I I I 8 11 --l rz3 31 55 90 150 220 280 ursting .051 -0.050 0.012 0.032-0.006-0.050 0. cadmium MECHANICAL PROPERTIES .020-0.500-1.0010 0. 14 14 14 -H16 -H26 and J 3 4 J 69 .0 min Other “) 0.050 0. Omax Mg II foil (Spcc.0020 0.5 ~ QQ-A-z50/ Plate and Sheet 1 -0 .0J9 0. M2L-A-148) shall COMPOSITION Zn 0.162 ‘ 11 11 11 91 12 i 2 3 4 2 10 1 2 _L- -f-114 and -H24 .249 0. Ml-l 0.05}-0.017 -0.1:]2 .Aluminum or lead.020-0.20 Si & Fe l.psi m ax Z2 40 75 110 140 / 11 11 11 11 11 14 14 14 14 14 14 16 16 16 16 i6 16 16 19 -1’J 19 19 1 I ! 3.019 0.500-2.051-0.250-3.5 3.050 0.020-0. 113 0.032-0.114-0.031 0.10.com WIDBK-694A[MR] . .com MI1-H06K=694A[MR] 15 December 1966 MECHANICAL PROPERTIES .000 2. or Cold Finished -o -H12 .o Si 0.minipum Tensile ksi 45 43 42 52 Str Yield Str kc i 38 34 30 40 EL % 10 12 14 10 Thickness inch O.020-0.000 All up to up to up to UD”tO 0:3’?5 All All All AU All AU’ 0.6 Pb 0.H12 -o -HA2 -H14 -H16 -H18 -F -F -N requirement ~ .H14 -Hi6 .128 0.374 0. Seamless. .12545 Impact Extrusion QQ-A-430 Rod and Wire for Rivets and Cold Heading -.000 2. Rectangular. Rolled.000 O.501 to 2.001 to 3. Round.019 0.250-0.pe i min max Denignetion Specification Tepper QQ-A-Z5011 Plate and Sheet (Cont.5 max 14 16 19 T 22 .500-2.374 0.051-0. 125 to 3.Downloaded from http://www. Rodj and Wire. and Other Shapes MIL-A.minimum Tensile Str ksi 22 22 22 22 13 12 11.5 max :: 19 22 .200. i I Area 5q.H28 Thickness inch 0.374 0.T8 70 .200. Drawn.250 .001-3. .7 Mg Zn 0. EL % 1 2 3 4 9 14 20 -I-3112 -F Q+ A.499 0.6 Al Bal‘ ante Other(l) 0.250-6.percent Sn Ni Bi 0.NO requirement 11 15. -.No requirement WW-T-700/l Tube. in.225/3 Bar.374 and eve. Yield Str ksi iullen Bursting .031 0.T3 PROPERTIES Area Sq.15 each total MECHANICAL Designation Specification Temper QQ-A.05 0.trangth . Rod. 125 to 1. ) -H18 and . in.5 (Cent).everyspec. . and Wire .032-0.050 0.225/1 Bar. 500 1.006-0.40 Fe 0. Square.30 COMPOSITION Mn Cr - . I I 1- -o -H14 CHEMICAL Specification QQ-A-225/3 Cu 5.06. 15.H18 -F .000 2. .2 Fe 1.05 0. Lengthe up to 3x the width -T6(II117) 6 65 ( L) 63 ( LT) 60 ( ST) 53( L) 53(L3 53( ST) 19 5 2 -T6( IV17) 6 65 (L) 63 (LT) 60 (ST) 53( L) 53(LT) 53( ST) 9 3 2 71 ..everyspec.25 Mn 0.: 68 68 60 60 60 35 max :.: . Heat Treated .. Rod.. 0.750 & over up to 8.401.POYO( 3) -T651 0.8 COMPOSITION Z. 60 58 53 53 53 32 32 55 55 (19)-(4) 30( P) 55( P) 56( P) 55(L) 55( LT) -T62 QQ-A-225/ 4 Bar.com MlL4iDBK=694AlMRJ 15 December 1966 .000 }. Shapes.7 ~6 7.749 0. -T4511 .200. in.De rcent Ti 0.000(3) ( 5) 4 max 4 max 4 max 6 65 (4) 55(P) 65( P) 64( NP) I I ~n~t~e!’ . Extruded Thickness inch All All PROPERTIES .501.T6 . -T6( 11) (7) 6 upt03X6 the width 0( ST) 65( L) 6 3( LT) 6O(ST) I 55( ST) 55( L) 55( LT) 55( ST) I I 6 3 10 4! 2 .minimum Str Yield Str ka i 18 max 35 EL 70 Temper -o -T4.95.499 0. -T451O.T42 -Tb. Rod.T4 . -T6511 Area Sq. and Tube. 7 ‘ 6 12(3)1 16 ‘ 16 8 8 \:) 100 I 13 10 125 1125 ‘ ~ : Up thru 25 ‘ Over 25 thru 32 AU Up thru 25 Over 25 thru 32 . Lengths up to 3x the width Over 16 to 36.750 & over 0.0 Mg 0..000( 3) :. 0.749 0. -T651O.T4 -T451 .T6 i - 5 5 55 65 0. Rol led. k!) QQ-A-367 Die Forgings. or Cold Finished -o .Downloaded from http://www. . Drawn.10 Al Balante Other(1) 0.15 c? 0.T6 -T6( I) (7) 1 10 ! . 5oo8.750 & over 0.750 & over up to 0. Wi re and-Special Shapes.00.0 29 12 .2 . All All Tensile ks i 30 max 50 BHN 12 12 Ml up to 0.15 each total MECS-LANICAL Designation Specification QQ-A. CHEMICAL Specification AU-see below Cu 3.poYo( 3) ~ A. ~ Up to 16.5008.200/2 Bar.0 Si 0. Lengths upto3x the width Over 16 to 36. 001-1.minimum Temper Thickneea inch 0.500-1..minimum ( Cent).10 max 0.250-0.everyspec.2 0. Heat T~eated (Cont.000 2.0 max 0.percent Ti Cr Othera “ ) QQ-A-i?5013 Core 2014 Cladding 3.15 total 6003 max Al 1.25 max 0.Downloaded from http://www.020-0.499 0.499 0. Ooofl 1.040-0.000 1 0.8 max 0!15 max 0. Ood :“ :::-:”.40: 1. in.501-2. 49911) 0.001-3. 500(11) 1. .+ 62(L) 53(L) 3 59(LT) 52(LT) 1 56( ST) 52( ST) BHN CK3-A-367 Die l?orginga.020-0. 59 59 57 57 59 59 59 57 15 15 15 15 7 8 6 4 3 2 8 6 4 3 2 . 0.=4(9) w 55 57 I 55 57 57 58 57 58 57 58 63 64 67 67 65 63 64 67 67 65 63 . ) -T6(VI)(7) 6 62(L) 59(LT) 56( ST) 53(L) 52(LT) 52[STJ 7 2.35 max 0.T6 ~ .8 0.05 each.0001 1.6 max 0.0007 1! 001-1.001-3.No requirements 72 . 500-1.5 1 . 0. 20-0.T6 - 10 6 100 125 CHEMICAL Specification Cu Si Fe Mg COMPOSITION Zn Mrl .35- 1. 10 0.2 0. Over 36 to 144 Lengths up to 3x the width Over 36 to 144 Lengths up to 3x the width Over 144 .0 o.039 0.500-1.T65 1 -F .020-0. 500-i.T6( VIIP 6 60(L) 58(LT) 55( ST) 30 max 55 65 52(L) 50(LT) 50( ST) 32 55 5 2 1 MIL-A-12545 lrnpact Extrusiom -F -o .020-0. Ood 0.000 All -o .040-0.249 0.249 0.[19) .039 0. 500(11) 1.499 0.250-0..5” 1.05 each.:)11) -.5 0.039 0.250-0.000 1 2.0 I I a- Remainder MECHANICAL Designation Specification QQ-A-250/ Plate and 3 Sheet PROPERTIES Area Sq.T3(8) .81. 501-2.20 ma x 0.(4).com Mll wBK-694A[MR] 15 bdc~tifbar 1966 .49911) o.10 max 0. 0.95.T4 .040-0.: 34 34 55 .15 total 0. Thickness inch (5) 6 Teneil c Str Yield Str EL kei ks i (4)— . I - EL % J6 10 35 36 32 34 36 36 14 15 14 15 15 15 -T451 -T42(10) . 0. MECHANICAL Specification Des ignati on Temper -T6( v)~l PROPERTIES Area Sqo in.500-1. 40 .5 Si 0.250-0.000 0. Tensile Str ks i 35 max BHN up to 8.T4 diameter 0.T4 -T451 .5 Mg 0. BHN 100 1d6’ CHEMICAL Specification QQ-A-250/ 16 Li 0. 75 64 :.Tr’eated QQ-A-430 Rod and Wire for Rivets and Coid Heading -o . 450.Downloaded from http://www.25 Cr 0. in.03 MECHANICAL Designation Specification Temper QQ-A-250/ 16 Plate and Sheet -o .001-2.367 Forgings.500 0:063-0.9 Fe 1. 0.No requirements .001-3. I . .501 and over Up thru 0..minimum Tenailc ksi 55(P)(4) Str Yield Str ksi(j9) 40(P14’ EL q.0 COMPOSITION Si 0. in. - .3 Other(’) 0.500-1.250-0.501-2.20 Zn 0.-F .000( ’2) 4 max($) ~ 55 55 55(P)(4) -o -H13 .0 PROPERTIES MECHANICAL Designation Specification Temper QQ-A-225/ 5 Bar.040-2.499 0. 5-4.615 - 35 max 30 55 32(19) .05.7 Cd 0.:i 75. 0.6 33 CHEMICAL Specification QQ-A-367 COMPOSITION Mg 0.8 Cu 4.percent Zn 0.everyspec.91.000 1.040-0. 0. Rod.40 Si 0.minimum Tensile kei ~ ~. 20-0. 65 63 I Thicknena inch 0.9 .25 MECHANICAL Designation Specification QQ-A.000 All Area Sq.15 total Al Balance { Fe 1.T6 PROPERTIES . 15 total Al Balance Cu 3..8 Mn 0. Heat Treated Temper -T61 Thickness inch 4 max(’) PROPERTIES Area Sq.000 1.367 Forgings.54.0 COMPOSITION Fe 0.15 total Al Balance ME 0.05 each.5 8 6 4 3 2 35 max .10 Other(’) 0.500 1.249 0.percent Z.35 Mn 0.100.05 each.8 .25 T] 0.000 2.000 .300.0 Mn 0.05 each o.72.000 0. in.001-1.10 Ni 1.percent Cr 0. Heat .minimum Yield Str kai EL % lb 32 32 30(19) I ‘ 12 12 16(6) 100 Shear Str kai Area Sq.T4 1 Tnickness inch UP to 8.— 73 .499 0! 500-1. 40-1. and Wire (Rolled or Drawn) QQ-A. Str Yield Str ksi 1 EL % \ 10 4 3 2 1. 70 70 57 59 59 59 51 - -T651 .10 Othcr( ‘ ) 0.com MIL=HDBK=694A[MR] 15 December 1966 CHEM3CAL Specification All .000~’2) Up to 8.see below Ctl 3. 063-0.063-0.000 0.249 0.000 0.501-2.250-0.001-3.249 0.500-1.width 30 & under 30 & under 30 & under over 30 thru over 30 thru over 30 thru over 48 thru over 48 thru over 48 thru over 60 rover 60 over 60 All All AH H All All All All All AU All .249 0.249 0. All All All All All All All All All All AU All .020-0.000 1.001-1.everyspec.000 1.T86(14) 48 48 48 60 60 60 -T851 -F .8-4.500-1.50 Si 0.250-0. 30-0.250-0.001-3.500 0.021-0.2-1.250-0.249 0.499 0.499 0.001-1.9 COMPOSITION Fe 0.062 0.499 0..010-0.010-0.499 0.500 0.000 2.010-0.000 2.249 0.000 All PROPERTIES Area Sq.062 0.062 0.020-0.25 Cr 0. 250-0. in.ozo-0. 250-0.499 0. 15 total Al Balan{ MECHANICAL Designation Specification Temper QQ-A .10 Other(’) 0.minimum Tene ile Str ksi 32 max 32 -X 63 64 64 62 62 64 62 1: 56 69 69 69 69 69 69 67 68 67 67 66 66 62 62 64 62 60 60 56 64 62 60 60 56 64 63 67 66 72 72 72 72 72 71 70 71 70 71 70 67 66 Yield Str ksi 14 max 42 42 42 40 40 40 40 40 40 40 52 52 52 52 52 52 50 51 50 50 49 49 38 38 30 38 38 38 38 40 40 40 40 40 50 50 58 58 66 68 6-1 66 67 66 62 67 65 2: 58 58 EL ( 16%) 12 10 12 15 12 15 12 8 7 6 4 8 9 10 8 9 10 8 9 10 8 9 10 12 15 12 8 7 6 4 12 8 7 6 4 5 5 5 5 3 4 4 3 4 4 3 4 4 4 4 5 5 -T4(13) -T3fJ14) 48 48 48 60 60 60 -T42(15) -T351 -T6(15) -T8~(14) .No requirements 74 .010-0.250-0.000 1.750 0.500 0.008-0.499 0.249 0.001-3.021-0.063-0.021-0.000 0.499 0.250-0.499” 0.Downloaded from http://www.8 Mn 0.50 .see below Cu 3.020-0.000 2.500 0.250-0.500 0.250-0.062 0.499 0.010-0.063-0.001 -1.063-0.020-0.062 0. 501-2.009 0.020 0.width 30 & under 30 k under 30 & under over 30 thru over 30 thru over 30 thru over 48 thru over 48 thru over 48 thru over 60 over 60 AU AU A31 .”500 1.500 & over 0.249 0.500-1.249 0.250-0.020-0.500-1.05 each 0.500 0:063-0.500 1.9 Mg 1.percent Zn 0.com Ml14iDBK-694A[MR] 15 December 1966 CHEMICAL Specification All .500 0.062 0.000 0.250/4 Plate and Sheet -o -T3(8) Tbickneea inch 0.249 0. 500-1.020 0.500 0.020 0.012-0.500-1.063-0.500 1.063-0.501-2. 008-0.500 & over 0.018 -O. Ext rbded -o . *awn. ) Yield Str ks i loll-lax 42 44 46 52 ( 48 DeaignatlOn Specification Ternper 2Q-A.260-0. or Rivets and old Heading -o -H13 CHEMICAL Specification QQ-A-250/5 Core 2024 Cladding 1230 c.009 0.499 Al 1 All Up thru 25 Oter 25 thru 32 Al 1 All Up thru 32 : -T81.024 0.com MI1-HDBK=694AIMR) 15 Docellhr 1986 MECHANICAL PROPERTIES .021-0.: 1.020 0.Downloaded from http://www. ! and rube. in.501 & over up thru 0..10 Others(]) 0.050-0.minimum Tensile ksi 30 30 32 32 58 59 59 62 max max max max Str Yield Str ks i 14 max 14 max 14 max 39 39 39 40 EL 76 10 12 12 12 10 12 15 15 -d’) * 75 . ngular.. nd Wire.499 1.T-700/3 ‘ube. Thickness Inch Al 1 Up to 0.500 0..200/3 Bar.: 64 64 64 64 H 35 max 32 15 max 42 42 42 42 40 40 40 40 - . Round.(18) .percent Cr 0. and tier Shapes.:’ 68 57 57 57 57 64 :: 35 max :: 62 66 for tube) 48( 46 for tube ) 38 38 38 38 56 58 58 40 8 12 10 10 8 4 -T42 up to 0.250-0.025-0.500 m 6.500 & over 1.259 0.15 total 0.T6 -TS51 1.diameter 0. 500-& ”Over 1. -T851O.:-:”.O( 18) ..010-0.063-0.500 - ‘: 40 50 58 -o -T3 32 max .750 0.05 each Al Balance 99.050-0.50 0.499 0.9 0.050-0.(18) . Seam!as -o . Rect..024 0. Drawn.9 0. Rod.009 0.008-0.05 each 0.010-0.minimum ( Cont..249 0. 3. All All All All All All All All .250-1. Al 1 All All Al 1 Up thru 25 Over 25 thru 32 Tensile St r ka i 35 rnax 57 :: 70 EL % 12 12( 10 for tube’ 12(10 for tube) 10 10 :.062 0. Rbd.063-0. 2-1.everyspec.025-0.:.249 COMPOSITION Fe 0.049 0. in.25 0.T351 -T4 .8-4. -T8511 >Q-A-225/6 hr. 1011ed. 3hapea. .T4 Q-A-430 Od and Wire.049 0.10 Zn 0.249 :“.10 Mg 1.500 & over 5 5 (# 10 10 5 5 !“:!: !i5?:?~Ti 7) Up to 6: 500( 17) 0.( 18) .8 Mn 0. *( 18) . Z( 18) .500 .r Gold ~ini8hed rW.018-0.259 0. .749 O“ 750-1. 30-0.062 0.5 FekSi Si 0.500-1.05 ME C~NICAL Designation Temper Specification QQ-A-250/5 Plate and Sheet -o Thickness inch width 0.500 & over inc] Area Sq.7 . quare.3 mln PROPERTIES Area Sq.1’4.500( 17) wall thickness All 0. 249 0.000(11 / Teneile ks i 58 58 61 62 62 60 60 56 62 66 69 61 65 67 64 66 55 56 56 59 62 62 60 60 56 62 62 60 60 56 60 62 .128 0.499 0.500(11) 1.250-0.062 0.008-0.:.063-0.063-0.499 0.000( 0.001-3.000(1’) 2.062 0.020-0.001-3.: 66 66 70 70 72 66 70 69 71 64 69 68 70 69 68 70 65 66 -T36( 14) 48 and under 48 and under 48 and under over 48 thru 60 over 48 thru 60 over 48 thru 60 over 60 over 60 AU All All All All All All All All All All All All All All All All All All 30 and under 30 and under 30 and under 30 and under over 30 thru over 30 thru over 30 thru over 30 thru over 48 thru over 48 thru over 48 thru over 48 thru over 60 over 60 over 60 All AU All .063-0. 500(11) 0. in.001-3.No requirements 76 .021-0.249 0..499 0.000(1’) ~:.062 0. 000( 1.250-0.2’50-0.] 1:501=2:000(11 2.500.500(11) 0.063-0.500(11) 0.063-0.010-0.com M11=HBBK=694A[MR] 15 December 1966 MECHANICAL Decimation SpecificationTemper QQ-A-250/5 Plate and Sheet ( Cent) -T4(13) PROPERTIES Area Sq.020 0.500( 1.063-0.010-0.020 0.1.063-0.500(11) 0.063-0.:.250-0.499 0.062 0.499 0.021-0.250-0.499 0.063-0.010-0.Downloaded from http://www.000(1’) All ) -T86( 4) 48 48 48 48 60 60 60 60 -T851 -F . 000( 2.000(1 0.250-0.~[j. ) Str Yield ksi 37 37 38 40 40 40 40 40 48 50 52 47 49 50 48 49 34 34 34 36 38 38 38 38 38 40 40 40 40 40 47 49 54 56 58 62 66 65 67 :.499 0.063-0.249 0.010-0.020-0.020-0.063-0.minimum ( Cont.001-1.001-1.everyspec.500(11) 0.249 0.500-1.000(11) 1.T351 -T6(I -T8J( ) 4) 0.499 0.499 0.500(11) 0. 64 66 :: 63 65 64 62 64 56 58 Str EL ?’0 12 15 15 12 8 7 6 4 8 9 10 8 9 10 9 10 10 12 15 15 12 8 7 6 4 J2 8 7 6 4 5 5 5 5 5 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 5 5 .062 0.500-1.009 0.T42(15) .062 0.499 0.062 0. 499 0.50 J-2.50i-z.500-1.062 0.500(11) 0.249 0.062 0.250-0. All AH All All All All All All .020-0.— I Thickness inch 0.499 0.020-0. 9-5 .percent Cr Zn 0. Heat Treated .05 Al Balance I J I I each 0.25 j 3.3 —. 40-1. 1 1- Tensile ksi 55(P)(4) Str Yield Str(’9) ksi 40(P)(4) EL % 10(6) Bf-2N 100 Forgings. .5 Si 0. for R]vets and Cold Head. 500 0. 0.15 Other(’) 0. m.everyspec.05 each 0.2 I Cr 0.501 PROPERTIES Area Sq.0 Mn 0.—— I Ti N] 1.50 COMPOSITION Si 0.10 I i Ti 0.Downloaded from http://www. 15 total Al Balance Specification QQ-A . 5-4.367 Cu Si I I Fe O 1 .20 COMPOSITION Mg 1. 2-3.0 Mn 0.minimum .8 Zn X25 .minimum Str Yield Str(’9) 33(P)(4) EL 16(6) % Tensile =- “-”--$:’- 12’-’”2 ‘$+’ “i CHEMICAL Specification QQ-A-430 Cu 2.: Em I Specification QQ-A.com 15 Docomhir 196ti CHEMICAL Specification QQ-A.50-1.05 0.367 Temper -Tbl ‘ inch 4(5) Sq.. Mn .361 Cu 3.0j0. 15 total MECHANICAL Designation Thickness PROPERTIES Area . COMPOSITION Mg 0.05 .ng -o -H15 -T4 Diameter 0.9 CHEMICAL Fe 1.percent Zn 0.20-0. Other~’) 0. .20 Mg 0.percent Cr 0.25 Others(’) 0.10 MECHANICAL Deslgnaticm Temper Speclflcation QQ-A-430 Rod and Wire. in.15 each total Al Balance 1!0 0..615 .mlnlmum Tensile ks] 25 max 28 38 18 18 426 Str Yield Str kn > EL % Shear Str kai and over Up thru O. 7-2. 2-1.8 Fe .10 — MECHAMCAL Designation Thickness Area PROPERTIES . - .2:1.063-0. T6 Tbicknecs inch 4(5) 4(5) 4(5..T6 .25 0. 61(L) 58(LT) 56( ST) 65( L) . BHN 115 —— 16 and under 58(L) 55(LT) 52(ST) 57(L) 55(LT) 52(ST) 56( L) 53(LT) 51( ST) Over 16 to 36 Over 36 to 144 78 . 9-1. 20) CHEMICAL Specification QQ-A.9-2. in.8 Zn - .Downloaded from http://www. Heat Treated . -T’87 ~(5.02-0.2 Other(l) 0.percent Cr Ti 0.25 Fe 0.05 each 0. Heat Treated -T61 -T61 -T61 (Clase -T61 (Class -T61 (Class I) 4(5.L. 20) PROPERTIES Area Sq. 20) 13) 4(5. 05-0.Vanadium I Gu 5.T6 .361 a . 19) EL % ~(6) J6) 6 4 2 6 4 2 6 4 2 -T852 4(5. .:.20-0. 3-1.04-0.9-1.367 Forgings. 20) . 20) III) Thicknes] inch 4(5} 4(5} ‘ 4(5.367 c.19) ksi 48(P) 45(NP) 48(L) 45(LT) 42( ST) 47( L) 45(LT) 42(ST) 46(L) 40(LT) 39( ST) — EL % — 6(6) 4(6) 7 5 4 7 5 4 7 4 4 .10 Ni 0.40 O.10 Ni Oier(l ‘a Al Balance 0.3 COMPOSITION Mg 1. 1. - . ‘9) ksi 58(P) 55(NP) Yield Str(4. 10-0.02 Zn 0.minimum (4. . 20 Fe 0.8 O.15 tobl Al Balance I Mn - I MECHANICAL Designation Temper Specification QQ-A-367 Forgings.everyspec.7 Si 0.8-6.minimum rensile Str(4.com Mll+iDBK=694A[MR] 15 December 1966 — CHEMICAL Specification QQ-A.10 . 20) PROPERTIES Area Sq.30 Mn COMPOSITION Mg 0.percent Cr Ti 0.05 each 0.15 total and Zirconium MECHANICAL Designation Temper Specification QQ-A . 19) Tensile Str ks i 58( P) 58( NP) 58( L) 55(LT) 53( ST) yield kai 38(P) 38(NP) 40( L) 37( LT) 35( ST) 43(L) 40( LT) 38( ST) 47(L) 44( LT) 40( ST) s{:. in.15 Si 0. 020-0.6 c.031 0.017-0.006-0.5 MECHANICAL Designation Specification Thickne8s inch PROPERTIES Area Sq.050 0. 113 0.everyspec.percent tier(’) 0.500-2.013-0.374 All e izee - 14 . 0.250-0.Downloaded from http://www.032-0.000 0.008-0.051-0.20 Zn 0.000 0.020-0.see below Mn COMPOSITION .05 0.006-0.032-0.050 0.013-0. No requirements 19 max -H12 or -H22 : - -H14 or -H24 -H16 or -H26 -H18 or -H28 - -HI 12 - -F QQ-A-20011 Bar.001-3.051-0.250-0.019 0.114-0.050 0.006-0. 162 0. -o OUO and Tube truded Shapes.10 1. Ex- -H.113 0.020-0.019 0.249 0. All - 14 14 14 14 14 14 17 17 17 17 17 17 17 17 20 20 20 20 20 20 20 20 20 24 24 24 24 27 27 27 27 17 15 1.162-0.000 O.050 0.009-0.114-0.051-0.15 each total Al Balance Fe 0.374 up to 0.162-0.128 0. .051-0. .051-0.499 0.No requirements - QQ-A-22512 -o -H12 -H14 -H16 -H18 -HI 12 15 max 14 16 19 22 11 25 - .019 0.7 Si 0.031 0.020-0.032-0. 3 4 8 12 18 25 Temper QQ-A-250t 2 Plate and Sheet -o 0.499 0.012 0. in.032-0.250-3.031 0.031 0. lz -F All All .minimum Tensile ksi Str Yield Str ksi EL % (16) 14 18 20 23 25 23 3 4 : 7 8 9 10 1 2 3 4 : 7 8 10 1 2 3 4 .161 0.000 2.250-0.249 0.com MlLJmBK=694A[MRj 15 December 1966 CHEMICAL Specification All .019” 0.374 up to 0.500-2. 250-6.031 0.012 0.161 0.diameter All sizes up to 0.050 0.249 0.500-1.4$’9 0.. Rod.374 up to 0.000 0.007 0.032-0.0-1. 50. ) Yieid Str ka i Temper -o -H12 -H14 -H16 -H18 Thickness inch .113 0.249 0. Square. 15 18 20 la 4 5 . and Other Shaper. 11 12 3 4 6 7 10 -. Str Yield Str kni (19) EL % 5(6) BHN 115 42(P)(4) Heat Treated CHEMfCAL Specification AU.T’b Thickness inch 4(5) PROPERTIES Area Sq.—— YIt.114-0.250-1.0 - 0.020-0.10 M.15-0. Round. .007 0.minimum (Cont.8-1.percent 4 Zn 0.3 0..114-0.050 0.wall thickness All Al 1 Ail All EL % I 19rnflx 17 20 24 All I 27” 1- r Specification QQ-A-367 Cu 0.com MI1-HDBK=694A[MRJ 15 December 1966 —MECHANICAL PROPERTIES Designation Specification WW-T-700/2 Tube.007 0.10 Z.Downloaded from http://www.05 each O.113 0.032-0.000 0.25 Cr Ti - Ni 0.percent Cu 0.250-3.000 0.3 Si CHEMICAL Fe Mn COMPOSITION Mg . in.249 0.35 Salance I MECHANICAL PROPERTIES Arc& Sq.10 Others 0.15t0tal Al Balance 11.367 Forgings. 0.n~inilttum .45 0.031 0. in.sec below Mg 2.020-0.017-0.051-0.032-0.499 0. — EL ‘% I Designation Srrecification ‘3’emDer QQ-A-250/8 Plate and Sheet Thickneae inch 0.162 -H34 -H24 or -H36 -H26 or .0 -13. 500-2.{0 .05 each o.006-0.006-0. Rec. 50-1. tangular.everyspec. 3 4 -H32 -H22 or 0.019 0. . Drawn.050 0.009-0..000 I -o (lb) .020-0.008-0.019 0.031 0. Seamleas I .2-2.. 0. 15 total Ai Si 0.3 Other(’) 0. 250-0.051-0.019 0.1.8 Fe & COMPOSITION Cr .5 1.008-0.lrl Str hill -—.minimum Tensile koj 52( Pf14) MECHANICAL Designation Temper Specification QQ-A.249 0. Square. For Rivets and Cold Heading * %-o .006-0.15 each total Al Balance MECHANICAL Designation Temper Specification QQ-A-430 Rod and Wire.000 .008-0. in.374 Area Sq.minimum ( Cont. .diameter 0. - .- Tensile ksi 39 39 39 28 25 25 -F QQ-A-22517 Bar.128 0. ) Str Yield Str ksi EL Yo -3 4 7 12 16 (2) 25 ----- Thickness inch 0.007 0. and Other Shapes.000 0. 500 81 .diameter All sizes up up up to 0.05 0. Round. Rod. and Wire. Drawn.H32 Thickness inch PROPERTIES Area Sq.Downloaded from http://www.032-0.499 0.20 COMPOSITION c.percent Fe 0.501 and over Up thru O.everyspec.10 Ti Others(’) 0. Rectanguiar. 5-5. 374 to 0. For Rivets and Cold Heading -o -H32 CHEMICAL Specification QQ-A-430 Mg 4.diameter 0.minimum Tensile kei 46 max 44 Str Yield Str kei EL % . 500 - 35 max 31 34 37 39 .374 to o. Drawn.6 Mn 0. in.250-6. 0. or Cold Fimshed -0 -H32 -H34 -1-136 -H38 WW-T-700/4 Tube.com MIL=HDBK=694A[MR] 15 December 1966 MECHANICAL Des ignation Specification Ternper QQ-A-25018 Plate and Sheet (Cent ) -H38 or -1-128 -HI 12 PROPERTIES .374 wall thickness All All “All All All All . Seamless -o -H32 -H34 -H36 -H38 -F .031 0.000 2.No requirements 32 max 31 34 37 39 up to 0.30 .05-0.05-0.10 S1 0.500-2.No requir ements 32 max 31 - -— QQ-A-430 Rod and Wire. 501 and over Up thru O.40 Zn 0.001-3. Rolled.20 Cr 0.250-0. in.10 Mn 0.15 total Al Balance 0.250-2. in.500 1.050 0.40 Fe 0.10 0.9 .05-0.5 . 42(NP) 40(NP) 42(L) 39(LT) .05-0.25 *i 0.249 0.020-0.051-0. MECHANICAL Deaigna SDecificatiOn QQ-A-250/7 Plate and Sheet on PROPERTIES Area Sq.050 0.250-2.162 0.0 4.249 0.000 0.25 - - Balance MECHANICAL Designation Specification Temper QQ-A-250/6 Plate and Sheet -o .051-0.188-0.020-0.com MI1-HD6K 694A[MR] 15 Decembe 1966 .25 Others(l) 0.40 0.000 1.05 ~aeh 0.”249 0.40 0. -. Extruded QQ-A.051-1.001-2.020-0. -Hill Up thru 5.000 Sq.25 0. and Tube.367 Forgings.126-0.000 0.05 each 0.7 0.minimum Tensile Str kai 40 39 45 45 50 50 44 Thickness inch 0. 188-2.H36 -H112 82 .249 0.40 Cu 0.000 0..50 0.125 0.15 Ni Other(’) 0.9 - 0.see below 0.H32 -H34 -H113 Q~A-200/ 4 -o PROPERTIES Area .001-3.500-1.15 total 0. 499 0. - Yield Str ke i 18 17 34 34 39 39 31 EL % (16) 16 16 8 10 6 8 12 Up tbru 32 Up tttru 32 39 40 16 24 14 12 Bar.051-0.40 0.—. Rod.126-0.15 total M Balance All .12K:.051-0.0-4.000 2.000 Yield Str ksi 14 14 14 28 28 28 34 34 34 38 38 18 16 14 14 EL % (16) 15 18 14 6 8 12 f? 10 4 6 8 10 14 14 -H32 40 40 40 44 44 44 47 47 36 35 35 34 -H34 .1.0 COMPOSITION Mg 4.501-3.5-4.Downloaded from http://www. 1 minimum Tensile Str ksi 35 35 35 I I Temper -o Thickness inch 0.percent Cr Zn 0. 40(L) 39(LT) 22(NP) la(m) 22( L) 20(LT) 18(L) 16(LT) jtl Treated .— -“ CHEMICAL Specification QQ-A-250/ 6 md QQ-A-200/4 DQ-A-367 Si 0.30.10 0.percent Cr Ti 0.249 0.050 0.0-4.125 0.~P/ 40(P) .000 Upthru 5. 30-1.25 1.15 Zn 0.050 0.051-0.000 -Hill Heat -H112 -Hill -H112 -23111 -H112 w (4-19) 42(P) (4-19) .000 0.05 each o.everyspec.250-2. Shape*.051-0. 14(6) lb(b) 16 14 16 14 CHEMICAL Specification Si Fe Gu Mn COMPOSITION Mg 3.020-0. 4-3.20 .051-0. ) Yield Str kai 14 21 EL % 14 12 ‘Thickness inch Up thru 5.010-0.— PROPERTIES Area Sq. S~apes.051-0.000 I ..050 0. + 12 T 26 11 15 14 I QQ-A-ZOOJ6 Bar.10 Zn 0. 15 total MECHANICAL Desiimation SpecificatiOnQQ-A-250/:o Plate and Sheet Thickness Tempt r -o . Rod.com MIL-HIIBK-694A[MR) 15 December 1966 .050 0. Rods. . and Tube Extruded WW-T-700/5 Tube.249 0.249 0.050 0. inch —.05 each 0.H34 0. Round.0 Cr 0.Downloaded from http://www. Balance 0. 7 10 8 -H112 31 Up thru 32 Up thru 32 Up thru 32 32 12 31 41 42 41 —.05-0. Shapes.nee below Mg 2.113 0.000 Up thru 5.020-0.020-0.everyspec.020-0.250-2. and Tube. 500-2.000 Up thru 5.010-0.250-0.031 0.051-0.050 0.000 Up thru 5. Squqre.051-0.0 0. Drawn.051-0.minimum Tensile ksi 31 31 31 31 36 36 36 39 39 39 39 Str Yield Str ksi EL 74 — . and Other Shapes.450 0.010-0.No requirements 40 40 44 44 47 47 mm At CHEMICAL Specification All . Seamless -o -Hill PROPERTIES .000 12 12 12 12 26 26 26 29 29 29 29 18 11 14 16 1s -H32 I ~ 11 { . Rec tangular.percent Cu 0.001-3.50 (l)”- —— *.032-0. 162-0.000 2. in.20 COMPOSITION Mn Ti 0.050 0.minimum (Cont.— —-— I (16) iz I 0.250-1.050 0.450 0.499 0. —. Ex truded -o -Hill -H112 12 12 19 — . 000 0..051-0.000 -wall thicknesss]zes Area Sq.000 0.161 0.450 . Up thru 32 Up thru 32 Tensile ksi 35 max 3b Str -0 All 35 - 14 28 28 34 34 38 38 14 6 8 5 6 4 5 -H32 -H34 -H36 -F 0.114-3. in. 50-1.25 Fe & S1 Other 0.— MECHANICAL Designation Specification Temper QQ-A-200/5 Bar.000 Up thru 5. T6 .000 5.35 1 Cu 0.45 to 65 percent of magneaium content.000 7.percent Specification All .249 Up thru Up thr.15 total Al Balance 1 t MECHANICAL PROPERTIES Designation Temper Specification MJL-A-12545 1 m~act Ex-F .250-1.everyspec. Si 0.000 Up thru Up thru 32 32 19 18 16 14 14 12 9 12 12 12 12 12 12 6 8 6 8 14 )2 12 17 16 15 39 19 18 33 33 31 29 . 10 a .40 0.15-0.125 0.minimum MECHANICAL Designation Thickness inch I Str I 1191 Tensile ksi I Yield Str kni EL 70 w +2”5 .501-3.2S)-1 .249 0.126-0.001-5.501-3.2 COMPOSITION Mn 0. PROPERTIES Area Sq.aee below Mg 4.001-8. 250 J.Downloaded from http://www.15 total Al Balance QO-A-430 - 1.20 Mn Ti Gu Zn Fe& Si others(’) Al 0.500 1.8 Zn 1. 50-1.250/9 Plate and Sheet Temper Thickness inch Araa Sq.05-0. 1-1.30 Ni 0.4 0.000 3.2 . Str Yield Str ksi 32 EL % 3 BH N 70 50 42 7 95 b CHEMICAL Specification COMPOSITION Mg percent Zn Si -a- Fe 0.000 0.com MI1-HINIK-694A[MR) 15 December 1966 CHEMICAL COMPOSITION . 05 each 0.051-0.35 0. in.percent Ti 0.20 Cr 0.5 Fe 1.249 0. Up thru 5.diameter 0.10 Mn Cr Ti - Othere( 1) 0.000 0.126-0.125 0.501-3.10 0.051-0.20 Others(’) 0.0 .0 0.05 each .9 -o -Hill -H112 31 33 31 Up thru 32 CHEMICAL Mg 0.500 1.minimum Tensile ksi 35 Thickness inch Area Sq.625-1. 6-1. in.20 0.051-0.000 5. -o 0.051-0.25 0.001-7.500 1. 500 0.000 5. .051-1.501 and over Up thru O.063-0.615 I .05 each 0.5 Cr 0.7-5.624 0.000 0. in. - I 19 max 30 I I -120 i I 14 184 [ .minimum Tensile Str ksi 42 41 40 39 38 51 42 41 46 46 44 41 46 48 53 53 Yield Str kei EL % (16) 16 Spticif ication QQ-A.15 total Balance MECHANICAL PROPERTIES Designation . 40-0. H24 -H112 -H321 -H323 -H343 36 36 41 41 12 19 12 E Specification MIL-A-12545 i Cu 0. 6-1. 40-0.000 1. Shapes. and Other . 500 22 ma.000 2.000 1. .8 Gr 0.499 0. 050 1.000 0.250-1.15-0.250-0. Yield Stl ka i EL % (16) 14 16 18’ 18 16 14 :: 16 16 16 16 35 35 35 35 35 35 35 35 35 35 35 35 35 Deaignaticm SDeciflcation lTemper QQ-A-250/11 Plate and Sheet Thickneaa inch BHN Shear ksi Str -o 0. 111. 500 000 to a.021-0.500-1. -o Square.15 Mg 0.15-0.15 2n 0.260 1. Wire and Special 6hapeo. 500 22 --L Drawn or Cold Finished -T451 -T6 -T651 WW-T-70016 Tube. Round.001-3.500-1.010-0. .minimu Tensile ksi Str (19) .250-1.049 to 0.22518 Bar.000 0.001-3. 001-4. 30 30 30 42 42 42 -t- 14max 16 16 16 35 35 35 to 0.Downloaded from http://www. 250-6.001-4.com MIL-HDBK-694A[MR] 15 December 1966 CHEMICAL Specification All .001-2.049 to 0. 11> !5 !5 I 16 Io ..499 0. Seam Iese .000 0. Rectangular.259 to O.020 0. 000 .000 1. .2 Si 0.40 0. 000 to 8.25 Others (1) *1 Balance 0.8-1. -T451O.Iu In 18 10 — (12) Up to 8.000 3.025 }. 26 16 -o -T4.050 1.001-5.025 1.001-2.259 to 0. -T651O. 000 4.021-0. ‘Ube’ and ‘Xtruded - No :quirementn 22 ma.001-3.001-3. Rod.05 each 0.T4 -T6 QQ-A.everyspec.T4 16 18 16 18 16 8 10 9 8 6 6 6 10 9 : 6 6 -T451 I - -T6 -T651 -F 00-A-200/8 Bar.001-3. aee below COMPOSITION Fe 0.000 D.000 1.x max 12 max 12 max 12 max . 15 total MECHANICAL PROPERTIES Area Sq.021-0.!%apen.000 - 30 30 4L 4L 10 (18) 15 14 16 18 8 10 12 vallthickness U1 sizes ).000 3.010-0.percent Gu Ti 0. Drawn.499 0.It.020 0.000 1. .35 Mn 0.000 4.260 to 0. 001-5. Rod.000 0. -T6511 38 {< . -O -T4 Jp to ). Rolled.020 0.000 up to & ).249 0. 000 8. in.000 2.i\ (:) .010-0. -T451 1 -T6.500-1.129-0. 22 22 22 22 22 30 30 30 30 30 30 42 42 42 42 42 42 40 42 42 42 42 42 40 max max max ma.7 .128 0.500 I - . Downloaded from http://www.everyspec.com MIL-HDBK-694A[MR] 15 December 1966 - id XUNICAL Thickness Inch 4(5) 4(5) PR( PERTIES Area ~q. in. - minimum I Cont. ) EL % Shear Str ksi Designation 1Temper Specification I QQ-A-367 I -1-b rensile Str ksi (4) 38(P) 38(NP) Yield Str ka i (4) 35(P) 35(NP] 35(L) 35(LT) 33(ST) 34(L) 34(LT) 32( ST) 9HN IO(6I 5(6) 10 .8 5 : 4 80 80 Forgings, Heat Treated I . Tb I -T’6 up to 4 up to 144 Over 4 10 M Up to 256 --——— QQ-A-430 Rod and W Ire; For Rivets and Cold Heading -0 -H)J - T6 - d]ameter 0. 501 and Up lhru 0.063-0.615 ovc 38(L) 38(LT) 37(ST) 37(L)” 37(LT) 35( ST) 22 max 22 42 35 10 25 O. 500 86 Downloaded from http://www.everyspec.com MIL=HDBK=694A[MR] 15 December 1966 .. CHEMICAL COMPOSITION - percent Specification QQ-A-ZOO19 Mg 0.45-0.9 Si 0.200.6 Fe 0.35 Cu 0.10 Ti 0.10 Mn 0.10 Zn 0.10 Cr 0.10 others(’) 0.05 each Al Balance 0.15 total MECHANICAL ROPERTIES Area - minimum Tens ile ks i 19 max 19 18 17 16 22 21 30 30 Str Yield Str ksi I i Designation Specification ITempe r -o OGA-2oO19 Bar, Rod. Shapes, - T* and Tube, Extruded - T42 - T5 - T6 Thickness inch All Up thru O. 500 0.501-1.000 Up thru O. 500 0.501-1.000 Up thru O. 500 0,501-1,000 UPthrtr O. 124 0.125-1.000 EL % 18 14 14 12 12 8 8 a 10 Sq. in. I 10 9 9 8 16 15 25 26 I CHEM3CAL specification Ml - see below Mg 0.8-1,4 Si 0. 9-1.8 Cu 0.7-1.2 COMPOSITION Mn 0. 6-1,1 - percent Cr 0.40 Fe al Ti 0.20 Others 0.05 0.15 each Al Balance 0,50 0,25 total MECHANICAL PROPERTIES De m ignation SpecificattOn QQ-A-200/10 Bar, Rod, Shapes, and Tube Extruded Temper -o -=4 .T4~*o .T4~J] -T42 -T6, -T651O, -T6511 -T62 QQ-A-367 - - mimmum Tensile Str ks ] 29 max Y]eld Str ksl 18 max 25 24 45 42 45(P)(4) EL % 16 14 14 8 8 ]2(6) 100 BHN , Th)cknearn mch Area Sq. in. ‘ 40 40 - 50 50 T6 4(5) 50(P)(4) Forgings, Heat Treated CHEMl CAL COMPOSI T1ON - percent Specification All - see below Cu 0.35 Si 0,6-1.2 Fe Mn 0.20 Mg 0.45-0.8 Zn 0.25 Cr 0.15-0.35 Ti 0.15 Others 0.05 0.15 each total Al Balance 1.0 MECHANICAL Denigration Specification Thicknes~ inch (5) 4 4 PROPERTIES Area Sq. in. - mirnmum Tensile ka> (4) 44(P) 44(NP) L4 Str Yield Str ka I (4) 37(P) 37(NP) 37 EL % (:J Temper BHN QQ-A-367 Forgingo, Heat Treated -T6 - T6 G 90 6 10 90 90 MIL-A.12545 Impact Extrtmionc - T6 87 Downloaded from http://www.everyspec.com M11=HDBK9694A[MR] 15 December 1966 CHEMICAL Specification All - see below Zn 5. 1-6.1 Mg 2. 1-2.9 Gu 1.2-2.0 COMPOSITION Cr 0,.18-0.40 - percent Mn 0.30 Fe 0,7 Si 0,50 Ti 0,20 Othero(’) 0.05 each 0, 15 total Al Balance MECHANICAL. Designation specification Temper QQ-A-250112 Plate and 5heet -o -T6 Thickness inch 0.015-0.499 0.500-2.000 0.015-0.039 0.040-0.499 0.500-1.000 1.001-2, 000 ,2.001-2.500 2.501-3, 000 3.001-3.500 3.501-4.000 0.250-0.499 0.500-1.000 1.001-2.000 2, 001-2.500 2.501-3.000 3.001-3,500 3.501-4.000 All All sizes up to 0,250 0.500 3.000 0<249 to 0,499 PROPERTIES Area Sq, in, - - minimum Tensile kai 40 max 40” max 76 77 77 77 73 70 R 77 77 77 73 70 70 67 40 max 78 81 81 81 78 Str Yield Str ka i 21 max 65 66 66 66 62 60 2; 66 66 66 62 60 57 53 - EL % (16) 10 10 7 : 4 3 3 3 2 8 6 4 3 3 3 2 BHN Shear St! koi . -T651 -F 2Q-A-200/Jl Bar, Rod, ;hapea, and hbe, Ex,rudecl -o -T6, -T651O, -T651 1 - No requir ements 24 ma% 70 73 72 71 70 10 7 7 7 7 6 to 2.999 to 4.499 Up to 20 sq, in. Over 20 to 32 &oT”tO 5.000 Up to 32 sq. in, 76 40 max 77 77 68 6 2Q-A-22519 Bar, Rod, wire, and -0 - T6 up (2) to 8.000 66 66 f~) 7 7 up to 4.000 0, 500 to 4, 000 -T651 special jhapes: Roll Cd >rawn, or Cold Finiehed >Q-A-367 Forgings, -teat rreated - T6 - T6 - T6 (class - T6 (Claes 11) - T6 (claBs 112) -T6 ( Class IV) 1) (5) 3 3 3 Up t: 16 Lengths up to 3 Y.. the width Up to 16 Lengths over 3 times the width Over 16 to 36 Lengths over 3 times the width Over 16 to 36 Lengths over 3 times the width (19,4) 75(P) 71(NP) 75(L) 75(LT) 72( ST) (19,4) 65(P) 62(NP) 64(L) 63(LT) 63(ST) 63(L) 61 (LT) 61(ST) 61(L) 60(LT) 60(ST) 60(L) 59(LT) 59( ST) ]o(6) 3(7) 135 135 : 2 9 4 2 7 ; 7 3 2 3 75(JJ 73(LT) 70(ST) 73(L) 71(LT) 68( ST) 73(L) 71(LT) 68( ST) 3 3 88 500-1.(ll) 70 67 J \ 64 66 66 \ 62 60(11) 57 53 J - -3? .250-0.367 Forging s. 501 and over Up thru O.501-3.499 0.000 0.j I . 1-6.T6 3 (Claaa v) -T6 (Class VI) 3 Over 36 to 144 Lengths up to 3 times the width Over 36 to 144 Lengths up to 3 times the width Over 144 to 256 71(L) 69(LT) 66(ST) 2 1 4 2 1 70(L) 67(LT) 64( ST) 40 max 58(L) 56(LT) 56(ST) + QQ-A-430 Rod and Wire.everyspec.3 Mg 2.039 0.percent Fe 0. in.30 0.05 each 0.015-0. 68 70 72 73 75 77 77 1 73(11) 70 70 67 1 75 77 77 66 1 62(11) 60 57 53 ) .001-2.T6 .250-6. Yield Str ksi EL % 9 10 10 10 10 5 7 8 8 8 6 4 3 3 3 2 8 6 4 3 3 3 2 (16) QQ-A-250/ 13 Plate and Sheet -o max max max max mzx( 11 ) 20 20 20 21 58 60 62 63 64 66 max max max max .T651 . in.499 0.sig Specification tion Temper Thickness inch 0.000 0.7 Si 0. 4 2 1 4 BHN Shear ksi Str QQ-A..T6 0.501-4.1 0.014 0.000 2.minimum [ Cent) Str Tensile ksi 71(L) 69(LT) 66(ST) I Yield ksi 60(L) 58(LT) 58( ST) 59( L) 57(LT) 57(ST) Stz EL q.001-3. .000 2.com MI1=HDBK-694A[MR] 15 December 1966 Blmn MECHANICAL Designation Specification [ Temper Thickness inch PROPERTIES Area Sq.011 0.18-0.040-0.7 X-L4N2CAL PRC CR TIES minimum Tensile kai 36 36 38 39 40 Str 1- De.001-3.187 0.087 0. 15 total 0.063-0.188-0.000 Area Sq.008-0.000 1.000 3.500 3.50 Ti 0.062 0..0 0. 36 77 66 Cold .Downloaded from http://www. 500 65 5 135 -0 -H13 40 ma.008-0.000 1.10 Mn 0.05 0.499 0.20 - Zn 5.001-2.063-0.9 0.NO requirements .501-3. For Rivets and 1 I 75 -diamcter0. 2-2.000 0.062 0.500 2. 1-2..000 3.615 7 42 Heading mm CHEMICAL Specification QQ-A-250/13 Core (7075) Cladding (7072) COMPOSITION Cr 0.188-0.500-1.001-2.8 -1. 500-1.40 .10 Others(l) 0. Heat Treated ( Cent) .501-4.001-2.012-0.500 3.063-0. 10 Cu 1.15 each total Al Balance Balance Fe k Si10.500 2. in.500-1.0 0. 1-6. 2-2.minimum Tensile ksi 38 ma> 39 max 39 ma> 40 ma> 73 74 75 76 77(11) 77(11) 76 77(11) 77(11) .063-0.No requirements Str Yield Str ksi 21 ma> 21 mah 21 max 62 64 64 65 66(11) 66(1 1) 65 66(11) 66(11) - EL 70 10 10 10 10 7 8 8 8 6 4 8 6 4 -T651 - -F CHEMICAL Specification QQ-A-367 Cu 0.062 . 0.301.063 -0. 8-1. .7 Si 0.188-0.7 MECHANICAL Designation Temper Specification QQ-A-250/18 Plate and Sheet -o Thickness inch 0.) ~ic.250-0. 15 total Al Balat]ce 0.30 0.10 COMPOSITION Cr 0. Heat Treated L Temper -T61 Thickness inch 4(5) PROPERTIES Area Sq.10 . 1-2. 30-0.com MIL=HDBK=694A[MRJ 15 December 1966 CHEMICAL specification 2Q-A-250/ 18 Core (7075) Cladding (7072) Zn 5.- .d ksi 60(P) 5X(NP) s~:) ~J()) 70 1I ! BHN 140 1-10 . 040-0.039 0.minimum Ten~ile ksi 70(P) 67(NP) s:.6 Mn COMPOSITION Mg 1.187 0.499 0.percent Fe 0. 062 187 499 000 .015-0.8 MECHANICAL Designation Specification QQ-A-367 Forgings.9 0.05 O.15 0.001-2.3 Mg 2. in.20 Ni Others(’) 0. 15 each total each total Al Balance Balance Fe & SYO.000 .Downloaded from http://www. 500-1.40 bin 0.000 1.50 Ti 0. 05 each 0. 1. 0.499 0.0 Si 0.10 c.0.000 All PROPERTIES Area Sq.T6 0.0 .015-0. 0.18-0.percent Zn 7.001-2.everyspec.0-8.50 U-1. 1.40 Fe 0.0 Cr Ti 0.188-0.20 Others(’) 0.05 0.1 0.000 0.2-2. 000 4. 001-5. in. Heat Treated -T6 .8 COMPOSITION Cr 0. 000 5.No requirements capabilities properties) :! 68 63 68 63 67 62 66 61 All Up thru 20 Up thru 20 Up Up Up Over Over Up Over Up Over Up over thru 20 thru 20 thru 20 20 thru 32 thru thru 38 38 thru thru 38 38 thru thru 50 50 thru 42 tnax 75 77 ‘?8 79 79 77 76 78 76 78 76 76 74 (22.40 Si 0.499 0.501-6. 10-0.999 3.25 .everyspec.001-5.7 c.000 (Mechanical 3.000 1. 249 0.001-4. OOJ-2. 4 .500 1.999 6. 500-1.10 Others(’) 0.000 0.05 0.000 5.000 2.000 4.501-3.249 0.499 1.500 4.001-4.250-6.Downloaded from http://www. 0. 4) 62(P) 60(NP) 62(L) 58(LT) 54(ST) 32 50 60 60 60 4.250-1.15 each total Al Balance 0. 40-0. 499 24 max 67 68 70 70 70 70 68 68 :: 68 66 64 (19.000 3. 500-2.501-6.500 4.040-0.501-5.250-0. 8-4.001-5.8 Mg 2.999 M-A-367 Forgingn.500 2.000 62 63 63 63 63 62 60 58 5a 57 56 -F .501-5.501-2.30 MECHANICAL Designation Specification Temper Thickness inch PROPERTIES Area Sq.000-4.001-4.30 Ti 0.500-5.minimum Tensile ksi properties) 72 73 73 73 73 71 :: 68 67 66 Str Yield Str ksi EL % (16) 8 8 8 7 6 6 5 5 5 4 4 - BHN QQ-A”-250117 Plate .nee below Zn 3.10-0. 001-4.com MIL-HDBK-694A[MR] 15 December 1966 CHEMICAL specification All .001-1.000 5.percent Mn Fe 0.-T6511 All Up thru O. 9-3. mechanical .500 5.T6 6(5) 6(5) UP to 6 135 135 3(6) . 500 5.T6 -T6 and -T651 (Long traveree 0. 4) 72(P) Up to 72(22) 70(NP) 71(L) 69(LT) 65(ST) 60 56 58 54 58 54 5-I 53 56 52 -T6 and -T651 6 2 6 2 5 2 4 2 4 2 10 7 7 7 7 7 7 7 : 6 6 6 4 10(6) QQ-A-250/12 Plate and Sheet -o -T6 -T6510 .000-6. 001-1.500 1. 3-7.4-3. 6-2.1 0. 500(11) 0.500 0.7 Si 0.50 Ti 0.Downloaded from http://www. .000(11) 1.18-0.4-3.8-1.No requirements - 92 .20 Other.3-7. 15 each total each total Al Balance Balance Fe & Si10.3 Mg 2.500-1.044 0. 6-2.499 0.15 each Al Balance total MECHANICAL Des ignation Specification 1 Temper QQ-A-250/ Plate and 14 Sheet PROPERTIES Area Sq.499 0.percent Fe 0.minimum Tensile ksi Str Yield Str ksl EL % (16) 10 10 7 : 4 3 .minimum Tensile ksi Str Yield Str ksi EL To Thickness inch -o .everyspec.044 0.3 3 M% 2.000 0.com M1l-tlDEIK-694AlMR] 15 December 1966 CHEMICAL Specification QQ-A-250/ 14 Zn 6.499 0.7 MECHANICAL Designation Specification Temper Thickness inch PROPERTIES Area Sq.05 0.4 COMPOSITION Cr 0.T6 0.30 Fe 0.30 0.000 1.015-0. 8 6 4 3 QQ-A-250/ 15 -o -T6 0.501-2.001-1. .50 Ti 0.000(11) 0.500(11) 1.501-2.000 1.499 0.7 Si 0. in.500 1. 40 max 40 max 83 84 84 84 80 21 max -72 73 73 73 70 (16) 10 10 7 8 6 4 3 8 4 4 3 -T651 84 84 84 80 73 73 73 70 - -F .No requirements CHEMICAL pacification >Q-A-250] 15 Core (7178) ~+l.20 Others(’) 0.1 Cu 1.4 0.250-0.045-0.10 . 501-2.18-0.000(11) All 36 ma-x 40 max 76 78 84 84 80 78 84 84 80 20 max -66 68 73 73 70 68 73 73 70 : : - -T651 -F .500-1.500-1.015-0.499 0.015-0. in.10 COMPOSITION Cr 0.cll)ng Zn 6.501-2.001-1.10 Cu 1.05 0.40 Mn 0.percent Mn 0.(’) 0. 0.250-0.015-0.15 0.05 0.000 All .500 -1.000(J1) 1.40 .045-0.499 0.500(11) 1.001-1. m]nirnum Tensile ksi Str Yield Str ksi EL ’10 Thickness inch CHEMICAL Specification MIL-A. 0.7-2.percent Ni - I Zn Ti 3 0! 10 ‘Specification AIIL-R-12Z21 Fe 0. 5-7.3 3.10 Ti 0.everyspec.35 .10 Otherso) 0.com MILHDBK=69411[MR) 15 Decemlter 1966 I P CHEMICAL Si 0.ila!lce MECHANICAL Designation Temper Specification MIL-A . in .15 total MECHANICAL Designation Temper Specification MI L.Downloaded from http://www.7 Mn - Others(’) 0.7 COMPOSITION s] 1.0 Fc 0.0-2.05 each 0. 0.05 Al Balance 1 . Tempered PROPERTIES Area Sq.0.7 . 15 total ~Al .percent Mn 0. ~ — I B.50 CO.7 c. Solid.0 c.7-4. 7-1.11267 Sheet (For Recoil Mechanism Cup Rings) -H12 PROPERTIES Area Sq.MPOSITIOh’ Mg Cr 0.et. 8-1.minimum Tensile ksi In Str Yield Str ksi 15 * EL % -1 Thickness inch >- .11267 Sn 5. each 0.R-i2221 Ri\.20.3 N1 0. in.1/+-0. . com .everyspec.I Downloaded from http://www. Company of America. 4. Temperature Service. Tietz. 1949. 95 . Book Company. The Aluminum Data Book. vol.on Fatigue Properties of Aluminum Alloy s. pp.A. Development 444 National Die Casting. 815-831. 484-489. Doehier. E. 21. 19. 1948. Effects of Design Details on the Fatigue Strength of 355T6 Sand Cast Aluminum AlioY. Materials Alloy Castings. Reynolds 1958. Metals Company. 1950. Alcoa 3. bibliography.Downloaded from http://www. Impact that contain good bibliographies. Reynolds Aluminum Heat Treating. ..everyspec. An Appraisal Construction. Company 1953. Technical Note No. 1948. 9. “Effect of Grain Direction 21. 2. Jr. 89-104.” American Society for Testing and Non- of Some Forged and Cast Aluminum 1949. Laboratories. for Alcoa Die Castings. The Rand Corporation. vol. Alcoa Aluminum 2. 15. H. vol.” Product Engineering. “Creep and Stress-Rupture Investigations T. Company. Dorn and Materials. Fort Belvoir.1940 to 1950. Aluminum Company of America. Brazing Casting 1958. MIL-HDBK-HI. Metals Metal Company. Alcoa Structural “Aluminum “Aluminum 1958. vol. Lewis. Society for Metals. Designing 1961. 1950. Alloys .H.R.” L. 11. %4-976. 1951. 20. Alloy s. 5.W. 18. 27. 1951. 23. pp. 13. 1. Alcoa Alloys. 16. 1948. American Metals Handbook. ” J. 17. Dix. The Aluminum Symposium. and Methods. McGraw-Hill Technical Note No. Metal Company. Specifications Cross-index of Chemically Equivalent ferrous Alloys). of America. pp.H. Reynolds wi~. Research Alloys and Development for Supersonic of America. references Handbook. pp 126-130. vol. Aluminum Company ” F. Company of America. American Society for Testing “The Creep Properties Materials. Proceedings. 761-840. 1944. 7. Aluminum Company of America. 1961. 14. ” E. of Cast Aluminum Alloy for Elevated Advisory Committee for Aeronautics. Aluminum Extrusions. on Some Aiuminum Alloy Sheet Metals. 8. “Aluminum and Aluminum Alloy s. 22. pp. pp. Proceedings. 394. Aluminum Aircraft and Guided Missile Alcoa Aluminum. Aluminum Company of America. 49. Reynolds 1951. Aluminum Aluminum Extrusionsj Forming. 1. of the Usefulness of Aluminum 1948.com M11=HDBK=694A[MR) 15 December 1966 Biblio~raphy Only a small are listed in this able information together with certain number of references. Van Horn. selected from the extensive literature of aluminum metallurgy. 58. Screw Machines. Designing Designing for Alcoa Forgings. 25. E. 1948. 1949. Aluminum Company of America. 24. The object is to provide the designer with citations to the latest availAfew basic papers are included which may be most useful and also readily obtained. and Identification Code (Ferrous Design Details for Aluminum. Aluminum in Automatic Handbook. Kempf and K. 49. Engineer 12. Company of America. 1959. Alcoa Aluminum Aluminum 1959. 10. Metal Progress. . 6. 1949 Aluminum 1950. National Advisory Committee for Aeronautics. Munitions Committee. in High Strength Wrought Aluminum MIOYS. . hrvey of Available Information on the Behavior of Aircraft Materials Repeaterj Load. 1951. vol. 56. Inst. 40. 22. Board Aircraft Temperatures. and Creep Properties of For~ed Aluminum 1958. 1951. pp.Xlihiinurn.. Forming Alcoa Aluminum.J. Alloys.P* Meinel. 36. AIMME. 33. 179-186. 1949. pp. ‘ 29. Product Engineering. 406. Aluminum Association. Elements. War Metallurgy Committee. pp. 46. 1951. of Metal Aircraft Properties of Aluminum Alloys at Low Temperatures. 35. National Advisory Committee for Aeronautics. High Strength Nonheat-Treated Aluminum Casting American Foundrymen’s Society. “Engineering for Aluminum-Alloy 1948. Fastening “Fatigue F~ Methods Properties for Aluminum. Aluminum A]]oys. “Finishes for Aluminum Products pp. “Wrought arr~ Specifications for Aluminum and Magnesium Casings. 2. Vanden Berg. vol. 47. Rowe. .” M. PP. 90-104. ‘‘ ~.” R. Stress Rupture and Creep Tests on Alurninum-Alioy Sheet at Elevated Technical Publication 2.F. . 75. 43.everyspec. 27. Advisory Committee for Aeronautics. “Tolerances Mechanical “Trends Progress. deg. 966. for Metals. Metal Welding Alcoa Aluminwp. Tensile. 404. 42. 033. 469. Reynolds Mechanical and Corrosion Tests of Spot-Welded Aluminum Alloys.Downloaded from http://www. 41. 2. 49. 1952. Bulletin ANC-5.. Annual Meeting. Mechanical Reynolds “Metals Company. Fatigue. VOL 70. F. 1952. 8th edition. 1954. En4neeting. Materials and Methods. —..D. Americsrr Society Engineers. of Cast Aluminum ~&q&!! . Technical Note No. Aluminum. W.com !$ MILHI)BK=694A[MR] 15December 1966 26..~%2. 1951. 31. Report No. 163-165. 33. ” W. 1950. 450-455. 37. 39. National Engineerirr~.R. Aluminum Company of America. 331-336. Aluminum Company of America. Third Revision. V. uieeririg. Technical Note No. 119-U3.L. 1953. 1958. 23. American of Mechanical Review of Information on Mechanical Technical Note No. Product Preprint No. 1. 1958. 1945. 1952. 38.B. 44. 1953. C)’Keefe. vol. ” W. 1951. Aluminum Company of America. 96 . Bonsack. Mackay and R. and Stmctures 1954. 48. Gauthier and W. Metals Div. Dowdell. 1. Properties and Selection Society of Metals. 50. 1954. National Riveting Standards Strength Alcoa Aluminum. Castings. 34. Advisory Committee for Aeronautics. Technical Note No. “Metals Properties. ” T. 32. pp. 28. Metals Alcoa Aluminum. ‘(Hot Forming Machining Machining Aluminum Alloy s. The Elastic Constants of Wrought Aluminum Alloys. N afional Advisory A11OYS at Temperatures Committee uP to 8°0 for Aeronautics. 1961. 1946. Company.30. VOI 23. ASME Handbook. vol. Reynolds Metals Company. Metals Handbook. 505-514.” Vol. 52-44. 45. Aluminum Company of America. 082. Engipeeri~g. 1951. 1%2. under for Wrought Aluminum Mill Products. M-653. pp. vol. Stewart. 538. and give proposed wording changea wMcb would alleviate the If block 7 is filled out. or clarification of or imply authorization (Foid don# thb line) (Fold along thk line) DEPARTMENT OF THE ARMY 111111 OFFICIAL PENALTY BUSINE~ FOR PRIVATE USE S3~ BUSINESS REPLY MAIL ‘FIRST CLASS PERMIT NO 12062 WASHINGTON D.com INSTRUCTIONS: submitting In a continuing effort to make our standardization docurnsnti better. rwtrictive. deviati~. taped along the loons edge (DO NOT STAPLE). acknowledgement will be mailed to you within 80 days to let you know thst your “knrnentc were received and are being considered. Comments submitted on thie form do not constitute to waive any portion of the referenced document(s) or to amend contractuni requirements. Enter in block 6 any remarks not related to a specific paragraph of the document. _tioM. or wsa incompatible. In block 5.— Downloaded from http://www. art problems. ~~ form MSY be de~cbed. ambiguous. folded ~ons the lines indicated. NOTE: Thin form may not be used to request copies of documents. nor to request waivera. war too rigid. the DoD provides thb form for uae in documents are invited to provide comrnenta and snggeationr for improvemerh AU wan of military atandardizatkm -. MA 02172 Mechanics Research Center . and mailed. be aa specific as pasible about particular problem arena such u wordhg which required interpretation. C OF THE ARMY POSTAGE WILL SE PAID BY THE DEPARTMENT u I NO POSTAGE I NECESS~RY IF MAILEO IN THE UNITEO STATES Director US Army Materials and DRXMR-SSS ATTN : Watertown. loons. specification reqrdrementi on current contmcta.everyspec. com I I I STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL (See Itswibctwns .Optlonol NUMBER (lneht& Ama .8tde. CllY.. DATE OF SUBMISSION (YYMMDD) 1 DD FORM 82 MAR 1426 PREVIOUS EO1710N IS O~SOLETE. REMARKS to.ZIPCud4 K K (Mark one) vENDOR D K 5.. NAME OF SUBMITTER &f. NAME OF SUBMITTING ORGANIZATION L TYPE OF ORGANIZATION I I I I I b.: . WORK TELEPHONE Co&) .everyspec. .S@cci. Stotc. t?ocommondedWordhg: c. Fjmt.Optlond 0. City. I I b.y. ZIP Code) . Ml) .ilpwk Side) 1. PROBLEM AREAS a ParograptINurnbor G nd Wordktg: USE R MANUFACTURER OTHEti .optl~d b. Rmsonllhtlonah for Rocomrnsndation: . DOCUMENT TITLE I t h. ADCtftE&%@tmet. MAILING AODRESS (Strwr. DOCUMENT NUMBER 2.Downloaded from http://www.
Copyright © 2025 DOKUMEN.SITE Inc.