Chapter10 Advanced Welding Symbols Learning Objective • Be able to interpret AWS welding symbols that include all of the information that could be used on them Key Terms Weld all around Field weld Weld length Intermittent weld Skip weld Pitch Chain intermittent weld Staggered intermittent weld Consumable insert Backing Spacer Convex contour Concave contour Flush contour Melt-through Overview Many additional elements can be added to the basic parts of the AWS welding symbol. The additional elements and their placement, along with the basic parts of the welding symbol, are shown in Figures 10-1 and 10-2. They are described throughout the remainder of this chapter. Weld All Around The specification to weld all around requires that the weld be made to encapsulate the entire joint. In the case of a circular joint, the weld all around symbol is not required. The weld all around symbol consists of a circle that is placed over the intersection where the end of the reference line meets the arrow. Examples of weld all around welds and welding symbols are shown in Figures 10-3 and 10-4. 149 M10_CORG3839_02_SE_C10.indd 149 26/09/15 4:49 pm Figure 10-1 AWS Standard Locations of the Elements of a Welding Symbol (AWS A2.4:2012, Figure 3 reproduced and adapted with permission from the American Welding Society (AWS), Miami, FL.) Figure 10-2 AWS Supplementary Symbols (AWS A2.4:2012, Figure 2 reproduced and adapted with permission from the American Welding Society (AWS), Miami, FL.) 150 Chapter 10 M10_CORG3839_02_SE_C10.indd 150 26/09/15 4:49 pm Field Weld Symbols Figure 10-5 Field Weld Symbol Examples 1 AWS A3.0M/A3. reproduced with permission from the American Welding Society (AWS).Weld All Around Symbols Figure 10-3 Weld All Around Symbols PLATE WELDED ON TOP OF ANOTHER PLATE CHANNEL WELDED TO A PLATE BEAM WELDED TO A PLATE Figure 10-4 Example of Weld All Around Welds Field Weld A field weld is defined by the American Welding Society (AWS) as “[a] weld made at a location other than a shop or the place of initial construction.0:2010.indd 151 151 26/09/15 4:49 pm .”1 The field weld symbol consists of a flag that is placed at the intersection where the end of the reference line meets the arrow (see Figure 10-5). Miami. FL Advanced Welding Symbols M10_CORG3839_02_SE_C10. It may replace the standard length dimension. as shown in Figure 10-6. with the exception of spot and plug welds. The welding symbol then points to the area of the joint requiring the weld. There are several different methods for providing the weld length information on a drawing. as shown in Figure 10-7. has a length component. The weld length may be the entire length of the joint or some portion thereof. When the weld is to be the entire length of the joint.Weld Length Each weld. and the weld is made the entire length of that particular joint. The welding symbol points to the joint requiring the weld. Figure 10-6 Examples of Continuous Welds 152 Chapter 10 M10_CORG3839_02_SE_C10. the length component is not required on the welding symbol. an additional welding symbol or a multi-arrow symbol should be used. When the weld length is not required to extend the complete length of the joint. it can be defined by placing the required length to the right of the weld symbol.indd 152 26/09/15 4:49 pm . If a weld is required to make a change in direction. with a dash between the two. The staggered intermittent weld is shown in Figure 10-11. or they can be offset. The length is shown in the welding symbol to the right of the weld symbol. See Figure 10-8. known as a chain intermittent weld.Figure 10-7 Weld Length Specified on Welding Symbol Between Extension Lines Figure 10-8 Weld Length Specified on Welding Symbol Between Extension Lines with Section Lines Representing the Weld Area Placing section lines in the area where the weld is to be placed can also be used in combination with standard dimensions and welding symbols to identify the required weld length and weld location. The chain intermittent weld is shown in Figure 10-10. also called a skip weld. The weld length is the linear distance of each weld segment. It is shown to the right of the length on the welding symbol. Intermittent Welds An intermittent weld.indd 153 153 26/09/15 4:49 pm . The pitch is the center-to-center distance of each of the weld segments. known as a staggered intermittent weld. The individual weld segments in an intermittent weld have a length and pitch component. This concept is shown in Figure 10-9. with unwelded spaces between each of the welds. When intermittent welds are placed on both sides of a joint. they can be either directly opposite each other. consists of a series of welds placed on a joint. Advanced Welding Symbols M10_CORG3839_02_SE_C10. Figure 10-9 Intermittent Weld Figure 10-10 Chain Intermittent Weld Figure 10-11 Staggered Intermittent Weld 154 Chapter 10 M10_CORG3839_02_SE_C10.indd 154 26/09/15 4:49 pm . Weld Contour Symbols The contour of a weld refers to the shape of its face. Figure 10-12 Contour Symbols Advanced Welding Symbols M10_CORG3839_02_SE_C10. and a weld with a flush contour has a face that is flush with the base metal. When a contour symbol is not added to the welding symbol. standard welding and shop practices should be followed. A weld with a convex contour has a face that protrudes out in a convex shape from its toes. the contour symbol is added to a welding symbol so that it is oriented to mimic the required contour of the weld (see Figure 10-12). When required. The letters and their corresponding methods are listed below. a weld with a concave contour has a face that is concave (sinks in from its toes).indd 155 155 26/09/15 4:49 pm . U = unspecified G = grinding M = machining C = chipping This means that any appropriate method may be used. The finish symbols are made up of letters. or is flat from one toe to the other. Finish Symbols Placing a finish symbol adjacent to the contour symbol specifies the method of making the contour. See Figure 10-14. method of making the contour. contour. weld all around. pitch. with the vertex of the triangle located at the intersection of the two members being joined.Figure 10-13 Examples of Contour Symbols with Method of Finish R =rolling H =hammering P =planishing See Figure 10-13 for an example of a finish Symbol. It represents the length of the legs of the largest right triangle that can fit within the weld at it's smallest point. and any other supplemental information listed in the tail of the welding symbol. See Figure 10-15. Fillet Welds A welding symbol for a fillet weld includes the required fillet weld symbol and (as needed) the size.indd 156 26/09/15 4:49 pm . Figure 10-14 Example of a Welding Symbol for a Fillet Weld 156 Chapter 10 M10_CORG3839_02_SE_C10. The size of the fillet weld is shown to the left of the weld symbol. field weld. length. or other revealing information. such as one of the legs is required to be longer than one of the sides. In such cases. the measurement is taken at the location where it is the smallest. a note.Largest Right Triangle That Can Be Formed Within the Weld Note: When a fillet weld is measured. The only way to know which leg goes with which size is through either a detail drawing that shows the weld joint.indd 157 157 26/09/15 4:49 pm . the size for each of the legs is shown on the welding symbol to the left of the weld symbol and is written in parentheses. as in Figure 10-17. Figure 10-16 Unequal Leg Fillet with Detail Drawing Advanced Welding Symbols M10_CORG3839_02_SE_C10. Vertex 3/16 3/16 3/16 This Shown on the Drawing Means This Figure 10-15 Fillet Weld Size Unequal Leg Fillet Welds A fillet weld can be required to have unequal legs. as in Figure 10-16. indd 158 26/09/15 4:49 pm . the weld symbol may be omitted. See Figures 10-18 and 10-19. an empty reference line with the letters CJP in the tail indicate a complete joint penetration weld. When the type of joint preparation (joint geometry) is optional.Figure 10-17 Unequal Leg Fillets That Could Be Shown Without Detail Groove Welds The welding symbol for a groove weld may include. method of making the contour. as needed. root opening. length. the weld size shown in parenthesis. pitch. Figure 10-18 Welding Symbol Example for a Groove Weld 158 Chapter 10 M10_CORG3839_02_SE_C10. field weld. weld all around. groove angle (also called included angle) contour. size. In such cases. In other cases of optional joint geometry. may be the only item on the reference line. the groove weld symbol. depth of preparation. and any other supplemental information listed in the tail of the welding symbol. contour. Height.Figure 10-19 Example of a Groove Weld Melt-Through Melt-through is defined by the American Welding Society (AWS) as “visible root reinforcement produced in a joint welded from one side. method of contour. reproduced with permission from the American Welding Society (AWS).indd 159 159 26/09/15 4:49 pm . melt-through is the penetrated weld metal that extends beyond the base metal on the backside of a joint welded from the opposite side. See Figures 10-20 and 10-21.0:2010. FL Advanced Welding Symbols M10_CORG3839_02_SE_C10.”2 In other words.0M/A3. and tail specifications are all supplemental types of information that can be added to the melt-through weld symbol. 2 AWS A3. Miami. Figure 10-20 Welding Symbol with Melt-Through Figure 10-21 Melt-Through Example 160 Chapter 10 M10_CORG3839_02_SE_C10.indd 160 26/09/15 4:49 pm . In most cases. including backing bar or backup bar.30M:2007 Specification for Consumable Inserts further defines and specifies the requirements of the five classes of consumable inserts.Consumable Insert A consumable insert is preplaced filler metal that is fused into the root of the joint.30/ A5. it can be used on both sides of the weld joint because both sides of the joint have molten metal at the same time and both sides must be supported. however. 2. thus the term backing. There are many methods for applying backing. For certain instances. backing pass. or 5) required for the application should be shown in the tail of the welding symbol (see Figure 10-22). 3. 4.indd 161 161 26/09/15 4:49 pm . Consumable inserts come in five different classes. The five classes correlate to the following five shapes: 1. 3. backing shoe. There are many types of backing. 5. like electroslag and electrogas welding. Class 1: Inverted T cross section Class 2: J shaped cross section Class 3: Solid ring shape Class 4: Y shaped cross section Class 5: Rectangular shaped cross section The class number (1. and backing strip. 2. AWS A5. Backing can be made from material that CLASS 1 INSERT This Shown on the Drawing Means This CONSUMABLE INSERT Figure 10-22 Melt-Through Example Advanced Welding Symbols M10_CORG3839_02_SE_C10. 4. backing ring. backing weld. Backing Backing refers to placing something against a weld joint to support the molten metal. it is placed against the backside of the weld joint. Figure 10-24 shows a welding symbol and Figure 10-23 Welding Symbol with Backing Material * Figure 10-24 Backing Strip Weld 162 Chapter 10 M10_CORG3839_02_SE_C10. an “R” is placed within the perimeter of the backing symbol. Figure 10-23 shows a backing symbol with an “R. When backing is to be removed after welding.” indicating backing material that is to be removed after welding.indd 162 26/09/15 4:49 pm .will fuse into the weld or it can be made from material that will not fuse into the weld. Fused backing can be required to be removed after welding or left on to become part of the completed weld joint. Height. a multiple reference line may be used to indicate the sequence of operation. which is a rectangular box placed on the center of the reference line. a spacer can be used between weld joint members. Spacer For certain applications. or it may be specified in the welding procedure. A note in the tail of the welding symbol may be provided to specify which type of weld is required. Backing Welds and Back Welds Backing welds and back welds use the same weld symbol. When the spacer symbol is used. and method of contour are all types of information that can be added to the back or backing weld symbol.weld for a joint that is to have a backing strip that is to be left on after welding. The requirement to use a spacer is shown by the spacer symbol. the size and type of material should be shown in the tail of the welding symbol.” used in this symbol. as shown in Figure 10-25. Notice there is no “R. back weld) is required based on the symbol alone cannot be made.1018 This Shown on the Drawing 1 /2 5 /16 SPACER Means This Figure 10-25 Spacer Advanced Welding Symbols M10_CORG3839_02_SE_C10. 5/16 * 1/2 . Determination of which type (backing weld vs. contour.indd 163 163 26/09/15 4:49 pm . which looks like an unshaded half circle. See Figure 10-26. indd 164 26/09/15 4:49 pm . length. it refers to the throat of the weld (the distance from the root to the face of the weld).Figure 10-26 Backing Welds and Back Welds Edge Welds The welding symbol for an edge weld includes the edge weld symbol and when required. Figure 10-27 shows the symbol for an edge weld with all of the supplemental information that may be used. contour and method of finish. the following additional information: size. pitch. When the size of an edge weld is specified. Figure 10-27 Edge Welding Symbol Figure 10-28 Edge Weld 164 Chapter 10 M10_CORG3839_02_SE_C10. Figure 10-28 shows the meaning of the weld size for an edge weld. or it may be identified in a welding procedure. circumferential.indd 165 165 26/09/15 4:49 pm . longitudinal. See Figure 10-29.Surfacing Welds The size of a surfacing weld is determined by its height from the substrate to the face of the weld. Figure 10-29 Surfacing Welding Symbol Figure 10-30 Surfacing Welds Advanced Welding Symbols M10_CORG3839_02_SE_C10. The weld direction of surfacing welds is identified in the tail of the welding symbol by the terms axial. Examples of surfacing weld placement direction are shown in Figure 10-30. and lateral. and process for spot welds are depicted. The size refers to the size of the weld at the junction of the faying surfaces of the materials being joined.indd 166 26/09/15 4:49 pm . pitch.Spot and Projection Welds Figure 10-31 shows how the size. the spot weld symbol may be placed on the arrow side or other side of the reference line. except projection welds should be shown only as arrow side or other side. and pitch designators. There is no length dimension. given in pounds or newtons. may be used in place of the size dimension. quantity. Shear strength. or it may straddle the line to indicate no arrow side or other side significance. Projection welds use the same symbol. quantity. As you saw in Chapter 9. Is the Weld Size at the Faying Surfaces Figure 10-31 Welding Symbol Example for a Spot or Projection Weld 166 Chapter 10 M10_CORG3839_02_SE_C10. size. Figure 10-32 shows two different seam welding symbols with supplemental information that may be used.Seam Welds The seam-welding symbol indicates a weld that takes place between the faying surfaces of a lap joint that may be composed of two or more lapped pieces. Figure 10-32 Welding Symbol Example for a Seam Weld Advanced Welding Symbols M10_CORG3839_02_SE_C10.indd 167 167 26/09/15 4:49 pm . or by a welding process that has enough arc energy to melt through one of the plates and weld down into the other(s). The weld is done typically by moving the lap joint between two rolling electrical contact wheels that pass current through the joint to create a type of rolling spot weld called a resistance seam weld (RSEW). Figure 10-33 shows two different ways that seam welds can be made: end to end or side by side. Seam welds can be made by making overlapping spot welds to form a seam. End to end is considered the way indicated by the welding symbol unless a separate detail indicates otherwise. Figure 10-33 Different Configurations for Seam Welds 168 Chapter 10 M10_CORG3839_02_SE_C10.indd 168 26/09/15 4:49 pm . as necessary. Figure 10-34 Welding Symbol Example for a Stud Weld Plug and Slot Welds Plug and slot symbols contain similar information except that plug welds do not have a length component and the size of a plug weld is its diameter whereas the size of a slot is its width. Weld Size = 1" Wide Slot Weld Type = Slot 1/2 = Fill 1/2" 4 = Length. Additional information on the specifics of the stud is provided. They may be completely filled or filled to a depth specified within the weld symbol. 6 = Pitch 1 1/2 4-6 45° (8) 45° = Included Angle of the Slot Edges 8 = Quantity of Welds Figure 10-35 Slot Weld Symbol Advanced Welding Symbols M10_CORG3839_02_SE_C10.indd 169 169 26/09/15 4:49 pm . bill of material specification. See Figure 10-35. or specification in the tail of the welding symbol. by other means. such as a note.Stud Welds The basic information for stud welds is given in the welding symbol shown in Figure 10-34. 5. 6. 1. 170 Chapter 10 M10_CORG3839_02_SE_C10.indd 170 26/09/15 4:49 pm .Chapter 10 Practice Exercise 1 Describe completely all of the information contained in the following welding symbols. 4. 2. 7. 3. 1/4 Weld Per WPS A16 Back Gouge 1/4(3/8) Weld Per WPS A24 3/32" 60° 12. Advanced Welding Symbols M10_CORG3839_02_SE_C10.8.indd 171 171 26/09/15 4:49 pm . 9. 11. 10. D.002" Ø 6.TYP Print Reading for Welding And Fabrication Joint G 1/4 3/16 3/16 1/4 . 1.172 Chapter 10 M10_CORG3839_02_SE_C10.790" 4" C DATE 18.indd 172 26/09/15 4:49 pm DETAIL A 1−1/8"TYP x 2 3/8" TYP 3 1/2" 3/4" 6−11/16" B Note: This is a sample drawing for educational purposes only.005 MGRAPPR ENGAPPR CHECKED DRAWN 4−3/16" 1−7/8" SEE DET A 1/4 3/16 3/16 1/4 D Ø 3.GM21 . OF ROUND BAR PRIOR TO WELDING 3. MACHINE O. ±1/16° 2PL ±0. It is complete only to the degree necessary for the intended purpose of the discussion or review exercise.93" Joint E 1" 13 3/4 ±1/16 UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE ININCHES FRAC.GM10 4PLACES SCALE: 1/8 WEIGHT: REV 0 SHEET 1 OF 1 08123101 Rotating Arm Bar SIZE DWGNO A TITLE 1/4 7" WP . MACHINE HOLES AFTER WELDING NOTES: WP .698"± .GM21 TYP Joint F Joint H WP .GM12 1/4 1/4 NAME A Ø.010 3PL ±0.69" WP . MATERIAL TO BE ASTMA 36 2. What is the minimum and maximum acceptable length of part A? Minimum Maximum 2.indd 173 173 26/09/15 4:49 pm . 8. How long is the round bar? 15. What is the specification for the required material? 13. What is the dimensioned thickness of part C? 7. When are the holes to be machined? 6. What are the dimensions of part B? 16. What welding procedure is to be used at joint H? 14. Draw the welding symbol for the weld required at joint H. Give the I. What is the maximum overall acceptable size of the rotating arm bar? 10. What is the center-to-center distance between the two holes? 12. MMC LMC 5.D. Who approved this drawing? 3. Describe completely the weld required at joint G. 9. What is the overall maximum acceptable length of the rotating arm bar? Advanced Welding Symbols M10_CORG3839_02_SE_C10. 1.Chapter 10 Practice Exercise 2 Refer to Drawing Number 08123101 on the previous page. Describe completely the weld required at joint E. Describe completely the weld required at joint F. 11. 4. sizes of the round bar that would be necessary for the bars MMC and LMC. Step 4: Consolidate the answer from step 3 above into 2'5".60624" Step 2: Set aside the . Note: 4.5625" to 196" to get 196. To convert from: Kilograms to (approximate) pounds: Multiply the number of kilograms by 2. Step 6: Round 9. Step 4: Add . Example 2: Convert 752 millimeters to feet. Converting and Estimating Weights of Common Metal Used in Fabrication Many times it is necessary for welding and fabricating personnel to know what the weight of a weldment is. Step 1: Convert 752 millimeters to inches by multiplying 752mm by . and fractions of an inch to the metric system. inch. Example 1: Convert 16'4-9⁄16''to meters.204623 pounds. so multiply 16' by 12" to obtain 192".0254 meters/inch to obtain the final answer of 4. it is typically easiest to first convert feet to inches. Step 3: Divide 29" by 12"/foot to get 2' with a remainder of 5". When converting lengths that include feet. We will use the approximation of 2.205.60624 decimal portion of your answer until Step 5. Step 5: Multiply .5625" by . Review the Chapter 9 Math Supplement as needed for help in working the exercises.69984 sixteenths.03937 to get 29. Step 8: Add the 5⁄8 to the 2'5" found in Step 4 above to obtain the final answer of 2'5-5⁄8". it is typically easiest to begin by converting to inches and then divide as required to get feet and inches.5625 by dividing 9 by 16. inches and fractions of inch. Weights of the items shown on drawings are typically given either in the bill of materials area of the drawing or as a note somewhere on the drawing.indd 174 26/09/15 4:49 pm . Also included is a section on converting between pounds and kilograms. and fraction of an inch format.Chapter 10 Math Supplement Additional Conversions This supplement builds on the Chapter 9 Math Supplement by adding conversions in feet. When converting from the metric system. Note: Rounding a decimal portion of an inch to a specific fractional denomination is easily accomplished as shown above in steps 5 and 6 by multiplying the decimal by the denomination required and then rounding to the nearest whole number. Use additional numbers as required following the decimal point if greater accuracy is needed.27cm which equals 4992.69984 sixteenths to the nearest full sixteenth which is 10. Step 2: Add 4" to the 192" from step 1 to get 196" Step 3: Change the common fraction 9⁄16 to the decimal .5625" Step 5: Multiply 196. The units used are typically either pounds or kilograms. to the nearest sixteenth. inch. Step 1: Convert 16' to inches.60624" from step 2 by 16 to obtain 9. 174 Chapter 10 M10_CORG3839_02_SE_C10.9927 meters equals 499.205 for the purposes of completing the problems in this text. Step 7: Simplify 10⁄16 to 5⁄8 by dividing both the numerator and denominator by 2.7 mm. One kilogram equals approximately 2. We know that 12" = 1'.9927 meters. The following list shows the approximate weight per cubic inch of some of the common materials a welder/fabricator may work with. Approximate weight of 1 cubic inch of: Stainless Steel = . 37 × 18 × . Consult with your material supplier for exact weights.indd 175 175 26/09/15 4:49 pm .061 lb.287 lb. Approximate weight of 1 cubic inch of: Aluminum = .31 lb. their approximate weight can be calculated if the weight per cubic inch of material is known. Note: These approximations may change depending on the alloy used.26 b. multiply the length by the width by the height of the material (L × W × H). Step 2: Multiply 333 cubic inches by . Advanced Welding Symbols M10_CORG3839_02_SE_C10. Approximate weight of 1 cubic inch of: Cast Iron = .572 pounds by 2. Step 3: Divide 94. If the weights of the objects are not shown on the drawing.205 kilograms per pound to get an answer of 42. Provide your answer in both pounds and kilograms. Approximate weight of 1 cubic inch of: Steel = . Approximate weight of 1 cubic inch of: Brass = .Pounds to (approximate) kilograms: Divide the number of pounds by 2.284 pounds per cubic inch to get an answer of 94. Approximate weight of 1 cubic inch of: Magnesium = .284 lb.5 = 333 cubic inches. To find the number of cubic inches of material.205.89 kilograms.098 lb. Step 1: Determine the cubic inches of steel. Example 3: Calculate the approximate weight of a steel plate that is 37" long × 18" wide × ½" thick.572 pounds. 1. 47 kilograms to pounds pounds 13.5 meters to inches inches 4. 1 meter to millimeters millimeters 6.2 meters + 24 mm to inches inches 10 45'6" + 4'4¾" to inches inches 11. 720 pounds + 450 kilograms to kilograms kilograms 176 inches inches Chapter 10 M10_CORG3839_02_SE_C10. Write your answers in the spaces provided.5 kilograms to pounds pounds 15. 1 meter to centimeters centimeters 5. 17'5¾" to inches inches 8. 65mm to centimeters centimeters 7. 175¾" to feet and inches feet 3. 95. 85cm – 19mm to feet and inches feet 12. 1. 1250 pounds to kilograms kilograms 14. 3'11¾" + 4'4¾" to inches inches 9. 11'8" to inches inches 2. 4.indd 176 26/09/15 4:49 pm .Chapter 10 Math Supplement Practice Exercise 1 Convert the following.