Home
Login
Register
Search
Home
8495905 Rcc51 Column Load Takedown Design
8495905 Rcc51 Column Load Takedown Design
March 17, 2018 | Author: Sohaib Anwar | Category:
Column
,
Structural Engineering
,
Building Engineering
,
Civil Engineering
,
Solid Mechanics
DOWNLOAD
Share
Report this link
Comments
Description
OPERATING INSTRUCTIONSProject Spreadsheets to BS 8110 Client Location Advisory Group Edge Column B1 REINFORCED CONCRETE COUNCIL ENTER DATA IN BLUE CELLS ONLY. RED MESSAGES INDICATE ENTRY ERRORS. Made by Date Page MAGENTA INDICATES DATA FROM OTHER SHEETS. rmw 28-Nov-08 85 (akin to D&D) COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Originated from RCC51.xls on CD INPUT Location Edge Column B1 chg 1-2 y (akin to D&D) Orientation Checked Revision © 1999 BCA for RCC A-B x x B-C - … See CDES! R68 concrete density, kN/m3 yfgk 24.0 yfqk 1.60 H Job No 1.40 y n/a Level 7 6 5 4 3 2 1 5.00 5.00 8.00 0.00 5.00 5.00 8.00 5.00 5.00 8.00 5.00 5.00 8.00 5.00 5.00 8.00 5.00 5.00 8.00 5.00 5.00 8.00 Slab thickness (solid) mm span direction,(II to) x, y or b 175 x 175 x 175 x 175 x 175 x 175 x 175 x Beams width depth o/a width depth o/a width depth o/a width A-B A-B B-C B-C 1-2 1-2 n/a 300 350 300 350 300 500 0 300 350 300 350 300 500 300 350 300 350 300 500 300 350 300 350 300 500 300 350 300 350 300 500 300 350 300 350 300 500 300 350 300 350 300 500 Column below H (ll to yy) B (ll to xx) Height (fl. to floor.) mm mm m 300 300 4.00 300 300 4.00 300 300 4.00 300 300 4.00 300 300 4.00 300 300 4.00 300 300 4.00 Dimensions Spans Cl to Cl Loads Slab Beams A-B B-C 1-2 n/a m m m m mm mm mm mm mm mm mm Generally, input values are carried through to the right. Overwrite if incorrect. Deleting a cell (or inputting a value of 0) in columns G to P will "white out" values to the right which will be set at 0. For troughed slabs use topping thickness and aggregate width of ribs with width of beam. Cl = Centreline of support x or y = spanning II parallel to x or y, b: both or two-way spanning o/a = overall: downstand beams assumed (col above) 0 0 0.00 Level (characteristic uno) (inc swt.) gk kN/m2 qk kN/m2 7 6 5 4 3 2 1 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 5.00 4.00 (swt.) gk kN/m included included included included included included included line loads (-extra over slab loads and beam self weight) A-B gk kN/m 5.0 5.0 5.0 5.0 5.0 5.0 5.0 qk kN/m 0.0 B-C gk kN/m 5.0 5.0 5.0 5.0 5.0 5.0 5.0 qk kN/m 0.0 1-2 gk kN/m 0.0 qk kN/m 0.0 n/a gk kN/m 0.0 qk kN/m 0.0 At column position, other applied Gk kN (char) Qk kN (char) Mxx kNm (ult) Myy kNm (ult) Loads per floor Floor Gk Floor Qk Column below Gk OUTPUT Enter a number or text in row 16 to activate the column of input below. Deleting a Level (a cell in row 16) will "white out" that and subsequent columns and set spans to zero. Complete row 16 or copy across to get up to 10 levels. If entering text, subsequent hatches (###) should be overwritten. kN kN kN Column level Cumulative loads in column. Gk kN Qk kN Qk redn factor Qk red* kN N kN Moments in column top kNm about x-x Mxx top kNm about y-y Myy Mxx bottom kNm Myy bottom kNm loads (eg loads from cantilevers) 0.0 0.0 0.0 0.0 h & b dimensions input in CDES! Red means inconsistant with: From CDES! h = 300 From CDES! b = 300 0 swt = self weight gk = characteristic Dead load qk = characteristic Imposed load included included included For partitions, cladding etc eg loads from roof structures 140.7 80.0 8.6 140.7 80.0 8.6 140.7 80.0 8.6 140.7 80.0 8.6 140.7 80.0 8.6 140.7 80.0 8.6 140.7 80.0 8.6 7 to 6 6 to 5 5 to 4 4 to 3 3 to 2 2 to 1Below 1 149.3 80.0 1.0 80.0 337 298.6 160.0 0.9 144.0 648 447.9 240.0 0.8 192.0 934 597.2 320.0 0.7 224.0 1194 746.5 400.0 0.6 240.0 1429 895.8 1045.1 480.0 560.0 0.6 0.6 288.0 336.0 1715 2001 134.6 1.5 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 108.6 1.3 Assuming beams and columns are simply supported - see BS8110 Pt1 Cl 3.2.1.2.5 * Use BS 6399: Pt 1 Cl 5.2 reduction factors? (Y/N) Y 2 0.8 0.56 15.b' ßa au Madd Eqns 32-35 ok to use? Braced columns M1 Mi Mi.95 1 2 1.6+0.59% Condition 1 1 1.6 0.3 Cl 3.8 65. 86 PROOF 2 0.4 Cl 3.4 1 monolithic and beams sizes>= column o/a dimension 2 monolithic and beams sizes< column o/a dimension 3 some nominal restraint provided 4 unrestrained .8.6 See Cl 3.3.8.95 Braced or Unbraced? B or U Loads Axial Moments N top bottom B B kN kNm kNm 2001 108.3.2a) 3.8.0 kNm 0.0 0. 0.0 eqn 33 Cl 3.8.3 108.6 eqn 34 eqn 32 eqn 35 Cl 3.2.6 4 2 OUTPUT Design criteria N … See Cdes! & LoadTD! Checks against other sheets o o o o o o o o o Job No 1-2 y x ENTER DATA IN BLUE CELLS ONLY.5 1.8 Condition Slenderness le Slenderness Limit for short column Design column as Column is mm 3150 3467.4 Cl 3.0 eminN kNm 30. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Checked Revision chg - Originated from RCC51.0 n/a .8.3 3 1.8.0 n/a 1.1 2204.2 0.05 h kNm See eqn 30 See Cl 3. clear height mm 3500 3650 ß value 0.6 Mi+Madd kNm 65. h? .0 0.8 3 1.8.3.8.0 1.3 See Cl 3.95 3 0.3 4.2 o Biaxial bending Mx/h' My/b Critical direction N/bhfcu ß 0.8.1.0 ok kNm 0.8.8 3 0.8.4 Design moments kNm Design moments Min eccentricity.6 1.005 X-X 0.8.0 630.8.3 kNm 109.3 about x-xabout y-y Short Braced Braced See Cl 3.8.0 Short Short Short about x-xabout y-y Design moments (cont) about x-xabout y-y Design moments for unbraced columns M2+100% Madd kNm n/a n/a eminN kNm n/a n/a Maximum kNm n/a n/a Madd d Nuz Nbal K b' or.8.9 0.0 15.3.8.7 See Cl 3.8.20 Braced columns at bottom Condition 1 1 0.2.453 0.1.5 10.1 eqn 33 Cl 3.00% 10 Braced or unbraced.short column mm 240 240 kN 2204.8.129 0.30*240/240*1.8 kNm 65.xls on CD INPUT © 1999 BCA for RCC Location Edge Column B1 Level considered: Bottom (Max N) Dimensions about x-xabout y-y h (ll to yy) mm 300 b (ll to xx) mm 300 lo.90 0.8.see BS8110 Cl 3.3 0.3.2 eqn 36 Cl 3.1.5 See Cl 3. MAGENTA INDICATES DATA FROM OTHER SHEETS.0 Maximum kNm 108.3 0.2 3.tables 3.3.0 X-X (akin to D&D) Orientation A-B R68 x B-C H Column properties fcu fy cover to link mm Max sized main bar mm Probable percentage As % link diameter mm M about limiting lo = o See Cl 3.7 See Cl 3.2c) 3. if slender.8.2b) 3.2 at top 2 1.6 & tables 3.8.104 mm 3.1.3 Values of ß .3.85 0.2 M1+Madd/2 kNm 0.2d) Cl 3.3.3 1. (Mi=0 if b/h>3) 30. (Mi=0 if Le/h>20) Mi.8.30 Maximum design moment = 108.0 kNm 65.2.1.8.1.3 = Design moments for braced columns M2 kNm 108.20 y n/a 18000 Cl 3.3.75 2 0.3.64 0.3.19 & 3.2.OPERATING INSTRUCTIONS Project Spreadsheets to BS 8110 Client Advisory Group REINFORCED CONCRETE COUNCIL Made by Location Edge Column B1 (akin to D&D) rmw Date Page 28-Nov-08 COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT.0 0.086 0.4 See eqns 40 or 42 See table 3.1 kN 630.129 mm 240 240 0.5 o o at top o o If As set at 0% then K=1 (conservative)Unbraced columns at bottom current percentage from CDES! = 5. RED MESSAGES INDICATE ENTRY ERRORS.9 35 460 30 40 2.50 11.8 0.8 1.2.22 See eqns 40 or 42 Cl Cl Cl Cl Cl 3.19 & 3.6 1.2 0.3.0 kNm kN 2001 109. 0 100.00064 96.4 -0.00292 0.14 2029.54 228.00019 0 0.fcu.0 75.00306 0.02 253.59 228.6h?ok=1 1 OK 1 OK x plot x Strain Steel strain 5.OPERATING INSTRUCTIONS REINFORCED CONCRETE COUNCIL Client Advisory Group LocationEdge Column B1 Made by (akin to D&D) rmw COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT.66 253.(fsc+fst) ignoring side bars M .fstAst (N .8 Formula 6b .67fcu. column is critical about X-X: h= h and b = b in above formulae As req'd = 1957mm² T&B:.028 82.00021 -0.0 229.074 ENTER DATA IN BLUE CELLS ONLY.6 N/mm² 300 b= Row 27 300 Try value of x.0 240.gm] = Asc/2 = As As = {M .PROVIDE 4T40 (ie 2T40 T&B .5 -3.b.N=0) 0 Y's to date 0 next increment 60 431.00267 0.67.3 121. As = 1957 mm2 Strain diagram 246.00019 0. fsc 438 N/mm2 Steel stress in tensile face.0 Compression +ve 150.74 2001.fst).029 -0.Asc .275 249.21 1013 1076 1045 1076 1061 1076 1068 1076 1072 1070 1069 1070 1070 1070 0.059 0.3 226.9x) C C C C C C C C C C C C C C C C C C C C ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol ol u u u u u u u u u u u u u u u u u u u u As mm2 (half of total requirement) The one unknown is x.875 1. therefore iterate for solution satisfying above equations h= Bresaler's load contour check not done OK Stress diagram 15.00350 K= 0.2 mm 0.(fsc+fst).b.fcu.1 & 2.06 228.90 1997. N 2001 fcu 35 kN N/mm² Moment.400 305.00267 0.00175 0.00117 0.0 50. x.1 N/mm² critical about X-X axis:….91 1992.400 158.00016 -0.00350 Steel strain Concrete strain Concrete strain Baseline Graph of stresses Conc stress Steel stresses Neutral axis 0.4% ok=1 Astot>6. = 253.00267 0.01050 0. fst -37 N/mm2 from M.0 As from N N = 0.49 vc = 1.5 222.0 121.000 C C C C C C C C C C C C olu olu olu olu olu olu olu olu olu olu olu olu mn mn mn mn mn mn mn mn mn mn mn mn Z AA AB AC AD AE AF AG AH AI AJ AK See BS8110 figures 2.00267 0.5 ignoring any side bars 247.0.00000 0.(h/2-d').5 7.xls on CD Checked chg © 1999 BCA for RCC Date Page 87 28-Nov-08 Revision - R68 INPUT Level designed: Bottom (Max N) Axial load.(fsc+fst) {M . L'r to xx) 300 1.00350 50 0 350 0 0.) .0 290.19 2001.0 BASIS In this case.4% Total = ie Notes Stresses in N/mm2 0.0.4 0.00350 0.650 121.27 2029.dc/2)}/[(h/2-d').0 229.0.875 -0.59 % 0 0 60 240 300 50 50 110 290 350 0 -0.00268 0.gm] from N As = (N .fst) As = Ast = Asc: dc=min(h.05 mm steel γm Breadth.00265 0.fstAst As = (N .2 and Cl 3.206 Max V = 374.650 268.00019 -0.275 Bottom (Max N) Blue data entered here is used in other sheets .1 290.00000 -0.00350 .75 3.00267 0. M 109.dc) / [(fsc . MAGENTA INDICATES DATA FROM OTHER SHEETS.3 kN Steel comp strain 0.0 270.86 1751. h= 300 mm b= 340 mm from iteration. 287.) Links : .81 255.57 ### 5378.00267 0.0 if shear critical use 175 if shear not critical use 300 253. stress in reinf.0 175.67fcu.037 123.00268 0.dc(h/2 .00263 0. RED MESSAGES INDICATE ENTRY ERRORS.75 -1.36 228.00019 438 438 438 438 438 438 438 438 438 438 438 438 438 438 0 -41 -21 -41 -31 -41 -36 -41 -39 -38 -37 -37 -37 -37 1686 1990 1830 1990 1908 1990 1948 1990 1969 1958 1953 1956 1957 1958 Graph of strains Req'd min 0.4 110.0 96.b.65 2029.gm] Asc = Ast = As: dc=min(h.gm] 0.0.5% ok=1 1 1 1 Min N for crack control 630 ok=1 Shear check: M/N <= 0.vc')bv = 120 S = 180.4 438.0 216 255.say ok Checks Max Min 340 105 centres of bars 180 mm 2255 1929 2082 1929 2003 1929 1966 1929 1947 1957 1961 1959 1958 1957 1751.4.775 323.00263 0.dc(h/2 .dc/2)}/[(h/2-d').dc(h/2 .32 0 1 0 1 0 1 0 1 1 1 0 0 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5 6 15 -7. b (ll to xx) 300 1.91 1956.91 2011.900 231.00267 0.0 96.00350 -0.3 350.938 -0.0 0.139 (v .00019 -0.00064 0 Level Load 2001 N) 1 Bottom (Max 337 2 Top 337 3 7 to 6 648 4 6 to 5 mm centres mm centres provide 60 110 0.90 Nx > N? (Y=1.@180 cc.056 about X-X axis 205.67fcu.00019 -0. depth to neutral axis.dc/2)}/[(h/2-d').0 300.8 0.00018 -0.57 3206.046 164.0 37.00039 Steel comp stress 0 350 438 438 438 438 438 438 Steel tens stress 438 438 0 -350 -233 0 -140 -78 As from M 1975 851 1686 13750 5916 1686 3355 2360 As from N -3989 -16964 2255 754 885 2255 1271 1670 Nx using As from N -611.5 253.0.025 139.unless overwritten o (Comp.5 mm concrete Max bar diameter 40 Link Ø 10 mm mm cover (to link) 30 mm CALCULATIONS from M As = {M .dc/2)/gm = (Asc/2).(fsc+fst).dc/gm 1070.00021 -0.00019 -0.00263 0.27 1999.0 229. h (ll to yy.019 41.00267 0.) (Tensile stress in reinf.00064 0.9x) d' = 60 mm .00000 -0.13 253.0.1 227.150 194.129 5 5 to 4 6 4 to 3 7 3 to 2 8 2 to 1 9 Below 1 10 n/a 11 n/a T10 @ 300 2 0 50 Neutral axis 156..57 2029.0.2514mm²T&B) .775 176.4.6 0.b.67fcu.00 229..67fcu/gm = 15.00019 0.00267 Steel tens strain -0.117 0.b.00267 0.00018 -0.58 2000.469 -0.dc/gm 253 507 1013 1407 1407 1013 1266 1140 Steel comp strain 0.00268 0.015 max centres ok=1 min centres ok=1 Astot<0? ok=1 1 1 1 Astot<0.5 251.0.b.065 Column Reinforcement 1.159 vc' = 5.00272 Steel tens strain 0.(fsc+fst).6 N/mm² d= 240 mm fy/gm = 438.18 0 0 1 1 0 1 1 0 0 1 2 2 3 4 120 240 -120 -120 60 -30 -30 Additional term to ensure correct range of x considered Summary 25.dc(h/2 .0 0.dc)/gm = fsc.dc(h/2 .59 % 5.67fcu.00266 0.PROVIDE T10 @ 300 328.48 228.0 125.0 12 Err:508 T10 @ 300 T10 @ 300 in 2 legs 60 110 934 1194 1429 1715 2001 0 0 0 240 290 240 290 0 0.b.00267 -0.00070 -0.b.04 2357.00175 -0.0 110.67fcu.00268 0.dc/2)/gm + (Asc/2).(h/2-d').0. Job No x mm depth to neutral axis Project Spreadsheets to BS 8110 Bottom 1 (Max N) 2001 96.52 1751.b.1 o Recommended link size = 10 mm o o o o o o As from M M = 0.67.67fcu.67fcu.025 286.8 Iterating x to find where Nx=N based on reinforcemeent required for M with assumed x OK 341.6 mm dc 228.00280 0.0 kNm fy 460 N/mm² about X-X fyv 460 axis N/mm² γm Height.4 0.56 T40 T&B ie use ie 2 T40 T&B 2T40 2514 mm² 4 T40 in all 4T40 5027 mm² ……up to 2% shortfall in area .00011 -0.dc/gm + fsc.b.b.8 Input V = 10.dc/gm) / (fsc .0 156.5.75 255. face.to avoid shear cracking prior to the ultimate limit state kN before shear calcs are necessary Type of bar centers legs 300 350 0 about x-x about y-y Shear checks As = 2514 = % 3.67fcu.0 350.1 0.0% ok=1 Areas within 2.23 253.0 Input No of legs 2 v = 0.525 213.0 dc 54 108 216 300 300 216 270 243 0.0 438.Asc .59% o/a .129 mm kN 0.56 228.00021 -0.18 3915 mm2 360 mm2 3915 mm2 1.009 0. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Originated from RCC51. mm 60 120 240 480 360 240.00000 -0.436 0.2 0.00064 0.13 255. As = 1958 mm2 from N.00019 Steel stress in comp.00021 -0.5 254.91 1885. neutral axis depth.234 0. 0/2*0.26 3.0 0.0 0.0/2*0.0 80.0 0.0/2*5.0/10^6*5.34 9.0/10^6*5.0 = 0.0 0.0/2*5.0/2*0.0 Qk kN =(5.0 Column loads .0/2*0.0/2*0.0/10^6*8.0/10^6*0.0/2*0.0 80.0+5.0)/2*0.0+0.5 0.0 100.0 0.0/2*0.0 0 0.0 =(5.4 0 0.0 0.0)/2*0.0/2 300*325*24.26 3.0+5.loads from beam line loads 7 A-B B-C 1-2 n/a Gk Qk Gk Qk Gk Qk Gk Qk kN kN kN kN kN kN kN kN Gk Qk Gk Qk Gk Qk Gk Qk kN kN kN kN kN kN kN kN = = = = = = = = 5.0/2 = 0*0*24.0 6 = = = = = = = = 5.5x(0.0)/2*0.loads from slabs (including self weight) Job No R68 28-Nov-08 Location Edge Column B1 0 =0.0 0.0/2*0.0 =(5.5 0.0 = 0.0/2*0.0)/2*0.0)/2*0.0 =(5.0 = 0.0/2*0.0/2 = 0*0*24.26 3.0/2 300*325*24.0/10^6*0.0 8.beams self weight 7 A-B gk kN/m Gk kN = B-C gk kN/m 300*175*24.0 = 8.0 5.0/10^6*0.0/2 300*175*24.0+0. 0 = 0.0 0.0 0.0/2*5.0 0.0 0.0 0.0/2 = 0*0*24.0/2*5.0)/2*0.xls on CD © 1999 BCA for RCC Edge Column B1 Location (akin to D&D) Column loads .0/2*5.0/2*0.0 80.0/10^6*0.0/2 = 0*0*24.0 0.5x(0.0 0.0/2 = 0*0*24.0)/2*8.0 8.0/2*0.0 = 8.0 0.0+0. 0 =0.5x(0.0 8.0 =0.0 =(5.0 0.0 0.0 0.loads from slabs (including self weight) 7 6 A-B Gk kN Qk kN B-C Gk kN Qk kN 1-2 Gk kN =(5.5 0.5x(0.0/2*5.0)/2*0.0 5.0+5.0 (akin to D&D) ie A-B B-C 1-2 n/a Gk Qk Gk Qk Gk Qk Gk Qk kN kN kN kN kN kN kN kN 0.4 0 0.0 0.0 0.0/2 = = = = = = 300*175*24.0 0.0 1.0 =0.0)/2*0.0/2*0.0+0.26 3.0/2*4.0 = 0.0 0 0.0 0.0 0.0 0.0 =(5.0/2*5.0/2 = 0*0*24.0 =0.0 = 0*0*24.0 0.0+5. 0 =0.0 1.0+5.0 12.0/2*0.0 0.0 8.0/10^6*5.5x(0.0/2*0.0 0 0.0)/2*0.0/10^6*5.0/2*0.5x(0.0 =(5.0+0.0/2 = 0*0*24.0/2 n/a gk kN 12.0/2*0.0 0.0/10^6*0.0 0.0 0.0/10^6*8.0 0.0+5.0/2*5.0 5 4 3 2 1 =(5.0 0.0/2*0.5 0.0 0.0/2*0.2 2.5x(0.0+0.2 1.0 100.0/2*4.0/2*0.0/2 300*175*24.0/2*5.0+0.0/2*0.0 =0.0+5.0 =(5.0 0.0 = 8.0 0.0 0.5x(0.0/2*5.0 0.0/10^6*5.0 5.2 2.0)/2*0.0+0.0/10^6*0.0 0.0/2 = 0*0*24.0 5.0 =(5.0 0.0 =(5.0 =0.0/2*5.0 0.0 0.0 0.0/10^6*0.0 0.0 12.0 0 0.0/10^6*8.0)/2*8.0 = 0.0+0.0 0.0/2*0.0/2*0.0/10^6*5.0 0.0+5.0/2 gk Gk gk Gk gk Gk gk Gk 1.0/10^6*8. 0 =0.0 0 0.0 12.0/2*0.0/2 Gk kN = 300*325*24.5x(0.0/2*0.0 12.0 5.0)/2*0.0 0.0 0.0 6 12.0 80.0 5.0 8.0/2*0.0 5.0/2*5.2 1.5 0.0/2*0.0 12.0 1.0 n/a Gk kN =(5.0/2*0.0)/2*0.0 0.0 Column loads .5x(0.0/2*0.0+5.0/2*0. 0 =0.0 = 5.0 3 12.0/2*0.5 0.0/2 300*325*24.0)/2*0.0 5.4 0 0.0 =(5.0 0.0 0.0 Column loads .0+5.4 0 0.0 Column loads .0+5.0 0.5x(0.0/2*0.0 8.0/2*0.0 =(5.0/2 = = = = = = 300*175*24.0 0.0/2*0.0+0.0 12.0 =0.0+5.0/2*0.0 0.0 = 0.0+5.0/2*5.0 0 0.0+0.0 0.0/2*5.0/2*0.0/10^6*8.0)/2*0.0 0 0.0 0.26 3.0/2*0.0/2 300*175*24.0 =(5.0)/2*8.0 100.0 1.0)/2*8.0 0.0/2*0.5x(0.0/10^6*0.0/2*0.0 0.0 0.0 =0.0/10^6*5.0/2 = 0*0*24.0)/2*8.0)/2*0.0)/2*0.0/2*4.0 = 0.0 = 8.0/10^6*5.5 0.0 =(5.0/2 Gk kN = 1-2 gk kN/m 300*175*24.0/2*4.0/2*4.0 0.0/2*0.0 5 = = = = = = = = 5.0/2 300*175*24.0/10^6*8.0 0.5x(0.2 2.0/2*0. 0 =0.0/2*0.2 2.0/10^6*0.0 0.0/10^6*8.0 0.0 = 0.0 0.0/2 300*175*24.0/10^6*5.0 5.0/2*0.0/2*0.0 =(5.0/2 = 0*0*24.0+5.0 0.0 = 0.0)/2*8.0 0.0)/2*0.0/2*0.0/2 300*325*24.0/2*5.0 0.0 0.0/2*0.0 8.5 0.0+5.0 0.0/2*0.0/2*0.0/2*0.0+5.xls kN/m kN kN/m kN kN/m kN kN kN/m 1.4 0 0.0 0.0 0.0)/2*8.0/10^6*0.0+5.0/2*0.0 = 5.2 1.34 9.0/2 = 0*0*24.0 =(5.0 12.5x(0.0/2*0.0+5.0+5.0/2*0.0 8.0/2*0.0/2*4.0/2*0.0 0.0/2*0.0 ie A-B B-C 1-2 n/a 12.0 =0.0 0.0/2*5.26 3.0+5.0)/2*0.0/2*0.0+0.0/2*0.0 0.0+0.0 = 0.0+5.0 0.0+0.0)/2*0.0/2*4.0 0.0 =(5.0/2*0.0 0.5 0.0/2*0.0+5.0/2*0.0 0.0 0.0 = 0.0/2 = 0*0*24.0 =0.0/10^6*0.0 12.0/2*0.0 0.0/2 300*175*24.0 0.0)/2*0.0 =(5.0/2 = 0*0*24.0/2*4.5x(0.0+5.0/2*0.0/2*0.0 0.0/2 = 0*0*24.0 0.0/2*5.0)/2*0.0 = 5.0)/2*0.0/2*5.26 3.0/2*0.2 2.0+5.0/2*0.0 =(5.0 0 0.0/2*0.26 3.0 0.0 0.0 0.0 0.0 0.0/2*0.0+0.0)/2*8. 0 =0.5 0.0 0.0 0.0 =(5.0 0.beams self weight 4 12.0 = 0.0+0.0/2 300*175*24.0/2*0.0 0.0/2*4.0/2*0.0)/2*0.2 1.0 0.0 0.0 0.0 0.34 9.0 5.0 0.0/2 = 0*0*24.0 0.2 1.0 0.0/2 = 0*0*24.0 0.5 0.5x(0.0 100.0 = 5.0/10^6*0.0 0.0 0.0 2 0.0+0.0 0.0 5.0 0.0 5.0 =(5.2 2.2 1.2 1.0+5.0 =(5.0)/2*0.0/2*0.0 = 0.0/2 = 0*0*24.5 0.0 0.0+0.0/2*0.0/2*5.0 1 = = = = = = = = 5.0 0.0 11/28/200803:42:23 p4 .0 Column loads .0/2*5.0/2*0.0/2*0.0/2*0.5x(0.0)/2*0.0 5.0 =0.0)/2*0.0 = 0.0/10^6*5.0)/2*0.5x(0.0 =(5.0)/2*0.26 3.0/2*5.0/2*0.0)/2*8.0)/2*8. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Originated from RCC51.0 =0.0/10^6*0.0/2*0.0 0.0/10^6*5.0/2 = = = = = = 300*325*24.26 3.4 0 0.0/2*0.0/10^6*0.0 = 5.0 =0.0 0.0 0.5x(0.0 0 0.0/10^6*5.0/10^6*0.0/2 Gk kN/m = 0*0*24.0 Qk kN =(5.0 100.34 9.0 = 0.0/2*5.0/2*5.0 = 0.loads from beam line loads 4 3 = 5.0/10^6*0.0 0.5 0.0 0 0.0/2 300*175*24.5x(0.0 0.0 0 = = = = = = = = 0.0/2*5.0/2*0.0)/2*0.0/2*0.0)/2*0.0 2 = = = = = = = = 5.0)/2*0.5x(0.0 0.0 1.0/2*0.0)/2*0.0 0.5x(0.0+0.0 0.4 0 0.0 5 12.0 0.0+5.Project Spreadsheets to BS 8110 Location Edge Column B1 (akin to D&D) LOAD TAKE DOWN CALCULATIONS I Made by rmw COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT.0+5.0)/2*0.0/2*0.0 80.0/2*0.0 0.0 = 0.5 0.5x(0.0+0.0+5.0/2*0.0/2*4.34 9.0/10^6*5.0)/2*0.0+0.0 = 0.0/2*0.0/2*5.0 0.0/10^6*0.0 = 0.0+0.0/2 300*175*24.0/2*5.0/2*0.0 0.0 100.0 0 0.0/2*0.0/10^6*0.0/2 300*325*24.0 = 5.0/2*5.5x(0.0)/2*0.0+0.0/2*4.0 =(5.2 2.0/2*0.0 0.0+0.0/10^6*0.0 0.0 5.0/2*0.0 = 5.0 100.0)/2*8.0 =0.26 3.0)/2*0.0 0.0 =0.0 0.0)/2*8.0/10^6*5.0 = 0.0 0.0 0.26 3.0 0.34 9.0 5.0 0 0.0/2*4.0 0.0/2*0.0 0.0 0.0 8.0/2*0.0 0.0/2*4.0/2*5.0)/2*8.0 0.26 3.26 3.0/2*4.0)/2*8.0)/2*0.0)/2*0.0 1 0 ie A-B B-C 1-2 n/a 10695684.0 0.34 9.0 = 0.0 80.0 80.0 0.0 0.0 0.0 = 0.0 8.0 0.0/2 300*175*24. 6).7*2*5.6*0.4*2*8.0 0.6 108.4 19.6 27.7+1.0 7 6 5 15.6 27.0)*2*5.0 Myy col above kNm about y-ycol below kNm 7.7+1.00.0*0/(0+0+0+0) 0.0 +12.3 1.0 +0.abs(0.7*2*5.0 15.abs(0.2 7.0/ 8 8 109.6*80.0 0.0 0.0 0.0 0.0 +0.0 0.6 27.6 27.0 109.5 +3.0)] 562.0 +0.0 +0.abs(0.0)] MAX[abs(0.0 0.1 0.0 +0.1 0.0 = 0.6 108.4 80.7 0.4 218.0 +0.7*2*5.4 80.0 19.0 +0.6)] MAX[abs(562.0 0.0)*2*5.4*15.0/8 15.0/ (1.0 0.0 0 = = = = = = = = 0.5 +3.0 +0.0 0.7+1.0-0.2*17/(17+17+54+0) 562.4 19.0/ 8 8 15.6)] MAX[abs(562.6 27.0 = 0.0/ (1.0 0.6 108.0/8 (1.0 0.0 0.20.0/8 15.0 +0.0).8*17/(17+17+34+34) 7.0 15.0 +12.0/8 (1.0 0.8*17/(17+17+34+34) 7.0 15.0 +0.0 15.0/8 (1.4*109.0 +12.0 +0.0 +12.00.4 80.4*2*8.4-19.8*17/(0+17+34+34) 7.0 0.0/ (1.0 0.0 +12.0 0.0 109.0 109.4*15.0 0.7 0.6 27.0 +0.0 100.1 0.7 0.0 +0.6 108.4 80.0 0.4-19.0-218.5 +3.0)*2*8.8 0.abs(27.0 +0.0 100.3 1.7)] MAX[abs(27.0 0.0*0/(0+0+0+0) Myy col above kNm about y-ycol below kNm 0.0 +0.0 +12.0*0/(0+0+0+0) 0.0*0/(0+0+0+0) 0.8*17/(17+17+34+34) 7.0 +9.4*109.0-218.6*80.7*2*5.7 562.0 +0.0 = 0.0 0.0 +0.2*17/(17+17+54+0) 562.0/8 15.0 +0.0)] MAX[abs(0.0).7+1. 0/8 0/8 19.0 0.0 100.0 +0.0 0.8*0/(0+17+34+34) 7.0 +9.1 0.0 0.0/8 109.4 80.7 0.0 +9.0).0 +0.0 0.0 0.00.0 +0.0 0.0/ 8 8 8 15.0 +0.7+1.Project Spreadsheets to BS 8110 Location Edge Column B1 (akin to D&D) LOAD TAKE DOWN CALCULATIONS II Made by rmw sheet 2 of 2 COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT.0 +0.4 19.abs(27.6*0.1 0.0 0.0)*2*5.0 0.4 80.0 +12.0 0.0 0.0).0 19.0 = 0.4-19.0 (akin to D&D) 6 = = = = = = = = 0.0 0.abs(0.4+1.6*80.4*15.7*2*5.2*17/(17+17+54+0) 562. (1.0 +0.0 +0.6).abs(0.0 +0.0 +0.4*15.0 +0.0 +0.0-218.0 0.0 +12.0 +0.8*17/(17+17+34+34) 7.0-0.6 27.6*80.0*0/(0+0+0+0) 0.0 0.0 15.8*17/(17+17+34+34) 7.7*2*5.0 0.7 0.0 0.7+1.7+1.4*2*8.0 0.0)] MAX[abs(0.abs(0.0/8 (1.0-218.0)*2*5.1 0.2 0.0 A-B (about yy) Gk N kNm kNm B-C (about yy) Gk N kNm kNm 1-2 (about xx) Gk N kNm kNm n/a (about xx) Gk N kNm kNm A-B (about yy) Gk N Gk N Gk N Gk N kNm kNm kNm kNm kNm kNm kNm kNm B-C (about yy) 1-2 (about xx) n/a (about xx) FEMxx about x-x kNm FEMyy about y-y kNm FEMxx about x-x kNm FEMyy about y-y kNm 0 Moments in column 10695684.7)] MAX[abs(27.0-218.0 +0.2 0.5 +3.0 Column B1 0.2*17/(17+17+54+0) 562.0 0.0*0/(0+0+0+0) 0.0 15.0 +0.0 = 0.5 +3.6*80.0 +0.0 109.0 +0.6)] MAX[abs(0.2 0.0/ (1.7 0.7*2*5.4*15.3 1.0 0.4 80.6 27.0 FIXED END MOMENTS 4 = = = = = = = = 0. (1.0-0.0 = 0.0 15.0 +0.7+1.0 +0.0)*2*8.0 0.0 0.0 19.0 0.0 0.7+1.0 = 0.abs(27.5 +3.6).0 = 0.0)*2*5. 0/8 0/8 2 1 15.0 = 0.00.0 19.0 +9.0 0.7+1.8*17/(17+17+34+34) 7.0 +0.0/8 109.6*0.0/8 (1.0 0.0 1.0 0.5 +3.8 562.0 +0.0)*2*8.4 19.6*0.0 0.8*17/(17+17+34+34) 0.5 1.0 0.2*17/(17+17+54+0) 562.1 0.4 218.7 562.0 0.0 +0.7)] MAX[abs(27.0 0.5 +3.4+1.0 0.4*15.4*109.2*17/(17+17+54+0) 562.0 0.0*0/(0+0+0+0) 0.0)*2*5.5 +3.4 80.0-218.0).0 0.0 0.0 = 0.6*0.4*2*8.0 0.7)] MAX[abs(27.7+1.0 0.0 0.2 7.0 +0.6 108.0 3 = = = = = = = = 0.2*17/(17+17+54+0) Moments in column 562.7 562.8 562.4*2*8. (1.0 0.0 = 0.20.2 0.6*0.7 0.4*109.1 0.0 100.6).0/ (1.4*15. (1.0)*2*5.0 = 0.0 +12.1 0.0 0.0 0.0 +0.8*17/(17+17+34+34) 7.4 80.0 +0.0 0.4 80.0 0.0).0/8 15.0 0.0 0.0 +0.4 19.6)] MAX[abs(562.7*2*5.6 108.0 = 0.0 0.0)*2*8.4 80.6*0.0 0.6*0.0).0*0/(0+0+0+0) 0.0 +0.6 108.6*80.1 0.0 0.0 0.abs(0.4+1.abs(0.0).0 +0.4+1.2 0.0*0/(0+0+0+0) Mxx col above kNm about x-xcol below kNm 0.7 0.0 +0.0 +0.0 0.0 0.0 +9.0 0.0 0.0 109.0-0.0)*2*5.20.20.5 +3.0 +9.abs(0.0-0.7*2*5.4-19.6 27.6*0.4 80.0 +0.0 +0.419. 0/8 0/8 0/8 FIXED END MOMENTS 4 3 15.0 +12.7*2*5.2*17/(17+17+54+0) 562.1 0.0 100.4 218.6 27.0 +0.8 562.0).0/ (1.3 1.0/8 (1.1 0.2 7.2 0.0 0.4*15.0 15.0)*2*5.1 0.0/ 8 8 15.0 0.2 7.0 +12.0 0.8*17/(17+17+34+34) 7.0 +0.7 562.0 +0.0 0.3 1.0 +0.0)*2*8.6 108.0)*2*8.4 80.4 218.0 +0.4*2*8.2*17/(17+17+54+0) 562.2*17/(17+17+54+0) 562.419.0)*2*5.0 0.abs(0.0 +0.0 Mxx col above kNm about x-xcol below kNm 562.5 +3.0 = 0.0 Location Edge Column B1 2 = = = = = = = = 1 = = = = = = = = 0.6 27.0 15.3 1.0 15.7+1.0 0.4 19.0/ (1.0 134.6*0.3 1.0 +0.4*15.abs(27.0 15.0-218.6 108.0 0.5 +3.0 0.0 +0.4 80.4*15.4*15.0 +0.0 +0.419.4 218.abs(0.7*2*5.0 +0.6 108.6 27.6).0).2*17/(17+17+54+0) 562.0/8 (1.0/8 (1.0 0.0 +0.0 0.0 0.4*109.4+1.5 +3.0 +0.7*2*5.0 0.7 0.8*17/(17+17+34+34) 7.0).0 0.4 19.0/8 109.0 19.0 0.4*15.0 +0.0 0.0 TOTAL LOADS 5 = = = = = = = = 0.1 0.0 0.0 15.5 +3.8 562.7 0.0 100.7+1.4 218.0 +0.0/ 8 8 8 109.abs(27.abs(0.0 +0.0 0.0 (akin to D&D) 0.0)] MAX[abs(0.3 1.7 0.0/ (1.0 +12.7)] MAX[abs(27.0 0.0 0.0 0.0 = 0.0)*2*5.0 +0.0 0.4-19.0 0.0)*2*5.0 0.0 0.7*2*5.0)] MAX[abs(0.0/8 109.0-0.0).0 +0.2 7.0 0.6*80.0)*2*5.0 0. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Job No R68 28-Nov-08 © 1999 BCA for RCC Location Edge TOTAL LOADS A-B B-C 1-2 n/a ie A-B B-C 1-2 n/a Gk Qk Gk Qk Gk Qk Gk Qk kN kN kN kN kN kN kN kN 7 = = = = = = = = Gk Qk Gk Qk Gk Qk Gk Qk kN kN kN kN kN kN kN kN 15.6 108.0).0 +0.4*2*8.abs(27.0 0.0 +0.7 0.4*109.0 109.0/8 (1.0 0.7)] MAX[abs(27.0 +12.0 0.6)] MAX[abs(562.7)] MAX[abs(27.0/ 8 8 109.20.0)*2*8.8*17/(17+17+34+34) 7.6 27.6*0.2*0/(0+17+54+0) 562.0 +0.7 562.00.4*109.2*17/(17+17+54+0) 0.0 0.7+1.0 +0.0 +0.2*17/(0+17+54+0) 562.6 0.8 562.6*0.0 +0.4-19.419.0 15.0 0.0 +0.0 100.0 = 0.3 1.0 MAX[abs(562.0 +0.0*0/(0+0+0+0) 0.0 19.0/8 15.0 +0.6)] MAX[abs(562.0 0.6 108.7 0.abs(27.4 218.0 +0.20.6 27.3 1.0 0.xls 11/28/200803:42:23 p5 .0 +0.7*2*5.4-19.0*0/(0+0+0+0) 0.7 562.0 0.0 0.0 +0.419.20.8 562.0 109.0 0.6*0.0 +0.419.abs(0.2 0.0)*2*5.6).0 +0.3 0.2 7.0 0.2 7.3 1.0 0.4+1.0 +0.4+1.8*17/(17+17+34+34) 7.0/8 15.0/8 15.0*0/(0+0+0+0) 0.7 0.4*15.4*15.7 562.6)] MAX[abs(562.419.0 0.00.0 +0.0 +0.0 +0.6*0.0 0.0 +9.6).0 +12.0/8 15. 500 0.0021 0.0000 0.0034 0.072 0.000 0.648 0.342 0.0094 0.1126 0.000 0.0031 0.018 0.000 0.0017 0.823 0.000 5.0063 0.0000 0.0997 0.000 T-beam 0.648 0.000 0.700 0.648 0.0011 0.0000 0.000 0.000 0.000 0.0000 0.0050 0.300 0.350 0.0031 0.0031 0.0017 0.000 0.000 0.169 0.0000 0.150 0.000 0.0000 0.038 0.0086 0.000 0.0000 0.000 0.0011 0.0997 0.000536 0.000 0.00E+00 0.0997 0.0007 0.0050 0.000 0.823 0.000342 0.000 0.000 0.000 0.648 0.018 0.169 0.0000 0.0000 0.0000 0.0007 0.000000 0.000 0.000 0.000000 0.0000 0.0000 0.823 0.0000 0.0032 0.000000 0.000 0.0031 0.0000 0.000 0.000 0.000 0.0011 0.0034 0.000 5.000 5.000 0.018 0.0050 0.000000 0.000 0.0997 0.105 0.000 0.000 0.0050 0.300 0.536 0.000 0.0011 0.0034 0.000 0.0032 0.000000 0.0000 0.0000 0.0000 0.000 0.000683 0.648 0.175 3.000536 0.300 0.175 3.1688 0.001072 0.000 5.0000 0.000 0.000536 0.350 0.0000 0.0017 0.000 0.0000 0.0011 0.000 0.300 0.000 0.000 0.700 0.000 0.300 0.0086 0.0000 slab depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.0000 0.057 0.175 3.300 0.057 0.0000 0.000 0.0000 0.018 0.057 0.105 0.000 0.000 0.0000 0.000 5.000000 0.0997 0.0034 0.0000 0.0086 0.648 0.700 0.072 0.0000 0.000 0.0000 0.018 0.0000 0.648 0.0034 0.175 3.000 0.0011 0.0000 0.000 5.0017 0.000000 0.536 0.000000 0.0000 0.0000 0.000342 0.000683 0.0000 0.0017 0.350 0.000 0.0000 0.1688 0.350 0.000 0.000 0.105 0.0094 0.300 0.000000 0.0000 0.057 0.0031 0.175 3.1688 0.300 0.000000 0.000 0.018 0.150 0.0000 0.0000 depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.0032 0.001072 0.000 0.823 0.350 0.000 0.342 0.0000 0.0021 0.0000 0.057 0.000 0.350 0.0007 0.0000 0.700 0.175 3.001072 0.105 0.0021 0.0000 0.000 0.0050 0.0000 Beam depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.1688 0.000 0.1126 0.000000 0.000 5.000 0.000000 0.038 0.0000 0.000000 0.0000 0.300 0.0011 0.000 about yyI kupper klower m4 dm3 dm3 0.000000 0.000 0.000 0.000 0.000 7 6 5 4 3 2 1 8.0017 0.0000 0.000 5.0997 0.0000 0.000 0.000 0.000 0.072 0.0000 0.342 0.175 4.0000 0.169 0.169 0.0007 0.300 0.342 0.018 0.700 0.0032 0.0031 0.0032 0.0997 0.000 0.1688 0.000 5.0063 0.000 0.000683 0.000 0.175 4.169 0.0000 0.000342 0.000 0.0000 0.000 0.0000 Beam depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.000 8.105 0.0000 0.000342 0.169 0.105 0.350 0.001072 0.000 0.000 slab depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.342 0.0000 0.000 0.000 5.648 0.700 0.000000 0.000000 0.000 0.000 0.0000 0.0032 0.0000 0.000 5.000 0.500 0.000683 0.1126 0.000 0.0000 0.0000 0.0000 0.0007 0.0000 0.342 0.150 0.000536 0.0011 0.0000 Beam depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.000 0.000 T-beam Ybar Ina k k/2 k/2 Level 1-2 Span Job No R68 B-C Span 7 6 5 4 3 2 1 5.175 3.150 0.038 0.0094 0.000 5.000 0.0000 0.000 0.0086 0.038 0.000683 0.0063 0.000 0.018 0.0032 0.0000 0.0007 0.342 0.0000 0.000000 0.700 0.350 0.000 0.000 0.169 0.342 0.xls on CD © 1999 BCA for RCC Level 7 A-B Span slab Beam 6 5 4 3 2 1 Level 5.648 0.700 0.000 slab depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.648 0.700 0.0032 0.0050 0.038 0.0034 0.000000 0.0000 0.0034 0.000 0.0000 0.700 0.700 0.0000 0.105 0.700 0.000 0.0000 0.000342 0.000683 0.536 0.000 0.018 0.0050 0.000000 0.700 0.000 5.0032 0.500 0.0000 0.0000 0.0000 0.0094 0.000683 0.0000 0.000 0.000 0.0050 0.000 0.000 0.000 0.105 0.175 3.000 0.169 0.072 0.000342 0.000683 0.000 0.1688 0.0000 0.000 0.0050 0.0021 0.000 0.000000 0.0032 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.0063 0.350 0.000 0.0000 0.169 0.000683 0.00E+00 0.000 0.0997 0.0017 0.000 0.000 0.000 0.000 0.0031 0.000 8.057 0.0021 0.0000 m4 m4 m3 m3 dm3 0.000 0.000 0.000 depth width (o/a) A Ay Ay^2 Ina m m m2 m3 m4 m4 0.000 0.000 0.0017 0.0000 0.300 0.000000 0.0034 0.0050 0.700 0.0034 0.000 0.000000 0.700 0.700 0.000 0.000 0.0007 0.000 0.300 0.000342 0.0007 0.000 0.000 0.000 0.0017 0.000000 0.0000 0.018 0.175 4.000 0.0032 0.018 0.0034 0.000 0.700 0.175 3.1126 0.0997 0.0063 0.0000 0.000 0.0000 0.000 0.0011 0.000 0.350 0.823 0.175 3.000000 0.000 8.0086 0.0000 m4 m4 m3 m3 dm3 0.175 4.0050 0.000 0.0000 0.0007 0.1126 0.0017 0.1126 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.169 0.000 0.000 0.0017 0.0063 0.700 0.000 0.0000 0.000683 0.000 0.072 0.0034 0.000 0.000 0.0997 0.0000 0.0000 0.000 0.0086 0.350 0.000 0.000 0.0017 0.0000 0.000 0.000 Level 7 6 5 4 3 2 1 0.000 0.000683 0.00E+00 0.0000 0.000000 0.000 0.000 0.0997 0.648 0.000 0.700 0.000 0.300 0.000 0.300 0.057 0.000 0.000 0.342 0.0000 0.0007 0.300 0.0997 0.000536 0.000 0.000 0.0034 0.0000 0.000342 0.0000 0.169 0.0007 0.000000 0.0000 0.350 0.105 0.1688 0.038 0.0000 0.000 0.1688 0.000 0.000683 0.000 0.0050 0.000536 0.000 0.0997 0.038 0.000 0.0000 0.648 0.072 0.0000 0.0000 0.000 0.00E+00 0.000 5.1126 0.000 0.175 3.300 0.648 0.0050 0.000 5.175 3.000 0.0000 0.000 5.0000 0.000000 0.0032 0.536 0.0011 0.057 0.1688 0.000000 0.000 5.000342 0.1688 0.0000 0.0094 0.500 0.000 0.0000 0.000 0.0000 0.0000 0.000 T-beam Ybar Ina k k/2 k/2 Ybar Ina k k/2 k/2 m4 m4 m3 m3 dm3 COLUMN STIFFNESSES 10695684.000000 0.000 0.Project Spreadsheets to BS 8110 LocationEdge Column B1 Made by rmw (akin to D&D) BEAM/SLAB & COLUMN STIFFNESSES 28-Nov-08 p1 OF 1 COLUMN LOAD TAKE DOWN & DESIGN FOR SYMMETRICALLY REINFORCED RECT.700 0.0000 0.0000 0.0000 0.0000 0.105 0.150 0.00E+00 0.536 0.057 0.0000 0.057 0.150 0.1688 0.000000 0.000342 0.000 0.000 0.0011 0.175 3.000 0.0007 0.0000 0.000 0.000 8.000 0.000 0.000683 0.0017 0.0000 0.300 0.000000 0.000 0.000 0.000 0.105 0.000 0.105 0.000 T-beam 0.000 0.0011 0.000 8.0000 0.0997 0.018 0.000 5.000000 0.0094 0.000 0.169 0.000 0.0000 0.000 0.500 0.150 0.000342 0.000 0.057 0.342 0.000342 0.0000 0.500 0.342 0.0000 0.000 0.0007 0.0034 0.000 0.000 0.0086 0.001072 0.350 0.057 0.0000 0.00E+00 0.072 0.342 0.175 4.0050 0.0007 0.175 4.000 0.000 0.300 0.000 0. COLUMNS BENT ABOUT TWO AXES TO BS 8110:1997 Originated from RCC51.000 0.000342 0.000 0.0032 0.000 8.018 0.0000 0.0000 0.342 0.0000 0.0021 0.105 0.536 0.0000 0.500 0.342 0.000683 0.823 0.300 0.1688 0.xls LEVEL 7 to 6 6 to 5 5 to 4 4 to 3 3 to 2 2 to 1 Below 1 about xxI kupper klower m4 dm3 dm3 0.536 0.0000 0.700 0.0017 0.000 0.0011 0.0000 0.169 0.0011 0.0000 0.000 0.175 4.000 0.648 0.0034 0.000 0.823 0.001072 0.000342 0.000 0.000 0.175 3.0063 0.0000 0.0000 0.000 0.057 0.000 0.000 0 n/a Ybar Ina k k/2 k/2 m4 m4 m3 m3 dm3 0.105 0.350 0.000 5.0094 0.0032 0.000 Span 0.300 0.000536 0.000 0.0021 0.000 0.000 11/28/2008 6 .0000 0.300 0.001072 0.169 0.018 0.057 0. This spreadsheet should be used in compliance with the accompanying publication 'Spread concrete design to BS 8110 and EC2' available from British Cement Association. Status of spreadsheet Public release version. Includes β version comments . suppl advisors. No liability (including that for negligence) for any from such advice or information is accepted by the BCA.xls Date Version 06-Aug-99 RCC51 v1. Users should note that all BCA software and publications are subject to revision f time and should therefore ensure that they are in possession of the latest version.0 Action First public release.Disclaimer All advice or information from the British Cement Association and/or Reinforced Concrete C intended for those who will evaluate the significance and limitations of its contents and tak responsibility for its use and application. Berkshire RG45 6YS. Telford Ave Crowthorne. Revision history RCC51 Column Load Take-down & Design. RCC or their subcontractors. RCC or their subcontractors. Telford Avenue. the accompanying publication 'Spreadsheets for British Cement Association.ociation and/or Reinforced Concrete Council is and limitations of its contents and take (including that for negligence) for any loss resulting CA. suppliers or d publications are subject to revision from time to ssession of the latest version. own & Design.xls Size (kB) 411 . Documents Similar To 8495905 Rcc51 Column Load Takedown DesignSkip carouselcarousel previouscarousel nextRCC51 Column Load Take-Down & DesignColumn 1EN(920)Design and Detailing of a BuildingRCC51Structural Theory Iar_up_TM 5-856-5A Comparative Study of Various Empirical Methods to Estimate the Factor of Safety of Coal PillarsBuckling 95Rc Columns Ppt HandoutPipes - MomentCaltran Chapter 21 Seismic Design 2015Failure of Engineering StructuresStability VirtualLabETABSPart 3DESIGN AND CONSTRUCTION OF MACHINE FOUNDATIONS -CODE OF PRACTICE PART 3 FOUNDATIONS FOR ROTARY TYPE MACHINES (MEDIUM AND HIGH FREQUENCY)AB1ReleasenotesFoundations1Http Www.asdipsoft.com Wallsa3 2 10Buckling analysisLab 3 Sheet Buckling-21Sep11Two Way SlabsNUMERICAL EXAMPLE OF ANNULAR RAFTChimney CoNmputation RAFTBracingIsolated Footing UniaxialMconnect Folder EngMore From Sohaib AnwarSkip carouselcarousel previouscarousel nextWorld's Oldest Digital Computer Gets a RebootPile Geotech Design[Engineersdaily.com]Modelling Structures as Systems of SpringsElasticity of comFlood Hazardelasticity of concrete(www.engineersdaily.com)BBS for Box Type CulvertHeat TransferCold Weather ConcretingFrame Analysis EngineersdailyStructures Books Collection13792648 Design of FootingsWww.engineersdaily.com 2011 04 Seismic InstrumentsWww.engineersdaily.com 2011 05 Placing of ConcreteWww.engineersdaily.com 2011 05 Richter Scale Magnitude Calculation Of3 Dimensional Static and Dynamic Analysis StructuresWww.engineersdaily.com 2011 04 Types of Excavationseismedelasticity of concrete(www.engineersdaily.com)Quran OrgWww.engineersdaily.com 2011 04 Earthquake Natural DisasterFooter MenuBack To TopAboutAbout ScribdPressOur blogJoin our team!Contact UsJoin todayInvite FriendsGiftsLegalTermsPrivacyCopyrightSupportHelp / FAQAccessibilityPurchase helpAdChoicesPublishersSocial MediaCopyright © 2018 Scribd Inc. .Browse Books.Site Directory.Site Language: English中文EspañolالعربيةPortuguês日本語DeutschFrançaisTurkceРусский языкTiếng việtJęzyk polskiBahasa indonesiaSign up to vote on this titleUsefulNot usefulYou're Reading a Free PreviewDownloadClose DialogAre you sure?This action might not be possible to undo. Are you sure you want to continue?CANCELOK
Report "8495905 Rcc51 Column Load Takedown Design"
×
Please fill this form, we will try to respond as soon as possible.
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Copyright © 2024 DOKUMEN.SITE Inc.