1S3A43_19-11-10_XVyEV-EN



Comments



Description

......Start up guide Specification and installation S I E I D r i v e Brushless Servodrive XVy-EV Thank you for choosing this Gefran product. We will be glad to receive any possible information which could help us improving this manual. The e-mail address is the following: [email protected]. Before using the product, read the safety instruction section carefully.) Keep the manual in a safe place and available to engineering and installation personnel during the product functioning period. Gefran Spa has the right to modify products, data and dimensions without notice. The data can only be used for the product description and they can not be understood as legally stated properties. All rights reserved. This manual is updated according to software version 4.40. NOTE! Refer to the “Drive programmation with MDPlc” (inside the XVy tools cd-rom) to use the drive with the Plc function in the dedicated MDPlc development environment. The identification number of the software version can be read on the inverter nameplate or on the label on the FLASH memories mounted on the regulation card. SIEIDrive - XVy-EV User’s Guide Table of Contents • 3 Tables of Contents Safety Symbol Legend - Precautions de securité ........................................................... 8 Chapter 0 - Safety Precautions ........................................................................................ 9 Chapter 1 - Functions and General Features .................................................................. 15 1.1 Motors and Encoders ............................................................................................................... 17 1.1.1 Motors ..................................................................................................................................................... 17 Chapter 2 - Inspection Procedures, Components Identification and Standard Specifications ................................................................................................ 18 2.1 Delivery Inspection Procedures ............................................................................................... 18 2.1.1 General .................................................................................................................................................... 18 2.1.2 Drive type designation ............................................................................................................................. 19 2.1.3 Nameplate ............................................................................................................................................... 20 2.2 Component identification ......................................................................................................... 21 2.3 Standard specifications ........................................................................................................... 23 2.3.1 Permissible environmental conditions .................................................................................................... 23 Disposal of the Device ...................................................................................................................................... 24 2.3.2 AC Input/Output Connection ..................................................................................................................... 24 2.3.3 Rated and overload currents .................................................................................................................... 26 I x T Algorithm................................................................................................................................................. 27 I2T Algorithm ................................................................................................................................................. 30 Chapter 3 - Installation Guidelines ................................................................................. 34 3.1 Mechanical Specification ........................................................................................................ 34 3.2 Watts Loss, Heat Dissipation, Internal Fans and Minimum Cabinet Opening Suggested for the Cooling ................................................................................................................................... 38 3.2.1 Cooling Fans Power Supply...................................................................................................................... 39 3.3 Installation Mounting Clearance .............................................................................................. 40 Chapter 4 - Wiring Procedure ......................................................................................... 41 4.1 Accessing the Connectors (IP20 models) ................................................................................ 41 4.1.1 Removing the Covers ............................................................................................................................... 41 4.1.2. Wiring Suggestion .................................................................................................................................. 42 4.2 Power Section ......................................................................................................................... 43 4.2.1 Terminal Assignment on Power Section / Cable Cross-Section ............................................................... 43 4.3 Regulation Section ................................................................................................................... 46 4.3.1 R-XVy-EV Regulation Card ....................................................................................................................... 46 4.3.2 Terminal Assignments on Regulation Section ......................................................................................... 48 4.4 Feedback Devices .................................................................................................................... 51 4.4.1 XE Connector Assignments ..................................................................................................................... 52 4.4.2 XER Encoder Connector Assignments (for auxiliary encoders) ................................................................ 52 4.4.3 Feedback /Drive Connections .................................................................................................................. 53 4.3.3.1 Resolver Connections (RES) ............................................................................................................... 53 4.4.3.2 Sinusoidal Encoder SinCos Connections (SESC) ................................................................................. 53 4.4.3.3 Digital Encoder with Hall Effect Sensors Connections (DEHS) .............................................................. 54 4.4.3.4 Absolute Encoder Connections (SSi / EnDat /Hiperface protocols) ....................................................... 55 4.4.3.5 Encoder /Resolver Specifications (XE connector) ................................................................................ 55 4.4.3.6 Encoder Simulation / Repetition, Auxiliary Encoder Input (XER/EXP Connector) ................................... 56 4.4.4 Encoder Cable Length .............................................................................................................................. 57 4.4.5 Checking Encoder / Drive Connections .................................................................................................... 58 4.5 CANopen Connection............................................................................................................... 59 4 • Table of Contents SIEIDrive - XVy-EV User’s Guide 4.6 Fast Link Connections .............................................................................................................. 60 4.6.1 Fast Link Data .......................................................................................................................................... 60 4.7 Serial Interface......................................................................................................................... 61 4.7.1 Serial Interface Description...................................................................................................................... 61 4.7.2 RS 485 Serial Interface Connector Description ........................................................................................ 62 4.8 Standard Connection Diagram ................................................................................................. 63 4.8.1 XVy-EV Connections ................................................................................................................................ 63 4.8.2 Parallel Connection on the AC (Input) and DC (Intermediate Circuit) Side of Several Drives ................... 65 4.9 Circuit Protection ..................................................................................................................... 66 4.9.1 External Fuses for the Power Section ...................................................................................................... 66 4.9.2 External Fuses for the Power Section DC Input Side ................................................................................ 67 4.9.3 Internal Fuses .......................................................................................................................................... 68 4.10 Chokes / Filters ...................................................................................................................... 68 4.10.1 AC Input Chokes .................................................................................................................................... 69 4.10.2 Output Chokes ........................................................................................................................................ 69 4.10.3 Interference Suppression Filters ............................................................................................................ 71 4.11 Braking Units .......................................................................................................................... 73 4.11.1 Internal Braking Unit .............................................................................................................................. 73 4.11.2 Internal and External Braking Resistors ................................................................................................. 74 4.11.3 Control of the External Braking Power .................................................................................................... 78 4.11.4 External Resistance Interaction with the System Parameters .............................................................. 78 4.11.5 Choice of the Thermal Relay for Brake Resistor ..................................................................................... 78 4.12 Buffering the Regulator Supply .............................................................................................. 80 4.13 Discharge Time of the DC-Link ............................................................................................... 82 Chapter 5 - Sizing Criteria ............................................................................................... 83 5.1 Motor Check ............................................................................................................................ 84 5.2 Check of the Drive Size ............................................................................................................ 85 5.3 Application Example: Flying Cut .............................................................................................. 86 Chapter 6 - Maintenance................................................................................................. 88 6.1 Care ......................................................................................................................................... 88 6.2 Service..................................................................................................................................... 88 6.3 Repairs ..................................................................................................................................... 88 6.4 Customer Service .................................................................................................................... 88 Chapter 7 - Settings and Commissioning ....................................................................... 89 7.1 PC Configurator ........................................................................................................................ 89 7.2 Commissioning......................................................................................................................... 89 7.2.1 Connection with the PC............................................................................................................................ 89 7.2.2 Essential Parameters Set up ................................................................................................................... 92 7.2.3 Speed Mode Configuration Example ......................................................................................................... 93 7.2.4 Position Mode Configuration Example ..................................................................................................... 94 7.2.5 Electrical Line Shaft Mode Configuration Example ................................................................................... 95 7.3 Download Firmware................................................................................................................. 96 7.4 Automatic Electric Phasing Procedure for Encoder/Resolver .................................................. 97 Chapter 8 - Keypad Operation ......................................................................................... 99 8.1 Keypad Description .................................................................................................................. 99 8.1.1 LED .......................................................................................................................................................... 99 8.1.2 Function Keys ........................................................................................................................................ 100 8.1.3 Display - Using keypad .......................................................................................................................... 101 8.2 Keypad operations ................................................................................................................. 102 SIEIDrive - XVy-EV User’s Guide Table of Contents • 5 8.2.1 Errors ..................................................................................................................................................... 104 8.3 Alarms and Errors Handling ................................................................................................... 105 8.3.1 Alarms (Failure register) ....................................................................................................................... 105 8.3.2 Alarm description .................................................................................................................................. 106 8.4 Saving drive parameters on the keypad ................................................................................ 109 8.4.1 Configuring the drive using parameters saved on the keypad ................................................................ 109 Chapter 9 - Block Diagrams .......................................................................................... 111 Chapter 10 - Parameters and Functions ....................................................................... 115 10.1 Parameters menu ................................................................................................................. 115 10.2 Legend ................................................................................................................................. 117 10.3 Parameters Description and Functions ................................................................................. 118 MONITOR .......................................................................................................................................... 118 SAVE / LOAD PAR ............................................................................................................................. 119 DRIVE CONFIG ................................................................................................................................... 120 MOTOR DATA .................................................................................................................................... 123 ENCODER PARAM ............................................................................................................................. 123 RAMP ............................................................................................................................................... 127 SPEED ............................................................................................................................................... 128 SPD / POS GAIN ................................................................................................................................ 129 TORQUE ............................................................................................................................................. 130 CURRENT GAINS ............................................................................................................................... 132 FLUX ................................................................................................................................................. 132 DIGITAL INPUTS ................................................................................................................................ 132 DIGITAL OUTPUTS ............................................................................................................................. 140 ANALOG INPUTS .............................................................................................................................. 146 ANALOG OUTPUTS ........................................................................................................................... 148 ENC REPETITION ............................................................................................................................... 150 JOG FUNCTION.................................................................................................................................. 151 MULTISPEED ..................................................................................................................................... 151 MULTIRAMP ..................................................................................................................................... 153 SPEED DRAW ................................................................................................................................... 154 MOTOR POT ....................................................................................................................................... 155 BRAKE CONTROL ............................................................................................................................... 157 POWERLOSS ..................................................................................................................................... 157 POSITION .......................................................................................................................................... 159 EL LINE SHAFT .................................................................................................................................. 181 BRAKING RES .................................................................................................................................... 185 ALARMS ........................................................................................................................................... 185 FIELDBUS .......................................................................................................................................... 189 ENABLE KEYS .................................................................................................................................... 201 TUNING ............................................................................................................................................. 202 KEYPAD PSW .................................................................................................................................... 203 SERVICE ............................................................................................................................................ 204 Chapter 11 - Parameters Index..................................................................................... 210 IPA ............................................................................................................................................... 210 Chapter 12 - Motor Cables ............................................................................................ 221 Appendix - Field bus and serial interface ..................................................................... 233 1.0 Integrated CANopen Interface ............................................................................................. 233 1.1 CANopen Functions ............................................................................................................... 233 1.1.1 Pre-defined Master/Slave Connection ................................................................................................... 233 1.1.2 NMT Services (Network Management) ................................................................................................. 233 6 • Table of Contents SIEIDrive - XVy-EV User’s Guide 1.1.3 Initialization............................................................................................................................................ 234 1.1.4 Communication Object .......................................................................................................................... 234 1.1.5 Object Dictionary Elements .................................................................................................................... 235 1.1.6 Rx PDO Entries ....................................................................................................................................... 235 1.1.7 Tx PDO Entries ....................................................................................................................................... 236 1.1.8 SDO Entries ............................................................................................................................................ 236 1.1.9 COB-ID SYNC Entries .............................................................................................................................. 236 1.1.10 COB-ID Emergency ............................................................................................................................... 237 1.2 CANopen Management ......................................................................................................... 237 1.3 Process Data Channel Control ............................................................................................... 238 1.3.1 PDC Input Configuration (FB XXX MS Parameter) .................................................................................. 239 1.3.2 PDC Output Configuration (FB XXX SM Parameter) ................................................................................ 240 1.3.3 Use of the PDC in MDPlc Applications .................................................................................................. 240 1.4 SDO Management ................................................................................................................. 240 1.5 Alarms ................................................................................................................................... 242 2.0 Modbus ................................................................................................................................ 243 2.1 Modbus Functions ................................................................................................................. 243 2.2 Error Management ................................................................................................................. 243 2.2.1 Exception codes ..................................................................................................................................... 243 2.3 System Configuration............................................................................................................. 244 2.4 Appendix - Register and Coil Modbus Tables ........................................................................ 244 2.5 Modbus example ................................................................................................................... 244 03 Read Output register : .............................................................................................................................. 244 06 Preset single register : ............................................................................................................................. 245 16 Preset multiple registers : ........................................................................................................................ 246 3.0 DeviceNet Interface (XVy-DN) ............................................................................................ 247 3.1 DeviceNet General Description .............................................................................................. 247 3.2 Connection ............................................................................................................................. 247 3.3 Leds ....................................................................................................................................... 247 3.4 Interface ................................................................................................................................. 248 3.5 DeviceNet Function ............................................................................................................... 248 3.6 Object description .................................................................................................................. 248 3.6.1 Object Model .......................................................................................................................................... 249 3.6.2 How Objects Affect Behavior ................................................................................................................. 249 3.6.3 Defining Object Interface ........................................................................................................................ 249 3.7 Data transfert via Explicit Messaging .................................................................................... 250 3.7.1 Drive Parameter Access ........................................................................................................................ 250 3.7.1.1 Class Code ........................................................................................................................................ 250 3.7.1.2 Class attributes ................................................................................................................................. 250 3.7.1.3 Instance Attributes ............................................................................................................................ 250 3.7.1.4 Common Services ............................................................................................................................. 250 3.7.1.5 Object Specific Services ................................................................................................................... 250 3.7.1.6 Behavior ........................................................................................................................................... 250 3.7.2 Drive Parameter Access ........................................................................................................................ 251 3.7.2.1 Class Code ........................................................................................................................................ 251 3.7.2.2 Class attributes ................................................................................................................................. 251 3.7.2.3 Instance Attributes ............................................................................................................................ 251 3.7.2.4 Common Services ............................................................................................................................. 251 3.7.2.5 Object Specific Services ................................................................................................................... 252 3.7.2.6 Behavior ........................................................................................................................................... 252 3.8 Polling Function ..................................................................................................................... 256 SIEIDrive - XVy-EV User’s Guide Table of Contents • 7 3.9 XVy-DN Interface configuration ............................................................................................. 256 3.9.1 Fieldbus Menu ....................................................................................................................................... 256 3.9.2 Error Codes ............................................................................................................................................ 256 3.10 Alarms ................................................................................................................................. 257 3.10.1 XVy-DN Alarms .................................................................................................................................... 257 3.10.2 Drive alarm handling ............................................................................................................................ 257 3.10.3 Alarm reset .......................................................................................................................................... 257 3.11 Process Data Channel Control ............................................................................................. 257 3.11.1 PDC Input Configuration (SYS_FB_XXX_MS parameter) ..................................................................... 258 3.11.2 PDC Output Configuration (SYS_FB_XXX_SM Parameter) .................................................................. 258 3.11.3 Configuration of the Virtual Digital I/Os ............................................................................................... 258 3.11.4 Use of the PDC in MDPlc Applications ................................................................................................. 258 4.0 Fieldbus : Parameter List and Conversion .............................................................. 259 Key ............................................................................................................................................... 259 8 • Chapter 0 Safety SIEIDrive - XVy-EV User’s Guide Safety Symbol Legend - Precautions de securité Indicates a procedure, condition, or statement that, if not strictly observed, could result in personal injury or death. Indique le mode d'utilisation, la procédure et la condition d'exploitation. Si ces consignes ne sont pas strictement respectées, il y a des risques de blessures corporelles ou de mort. Indicates a procedure, condition, or statement that, if not strictly observed, could result in damage to or destruction of equipment. Indique et le mode d'utilisation, la procédure et la condition d'exploitation. Si ces consignes ne sont pas strictement respectées, il y a des risques de détérioration ou de destruction des appareils Indicates a procedure, condition, or statement that should be be strictly followed in order to optimize these applications. Indique le mode d'utilisation, la procédure et la condition d'exploitation. Ces consignes doivent être rigoureusement respectées pour optimiser ces applications.. NOTE! Indicates an essential or important procedure, condition, or statement. Indique un mode d'utilisation, de procédure et de condition d'exploitation essentiels ou importants Warning Caution Attention SIEIDrive - XVy-EV User’s Guide Chapter 0 Safety • 9 Chapter 0 - Safety Precautions According to the EEC standards the SIEIDrive - XVy-EV and ac- cessories must be used only after checking that the machine has been produced using those safety devices required by the 89/392/EEC set of rules, as far as the machine industry is concerned. These standards do not apply in the Americas, but may need to be considered in equipment being shipped to Europe. Drive systems cause mechanical motion. It is the responsibility of the user to insure that any such motion does not result in an unsafe condition. Factory provided interlocks and operating limits should not be bypassed or modified. Selon les normes EEC, les drives SIEIDrive - XVy-EV et leurs accessoires doivent être employés seulement après avoir verifié que la machine ait été produit avec les même dispositifs de sécurité demandés par la réglementation 89/392/EEC concernant le secteur de l’industrie. Les systèmes provoquent des mouvements mécaniques. L’utilisateur est responsable de la sécurité concernant les mouvements mécaniques. Les dispositifs de sécurité prévues par l’usine et les limitations operationelles ne doivent être dépassés ou modifiés. Electrical Shock and Burn Hazard: When using instruments such as oscilloscopes to work on live equipment, the oscilloscope’s chassis should be grounded and a differential amplifier input should be used. Care should be used in the selection of probes and leads and in the adjustment of the oscilloscope so that accurate readings may be made. See instrument manufacturer’s instruction book for proper operation and adjustments to the instrument. Décharge Èlectrique et Risque de Brúlure : Lors de l’utilisation d’instruments (par example oscilloscope) sur des systémes en marche, le chassis de l’oscilloscope doit être relié à la terre et un amplificateur différentiel devrait être utilisé en entrée. Les sondes et conducteurs doivent être choissis avec soin pour effectuer les meilleures mesures à l’aide d’un oscilloscope. Voir le manuel d’instruction pour une utilisation correcte des instruments. Fire and Explosion Hazard: Fires or explosions might result from mounting Drives in hazard- ous areas such as locations where flammable or combustible vapors or dusts are present. Drives should be installed away from hazardous areas, even if used with motors suitable for use in these locations. Risque d’incendies et d’explosions: L’utilisation des drives dans des zônes à risques (présence de vapeurs ou de poussières inflammables), peut provoquer des incendies ou des explosions. Les drives doivent être installés loin des zônes dangeureuses, et équipés de moteurs appropriés. Warning 10 • Chapter 0 Safety SIEIDrive - XVy-EV User’s Guide Strain Hazard: Improper lifting practices can cause serious or fatal injury. Lift only with adequate equipment and trained personnel. Attention à l’Élévation: Une élévation inappropriée peut causer des dommages sérieux ou fatals. Il doit être élevé seulement avec des moyens appropriés et par du personnel qualifié. Drives and motors must be ground connected according to the NEC. Tous les moteurs et les drives doivent être mis à la terre selon le Code Electrique National ou équivalent. Replace all covers before applying power to the Drive. Failure to do so may result in death or serious injury. Remettre tous les capots avant de mettre sous tension le drive. Des erreurs peuvent provoquer de sérieux accidents ou même la mort. Adjustable frequency drives are electrical apparatus for use in in- dustrial installations. Parts of the Drives are energized during op- eration. The electrical installation and the opening of the device should therefore only be carried out by qualified personnel. Im- proper installation of motors or Drives may therefore cause the failure of the device as well as serious injury to persons or mate- rial damage. Drive is not equipped with motor overspeed protection logic other than that controlled by software. Follow the instructions given in this manual and observe the local and national safety regulations applicable. Les drives à fréquence variable sont des dispositifs électriques utilisés dans des installations industriels. Une partie des drives sont sous ten- sion pendant l’operation. L’installation électrique et l’ouverture des drives devrait être executé uniquement par du personel qualifié. De mauvaises installations de moteurs ou de drives peuvent provoquer des dommages materiels ou blesser des personnes.On doit suivir les instructions donneés dans ce manuel et observer les régles nationales de sécurité. Always connect the Drive to the protective ground (PE) via the marked connection terminals (PE2) and the housing (PE1). Brushless Drives and AC Input filters have ground discharge currents greater than 3.5 mA. EN 50178 specifies that with discharge currents greater than 3.5 mA the protective conductor ground connection (PE1) must be fixed type and doubled for redundancy. Il faut toujours connecter le variateur à la terre (PE) par les des bornes (PE2) et le châssis (PE1). Le courant de dispersion vers la terre est supérieur à 3,5 mA sur les variateurs Brushless et sur les filtres à courant alterné (CA). Les normes EN 50178 spécifient qu'en cas de courant de dispersion vers la terre, supérieur à 3,5 ma, la mise à la terre (PE1) doit avoir une double connexion pour la redondance. Warning SIEIDrive - XVy-EV User’s Guide Chapter 0 Safety • 11 The drive may cause accidental motion in the event of a failure, even if it is disabled, unless it has been disconnected from the AC input feeder. En cas de panne, le variateur peut causer une mise en marche accidentelle, même s'il est désactivé, sauf s'il a été débranché de l'alimentateur à courant alterné. Never open the device or covers while the AC Input power supply is switched on. Minimum time to wait before working on the ter- minals or inside the device is listed in section 4.10 on Instruction manual . Ne jamais ouvrir l’appareil lorsqu’il est suns tension. Le temps mini- mum d’attente avant de pouvoir travailler sur les bornes ou bien à l’intérieur de l’appareil est indiqué dans la section 4.10. If the front plate has to be removed because of ambient temperature higher than 40 degrees, the user has to ensure that no occasional contact with live parts may occur. Si la plaque frontale doit être enlevée pour un fonctionnement avec la température de l’environnement plus haute que 40°C, l’utilisateur doit s’assurer, par des moyens opportuns, qu’aucun contact occasionnel ne puisse arriver avec les parties sous tension. Do not connect power supply voltage that exceeds the standard specification voltage fluctuation permissible. If excessive voltage is applied to the Drive, damage to the internal components will result. Ne pas raccorder de tension d’alimentation dépassant la fluctuation de tension permise par les normes. Dans le cas d’ une alimentation en tensi on excessi ve, des composants i nternes peuvent être endommagés. Power supply and grounding In case of a three phase supply not symmetrical to ground, an insulation loss of one of the devices connected to the same network can cause functional problem to the drive, if the use of a wye / delta transformer is avoided. 1 Gefran drives are designed to be powered from standard three phase lines that are electrically symmetrical with respect to ground (TN or TT network). 2 In case of supply with IT network, the use of wye/delta transformer is mandatory, with a secondary three phase wiring referred to ground. Please refer to the following connection sample. Do not operate the Drive without the ground wire connected. The motor chassis should be grounded to earth through a ground lead separate from all other equipment ground leads to prevent noise cou- pling. Warning 12 • Chapter 0 Safety SIEIDrive - XVy-EV User’s Guide Ne pas faire fonctionner le drive sans prise de terre. Le chassis du moteur doit être mis à la terre à l’aide d’un connecteur de terre separé des autres pour éviter le couplage des perturbations. Le connecteur de terre devrait être dimensionné selon la norme NEC ou le Canadian Electrical code. The grounding connector shall be sized in accordance with the NEC or Canadian Electrical Code. The connection shall be made by a UL listed or CSA certified closed-loop terminal connector sized for the wire gauge involved. The connector is to be fixed using the crimp tool specified by the connector manufacturer. Le raccordement devrait être fait par un connecteur certifié et mentionné à boucle fermé par les normes CSA et UL et dimensionné pour l’épaisseur du cable correspondant. Le connecteur doit être fixé a l’aide d’un instrument de serrage specifié par le producteur du connecteur. Do not perform a megger test between the Drive terminals or on the control circuit terminals. Ne pas exécuter un test megger entre les bornes du drive ou entre les bornes du circuit de contrôle. Because the ambient temperature greatly affects Drive life and reliability, do not install the Drive in any location that exceeds the allowable temperature. Leave the ventilation cover attached for temperatures of 104° F (40° C) or below. Étant donné que la température ambiante influe sur la vie et la fiabilité du drive, on ne devrait pas installer le drive dans des places ou la temperature permise est dépassée. Laisser le capot de ventilation en place pour températures de 104°F (40°C) ou inférieures. If the Drive’s Fault Alarm is activated, consult the TROUBLE- SHOOTING section of this instruction book, and after correcting the problem, resume operation. Do not reset the alarm automati- cally by external sequence, etc. Caution Safety ground L1 L2 L3 Earth U 1 / L 1 V 1 / L 2 W 1 / L 3 U 2 / T 1 V 2 / T 2 W 2 / T 3 P E 2 / All wires (including motor ground) must be connected inside the motor terminal box A C O U T P U T C H O K E A C M a i n S u p p l y A C I N P U T C H O K E P E 1 / SIEIDrive - XVy-EV User’s Guide Chapter 0 Safety • 13 Si la Fault Alarm du drive est activée, consulter la section du manuel concernant les défauts et après avoir corrigé l’erreur, reprendre l’opération. Ne pas réiniliatiser l’alarme automatiquement par une séquence externe, etc Be sure to remove the desicant dryer packet(s) when unpacking the Drive. (If not removed these packets may become lodged in the fan or air passages and cause the Drive to overheat). Lors du déballage du drive, retirer le sachet déshydraté. (Si celui-ci n’est pas retiré, il empêche la ventilation et provoque une surchauffe du drive). The Drive must be mounted on a wall that is constructed of heat resistant material. While the Drive is operating, the temperature of the Drive's cooling fins can rise to a temperature of 194° F (90°C). Le drive doit être monté sur un mur construit avec des matériaux résistants à la chaleur. Pendant le fonctionnement du drive, la température des ailettes du dissipateur thermique peut arriver à 194°F (90°). Do not touch or damage any components when handling the device. The changing of the isolation gaps or the removing of the isolation and covers is not permissible. Manipuler l’appareil de façon à ne pas toucher ou endommager des parties. Il n’est pas permis de changer les distances d’isolement ou bien d’enlever des matériaux isolants ou des capots. Protect the device from impermissible environmental conditions (temperature, humidity, shock etc.) Protéger l’appareil contre des effets extérieurs non permis (température, humidité, chocs etc.). No voltage should be connected to the output of the drive (terminals U2, V2 W2). The parallel connection of several drives via the outputs and the direct connection of the inputs and outputs (bypass) are not permissible. Aucune tension ne doit être appliquée sur la sortie du convertisseur (bornes U2, V2 et W2). Il n’est pas permis de raccorder la sortie de plusieurs convertisseurs en parallèle, ni d’effectuer une connexion directe de l’entrée avec la sortie du convertisseur (Bypass). A capacitative load (e.g. Var compensation capacitors) should not be connected to the output of the drive (terminals U2, V2, W2). Aucune charge capacitive ne doit être connectée à la sortie du convertisseur (bornes U2, V2 et W2) (par exemple des condensateurs de mise en phase). Caution 14 • Chapter 0 Safety SIEIDrive - XVy-EV User’s Guide The electrical commissioning should only be carried out by quali- fied personnel, who are also responsible for the provision of a suitable ground connection and a protected power supply feeder in accordance with the local and national regulations. The motor must be protected against overloads. La mise en service électrique doit être effectuée par un personnel qualifié. Ce dernier est responsable de l’existence d’une connexion de terre adéquate et d’une protection des câbles d’alimentation selon les pre- scriptions locales et nationales. Le moteur doit être protégé contre la surcharge No dielectric tests should be carried out on parts of the drive. A suitable measuring instrument (internal resistance of at least 10 kO OO OO/ // //V) should be used for measuring the signal voltages. Il ne faut pas éxécuter de tests de rigidité diélectrique sur des parties du convertisseurs. Pour mesurer les tensions, des signaux, il faut utiliser des instruments de mesure appropriés (résistance interne minimale 10 kO/V). NOTE! If the Drives have been stored for longer than two years, the operation of the DC link capacitors may be impaired and must be “reformed”. Before commissioning devices that have been stored for long periods, connect them to a power supply for two hours with no load connected in order to regenerate the capacitors, (the input voltage has to be applied without enabling the drive). En cas de stockage des variateurs pendant plus de trois ans, il est conseillé de contrôler l'état des condensateurs CC avant d'en effectuer le branchement. Avant la mise en service des appareils, ayant été stockés pendant longtemps, il faut alimenter variateurs à vide pendant deux heures, pour régénérer les condensateurs : appliquer une tension d'alimentation sans actionner le variateur . NOTE! The terms “Inverter”, “Controller” and “Drive” are sometimes used interchangably throughout the industry. We will use the term “Drive” in this document. Les mots “Inverter”, “Controller” et “Drive” sont interchangeables dans le domaine industriel. Nous utiliserons dans ce manuel seulement le mot “Drive”. Caution SIEIDrive - XVy-EV User’s Guide Chapter 1 Functions and General Features • 15 Chapter 1 - Functions and General Features SIEIDrive - XVy-EV represents a new concept in motion control technol- ogy; this very fast servodrive based on the DSP (digital signal processor) VECON TM is aimed at providing real-time control of servosystems and it is integrated with versatile and innovative power hardware. SIEIDrive - XVy-EV is an IGBT servodrive particularly suitable for high bandwidth applications with brushless servomotors. Thanks to the innovative software installed on the flash eprom, it can be considered as a combination of a digital drive and a PLC using a special software tool called GF-eXpress. SIEIDrive - XVy-EV features full-digital regulation with a 16KHz cycle, a 5KHz current loop bandwidth, a position loop with zero tracking failure, an analog interface, some dedicated digital interface and I/O expansion. The drive position loop, (PI type) is based on two symmetrical register circuits, which store the desired and the actual information. The PID speed loop (a position loop derivative) and the PID2 acceleration control (a second position loop derivative) are added to increase the accuracy of the controlled axes, both in a feedback and in a feedforward condition. The drive has the following features: • Torque control • Speed control • Position control • Electrical line shaft • PID function. • Brake control. • Flux reduction. • Motor-driven potentiometer • Sequential position control (multi-position controller) • Power interrupt management • Linear motor control • Plc functions with MDPlc dedicated software environment; stand- ard languages according to IEC 61131 • “GF-eXpress” Windows ® configurator via Slink3 protocol • 1 configurable main encoder / resolver input • 1 configurable auxiliary encoder input / encoder repetition / simula- tion output • 2 analog differential inputs (11 bits + sign) • 2 analog outputs (11 bits + sign) • 7 programmable digital inputs • 6 programmable digital outputs • 1 digital relay output 1A 250V • RS485 asynchronous opto-isolated multi-drop serial port • 2 fast synchronous serial ports for a master-slave communications between drives (Fast Link connectors) • Fiber optical communication adapters 16 • Chapter 1 Functions and General Features SIEIDrive - XVy-EV User’s Guide • Standard Fieldbus communication: CANopen and Modbus • IP20 (NEMA 1) protection, book case, removable connectors, serial encoder interface brought out via 1/2 D-sub connectors, ground con- nection screws for shielded cables mounted on board. Options (Maximum one expansion card per drive) • ENC-ADPT card. Encoder connection adapter. Terminals 1 to 15 with point-to-point connection to the VGA-type connector. • EXP-ABS-EV card. Expansion card for absolute encoder with SSI / EnDat (2) and Hyperface (3) protocols. • EXP-FO card. Expansion card for a digital encoder output + 5V. • EXP-E card. Expansion card for a digital encoder output + 5V… +15V / +24V • EXP-D8R4 card. Expansion card for digital I/Os, 8 inputs + 4 outputs. • EXP-D8-120 card. Expansion card for digital I/Os: 12 digital inputs, opto- isolated, 120V, 8 digital outputs, opto-isolated, 15…30V. • EXP-D14-A4F card. Expansion card for digital I/Os, 8 inputs + 6 outputs, 2 analogue inputs ±10V or 0÷20mA or 4÷20mA, 2 analogue outputs ±10V, 1 input in opto-isolated frequency for encoder, channels: A/A-, with +5V or 15..24V, 150kHz max; B/B-, with +5V or 15..24V, 150kHz max; 0/0-, with +5V or 15..24V, 150kHz max; zero reset input (C/C-) with 15...30V. (1) . • EXP-D16 card. Expansion card for digital I/Os: 8 digital outputs, opto- isolated, 15…30V, 8 digital inputs, opto-isolated, 15…30V. • EXP-D20-A6 card. Expansion card for digital I/Os: 12 digital inputs, opto- isolated, 15…30V, 8 digital outputs, opto-isolated, 15…30V, 2 analogue inputs, ±10V / 0…20mA, 2 analogue outputs, ±10V, 2 analogue outputs, 0…20mA. • EXP-F2E card. Expansion card for an opto-isolated encoder input, able to provide the repeat of the encoder data. Channels: A/A-, with +5V or 15..24V, 150kHz max; B/B-, with +5V or 15..24V, 150kHz max; C/C-, with +5V or 15..24V, 150kHz max; zero reset input (QC+ / QC- denied) with 15...30V (1) • EXP-FI card. Opto-isolated encoder input expansion card. Channels: A/A-, with +5V or 15..24V, 150kHz max; B/B-, with +5V or 15..24V, 150kHz max; 0/0-, with +5V or 15..24V, 150kHz max; zero reset input (C/C-) with 15...30V. (1) . • EXP-FIO card. Expansion card for an opto-isolated encoder input, able to provide the repeat of the encoder data. Channels: A/A-, with +5V or 15..24V, 150kHz max; B/B-, with +5V or 15..24V, 150kHz max; 0/0-, with +5V or 15..24V, 150kHz max. (1) . • EXP-FIH card. Opto-isolated encoder input expansion card. Channels: A/A-, with 15..24V, 150kHz max; B/B-, with 15..24V, 150kHz max. (1) . NOTE! (1) If a supplementary type digital encoder is used (A, Anot, B, Bnot), the encoder missing signal is available. (2) Single/multi-turn encoders are managed, with/without incremental tracks and limited number of bits. (3) Only single-turn encoders with incremental tracks are managed SIEIDrive - XVy-EV User’s Guide Chapter 1 Functions and General Features • 17 1.1 Motors and Encoders The SIEIDrive - XVy-EV drives are designed for the field oriented regulation of brushless servomotors. A sinusoidal - digital - absolute encoder or resolver can be used to feedback a signal to the position / speed regulator (see chapter 4.4. for more details). 1.1.1 Motors What motor data is required for connecting the drive? Nameplate specifications - Motor rated voltage - Motor rated current - Number of poles - Motor rated speed - Motor thermal protection type Motor protection Temperature-dependent contacts in the motor winding Temperature-dependent contacts "Klixon" type can be connected directly to the drive via PIN2 and PIN 7 of the XE connectors. Klixon type of sensors must be selected in the MOTOR DATA menu, IPA 20004 = [1] NC Contact. Thermistors PTC thermistors according to DIN 44081 or 44082 fitted in the motor can be connected directly to the drive via PIN 2 and PIN 7 of the XE connector. PTC type of sensor must be selected in the MOTOR DATA menu , IPA 20004 = [0] PTC. NOTE! The motor PTC interface circuit (or Klixon) has to be considered as treated as signal circuit. The connection cables to the motor PTC must be made of twisted pair shielded cable; the cable route should not be parallel to motor cables or it must be separated by at least 20 cm. 18 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide Chapter 2 - Inspection Procedures, Components Identification and Standard Specifications 2.1 Delivery Inspection Procedures 2.1.1 General A high degree of care is taken in packing the SIEIDrive - XVy-EV drives and preparing them for delivery. They should only be transported with suitable transport equipment (see weight data). Observe the instruc- tions printed on the packaging. This also applies when the device is unpacked and installed in the control cabinet. Upon delivery, check the following: • the packaging for any external damage • whether the delivery note matches your order. Open the packaging with suitable tools. Check whether: • any parts were damaged during transport • the device type corresponds to your order In the event of any damage or of an incomplete or incorrect delivery please notify the responsible sales offices immediately. The devices should only be stored in dry rooms within the specified temperature ranges . NOTE! A certain degree of moisture condensation is permissible if this arises from changes in temperature (see section 2.3.1, “Permissible Environ- mental Conditions”). This does not, however, apply when the devices are in operation. Always ensure that there is no moisture condensation in devices that are connected to the power supply! SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 19 2.1.2 Drive type designation The main technical characteristic of the drive are showed in the product code and in the nameplate. I.e. product code: Standard sizes XVy-EV X XX XX-XXX Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms, see table 2.3.3.1) K=Keypad, X=without keypad B=Internal Brake Unit, X= without brake unit Software version Example: XVy-EV10306-KBX Drive type XVy-EV, size 1, rated current 3 A rms, max output current 6 A rms, with keypad, internal braking unit, standard software. Compact sizes (C/CP) XVy-EV X XXX XXX-X-XXX Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms, see table 2.3.3.1) C/CP=compact version K=Keypad, X=without keypad B=Internal Brake Unit, X= without brake unit Software version Example: XVy-EV9470650-C-KBX-IP00 Drive type XVy-EV, size 9, rated current 470 A rms, max output current 650 A rms, with keypad, internal braking unit, standard software, IP00 open housing. Special version XVy-EV X XX XX-XXX-EWHR Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms, see table 2.3.3.1) K=Keypad, X=without keypad B=Internal Brake Unit, X= without brake unit Software version Special version Water Cooled, High Temperature R=With Internal Brake Resistor Example: XVy-EV455110-KBX-EWH Drive type XVy-EV, size 4, rated current 39 A rms, max output current 68 A rms, with keypad, internal braking unit, standard software, water cooled. 20 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide 2.1.3 Nameplate Check that all the data stated in the nameplate enclosed to the drive corre- spond to what has been ordered. Figure 2.1.3.1: Identification nameplate Type: XVy-EV10306-KBX ACservo S/N 02006233 Inp: 230-480Vac (Fctry Set=400) 50/60Hz 3Ph 2.9A@230Vac 2.9A@480Vac With line choke Out : 0-480Vac 0-450Hz 3Ph 1.5kW@480Vac 2Hp@480Vac 3A@230VCont. Serv. 2.6A@480V LISTED INDUSTRIAL CONTROL EQUIPMENT L L Type: Drive model S/N: Serial number Main Power In: Power supply voltage, AC Input current, Frequency Main Power Out: Output voltage, Output current, Output frequency Figure 2.1.3.2: Firmware & Card revision level nameplate Firmware HWrelease S/N 02006233 Prod. Release D F P R S BU SW. CFG CONF 4.000 0.A 0.A 0.A 4.000 A1 Figure 2.1.3.3: Nameplates position SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 21 2.2 Component identification An SIEIDrive - XVy-EV converts the constant voltage and frequency of a three-phase power supply into a direct voltage and then converts this direct voltage into a new three-phase power supply with a variable voltage and frequency. This variable three-phase power supply can be used for infinitely variable adjustment of the speed of brushless servomotors. In the XVy-EV ...-DC versions the rectifier bridge is not included: the drives are powered by DC on the intermediate circuit. Figure 2.2.1: Basic Setup of drive 1 AC Input supply voltage (*) 2 AC Mains choke (*) See section 4.7.1 3 Three-phase rectifier bridge (*) Converts the alternating current into direct current using a three phase full wave bridge. 4 DC intermediate circuit With charging resistor and smoothing capacitor. Direct voltage (U DC ) = √2 x Mains voltage (U LN ) In the XVy-EV ...-DC versions the DC voltage = 600 Vdc. For speed and position feedback (see section 3.4.2). 5 IGBT inverter Converts direct voltage to a variable three-phase alternating voltage with variable frequency. 6 Configurable control section Modules for open-loop and closed-loop control of the power section. This is used for processing control commands, reference values and actual values. 7 Output voltage Three-phase, variable alternating voltage. 8 Feedback For speed feedback (see section 3.4.2). (*) not included in the XVy-EV ...-DC versions. 22 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide Figure 2.2.2: Drive view & components 1. Piana M5 2. Grover M5 3. Fairlead 4. Flamboyanted screw 5. Screw 6...9. Flamboyanted screw 10. Button 11. Cooling fun for type 3-6 and higher 12. Cooling fan IGBT Bridge 13. NTC thermal sensor 14. Bracket 15. Top cover 16. Cover 17. Fan support 18. Plug 19. Fan support 20. Cable entry plate 21. Resistor square 22. Dissipator 23. Hexagonal bar 24. RXVy Regulation card 25. PV33 Power card 26. IGBT Bridge 27. Internal brake resistor 6 Ref. 4 Q.ty SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 23 2.3 Standard specifications 2.3.1 Permissible environmental conditions ENVIRONMENT T A Ambient temperature [°C] __ 0 … +40; +40 ... +50 with derating T A Ambient temperature [°F] ___ 32 … +104; +104 ... +122 with derating Installation location (*) T A Ambient temperature [°C] 0 … +60 with derating (*) T A Ambient temperature [°F] 32 … +140 with derating Installation location (*)Max input water temperature [°C] ___ 30 (*)Max input water temperature [°F] ___ 86 (*) Nominal Flow [L/min] _____ 8 (*) Nominal Flow [Gal/min] ___ 2,11 Installation location _________ Pollution degree 2 or better (free from direct sunlight, vibra- tion, dust, corrosive or inflammable gases, fog, vapour oil and dripped water, avoid saline environment) Degree of protection _________ IP20 (NEMA 1), IP00 (XVy-EV....-IP00 models) IP54 (NEMA 12) for the cabinet with externally mounted heatsink (size type XVy-EV 10306-... to XVy-EV 32550-...) Installation altitude __________ Max 2000 m (6562 feet) above sea level; Above 1000 m (3281 feet) a current reduction of 1.2% for every 100 m (328 feet) of additional height applies. Temperature: operation 1) _________________________ 0…40°C (32°…104°F) operation 2) ________________________ 0…50°C (32°…122°F) storage _________________ -25…+55°C (-13…+131°F), class 1K4 per EN50178 -20…+55°C (-4…+131°F), for devices with keypad transport ________________ -25…+70°C (-13…+158°F), class 2K3 per EN50178 -20…+60°C (-4…+140°F), for devices with keypad Air humidity: operation _______________ 5 % to 85 %, 1 g/m 3 to 25 g/m 3 without moisture condensation or icing (Class 3K3 as per EN50178 storage _________________ 5% to 95 %, 1 g/m 3 to 29 g/m 3 (Class 1K3 as per EN50178) transport ________________ 95 % 3) , 60 g/m 3 4) Air pressure: operation _______________ [kPa] 86 to 106 (class 3K3 as per EN50178) storage _________________ [kPa] 86 to 106 (class 1K4 as per EN50178) transport ________________ [kPa] 70 to 106 (class 2K3 as per EN50178) STANDARD Climatic conditions __________ IEC 68-2 Part 2 and 3 Clearance and creepage ______ EN 50178, UL508C, UL840 degree of pollution 2 Vibration __________________ IEC68-2 Part 6 Interference immunity ________ IEC801 Part 2,3 and 4 EMC compatibility ___________ EN61800-3 (see “EMC Guidelines” instruction book) Approvals __________________ CE, UL, cUL 1) Environment Temp parameter, IPA 20051 = 40°C (104°) Ambient temp = 0 ... 40°C (32°...104°F) Over 40°C: - 2% reduction of the output rated current for each exceeding C°. - remove front plate (better than class 3K3 as per EN50178) 2) Environment Temp parameter, IPA 20051 = 50°C (122°F) Ambient temp = 0 ... 50°C (32°...122°F) Current reduction to 80% of the output rated current Over 40°C (104°): removal of the top cover (better than class 3K3 as per EN50178) 3) Greatest relative air humidity occurs with the temperature @ 40°C (104°F) or if the temperature of the device is brought suddenly from -25 ...+30°C (-13°...+86°F). 4) Greatest absolute air humidity if the device is brought suddenly from 70...15°C (158°...59°F). (*) XVy-EV ... -EWHR 24 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide Disposal of the Device The drive can be disposed as electronic scrap in accordance with the currently valid national regulations for the disposal of electronic parts. The plastic covers of the Drives (up to size XVy-EV 32550-...) are recyclable: the material used is >ABS+PC< . 2.3.2 AC Input/Output Connection The drive must be connected to an AC mains supply capable of delivering a symmetrical short circuit current (at 480V +10% Vmax) lower or equal to the values indicated on following table. For the use of an AC input choke see chapter 4.7.1. No external connection of the regulator power supply to the existing AC Input supply is required since the power supply is taken from the DC Link circuit. When commissioning, set the Mains voltage parameter to the value of the AC Input voltage concerned. This automatically sets the threshold for the Undervoltage alarm at the appropriate level. All drives are capable of operation at 480 Vac, therefore cannot be damaged by connection to lower voltages down to 208Vac. After connection, simply select in the menu the proper line voltage under “Drive Config” NOTE! In some cases AC Input chokes, and possibly noise suppression filters should be fitted on the AC Input side of the device. See chapter “Chokes/ Filters”. Adjustable Frequency Drives and AC Input filters have ground discharge currents greater then 3.5 mA. EN 50178 specifies that with discharge currents greater than 3.5 mA the protective conductor ground connec- tion (PE1) must be fixed type. XVy-EV ...-DC versions In this version, the drive must be powered by a rectified DC supply of 600 Vdc. The use of Gefran SM32 series power supplies is recommended for this, available with an output current from 185 to 2000A. From size XVy-EV 43366, insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance, consult the manual of the power supply unit), see figure 4.8.1.2. SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 25 Table 2.3.2.1: Input / Output Specifications T y p e - X V y - E V 1 0 3 0 6 1 0 4 0 8 1 0 6 1 2 2 0 8 1 6 2 1 0 2 0 2 1 5 3 0 3 2 0 4 0 3 2 5 5 0 4 3 3 6 6 4 3 5 7 0 4 4 5 9 0 4 5 5 1 1 0 4 5 5 1 1 0 E W H / E W H R 5 7 0 1 4 0 5 7 0 1 4 0 E W H / E W H R 5 1 0 0 1 8 0 5 1 0 0 1 8 0 E W H / E W H R 6 1 2 5 2 3 0 6 1 2 5 2 3 0 E W H / E W H R 7 1 4 5 2 9 0 7 1 9 0 3 5 0 7 2 3 0 4 2 0 8 2 8 0 4 0 0 8 3 5 0 4 6 0 9 4 7 0 6 5 0 - C 9 5 6 0 6 5 0 - C P I n v e r t e r O u t p u t f o r c o n t i n u o u s s e r v i c e , I E C 1 4 6 c l a s s 1 [ k V A ] 2 . 1 3 . 1 4 . 2 5 . 5 7 . 6 1 0 . 3 1 4 . 1 2 0 . 1 2 2 . 9 2 7 3 6 . 7 4 5 4 7 5 5 . 4 5 5 . 4 6 7 . 2 6 7 . 2 8 6 . 6 8 6 . 6 1 1 0 1 3 2 1 5 9 1 9 4 2 4 2 3 2 6 3 8 8 P N O u t p u t p o w e r f o r c o n t i n u o u s s e r v i c e ( r e c o m m e n d e d m o t o r o u t p u t ) , I E C 1 4 6 c l a s s 1 : @ U L N = 2 3 0 V a c ; f S W = d e f a u l t [ k W ] 0 . 7 5 1 . 1 1 . 5 2 . 2 3 4 5 . 5 7 . 5 9 1 1 1 8 . 5 2 2 2 3 2 2 2 2 3 0 3 0 3 7 3 7 5 5 5 5 7 5 9 0 1 0 0 1 2 5 1 6 0 @ U L N = 4 0 0 V a c ; f S W = d e f a u l t [ k W ] 1 . 5 2 . 2 3 4 5 . 5 7 . 5 1 1 1 5 1 8 . 5 2 2 3 0 3 7 3 9 4 5 4 5 5 5 5 5 7 5 7 5 9 0 1 1 0 1 3 2 1 6 0 2 0 0 2 5 0 3 1 5 @ U L N = 4 6 0 V a c ; f S W = d e f a u l t [ H p ] 2 3 3 5 7 . 5 1 0 1 5 2 0 2 5 3 0 4 0 5 0 5 2 6 0 6 0 7 5 7 5 1 0 0 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0 2 5 0 3 0 0 3 5 0 U 2 M a x o u t p u t v o l t a g e [ V r m s ] f 2 M a x o u t p u t f r e q u e n c y [ H z ] 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 2 0 0 2 0 0 I 2 N C o n t i n u o u s o u t p u t c u r r e n t f o r c o n t i n u o u s s e r v i c e , I E C 1 4 6 c l a s s 1 : @ U L N = 2 3 0 - 4 0 0 V a c ; f S W = d e f a u l t [ A r m s ] 3 4 . 5 6 8 1 0 . 9 1 4 . 8 2 0 . 3 2 9 3 3 3 9 5 3 6 5 6 8 8 0 8 0 9 7 9 7 1 2 5 1 2 5 1 5 9 1 9 0 2 3 0 - - - - @ U L N = 4 0 0 V a c ; f S W = d e f a u l t [ A r m s ] 3 4 . 5 6 8 1 0 . 9 1 4 . 8 2 0 . 3 2 9 3 3 3 9 5 3 6 5 6 8 8 0 8 0 9 7 9 7 1 2 5 1 2 5 1 5 9 1 9 0 2 3 0 2 8 0 3 5 0 4 7 0 5 6 0 @ U L N = 4 6 0 V a c ; f S W = d e f a u l t [ A r m s ] 2 . 6 3 . 9 5 . 2 7 1 0 . 5 1 2 . 9 1 8 . 9 2 6 . 1 2 8 . 7 3 3 . 9 4 6 . 1 5 6 . 5 5 9 6 9 . 6 6 9 . 6 8 4 . 4 8 4 . 4 1 0 8 . 7 1 0 8 . 8 1 3 8 . 3 1 6 5 . 3 2 0 0 2 4 3 . 6 3 0 5 4 7 0 4 8 7 . 2 f S W s w i t c h i n g f r e q u e n c y ( D e f a u l t ) [ k H z ] 4 2 f S W s w i t c h i n g f r e q u e n c y ( H i g h e r ) [ k H z ] 1 6 4 I o v l d ( I x t ) [ A r m s ] D e r a t i n g f a c t o r : K V a t 4 6 0 / 4 8 0 V a c 0 . 9 6 0 . 8 7 0 . 9 3 0 . 9 0 0 . 7 0 . 9 8 K T f o r a m b i e n t t e m p e r a t u r e K F f o r s w i t c h i n g f r e q u e n c y U L N A C I n p u t v o l t a g e ( 1 ) [ V r m s ] F L N A C I n p u t f r e q u e n c y [ H z ] I N A C I n p u t c u r r e n t f o r c o n t i n u o u s s e r v i c e , I E C 1 4 6 c l a s s 1 : - C o n n e c t i o n w i t h 3 - p h a s e c h o k e @ 2 3 0 V a c [ A r m s ] 2 . 9 4 5 . 5 7 . 0 9 . 5 1 4 1 8 . 2 2 5 3 3 3 9 5 5 6 9 7 2 8 4 8 4 9 8 9 8 1 2 2 1 2 2 1 5 8 1 9 2 2 3 1 n . a . n . a . n . a . n . a . @ 4 0 0 V a c [ A r m s ] 3 . 3 4 . 5 6 . 2 7 . 9 1 0 . 7 1 5 . 8 2 0 . 4 2 8 . 2 3 5 4 4 6 2 7 7 8 0 9 4 9 4 1 1 0 1 1 0 1 3 7 1 3 7 1 7 7 2 1 6 2 4 2 3 0 9 3 6 2 5 2 0 ( 2 ) 6 0 0 ( 3 ) @ 4 6 0 V a c [ A r m s ] 2 . 9 3 . 9 5 . 4 6 . 5 9 . 3 1 3 . 8 1 7 . 8 2 4 . 5 3 9 3 7 5 3 6 6 6 9 8 2 8 2 9 6 9 6 1 2 0 1 2 0 1 5 3 1 8 8 2 1 0 2 6 8 3 1 6 4 6 8 ( 2 ) 5 4 0 ( 3 ) - C o n n e c t i o n w i t h o u t 3 - p h a s e c h o k e @ 2 3 0 V a c [ A r m s ] 4 . 4 6 . 8 7 . 9 1 3 . 1 1 5 . 5 2 1 . 5 2 7 . 9 3 5 . 4 @ 4 0 0 V a c [ A r m s ] 4 . 8 7 . 4 9 1 4 . 3 1 6 . 9 2 4 . 2 3 0 . 3 4 0 @ 4 6 0 V a c [ A r m s ] 4 . 2 6 . 4 7 . 8 1 2 . 1 1 4 . 7 2 1 2 6 . 4 3 4 . 8 M a x s h o r t c i r c u i t p o w e r w i t h o u t l i n e r e a c t o r ( Z m i n = 1 % ) [ k V A ] 2 1 0 3 1 0 4 2 0 5 5 0 7 6 0 1 0 3 0 1 4 1 0 2 0 1 0 2 2 9 0 2 7 0 0 3 6 7 0 4 5 0 0 4 5 0 0 5 5 4 0 5 5 4 0 6 7 2 0 6 7 2 0 8 6 6 0 8 6 6 0 1 1 1 0 0 1 3 2 0 0 1 5 9 0 0 1 9 4 0 0 2 4 2 0 0 3 2 6 0 0 3 8 8 0 0 O v e r v o l t a g e t h r e s h o l d [ V ] B r a k i n g I G B T U n i t ( s t a n d a r d d r i v e ) S t a n d a r d i n t e r n a l ; B r a k i n g t o r q u e 1 5 0 % O p t i o n i n t e r n a l ( w i t h e x t e r n a l r e s i s t o r ) ; B r a k i n g t o r q u e 1 5 0 % S t a n d a r d i n t e r n a l ; B r a k i n g t o r q u e 1 5 0 % O p t i o n i n t e r n a l ( w i t h e x t e r n a l r e s i s t o r ) ; B r a k i n g t o r q u e 1 5 0 % S t a n d a r d i n t e r n a l ; B r a k i n g t o r q u e 1 5 0 % E x t e r n a l b r a k i n g u n i t ( o p t i o n a l ) S t a n d a r d i n t e r n a l ; B r a k i n g t o r q u e 1 5 0 % tx v 0 0 1 0 [ V ] S t a n d a r d i n t e r n a l ; B r a k i n g t o r q u e 1 5 0 % 2 2 5 V D C ( f o r 2 3 0 V A C m a i n s ) , 3 7 2 V D C ( f o r 3 8 0 V A C m a i n s ) , 3 9 2 V D C ( f o r 4 0 0 V A C m a i n s ) 0 . 8 7 2 4 4 0 . 7 f o r h i g h e r f S W 2 3 0 V - 1 5 % . . . 4 8 0 V + 1 0 % , 3 P h 4 0 0 V - 1 5 % . . . 4 8 0 V + 1 0 % , 3 P h 8 2 0 V D C 4 0 6 V D C ( f o r 4 1 5 V A C m a i n s ) , 4 3 1 V D C ( f o r 4 4 0 V A C m a i n s ) , 4 5 0 V D C ( f o r 4 8 0 V A C m a i n s ) O U T P U T I N P U T U n d e r v o l t a g e t h r e s h o l d 5 0 / 6 0 H z ± 5 % 0 . 9 8 x U L N ( A C I n p u t v o l t a g e ) 4 5 0 8 F o r t h e s e t y p e s a n e x t e r n a l i n d u c t a n c e i s m a n d a t o r y S e e t a b l e 2 . 3 . 3 . 1 4 O p t i o n i n t e r n a l ( w i t h e x t e r n a l r e s i s t o r ) ; B r a k i n g t o r q u e 1 5 0 % 4 8 4 8 E x t e r n a l b r a k i n g u n i t ( o p t i o n a l ) 0 . 8 @ 5 0 ° C ( 1 2 2 ° F ) 1 6 0 . 8 7 (1) for DC versions: rectified voltage supply up to 700 V DC ); (2) 550A DC @ 600V DC for XVy-EV ...-DC version; (3) 650A DC @ 600V DC for XVy-EV ...-DC version 26 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide 2.3.3 Rated and overload currents The XVy-EV drive manages two different overload algorithms which can be selected by the user through the IPA 18778 Overload Control parameter according to the application: • I xT algorithm dedicated to high-dynamics solutions where the overload can reach up to 200% of the rated current (default setting). • I 2 xT algorithm dedicated to applications where a limited overload is required for a longer period of time (limit = 136% In Class 1 for 60s every 300s). The current rated and overload values change according to the type of selected algorithm as shown in tables 2.3.3.1 and 2.3.3.2 below. SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 27 I x T Algorithm Table 2.3.3.1: Rated and overload currents with I x T algorithm T h s i n k 4 5 ° C 4 0 4 0 2 0 1 0 1 0 1 0 2 0 2 0 2 0 1 6 8 8 8 . 2 8 8 . 3 8 8 . 2 1 2 1 2 . 4 1 2 1 2 8 1 7 1 3 1 5 6 T h s i n k 5 ° C 2 4 0 0 2 4 0 0 2 4 0 0 2 4 0 0 2 4 0 0 2 3 8 4 2 4 0 0 2 4 0 0 2 4 0 0 1 9 6 9 1 9 9 2 1 9 5 7 1 9 7 6 1 9 8 0 1 9 8 0 1 9 7 9 1 9 7 9 1 9 7 8 1 9 7 8 1 9 7 7 1 9 8 3 1 9 8 3 1 0 2 9 7 5 4 1 5 6 T h s i n k 4 5 ° C 4 4 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 , 5 1 , 5 1 , 5 1 , 5 1 4 4 4 4 T h s i n k 5 ° C 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 4 4 I o v l d 6 , 0 9 , 0 1 2 , 0 1 6 , 0 2 1 , 8 3 0 4 1 5 8 6 6 7 1 9 7 1 1 8 1 2 4 1 4 6 1 4 6 1 7 7 1 7 7 2 2 8 2 2 8 2 9 0 3 4 7 4 2 0 4 0 0 4 6 0 6 5 0 6 5 0 I n 3 , 0 4 , 5 6 , 0 8 , 0 1 0 , 9 1 5 2 0 2 9 3 3 3 9 5 3 6 5 6 8 8 0 8 0 9 7 9 7 1 2 5 1 2 5 1 5 9 1 9 0 2 3 0 2 8 0 3 5 0 4 7 0 5 6 0 R e c o v e r y @ 9 0 % I n 2 7 2 7 5 4 5 4 5 4 5 4 5 4 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 4 6 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 1 0 8 5 4 5 4 5 4 5 4 I o v l d d u r a t i o n 1 1 1 0 , 9 0 , 9 0 , 5 0 , 9 0 , 9 0 , 9 0 , 9 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 1 1 1 1 1 1 1 1 1 I o v l d 6 , 0 9 , 0 1 2 , 0 1 6 , 0 2 2 3 0 4 1 5 8 6 6 7 1 9 7 1 1 8 1 2 4 1 4 6 1 4 6 1 7 7 1 7 7 2 2 8 2 2 8 2 9 0 3 4 7 4 2 0 4 0 0 4 0 0 5 6 0 5 6 0 @ 3 H z 3 , 0 4 , 5 6 , 0 8 , 0 1 1 1 5 2 0 , 3 2 9 3 3 3 9 5 3 6 5 6 8 8 0 8 0 9 7 9 7 1 2 5 1 2 5 1 5 9 1 9 0 2 3 0 2 8 0 3 5 0 4 7 0 5 6 0 @ 0 H z 3 , 0 4 , 5 6 , 0 8 , 0 8 , 6 1 2 1 6 2 1 2 6 3 1 4 0 5 0 5 2 6 3 6 3 7 6 7 6 9 9 9 9 1 2 7 1 5 6 1 7 0 2 5 0 2 5 0 4 2 0 5 0 0 1 , 5 2 , 2 3 , 0 4 , 0 5 , 5 7 , 5 1 1 1 5 1 9 2 2 3 0 3 7 3 9 4 5 4 5 5 5 5 5 7 5 7 5 9 0 1 1 0 1 3 2 1 6 0 2 0 0 2 5 0 - C - I P 2 0 3 1 5 - C - I P 2 0 X V y - E V 1 0 3 0 6 X V y - E V 1 0 4 0 8 X V y - E V 1 0 6 1 2 X V y - E V 2 0 8 1 6 X V y - E V 2 1 0 2 0 X V y - E V 2 1 5 3 0 X V y - E V 3 2 0 4 0 X V y - E V 3 2 5 5 0 X V y - E V 4 3 3 6 6 X V y - E V 4 3 5 7 0 X V y - E V 4 4 5 9 0 X V y - E V 4 5 5 1 1 0 X V y - E V 4 5 5 1 1 0 E W H / E W H R X V y - E V 5 7 0 1 4 0 X V y - E V 5 7 0 1 4 0 E W H / E W H R X V y - E V 5 1 0 0 1 8 0 X V y - E V 5 1 0 0 1 8 0 E W H / E W H R X V y - E V 6 1 2 5 2 3 0 X V y - E V 6 1 2 5 2 3 0 E W H / E W H R X V y - E V 7 1 4 5 2 9 0 X V y - E V 7 1 9 0 3 5 0 X V y - E V 7 2 3 0 4 2 0 X V y - E V 8 2 8 0 4 0 0 X V y - E V 8 3 5 0 4 6 0 X V y - E V 9 4 7 0 6 5 0 - C X V y - E V 9 5 6 0 6 5 0 - C P ( 1 ) 3 H z < f e < 1 0 H z T y p e [ s ] [ s ] f s < 3 H z P o t [ A r m s ] [ k W ] I n [ A r m s ] [ A r m s ] [ A r m s ] f s > 1 0 H z [ s ] R e c o v e r y @ 9 0 % I n I o v l d d u r a t i o n ( 2 ) [ s ] (1) For frequencies between 3 to 10Hz all time duration values have to be calculated with a linear interpolation of values at 3 Hz and at 10 Hz. (2) Minimum granted overload. For temperatures lower than 20°C (Tsink < 45°C) the maximum overload time is automatically increased. 28 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide The I x T algorythm depends on the output frequency and also on the ambient temperature, as specified in table 2.3.3.1. For output frequencies from 0 to 3 Hz the I x T algorythm does not depend from ambient temperature and the recovery from overload conditions will be asymmetrical (the IxT integral charge and discharge operations are different), while from output frequencies higher than 10 Hz the overload duration times will be dependent from ambient temperature and the recovery from overload conditions will be symmetrical. (The IxT integral will have the same charge and discharge). For output frequencies between 3 and 10 Hz the overload and the recovery times of the IxT algorythm can be obtained with a linear interpolation between the 3 Hz and the 10 Hz values. Definitions T ovld is the lasting period of an overload on the I ovld current (as mentioned in the table 2.3.3.1, column 4,9 and 10). I mot is the instantaneous motor output current I n is the drive nominal current at the drive output frequency (as stated in table 2.3.3.1, column 2 and 7) Here follows an example that shows how to perform the selection of the drives. The overload stated in the Drive Ovld Fact parameter, IPA 19607 (MONITOR menu) is calculated by the drive firmware as follows: Drive Ovld Fact = ovld % = * 100 ò ( I - I ) dt mot n . ( I - I ) T ovld n ovld . Example: considering the XVy-EV 10612 drive, it is possible to see that the I n rated current (with 400Vrms main supply) = 6 A rms , the I ovld overload current = 12 A rms and the T ovld overload time = 2 seconds (if f > 10 Hz and the ambient temperature is 20°C). See the table 2.3.3.1, column 2, 4, 13 line XVy-EV 10612. Assuming that the I mot output current = 10 A rms , the time used by ovld% to reach 100% is: T = = 3 [sec] (I - I ) * T ovld ovld n (I - I ) mot n Now the current limit is reduced to I n and the drive is in an overload condition. Another overload is possible if ovld% is brought to zero by reducing the I mot current. For example, if I mot = 5 A rms , the current limit returns to its maximum value after: SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 29 T = = 12 [sec] (I - I ) * T ovld ovld n (I - I ) mot n and therefore it will be possible to perform a new overload. Let us consider now the following load cycle to select the proper drive to use: Time (sec) 0 1 2 3 4 5 6 Speed (rpm) 0 2000 2000 1000 2000 1000 0 Motor current (A) 38 12 -14 20 -14 -14 0 t I(A) 38 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 2000 2000 N(rpm) 12 20 1000 2000 2000 1000 N(rpm) This cycle will be repeated continuously. The average motor current value will be 16 A rms . The peak current is 38 A rms and the peak duration is 1 second. Assuming to use a XVy-EV 32040 with I n =20.3 A rms and I olvd =40.6 A rms , it is possible to calculate that during the acceleration phase ovld% increases up to 43.6%. During the following 6 seconds the current is lower than In, therefore it is possible to consider the average current = 12.33 A rms and ovld% = 0%. Looking these results we can say that the XVy-EV 32040 is suitable for this application. 30 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide I 2 T Algorithm Table 2.3.3.2: Rated and overload currents with I 2 x T algorithm 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 0 , 5 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 3 3 3 3 3 3 3 3 3 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 I f a s t o v l d 7 , 3 1 0 , 2 1 3 , 7 1 7 , 6 2 3 , 1 3 2 , 4 4 5 , 4 6 0 , 4 7 1 , 4 8 6 , 0 1 1 5 , 3 1 4 4 , 6 1 4 4 , 6 1 7 0 , 2 1 7 0 , 2 2 0 8 , 6 2 0 8 , 6 2 5 9 , 9 2 5 9 , 9 3 3 8 , 6 3 8 4 , 3 4 5 7 , 5 5 9 2 , 9 7 3 2 , 0 8 8 7 , 6 1 0 6 1 , 4 I s l o w o v l d 5 , 4 7 , 6 1 0 , 2 1 3 , 1 1 7 , 1 2 4 , 1 3 3 , 7 4 4 , 9 5 3 , 0 6 3 , 9 8 5 , 7 1 0 7 , 4 1 0 7 , 4 1 2 6 , 5 1 2 6 , 5 1 5 5 , 0 1 5 5 , 0 1 9 3 , 1 1 9 3 , 1 2 5 1 , 6 2 8 5 , 6 3 4 0 , 0 4 4 0 , 6 5 4 4 , 0 6 5 9 , 6 6 7 2 , 8 I n 4 , 0 5 , 6 7 , 5 9 , 6 1 2 , 6 1 7 , 7 2 4 , 8 3 3 , 0 3 9 , 0 4 7 , 0 6 3 , 0 7 9 , 0 7 9 , 0 9 3 , 0 9 3 , 0 1 1 4 , 0 1 1 4 , 0 1 4 2 , 0 1 4 2 , 0 1 8 5 , 0 2 1 0 , 0 2 5 0 , 0 3 2 4 , 0 4 0 0 , 0 4 8 5 , 0 5 8 0 , 0 I f a s t o v l d 5 , 5 8 , 2 1 1 , 0 1 4 , 6 1 6 , 1 2 2 , 7 3 1 , 8 4 2 , 3 5 0 , 0 6 0 , 2 8 0 , 7 1 0 1 , 2 1 0 1 , 2 1 1 9 , 1 1 1 9 , 1 1 4 6 , 0 1 4 6 , 0 1 8 1 , 9 1 8 1 , 9 2 3 7 , 0 2 6 9 , 0 3 2 0 , 3 4 1 5 , 0 5 1 2 , 4 6 2 1 , 3 7 4 3 , 0 I s l o w o v l d 4 , 1 6 , 1 8 , 2 1 0 , 9 1 2 , 0 1 6 , 9 2 3 , 6 3 1 , 4 3 7 , 1 4 4 , 7 6 0 , 0 7 5 , 2 7 5 , 2 8 8 , 5 8 8 , 5 1 0 8 , 5 1 0 8 , 5 1 3 5 , 2 1 3 5 , 2 1 7 6 , 1 1 9 9 , 9 2 3 8 , 0 3 0 8 , 4 3 8 0 , 8 4 6 1 , 7 4 7 1 , 0 I n 3 , 0 4 , 5 6 , 0 8 , 0 8 , 8 1 2 , 4 1 7 , 4 2 3 , 1 2 7 , 3 3 2 , 9 4 4 , 1 5 5 , 3 5 5 , 3 6 5 , 1 6 5 , 1 7 9 , 8 7 9 , 8 9 9 , 4 9 9 , 4 1 2 9 , 5 1 4 7 , 0 1 7 5 , 0 2 2 6 , 8 2 8 0 , 0 3 3 9 , 5 4 0 6 , 0 1 , 5 2 , 2 3 , 0 4 , 0 5 , 5 7 , 5 1 1 , 0 1 5 , 0 1 8 , 5 2 2 , 0 3 0 , 0 3 7 , 0 3 7 , 0 4 5 , 0 4 5 , 0 5 5 , 0 5 5 , 0 7 5 , 0 7 5 , 0 9 0 , 0 1 1 0 , 0 1 3 2 , 0 1 6 0 , 0 2 0 0 , 0 2 5 0 - C - I P 2 0 3 1 5 - C - I P 2 0 X V y - E V 1 0 3 0 6 X V y - E V 1 0 4 0 8 X V y - E V 1 0 6 1 2 X V y - E V 2 0 8 1 6 X V y - E V 2 1 0 2 0 X V y - E V 2 1 5 3 0 X V y - E V 3 2 0 4 0 X V y - E V 3 2 5 5 0 X V y - E V 4 3 3 6 6 X V y - E V 4 3 5 7 0 X V y - E V 4 4 5 9 0 X V y - E V 4 5 5 1 1 0 X V y - E V 4 5 5 1 1 0 E W H / E W H R X V y - E V 5 7 0 1 4 0 X V y - E V 5 7 0 1 4 0 E W H / E W H R X V y - E V 5 1 0 0 1 8 0 X V y - E V 5 1 0 0 1 8 0 E W H / E W H R X V y - E V 6 1 2 5 2 3 0 X V y - E V 6 1 2 5 2 3 0 E W H / E W H R X V y - E V 7 1 4 5 2 9 0 X V y - E V 7 1 9 0 3 5 0 X V y - E V 7 2 3 0 4 2 0 X V y - E V 8 2 8 0 4 0 0 X V y - E V 8 3 5 0 4 6 0 X V y - E V 9 4 7 0 6 5 0 - C X V y - E V 9 5 6 0 6 5 0 - C P f o u t > F 1 [ A r m s ] f o u t = 0 H z F o r f r e q u e n c i e s b e t w e e n 0 H z t o F 1 a l l c u r r e n t s h a v e t o b e c a l c u l a t e d w i t h a l i n e a r i n t e r p o l a t i o n o f v a l u e s a t 0 H z a n d a t F 1 . 0 H z < f o u t < f 1 [ k W ] T y p e [ A r m s ] [ A r m s ] [ A r m s ] T s l o w o v l d [ s ] T f a s t o v l d [ s ] [ A r m s ] [ A r m s ] F 1 [ H z ] P o t SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 31 The I 2 xT algorithm depends on the output frequency. At 0Hz frequency, the rated current reduction factor is 0.7 … 0.9 accord- ing to sizes, as shown in table 2.3.3.2. For output frequencies ranging from 0Hz to F1, the overload times should be calculated using a linear interpolation of 0Hz and F1 values. F1 is the frequency shown in the table for each drive size. The rated and overload currents and the corresponding overload and recovery times do not depend on the room temperature. The I 2 xT algorithm manages two drive overload levels: 1. Slow overload (136% In for 60s every 300s) 2. Fast overload (183% In for 0.5s every 60s) The slow overload is calculated based on the following formula: ? sl-ov% = ∫ (I - I ) dt mot n 2 2 (I - I )T sl-ov n ovld 2 2 · 100 and appears in the IPA 19697 Drive Ovld Fact parameter (MONITOR menu). The fast overload is calculated based on the formula: ? fs-ov% = ∫ (I - (1.36 I dt mot n 2 2 ) ) · (I - ) T fs-ov ovld 2 (1.36 I ) n 2 · · 100 Current limit management When the drive delivers a current higher than the In value shown in table 2.3.3.2, fsl-ov% increases up to 100%. At that point, the drive limits the maximum current which can be delivered to I n value. fsl-ov% reaches 100% in 60s if the current delivered by the drive is 136% of I n . The drive can also deliver a maximum current of 183% of I n . In this case, when the output current exceeds the 136% threshold, the ffs- ov% value is increased until 100% is reached in 0.5s; after that, the maximum current is limited to 136% of I n . - Example of overload time calculation with slow overload: Refer to the XVy-EV10612 size for 400Vac mains operation. Table 2.3.3.2 shows that, at frequencies higher than F1, the drive is able to deliver a rated current of 7.5Arms, with a maximum of 13.73Arms for 0.5s (fast overload) or 10.20Arms for 60s (slow overload). Assuming that the drive delivers a current I m = 9A ( I n < I m < 136%I n ), only the fsl-ov% value is increased. . 32 • Chapter 2 Inspection ... and Standard Specification SIEIDrive - XVy-EV User’s Guide The maximum overload time Tsl is: T sl = (I - I ) sl-ov n 2 2 · T sl-ov (I - I ) mot n 2 2 = [s] T sl = (10.20 - 7.5 ) 2 2 · 60 (9 - 7.5 ) 2 2 = 118.85 s When the T ovl time has elapsed, the Drive Ovld Fact parameter has reached 100% and the maximum current is decreased to the rated one = 7.5Arms. The drive will be able to deliver the maximum current of 183%In again only when Drive Ovld Fact returns to 0%. The time required for fsl-ov% discharge depends on the current delivered by the drive (should be lower than I n ). Assuming that I mot = 3Arms, the recovery time will be: T rec = (I - I ) . T sl-ov n sl-ov 2 2 (I - I ) n mot 2 2 T rec = (10.20 - 7.5 ) . 60 2 2 (7.5 - 3 ) 2 2 = 60.68 s - Example of overload time calculation in case of fast overload: Refer to the XVy-EV10612 size for 400Vac mains operation. Table 2.3.3.2 shows that, at frequencies higher than F1, the drive is able to deliver a rated current of 7.5Arms, with a maximum of 13.73Arms for 0.5s (fast overload) or 10.20Arms for 60s (slow overload). Assuming that the drive delivers a current I m = 12A ( 136%I n < I m < 183%I n ) the values of fsl-ov% and ffs-ov% are both increased. The maximum overload time T fs is: T fs = (I - I ) . T fs-ov sl-ov fs-ov 2 2 (I - I ) 2 2 mot sl-ov T fs = (13.73 - 10.20 ) . 0.5 2 2 (12 - 10.20 ) 2 2 = 1.06 s At the same time, the fsl-ov% value is also increased to reach the value fsl-ov% = (I mot 2 -I n 2 ) . T fs = (12 2 -75 2 ) . 1.06 = 93 count = 3.24% SIEIDrive - XVy-EV User’s Guide Chapter 2 Inspection ... and Standard Specification • 33 [Max fsl-ov% =(I sl-ov 2 - I n 2 ) . T sl-ov =(10.2 2 -7.5 2 ) . 60= 2867.4 count = 100%] Now, the current limit is lowered to 136% I n . This current value can be kept for: T sl-ov = (I - I ) . T - sl-ov n sl-ov 2 2 f sl-ov* (I - I ) 2 2 mot n = 52.98 s T sl-ov = (10.20 - 7.5 ) . 60- 93 2 2 (10.20 - 7.5 ) 2 2 34 • Chapter 3 Installation Guidelines SIEIDrive - XVy-EV User’s Guide Chapter 3 - Installation Guidelines 3.1 Mechanical Specification Figure 3.1.1: Drive Dimensions, XVy-EV 10306 ... XVy-EV 32550 sizes Mounting wall (D) Mounting with external dissipator (E) E2 E4 E5 E3 E1 d 1 0 3 0 6 1 0 4 0 8 1 0 6 1 2 2 0 8 1 6 2 1 0 2 0 2 1 5 3 0 3 2 0 4 0 3 2 5 5 0 a mm (inch) b mm (inch) c mm (inch) d mm (inch) D1 mm (inch) D2 mm (inch) E1 mm (inch) E2 mm (inch) E3 mm (inch) E4 mm (inch) E5 mm (inch) Ø d Weight kg (lbs) 3.6 (7.9) txv0020 208 (8.2) 323 (12.7) 240 (9.5) 168 (6.6) 84 (3.3) 310.5 (12.2) 164 (6.5) 284 (11.2) 306.5 (12.0) 199.5 (7.8) 69 (2.7) 199 (7.8) 296.5 (11.6) 315 (12.4) 299.5 (11.7) 151.5 (5.9) 115 (4.5) 115 (4.5) XVy-EV Type Drive dimensions: 105.5 (4.1) 145.5 (5.7) 4.95 (10.9) 62 (2.4) 69 (2.7) M5 3.7 (8.1) 99.5 (3.9) 299.5 (11.8) 8.6 (19) 9 (0.35) SIEIDrive - XVy-EV User’s Guide Chapter 3 Installation Guidelines • 35 Figure 3.1.2: Drive dimensions, XVy-EV 43570 ... XVy-EV 8280400 sizes D1 D2 D2 D3 D3 D3 D3 D4 Mounting wall (D) 4 3 3 6 6 4 3 5 7 0 4 4 5 9 0 4 5 5 1 1 0 5 7 0 1 4 0 5 1 0 0 1 8 0 6 1 2 5 2 3 0 7 1 4 5 2 9 0 7 1 9 0 3 5 0 7 2 3 0 4 2 0 8 2 8 0 4 0 0 8 3 5 0 4 6 0 a mm (inch) 376 (14.7) 509 (20) 509 (20) b mm (inch) 564 (22.2) 741 (29.2) 909 (35.8) c mm (inch) 268 (10.5) 297.5 (11.7) 297.5 (11.7) D1 mm (inch) D2 mm (inch) 150 (5.9) D3 mm (inch) 100 (3.9) 100 (3.9) D4 mm (inch) 550 (21.6) 725 (28.5) 891 (35) Ø Weight kg 18 22 22.2 34 59 75.4 80.2 86.5 lbs 39.6 48.5 48.9 74.9 130 166.1 176.7 190.6 txv0030 109 240.3 475 (18.7) 442 (17.4) M6 947 (37.3) 308 (12.1) 100 (3.9) 297.5 (11.7) 509 (20) 509 (20) 909 (35.8) XVy-EV type Drive dimensions: 965 (38) 309 (12.1) 489 (19.2) 225 (8.8) 100 (3.9) 891 (35) 36 • Chapter 3 Installation Guidelines SIEIDrive - XVy-EV User’s Guide Figure 3.1.3: Drive dimensions, C and CP sizes 430 800 b 1 1 1 4 c U 2 - V 2 - W 2 D - C - U - V - W D 4 a D2 D2 D2 52.5 M8 22 65 205.5 170.5 209.5 125.5 Ø d U2 V2 W2 2 7 . 5 40 W V U C 22 D 40 3 1 400 68 115 68 68 60 0V 230V (**) D2 D2 D2 Ø d Figure 3.1.4: Drive dimensions, C and CP -IP00 sizes b D 4 a D2 D2 D2 1 1 1 4 52.5 M8 c 22 65 205.5 170.5 209.5 125.5 Ø d U2 V2 W2 2 7 . 5 40 W V U C 22 D 40 3 1 400 68 115 68 68 60 0V 230V (**) (**) External fan power supply D2 D2 D2 Ø d 9470650-C 9560650-CP a mm (inch) 776 (30.6) 776 (30.6) b mm (inch) 1091 (43) 1091 (43) c mm (inch) 450 (17.7) 450 (17.7) D2 mm (inch) 225 (8.9) 225 (8.9) D4 mm (inch) 947 (37.3) 947 (37.3) Ø M8 M8 Weight kg 155 155 lbs 341.7 341.7 txv0034 XVy-EV type Drive dimensions: SIEIDrive - XVy-EV User’s Guide Chapter 3 Installation Guidelines • 37 Figure 3.1.5: Drive Dimensions, XVy-EV 455110 EWH/EWHR Figure 3.1.6: Drive Dimensions, XVy-EV 570140 ... 5125230 EWH/EWHR 38 • Chapter 3 Installation Guidelines SIEIDrive - XVy-EV User’s Guide 3.2 Watts Loss, Heat Dissipation, Internal Fans and Minimum Cabinet Opening Suggested for the Cooling The heat dissipation of the Drives depends on the operating state of the connected motor. The table below shows values that refer to operation at default switching frequency (see section 2.3.2, “AC Input/Output Con- nection”), Tamb ≤40°C, typ. motor power factor and nominal continuous current. Table 3.2.1: Heat dissipation and Required Air Flow @U LN =400Vac 1) @U LN =460Vac 1) Internal fan Heatsink fans XVy-EV 10306 77.5 72.0 11 30 XVy-EV 10408 104.0 96.3 11 30 XVy-EV 10612 138.3 126.7 11 30 XVy-EV 20816 179.6 164.1 11 2x30 XVy-EV 21020 230 215.6 11 2x30 XVy-EV 21530 330 300.8 11 2x30 XVy-EV 32040 380 340 30 2x79 XVy-EV 32550 512 468 30 2x79 XVy-EV 43366 546 490 - 80 XVy-EV 43570 658 582 - 80 XVy-EV 44590 864 780 - 170 XVy-EV 455110 1100 1000 - 170 XVy-EV 570140 1250 1100 - 340 XVy-EV 5100180 1580 1390 - 340 XVy-EV 6125230 1950 1750 - 650 XVy-EV 7145290 2440 2200 - 975 XVy-EV 7190350 2850 2560 - 975 XVy-EV 7230420 3400 3050 - 975 XVy-EV 8280400 4400 3950 - 1820 XVy-EV 8350460 5400 4700 - 2000 XVy-EV 9470650-C 6400 5700 - 1710 XVy-EV 9470650-C-IP00 6400 max 5700 max - - XVy-EV 9560650-CP 8000 7900 - 1710 XVy-EV 9560650-CP-IP00 8000 max 7900 max - - txv0040 Heat Dissipation [W] Airflow of fan [m 3 /h] Type 1) f SW =default; I 2 =I 2N NOTE! All the Drives have internal fans. Heat dissipation losses refer to default Switching frequency. Table 3.2.2: Minimum cabinet opening suggested for the cooling Control section Heatsink 10306 … 10612 31 (4.8) 36 (5.6) 20816 … 21530 31 (4.8) 72 (11.1) 32040 … 32550 36 (5.6) 128 (19.8) 43366 … 43570 2x150 (2x 23.5) 44590 … 455110 2x200 (2x31) 570140 … 5100180 2x370 (2x57.35) 6125230 … 7230420 2x620 (2x96.1) 8280400 … 9560650 2x1600 (2 x 248) txv0050 Minimum cooling opening [cm 2 ] (sq.inch) XVy-EV type SIEIDrive - XVy-EV User’s Guide Chapter 3 Installation Guidelines • 39 3.2.1 Cooling Fans Power Supply Sizes XVy-EV 10306 to XVy-EV 5100180 Power supply (+24VAC) for these fans are provided from the internal drive power supply unit. Sizes XVy-EV 6125230 to XVy-EV 9560650 Power supply for these fans is externally connected by the user. AC Input voltage is connected at the power terminal strip: XVy-EV type Drive fans Fan power supply (values for 1 fan) 6125230 0,8A@115V/60Hz, 0,45A@230V/50Hz 7145290 ... 7230420 1,2A@115V/60Hz, 0,65A@230V/50Hz 8280400 ... 8350460 1,65A@115V/60Hz, 0,70A@230V/50Hz 9470650-C 2 1.03A/215W@1x230Vac,50/60Hz 9470650-C-IP00 2 1.03A/215W@1x230Vac,50/60Hz 9560650-CP 2 1.03A/215W@1x230Vac,50/60Hz 9560650-CP-IP00 2 1.03A/215W@1x230Vac,50/60Hz txv0057 Figure 3.2.1: UL type fans connections M ~ U3 2V3 1V3 0 115 230 A U T O T R A F O 230VAC fans Drive M ~ U3 2V3 1V3 No.2 115VAC fans M ~ Drive XVy-EV7145290 - XVy-EV7190350 XVy-EV6125230 e XVy-EV8280400 Figure 3.2.2: Example for external connection U3 2V3 1V3 230VAC U3 2V3 1V3 115VAC Drive Drive (*) *) Only for XVy-EV6125230 and XVy-EV8280400 sizes NOTE! An internal fuse (2.5A 250VAC slo-blo) for XVy-EV 7145290 and XVy- EV 7190350. sizes is provided. On XVy-EV 6125230 and XVy-EV 8280400sizes the fuse must be mounted externally. 40 • Chapter 3 Installation Guidelines SIEIDrive - XVy-EV User’s Guide 3.3 Installation Mounting Clearance NOTE! The dimensions and weights specifed in this manual should be taken into consideration when the device is mounted. The technical equipment required (carriage or crane for large weights) should be used. Improper handling and the use of unsuitable tools may cause damage. Figure 3.3.1: Max. Angle of Inclination The maximum angle of inclination is 30° NOTE! The drives must be mounted in such a way that the free flow of air is ensured. The clearance to the device must be at least 150 mm (6 inches). A space of at least 50 mm (2 inches) must be ensured at the front. From XVy-EV 8280400 size the top and bottom clearance must be at least 380 mm (15 inches), on front and sides must be ensured a space of at least 140 mm (5.5 inches). Devices that generate a large amount of heat must not be mounted in the direct vicinity of the drive. Figure 3.3.2: Mounting Clearance 10 mm ( 0.4" ) [140mm (5.5")] 150 mm ( ) 6" [380mm (15")] 50 mm ( 2" ) [140mm (5.5”)] 20 mm ( 0.8" ) [140mm (5.5")] 150 mm ( ) 6" [380mm (15")] 10 mm ( 0.4" ) [140mm (5.5")] [...] from XVy-EV8280400 size NOTE! Fastening screws should be re-tightened after a few days of operation. SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 41 Chapter 4 - Wiring Procedure 4.1 Accessing the Connectors (IP20 models) 4.1.1 Removing the Covers NOTE! Observe the safety instructions and warnings given in this manual. The devices can be opened without the use of force. Only use the tools specified. See figure 2.2.2 “Drive view & components” to identify the single part. Figure 4.1.1: Removing the covers (XVy-EV 10306 to XVy-EV 32550 sizes ) 2 1 3 2 no. 2 for 20-40 ...30-60 size XVy-EV 10306 to XVy-EV 21530 sizes : The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections: - unscrew the screw (1), remove the cover of devices (2) by pressing on both sides as shown on the above figure (3). - unscrew the two screws (4) to remove the cable entry plate. The top cover must be removed in order to mount option cards and change the internal jumper settings: - remove the keypad and disconnect the connector (5) - lift the top cover on the bottom side (over the connector level) and then push it to the top (6). XVy-EV 32040 to XVy-EV 32550 sizes : The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections: - unscrew the two screws (1) and remove the cover of devices - unscrew the two screws (4) to remove the cable entry plate. The top cover must be removed in order to mount the option card and change the internal jumper settings: - remove the keypad and disconnect the connector (5) - lift the top cover on the bottom side (over the connector level) and then push it to the top (6) 42 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Figure 4.1.2: Removing the covers (XVy-EV 43570 to XVy-EV 9560650 sizes) 2 2 1 3 3 4 XVy-EV 43570 to XVy-EV 9560650 sizes : The terminal cover of the device must be removed in order to fit the electrical connections: unscrew the two screw (2) and remove the cover (1) The top cover must be removed in order to mount the option card and change the internal jumper settings: unscrew the two screw (3) and remove the top cover by moving it as indicated on figure (4). 4.1.2. Wiring Suggestion Grounding 360° of a shielded cable on Omega plug CAN connector Regulation section strip (17 to 32 terminals) Regulation section strip (1 to 16 terminals) In order to avoid damage to the drive it is not allowed to transport it by holding the cards! Caution Omega connector Shield SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 43 4.2 Power Section Please note that a wrong connection on motor phases can cause the motor to move without control and can destroy the drive. Please check that motor phases are connected in the right sequence before enabling the drive. 4.2.1 Terminal Assignment on Power Section / Cable Cross-Section Table 4.2.1.1: Power Section Terminals from XVy-EV 10306 to XVy-EV 32550 The terminals of the devices are made accessible by removing the cover and the cable entry plate (see section 4.1, “Accessing the connectors”). On XVy-EV 10306 up to XVy-EV 21530 sizes it is also possible to extract the removable connector. All the power terminals are located on the power card PV33-... Function Max Motor ground connection Braking unit resistor command (braking resistor must be connected between BR1 and C) Intermediate circuit connection AC mains voltage 230V -15%…480V +10% Motor connection M 3Ph~ PE1 / Grounding (protective earth) conductor U1/L1 V1/L2 W1/L3 BR1 U2/T1 V2/T2 W2/T3 C D PE2/ EM EM FEXT FEXT - 770 Vdc (230...480 Vac) 1.65 x I 2N AC line volt 3Ph, 1.36 I 2N Braking resistor (optional) Reserved - Note! EM and FEXT terminals are available on sizes 32040 ... 5100180 only. Reserved Caution 44 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Table 4.2.1.2: Power Section Terminals from XVy-EV 43570 to XVy-EV 9560650 The terminals of the devices are made accessible by removing the cover (see section 4.1, “Accessing the connectors”). M 3Ph~ U1/L1 V1/L2 W1/L3 BR1 U2/T1 V2/T2 W2/T3 C D PE2/ PE1 / EM EM FEXT FEXT Max Function Motor ground connection Braking unit resistor command (braking resistor must be connected between BR1 and C) Available in XVy-EV 43570 ... 5100180 sizes Intermediate circuit connection AC mains voltage Terminations not included in the XVy-EV ...-DC versions. 230V -15%…480V +10% Motor connection Grounding (protective earth) conductor 770 Vdc (230...480 Vac) 1.65 x I 2N AC line volt 3Ph, 1.36 I 2N Reserved Reserved Note! EM and FEXT terminals are available on sizes 32040 ... 5100180 only. Braking resistor (optional) - - Table 4.2.1.3: Power Section Terminals XVy-EV ...-IP00 sizes M 3Ph~ U2/T1 V2/T2 W2/T3 C D PE / Max Function Grounding (protective earth) conductor, Motor ground connection Intermediate circuit connection AC mains voltage 400V -15%…480V +10% Motor connection 770 Vdc (400...480 Vac) 1.65 x I 2N AC line volt 3Ph, 1.36 I 2N U1/L1 V1/L2 W1/L3 SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 45 Maximum cable sizes for power terminals U1, V1, W1, U2, V2, W2, C, D, PE Table 4.2.1.4: Maximum cable cross section for power terminals Type Tightening torque Tightening torque Tightening torque XVy-EV AWG mm 2 Nm AWG mm 2 Nm AWG mm 2 Nm 10306 14 2 0.5 … 0.6 14 2 0.5 … 0.6 14 2 0.5 … 0.6 10408 14 2 0.5 … 0.6 14 2 0.5 … 0.6 14 2 0.5 … 0.6 10612 14 2 0.5 … 0.6 14 2 0.5 … 0.6 14 2 0.5 … 0.6 20816 10 4 0.5 … 0.6 10 4 0.5 … 0.6 10 4 0.5 … 0.6 21020 10 4 0.5 … 0.6 10 4 0.5 … 0.6 10 4 0.5 … 0.6 21530 10 4 0.5 … 0.6 10 4 0.5 … 0.6 10 4 0.5 … 0.6 32040 8 8 1.2 … 1.5 8 8 1.2 … 1.5 8 8 1.2 … 1.5 32550 6 10 1.2 … 1.5 6 10 1.2 … 1.5 6 10 1.2 … 1.5 43366 6 16 2 10 6 0.9 6 16 2 43570 6 16 2 10 6 0.9 6 16 2 44590 4 25 3 8 10 1.6 6 16 3 455110 2 35 4 8 10 1.6 6 16 3 570140 2 35 4 6 16 3 6 16 3 5100180 1/0 50 4 6 16 3 2 50 4 6125230 2/0 70 12 nd nd nd 2 50 4 7145290 4/0 95 12 nd nd nd 2 50 4 7190350 (300) 150 10 … 30 nd nd nd 2 50 4 7230420 (350) 185 10 … 30 nd nd nd 2 50 4 8280400 4xAWG2 4x35 10 … 30 nd nd nd 2 50 4 8350460 150 * 10 … 30 nd nd nd 2 50 4 9470650-C 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 9470650-C-IP00 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 9470650-C-DC-IP00 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 9560650-CP 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 9560650-CP-IP00 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 9560650-CP-DC-IP00 1/0 (500) 50…240 50 nd nd nd 1/0 (500) 50…240 50 txv0060 (…) = kcmils, *=copper bar PE1, PE2 terminals BR1 terminals U1,V1,W1, U2,V2,W2,C,D terminals The grounding conductor of the motor cable may conduct up to twice the value of the rated current if there is a ground fault at the output of the SIEIDrive - XVy-EV drive. NOTE! Use 60/75°C copper conductor only. 46 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.3 Regulation Section 4.3.1 R-XVy-EV Regulation Card LEDs & Test points on Regulation Card Designation Color Function RST red LED lit during the Hardware Reset PWM green LED lit during IGBT modulation RUN green CPU status PWR green LED lit when the voltage +5V is present and at correct level RS485 green LED is lit when RS485 interface is supplied CAN green LED is lit when CAN interface is supplied AL red LED is lit during the “Field bus failure” alarm or when the integrated CanOpeninterface is not ready to communicate with the master OP green LED is lit when the connection reaches the “Operational” phase XY4 (test point) Phase current signal (U) XY5 (test point) Reference point SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 47 Figure 4.3.1: Connectors Location Table 4.3.1.1: Jumpers on Regulation Card Designation Function Factory setting S0 Service only ! (Test and software loading: bootstrap-loader) OFF S1 Service only ! (Test and software loading: monitor mode) OFF S2 Service only ! (Test and software loading: boot-sector protection) OFF S3 Service only ! (Test and software loading: manual reset) OFF Terminating resistor for the serial interface RS485 (*) ON = Termination resistor IN OFF = No termination resistor Adaptation to the input signal of analog input 0 (terminals 1 and 2) ON = 0..20 mA / 4..20 mA OFF = 0..10V / -10..+10 V Adaptation to the input signal of analog input 1 (terminals 3 and 4) ON = 0..20 mA / 4..20 mA OFF = 0..10V / -10..+10 V S21-S22-S23 Hall sensor settings ON = Hall sensors OFF = No Hall sensors S45-S46 INTERNAL USE - Do not modify factory setting OFF txv0070 S5-S6 S8 S9 OFF ON OFF OFF (*) on multidrop connection the jumpers must be ON only for the last drop of a serial line NOTE! See chapter 4.4.3, Feedback drive connection for more details on S21 ... S23 jumper settings . The devices are factory set accordingly. When fitting a regulation card as a spare, remember to set again the encoders jumpers. Caution 1 5 6 9 1 5 11 15 6 10 XE XS 1 5 11 15 6 10 XER XFL (OUT) XFL (IN) X1 (1...16 terminals ) X1 (17...32 terminals ) CAN (C1...C5 terminals ) 48 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.3.2 Terminal Assignments on Regulation Section Table 4.3.2.1: Plug-in Terminal Strip Assignments on Regulation Card 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Digital input 0 Digital input 1 0 V (+24V) +24V OUT Analog input 0 Analog input 1 Analog output 0 0V +10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 3 Relay-NO Relay-COM 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V IN COM-DI Analog output 1 - 10V Digital output 2 Digital output 4 Digital output 5 Relay-NC Strip X1 Function max Programmable/configurable analog differential input. Signal: terminal 1. Reference point: terminal 2. Default setting: [3] Speed Ref 1". Programmable/configurable analog differential input. Signal: terminal 3. Reference point: terminal 4. Default setting: none Reference point for Digital inputs, terminals 6, 7, 8 , 9, 22, 23, 24 and 25. Drive enable; 0V or open: inverter disabled; +15…+30V: Drive enabled Programmable digital input, default setting: “[4] Start / Stop” Programmable digital input, default setting: “[8] Ramp In = 0” Programmable digital input, default setting: “[9] Reverse” Supply input for digital outputs, terminals 12, 13, 26, 27, 28, 29 Reference point for digital outputs, terminals: 12 and 13 Programmable digital output, default setting: “[3] Speed Reached” Programmable digital output, default setting: “Speed 0 thr” +24V DC supply output. Reference point: terminal 16 +24V DC supply input Reference point for +24 V DC I/O Programmable analog output, default setting: “[1] Actual speed” Programmable analog output, default setting: “[2] Motor current” Analog output reference point Reference voltage +10V, reference point: terminal 19 Reference voltage - 10V, reference point: terminal 19 Programmable digital input, default setting: “[10[ End Run Reverse” Programmable digital input, default setting: “[11] End Run Forward” Programmable digital input, default setting: “[3] External fault” Programmable digital input, default setting: “[2] Drive reset” Programmable digital output, default setting: none “Drive OK” N.O. contact “Drive OK” N.C. contact “Drive OK” common contact ±10V 0.20mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/40mA - +30V/25mA +24 V ±10% 120mA +24 V ±10% 1A - ±10V/5mA - +10V/10mA -10V/10mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/25mA 250 V AC 1A AC11 C5 C4 C3 C2 C1 CAN external positive supply (dedicated for supply of transceiver and optocouplers) CAN_H bus line (dominant high) CAN_H shield CAN_L bus line (dominant low) External supply reference V+ H SH L V- SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 49 The + 24Vdc voltage used for external power for the control card must be stabilised, with a tolerance of ±10%; maximum absorption 1A. Power supplies obtained from a single rectifier and capacitor filter are not sufficient. Maximum Cable Sizes for control terminals Table 4.3.2.2: Maximum permissible cable cross-section on the plug-in terminals of the regulator section Maximum Permissible Cable Cross-Section Tightening [mm 2 ] torque flexible multi-core [Nm] 1 ... 29 0.14 ... 1.5 0.14 ... 1.5 28 ... 16 0.4 30 ... 32 0.14 ... 1.5 0.14 ... 1.5 28 ... 16 0.4 txv0065 AWG Terminals The use of a 75 x 2.5 x 0.4 mm (3 x 0.1 x 0.02 inch) flat screwdriver is recommended. Remove 6.5 mm (0.26 inch) of the insulation at the cable ends. Only one unprepared wire (without ferrule) should be connected to each terminal point. Maximum Cable Length Table 4.3.2.3: Maximum Control Cable Lengths Cable section [mm 2 ] 0.22 0.5 0.75 1 1.5 Max. length m [feet] 27 [88] 62 [203] 93 [305] 125 [410] 150 [492] txv0055 Potentials of the control section The potentials of the regulation section are isolated and can be discon- nected via jumpers from ground. The connections between each potential are shown in Figure 4.3.2.1. The analog inputs are designed as differential amplifiers. The digital inputs are optocoupled with the control circuit. The digital inputs have terminal 5 as reference point. The analog outputs are not designed as differential amplifiers and have a common reference point (terminal 19). The analog outputs and the ±10V reference point have same potential (terminal 19). The digital outputs are optocoupled with the control circuit. Terminals 12 to 13 and 26 to 29 have terminal 11 as a common reference point and terminal 10 as common supply. Caution 50 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Figure 4.3.2.1: Potentials of the control section 1 2 3 4 5 15 16 Analog input 0 (Speed Ref 1) Analog input 1 Internal power supply from Power Card 0 (+24 V) Analog output 1 (Motor current) 17 0 V 18 20 19 21 +10V - 10V 0 V 31 30 14 To Expansion Cards S35 Analog output 0 (Actual speed) 6 7 8 9 22 23 24 25 Digital input 0 (Enable drive) Digital input 1 (Start / Stop) Digital input 2 (Ramp In=0) Digital input 3 (Reverse) Digital input 4 (End Run Reverse) Digital input 5 (End Run Forward) Digital input 6 (External fault) Digital input 7 (Drive reset) COM DI 32 COM NC NO Digital output 0 (Speed Reached) Digital output 1 (Speed 0 thr) Digital output 2 Digital output 3 Digital output 4 Digital 5 output COM DO DO-Supply +24V 12 11 10 Relay Fuse 16 S34 13 27 28 29 26 SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 51 4.4 Feedback Devices The XVy-EV can control various feedback devices connector to the XE - XER terminals (15-pin high-density connectors fitted on drive) or to the expansion card EXP-ABS-XVy (optional), see table 4.4.1. Can be used up to three feedback devices at the same time if the incremental signals of absolute encoders are not connected to XE. In this last case can be used the DE , SSi / EnDat and Hiperface feedback devices only. See chapter 4.4.3 for more details on connection. Table 4.4.1: Feedback devices XE connector on XVy Drive XER connector on expansion card EXP-ABS-EV Note DEHS 5V digital incremental encoder with A/Aneg,B/Bneg,C/Cneg and three Hall sensor digital position signals) X (1), (2) SESC Sinusoidal incremental encoder with A/Aneg,B/Bneg,C/Cneg and two sin/cos traces for absolute position (1Vpp). X (1), (3) SEHS Sinusoidal incremental encoder with A/Aneg,B/Bneg,C/Cneg and three Hall sensor digital position signals (1Vpp). X (1), (2) RES Resolver X (3) HS Three Hall effect sensors digital position signals single-ended X (2) SC Segnali assoluti SinCos due tracce. X (3) SE sinusoidal incremental encoder (1Vpp) X (1) DE 5V digital incremental encoder. X (1) SSI absolute encoder with SSI protocol X (4), (1) EnDat absolute encoder with EnDat protocol X (4), (1) Hiperface absolute encoder with Hiperface protocol X (4), (1) txv3420 Feedback devices (1) Digital or sinusoid encoder plugged into the XE connector on the drive or XE1 on card EXP-ABS-XVy (see SERVICE / ENCODER / XE ENC INC MEAS menu) (2) Three Hall effect sensors connected to XE connectors (see Service / Encoder / XE HALL TRACKS menu) (3) Sin/cos signals, with resolver excitation (see SERVICE / ENCODER / XE ENC ABS MEAS menu) (4) Absolute encoder serial link plugged into the XE1 connector on the EXP-ABS- XVy card (see SERVICE / ENCODER / EXP ENC ABS1 menu. The encoder/resolver should be coupled to the motor shaft with a backlash free connection. The encoder/resolver cable must be made of shielded twisted pairs with an overall shield, with all shieds connected to ground on both sides. Some types of sinusoidal encoders may require installation with galvanic isolation from the motor frame and shaft. 1 5 6 9 1 5 11 15 6 10 XE XS 1 5 11 15 6 10 XER 52 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.4.1 XE Connector Assignments The connection with the drive is through a 15 pole high density sub-D connector (VGA type female). Please note that it is mandatory to use a shielded cable with at least 80 % coverage. The shield should be connected to ground on both sides of the connector, but not grounded at the motor end. Please note that for resolver feedback it is mandatory to use a twisted pair cable with shields on each pair and an overall shield. Table 4.4.1.1: XE Connector Assignments 5 1 10 6 15 11 Back View of VGA D-sub connector (solder side) 1 B– Incremental Encoder B- I 2 Klixon Klixon contact I 3 Z+ Zero channel Z (+) I 4 Z– Zero channel Z (–) I 5 A+ Incremental Encoder A (+) I 6 A– Incremental Encoder A (–) I 7 0VE Encoder Supply 0V reference O 8 B+ Incremental Encoder B(+) I 9 +5VE Encoder Supply O 10 SIN+ / H1 Sin / resolver input (+) / Hall 1 input I 11 SIN– / H2 Sin / resolver (–) / Hall 2 input I 12 COS+ / H3 Cos / resolver (+) / Hall 3 input I 13 COS– Cos / resolver (–) I 14 EXC+ Resolver excitation (+) O 15 EXC– Resolver excitation (–) O txv0090 I=Input O=Output Assignment Function 4.4.2 XER Encoder Connector Assignments (for auxiliary encoders) A +5V auxiliary incremental digital encoder can be plugged into the XER connector (controller card) or an expansion card (e.g. EXP-D14A4F, EXP-F2E, EXPFI, EXP-FO, EXP-FIH, etc.) The connection with the drive is through a 15 pole high density sub-D connector (VGA type female). Table 4.4.2.1: XER Connector Assignments 1 B– Digital incremental channel B (–) Input / Repetition I / O 2 3 Z+ Zero pulse (+) channel Input / Repetition I / O 4 Z– Zero pulse (–) channel Input / Repetition I / O 5 A+ Digital incremental channel A (+) Input / Repetition I / O 6 A– Digital incremental channel A (–) Input / Repetition I / O 7 0VR Encoder Supply 0V reference O 8 B+ Incremental channel B(+) Input / Repetition I / O 9 +5VR Encoder supply O txv0100 10 … 15 Assignment Function I=Input O=Output SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 53 4.4.3 Feedback /Drive Connections The XVy-EV drive can handle several feedback devices (see paragraph 4.4) selectable through the setting of jumpers on the regulation board. The jumper setting will be as follows: Table 4.4.3.1: Resolver/Encoder jumpers settings S21 S22 S23 DE / DEHS ON ON ON SE / SEHS ON ON ON SESC / SC OFF OFF OFF HS ON ON ON RES OFF OFF OFF SSI / ENDAT / Hiperface OFF OFF OFF txv0110 Encoder Jumpers settings In the following paragraphs are specified the connections between XVy- EV drives and the feedback sensors installed on standard motors. 4.3.3.1 Resolver Connections (RES) The following table shows the connections between the XVy-EV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable). SBM Motors 19 Poles connector SHJ Motors 10 Poles connector Function XVy drive 15 Pole XE connector Cable section [mm 2 ] A B (SHIELD) F (SHIELD) Cable shield SHIELD to connector body C B Resolver Cos+ 12 D G Resolver Cos- 13 E C Resolver Sin- 11 F H Resolver Sin+ 10 G H J K L M N P R S (Klixon) I (Klixon) Klixon contact 7 T (Klixon) J (Klixon) Klixon contact 2 U A Resolver Excitation+ 14 V E Resolver Excitation- 15 txv0240 (2 x 0.25) + sfr (2 x 0.25) + sfr (2 x 0.25) + sfr (2 x 0.25) + sfr For resolver cable use twisted pair shielded cable; the pairs should be the signal wires cos+/cos-,sin+/sin-, exc+/ exc-, motor temperature sensor wires. All the shields must be connected together to cable shield pin of resolver connector on the motor side and to connector body on drive side. 4.4.3.2 Sinusoidal Encoder SinCos Connections (SESC) The following table shows the connections between the XVy-EV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable). 54 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide SBM Motors 19 Poles connector SHJ Motors 19 Poles connector Function XVy drive 15 Pole XE connector Cable section [mm 2 ] A 12 Encoder supply 0VDC reference 7 0.5 B (SHIELD) 19 (SHIELD) Cable shield SHIELD to connector body C 15 Cos+ input 12 D 11 Cos- Input 13 E 14 Sin- Input 11 F 10 Sin+ Input 10 G H 4 Incremental Encoder B+ 8 J 8 Incremental Encoder B- 1 K 7 Incremental Encoder A- 6 L 3 Incremental Encoder A+ 5 M 5 Zero Channel Z+ 3 N 9 Zero Channel Z- 4 P 2 Encoder supply +5VDC 9 0.5 R S (Klixon) 17 (Klixon Klixon contact 7 n.c. T (Klixon) 18 (Klixon) Klixon contact 2 0.25 U V txv0220 2 x 0.14 2 x 0.14 (2 x 0.14) + sfr (2 x 0.14) + sfr (2 x 0.14) + sfr For encoder cable use twisted pair shielded cable; the pairs should be the signal wires A+/A-,B+/B-,Z+/Z-,cos+/cos-,sin+/sin-, motor temperature sensor wires, encoder supply wires. All the shields must be connected together to cable shield pin of encoder connector on the motor side and to connector body on drive side. 4.4.3.3 Digital Encoder with Hall Effect Sensors Connections (DEHS) The following table shows the connections between the SIEIDrive - XVy- EV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable). SBM Motors 19 Poles connector SHJ Motors 19 Poles connector Function XVy drive 15 Pole XE connector Cable section [mm 2 ] A 6 Encoder supply 0VDC reference 7 0.5 B (SHIELD) 7 (SHIELD) Cable shield SHIELD to connector body C 5 Hall 3 input 12 2 x 0.14 D E 4 Hall 2 Input 11 1 x 0.25 F G 3 Hall 1 Input 10 2 x 0.14 H 13 Incremental Encoder B+ 8 J 1 Incremental Encoder B- 1 K 11 Incremental Encoder A+ 5 L 10 Incremental Encoder A- 6 M 14 Zero Channel Z+ 3 N 9 Zero Channel Z- 4 P 12 Encoder supply +5VDC 9 0.5 R S (Klixon) 15 Klixon contact 7 n.c. T (Klixon) 16 Klixon contact 2 0.25 U V txv0230 (2 x 0.14) + sfr (2 x 0.14) + sfr (2 x 0.14) + sfr For encoder cable use twisted pair shielded cable; the pairs should be the signal wires A+/A-, B+/B-, Z+/Z-, motor temperature sensor wires, encoder supply wires. All the shields must be connected together to cable shield SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 55 pin of encoder connector on the motor side and to connector body on drive side. 4.4.3.4 Absolute Encoder Connections (SSi / EnDat /Hiperface protocols) EXP-ABS-EV expansion board has to be connected: - to XVy-EV drive though the cable supplied with the board (XE2 connector on EXP-ABS-EV, XE connector on XVY-EV drive). - to the encoder signals connector (XE1 connector on EXP-ABS-EV). Please refer to the following table: Pin Signal Description 1 B- (Sine-) Incremental encoder B- signal 2 KLIXON Klixon contact (referred to GND) 3 Reserved 4 Reserved 5 A+ (Cosine+) Incremental encoder A+ signal 6 A- (Cosine-) Incremental encoder A- signal 7 GND Ground of encoder supply voltage 8 B+ (Sine+) Incremental encoder B+ signal 9 ALIM Encoder supply voltage 10 EQP / SENSE- Equipotential (1) signal or SENSE- (2) signal (only for monitoring) 11 CLK+ Encoder CLOCK+ signal (ENDAT or SSI only) 12 CLK- Encoder CLOCK- signal (ENDAT or SSI only) 13 DT+ Encoder DATA+ signal 14 DT- Encoder DATA- signal 15 SENSE+ SENSE+ (2) signal (only for monitoring) t0010g For encoder cable use twisted pair shielded cable; the pairs should be the signal wires A+/A-, B+/B-, clock+/clock-, data+/data-, motor temperature sensor wires, encoder supply wires. All the shields must be connected together to cable shield pin of encoder connector on the motor side and to connector body on drive side. 4.4.3.5 Encoder /Resolver Specifications (XE connector) Sinusoidal encoders max. frequency ______________ 200 kHz ( select the appropriate number of pulses depending on required max. speed ) Number of pulses per revolution __ min 1, max 65535 Channels ___________________ three-channel, differential, TTL 5V compatible. An encoder loss detection is possible via firmware setting. Power supply ________________ + 5 V (Internal supply) * Load capacity _______________ > 8.3 mA pp per channel Suggested cable _____________ see chapter 12. Digital encoders max. frequency ______________ 250 kHz ( select the appropriate number of pulses depending on required max. speed ) Number of pulses per revolution __ min 1, max 65535 Channels ___________________ three-channel, differential. An encoder loss detection is possible via firmware setting. Power supply _______________ + 5 V (Internal supply) * 56 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Load capacity _______________ > 4.5 mA / 6.8 ... 10 mA per channel Suggested cable _____________ see chapter 12 * Via keypad (030 - ENCODER PARAM menu) it is possible to select 4 different values of internal encoder supply voltage to compensate the voltage reduction due to encoder cable length and load current encoder. Selection available are: 0=5.2V, 1=5.6V, 2=6.1V, 3=6.5V via XE Enc Supply (IPA 20012) or XER Enc Supply (IPA 20019). parameter. Absolute Encoder Absolute trace frequency _______ 500 kHz (on the EXP-ABS-EV expansion card) Incremental trace max. frequency 200 kHz Max encoder resolution ________ 29 bit (17 bit/rev.* 12 bit rev.). Note: from the fw 2.41 version. Interface electrical level ________ differential RS-485 Interface signals _____________ clock and data (bidirectional) Clock synchronous period ______ 2μs Encoder supply ______________ +5V(TTL) /+15V(HTL) +5V / +15V...+24V with external supply max absorption of encoder supply 250 mA max Suggested cable _____________ see chapter 12 Resolver interface Resolver excitation ____________ sinusoidal Resolver excitation voltage ______ 6V rms Resolver excitation current ______ 50mA rms max Resolver excitation frequency ____ 8kHz Resolver input _______________ differential Resolver input impedence ______ 4kO Resolver transformation ratio ____ 1:1 - 1:2 - 1:3 Suggested cable _____________ see chapter 12 4.4.3.6 Encoder Simulation / Repetition, Auxiliary Encoder Input (XER/EXP Connector) Digital encoder input max. frequency ______________ 400 kHz ( select the appropriate number of pulses depending on required max. speed ) Number of pulses per revolution __ min 1, max 65535 Channels ___________________ three-channel, differential. Encoder loss detection is not possible. Power supply ________________ + 5 V (Internal supply) * Load capacity _______________ > 4.5 mA / 6.8 ... 10 mA per channel Suggested cable _____________ see chapter 12 * Via keypad (030 - ENCODER PARAM menu) it is possible to select 4 different values of internal encoder supply voltage to compensate the voltage reduction due to encoder cable length and load current encoder. Selection available are: 0=5.2V, 1=5.6V, 2=6.1V, 3=6.5V via XE Enc Supply (IPA 20012) or XER Enc Supply (IPA 20019). parameter. On the regulation board there is available an incremental encoder output, with TTL Line Driver levels, that can be used as simulation of the servomotor feedback device. This function is performed by the microprocessor and it is possible to SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 57 simulate an encoder output with a programmable number of pulses/rev, or to repeat the signals of the motor encoder. The encoder output signals are available on the XER connector (see table 4.4.2.1): Digital encoder simulation (XER Port) Interface ___________________ opto-isolated Simulation __________________ differential digital incremental Standard outputs _____________ A+, A-, B+, B-,I+, I- Outputs levels _______________ Standard TTL Voltage limits on the TTL high-state outputs (on the pins) (Uhigh TTL) _________________ > 2.5V Voltage limits on the TTL low-state outputs (on the pins) (Ulow TTL) _________________ < 0,5V TTL load capacity ____________ 20mA max. each Parallel connection of standard SIEIDrive - XVy-EV inputs with a TTL outputs ____________ 3 inputs Max. frequency ______________ 400kHz ( select the appropriate number of pulses depending on required max. speed ) Max absorption of the encoder simulation power supply ________________ 150mA@5V Mechanics __________________ Male high density 15-pole D-sub connector (type VGA) for standard inputs and extractable terminals to be connected to a 0.14..1.5 mm 2 power supply section 4.4.4 Encoder Cable Length The following figures show the maximum encoder frequency as function of the encoder cable length. For this figures we have considered cables with the following specifications: Distributed capacitance: 90pF/m CABLE LENGHT (Sinusoidal encoder) 0 50 100 150 200 100 120 140 160 180 200 Encoder frequency [KHz] L e n g h t [ m t ] 58 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide CABLE LENGHT (Digital encoders) 0 20 40 60 80 100 120 140 160 180 200 100 200 300 400 500 600 Encoder frequency [KHz] L e n g h t [ m t ] XER Port XE Port The following figure shows the voltage drop as function of the cable length and of the current absorbtion: VOLTAGE DROP (Cable Cross-section 0.2 mm 2 ) 0 50 100 150 200 0 1 2 3 4 5 Voltage drop [V] L e n g h t [ m t ] 20mA 50mA 100mA 150mA 4.4.5 Checking Encoder / Drive Connections It is strongly recommended to follow the next instructions (parameters to be check are only those for used feedback devices, see next table) : - rotate manually clockwise the motor shaft - check “... pos” parameters values increasing up to “360” and than come back to “0” - check “... rev” parameters values increasing on each turn. XER conn. SC (SinCos) HS (Hall+Dig) RES (resolver) DE (Dig.Enc.) Inc Data Pos (IPA 19002) X X Inc Data N Rev (IPA 19003) X X Abs Turn Pos (IPA 19017) X X Abs Rev (IPA 19018) X X XER/EXP Turn Pos (IPA 19011) X XER/EXP Rev (IPA 19012) X XE Hall Pos (IPA 19022) X XE Hall Rev (IPA 19026) X txv0255 menu: SERVICE / ENCODER / XE HALL TRACKS XE conn. menu: SERVICE / ENCODER / XE ENC INC MEAS menu: SERVICE / ENCODER / XE ENC ABS MEAS menu: SERVICE / ENCODER / XER/EXP Inc Enc SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 59 4.5 CANopen Connection The SIEIDrive - XVy-EV brushless drive can be connected in a CANopen network, the pins are: V+ H SH L V- Pin / Signal Description V- External supply reference L CAN_L bus line (dominant low) SH CAN_H shield H CAN_H bus line (dominant high) V+ CAN external positive supply +24V (*), dedicated for supply of transceiver and optocouplers txv0245 (*) The supplier size have to be according to the used bus specification (CANopen or DeviceNet). Card absorption is 30 mA@24V. The Bus connection is provided via a shielded loop to be placed far from the power cables, with a minimum distance of 20 cm. The cable shielding must be ground connected on both ends. If the cable shieldings are ground connected on different points of the system, use the equipotential connection cables to reduce the current flow between the drives and the CAN bus master. NOTE ON TERMINATING RESISTOR: The first and last network components must have a 120 ohm resistance between pins C2 and C4. Attention 60 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.6 Fast Link Connections On the XFL connectors a fast serial connection is available, that is optimized to exchange I/O and regulation parameters between different drives. This synchronous serial interface is named FAST LINK. This interface can have two different connection architectures : - Multi Point : one drive is configured as master (transmitting) and the others as slaves (receiving). - Peer-to-Peer: This software is not yet released, but is supported by the existing hardware. Figure 4.6.1: XFL-OUT Connector (FAST LINK Output) Pin Function Description 1 - 2 - 3 DT_OUT+ Data output Fast-Link (+) 4 DT_OUT- Data output Fast-Link (-) 5 CLK_OUT+ Clock ouput Fast-Link (+) 6 CLK_OUT- Clock ouput Fast-Link (-) 7 - 8 - txv0200 Figure 4.6.2: XFL-IN Connector (FAST LINK Input) Pin Function Description 1 - 2 - 3 DT_IN+ Data input Fast-Link (+) 4 DT_IN- Data input Fast-Link (-) 5 CLK_IN+ Clock input Fast-Link (+) 6 CLK_IN- Clock input Fast-Link (-) 7 - 8 - txv0210 4.6.1 Fast Link Data Max number of drops _________ 8 (1 Master + 7 Slaves) Max length _________________ 1.5 meters (with conductor shielded cables), 40 meters (with plastic optical fiber) Baud rate ___________________ 3 Mbit Max Data Exchanged __________ 15 words + 1 CRC / Info every 250 uS in synchronous way from master to slave PWM ______________________ Drive Synchronization 8 conductors shielded cable (*) __ L= 65 cm (code S7QK7), L=115 cm (code S7QK8) Plastic optical fiber cable _______ L=5 m (code 8S895B), L=10 m (code 8S896B), L=20 m (code 8S897B), L=30 m (code 8S899B) Optical fiber interface kit _______ Trasmitter and receiver (code S370E) (*) Ferrite on Slave side SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 61 4.7 Serial Interface 4.7.1 Serial Interface Description The RS 485 serial interface enables data transfer via a loop made of two symmetrical, twisted conductors with a common shield. The maximum transmission distance is 1200 m (3936 feet) with a transfer rate of up to 38,400 KBaud. The transmission is carried out via a differential signal. RS 485 interfaces are bus-compatible in half-duplex mode, i.e. sending and receiving take place in sequence. Up to 31 SIEIDrive - XVy-EV devices (up to 128 address selectable) can be networked together via the RS 485 interface. Address setting is carried out via the Drive Serial Add (IPA 18031) parameter, DRIVE CONFIG / COMM CONFIG menu. Further information concerning the parameters to be transferred, their type and value range is given in the table contained in section 10, “Parameter lists”. Figure 4.7.1: RS485 Serial Interface 1 2 3 4 5 9 8 7 6 150 R TxA/RxA TxB/RxB 0 V S +5 V S S5 S6 PE RS485 XS 1 0 0 R 4 7 0 R 4 7 0 R +5 V The RS 485 on the SIEIDrive - XVy-EV series devices is located on the Regulation card in the form of a 9-pole SUB-D socket connector (XS). The communication may be with or without galvanic isolation: when using galvanic isolation an external power supply is necessary (+5V). Communication without galvanic isolation is suggested only in case of temporary connections for setup with one drive connected. The differential signal is transferred via PIN 3 (TxA/RxA) and PIN 7 (TxB/ RxB). Bus terminating resistors must be connected at the physical beginning and end of an RS 485 bus in order to prevent signal reflection. The bus terminating resistors on SIEIDrive - XVy-EV drives are connected via jumpers S5 and S6. This enables a direct point-to-point connection with a PLC or PC. 62 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide NOTE! Ensure that only the first and last drop of an RS 485 bus have a bus terminating resistor (S5 and S6 mounted). In all other cases (within the line) jumpers S5 and S6 must not be mounted. A connection point to point can be done using “PCI-COM” option interface, without jumper setting. For multidrop connection (two or more drive), an external power supply is necessary (pin 5 / 0V and pin 9 / +5V). Pins 6 and 8 are reserved for use with the “PCI-COM” interface card. When connecting the serial interface ensure that: - only shielded cables are used - power cables and control cables for contactors/relays are routed separately NOTE! See the manual “SLINK3 Communication protocol” for more detail. 4.7.2 RS 485 Serial Interface Connector Description Table 4.7.2.1: Assignment of the plug XS connector for the RS 485 serial interface Designation Function I/O Elec. Interface PIN 1 Internal use – – PIN 2 Internal use – – PIN 3 RxA/TxA I/O RS485 PIN 4 Internal use – – PIN 5 0V (Ground for 5 V) – Power supply PIN 6 Internal use – – PIN 7 RxB/TxB I/O RS 485 PIN 8 Internal use – – PIN 9 +5 V – Power supply ai4110 I = Input O = Output SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 63 4.8 Standard Connection Diagram 4.8.1 XVy-EV Connections Figure 4.8.1.1: Typical connection +24V U1/L1 M 1 K 1 M 5 F 1 L 1 L 2 L 3 N P E K 2 G 1 0 V24 C D 1 2 3 4 6 K 1 M S M P S K 0 L 1 T h e r m i s t o r 1 EXC- EXC+ COS- COS+/H3 SIN-/H2 SIN+/H1 +5VE +B 0VE A- A+ Z- Z+ PTC B 5 6 8 7 9 X E COM DI 1 4 1 6 5 9 8 7 6 Dig. Inp.1 (Start) Digital Inp. 0 (Enable drive) 3 0 3 1 3 2 O k r e l a y RS 485 K e y p a d 2 0 2 1 +10 V - 10 V 0 V 10 0 F W D R E V R 1 ( 2 . . . 5 k o h m ) 2 1 A n a l o g i n p u t 0 A n a l o g i n p u t 1 - 3 4 - + + E P E 1 V1/L2 W1/L3 U2/T1 V2/T2 W2/T3 Dig. Inp.7 (Drive Reset) A n a l o g o u t p u t 1 1 8 A n a l o g o u t p u t 0 1 7 2 8 1 1 2 9 Dig. Out.4 Dig. Out.5 1 V 3 U 3 2 V 3 M 3 ~ Dig. Inp.2 (Ramp in =0) Dig. Inp.3 (Reverse) 3 4 1 0 1 1 1 2 2 2 2 3 2 4 2 5 1 9 1 2 1 3 Dig. Out.0 Dig. Out.1 2 6 2 7 Dig. Out.2 Dig. Out.3 COM DO 1 0 DO supply 1 3 1 4 1 5 2 PE2 Dig. Inp.6 (External fault) Dig. Inp.5 (End Run fwd) Dig. Inp.4 (End Run rev) N a v i g a t i o n D r i v e C o n t r o l s +Torque -Torque Alarm Enable ZeroSpeedLimit Help Alarm Home + Escape Enter Shift P r e s s 2 s e c . t o d i s a b l e Jog Speed The circuit diagram is for the standard configuration of the drive as delivered. EMC installation and wiring techniques are not shown. For this see appropriate chapter. The connection of option card is also shown separately. The automatic restart of the drive after a failure alarm is not included. Nota! U3/2V3 and 1V3 only from sizes 75kW. For more details see chapter 4.2.1 In the case of DC power supply, from size XVy-EV 43366 insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance, consult the manual of the power supply unit, see figure 4.8.1.2. 64 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Figure 4.8.1.2: Typical connection diagram for XVy-EV ...-DC versions. +24V M 1 K 2 G 1 0 V24 C D K 1 M S M P S K 0 T h e r m i s t o r 1 EXC- EXC+ COS- COS+/H3 SIN-/H2 SIN+/H1 +5VE +B 0VE A- A+ Z- Z+ PTC B 5 6 8 7 9 X E COM DI 1 4 1 6 5 9 8 7 6 Dig. Inp.1 (Start) Digital Inp. 0 (Enable drive) 3 0 3 1 3 2 O k r e l a y RS 485 K e y p a d 2 0 2 1 +10 V - 10 V 0 V 10 0 F W D R E V R 1 ( 2 . . . 5 k o h m ) 2 1 A n a l o g i n p u t 0 A n a l o g i n p u t 1 - 3 4 - + + E P E 1 U2/T1 V2/T2 W2/T3 Dig. Inp.7 (Drive Reset) A n a l o g o u t p u t 1 1 8 A n a l o g o u t p u t 0 1 7 2 8 1 1 2 9 Dig. Out.4 Dig. Out.5 1 V 3 U 3 2 V 3 M 3 ~ Dig. Inp.2 (Ramp in =0) Dig. Inp.3 (Reverse) 3 4 1 0 1 1 1 2 2 2 2 3 2 4 2 5 1 9 1 2 1 3 Dig. Out.0 Dig. Out.1 2 6 2 7 Dig. Out.2 Dig. Out.3 COM DO 1 0 DO supply 1 3 1 4 1 5 2 PE2 Dig. Inp.6 (External fault) Dig. Inp.5 (End Run fwd) Dig. Inp.4 (End Run rev) N a v i g a t i o n D r i v e C o n t r o l s +Torque -Torque Alarm Enable ZeroSpeedLimit Help Alarm Home + Escape Enter Shift P r e s s 2 s e c . t o d i s a b l e Jog Speed K 1 M 5 F 1 L 1 L 2 L 3 N P E 1 2 3 4 6 L 1 S M 3 2 o r D C P o w e r s u p p l y The circuit diagram is for the standard configuration of the drive as delivered. EMC installation and wiring techniques are not shown. For this see appropriate chapter. The connection of option card is also shown separately. The automatic restart of the drive after a failure alarm is not included. L1 : Insertion of an AC mains inductance the power supply input of the power supply unit is compulsory (for the type of inductance, consult the manual of the power supply unit). Note! U3/2V3 and 1V3 only from size 6125230 . For more details see chapter 4.2.1 SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 65 4.8.2 Parallel Connection on the AC (Input) and DC (Intermediate Circuit) Side of Several Drives Features and Limits: 1 The inverters used have to be all the same size. 2 AC line chokes (see chapter 4.10.1) have to be the same (provided by the same supplier). 3 The mains power supply has to be simultaneous for all inverters, i.e. a single switch /line contactor has to be used. 4 Such connection is suitable for a maximum of 6 inverters. 5 If required, dissipate the braking power; it is necessary to use one internal "BU" braking unit (with external resistance) or one (or more) external braking units ("BU32-.., BUy..") of which one has to be configured as master and the others as slave. 6 Fast fuses (F12...F62) have to be fitted on the dc-link side ( C and D terminals) of each inverters (see chapter 4.9.2). Figure 4.8.2.1: Parallel Connection on the AC and DC Side of Several Drives M1 3 M2 3 M6 3 F11 L1 F21 L2 F61 L6 U V W U2 V2 W2 C D DRIVE 1 U V W U2 V2 W2 C D DRIVE 2 BR F12 F22 F62 U V W U2 V2 W2 C D DRIVE 6 BR CR C D BU-32-... (B y-...) U (MASTER) 7 8 9 10 R BR F7 R BR L1 L2 L3 K1 M.. 3 F.. L.. U V W U2 V2 W2 C D DRIVE .. F.. (*) (*) Do not connect if external braking unit are used Caution 66 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.9 Circuit Protection 4.9.1 External Fuses for the Power Section The drive must be fused on the AC Input side. Use fast fuses only. Connections with three-phase inductance on AC input are not essential but will improve the DC link capacitors lifetime and drive reliability in unusual power events. Table 4.9.1.1: External Fuse Types for AC input side Europe 10306 25000 GRD2/10 (F4D13) or Z14GR10 (F4M03) A70P10 FWP10 (S7G49) 10408 25000 10612 10000 20816 25000 GRD2/20 (F4D15) or Z14GR20 (F4M07) A70P20 FWP20 (S7G48) 21020 25000 GRD2/25 (F4D16) or Z14GR25 (F4M09) A70P25 FWP25 (S7G51) 21530 10000 GRD3/35 (F4D20) or Z22GR40 A70P35 FWP35 (S7G86) 32040 25000 GRD3/50 (F4D21) or Z22GR40 A70P40 FWP40 (S7G52) 32550 10000 GRD3/50 (F4D21) or Z22GR50 (F4M15) A70P40 FWP40 (S7G52) 43366 ... 8350460 10000 10306 50000 GRD2/10 (F4D13) or Z14GR10 (F4M03) A70P10 FWP10 (S7G49) 10408 50000 A70P10 FWP10 (S7G49) 10612 50000 20816 50000 21020 50000 GRD2/20 (F4D15) or Z14GR20 (F4M07) A70P20 FWP20 (S7G48) 21530 50000 GRD2/25 (F4D16) or Z14GR25 (F4M09) A70P25 FWP25 (S7G51) 32040 50000 GRD3/50 (F4D21) or Z22GR40 A70P35 FWP35 (S7G86) 32550 50000 GRD3/50 (F4D21) or Z22GR50 (F4M15) A70P40 FWP40 (S7G52) 43366 30000 43570 25000 44590 25000 S00C+üf1/80/80A/660V or Z22gR80 A70P80 FWP80 (S7G54) 455110 25000 S00C+üf1/80/100A/660V or M00üf01/100A/660V (F4G18) A70P100 FWP100 (S7G55) 570140 25000 5100180 25000 6125230 25000 7145290 25000 7190350 25000 7230420 25000 8280400 25000 8350460 25000 S2üf1/110/500A/660V or M2üf1/500A/660V (F4G30) A70P500 FWP500 (S7G63) 9470650-C 25000 S2üf1/110/630A/660V (F4E31) A70P600 FWP600 (S7G65) 9470650-C-IP00 25000 S2üf1/110/630A/660V (F4E31) A70P600 FWP600 (S7G65) 9560650-CP 25000 S2üf1/110/630A/660V (F4E31) A70P600 FWP600 (S7G65) 9560650-CP-IP00 25000 S2üf1/110/630A/660V (F4E31) A70P600 FWP600 (S7G65) txv0150 Drive type XVy-EV DC link capacitors life time [h] F1 - Fuses type (Code) America Connections without three-phase reactor For these types an external reactor is mandatory if the AC input impedence is equal or less than 1% Connections without three-phase reactor GRD2/16 (F4D14) or Z14GR16 (F4M05) A70P20 FWP20 (S7G48) GRD2/16 (F4D14) or Z14GR16 (F4M05) A70P20 FWP20 (S7G48) GRD3/50 (F4D21) or Z22GR50 A70P50 FWP50 (S7G53) S00C+üf1/80/160A/660V or M00üf01/160A/660V (F4E15) A70P175 FWP175 (S7G57) S1üf1/110/250A/660V or M1üf1/250A/660V (F4G28) A70P300 FWP300 (S7G60) S2üf1/110/400A/660V or M2üf1/400A/660V (F4G34) A70P400 FWP400 (S7G62) Fuse manufacturers: Type GRD2... (E27), GRD3... (E33), M... (blade fuses), Z14... 14 x 51 mm, Z22... 22 x 58 mm, S.... Jean Müller, Eltville A70P... Gould Shawmut FWP... Bussmann NOTE! The technical data of the fuses, e.g. dimensions, weights, heat dissipation, auxiliary contactors, are found in the manufacturers data sheets. SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 67 4.9.2 External Fuses for the Power Section DC Input Side Use the following fuses when an external bus supply is used. Table 4.9.2.1: External fuses type for DC input side Fuses type Code Code 10306 10408 10612 20816 21020 Z14GR20 F4M07 A70P20-1 FWP20A14F S7G48 21530 Z14GR32 F4M11 A70P30-1 FWP30A14F S7I50 32040 Z14GR40 F4M13 A70P40-4 FWP40B S7G52 32550 Z22GR63 F4M17 A70P60-4 FWP60B S7I34 43366 43570 44590 S00C+/üf1/80/100A/660V F4EAG A70P100 FWP100 S7G55 455110 S00C+/üf1/80/125A/660V F4EAJ A70P150 FWP150 S7G56 570140 S00C+/üf1/80/160A/660V F4EAL A70P175 FWP175 S7G57 5100180 S00üF1/80/200A/660V F4G23 A70P200 FWP200 S7G58 6125230 S1üF1/110/250A/660V F4G28 A70P250 FWP250 S7G59 7145290 S1üF1/110/315A/660V F4G30 A70P350 FWP350 S7G61 7190350 S1üF1/110/400A/660V F4G34 A70P400 FWP400 S7G62 7230420 8280400 8350460 S2üf1/110/630A/660V F4E31 A70P600 FWP600 S7G65 9470650-C 9470650-C-IP00 9470650-C-DC-IP00 9560650-CP 9560650-CP-IP00 9560650-CP-DC-IP00 txv0160 S7813 S1üF1/110/500A/660V F4E30 A70P500 FWP500 S7G63 S3üF1/110/800A/660V F4H02 A70P800 FWP800 S7G54 S00C+/üf1/80/80A/660V F4EAF A70P80 FWP80 S7G49 Z14GR16 F4M05 A70P20-1 FWP20A14F S7G48 Z14GR10 F4M03 A70P10 FWP10A14F Drive type XVy-EV Europe America Fuses type Fuse manufacturers: Type Z14..., Z22, S00 ..., S1..., S2... Jean Müller, Eltville A70P... Gould Shawmut FWP... Bussmann NOTE! The technical data of the fuses, e.g. dimensions, weights, heat dissipation, auxiliary contactors, are found in the manufacturers data sheets. 68 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.9.3 Internal Fuses Table 4.9.3.1: Internal fuses Drive type Designation Protection of Fuse (source) Fitted on: Power card PV33-4 and higher Power card PV33-5 and higher 10306 ... 9560650 F1 +24V Resettable fuse Regulation card R-XVy and higher 7145290 … 8350460 F3 Fans transformer 2.5A 6.3x32 (Bussmann: MDL 2.5, Gould Shawmut: GDL1-1/2, Siba: 70 059 76.2,5 , Schurter: 0034.5233) Bottom cover (power terminals side) txv0170 2A fast 5 x 20 mm (Bussmann: SF523220 or Schurter: FSF0034.1519 or Littlefuse: 217002) 43366 … 9560650 F1 +24V 4.10 Chokes / Filters NOTE! A three-phase inductance should be connected on the AC Input side in order to limit the input RMS current XVy-EV series drives. The induct- ance can be provided by an AC Input choke or an AC Input transformer. While the drive will work without the inductance, capacitor life will be shortened and general reliability will be less. NOTE! In the case of DC power supply, from size XVy-EV 43366 insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance, consult the manual of the power supply unit), see figure 4.8.1.2. NOTE! For the use of output sinusoidal filters, please contact the factory. Figure 4.10.1: Input/output choke dimensions SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 69 4.10.1 AC Input Chokes Table 4.10.1.1: 3-Phase AC Input Chokes Mains inductance Rated current Saturat. current Freq. [mH] [A] [A] [Hz] a b c D1 E1 10306 3.69 3.7 7.4 50/60 LR3y-1015 S7AAE 1.8 (4.0) 10408 2.71 5.5 11 50/60 LR3y-1022 S7AAF 10612 2.3 6.7 14 50/60 LR3y-1030 S7AB3 20816 1.63 8.7 18 50/60 LR3y-2040 S7AAG 2 (4.4) 21020 1.29 11.8 24.5 50/60 LR3y-2055 S7AB5 2.2 (4.4) 120 (4.7) 125 (4.9) 75 (2.6) 100 (3.9) 55 (2.2) 21530 0.89 17.4 36.5 50/60 LR3y-2075 S7AB6 4.9 (10.8) 150 (5.9) 155 (6.1) 79 (3.1) 90 (3.5) 54 (2.1) 32040 0.68 22.4 46.5 50/60 LR3y-3110 S7AB7 5 (11) 150 (5.9) 155 (6.1) 79 (3.1) 90 (3.5) 54 (2.1) 32550 0.51 30 61 50/60 LR3y-3150 S7AB8 6.2 (13.7) 150 (5.9) 168 (6.6) 100 (3.9) 90 (3.5) 69 (2.7) 43366 43570 44590 0.24 58 120 50/60 LR3-030 S7FF3 9.5 (20.9) 180 (7.1) 160 (6.3) 170 (6.7) 150 (5.9) 80 (3.1) 455110 0.18 71 145 50/60 LR3-037 S7FF2 9.5 (20.9) 180 (7.1) 160 (6.3) 180 (7.1) 150 (5.9) 80 (3.1) 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 0.085 380 710 50/60 LR3-200 S7AE9 54 (119) 300 (11.8) 270 (10.6) 355 (13.9) 250 (9.8) 130 (5.1) 9470650-C 9560650-CP txv0180 150 (5.9) 80 (3.1) 0.148 173 350 50/60 LR3-090 S7D19 55 (121.3) 300 (11.8) LR3-055 S7FF1 12.5 (27.6) 240 (9.4) Drive type XVy-EV Three-phases main chokes Model Cod. Weight kg (lbs) Dimensions : mm (inch) 120 (4.7) 125 (4.9) 65 (2.6) 1.9 (4.2) 215 (8.5) 180 (7.1) 265 (10.4) 210 (8.3) 100 (3.9) 45 (1.8) 182 (7.2) 130 (5.1) 150 (5.9) 70 (2.8) LR3-022 S7FF4 7.8 (17.2) 180 (7.1) 0.13 102 212 50/60 0.35 41 83 50/60 0.085 297 600 50/60 250 (9.8) 85 (3.3) 270 (10.6) 260 (10.2) 250 (9.8) 120 (4.7) LR3-160 S7D40 44 (97.0) 300 (11.8) 0.06 550 1050 50/60 LR3-315 S7D28 110 (242.5) 375 (14.8) 545 (21.5) 255 (10) 250 (9.8) 133 (5.2) For all the sizes an input choke is strongly recommended in order to: - prolong the life time of the DC link capacitors and the reliability of the input rectifier. - reduce the AC mains harmonic distortion - reduce the problems due to a low impedance AC mains ( ± 1%). NOTE! The current rating of these inductors (reactors) is based on the nominal current of standard motors, listed in table 2.3.2.1 in section 2.3.2, “AC Input/Output Connection”. 4.10.2 Output Chokes For motors with long cable runs (typically over 30 m [98.5 feet]) an output choke is recommended to maintain the voltage waveform within the specified limits. Suggested choke ratings and part numbers are listed in table 4.10.2.1. The rated current of the filters should be approx. 20% above the rated current of the frequency drive in order to take into account additional losses due to PWM waveform. 70 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Table 4.10.2.1: Recommended values for output chokes Drive type XVy-EV Mains inductance Rated current Saturat. current [mH] [A] [A] a b c D1 E1 10306 1.4 9.5 20 LU3-001 S7FG1 2.7 (6.0) 120 (4.7) 128 (5.0) 71 (2.9) 100 (3.9) 54 (2.1) 10408 10612 20816 21020 21530 32040 32550 0.43 32 68 LU3-015 S7FM2 7.5 (16.5) 180 (7.1) 160 (6.3) 170 (6.7) 150 (5.9) 70 (2.8) 43366 43570 44590 0.24 58 100 LU3-030 S7FH4 9.5 (20.9) 180 (7.1) 160 (6.3) 180 (7.1) 150 (5.9) 80 (3.1) 455110 0.18 76 130 LU3-037 S7FH5 9.7 (21.4) 180 (7.1) 160 (6.3) 180 (7.1) 150 (5.9) 80 (3.1) 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 LU3-200 S7AF0 9470650-C 9560650-CP txv0190 310 [12.2] 250 [9.8] 134 [5.3] S7FH9 95 [209.4] 380 [15.0] 500 [10.7] Three-phases output choke Cod. Weight kg (lbs) Dimensions : mm (inch) Model 1.4 9.5 20 LU3-003 S7FG2 5.2 (11.5) 180 (7.1) 170 (6.7) 110 (4.3) 150 (5.9) 60 (2.4) 0.87 16 34 LU3-005 S7FG3 5.8 (12.8) 180 (7.1) 170 (6.7) 110 (4.3) 150 (5.9) 60 (2.4) 0.51 27 57 LU3-011 S7FG4 8 (17.6) 180 (7.1) 180 (7.1) 130 (5.1) 150 (5.9) 70 (2.8) 0.33 42 72 LU3-022 S7FH3 8 (17.6) 180 (7.1) 160 (6.3) 170 (6.3) 150 (5.9) 70 (2.8) 540 310 0.041 210 (8.3) 240 (9.4) LU3-090 0.07 180 310 250 (9.8) 240 (9.4) 260 (10.2) LU3-160 0.022 580 1100 LU3-315 Please contact the nearest Gefran office 0.12 110 192 LU3-055 S7FH6 14 (30.9) 240 (9.4) 210 (8.3) 90 (3.5) 180 (7.1) 200 (7.9) 80 (3.1) 80 (3.1) 200 (7.9) 200 (7.9) 300 (11.8) 18.5 (40.8) 27.5 (60.6) S7FH8 S7FH7 NOTE! When the drive is operated at the rated current and at 50 Hz, the output chokes cause a voltage drop of approx. 2% of the output voltage. Slightly less drop will occur at 60Hz. SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 71 4.10.3 Interference Suppression Filters SIEIDrive - XVy-EV drives must be equipped with an external EMI filter in order to reduce the radiofrequency emissions on the mains line as required for operation in Europe. The filter selection is depending on the drive size and the installation environment. For more information, see the “EMC guide” on the cd-rom included. In the Guide it is also indicated how to install the drive in an enclosure (connection of filter and mains reactors, cable shield, ground, etc.) in order to make it EMC compliant according the EMC Directive 89/336/ EEC. The document describes the present situation concerning the EMC standards and the compliance tests made on the drives as required by CE. Table 4.10.3.1: Recommended EMI filters a b c d D1 E1 R P M 10306 … 10612 (2) EMI FFP 480-9 S7DEQ 1.1 (2.4) 375 (14.8) 104 (4.1) 45 (1.8) - 360 (14.2) 59 (2.3) - M5 Ø6 20816 … 21530 (2) EMI FFP 480-24 S7DER 1.4 (3.1) 375 (14.8) 150 (5.9) 45 (1.8) - 360 (14.2) 105 (4.1) - M5 Ø6 32040 (2) EMI FFP 480-30 S7DES 1.6 (3.5) 390 (15.4) 200 (7.9) 45 (1.8) - 375 (14.8) 155 (6.1) - M5 Ø6 32550 (2) EMI FFP 480-40 S7DET 2.3 (5.1) 390 (15.4) 200 (7.9) 45 (1.8) - 375 (14.8) 155 (6.1) - M5 Ø6 43366 … 43570 (3) EMI 480-45 S7DFU 1.3 (2.9) 250 (9.8) 85 (3.3) 90 (3.5) - 235 (9.3) 60 (2.4) - - M6 44590 … 455110 (3) EMI 480-70 S7DFZ 2.6 (5.7) 270 (10.6) 90 (3.5) 150 (5.9) - 255 (10.0) 65 (2.6) - - M6 570140 … 5100180 (3) EMI 480-100 S7DGA 2.6 (5.7) 270 (10.6) 90 (3.5) 150 (5.9) - 255 (10.0) 65 (2.6) - - M6 6125230 (3) EMI 480-150 S7DGB 4.4 (9.7) 400 (15.7) 120 (4.7) 170 (6.7) - 365 (14.4) 102 (4.0) - - M6 7145290 (3) EMI 480-180 S7DGC 4.4 (9.7) 400 (15.7) 120 (4.7) 170 (6.7) - 365 (14.4) 102 (4.0) - - M6 7190350 (3) EMI 480-250 S7DGG 13 (28.7) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 7230420 (3) EMI 480-250 S7DGG 13 (28.7) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 8280400 (3) EMI 480-320 S7DGH 13.2 (29.1) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 8350460 (3) EMI 480-400 S7DGI 13.4 (29.5) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 9470650-C (3) EMI-480-600 S7DGL 40 (88.2) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 9560650-CP (3) EMI-480-800 S7DGM 40 (88.2) 350 (13.8) 280 (11.0) 150 (5.9) - 145 (5.7) 255 (10.0) - - M10 10306 … 10612 (2) EMI FFP 480-9 S7DEQ 1.1 (2.4) 375 (14.8) 104 (4.1) 45 (1.8) - 360 (14.2) 59 (2.3) - M5 Ø6 20816 … 21530 (2) EMI FFP 480-24 S7DER 1.4 (3.1) 375 (14.8) 150 (5.9) 45 (1.8) - 360 (14.2) 105 (4.1) - M5 Ø6 32040 (2) EMI FFP 480-30 S7DES 1.6 (3.5) 390 (15.4) 200 (7.9) 45 (1.8) - 375 (14.8) 155 (6.1) - M5 Ø6 32550 (2) EMI FFP 480-40 S7DET 2.3 (5.1) 390 (15.4) 200 (7.9) 45 (1.8) - 375 (14.8) 155 (6.1) - M5 Ø6 43366 … 43570 (3) EMI 480-45 S7DFU 1.3 (2.9) 250 (9.8) 85 (3.3) 90 (3.5) - 235 (9.3) 60 (2.4) - - M6 44590 (3) EMI 480-55 S7DFV 2 (4.4) 250 (9.8) 85 (3.3) 90 (3.5) - 235 (9.3) 60 (2.4) - - M6 455110 (3) EMI 480-70 S7DFZ 2.6 (5.7) 270 (10.6) 90 (3.5) 150 (5.9) - 255 (10.0) 65 (2.6) - - M6 570140 … 5100180 (3) EMI 480-100 S7DGA 2.6 (5.7) 270 (10.6) 90 (3.5) 150 (5.9) - 255 (10.0) 65 (2.6) - - M6 6125230 … 7145290 (3) EMI 480-150 S7DGB 4.4 (9.7) 400 (15.7) 120 (4.7) 170 (6.7) - 365 (14.4) 102 (4.0) - - M6 7190350 (3) EMI 480-180 S7DGC 4.4 (9.7) 400 (15.7) 120 (4.7) 170 (6.7) - 365 (14.4) 102 (4.0) - - M6 7230420 (3) EMI 480-250 S7DGG 13 (28.7) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 8280400 (3) EMI 480-250 S7DGG 13 (28.7) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 8350460 (3) EMI 480-400 S7DGI 13.4 (29.5) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 9560650-CP (3) EMI-480-600 S7DGL 40 (88.2) 300 (11.8) 260 (10.2) 135 (5.31) - 120 (4.72) 235 (9.25) - - M10 10306 … 32040 (1) EMI-C 480-25 S7DFA 0.96 (2.1) 105 (4.1) 100 (3.9) 57 (2.2) - 57 (2.2) 95 (3.7) M5 4.5x3 10306 … 9560650-CP (4) ECF3 F4ZZ2 1.12 (2.7) 150 (5.9) 120 (4.72) 110 (4.33) - 100 (3.94) 100 (3.94) - M6 - txv0195 Mains supply : 500V ±10% Mains supply : 230 - 400V ±15%, 460 - 480 +10% Mains supply : 230 - 400V ±15% Mains supply : 460 - 480 +10% Weight kg (lbs) Dimensions : mm (inch) Drive type XVy-EV EN 61800- 3:2004 Model Cod. (1): Category C3, 2nd Environment, Motor cable length : max 5 m. (2): Category C2, 1st Environment, Motor cable length : max 30 m. (3): Category C3, 2nd Environment, Motor cable length : max 100 m. (4): Category C4, 2nd Environment, Motor cable length : max 100 m. 72 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Figure 4.10.3.1: Filter dimension D1 E 1 b L I N E L O A D a c M P EMI 480-250...800 EMI FFP ... c M4 M5 Wires 2.5 mm block 2 LOAD L1L2 L3 LINE L1 L2 L3 P1 D 1 b 2 0 0 ± 2 0 2 0 0 ± 2 0 E1 4.5x3 a EMI-C 480-25 a c D1 E1 M b EMI 480-45...180 28 43 T2 25 5-8 a b c D1 E1 D1 M b c a b1 25 25 D1 ECF .. P SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 73 4.11 Braking Units In regenerative operation, the frequency-controlled three-phase motor feeds energy back to the DC link circuit via the drive. This creates an increase in the intermediate circuit voltage. Braking units (BU) are therefore used in order to prevent the DC voltage rising to a value causing the drive to trip. When used, these activate a braking resistor that is modulated across the capacitors of the intermediate circuit. The feedback energy is converted to heat via the braking resistor (R BR ), thus providing very short deceleration times and four-quadrant operation. Figure 4.11.1: Operation with Braking Unit (Principle) E M _ R BR BU All SIEIDrive - XVy-EV drives can be equipped with an external braking unit (BU-32.xx... or BUy-....) connected to terminals C (+Bus) and D (- Bus). NOTE! When the internal braking unit is present, or when circuit terminals C and D are connected to external devices, the AC Input must be protected with superfast semiconductor fuses! Observe the mounting instruction con- cerned. The braking resistors can be subject to unforeseen overloads due to possible failures. The resistors have to be protected using thermal protection devices. Such devices do not have to interrupt the circuit where the resistor is inserted but their auxiliary contact must interrupt the power supply of the drive power section. In case the resistor foresees the precence of a protection contact, such contact has to be used together with the one belonging to the thermal protection device. 4.11.1 Internal Braking Unit Drive sizes XVy-EV 10306 up to XVy-EV 32550 have, as standard configuration, an internal braking unit. Drive sizes XVy-EV 43366 up to XVy-EV 5100180 can have an optional internal braking unit factory mounted. Warning 74 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Table 4.11.1.1: Technical data of the internal braking units Drive type I RMS I PK T Minimum R BR XVy-EV [A] [A] [s] [ohm] 10306 …20816 4.1 7.8 19 100 21020 … 21530 6.6 12 16 67 32040 12 22 17 36 32550 17 31 16 26 43366 - 43570 18 52 42 15 44590 37 78 23 10 455110 29 78 37 10 570140 … 5100180 50 104 22 7.5 6125230 … 9560650 txv0260 External braking unit (optional) I RMS Nominal current of the braking unit I PK Peak current deliverable for 60 seconds max. T Minimum cycle time for a working at I PK for 10 seconds 4.11.2 Internal and External Braking Resistors The SIEIDrive - XVy-EV drives, up to size XVy-EV 32550 and XVy- EV...EWHR, are equipped with an Internal Braking Resistor according to the following table: Drive Resistor P NBR R BR E BR Type Type [W] [Ohm] [kJ] 10306 …10612 CBR-100R 100 100 11 21020 … 21530 CBR-67R 150 67 11 32040 RFI1300-36R 200 36 16 32550 RFI1300-26R 200 26 16 455110 EWHR 12R-S8T1DE 12 570140 EWHR 10R-8SWW1 10 5100180 EWHR 5125230 EWHR txv0225 1000 30 8R-S8T1DD 8 For bigger sizes, the braking resistor is optional and has always to be mounted externally. For parameter settings refer to the section 10, BRAKING RES menu. The figure below shows the configuration for internal brake unit operation. Figure 4.11.2.1: Connection with internal Braking Unit and external braking resistor Braking resistor 3Ph~ P E 1 / U 1 / L 1 V 1 / L 2 W 1 / L 3 B R 1 U 2 / T 1 V 2 / T 2 W 2 / T 3 C D P E 2 / F1 Braking Unit SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 75 If the application requires to use an External Braking Resistor, it is nec- essary to follows the recommended external resistors to be used with drives internal braking units: Table 4.11.2.1: Lists and technical data of the external standard resistors XVy-EV P NBR R BR Resistor Weight [kW] [Ohm] (1) (2) Type kg (lbs) a b c a1 b1 c1 10306 0.22 100 1.5 11 RF 220 T 100R S8T0CE 0.5 (1.1) 300 (11.8) 27 (1.1) 36 (1.4) 290 (11.4) 10408 …20612 0.30 100 2.5 19 RF 300 DT 100R S8T0CB 1.4 (3.09) 260 (10.2) 47 (1.9) 106 (4.2) 17.5 (0.69) 93.5 (3.7) 20816 0.75 100 7.5 38 RFPD 750 DT 100R S8SY4 1.7 (3.75) 200 (7.9) 70 (2.8) 106 (4.17) 17.5 (0.69) 93.5 (3.7) 21020 0.75 68 7.5 38 RFPD 750 DT 68R S8T0CD 1.7 (3.75) 200 (7.9) 70 (2.8) 106 (4.17) 17.5 (0.69) 93.5 (3.7) 21530 0.9 68 9 48 RFPD 900 DT 68R S8SY5 2.2 (4.85) 260 (10.2) 70 (2.8) 106 (4.17) 17.5 (0.69) 93.5 (3.7) 32040 1.1 40 11 58 RFPD 1100 DT 40R S8SY6 2.7 (5.95) 320 (12.6) 70 (2.8) 106 (4.17) 17.5 (0.69) 93.5 (3.7) 32550 1.9 28 19 75 RFPR 1900 D 28R S8SZ5 4.2 (9.3) 365 (14.4) 75 (2.95) 100 (3.9) 350 (13.78) 70 (2.8) 30 (1.2) 43366 …43570 4 15.4 40 150 BR T4K0-15R4 S8T00G 7.0 (15.43) 625 (24.6) 100 (3.9) 250 (9.8) 605 (23.8) 40 (1.6) 44590 ... 455110 4 11.6 40 150 BR T4K0-11R6 S8T00H 7.0 (15.43) 625 (24.6) 100 (3.9) 250 (9.8) 605 (23.8) 40 (1.6) 570140 ... 5100180 8 7.7 80 220 BR T8K0-7R7 S8T00I 11.5 (25.35) 625 (24.6) 160 (6.3) 250 (9.8) 605 (23.8) 60 (2.4) txv0250 Cod. E BR [kJ] Dimensions : mm (inch) (1) Max overload energy, 1”- duty-cycle 10%; (2) Max overload energy, 30”- duty-cycle 25% Figure 4.11.2.2: External resistors BR T4K0..., BR T8K0... a c BR T2K0: PG 11/PG16 b BR T4K0: PG 13 BR T8K0: PG 16 PG 7: on version with Thermostat only Thermal protection cable a b c Cables l 500 mm / Section 4 mm 2 ength c1 b1 RFPD..., RF... DT a1 a b c a1 Cable length = 300 (11.81) RF... T n 4 holes 5.5 mm Threaded hole 5 MA Engrave the ground symbol a a1 b1 c1 b c Length cables 400 mm / Section 4 mm 2 RFPR... When using an external resistor, remove the connections of the internal braking resistor from terminals BR1 and C and connect the two wires together using the proper faston. Parameters description: P NBR Nominal power of the braking resistor R BR Braking resistor value E BR Max surge energy which can be dissipated by the resistor P PBR Peak power applied to the braking resistor T BRL Maximum braking time in condition of limit operating cycle (braking power = P PBR with typical triangular profile) Warning 76 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide Figure 4.11.2.3: Limit operating braking cycle with typical triangular power profile T CL n,P P PBR T BRL n E BR t T CL Minimum cycle time in condition of limit operating cycle (brak- ing power = P PBR with typical triangular profile) The BU Overpower alarm occurs if the duty cycle exceeds the maxi- mum data allowed in order to prevent possible damage to the resistor. Resistor model: Standard resistor data Example code: RFPD 900 DT 68R RFPD = resistor type 900 = nominal power (900 W) T= with safety thermostat 68R = resistor value (68 ohm) NOTE! The suggested match of resistor-model and inverter-size, allows a braking stop at nominal torque with duty cycle T BR / T C = 20% Where: T BR = Braking time T C = Cycle time Figure 4.11.2.4: Braking cycle with T BR / T C = 20% T C P,n T BR n t SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 77 These resistors, whose technical data are reported in the table 4.11.2.1, have been sized to tolerate an overload equal to 4 times their nominal power for 10 seconds. In any event they can tolerate also an overload, whose energy dissipation is the same of the maximum power level defined by: Where: V BR = braking unit threshold With reference to the figure 4.11.2.3, where the power profile is the typical triangular one, the following example can be taken into consideration (see also table 4.11.2.1). Resistor model: MRI/T600 100R Nominal power P NBR = 600 [W] Maximum energy E BR = 4 x 600[W] x 10[s] = 24000[J] Inverter mains supply = 460V Voltage threshold: V BR =780V TBRL = 2 EBR PPBR = 24000 6084 = 7.8[s] 2 PPBR = VBR RBR 2 = 780 100 2 = 6084 [W] It is necessary to consider the following relation: A) If T BR < E BR / P NBR verify: 1) P MB < 2 * E BR / T BR Where: P MB is the maximum cycle power (see figure 4.11.2.5) 2) x The average power of the cycle must not be higher than the nominal power of the resistor. B) If T BR > E BR / P NBR that is to say, in case of very long braking time, it must be dimensioned P MB < P NBR Figure 4.11.2.5: Generic braking cycle with triangular profile T C n,P P PBR T BR t P MB 78 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide If one of the above mentioned rules is not respected, it is necessary to increase the nominal power of the resistor, respecting the limit of the internal braking unit as stated in the table 4.11.1. Generally the following condition must be satisfied I RMS 1 P T PBR BR R T BR C 2 4.11.3 Control of the External Braking Power The braking resistance average power is defined by the following formula: P = 0.2 · J tot · a aa aa 2 · f where: P = Dissipated power J tot = Total inertia ( Kgm 2 ) a aa aa = Max speed ( rad/sec ) f = Cycle frequency in Herz (number of cycles per sec- ond). f = 1/T BR (sec) 4.11.4 External Resistance Interaction with the System Parameters When the external braking resistance is installed it is always necessary to carry out some modifications in the parameters. See chapter 10, BRAKING RES menu for furthers details. 4.11.5 Choice of the Thermal Relay for Brake Resistor Here is a procedure aimed at stating the coordination of a thermal relay for the protection of the resistor bank in case of a sudden component failure (not detected), when the DC bus power supply is continuously connected to the braking resistance. It is important to remember that the drives are supplied with a I 2 t function for the resistor bank protection; such a function is in a position to avoid any possible overload but it cannot protect against component failure that might render impossible the logical control of the braking resistor current. As stated in the dimensioning procedure for the bus braking system, the resistor bank has, with a given ambient condition, a possible instantaneous overload defined as E max BR in [Joule] or as a product given by P max_BR x T max_BR [Joule] supplied by the producer of the resistor. Such parameters are able to define the resistor overload possibility in case of continuous maximum power peaks. According to E max BR and to the peak power value, which the resistor bank is subject to, P PBR = V 2 BR / R BR (V BR = 780 V, default) the maxi- mum time for the peak power application is calculated as SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 79 T max BR = E max BR / P PBR Furthermore, the peak current on the resistors is I PK = V BR / R BR Therefore, the time/current curves of the thermal relays are must have an overload ratio requiring a thermal relay intervention time lower than T max BR . Given that K, the overload ratio obtained from the curves, the current value to which the thermal relay has to be set is: I term = I PK / k Now it is necessary to check that the product V BR x I term is higher than the average power, which can be dissipated on the resistor bank; such value is stated during the dimensioning procedure of the braking system. In case the above-mentioned conditions are not satisfied, it is necessary to use a thermal relay with a time/current feature able to obtain a K factor lower than the one stated above. The thermal relays to be used are those coordinated for the protection of three-phase motors. In this case it is advisable to use all the three contacts which have to be connected in series to be able to break the substantial DC voltage involved. 80 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.12 Buffering the Regulator Supply When no external power supply is available on the terminals 15 and 16 of the regulation card, the power supply of the control section is derived from a switching power supplier (SMPS) of the DC link circuit. The drive is disabled as soon as the voltage of the DC Link circuit is below the threshold value (U Buff ). The regulator supply is buffered by the energy of the DC Link circuit until the limit value (U min ) is reached. The buffer time is determined by the capacitance of the DC Link capacitors. The minimum values are shown in the table below. The buffer time (t Buff ) can be extended (only on 11 kW drive and higher) by connecting external capacitors in parallel (on terminal C (+ bus) and D(- bus)). Table 4.12.1: DC Link Buffer Time Internal Buffer time t Buff Maximum Maximum capacitance (minimum value) with the permissible power required XVy-EV internal capacitance at : external by switched AC Input AC Input capacitance mode power C std voltage =400V voltage =460V supply [µF] [s] [s] C ext [µF] P SMPS [W] 10306 220 0.165 0.25 0 65 10408 330 0.24 0.37 0 65 10612 330 0.24 0.37 0 65 20816 830 0.62 0.95 0 65 21020 830 0.62 0.95 0 65 21530 830 0.62 0.95 0 65 32040 1500 1.12 1.72 1500 65 32550 1500 1.12 1.72 1500 65 43366 1800 1.54 2.3 4500 70 43570 1800 1.54 2.3 4500 70 44590 2200 1.88 2.8 4500 70 455110 3300 2.83 4.2 4500 70 570140 4950 4.24 6.3 4500 70 5100180 4950 4.24 6.3 4500 70 6125230 6600 5.6 8.1 0 70 7145290 6600 5.6 8.1 0 70 7190350 9900 8.4 12.1 0 70 7230420 14100 12.8 17.2 0 70 8280400 14100 12.8 17.2 0 70 8350460 14100 12.8 17.2 0 70 9470650 29700 12.1 36.4 0 140 9560650 56400 12.1 36.4 0 140 txv0270 SMPS = Switched Mode Power Supply SIEIDrive - XVy-EV User’s Guide Chapter 4 Wiring Procedure • 81 Figure 4.12.1: Buffering the Regulator Supply by Means of Additional Intermediate Circuit Capacitors 3Ph~ P E 1 / U 1 / L 1 V 1 / L 2 W 1 / L 3 B R 1 U 2 / T 1 V 2 / T 2 W 2 / T 3 C D P E 2 / F1 1 C x 1 C1 x 1 C2 x = + C 900 V or X DC NOTE! When connecting the intermediate circuit terminals C and D the AC Input side must be protected with superfast semiconductor fuses! Formula for calculating the size of the external capacitors: fA018 Cext = 2 P SMPS t Buff 10 6 U 2 Buff - U 2 min - Cstd C ext , C std [μF] P SMPS [W] U Buff = 400 V at U LN = 400 V t Buff [s] U Buff = 460 V at U LN = 460 V U Buff , U min [V] U min = 250 V Calculation example A XVy-EV 43570 drive is operated with an AC Input supply U LN = 400 V. A voltage failure buffer is required for max. 1.5 s. P SMPS 70 W t Buff 1.5 s U Buff 400 V U min 250 V C std 1800 μF C ext = (400 V) 2 - (250 V) 2 - 1800mF = 2154 mF - 1800mF = 354mF 2 . 70 W . 1.5 s . 10 F / F 6 µ 82 • Chapter 4 Wiring Procedure SIEIDrive - XVy-EV User’s Guide 4.13 Discharge Time of the DC-Link Table 4.13.1: DC Link Discharge Time XVy-EV I 2N Time (seconds) 10306 3.5 90 10408 4.9 10612 6.5 20816 8.3 21020 12.1 21530 15.4 32040 23.1 220 32550 29.7 43366 34 43570 41 44590 55 455110 69 90 570140 81 5100180 110 6125230 124 7145290 161 7190350 183 7230420 218 8280400 282 8350460 348 9330660 485 9560650 580 txv0280 300 205 150 60 120 This is the minimum time that must be elapsed when a SIEIDrive - XVy- EV drive is disconnected from the AC Input before an operator may service parts inside the drive to avoid electric shock hazard. CONDITION The value consider the time to turn-off for a drive supplied at 480Vac +10%, without any options, (the loads on the switching supply are the regulation card, the keypad and the 24Vdc fans “if mounted”). The drive is disconnected from the line. This represents the worst case condition. SIEIDrive - XVy-EV User’s Guide Chapter 5 Sizing Criteria • 83 Chapter 5 - Sizing Criteria Because of the high performance obtained by the drive/brushless motor set, the dynamic performance of the entire system is strongly influenced by the mechanics of the system itself. In particular, the following considerations are important: - the degree of precision depends on the sensor and not on the motor - the response speed depends on the transmission rigidity (mechani- cal passband) - the system audible noise, sometimes very strong, does not depend on the motor and/or on the electronics, but on a mechanical design which is not suitable for the required performance. - the motor noise is due to continuous acceleration and braking. In such conditions, motor overheating may occur, which may not be due to a too-small motor. - the passband controlling the drive depends on the mechanics, as it is not possible to stabilize the electronics to a period less than 3 times the ring time of the system mechanical oscillations. The choice of the mechanical transmission must be carried out, therefore, according to the application. In mandrel applications, with significant transmitted power and marginal dynamic performance, common reducer transmissions are used. In this case, that is the optimum economical choice. In case of axis applications, where the system dynamic performance is fundamental, the required torque is often equal to the sum of the motor and load inertial torques. The use of a reduction ratio in the transmission reduces, on one side, the load inertia influence, but, on the other, it increases the motor side. In such applications, therefore, direct coupling is normally used. With direct coupling, the system dynamics are influenced by the shaft torsional rigidity and by the relative resonance frequency. The drive and motor are capable of much higher bandwidth than the mechanics. After choosing the motor and the transmission, it is necessary to check the application. In case of applications whose speed and load are constant or variable for periods longer than the motor time constant, it is sufficient to check that the maximum load is within the capacity limits stated for the motor and the drive. On the contrary, in applications where the load changes according to a faster cycle, do the following: - Trace a cycle speed/time diagram, remembering that the reaching of a precise position or speed value requires, apart from the time set by the system limit accelerations, a settling period equal to 3 times the period of the system passband. - Refer the system inertia and loads back to the motor axis. - Calculate the acceleration cycle and the cycle of the relative inertial torques. 84 • Chapter 5 Sizing Criteria SIEIDrive - XVy-EV User’s Guide - State the cycle torque/time diagram by adding the inertial torques to the loads. - Calculate from the torque/time diagram the cycle effective torque. If the cycle is made up of n duration segments t 1 , t 2 , ... t n , and of their corresponding torques C 1 , C 2 , ... C n , the cycle effective torque is given by: C = eff t + t + … + t 1 2 n C 1 1 2 2 n n 2 2 2 t + C t + … + C t - Calculate, with the same formula, the average quadratic speed. - Calculate the cycle average torque. - Calculate the maximum duration period of the cycle maximum torque. - Calculate the torque required with the cycle maximum speed. - Calculate the cycle maximum torque. The motor and the electronic have to be checked on the basis of the obtained data. 5.1 Motor Check The motor check phases are: - check of the peak torque - thermal Sizing - electrical Sizing Check of the demagnetization current Such control is performed by comparing directly the maximum value of the peak current, which is obtained using the following formula, and the motor demagnetization current. K t C pk I = pk 2 where: C pk = cycle peak torque K t = motor torque constant Check of the thermal sizing Check first that the point C eff , a eff is within the area of the motor continuous operating range. In particular, calculate the motor temperature increase, given by the rela- tion: ΔT = max L n 65 ) 2 ( ω n ω eff L 0 L + n ) 2 ( T n C eff where: L n = motor rated losses T n = motor rated torque a n = motor rated speed L 0 = motor rated losses in ω n SIEIDrive - XVy-EV User’s Guide Chapter 5 Sizing Criteria • 85 If the maximum temperature is higher than the motor maximum, a bigger motor is needed. Check of the electric sizing In this case, it is necessary to check that at maximum speed, the voltage required by the motor is lower or equal to that supplied by the drive with the minimum expected power supply voltage. The following relation must be satisfied: V = max K e pk w + R w K t C pk ) 2 ( ( 2 P N ) 2 K t C pk w pk w L + £E min where: E min = minimum voltage supplied by the drive K e = motor voltage constant ω pk = cycle maximum speed R w = motor terminal to terminal resistance C pk = cycle maximum torque K t = motor torque constant P N = motor pole number L w = motor terminal to terminal inductance If such condition is not satisfied, it is necessary to choose a motor with a winding suitable for a higher speed; in this case a higher current will be needed. 5.2 Check of the Drive Size The drive size is chosen according to the torque to be supplied to the motor with a specific winding, from where the needed energy is derived. The peak and average currents required by the drive are provided by: I = med K t K t C ave C pk I = max where: C pk = cycle maximum torque C ave = cycle average torque K t = motor torque constant The drive must be in a position to develop continuous and peak currents higher than the calculated values; remember that the drive maximum current must be compared to I max only if the relative time is lower than 2 seconds; if not, the drive must have a rated current higher than I max . 86 • Chapter 5 Sizing Criteria SIEIDrive - XVy-EV User’s Guide 5.3 Application Example: Flying Cut Consider a continuous belt moving cutter. The cutter is mounted on a carriage. The belt speed is 5 m/s. The cutter must, with a command, increase its speed till reaching the belt, get synchronized with the belt speed, keep such speed for 300 ms (cutting time T t ), brake and return to the rest position. The total stroke of the cutter carriage is 5 m. The cutter weighs 80 kilos plus the motor weight. As the mechanical transmission system is rather complex, it is necessary to provide a speed stabilization time T st with transients to about 150 ms. The cutting space with a constant speed is given by: S t = V t x (T t + T st ) = 5 x (300 x 10 -3 + 150 x 10 -3 ) = 2.25 m The carriage will run across the remaining space during its acceleration and deceleration phase. If these two spaces are equal: S acc = S dec = (S tot - S t ) / 2 = (5 - 2.25) / 2 = 1.375 m The average speed during the acceleration is: V med = V max / 2 = 5 / 2 = 2.5 m/s The acceleration and deceleration times are: T acc = S acc / V med = 1.375 / 2.5 = 550 ms The acceleration (and deceleration) is: a = V max / T acc = 5 / 0.55 = 9.091 m/s 2 Assuming that the motor weight is about 20 kilos, the required inertial power is: F = a x (M carr + M mot ) = 9.091 x (80 + 20) = 909.091 N The total semi-cycle time is: T sc = 2 x T acc + T st + T t = 2 x 0.550 + 0.150 + 0.300 = 1.55 s The transmission is carried out via a pinion and a rack. The pinion di- mensions are: diameter Dp = 40 mm length hp = 30 mm The speed, acceleration and inertia brought to the motor axis are: Speed: a max = V max / (Dp/2) = 5 / (0.04/2) = 250 rad/s Acceleration: m a = a / (D p /2) = 9.091/ (0.04/2) = 454.545 rad/s 2 Inertia: J = M tot x (D p /2) 2 = 100 x (0.04/2) 2 = 0.04 kgm 2 The pinion inertia is given by: Jp = (D p /2) 4 x h p x ¬ x 6 = 5.806 x 10 -5 Kgm 2 SIEIDrive - XVy-EV User’s Guide Chapter 5 Sizing Criteria • 87 where 6 is the density of the material forming the pinion (steel). Check now a SBM75.30.3 motor with an inertia of 0.0017 kgm 2 . The total inertia is: J tot = J + J p + 0.0017 = 0.04 + 5.806 x 10 -5 + 0.0017 = 0.0417 kgm 2 Assuming a pinion efficiency equal to 0.95, the maximum torque (overload) required to the motor is: C max = m a x J tot / 0.95 = 454.545 x 0.0417 / 0.95 = 19.98 Nm The average (continuative) and effective torques are therefore, supposing null the torque at constant speed: C med = C max x T acc x 2 / T sc = 14.179 Nm C eff = C max x (2 x T acc / T sc ) 1/2 = 16.832 Nm As the cycle effective torque is higher than the motor rated torque at nominal speed, a motor of a bigger size must be chosen. Repeating the operations for a SBM77.30.3 motor with an inertia of 0.0023 kgm 2 , the obtained average torque is 14.383 Nm while the effective torque is 17.073 Nm. The motor is therefore suitable for the application with a high margin, considering that its nominal torque at nominal speed is 18.8 Nm. Given the torque constant Kt = 1.50, the average and maximum current absorbed by the motor are: I max = C max / K t = 12.8 A rms I med = C med / K t = 9.09 A rms The drive size to be used with the present application is therefore XVy-EV 21020. 88 • Chapter 6 Maintenance SIEIDrive - XVy-EV User’s Guide Chapter 6 - Maintenance 6.1 Care The drives of the XVy series must be installed according to the relevant installation regulations. They do not require any particular maintenance. They should not be cleaned with a wet or moist cloth. The power supply must be switched off before cleaning. 6.2 Service The screws of all terminals on the drive should be re-tightened two weeks after initial commissioning. This should be repeated each year. If the drives have been stored for more than three years, the capacitance of the intermediate circuit capacitors may have been impaired. Before commissioning these drives, it is advisable to supply power to the drives for at least two hours in order to regain the capacitor original ratings. To this purpose apply an input voltage without applying any load on the output. After these steps, the drive is ready to be installed without limits. 6.3 Repairs Repairs of the drive should only be carried out by qualified personnel (suggested by the manufacturer). If you carry out a repair on your own, observe the following points: - When ordering spare parts do not only state the drive type but also the drive serial number. It is also useful to state the type of the regulation card and the system software version. - When changing the cards ensure that the positions of switches and jumpers are observed! 6.4 Customer Service For customer service, please refer to your Gefran office. SIEIDrive - XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 89 Chapter 7 - Settings and Commissioning 7.1 PC Configurator The configurator GF-eXpress is a program supplied together with the product. Its installation requires a PC with MS Windows ® ME/XP/VISTA or Win- dows NT®4/2000 system, with minimum 8 Mb RAM. The configurator communicates with the drive using the Slink-3 proto- col. Together with the drive parameterization, the configurator allows downloading the firmware in order to create some personalized appli- cations using the MDPlc development environment. 7.2 Commissioning Before powering up the drive, carry out the following verifications: - Check the connections with the line L1, L2, L3 - Check the connections with the motor U, V, W - Check the breaking resistance connection (if present) - Check the connections between the encoder and XE connector - Check the input connection 24Vdc (if present) - Check the I/O connections - Check all the drive and motor ground connections After having checked as shown above, it’s possible now to power the drive; then check: - Line voltage (max permissible voltage 480Vac + 10%) - Voltage of the intermediate circuit DC bus (270-350 for input volt- age 230Vac, 480-650Vdc for input voltage 400Vac, 432-528 for input voltage 480Vac; if the measured voltage is not in the indicated range, check the line voltage) 7.2.1 Connection with the PC The drive is delivered from the factory with a standard configuration in the speed mode. The input and output state is already programmed as in the following example; therefore user is able to start up the drive control and run the motor immediately (when used a motor series SBM with encoder sin.cos at 2048 p/r). To perform the correct parameter settings, it’s necessary to use the configurator GF-eXpress. Connect the drive to your PC using the serial communication as suggested in the manual; check that the termination resistance switch is on the 120 ohm position. GF-eXpress configurator 1) Install the GF-eXpress application from the attached CD-rom (setup.exe, in GF-eXpress folder). 2) Install the Catalog application from the attached CD-rom (setup.exe, in XVyBasic folder). 3) From Windows Start / Programs / GEFRAN menu run the GF-eXpress command to start the configurator. 90 • Chapter 7 Settings and Commissioning SIEIDrive - XVy-EV User’s Guide 4) Select DRIVES 5) Select XVy Servodrive or XVyA SIEIDrive - XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 91 If the PC is connected to the drive via the serial link, the programme recognises the size of the drive and the firmware version. Otherwise, a window “Manual” is displayed to modify the connection settings. Alternatively, it is possible to continue by deselecting “ON LINE MODE”, when the parameter file (the Basic firmware versions installed will be displayed, e.g. “V.4.37 Basic”) and the size of the drive must be selected manually. 6) At this point there are 2 options: Wizard: A guided procedure for easy setup of the drive: windows will open from which the basic setup of the drive, the motor, the loop current, the control method and feedback. 92 • Chapter 7 Settings and Commissioning SIEIDrive - XVy-EV User’s Guide Parameters For expert users, a list is displayed of all parameters resident in the drive: the data are subdivided into several windows and into Windows-type tree-structure menus. 7.2.2 Essential Parameters Set up The essential parameters to check before starting the motor are: MENU PARAMETER MONITOR IPA 20053, Drive size DRIVE CONFIG IPA 20000, Drive Max Curr MOTOR DATA IPA 20002, Motor poles ENCODER PARAM IPA 20010, XE Enc Type IPA 20011, XE Enc ppr IPA 20012, XE Enc Supply SPEED IPA 20003, Full Scale Speed It’s now possible to enable the drive and rotate the motor in the function of the inputs configuration and setup. As an example three types of configurations are described. SIEIDrive - XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 93 7.2.3 Speed Mode Configuration Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Digital input 0 Digital input 1 0 V (+24V) +24V OUT Analog input 0 Analog input 1 Analog output 0 0V +10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 3 Relay-NO Relay-COM 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V IN COM-DI Analog output 1 - 10V Digital output 2 Digital output 4 Digital output 5 Relay-NC Strip X1 Function max Programmable/configurable analog differential input. Signal: terminal 1. Reference point: terminal 2. Default setting:"[3] Speed Ref 1". Programmable/configurable analog differential input. Signal: terminal 3. Reference point: terminal 4. Default setting: none Reference point for Digital inputs, terminals 6, 7, 8 , 9, 22, 23, 24 and 25. Drive enable; 0V or open: inverter disabled; +15…+30V: Drive enabled Programmable digital input, default setting: “[4] Start / Stop” Programmable digital input, default setting: “[8] Ramp In = 0”” Programmable digital input, default setting: “[9] Reverse” Supply input for digital outputs Reference point for digital outputs, terminals: 12 and 13 Programmable digital output, default setting: “[3] Speed Reached” Programmable digital output, default setting: “Speed 0 thr” +24V DC supply output. Reference point: terminal 16 +24V DC supply input Reference point for +24 V DC I/O Programmable analog output, default setting: “[1] Actual speed” Programmable analog output, default setting: “[2] Motor current” Analog output reference point Reference voltage +10V, reference point: terminal 19 Reference voltage - 10V, reference point: terminal 19 Programmable digital input, default setting: “[10] End Run Reverse” Programmable digital input, default setting: “[11] End Run Forward” Programmable digital input, default setting: “[3] External fault” Programmable digital input, default setting: “[2] Drive reset” Programmable digital output, default setting: none “Drive OK” N.O. contact “Drive OK” N.C. contact “Drive OK” common contact ±10V 0.25mA +10V/10mA -10V +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/40mA - +30V/40mA +22...28V 120mA@24V - - ±10V/5mA - +10V/10mA -10V/10mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/40mA 250 V AC 1A AC11 94 • Chapter 7 Settings and Commissioning SIEIDrive - XVy-EV User’s Guide 7.2.4 Position Mode Configuration Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Digital input 0 Digital input 1 0 V (+24V) +24V OUT Analog input 0 Analog input 1 Analog output 0 0V +10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 3 Relay-NO Relay-COM 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V IN COM-DI Analog output 1 - 10V Digital output 2 Digital output 4 Digital output 5 Relay-NC Strip X1 Function max Not configured Not configured Reference point for Digital inputs, terminals 6, 7, 8 , 9, 22, 23, 24 and 25. Drive enable; 0V or open: inver ter disabled; +15…+30V: Drive enabled Programmable digital input, configured as: “[1009] POS Start Pos” Programmable digital input, configured as: “[1007] POS 0 Search” Programmable digital input, configured as: “[1015] POS 0 Sensor” Supply input for digital outputs Reference point for digital outputs, terminals: 12 and 13 Programmable digital output, configured as: “[1002] POS Pos reached” Programmable digital output, default setting: “Speed 0 thr” +24V DC supply output. Reference point: terminal 16 +24V DC supply input Reference point for +24 V DC I/O Programmable analog output, default setting: “[1] Actual speed” Programmable analog output, default setting: “[2] Motor current” Analog output reference point Programmable digital input, default setting: “[10] End Run Reverse” Programmable digital input, default setting: “[11] End Run Forward” Programmable digital input, default setting: “[3] External fault” Programmable digital input, default setting: “[2] Drive reset” Programmable digital output, default setting: none “Drive OK” N.O. contact “Drive OK” N.C. contact “Drive OK” common contact ±10V 0.20mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/40mA - +30V/25mA +24 V ±10% 120mA +24 V ±10% 1A - ±10V/5mA - +10V/10mA -10V/10mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/25mA 250 V AC 1A AC11 SIEIDrive - XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 95 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Digital input 0 Digital input 1 0 V (+24V) +24V OUT Analog input 0 Analog input 1 Analog output 0 0V +10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 3 Relay-NO Relay-COM 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V IN COM-DI Analog output 1 - 10V Digital output 2 Digital output 4 Digital output 5 Relay-NC Strip X1 Function max Not configured Not configured Reference point for Digital inputs, terminals 6, 7, 8 , 9, 22, 23, 24 and 25. Drive enable; 0V or open: inverter disabled; +15…+30V: Drive enabled Programmable digital input, configured as: “[4] Start / Stop” Programmable digital input, configured as: “[2001] ELS Ratio Sel B0” Programmable digital input, configured as: “[2002] ELS Ratio Sel B1” Supply input for digital outputs Reference point for digital outputs, terminals: 12 and 13 Programmable digital output, configured as: “Speed 0 thr” Programmable digital output, not configured +24V DC supply output. Reference point: terminal 16 +24V DC supply input Reference point for +24 V DC I/O Programmable analog output, default setting: “[1] Actual speed” Programmable analog output, default setting: “[2] Motor current” Analog output reference point Programmable digital input, configured as: “[2003] ELS Inc Ratio” Programmable digital input, configured as: “[2004] ELS Dec Ratio” Programmable digital input, default setting: “[3] External fault” Programmable digital input, default setting: “[2] Drive reset” Programmable digital output, default setting: none “Drive OK” N.O. contact “Drive OK” N.C. contact “Drive OK” common contact ±10V 0.20mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/40mA - +30V/25mA +24 V ±10% 120mA +24 V ±10% 1A - ±10V/5mA - +10V/10mA -10V/10mA +30V 3.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/25mA 250 V AC 1A AC11 7.2.5 Electrical Line Shaft Mode Configuration Example 96 • Chapter 7 Settings and Commissioning SIEIDrive - XVy-EV User’s Guide 7.3 Download Firmware The standard firmware loaded at the factory is an application called Basic. The Basic Application Firmware consists of 2 files: - the firmware (XVyBasicVX_XX.sre) - the parameter fi l e, the user' s tool for the dri ve tuni ng (XVyBasicVX_XX.gfe). The firmware upgrade can be performed making reference to the following points. 1. Open the GF-eXpress configurator. 2. Select the used drive in the displayed window and enable the com- munication with the drive via the "Target/connect" menu. 3 Open the parameter file of the old firmware version 4 Read all parameters through the “Read All Target Parameter” com- mand in the “Parameter” menu 5. Perform the “Download Firmware” command via the "Service" menu. 6. The XVyBasicVX_XX.sre file of the last version is default (*) stated; choose this file and perform the Load command. (*) In case it is not found, search the .gfe file with the Browser button (the file is default located in the path \GEFRAN\CATALOG\ Drives\SERVODRIVE\XVy\XVy-x-xy). 7. Now the firmware download is active; the display shows the quantity of data (Byte number) which are being transferred. 8. Reset the drive with the configurator reset command or disable and afterwards enable again the 24 VDC voltage. 9. Perform the "Load default Target values" command via the "Param- eters" menu and answer yes to the question "Save them into target ?". 10. Reset the drive using the configurator "reset" command or switch the device off and then on again. 11. The firmware update is now over; the user can reload the parameters via the “Write All Target Parameter” command in the “Parameter” menu or he can tune the drive Upgrade from version 3.XX to version 4.XX The XVy-EV drive is not compatible with 3.X versions. It is therefore not possible to load firmware earlier than version 4.X onto this drive. SIEIDrive - XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 97 7.4 Automatic Electric Phasing Procedure for Encoder/ Resolver The knowledge of the right phase relation between the current and the motor magnetic angle is fundamental for the drive performances. The simple electric and automatic phasing sequence of the XVy drive allows to store the phasing angle in a drive parameter (electric phasing) in order to constantly supply precise information about the phase of the position/speed motor feedback (encoder/resolver). Such procedure has to be performed every time the XVy drive is used with NON-Gefran motors. All Gefran motors, on the contrary, are factory-phased (mechanical phasing). Before performing the automatic electric phasing, it is advisable to check the encoder/resolver connections (as described in the paragraph "En- coder Control/Drive Connections") and the power/U-V-W phase sequence connections. Note! The following procedure must be performed using incremental encoders with zero pulse. If using an encoder without zero pulse the procedure cannot be completed and will be aborted as unsuccessful. Procedure If this procedure is performed using the software of the GF-eXpress configurator, the following sequence has to be respected: 1. Start the software of the GF-eXpress configurator (from the Windows Start menu) 2. Enable the "MONITOR Window" function 3. Display in MONITOR Window the Enc Mech Offset (IPA 20058) pa- rameter and the Enc Offset (IPA 20057) parameter (from the Service- >Phasing menu) 4. Remove any mechanical coupling from the motor shaft, so that it can move freely 5. Set the Mot Nominal Curr (IPA 20001) parameter, with the value referring to the motor rated current (from the TUNING / PHASING menu) 6. Set the Application Sel (IPA 18140) parameter as "Phasing" (from the TUNING menu) 7. Save the parameters (Command "Save parameters” (*) ). 8. Perform the command "Drive Reset" or switch the drive off and on again 9. Enable the drive using the Digital 0 Input 10. Check that the drive performs a current ramp till the limit set in the Mot Nominal Curr (IPA 20001) parameter while the motor rotor carries out a small movement 11. After a few seconds the motor starts rotating and stops in a fixed position after performing a revolution. If the motor is SIEI-marked, make sure that it rotates in a clockwise direction (from the motor shaft side); with NON- Gefran,motors, check the wiring on the power cables be- tween the drive and the motor. The counting of the encoder/revolver must increase (see 4.4.5 "En- coder Control/Drive Connections" paragraph ) during the motor ro- tation. 98 • Chapter 7 Settings and Commissioning SIEIDrive - XVy-EV User’s Guide 12. Check the value of the Enc Mech Offset (IPA 20058) parameter keeping the drive enabled. If the motor has been supplied by Gefran, the parameter value has to be near the zero (values in the range of ±4 degrees are allowed) because Gefran motors are factory phased (mechanically) with the XVy-EV Gefran drives. 13. Perform the command "Save parametesr” (*) by keeping the drive enabled. The current value of the phasing angle is stored in the Enc Mech Offset (IPA 20058) parameter 14. Disable the drive 15. Set the Application Sel (IPA 18140) parameter (from the SERVICE menu) with the original selection "Basic" (factory default) or "Plc" 16. Save the parameters (command "Save parameters” (*)) 17. Use the command "Drive Reset" or switch the drive off and on again At the end of this electric and automatic phasing procedure, it is suggested to configure the XVy drive with a speed mode and to check the motor functioning procedure. (*) it is possible to run “Save parameters” in the following ways: - Ctrl+Alt+S - from the Parameters menu - “Save parameters into target” key SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 99 Chapter 8 - Keypad Operation 8.1 Keypad Description N a v i g a t i o n D r i v e C o n t r o l s +Torque - Torque Alarm Enable ZeroSpeed Limit Help Alarm Home + Escape Enter Shift P r e s s 2 s e c . t o d i s a b le Jog Speed The keypad consists of an LCD display with two lines of 16 characters each, seven LEDs and nine function keys. It is used to: - control operation, when this user option is selected (DRIVE CONFIG / KEYPAD, Enable I-O Keys IPA20022 = Keys Enabled) - display speed, voltage, diagnostics, etc., during operation - set parameters 8.1.1 LED The LEDs meaning can be summarized as follows: - Torque (yellow) This LED is ON when the drive is running with negative torque. + Torque (yellow) This LED is ON when the drive is running with positive torque. Alarm (red) This LED starts to blink in case of a fault condi- tion of the drive. During normal operation this LED will be OFF. • Enable (green) This LED is ON when the drive is power supplied and enabled. ZeroSpeed (yellow) This LED is ON when the motor speed is zero. LIMIT (yellow) This LED is ON if the drive reaches its torque limit. During normal operation this LED will be OFF. 100 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide 8.1.2 Function Keys The keypad has nine function keys with different modes defined by the state of the keypad itself. Control Keys + Jog Help Alarm Escape Home Enter Shift Text reference START STOP + [Jog] (*) - [Rotation control] (*) Down [Help] Up [Alarm] Left [Escape] Enter [Home] Shift Function START key commands the drive to Enable and Start The Enable I-O Keys parameter must be enabled (DRIVE CONFIG / KEYPAD menu) STOP key commands to Stop and disable; holding it for 2 seconds disables the drive. The Enable I-O Keys parameter must be enabled (DRIVE CONFIG / KEYPAD menu). The “plus” key increases the reference velocity for the Motor pot. function [Jog, when the Shift key is pressed first]. See paragraph 8.2 The “minus” key reduces the reference velocity for the Motor pot. function [Control of direction of rotation. When the Shift key is pressed, it changes the motor direction of rotation (in Jog mode and in Motor pot function)]. See paragraph 8.2 Used to scroll down menu items in menu navigation, picklists in selectors, or digit values in numeric editing. [After pressing Shift key, an item-specific information menu is entered when applicable] Used to scroll up menu items in menu navigation, picklists in selectors, or digit values in numeric editing. [After pressing Shift key, the Alarm list display mode is entered. Active alarms and Alarms pending for acknowledge can be browsed with Up / Down arrows keys. Left arrow key returns to normal mode. Used to go down one level in menu navigation; to scroll digits in numeric edit mode, to return to normal mode from alarm list or Help modes. [After pressing Shift key, it is used to Escape out of numeric edit or selection with no change]. Used to go up one level in menu navigation; to enter Selections or numeric values after editing, to issue commands, to acknowledge alarms in the Alarm list mode. [Home second function, return to Monitor menu from any main menu level]. Shift button enables the keypad second functions (Rotation control, Jog, Help, Alarm, Escape, Home) [...] Secondary function. Press Shift to activate these functions. (*) The Jog and + / - keys (Motor potentiometer) can be activated only when the speed and current are displayed (press Left in the Monitor menu) SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 101 8.1.3 Display - Using keypad At drive power on, the display shown: drive configuration (Basic or Plc) and the firmware version. After few seconds the display will shown the speed in rpm. By pressing the Down or Up key, the load in Arms will be displayed. Pressing LEFT causes the display to show the parameter mode. The first MONITOR menu is displayed. Press Enter to go to the MONITOR menu and display the Start Status parameter. Pressing Down displays the next parameter Ramp Output Pressing Enter displays the value of the parameter. 1) Menu This field shows the index for the menu currently displayed (E.g. MONITOR menu). 2) Parameter This field shows the name of the parameter currently displayed (E.g. Start Status = IPA 20500). 3)Select / Value This field shows the selection or true value of the parameter selected. Note! When three asterisks (***) are displayed this means the number of characters to be displayed exceeds the field length. In that case you can display the information using a PC and the GF-eXpress configuration software. XVyBasic Sync FW V. 4.XX Enter XVyBasic MONITOR Flt Motor Speed 0.0 rpm MONITOR Start Status Enter MONITOR Ramp Output Ramp Output 0.0 rpm <- <- <- 1) 1) 1) 2) 2) 2) 3) Out Current 0.0 Arms 2) 3) 2) 3) 102 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide Figure 8.1.3.1: Navigation within the menus Enter XVyBasic MONITOR XVyBasic SAVE / LOAD PAR XVyBasic ...... XVyBasic <- <- <- <- Enter Enter Enter POSITION POSITION FUNC POSITION POS THR CONFIG <- <- Enter <- <- Main Menu 2nd Level Menu 3rd Level Menu POSITION POS PRESET 0 <- Enter <- POS PRESET 0 ANALOG POS REF <- Enter POSITION <- Full list of menus and parameters in chapter 10. 8.2 Keypad operations Changing parameters XVyBasic DRIVE CONFIG <- Enter Drive config KEYPAD <- Drive config Mains Voltage X 3 <- <- Enter MAIN VOLTAGE 380 Vrms Enter 1 2 3 6 From the DRIVE CONFIG menu, press Enter. Press three times to select the parameter. Down Mains Voltage Press Enter Press Enter Mains Voltage 460/480 Vrms 4 Set the voltage values using the or keys. Up Down Enter Mains Voltage 460/480 Vrms 5 Press the cursor will start blinking. Enter, SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 103 Saving parameters XVyBasic SAVE / LOAD PAR <- SAVE / LOAD PAR Save parameters <- Enter Enter 1 2 3 From the SAVE / LOAD PAR menu, press . Enter Press again to save the settings. Enter SAVE / LOAD PAR Save now SAVE / LOAD PAR Save done. SAVE / LOAD PAR Save Parameters <- The display will show the confirmation messages “ ” and “ ” Save now Save done. 4 When the operation is complete, the display will show again. Save Parameters Loading default parameters The default parameters relate to the size of the drive, which is not modified by this operation. XVyBasic SAVE / LOAD PAR <- SAVE / LOAD PAR Load Default Par <- Enter Enter 1 3 4 From the SAVE / LOAD PAR menu, press Enter. Press Enter SAVE / LOAD PAR Load now SAVE / LOAD PAR Load done. SAVE / LOAD PAR Load Default Par <- The display will show the confirmation messages “ ” and “ ” Load now Load done. 5 When the operation is complete, the display will show the parameter again. Load Default Par SAVE / LOAD PAR Save parameters <- 2 Press the key to select the parameter. Down Load Default Par Reset alarms and drives See section 8.3.1. 104 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide Jog function The drive should be enabled: + 24Vdc at terminal 6. XVyBasic MONITOR <- Shift Flt Motor Speed 0.0 rpm <- <- 1 2 3 From the MONITOR menu, press to activate, then press Start Left The speed display is enabled (or press or to enable current display). Down Up, Press to enable the secondary functions, then press to Shift + pass to the set reference 4 Press to invert the rotation direction and press to decrease the reference speed and pass to the set reference – + Flt Motor Speed 150.0 rpm Flt Motor Speed -150.0 rpm <- Motor potentiometer function Enable the drive (+ 24Vdc at terminal 6) and send the Start command (+ 24Vdc at terminal 6). XVyBasic MONITOR <- Shift Flt Motor Speed 0.0 rpm <- <- 1 2 3 From the MONITOR menu, press to activate, then press Start Left The speed display is enabled (or press or to enable current display) Down Up, Press to increase the reference speed. + 4 Press to enable the secondary functions, then press to revert the direction rotation and press to decrease the reference speed Shift – + Flt Motor Speed 150.0 rpm Flt Motor Speed -150.0 rpm <- 8.2.1 Errors If the operator will try to give to a parameter a wrong value (e.g. outside the Min/Max permitted values), the display will show an "E" followed by the numeric code of the error (e.g. E 04); to move back to Status Index 2 "Parameter Display" press any function key of the keypad. Table 8.2.1.1: Errors list Code E 01 Error code 1 Parameter does not exist Code E 02 Error code 2 System error Code E 03 Error code 3 Type does not exist Code E 04 Error code 4 Read-only parameter Code E 05 Error code 5 Write enabled only when drive is enabled Code E 06 Error code 6 Value outside min value Code E 07 Error code 7 Value outside max value Code E 08 Error code 8 System error Code E 09 Error code 9 Value exceed limit SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 105 8.3 Alarms and Errors Handling 8.3.1 Alarms (Failure register) In the event of an alarm, the “Alarm” LED flashes red, while the keypad displays an alarm code and description. Figure 8.3.1: Led Status and Keypad A 01 IGBT desaturat A 01 RD RA +Torque - Torque Alarm Enable ZeroSpeed Limit Enter +Torque - Torque Alarm Enable ZeroSpeed Limit A18 alarm code 115.15h time in which the alarm occurred Enc Fbk Loss short description of alarm RA (Reset Alarm) To reset the alarm, enable the drive and press En- ter, then select RA with the Up or Down keys and press Enter. RD (Reset Drive) To reset the drive, enable the drive and press Enter, then select RD with the Up or Down keys and press Enter. HIS (Alarm log) To display the alarm log, select HIS with the UP or DOWN keys and press Enter. Displaying the alarm log The drive can save up to 25 alarms. The type of alarm and the moment the alarm occurred, starting from the most recent, can be displayed using the keypad. To enter the alarm log display mode, press the Shift + UP keys (if the drive is not in an alarm condition) or select HIS from the list of alarms (par 8.3.1). 24 A18 100.13h Enc Fbk Loss 24 record number A18 alarm code 100.13h time in which the alarm occurred Enc Fbk Loss short description of alarm Use the UP and DOWN keys to display all the alarms that have been saved. No alarm is displayed on the keypad if the item in the list is empty. No Description is displayed on the keypad if the string describing the alarm has not been defined. In that case reference should be made to the alarm code. 24 A00 0.00h No Alarm 24 A18 100.13h No Description 106 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide Table 8.3.1.1: Alarms list Description on the keypad Description on GF-eXpress Code A 01 IGBT desaturat Short circuit on the power section (*) Code A 02 Overcurrent Drive overcurrent protection (*) Code A 03 Overvoltage DC Link overvoltage (*) Code A 04 Heatsink Ot Drive thermal protection (*) Code A 05 Parameter Error Wrong setting of a parameter Code A 06 Current Fbk Loss Current feedback sensor failure (*) Code A 07 Motor Overtemp Motor thermal protection (*) Code A 08 CPU Overtime CPU overtime error Code A 09 Enable key error Wrong enabling key for PLC and/or DeviceNet Code A 11 Inval Flash Par Invalid parameters value Code A 12 Flash Fault Bad flash device Code A 13 Brake Overpower Overpower of the braking resistor (*) Code A 14 Reg Pwr Failure Failure on the regulation power supply (*) Code A 15 System Warning System Warning Code A 16 Main Loss Main power loss (*) Code A 18 Enc Fbk Loss Encoder feedback loss (*) Code A 19 Enc Sim Fault Encoder simulation alarm (*) Code A 20 Undervoltage Undervoltage of the DC Link section (*) Code A 21 Intake Air Ot Intake air temperature too high (*) Code A 22 Regulation Ot Overtemperature of the regulation board (*) Code A 23 Module Overtemp Overtemperature of the IGBT module (*) Code A 24 Load Default Err Load default error (*) Code A 25 Reset Required Reset required after a parameter modification Code A 26 FieldBus Failure Field bus communication failure (*) Code A 27 Enable Seq Error Wrong drive enabling sequence (*) Code A 28 Fast Link Error Fast link communication failure (*) Code A 29 Position Error Position error greater then the limit (*) Code A 30 Drive Overload Drive overload alarm (*) Code A 31 External Fault External Fault (*) Code A 32 PLC Application PLC application not running (*) alarms resettable with an ALARM RESET command 8.3.2 Alarm description (A 01) IGBT desaturat Short circuit on the motor winding or on the power bridge. (A 02) Overcurrent Overcurrent protection intervention. The cause could be an incorrect setting of the current regulator gains as compared (A 03) Overvoltage Overvoltage on the intermediate circuit. The braking resistance is not connected in the right way or it is open. The threshold is 950V. (A 04) Heatsink Ot Drive thermal protection. The working cycle is too high for the drive size. (A 05) Parameter Error Parameters setting error. The IPAs are showed on IPA 1 Par Set (IPA 24110) and IPA 2 Par Set (IPA 24111) SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 107 (A 06) Current Fbk Loss Current feedback sensor failure. (A 07) Motor Overtemp Intervention of the motor thermal protection. Overtemperature on the motor winding or PTC sensor not connected to the drive. (A 08) CPU Overtime On CPU Err Al Cause (IPA 18143) the cause is specified. (A 09) Enable key error Wrong enabling key for Plc and/or DeviceNet. (A 11) Inval Flash Par The parameter value is not recognized. Do the Parameter Saving and Drive Reset commands with the correct parameters. (A 12) Flash Fault Alarm on a non preset flash. Firmware error. (A 13) Brake Overpower The internal braking resistance is too warm because of a too high working cycle. Wait 30 seconds and give the Drive Reset command. The resistance temperature is calculated by an algorithm of the drive. (A 14) Reg Pwr Failure ±15V internal power supply of regulation board R-XVy is not working. (A 15) System warning Generic error: Check parameter 18393 for the alarm cause (A 16) Main Loss Power supply failure The Powerloss function is activated. (A 18) Enc Fbk Loss Error detected in encoder feedback. Failure cause is specified in param- eter Enc Warning Case (IPA 20016, ALARMS menu) (A 19) Encoder Simulat Encoder simulation alarm. Check the encoder simulation parameters.. (A 20) Undervoltage Always active when the drive is enabled. The threshold level depends on the power supply level selected in parameter Mains Voltage (IPA 20050), according to the following table. Main supply DC-bus threshold undervoltage 230 VAC 225.4 VAC 380 VAC 372.3 VAC 400 VAC 391.9 VAC 415 VAC 406.6 VAC 440 VAC 431.1 VAC 460 VAC 450.7 VAC 108 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide (A 21) Intake Air Ot Temperature of intake air too high; detected by TAC sensor. (A 22) Regulation Ot Overtemperature of regulation board; detected by sensor on reg board. (A 23) Module Overtemp IGBT module Overtemperature; detected by sensors on Power stage. (A 25) Reset Required There has been a modification of one or more parameters that requires a DRIVE RESET to be active. (A 26) FieldBus Failure Bus communication not present (A 27) Enable Seq Error Sequence error alarm When the drive is power supplied (after the drive reset), it is active if the digital input 0 is high. (A 28) Fast Link Error Fast Link communication alarm. It occurs in slave drives when the fast link serial communication is physically interrupted. (A 29) Position Error Position error alarm. It happens in the position slaves and with the electric shaft mode when the error is higher than the Max Pos Error (IPA 18123) parameter. (A 30) Drive Overload Drive overload alarm. Drive overload duration is too high. Check drive sizing using the overload table specified in section 2.3.3 IxT Algorythm (A 31) External Fault External alarm present. A digital input has been programmed as an external alarm, but +24V is not available on this terminal. (A 32) PLC Application MDPlc application not loaded. Active only if the application selected is MDPlc. SIEIDrive - XVy-EV User’s Guide Chapter 8 Keypad Operation • 109 8.4 Saving drive parameters on the keypad The drive parameters can be saved on the keypad for subsequent con- figuration of another drive. The IPA and parameter value are saved on the keypad. To start the procedure, set the Save Param Pad parameter (SAVE / LOAD PAR menu) to Save Now. This might take a few minutes. Save Param Pad Load now Save Param Pad ???? The Keypad Error message is displayed in case of an error in the keypad memory Keypad error Reset required At this stage the only option is to reset the drive by pressing 8.4.1 Configuring the drive using parameters saved on the keypad To configure the drive using the parameters saved on the keypad, first set the Load Param Pad parameter (SAVE / LOAD PAR menu) to Load Now. This might take a few minutes. . Load Param Pad Load now Load Param Pad ???? The drive runs a series of checks to verify the compatibility of the param- eters. The following messages are displayed if an error occurs: N: 20009 E: 04 Continue ? An error occurred when writing the parameter to the drive (See list of errors 8.2.1.1). Select Continue or Reset using the UP and DOWN keys. Press Enter on Continue to continue. Press Enter on Reset to reset the drive. Press ESC to quit and complete the procedure. Code Mismatch Continue ? 110 • Chapter 8 Keypad Operation SIEIDrive - XVy-EV User’s Guide The software running on the drive is not the same as that used to save the parameters. This could result in incompatibility of parameters. Select Continue or Reset using the UP and DOWN keys. Press Enter on Continue to continue. Press Enter on Reset to reset the drive. Size mismatch Continue ? The drive is not the same size as that used to save the parameters. This could result in incompatibility of parameters. Select Continue or Reset using the UP and DOWN keys. Press Enter on Continue to continue. Press Enter on Reset to reset the drive. If any errors have occurred, the following message is displayed at the end of the procedure: Errors loading… Save Otherwise the following message is displayed Successfully Save y Select y or n using the UP and DOWN keys. Press Enter on y to save the parameters to the drive. Press Enter on n if you do not wish to save the parameters to the drive. The drive will be reset to make all the new parameters operational. The Keypad Error message is displayed in case of an error in the keypad memory Keypad error Reset required At this stage the only option is to reset the drive by pressing SIEIDrive - XVy-EV User’s Guide Chapter 9 Block Diagram • 111 Chapter 9 - Block Diagrams I / O P a r a m e t e r P a r a m e t e r I n t e r n a l v a r i a b l e D i g i t a l i n p u t D i g i t a l o u t p u t S p e e d R e f e r e n c e A A n O u t 0 W r i t e A n O u t 1 W r i t e A n O u t V a l u e A n O u t 1 V a l u e A n O u t 0 S c a l e A n O u t 1 S c a l e x x + + A n O u t 0 O f f s e t A n O u t 1 O f f s e t A n a l o g o u t p u t 6 7 8 9 2 2 2 3 2 4 2 5 D I 4 D I 0 D I 1 D I 2 D I 3 D I 5 D I 6 D I 7 D O 0 D O 1 D O 2 D O 3 D O 4 D O 5 1 2 1 3 2 6 2 7 2 8 2 9 - 1 0 V + 0 V + 1 0 V 1 9 2 0 2 1 P o s S p e e d L i m i t N e g S p e e d L i m i t A c t S p e e d R a t i o R a m p O u t p u t R e f e r e n c e = 0 1 4 1 6 N O N C C O M + 2 4 V 0 V F A I L U R E D i s a b l e d r i v e D r i v e O K D r i v e R e s e t A l a r m R e s e t A l a r m S t a t u s D r i v e F a u l t S p e e d T h r S p e e d T h r S p e e d T h r S p e e d T h r O f f s e t A c t u a l S p e e d S p e e d R e f e r e n c e S p e e d R e a c h e d S p e e d 0 T h r M o t o r C u r r e n t T o r q u e T h r S t a t e T o r q u e T h r R a m p S e l B i t 1 R a m p S e l B i t 0 1 2 3 M u l t i R a m p I n d e x M u l t i R a m p C o n f I N P U T S , O U T P U T S , R E F E R E N C E S 0 V 0 V r e f A n I n p 0 R e a d A n I n p 1 R e a d + A n I n p 0 D _ B P o s A n I n p 0 D _ B N e g A n I n p 0 S c a l e A n I n p 0 V a l u e x A n I n p 0 O f f s e t D i s a b l e A n I n 0 + A n I n p 1 D _ B P o s A n I n p 1 D _ B N e g A n I n p 1 S c a l e A n I n p 1 V a l u e x A n I n p 1 O f f s e t D i s a b l e A n I n 1 A n a l o g i n p u t 0 A n a l o g i n p u t 1 1 2 3 4 G N D A O 0 A O 1 2 1 2 3 1 9 X M o t o r P o t M o d e S p e e d D r a w R a t i o M o t o r P o t O u t p u t T o r q u e S p e e d L i m i t R e v e r s e A E n d R u n R e v E n d R u n F o r w a r d J o g S p e e d L i m i t J o g R e f e r e n c e * ( - 1 ) R a m p I n = 0 M P o t O u t p u t M P o t m o d e M o t o r P o t E n M o t o r P o t U p M o t o r P o t D o w n M o t o r P o t M e m o M o t o r P o t R e s e t M o t o r P o t D i r M P O T J o g C W J o g C C W M o t o r P o t U p L i m M o t o r P o t L o L i m M o t o r P o t A c c & D e c M o t o r P o t I n i t M o t o r P o t M o d e M u l t i S p e e d C o n f M u l t i S p e e d I n d e x 1 7 S p e e d S e l B i t 1 S p e e d S e l B i t 2 S p e e d S e l B i t 0 S p e e d R e f 1 ( r p m ) S p e e d R e f 2 ( r p m ) R a m p E n a b l e J o g E n a b l e T o r q u e 112 • Chapter 9 Block Diagram SIEIDrive - XVy-EV User’s Guide P w m M o d . A c t u a l p o s i t i o n r e g i s t e r M o t o r f l u x a n g l e + + - - + - K i K i H i g h s p e e d d e f l u x a l g o r i t h m I d I q I n v . p a r k t r a n s f . I q * I d * P a r k t r a n s f E n c o d e r X n . n p o s i t i o n c o m m a n d f r o m e l e c t r i c g e a r E L S R a t i o S e l B 0 E L S R a t i o S e l B 1 R a t i o 0 3 2 1 R a t i o E L S I n c R a t i o E L S D e c R a t i o E l s d e l t a t i m e A c t u a l R a t i o E l s R a t i o I n d e x E l s R a t i o / S l i p 1 B - 2 P T C 3 Z + 4 Z - 5 A + 6 A - 7 0 V E N C 8 B + 9 + 5 V E N C 1 0 S IN + /H 1 1 1 S IN - /H 2 1 2 C O S + /H 3 1 3 C O S - 1 4 E X C + SENSOR CONNECTOR XE SENSOR CONNECTOR XER R E G U L A T I O N D I A G R A M 1 5 E X C - 1 B - 2 3 Z + 4 Z - 5 A + 6 A - 7 0 V E N C 8 B + 9 + 5 V E N C 1 0 1 1 1 2 1 3 1 4 1 5 T a r g e t s p e e d p o s i t i o n r e g i s t e r S p e e d R e f e r e n c e P o s i t i o n R e f T r q S p e e d L i m i t S 2 S 1 S 3 S 4 E l s R e f 1 2 3 1 1 2 2 T o r q u e S p e e d C o n t r o l M o d e P o s i t i o n L i n e S h a f t A c c G a i n P o s i t i o n G a i n S p e e d G a i n P o s i t i o n I G a i n T o r q u e R e f 1 M a x P o s T o r q u e M a x N e g T o r q u e T o r q u e R e f 2 F a s t L i n k T r q R e f F L T r q S c a l e 1 2 A b s o l u t e p o s i t i o n X n T o r q u e L i m i t e d T r u e T o r q u e M o d e S 1 1 2 1 1 1 S 2 1 1 1 3 2 S 3 1 1 2 1 1 S 4 1 2 1 1 1 T o r q u e C o n t r o l M o d e S w i t c h S p e e d E l s P o s i t i o n SIEIDrive - XVy-EV User’s Guide Chapter 9 Block Diagram • 113 P o s i t i o n s e t R a m p s e t S p e e d s e t P o s a c c / d e c 0 P o s a c c / d e c 1 P o s a c c / d e c 2 P o s a c c / d e c 3 P o s a c c / d e c 6 P o s a c c / d e c 5 P o s a c c / d e c 4 P o s a c c / d e c ( 8 . . 6 3 ) P o s P r e s e t 0 P o s P r e s e t 1 P o s P r e s e t 2 P o s P r e s e t 3 P o s P r e s e t 6 P o s P r e s e t 7 P o s P r e s e t 5 P o s P r e s e t 4 P o s P r e s e t ( 8 . . 6 3 ) P o s s p e e d 0 P o s s p e e d 1 P o s s p e e d 2 P o s s p e e d 3 P o s s p e e d 6 P o s s p e e d 7 P o s s p e e d 5 P o s s p e e d 4 P o s s p e e d ( 8 . . 6 3 ) S p e e d l i m i t T o r q u e l i m i t U n i t x R e v U n i t x R e v D i v M a x P r s A b s V a l M i n P r s A b s V a l M a x P r e s e t V a l u e M u l t i P o s E n P o s i t i o n i n g M o d e P o s T o r q u e P o s 0 S e a r c h P o s R e t u r n A c c P o s R e t u r n S p e e d P o s R e t u r n D e c P o s i n d e x P o s S t a r t P o s P o s i t i o n r e f e r e n c e P o s Z e r o F o u n d & & D e s t i n a t i o n P o s S t o p B y R a m p P o s S t o p D e c Z E R O F O U N D C O N F P O S R E T U R N C O N F P O S I T I O N B L O C K P o s R e t u r n P o s R e t u r n P o s S t a r t P o s P o s 0 S e a r c h P o s Z e r o F o u n d A c t u a l P o s i t i o n P o s E x c e e d e d P o s T h r C l o s e 1 P o s T h r C l o s e 1 P o s T h r C l o s e 2 P o s T h r C l o s e 2 A b s P o s T h r P o s E x c e e d e d P o s A b s T h r P o s R e a c h e d P o s i t i o n Z e r o P o s T h r O f f s e t 1 2 3 & H o m e M a x S p d H o m e S p d R e f C C W H o m e P o s D e c C C W H o m e P o s A c c C W H o m e P o s A c c C W H o m e P o s D e c H o m e F i n e S p d P o s 0 S e n s o r Z e r o S e n s o r E n I n d e x e n c o d e r 1 2 1 2 114 • Chapter 9 Block Diagram SIEIDrive - XVy-EV User’s Guide SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 115 Chapter 10 - Parameters and Functions 10.1 Parameters menu 116 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 117 10.2 Legend NOTA! - FLT_M = 3.40282347 38 - In order to perform the Save Parameters, the Reset Drive command, or Load Default Par (*) via the serial line, the number of the parameter index to be brought to a high logic level Save Parameters = 18011 Reset Drive = 18010 Load Default Par = 18017 (*) the default command does not change the parameters: - Mains Voltage, IPA 20050 - Application Sel, IPA 18140 ENCODER P ENCODER P ENCODER P ENCODER P ENCODER PARAM ARAM ARAM ARAM ARAM ENC EXP BOARD 20038 ABS1 Enc Div Rev [--] Dword R/Z/* 8192 1 8192 Number of division per rev of the abs tracks of the abs enc. n.1 IPA Description [Unit] Format Access Default Min Max Parameter number Parameter unit of measure (u.u.=user unit) Access: mode parameter R = read only W = write Z = write only when drive disabled * = the enabling function, related to the parameter, is active only after the drive reset command Parameter default value S = function datum of the drive size Parameter maximum value S = function datum of the drive size Parameter name Parameter minimum value S = function datum of the drive size Format : parameter format Int = integer signed 16 bits Enum = integer signed 16 bits Word = integer unsigned 16 bits Long = integer signed 32 bits Dword = integer unsigned 32 bits Float = floating point Bool = 1 bit Main menu 2 nd level 118 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide 10.3 Parameters Description and Functions The standard factory-loaded XVy-EV configuration (IPA 18140=0=Basic in SERVICE menu) allows torque, speed, position and electric shaft regulation. The drive is supplied defaulted to run as a speed regulator. The four regulation modes are correlated one with the other and are enabled via a suitable bit parameter which can be addressed as a digital input. The parameter list sorted as shown on the keyboard and GF-eXpress (default setting) is given below. MONITOR MONITOR MONITOR MONITOR MONITOR 20500 Start Status [--] Word R Condition of the drive start command. 21212 Ramp Output [rpm] Float R Parameter reading the speed reference on the output of the ramp block. Speed 1 2 time(msec/rpm) 3 4 1 CW Acc Ramp 2 CW Dec Ramp 3 CCW Acc Ramp 4 CCW Dec Ramp 18735 Out Current [Arms] Float R Motor present current (filtered). 18805 Torque Current [Arms] Float R Present value of the quadrature axis current (filtered). 18806 Flux Current [Arms] Float R Present value of the direct axis current (filtered). 18807 Act Out Curr Lim [Arms] Float R Present value of the maximum current to be supplied by the drive. 18732 Act Pos Trq Lim [%] Float R Present torque upper limit. 100% equal to the motor rated torque. 18746 Act Neg Trq Lim [%] Float R Present torque lower limit. 100% equal to the motor rated torque. 18739 Act Torque [%] Float R Torque applied to motor (filtered). 100% is the rated torque of the IPA 18800 motor, Base Torque 18776 Act Torque Eng [Nm] Float R Torque applied to motor in Nm. 18748 Ramp Reference [rpm] Float R Ramp reference. 18749 Speed Reference [rpm] Float R Speed reference. 18777 Motor Speed [rpm] Float R Speed of motor. 18782 Act Out Power [kW] Float R Value of the motor Output Power. This parameter is the resulting of the value between Torque and speed. IPA Description [Unit] Format Access Default Min Max SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 119 IPA Description [Unit] Format Access Default Min Max 18754 Act Pos Spd Lim [rpm] Float R Positive speed limit. 18755 Act Neg Spd Lim [rpm] Float R Negative speed limit. 18756 Enc Postition [mech. deg] Float R Speed/pos feedback position. 18757 Enc Revolution [--] Float R Revolutions number for speed/pos feedback. 18742 Out Frequency [Hz] Float R Output frequency 18736 DC Link Voltage [V] Float R DC link voltage (filtered). 18772 Output Voltage [Vrms] Float R Output voltage 18710 Heatsink Temp [°C] Int R Drive heatsink temperature 18711 Intake Air Temp [°C] Int R Input air temperature. If the temperature probe is not present, the parameter always shows an invalid value. 18712 Reg Card Temp [°C] Int R Regulation card temperature 20022 FW Version [--] Float R Firmware version 19607 Drive Ovld Fact [%] Word R Drive overload factor: when it reaches 100%, the drive automatically limits the output current to the drive rated current. The maximum peak current can be supplied again by reducing the drive supplied current to a value lower than the rated one till the I2T integral value returns to zero. SA SA SA SA SAVE / L VE / L VE / L VE / L VE / LO OO OOAD P AD P AD P AD P AD PAR AR AR AR AR 18011 Save Parameters [--] Bool R/W 0 0 1 Any changes to the value of the parameters have an immediate effect on the running of the drive, but are not automatically stored in memory. The Save Parameters instruction is used to store the value of the current parameters to the permanent store. All unsaved modifications will be lost when the drive is powered down. 0 = Save Done 1 = Save Now 18017 Load Default Par [--] Bool R/W 0 0 1 The factory setting parameters will be restored. 0 = Load Done 1 = Load Now 18070 Load Param PAD [--] Bool R/W 0 0 1 Loading values of parameters on the keypad to the drive memory. 0 = Load Done 1 = Load Now 18071 Save Param PAD [--] Bool R/W 0 0 1 The values of the drive parameters are saved in the keypad memory. 0 = Save Done 1 = Save Now 120 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 18010 Reset Drive [--] Bool R/ W 0 0 1 Resets the drive 0 = Reset Now 1 = Drive Working DRIVE CONFIG DRIVE CONFIG DRIVE CONFIG DRIVE CONFIG DRIVE CONFIG 20023 Control Mode [--] Enum R/W/* 2 1 8 Configuration of the drive working mode. It is possible to select four different modes: torque, speed, electric axis and position control (as for the selection see the next table). The drive is factory programmed for speed control. 1=Torque 2=Speed 4=Position 8=Els Function configuration Bit0 Bit1 Bit2 Bit3 Bit4 Bit5...15 (*) Drive disabled 0 0 0 0 0 0 Torque control 1 0 0 0 0 0 Speed control 0 1 0 0 0 0 Position control 0 0 1 0 0 0 Electric line shaft control 0 0 0 1 0 0 txv9030 (*) These bits have to be set at 0 to be compatible with future versions. The different working modes can be selected also via a suitably programmed digital input. See Digital inputs for further details. 20050 Mains Voltage [--] Enum R/Z/* 1 0 5 Main voltage supply 0=230 Vrms 1=400 Vrms 2=460/480 Vrms 3=380 Vrms 4=415 Vrms 5=440 Vrms 20051 Environment Temp [--] Enum R/Z/* 0 0 1 Environment temperature 0=0..40°C (32°..104°F) 1=0..50°C (32°..122°F) 2=0..60°C (32°..140°F) (only for XVy-EV ... EWH/EWHR) 20052 PWM Frequency [--] Enum R/ W/ * 0 6 3 Switching frequency: 0=Default (see table 2.3.2.1) 2= 2 kHz 4= 4 kHz 8= 8 kHz 20000 Drive Max Curr [Arms] Float R/Z IP18701 0 IPA18703 Setting the drive maximum current output to the motor. 18778 Overload Control [--] Enum R/Z* 0 0 1 Choice of algorithm to calculate drive overload: 0 = IxT 1 = I 2 xT 29004 Act Ctrl Mode [--] Enum R It states the selected functioning method, see IPA 20023 1=Torque 2=Speed SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 121 IPA Description [Unit] Format Access Default Min Max 4=Position 8=Els Note! When the IPA 18104 Application Sel parameter = “Autotuning” or “Phasing” or “Test generator”, the Act Ctrl Mode parameter is displayed as “* * *” 20053 Drive size [--] Enum R Display size of drive. Example: : 10306 = XVy-EV 10306 18701 Drive Nom Curr [Arms] Float R Drive nominal current (see I 2N table 2.3.2.1) 18704 Drv Nom Curr 0Hz [Arms] Float R Nominal current of drive at 0Hz (see table 2.3.3.1). 18703 Max Ovld Curr [Arms] Float R Maximum overload current. 18222 Relay Config [—] Enum R/ Z/ * 0 0 1 Relay Configuration. 0= Drive Ready 1 = Drive OK KEYPAD 20021 Enable I-O Keys [--] Bool 0 0 1 Enables Start (I) and Stop (O) keys on keypad. 0= Disabled 1 = Enabled COMM CONFIG 18031 Drive Serial Add [--] Word R/W/* 0 0 127 Drive address when it is connected via the RS485 serial line. 18032 Serial Prot Type [--] Word R/Z/* 0 0 1 Configuration of the communication protocol of the drive 485 serial line: 0=Slink 1= Modbus 20024 Serial Baud Rate [--] Enum R/W/* 38400 1200 38400 Configuration of the communication speed (baudrate) of the drive serial line. It is possible to select one of the following values: 1200, 2400, 4800, 9600, 19200, 38400. If this value is modified, it is advisable to mark the drive with a label if you change the default to highlight the different serial line configuration; in this way, possible communication problems between the drive and the GF-eXpress configurator, whose default setting is 38400, will be avoided. GF-eXpress window, see IPA 20025. 20025 Serial Line Conf [--] Enum R/ W/ * 32785 32785 32927 Configuration of the drive RS485 serial port. It is possible to select one of the following values: N,8,1=32785 (NO parity, 8 data bit, 1 stop bit) O,8,1=36919 (Odd parity, 8 data bit, 1 stop bit) E,8,1=32823 (Even parity, 8 data bit, 1 stop bit) N,8,2=32793 (No parity, 8 data bit, 2 stop bit) O,8,2=36927 (Odd parity, 8 data bit, 2 stop bit) E,8,2=32831 (Even parity, 8 data bit, 2 stop bit) The factory configuration is 32785 (N,8,1). In this case too, as for the previous parameter, it is advisable to mark the drive with a label. Attention ! The change of the serial port configuration becomes active only after the drive Reset has been performed. The GF-eXpress configurator has to be configured as the drive in the Communication Settings menu. 122 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 20026 Serial Del Time [msec] Word R/ W 0 0 800 Setting of the minimum delay between the drive reception of the last byte and the beginning of its response. Such delay avoids any conflict on the serial line when the RS485 interface is not set for an automatic TX / RX switching. 18110 Fast Link Addr [--] Word R/Z/* 0 0 8 Enable of fast link on the XT-IN and XT-OUT connectors. Using fast link in electrical line shaft configuration, it is necessary to configure this parameter. 0 The fast link is disabled 1 Fast link enable (the drive is the master) > 1 Fast link enable (the drive is the slave). 18124 FstLnk Slow Sync [--] Bool R/Z/* 0 0 1 Enabling synchronisation of slow task 0=OFF 1=ON TEMP CONTROL This function is a simple hysteresis comparator: bit Drv Th Overtemp (output of function) becomes high when the source temperature is lower or equal to the setted threshold value; DrvOvertemp becomes low when the temperature is higher or equal to Temp Th - Temp Hys value. On sizes >18.5kW, Heatsink Temp and Intake Air Temp are not updated when the power supply is switched off. So when those temperature are selected bit Drv Th Overtemp becomes Low after 5 sec the power supply is off. 20073 Temp Thr [°C] Int R/ W 45 1 100 Temperature intervention threshold. 20074 Temp Hys [°C] Int R/ W 2 1 IPA20073 Fall in Hysteresis 20075 Drv Temp Src [--] Enum R/ W 0 0 3 Selection of source temperature. 0=Off 1=Heatsink Temp 2=Intake Air Temp 3=Reg Card Temp SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 123 IPA Description [Unit] Format Access Default Min Max MO MO MO MO MOT TT TTOR D OR D OR D OR D OR DA AA AAT TT TTA AA AA 20002 Motor Poles [--] Word R/ Z/ * 8 2 8 Settings of motor poles. Note: the motor pole number has to be lower than the pulse number/revolution of the motor mounted encoder. 20001 Mot Nominal Curr [Arms] Float R/Z/* IPA18701 0.0 IPA18703 Motor nominal current 18360 Mot Nom K Torque [Nm/Arms] Float R/Z 1.5 0.1 100 Motor torque constant. 20004 Mot Thermal Prot [--] Enum R/Z/* 1 0 1 Thermal protection type of servomotors. 0=PTC 1=NC Contact 2=KTY84 MOTOR PARAM 18313 LKG Inductance [H] Float R/Z/* 0.005 10 -6 20 Motor inductance. MOTOR OVERLOAD 20080 Mot Ovld Control [--] Enum R/Z/* 0 0 1 Enabled the motor protection to excessive overload. 20081 Mot Ovld Curr [A] Float R/Z IPA18701 0 IPA18703 Motor overload current. 0 = Disabled 1= Enabled When this is selected the Mot Ovld Time and Mot Ovld Factor parameters must be set. Note: The Mot Ovld Time and Mot Ovld Factor parameters are only used to calculate the I2t motor limit. 20082 Mot Ovld Time [sec] Float R/Z 5 0,1 2097 Motor overload time. 20083 Mot Ovld Factor [%] Int R Motor overload factor. When 100% has been reached, the current limit is reduced to the value Mot Nominal Curr (IPA 20001) till when Mot Ovld Factor goes back to zero. It is calculated with the following formula: Mot Ovld Factor . (%) = 100 ò ( I - ) dt mot 2 2 Mot Nominal Curr . ( - ) Mot Ovld Curr r . Mot Ovld Time 2 2 Mot Nominal Cu r ENCODER P ENCODER P ENCODER P ENCODER P ENCODER PARAM ARAM ARAM ARAM ARAM The signals coming from the position sensors are mainly used in two points of the brushless motor control system: First is to modulate the three stator currents in order to obtain an equivalent field presenting a 90 electric degree phase shift as compared to the field of the permanent magnets. They are also used for feedback of the speed/space loop. These two functions are usually performed by two different position sensors, which are usually integrated into one single encoder. The features of the two sensors are, in fact, different. One determines commutation, the other, speed and sinewave accuracy. In order to keep the stator field in the desired position, it is necessary to know, also at power-on, the absolute position in the electrical revolution; for this purpose resolvers are normally used, but digital encoders with hall channels are also supported. The feedback of the speed/space loop requires the maximum possible resolution; the loop quality defines the limit of the control loop. We recommend for best accuracy and smoothness, the resolver, or a Sin-Cos type encoder. 124 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max The XVy-EV drive digitizes the data of the sinewave in a resolver or SinCos encoder to a resolution of 212 (16,384 pulses equivalent), thus obtaining a high precision level and very good behaviour in conditions of low speed and locked shaft. In the XVy-EV drives (as default configuration), after the initialization phasing procedure (executed at power on and alarm reset), the field modulation is based on the reading of the sensor with the highest resolution, which becomes absolute since the sensor mechanical position is known. The above working mode can be changed through the parameters on SERVICE / ENCODER menu. 20007 Mot Enc Source [--] Enum R/Z/* 1 1 4 Motor encoder source 1=XE Main Encoder 2=Riservato 3=EXP ABS1 Encoder 4=Reserved 20008 Spd-Pos Enc Sour [--] Enum R/Z/* 0 0 4 Speed/pos encoder source 0=Same as motor 1=XE Main Encode 2=XER/EXP Aux Enc 3=EXP ABS1 Encoder 4=Reserved 20010 XE Enc Type [--] Enum R/Z/* 1 0 10 Software setting of the encoder type used for the feedback, to be connected to the XE connector (standard connection). To select the encoder type the XVy-EV drives needs a software parameter setting and also a hardware setting through jumpers. This is necessary to allow so many kinds with so few connectors. 0=Off 1=Sincos 5 tracks Absolute sine and cosine once per revolution, incremental and sinusoidal A and B, I zero slot or index 2=Dig + Hall Hall sensors, incremental digital A-B channel, I zero marker or index 4=Hall Hall sensors 5=Sincos 2 tracks Absolute sine and cosine once per revolution. 6=An + Hall 8=Resolver Two pole resolver 9=Only Ana Inc Trk Incremental encoder with analog tracks (*) 10=Only Dig Inc Trk Incremental encoder with digital tracks (*) (*) When using these encoders, each time the drive is reset and the enable command is performed, the drive executes an internal phasing procedure for approx. 5 sec. Warning! During this procedure the motor shaft performs a limited number of rotations. 20011 XE Enc ppr [--] Word R/ Z/ * 2048 1 65535 Number of pulses per revolution of the encoder. 20012 XE Enc Supply [V] Enum R/Z 0 0 3 It is possible to program the encoder supply level between the minimum 5.2V and the maximum 6.5V value, in order to balance possible voltage drops on a long encoder cable, so that the level of the motor feedback signals is suitable to be read by the drive. 0=5.2V 1=5.6V 2=6.1V 3=6.5V 20020 Resolver Poles [--] Word R/ Z/ * 0 0 1 Number of poles on resolver. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 125 IPA Description [Unit] Format Access Default Min Max 20036 Aux Enc Type [--] Enum R/ Z/ * 1 0 2 Auxiliary encoder type: XER connector 0=OFF XER port disabled 1=XER In EXP out XER used for secondary encoder input and encoder output on expansion card. 2=XER/EXP Rep/Sim XER and output on expansion used for repeat/simulation of motor encoder. 3=XER Out EXP In XER used as encoder repeat output and encoder input on expansion card. 20037 XER/EXP Enc ppr [--] Word R/ Z/ * 2048 1 65535 Auxiliary encoder pulses per revolution. 20019 XER Enc Supply [V] Enum R/W 0 0 3 Auxiliary encoder supply. See XE Enc Supply, IPA 20012. 0=5.2V 1=5.6V 2=6.1V 3=6.5V 20078 Res Data Inv [°C] Bool R/Z/* 0 0 1 Enables inversion of the resolver SIN channel. 0=Off 1=On Caution! Phasing must be repeated if this parameter is modified. ENC EXP BOARD 20040 ABS1 Enc Type [--] Enum R/Z 0 0 4 First absolute enc. type: ABS1 connector. 0 = Off 1 = EnDat + 2 ana inc 2 = SSI 3 = EnDat 4 = SSI + 2 ana inc 5 = Hiperface 20039 ABS1 Enc Revol [--] Word R/Z/* 4096 1 4096 Number of turns that can be distinguished by the ABS encoder No. 1. 20038 ABS1 Enc Div Rev [--] Dword R/Z/* 8192 1 131072 Number of division per rev of the abs tracks of the abs enc. n.1. 20042 ABS1 Enc ppr [--] Word R/Z/* 512 1 65535 Number of pulses per rev of the inc tracks (if present) of the abs enc. n.1 20041 ABS1 Enc Supply [--] Enum R/W 0 0 3 Absolute encoder n.1 encoder supply. 0 = 5.2V 1 = 5.6V 2 = 6.1V 3 = 6.5V 20043 EnDat Del Comp [--] Enum R/ W 0 0 2 Signal propagation delay compensation on EnDat cable: 0 = No delay comp 1 = 1 us delay comp 2 = 2 us delay comp 126 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max ENC MOTOR RATIO There are engines on the market that have the device mounted position feedback via toothed belt or other multiplier (see fig.), This implies a kinematic unit that should not be considered for the proper torque (case of absolute encoder) and the calculation of motor speed. Encoder Toothed belt Stator Rotor Figure: Motor with encoder mounted with the kinematic The kinematic relations are handled by the drive and many depend on the number of poles of the motor (Pn) in accordance with the following report: ki = (Pn/2) / i for all values of i ranging from 1 to Pn / 2 Es: pole motor => have managed the following kinematic relations k k 1 = 1, k 2 = 2, k 3 = 1. 3 = 1.33333… , k 4 = 4 20077 Encoder Ratio Enable [--] Enum R/ Z/ * 0 0 1 Enables the management of the mounted encoder with the encoder ratio 0 = Disable 1 = Enable 20009 MotPoles/EncRev [--] Word R/ Z/ * 8 2 IPA20002 This parameter indicates the number of poles of the motor corresponding to a turn encoder. Can be seen by the following calculation: Considering an 8-pole motor and an encoder that are k = 4:3 = 1.3333... we obtain the following value: 8 / k = 8 / (4 / 3) = 6 20076* Enc Mot Ratio [:1] Float R Ratio K encoder used monitor (displayed with 5 decimal places) SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 127 IPA Description [Unit] Format Access Default Min Max RAMP RAMP RAMP RAMP RAMP The acceleration and deceleration of the speed reference is set by the CW Acc Ramp / CW Dec Ramp parameters for clockwise rotation direction and by CCW Acc Ramp / CCW Dec Ramp for counterclockwise rotation direction. The Fast stop function allows stopping the motor in the shortest possible time in case of emergency regardless of the normal ramps set. Set a digital input as Fast/stop. These parameters are active in the only in the speed control configuration; for a position control application see the specific paragraph. Ramp In=0 Speed Pos Lim Speed Neg Lim Ramp Output Reference = 0 Ramp Enable Jog enable The drive behaviour after the Start command depends on the parameter settings: - If the ramp circuit is used (Ramp Enable = enable) the motor reaches the desired speed at set ramp rate. If commanded to stop, the drive stops with the deceleration ramp time. If during the deceleration time a new start command is given, the drive regains the set speed. - If the ramp circuit is not used (Ramp Enable = disable) the motor reaches the desired speed in the shortest possible time limited only by current. When the motor is stopped, the drive is torque-enabled. The drive can be disabled by opening the Enable drive command. The Jog function does not require the Start command, but requires the enable. In case the Start and Jog+ or Jog- commands are given simultaneously, the start command has the priority. 21115 Fast Stop Dec [ms/krpm] Float R/W 100 0 IPA21111 Setting of the Fast Stop deceleration time 21116 End Run Dec [ms/krpm] Float R/W 100 0 IPA21111 Setting of the End Run deceleration time 21210 Ramp Enable [--] Enum R/W 1 0 1 Ramp enabling command : 0=Disabled 1=Enabled 21102 CW Acc Ramp [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration time. 21103 CCW Acc Ramp [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration time. 21104 CW Dec Ramp [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise deceleration time. 21105 CCW Dec Ramp [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the counterclockwise deceleration time. 21110 Ramp Exp Factor [--] Int R/ W 1 1 1000 Ramp expansion factor, used to increase the maximum value allowed for the ramp parameters. The cycle time of the speed control loop is 125 us and if the parameter Ramp Exp Factor is set to 1, the ramp generator updates the ramp output every 125 us; this means that the slowest ramp will increase the speed by 1count/125 us every 125 us and this will limit the maximum value of the ramp 128 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max parameters to 8738 msec/krpm (with a 2048 ppr encoder); if this parameter is set to a value N higher than 1 this means that the ramp output will be updated every N x 125 us and this will mean that the maximum value of the ramp parameters will be limited to N x 8738 msec/krpm. In the following table there are some examples about the influence of the Ramp Exp Factor parameter on all the ramp parameters settings: Encoder pulses/rev Ramp Exp Factor Max Ramp Rate 2048 1 8738 msec/krpm 2048 4 34952 msec/krpm 2048 10 87355 msec/krpm 1024 1 4369 msec/krpm 512 2 4369 msec/krpm txv9065 21111 Max Ramp Rate [ms/krpm] Float R Max ramp time SPEED SPEED SPEED SPEED SPEED The value of the speed reference determines the value of the motor speed, while the sign defines the rotation direction. When the ramp is enabled (parameter Ramp Enable = enable), the speed reference (Speed Ref) follows the time set in the acc and dec parameters (CW - CCW). The Speed Ref 1, Speed Ref 2, Pos Speed Lim and Neg Speed Lim parameters are active only in the Speed loop configuration. See the specific paragraph for the Position loop configuration Speed Ref 1 (rpm) Speed Ref (rpm) Reverse End Run Reverse End Run Forward Speed Ref 2 (rpm) Jog Ref Multi Speed + Jog CW Jog CCW * (-1) Ramp in=0 Speed Pos Lim Speed Neg Lim Speed Ref 3 Sel Speed Ref 3 (rpm) 20003 Full Scale Speed [rpm] Float R/Z/* 3000 0 100000 Setting of the analog input full scale value. 21200 Speed Ref 1 [rpm] Float R/W 0 -IPA20003 IPA20003 Speed reference 1. Setting of the speed reference if no analog input has been set as [3] Speed Ref 1 . In case an analog input is set as [3] Speed Ref 1, the parameter is read-only. 21201 Speed Ref 2 [rpm] Float R/W 0 -IPA20003 IPA20003 Speed reference 2. Setting of the speed reference 2 if no analog input has been set as [4] Speed Ref 2. In case an analog input is set as [4] Speed Ref 2, the Speed Ref 2 parameter is read-only. The total reference is the result of the sum of the values of Speed Ref 1 and Speed Ref 2. Example 1: Speed Ref 1 = 1500 rpm Speed Ref 2 = 500 rpm Speed Ref = 1500 + 500 = 2000 rpm Example 2: Speed Ref 1 = 1500 Rpm Speed Ref 2 = -500 rpm Speed Ref = 1500 - 500 = 1000 rpm 21202 Speed Ref 3 [rpm] Dword R/W 0 -IPA20003 IPA20003 Speed Ref 3 may be used instead of Speed Ref 1 e Speed Ref 2 sum by means Speed Ref 3 Sel digital input selection to set speed reference of the control. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 129 IPA Description [Unit] Format Access Default Min Max 21206 Speed Thr [rpm] Float R/W 10 0 IPA20003 Setting of the threshold value for overspeed. Such threshold is stated as an absolute value. When the speed is higher than the value set in this parameter, the digital output set as [4] = Speed Thr goes to +24V. 21207 Speed Reach Wnd [rpm] Float R/W 10 0 IPA20003 Setting of the window on the speed reference in order to consider the digital output programmed as [4] = Speed Reached enabled. 21208 Speed Zero Thr [rpm] Float R/ W 10 0 1000 Zero speed threshold (the test is performed according to the speed filtered at 100ms) 21209 Speed Zero Delay [sec] Float R/W 0.1 0 1000 Delay on zero speed signalling 21213 Speed Thr Delay [sec] Float R/W 10 0 1000 Setting of the delay for signalling that the motor has reached the speed threshold (IPA 21206 - Speed Thr). When the motor speed is higher than the value set in Speed Thr + Speed Thr Wnd for a time higher than the value of this parameter, a digital output set with [15] Speed Thr de is brought to +24V. If the speed falls under the Speed Thr - Speed Thr Wnd value, the digital output programmed as [15] Speed Thr de is set to 0V. 21211 Speed Thr Wnd [sec] Float R/W 10 0 100000 Window applied to the Speed Thr IPA 21206 parameter to enable digital output [15] Speed Thr. See parameter Speed Thr Delay IPA 21213. 21204 Pos Speed Limit [rpm] Float R/W 3000.0 0 100000 Setting of the maximum speed for motor clockwise rotation direction. 21205 Neg Speed Limit [rpm] Float R/W 3000.0 0 100000 Setting of the maximum speed for motor counterclockwise rotation direction SPD / POS GAIN SPD / POS GAIN SPD / POS GAIN SPD / POS GAIN SPD / POS GAIN 18150 Inertia [kg*m 2 ] Float R/W 0 0 Motor inertia used for inertial compensation. 18151 Inertia Filter [msec] Float R/W 1 0 200 Filter time constant on inertial compensation. 23000 Speed Gain [--] Int R/W 100 0 32767 Speed proportional gain. 23001 Position Gain [--] Int R/W 50 0 32767 Position proportional gain. 23002 Position I Gain [--] Int R/W 0 0 32767 Position integral gain. These are conservative, relatively low performance settings, suitable for most general purpose applications, they can be set much higher if machine construction allows it and the application requires it. 23003 Acc Gain [--] Int R/Z/* 3000.0 0 100000 Acceleration proportional gain (speed regulator). 23010 Gain Mult Fct [--] Enum R/W 1 1 16 Multiplier factor speed and position gains. 1= x 1 16= x 16 130 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max T TT TTOR OR OR OR ORQ QQ QQUE UE UE UE UE The current loop is the fastest control section and has a sampling frequency of 16 kHz. There are two current loops working simultaneously. The components of the forward and quadrature current are calculated directly from the phase currents read by the AD converters; both components are controlled in order to obtain the desired behaviour. The quadrature component contributes to the rotating torque while the forward component is (usually) set at zero. The torque control functioning mode is active if the Control Mode parameter (IPA 20023) is set as "Torque". In this case the motor supplies a torque equal to the sum of Torque Ref 1 (IPA 22000) and Torque Ref 2 (IPA 22001).. All torque values (references, limits and thresholds) are stated as a percentage. 100% is equal to the motor rated torque, Base Torque parameter (IPA 18800). + + - - + - Ki Ki High speed deflux algorithm Iq* Id* Target speed position register Speed Reference Position Ref Trq Speed Limit S2 S1 S3 S4 Els Ref 1 2 3 1 1 2 2 Torque Speed Control Mode Position Line Shaft A c c G a i n P o s i t i o n G a i n S p e e d G a i n P o s i t i o n I G a i n Torque Ref 1 Max Pos Torque Max Neg Torque Torque Ref 2 FastLink Trq Ref FL Trq Scale 1 2 Torque Limited True Torque Mode S1 1 2 1 1 1 S2 1 1 1 3 2 S3 1 1 2 1 1 S4 1 2 1 1 1 Torque Control Mode Switch Speed Els Position 22000 Torque Ref 1 [%] Float R/ W 0 -IPA22012 IPA22012 Setting of the torque reference if no analog input has been programmed as [1] Torque Ref 1. If an analog input has been programmed as [1] Torque Ref 1, the parameter is read-only. 22001 Torque Ref 2 [%] Float R/W 0 -IPA22012 IPA22012 Setting of the torque reference if no analog input has been programmed as [2] Torque Ref 2. If an analog input has been programmed as [2] Torque Ref 2, the parameter is read-only. The Torque Ref 1 and Torque Ref 2 parameters are active if the Torque loop functioning mode is selected. The total reference is the sum of the values of Torque Ref 1 and Torque Ref 2. 22002 Torque Mode [--] Enum R/W 0 0 1 0 = Torque Limited The speed reference can be ignored. To allow the motor to run, the torque reference must be set to Torque Ref 1, Torque Ref 2 or through FastLink Trq Ref. If the torque reference is high enough, the motor will reach the maximum speed set in 22009 Trq Speed Limit. The torque limits (22004 Max Pos Torque and 22005 Max Neg Torque) are operative as well. 1 = True Torque Mode The speed regulator is disabled, therefore no control is carried out. To allow the motor to run, the torque reference must be set to Torque Ref 1, Torque Ref 2 or through FastLink Trq Ref. If the torque reference is high enough, the motor can SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 131 IPA Description [Unit] Format Access Default Min Max reach a speed higher than the rated one. The torque limits (22004 Max Pos Torque and 22005 Max Neg Torque) are operative as well. 22003 Trq Lim Config [--] Enum R/W 0 0 2 0 = Torque lim symm Symmetric torque limits. The limit is considered equal to the value of the Max Pos Torque parameter (IPA 22004). 1=Torque lim +/- Asymmetric torque limits. Max Pos Torque = positive torque limit, Max Neg Torque = negative torque limit. 2 = Torque lim motor/brake Different torque limits for the functioning of the drive as a motor (Max Pos Torque) and as a brake (Max Neg Torque) 22004 Max Pos Torque [%] Float R/W 100 0 IPA22012 Setting of the positive torque limit. 22005 Max Neg Torque [%] Float R/ W 100 0 IPA22012 Setting of the negative torque limit. 22007 Torque Thr [Arms] Float R/W 0 0 IPA20000 Setting of the torque threshold defined with an absolute value. When the torque is higher than the value set in this parameter, the digital output set as [6] Torque Thr is brought to +24V. 22009 Trq Speed Limit [rpm] Float R/W 3000 0 10000 Speed limit during the torque control. When Torque Mode is selected as Torque Limited. 22010 Torque Thr Delay [sec] Float R/W 10 0 10 Setting of the delay time signaling that the level of the torque supplied by the motor has been reached. When the motor supplied torque is higher than that set in Torque Thr for a period longer than the value of this parameter, the digital output programmed as [16] Torque Thr Del is brought to +24V. 22011 Torque Reduction [%] Float R/W 50 0 IPA22012 Active torque limit when the digital input set as Torque reduction is brought to +24V. 22013 FastLink Trq En [--] Bool R/W/Z 0 0 1 If this function is enabled, the torque reference coming from a drive master through Fast Link is added to Torque Ref 1 and Torque ref 2. This function is normally used to perform a Helper configuration between two motors. 22515 FL Trq Scale [--] Float R/W 1 -10 +10 Torque reference scale coming from the drive master. If the scale which has been set is negative, the torque direction is inverted compared to the master. 22012 Max Torque [%] Float R Maximum torque value supplied by the drive-motor system equal to Mot Nom K Torque * Drive Max Curr, stated as a percentage of the motor rated torque. 22014 FastLink Trq Ref [%] Float R Torque reference reading from Fast Link (after the scaling). 18800 Base Torque [Nm] Float R Rated torque of motor matching rated current of motor. 132 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max CURRENT GAINS CURRENT GAINS CURRENT GAINS CURRENT GAINS CURRENT GAINS The current loop is controlled by a PID regulator; the maximum control bandwidth is 5 kHz. The gains of this loop are factory set with appropriate values for the motors and specifically for the motor purchased if this drive was bought with a motor. For advanced applications such values have to be optimized according to the motor used. 18100 Curr Prop Gain [--] Int R/W S 0 32767 Current loop proportional gain. 18101 Curr Integr Gain [--] Int R/W S 0 32767 Current loop integral gain. 18102 Curr Deriv Gain [--] Int R/ W 0 0 32767 Current loop derivative gain. 18345 Curr Gain Calc [--] Enum R/W 0 0 1 0=Off : no calculation 1=Calc from motor parameter the current gains are recalculated according to the motor parameters (LKG Inductance , IPA 18313). FLUX FLUX FLUX FLUX FLUX Flux reduction function In the brushless motor, the flux is constant, generated by the permanent magnets. It is possible to implement the flux reduction function by passing a negative current through the stator windings with vectors oriented to reduce overall flow. Caution ! If the drive is disabled when the motor is running above nominal speed, the voltage on the motor could reach values that might damage the drive. Normally it is possible to run the motor up to 150% of nominal speed, without taking special precautions. In order to reach higher speeds, and avoid damage to the drive, an independent braking unit must be used, to brake the load at least up to the motor’s nominal speed. For information on how to reach speeds greater than 150% of nominal, contact the Gefran technical support centre. 18320 Max Deflux Curr [Arms] Float R/Z/* 0 IPA20000 0 Maximum flux reduction current of motor (only negative values are permitted). 18321 User Vlt Max Lim [Vrms] Int R/W 400 10 612 Setting flux reduction starting voltage. Only values below mains voltage have an effect. It is used to reduce the maximum working voltage of the motor. 18322 Out Volt Filter [msec] Float R/W 10 1 500 Filter time constant on output voltage. 18325 Volt Prop Gain [--] Int R/W 500 0 32767 Proportional gain on voltage loop 18326 Volt Int Gain [--] Int R/W 500 0 32767 Integral gain on voltage loop 18328 Out Vlt Max Lim [Vrms] Int R Monitor flux reduction starting voltage. DIGIT DIGIT DIGIT DIGIT DIGITAL INPUTS AL INPUTS AL INPUTS AL INPUTS AL INPUTS The regulation board of the XVy-EV drive has 8 digital inputs. Seven digital inputs can be programmed to different functions and they are located on the I/O terminal block on R-XVy regulation board. Refreshing time = 8ms. The changes in the digital input setting can be enabled by resetting the drive. This rule can be applied also to the virtual inputs. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 133 IPA Description [Unit] Format Access Default Min Max 20101 Digital Input 1 [--] Enum R/W 4 0 2007 Choice of the parameters to be set on Digital Input 1. The possibilities listed as “Choices for the digital input association” are available. Default = Start/stop Choices for the digital input association: 0 = OFF Unconfigured input. 2 = Drive reset Alarm Reset command. Momentary input active on the edge. The drive must be disabled for a reset to occur. 3 = External fault External alarm signal. It is active on the leading edge. 4 = Start/stop Start /stop command. It is active on the leading edge. In the torque, speed and electric axis configuration this command must be programmed on a digital input. If its value is high, it starts the drive operation; if its value is low, the drive will stop. When this command is active, if a speed reference is present, the motor goes to the set speed. 5 = Fast/stop Emergency stop command. Active on the drop wire leading edge. It is active on the leading edge, it stops the speed command instantly, braking the motor with no decel ramp in the shortest possible time till zero speed has been reached. The Fast/stop command is used in emergency and dangerous situations in order to stop the drive in the shortest possible time. If a digital input is set as Fast/stop, this input must be high to run in any mode. The Fast/stop command must be present before the drive enabling command (Enable command). By disabling the voltage on this input while the drive is active, it is possible to cause a braking stop with the shortest possible time. With a start following a Fast/stop command it is necessary to set the Enable digital input with a low logic status and the Fast/stop digital input with a high logic status; before a jog function can be performed. 6 = Jog CW Jog forward function command. It is active only in the speed and position configurations. When this input is active, the speed reference and the ramp times are those set in the Jog parameter menu. 7 = Jog CCW Jog reverse function command. It is active only in the speed and position configurations. When this input is active, the speed reference and the ramp times are those set in the Jog parameter menu. 8 = Ramp in = 0 Ramp In = 0 command. It is active only in the speed configuration. When this input is active (high logic status), it replaces the present reference with a zero reference and uses the set ramp. This digital zero keeps the motor rotor stopped in a torque condition, without any offset drift typical for A/D (analog/digital) converters. 9 = Reverse Inverse command. When the command is active, it changes the motor rotation direction by following the set ramp. 10 = End Run Reverse Clockwise end run command. It is active only in the speed and position configuration. It only allows, regardless of reference, motor x rotation in a clockwise (CW) direction. 11 = End Run Forward Counterclockwise end run command. It is active only in the speed and position configuration. It only allows, regardless of reference, motor rotation in a counterclockwise (CCW) direction. 12 = Reference = 0 Speed reference = 0. It is active only in the torque and speed configurations (with 22002 = Torque limited). 14 = Torque loop It selects the Torque Regulation mode. 15 = Speed loop Select the mode to Speed regulation. 16 = Position loop Select the mode to Position regulation. 134 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 17 = ELS loop It selects the Electric Axis mode. 18 = Disable An Inp 0 Command Disabling analog input 0 (both the value and the offset are disabled). With a high logic level analog input 0 is disabled. 19 = Disable An Inp 1 Command Disabling analog input 1 (both the value and the offset are disabled). With a high logic level the analog input 1 is disabled. Speed sel bit 0...2 The number given by the binary combination of these digital inputs selects a digital speed reference set in the parameters of the Multispeed function. 21 = Speed sel Bit 0 Multi-speed function, Bit 0 selection. 22 = Speed sel Bit 1 Multi-speed function, Bit 1 selection. 23 = Speed sel Bit 2 Multi-speed function, Bit 1 selection. Ramp sel bit 0...1 The number given by the binary combinations of these digital inputs selects the ramp times set in the parameters of the Multiramp function. 24 = Ramp sel Bit 0 Multi-ramp function, Bit 0 selection. 25 = Ramp sel Bit 1 Multi-ramp function, Bit 1 selection. 26 = Virtual DI OK When the virtual digital input 14 (only this one) is set with VIRTUAL DI OK, all the set Virtual digital inputs are active only if this input is equal to 1 (high logic level). In other words, this enables virtual digital input to be used. 27 = Alarm reset When this digital input is active, it is possible to reset all the active alarm (high logic level). The reset is executed only if the alarm cause is no more present. 28 = Virtual Enable Virtual Enable, it functions in parallel with the physical one (Digital Input 0). 29 = Torque Reduct It enables the torque reduction. When it is active, the torque limits are set by the Torque Reduction parameter, IPA 22011. Motor potentiometer selection 30 = Motor Pot Up Increases speed reference according to the ramp time set in Motor Pot Acc. 31 = Motor Pot Down Reduces speed reference according to the ramp time set in Motor Pot Dec. 32 = Motor Pot Enable Enables motor potentiometer function 33 = Motor Pot Reset Reset memory 35 = Motor Pot Memo Storage of reference setting in memory High state = storage of last speed setting in memory. After Start, the motor accelerates automatically up to the speed setting. Low state = After Start, the motor stops, waiting for the Motor Pot Up command 36 = Motor Pot Dir Speed reference polarity Low state = positive reference, High state = negative reference Sequential position control selection Inputs active only in Sequential position control configuration. The number given of the binary combination of the digital inputs set as POS Event Bit 0...7, forms the parameter value IPA 30800 Pos Actual Event which is the event that causes the multiposition controller to go to "Event Match" or "Dwell + Event". 37 = POS Event Bit 0 38 = POS Event Bit 1 39 = POS Event Bit 2 40 = POS Event Bit 3 41 = POS Event Bit 4 42 = POS Event Bit 5 43 = POS Event Bit 6 44 = POS Event Bit 7 45 = Multi Pos Enable Enabling multi-position controller SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 135 IPA Description [Unit] Format Access Default Min Max 46 = Multi Pos Abort Ends position sequence. Powerloss 47 = PL Mains status It signals the mains voltage reset to the drive 48 = Speed ref 3 Sel If active the speed set point is Speed Ref 3 instead ofSpeed Ref 1 and Speed Ref 2 sum Speed Ref 1 (rpm) Speed Ref 3 Sel Speed Ref 2 (rpm) Speed Ref 3 (rpm) Pos-preset 0...5 These inputs are only active with the position configuration. The number given by the binary combination of the digital inputs set as Pos Preset (0...5) selects the number of the active position preset. Example: with a three-position positioner, all Pos Preset parameters must have a default value (=0) with the exception of Pos Preset 0 and Pos Preset 1, whose task is the identification of the active position preset (binary combination). 1001 = POS Preset 0 Bit 0 position preset. 1002 = POS Preset 1 Bit 1 position preset. 1003 = POS Preset 2 Bit 2 position preset. 1004 = POS Preset 3 Bit 3 position preset. 1005 = POS Preset 4 Bit 4 position preset. 1006 = POS Preset 5 Bit 5 position preset. 1007 = POS 0 Search Command to Search for the zero position. It is active only in the position configuration. Momentary input active on the rising leading edge. When this command is active, the motor performs a homing (see the POSITION menu). 1009 = POS Start Pos Positioning start command.Initiates the start of a move to new position. 1010 = POS Memo 0 Command Storing the 0 position. Momentary input active on the rising leading edge, it allows storage of the present position as a zero position. Such function is normally used in point-to-point self-acquisition positioning procedures. 1011 = POS Memo Pos Position storing command. Momentary input active on the rising leading edge; it allows storage of the present position as a destination position. Such function is normally used in point-to-point self-acquisition positioning procedures. 1012 = POS Return Command returning to a set position. Active pulse input on the climbing leading edge. Movement starting towards an absolute predefined position. 1015 = POS 0 sensor Zero sensor. Used for the zero search. 1016 = Save parameters Els ratio sel 0...1 The number given by the binary combinations of these digital inputs selects the active speed ratio. 136 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 2001 = ELS Ratio Sel B0 Electric Line Shaft function: Preset selection of the bit 0 ratio. 2002 = ELS Ratio Sel B1 Electric Line Shaft function: Preset selection of the bit 1 ratio. 2003 = ELS Inc Ratio Ratio increasing command. When this command is active, the selected ratio between master and slave is increased with a time constant defined by the Els Delta Time and Els Delta Ratio parameters. 2004 = ELS Dec Ratio Ratio decreasing command. When this command is active, the selected ratio between master and slave is decreased with a time constant defined by the Els Delta Time and Els Delta Ratio. parameters. 2005 = ELS RampRatioDis Ramp disabling command during a ratio switching phase. When this command is active, the ramp time set via the Els Delta Ratio parameter (ramp for ratio switching) is ignored and the change will be made immediately. Be careful when using this since new ratios will change as fast as current limit allows. 2006 = ELS Bend Rec CW Command to activate the correction reference (slave drive), bend recover, in CW rotation. 2007 = ELS Bend Rec CCW Command to activate the correction reference (slave drive), bend recover, in CCW rotation. 20102 Digital Input 2 [--] Enum R/W/* 8 0 2007 Choice of the parameters to be set on Digital Input 2. The possibilities listed as “Choices for the digital input association” are available, see IPA 20100. Default = [8] Ramp in = 0 20103 Digital Input 3 [--] Enum R/ W/ * 9 0 2007 Choice of the parameters to be set on Digital Input 3. The possibilities listed as “Choices for the digital input association” are available, see IPA 20100. Default = [9] Inverse 20104 Digital Input 4 [--] Enum R/ W/ * 10 0 2007 Choice of the parameters to be set on Digital Input 4. The possibilities listed as “Choices for the digital input association” are available, see IPA 20100. Default = [10] End Run Reverse 20105 Digital Input 5 [--] Enum R/W/* 11 0 2007 Choice of the parameters to be set on Digital Input 5. The possibilities listed as “Choices for the digital input association” are available, see IPA 20100. Default = [11] End Run Forward 20106 Digital Input 6 [--] Enum R/W/* 3 0 2007 Choice of the parameters to be set on Digital Input 6. The possibilities listed as “Choices for the digital input association” are available, seee IPA 20100. Default = [3] External fault 20107 Digital Input 7 [--] Enum R/ W/ * 2 0 2007 Choice of the parameters to be set on Digital Input 7. The possibilities listed as “Choices for the digital input association” are available, see IPA 20100. Default = [2] Drive reset 20162 Dig Inp Rev Mask [--] DWord R/W 0H 0H 0FFFFFFFFH This parameter allows changing the logic level of the set digital inputs. Normally digital inputs become active when switching from a low to a high logic level occurs. Through this bit-set parameter it is possible to decide whether to change the logic condition, i.e. active low logic level, inactive high logic level. This parameter cannot modify the logic level of digital input 0. Example: The intervention of two limit switches (End Run Forward and End Run Reverse) has to be set on two digital inputs, digital input 3 and digital input 4; the limit switch intervention has to be active with a low logic level. DIGITAL INPUT 7 6 5 4 3 2 1 0 Dig Inp Rev Mask 0 0 0 1 1 0 0 0 txv9110 1 8 It is necessary to set Dig Inp Rev Mask = 18H SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 137 IPA Description [Unit] Format Access Default Min Max 20100 Dig Inp 0 Status [--] Enum R Drive enabled. 20163 Dig Inp Status [--] Word R Read-only parameter stating the present condition (high logic level 1 and low logic level 0) of the digital inputs. It is an hexadecimal parameter. Example: The digital inputs are: DIG IN 0 = 1 DIG IN 1 = 1 DIG IN 6 = 1 DIGITAL INPUT 7 6 5 4 3 2 1 0 Dig Inps Status 0 1 0 0 0 0 1 1 txv9111 4 3 The value displayed by the Dig Inps Status parameter is 43H . EXP DIG INPUTS Inside the XVy-EV drive it is possible to install an option expansion card of the digital inputs and outputs. It is possible to add up to 8 programmable digital inputs through the following parameters. The programming procedure is the same as the one for the digital inputs. 20150 Exp Dig Inp 0 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20151 Exp Dig Inp 1 [--] Enum R/W/* 0 0 2007 Scelta dei parametri programmabili su un ingresso digitale. Sono disponibili le stesse possibilità degli ingressi digitali. Vedere la lista “Codifica per l’associazione degli ingressi” IPA 20101. 20152 Exp Dig Inp 2 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20153 Exp Dig Inp 3 [--] Enum R/ W/ * 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20154 Exp Dig Inp 4 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20155 Exp Dig Inp 5 [--] Enum R/ W/ * 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20156 Exp Dig Inp 6 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20157 Exp Dig Inp 7 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20164 Exp Dig Inp Stat [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital inputs on the EXP-D14A4F expansion card. It is an hexadecimal parameter. Example: The digital inputs are: Exp Dig Inp 0 = 1 Exp Dig Inp 5 = 1 Exp Dig Inp 7 = 1 138 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max EXP DIGIT INPUT 7 6 5 4 3 2 1 0 Exp Dig Inp Stat 1 0 1 0 0 0 0 1 txv9112 A 1 The value displayed by the Exp Dig Inp Stat parameter is A1 H. VIRT DIG INPUTS Digital virtual inputs which are not physically present on the terminals but which are available to program possible commands, configured through the serial interface or field bus. When an external application needs to use some drive programmable functions through digital input, it is always necessary : - Set the desired functionality see list “Choices for the digital input association” IPA 20101 - Write the status of the virtual digital inputs (see IPA 20186). 20170 Virt Dig Inp 0 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 0. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20171 Virt Dig Inp 1 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 1. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20172 Virt Dig Inp 2 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 2. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20173 Virt Dig Inp 3 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 3. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20174 Virt Dig Inp 4 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 4. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20175 Virt Dig Inp 5 [--] Enum R/ W/ * 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 5. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20176 Virt Dig Inp 6 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 6. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20177 Virt Dig Inp 7 [--] Enum R/ W/ * 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 7. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20178 Virt Dig Inp 8 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 8. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20179 Virt Dig Inp 9 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 9. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20180 Virt Dig Inp 10 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 10. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20181 Virt Dig Inp 11 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 11. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 139 IPA Description [Unit] Format Access Default Min Max 20182 Virt Dig Inp 12 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 12. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20183 Virt Dig Inp 13 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 13. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20184 Virt Dig Inp 14 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 14. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20185 Virt Dig Inp 15 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 15. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20186 Virt DI Status [--] Word R/W 0000H 0000H FFFFH It displays and sets the status of the virtual digital inputs. Hexadecimal setting. Programming example If the virtual digital inputs have to be enabled via the serial input: Virt Dig Inp 0 Programmed as POS Preset 0 Virt Dig Inp 1 Programmed as POS Preset 1 Virt Dig Inp 2 Programmed as POS Preset 2 Virt Dig Inp 3 Programmed as POS Preset 3 If we set to high logic level : - the bit 0 referring to Virt Dig Inp 0 = 1 - the bit 1 referring to Virt Dig Inp 1 = 1 - the bit 2 referring to Virt Dig Inp 2 = 1 - the bit 3 referring to Virt Dig Inp 3 = 1 VIRT DIG IN 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Virt DI Status 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 txv9113 The drive will write in the Virt DI Status parameter the value obtained by adding 1 (bit 0) + 2 (bit 1) + 4 (bit 2) + 8 (bit 3) = 15 = F Virt DI Status = 000FH 20187 Virt DI at Start [--] Word R/W FFFFH 0000H FFFFH Setting of the status of the virtual digital inputs when the drive is started. Through this parameter it is possible to state if each configured input will be reset or not at the power-on. This is a Hexadecimal setting. 1 = The parameter is not reset at each drive starting. 0 = The parameter is reset at each drive starting. Application example If the virtual digital inputs 0 and 2 must be reset at the power-on, it is necessary to: - (reset ) Virt Dig Inp 0 Programmed as Pos Preset 0 - (do not reset) Virt Dig Inp 1 Programmed as Pos Preset 1 - (reset ) Virt Dig Inp 2 Programmed as Pos Preset 2 - (do not reset) Virt Dig Inp 3 140 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max Programmed as Pos Preset 3 It is necessary to set with a high logic level (not reset): - bit 1 referring to Virt Dig Inp 1 = 1 - bit 3 referring to Virt Dig Inp 3 = 1 It is necessary to set with a low logic level (reset): - bit 0 referring to Virt Dig Inp 0 = 0 - bit 2 referring to Virt Dig Inp 2 = 0 VIRT DIG IN 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Virt DI at Start 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 txv9114 it is therefore necessary to write in the Virtual DI at start parameter the value obtained by adding 0 (bit 0) + 2 (bit 1) + 0 (bit 2) + 8 (bit 3) = 10 = A Virt DI at Start = A 20188 Virt DI at Dis [--] Word R/W FFFFH 0000H FFFFH Setting of the status of the virtual digital inputs when the drive is disabled. Through this parameter it is possible to state if each configured input will be reset or not when the drive is disabled. Hexadecimal setting. 1 = The parameter is not reset at each drive starting. 0 = The parameter is reset at each drive starting. 20189 Virt DI at Reset [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital input condition when a drive alarm gets active. Through this parameter it is possible to state if each configured input has to be reset or not when an alarm intervenes. Hexadecimal setting. 1 = The parameter is reset when the drive is in an alarm condition 0 = The parameter is not reset when the drive is in an alarm condition. The procedure to be followed is the same as the one used for the Virt DI at Start parameter. DIGIT DIGIT DIGIT DIGIT DIGITAL OUTPUTS AL OUTPUTS AL OUTPUTS AL OUTPUTS AL OUTPUTS In the regulation board of the XVy-EV drives there is one slow Relay Output and six fast Digital Outputs. The relay output has one N.O. and one N.C. contact, and it is used as “Drive OK”. Refreshing time = 8ms. The changes in the digital output setting can be enabled by resetting the drive. The same rule can be applied also to the virtual outputs. NOTE! It is possible to set all the drive alarms on a digital output. The logic status is normally low and it becomes high when the drive is in an alarm condition. 20005 DO Reset at Fail [--] Long R/ W 0H 0H FFFFH Setting of the digital output state when a drive alarm gets active: only for alarm code 1...6, 8...12, 18...32, which disable PWM. This parameter allows to state, when an alarm condition intervenes, which digital output, corresponding to the set bit, is brought to a 0 logic level. Hexadecimal setting. The bits 0 ... 5 refer to the digital outputs, the bits 8 ... 13 refer to the digital outputs of the expansion card. 0 = The output does not change its logic level 1 = The output is reset and set with 0. 20006 DO Set at Fail [--] Long R/W 0H 0H FFFFH Setting of the digital output state when a drive alarm gets active: only for alarm code 1...6, 8...12, 18...32, which disable PWM. This parameter allows to state, when a drive alarm intervenes, which digital output, corresponding to the set bit, is brought to a high logic level. Hexadecimal setting. The bits 0 ... 5 refer to the digital outputs, the bits 8 ... 13 refer to the digital outputs of the expansion card. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 141 IPA Description [Unit] Format Access Default Min Max 0 = The output does not change its logic level 1 = The output is set to an high logic level. 20200 Digital Output 0 [--] Enum R/W/* 3 0 1010 Selection of parameters that can be set as Digital Output Digital Output.: Choices for digital output association: 0 = OFF Output not configured. 1 = Drive Enable The digital output reaches high logic status when the drive is power supplied, enabled (enable command active) and no alarm is present. 2 = Drive Ready The digital output is set to a high logic level when the unit is initialised (with or without the mains power supply) and no alarms are present. 3 = Speed Reached Reached speed. The digital output reaches high logic status when the motor present speed is equal to the reference within a window defined by the Speed Reach Wnd parameter. 4 = Speed 0 Thr Speed = 0. The digital output acquires high logic status when the motor speed is zero with a dead band (positive and negative) defined on the Speed Zero Thr and Speed Zero Delay parameters. 5 = Torque Limit Torque limit. The digital output acquires the high logic status with a torque limit functioning condition. 6 = Torque Thr Overcome torque. The digital output acquires the high logic status when the motor supplied torque, with an absolute value, is higher than the one set in the Torque Thr parameter. 7 = Speed Thr Speed threshold exceeded. The digital output acquires the high logic status if the speed, with an absolute value, is higher than the value set in the Speed Thr and Speed Thr Wnd parameters. 8 = AD Index (XE ) Repetition of incremental encoder index connected on XE connector. The signal remains active for 8 ms. 9 = DI Index (XER) Repetition of incremental encoder index connected on XER connector. The signal remains active for 8 ms. 10 = Position Error The drive is in Position error (exceeded the threshold of Max Pos Error set in the SERVICE menu). 11 = Fast Link Rx On slave drive active during reception of Fast link. This output can be used only on a slave drive. 12 = UV Active The drive is in undervoltage alarm (power supply voltage is lower than the undervoltage threshold). 13 = Cost Through Act When there is a Mains loss condition, it activates the energy recovery, braking to a stop; in this way the motor can brake in controlled mode. 14 = Speed Thr > 0 Speed = 0. Same meaning of Speed 0 Thr but with an inverted logic level. 15 = Speed Thr del Delayed speed threshold reached. The digital output reaches a high logic evel if the speed, either positive or negative, is higher than the value set in the Speed Thr parameter for a time higher than the value set in the Speed Thr Delay parameter. 16 = Torque thr del Reached delayed torque threshold. The digital output reaches the high logic status if the torque, with an absolute value, is higher than the value set in the Torque Thr parameter for a period longer than Torque Thr Delay. 17 = Alarm Warning Active alarm. When a previously masked alarm goes active (see IPA 24100), the digital output set as Alarm warning reaches the high logic level. 18 = Alarm Coming Delayed alarm. When a previously delayed alarm gets active (see IPA 24102), the digital output set as Alarm coming 142 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max reaches the high logic level. 19 = 80% Overload Thr The IxT or I2t integral has reached 80% of the maximum value. 20 = Brake Command Command for the motor emergency brake. 21 = Fast Stop It states that the drive is in a Fast Stop condition. 22 = PL Stop active It indicates that the drive is in an Emergency stop condition. 23 = Drv Th Overtemp Output of the temperature check function 24 = Drive OK The digital output is set to a high logic level when the drive is powered and there are no alarms present 100 = Drive fault Drive in an alarm condition. 101 = IGBT Desaturat Short circuit alarm of the power module. 102 = Overcurrent Overcurrent alarm. 103 = Overvoltage Overcurrent alarm on the DC LINK intermediate circuit. 104 = Heatsink Ot Heatsink overtemperature alarm. 105 = Drive Overload Drive IxT integral has reached maximum value 106 = Current Fbk Loss Loss of Power Supply TA. 107 = Motor overtemp Motor overtemperature alarm. 108 = Motor Overload Motor Overload 109 = CPU Overtime CPU alarm 111 = Inval Flash Par Invalid flash parameter alarm. 112 = Flash Fault Flash error alarm. 113 = Brake Overpower Brake overpower alarm. 118 = Enc Fbk Loss Main encoder count alarm. 119 = Enc Sim Fault Encoder simulation alarm. 120 = Undervoltage Undervoltage alarm. 121 = Intake Air Ot Temperature of intake air too high; detected by TAC sensor. 122 = Regulation Ot Overtemperature of regulation board; detected by TAR sensor on regulation board. 123 = Module Overtemp IGBT module Overtemperature; detected by OTS sensors on Power stage. 127 = Enable Seq Error Alarm for a wrong sequence in the drive power supply. This alarm gets active when, at the start up, the drive shows a high Digital input 0. 128 = Fast Link Error Fast link communication error. 129 = Position Fault The drive is in Position error (A 29) alarm. 131 = Sequence Fault External alarm for the drive. 1001 = Position Zero Position 0 reached. The digital output reaches high logic status when the motor present position is equal to the zero position with an dead band defined by the Pos 0 Thr Offset parameter. 1002 = Pos Reached The digital output acquires the high logic status when the control finishes the positioning procedure and the position is equal to the destination position +- Pos Window for a period equal to Pos Window Time. 1003 = Pos Exceeded Position threshold. The digital output acquires the high logic status when the difference between the present position and the starting position is higher than the value set in the Positon Thr parameter. 1004 = Pos Abs Thr Absolute position threshold. The digital output reaches high logic status if the position is higher than the value set in the Pos Abs Thr. parameter. 1005 = Pos Zero Found Found zero position. The digital output reaches high logic status at the end of the zero searching phase. 1006 = Pos Thr Close 1 Reached position threshold 1. The digital output acquires the high logic status when the difference between the motor present position and the destination position is lower or equal to the Pos Thr Close 1 parameter. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 143 IPA Description [Unit] Format Access Default Min Max 1007 = Pos Thr Close 2 Reached position threshold 2. The digital output acquires the high logic status when the difference between the motor present position and the destination position is lower or equal to the Pos Thr Close 2 parameter. 1008 = Pos Out Of Lim A value has been set up out of range Min Preset Value/Max Preset Value. If a value required is out of range, it is not executed and the digital output programmed as Pos Out Of Lim changes to high logic status. 1009 = Pos Loop Active It states that the drive present functioning mode is Position 1010 = Pos Not Reached The digital output has a logic state high when position control has ended, and the position is not entered in the +- Pos Window for a period at least equal to Pos Window Time. Takes the low logic state when a new POS Start Pos command is issued. 1011 = Mpos end cycle The output becomes high when the multi-positioning sequence is complete 20201 Digital Output 1 [--] Enum R/W/* 4 0 1010 Choice of the programmable parameters on Digital Output 1 The possibilities listed as “Choices for Digital output association” are available, see IPA 20200. Default = Speed 0 thr 20202 Digital Output 2 [--] Enum R/W/* 5 0 1010 Choice of the programmable parameters on Digital Output 2 The possibilities listed as “Choices for Digital output association” are available, see IPA 20200.Default = Torque Limit 20203 Digital Output 3 [--] Enum R/W/* 100 0 1010 Choice of the programmable parameters on Digital Output 3 The possibilities listed as “Choices for Digital output association” are available, see IPA 20200. Default = Drive Fault 20204 Digital Output 4 [--] Enum R/W/* 131 0 1010 Choice of the programmable parameters on Digital Output 4 The possibilities listed as “Choices for Digital output association” are available, see IPA 20200. Default = External Fault 20205 Digital Output 5 [--] Enum R/ W/ * 1 0 1010 Choice of the programmable parameters on Digital Output 5 The possibilities listed as “Choices for Digital output association” are available, see IPA 20200. Default = Drive Enable 20254 Dig Out Reverse [--] Dword R/W 00H 0H FFFFFFFFH This parameter allows to change the logic level of the programmed digital outputs. The digital outputs usually have a 0 logic level when they are inactive and they switch to a high logic level when they become active. Via this bit- mapped parameter it is possible to choose which output the normal logic level has to be switched to. Hexadecimal setting. Example: the digital outputs 1, 4 and 5 have to be programmed with an inverted condition: DIGITAL OUTPUT 5 4 3 2 1 0 Dig Out Reverse 1 1 0 0 1 0 3 2 txv9115 It is necessary to set Dig Out Reverse = 32H 20255 Dig Out Status [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital outputs. It is an hexadecimal parameter. Example: the digital outputs are: DIGITAL OUTPUT 5 4 3 2 1 0 Dig Out Status 0 0 1 0 0 0 0 8 txv9116 DIG OUT 3 = 1 The value displayed by the Dig Out Status parameter is 8H 144 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max EXP DIG OUTPUTS It is possible to install inside the drive a card for the digital inputs and outputs expansion. Up to six Digital Outputs can be expanded and programmed through the below parameters. The programming procedure for the expanded digital outputs is the same as for the digital outputs. Refreshing time = 8ms. 20250 Exp Dig Out 0 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 0. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20251 Exp Dig Out 1 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 1. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20252 Exp Dig Out 2 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 2. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20253 Exp Dig Out 3 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 3. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20257 Exp Dig Out 4 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 4. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20258 Exp Dig Out 5 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 5. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200..0. 20259 Exp Dig Out 6 [--] Enum R/ W/ * 1 0 1010 Choice of the programmable parameters on Exp Dig Out 6. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20260 Exp Dig Out 7 [--] Enum R/W/* 1 0 1010 Choice of the programmable parameters on Exp Dig Out 7. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. 20256 Exp Dig Out Stat [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital outputs set on the EB-DIO expansion card. VIRT DIG OUTPUTS Virtual digital outputs, which are not physically present on the terminals but which are available to set possible Digital outputs to be read via the serial line or the field bus. By setting the Virtual digital outputs, the Digital outputs on the terminal strip are still available. The function performed by a digital output programmed on a Digital output or on a Virtual digital output is the same. The programming procedure is the same as the one stated for the digital outputs. 20270 Virt Dig Out 0 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 0. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20271 Virt Dig Out 1 [--] Enum R/ W/ * 0 0 1010 Choice of the programmable parameters on Virt Dig Out 1. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20272 Virt Dig Out 2 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 2. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 145 IPA Description [Unit] Format Access Default Min Max 20273 Virt Dig Out 3 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 3. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20274 Virt Dig Out 4 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 4. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20275 Virt Dig Out 5 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 5. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20276 Virt Dig Out 6 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 6. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20277 Virt Dig Out 7 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 7. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20278 Virt Dig Out 8 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 8. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20279 Virt Dig Out 9 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 9. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20280 Virt Dig Out 10 [--] Enum R/ W/ * 0 0 1010 Choice of the programmable parameters on Virt Dig Out 10. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20281 Virt Dig Out 11 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 11. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20282 Virt Dig Out 12 [--] Enum R/ W/ * 0 0 1010 Choice of the programmable parameters on Virt Dig Out 12. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20283 Virt Dig Out 13 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 13. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20284 Virt Dig Out 14 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 14. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20285 Virt Dig Out 15 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 15. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. 20289 Virt DO at Reset [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital output state when a drive alarm gets active: only for alarm code 1...6, 8...12, 18...32, which disable PWM. This parameter allows to state, when an alarm condition intervenes, which virtual output, corresponding to the set bit, is brought to a 0 logic level. Hexadecimal setting. 0 = The output does not change its logic level 1 = The output is reset and set with 0. 20290 Virt DO at Fail [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital output state when a drive alarm gets active: only for alarm code 1...6, 8...12, 18...32, which disable PWM. This parameter allows to state, when a drive alarm intervenes, which virtual digital output, 146 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max corresponding to the set bit, is brought to a high logic level. Hexadecimal setting. 0 = The output does not change its logic level 1 = The output is set to an high logic level. 20286 Virt DO Status [--] Word R Only-reading parameter stating the present condition of the virtual digital outputs (high logic level 1 and low logic level 0). Hexadecimal setting. AN AN AN AN ANAL AL AL AL ALOG INPUTS OG INPUTS OG INPUTS OG INPUTS OG INPUTS The regulation board of the XVy-EV drive has two programmable analog inputs. The Analog Input channels are available on the I/O Terminal Block. NOTE! Input maximum value: 10.81 V. Resolution = 12 bit (11 bit + sign). Bandwith = 1,5 kHz. An Inp 0 Read An Inp 1 Read + An Inp 0 D_B Pos An Inp 0 D_B Neg An Inp 0 Scale An Inp 0 Value x An Inp 0 Offset Disable An In 0 + An Inp 1 D_B Pos An Inp 1 D_B Neg An Inp 1 Scale An Inp 1 Value x An Inp 1 Offset Disable An In 1 Analog input 0 Analog input 1 1 2 3 4 20300 Analog Inp 0 Sel [--] Enum R/W 3 0 24 Choice of the parameter to be programmed on analog_input_0. The possibilities listed as “Choices for Analog Input association” are available. Default = Speed Ref 1. Choices for Analog Input association 0 = OFF The analog input is not configured. 1 = Torque Ref 1 (500 us) Torque reference 1, active in the configuration of the torque control (1) 2 = Torque Ref 2 (500 us) Torque reference 2, active in the configuration of the torque control (1) 3 = Speed Ref 1 (500 us) Speed 1 reference signal. (2) 4 = Speed Ref 2 (500 us) Speed 2 reference signal. (2) 5 = Speed Pos Lim (8 ms) Signal setting the maximum speed for clockwise rotation direction. (2) 6 = Speed Neg Lim (8 ms) Signal setting the max speed for CCW rotation direction. (2) 7 = Speed limit (8 ms) Signal setting the same maximum speed for both clockwise and counterclockwise rotation direction. (2) 8 = Jog Ref (8 ms) Reference signal for jog function. 10V=par. Jog Speed Limit parameter, JOG FUNCTION menu. 9 = Torque Limit + (8 ms) Setting of the positive torque limit. (1) 10 = Torque Limit - (8 ms) Setting of the negative torque limit. (1) SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 147 IPA Description [Unit] Format Access Default Min Max 11 = Torque Limit (8 ms) Setting of the positive and negative torque limit. (1) 12 = Max Spd Trq Lim (8 ms) Speed limit with torque control (speed limited). (2) 13 = Pos Speed (8 ms) Speed reference during positioning procedures. (2) 14 = Pos Speed Ref 0 (8 ms) Speed reference during zero search. 10V = Home Max Spd parameter, ZERO FOUND CONF menu 15 = Speed Threshold (8 ms) Analog signal setting the “over-speed” threshold. (2) 16 = Torque Thr (8 ms) Setting of the reached torque threshold. (1) 17 = Multi Speed 1 (8 ms) Analog input of Speed 1 reference for the multi-speed function.(2) 18 = Multi Speed 2 (8 ms) Analog input of Speed 2 reference for the multi-speed function.(2) 19 = Multi Speed 4 (8 ms) Analog input of Speed 4 reference for the multi-speed function.(2) 20 = Els Rb Spd Ref (8 ms) An. signal to set the bend recover ref. in electrical line shaft mode. 10V = Els Max RB Speed parameter, EL SHAFT R BEND menu 21 = Els Ratio [0] (8 ms) An.signal to set the active ratio (ratio 0) with an electric axis mode. (3) 22 = Els Ratio [1] (8 ms) An.signal to set the active ratio (ratio 1) with an electric axis mode. (3) 23 = Els Ratio [2] (8 ms) An.signal to set the active ratio (ratio 2) with an electric axis mode. (3) 24 = Els Ratio [3] (8 ms) An.signal to set the active ratio (ratio 3) with an electric axis mode. (3) 25 = Pos Preset 0 (8 ms) Position reference. (4) 26 = Speed Ratio 3 (500 ns) Speed reference. (2) 27 = Speed Ratio (8 ms) Speed reference multiplication factor (5) (1): 10V = 2 * Base Torque parameter, TORQUE menu (2): 10V = Full Scale Speed parameter , SPEED menu (3): 10V = Els Max RB Speed parameter , EL SHAFT R BEND menu (4): 10V = Max Prs Abs Val parameter , POSITION FUNC menu 0V = Min Prs Abs Val parameter , POSITION FUNC menu (5) 10V = multiplication factor 2.00 20301 Analog Inp 1 Sel [--] Enum R/W 1 0 65535 Choice of the parameter to be programmed on Analog Inp 1 Sel. The possibilities listed as “Choices for Analog Input association” are available, see IPA 20300. Default = Torque Ref 1 ANALOG INPUT 0 20320 An Inp 0 Offset [V] Float R/W 0 -10 10 Writing parameter for the offset setting to be algebraically added to the analog signal. 20330 An Inp 0 D_B Pos [V] Float R/W 0 0 10 Writing parameter for the setting of a positive reference threshold, under which the analog value is set to 0. 20340 An Inp 0 D_B Neg [V] Float R/W 0 -10 0 Writing parameter for the setting of a negative reference threshold, under which the analog value is set to 0. 20350 An Inp 0 Scale [--] Float R/W 1 -3.0 3 Writing parameter for the setting of a multiplication factor of the analog signal. 20310 An Inp 0 Read [V] Float R Parameter reading the voltage value of the analog input 20360 An Inp 0 Value [V] Float R Read-only parameter of the analog input after the offset, the scaling and the dead band. ANALOG INPUT 1 20321 An Inp 1 Offset [V] Float R/W 0 -10 10 Writing parameter for the offset to be algebraically added to the analog signal. 20331 An Inp 1 D_B Pos [V] Float R/W 0 -10 10 Writing parameter for the setting of a positive reference threshold under which the analog value is set to 0. 148 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 20341 An Inp 1 D_B Neg [V] Float R/W 0 -10 10 Writing parameter for the setting of a negative reference threshold under which the analog value is set to 0. 20351 An Inp 1 Scale [--] Float R/W 1 -3.0 3 Writing parameter for the setting of a multiplication factor of the analog signal. 20311 An Inp 1 Read [V] Float R Parameter reading the analog input. 20361 An Inp 1 Value [V] Float R Read-only parameter of the analog input after the offset, the scaling and the dead band. ANALOG OUTPUTS ANALOG OUTPUTS ANALOG OUTPUTS ANALOG OUTPUTS ANALOG OUTPUTS The drives of the XVy-EV series are equipped with 2 ±10V differential analog outputs and a 12-bit (11 bit + sign) A/D converter. Basic Software allows to program up to two Analog Outputs. Bandwith = 280 Hz An Out 0 Write An Out 1 Write An Out Value An Out 1 Value An Out 0 Scale An Out 1 Scale x x + + An Out 0 Offset An Out 1 Offset Analog output 0 V GND AO0 AO1 17 18 19 20400 Analog Out 0 Sel [--] Enum R/W 1 0 12 Choice of the parameter to be programmed on Analog Out 0 Sel. The possibilities listed as “Choices for Analog Output association” are available. Deafult =Actual speed (8 ms) Choices for Analog Output association: 0=Off The analog output is not configured. 1=Actual Speed (8 ms) Analog signal proportional to the actual motor speed. With a scale factor equal to 1, the analog output supplies 10V when the speed is equal to the Full Scale Speed parameter. 2=MotorCurrent (8 ms) Analog signal proportional to the actual current supplied by the drive. With a scale factor equal to 1, the analog output supplies 10V when the current is equal to the Drive Max Curr parameter. 3=Motor Torque (8 ms) Analog signal proportional to the torque supplied by the motor. With a scale equal to 1, the analog output supplies 10V when the torque is equal to 200% of the Base Torque parameter (IPA 18800, 001 - MONITOR or TORQUE menu). 4=DC Link Voltage (8 ms) Analog signal proportional to the Voltage of the DC+/ DC- drive intermediate circuit (DC Bus). With a scale factor equal to 1, the analog output supplies 10V when the voltage is equal to 1000 V. 5=Drive Temp (8 ms) Analog signal proportional to the drive internal temperature. With a scale factor equal to 1, the analog output supplies 10V when the temperature is equal to 100°C (212°F). SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 149 IPA Description [Unit] Format Access Default Min Max NOTE! The drive internal fan is normally stopped. It becomes active when the temperature exceeds 55°C (131°F). 6=Ramp Output (8 ms) Analog signal proportional to the output of the ramp circuit. With a scale factor equal to 1, the analog output supplies 10V when the output voltage of the ramp circuit is equal to the Full Scale Speed parameter. 7=+10V (8 ms) +10V Analog signal. Signal available for possible potentiometer connections for the drive references. Unit of measure : Volt. 8= -10V (8 ms) -10V Analog signal. Signal available for possible potentiometer connections for the drive references. Unit of measure : Volt. 9=Position Error (8 ms) Analog signal proportional to the position error. The analog output reaches 10V when the position error is equal to the AnOut MaxPosErr parameter (IPA 32200). 10=Flt Act Spd 400 (8 ms) Actual speed value with low pass filter (400 msec) 11=Flt Motor Curr (8 ms) Motor current value with low pass filter (400 msec) 12=Flt Motor Torque Value of the motor torque with low-pass filter (400 msec) 13 = PL Next Factor Speed reference multiplication factor. 14=Flt Act Spd 100 (8 ms) Actual speed value with low-pass filter (100 msec) 20401 Analog Out 1 Sel [--] Enum R/W 2 0 12 Choice of the parameter to be programmed on Analog Out 1 Sel. The possibilities listed as “Choices for Analog Output association” are available. Default = [2] Motor current (1 ms). 32200 AnOut MaxPosErr [deg] Float R/W 90 0 2880 Position error to scale the Analog Output. ANALOG OUT 0 20420 An Out 0 Scale [--] Float R/W 1 -3.0 3 Parameter for the setting of a multiplication factor of the analog signal. 20430 An Out 0 Offset [V] Float R/W 0 -10 10 Parameter for the offset setting to be algebraically added to the analog signal. 20410 An Out 0 Write [V] Float R Parameter reading the analog output. 20440 An Out 0 Value [V] Float R Parameter reading the actual voltage of the analog output 0. ANALOG OUT 1 20421 An Out 1 Scale [--] Float R/W 1 -3.0 3 Parameter for the setting of a multiplication factor of the analog signal. 20431 An Out 1 Offset [V] Float R/W 0 -10 10 Parameter for the offset setting to be algebraically added to the analog signal. 20411 An Out 1 Write [V] Float R Parameter reading the analog output. 20441 An Out 1 Value [V] Float R Parameter reading the real value of the analog output 1. EXP ANALOG OUT It is possible to install inside the drive a card for the analog outputs expansion. Up to two Analog Outputs can be expanded and programmed through the below parameters. The programming procedure for the expanded analog outputs is the same as for the digital inputs. Refreshing time = 8ms. 20402 Exp Analog Out 0 [--] Enum R/W 0 0 14 Choice of the parameter to be programmed on Exp Analog Out 0. The possibilities listed as “Choices for Analog Output association” are available, see IPA 20400 (except selections 1 and 13). 150 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 20403 Exp Analog Out 1 [--] Enum R/W 0 0 14 Choice of the parameter to be programmed on Exp Analog Out 1. The possibilities listed as “Choices for Analog Output association” are available, see IPA 20400 (except selections 1 and 13). EXP AN OUT 0 20422 ExAn Out 0 Scale [--] Float R/ W 1 -3.0 3 Writing parameter for the setting of a multiplication factor of the analog signal. 20432 ExAn Out 0 Offse [V] Float R/W 0 -10 10 Writing parameter for the offset setting to be algebraically added to the analog signal. 20412 ExAn Out 0 Write [V] Float R Parameter reading the analog output. 20442 ExAn Out 0 Value [V] Float R Parameter reading the actual voltage of the analog output. EXP AN OUT 1 20423 ExAn Out 1 Scale [--] Float R/W 1 -3.0 3 Writing parameter for the setting of a multiplication factor of the analog signal. 20433 ExAn Out 1 Offse [V] Float R/W 0 -10 10 Writing parameter for the offset setting to be algebraically added to the analog signal. 20413 ExAn Out 1 Write [V] Float R Parameter reading the analog output. 20443 ExAn Out 1 Value [V] Float R Parameter of the actual voltage of the analog output 1. ENC REPETITION ENC REPETITION ENC REPETITION ENC REPETITION ENC REPETITION The signal coming from the encoder/resolver and used as a feedback for the speed/space loop can be repeated/ simulated (as a digital encoder) on the XER port with a desired ratio. This port can be configured both as an input (frequency reference, coming from the master encoder, for the electric axis) or as an output. The repetition can be enabled/disabled via the software (in order to avoid possible failures the XER connector is default configured as an input). The maximum repetition frequency is 500 kHz; if such frequency is exceeded, a drive alarm occurs as the counting storage can not be assured. The index can be repeated up to a total accumulated limit of 131070 pulses. It is possible to set the position of the first repeated index pulse as compared to the first master index after the index repetition has been enabled. The following indexes will be repeated with a frequency set independently of the master index. 20035 Enc Rep Sim Cfg [--] Enum R/Z/* 0 0 1 The following possibilities are available: 0=Main Enc Repet Hw repetition of motor encoder (not available on motor with resolver) 1=Spd Pos Enc Sim Simulation of motor encoder. 2=Aux Enc Repeater Hw repetition of the auxiliary encoder (XER). 20030 PPR Simulation [--] Dword R/ Z/ * 1024 1 131071 Parameter setting the pulse/revolution number for the encoder simulation signal. 20032 Index Puls Simul [--] Dword R/Z/* 1024 1 536871000 Parameter setting the gain for the simulation of the zero slot. It states the pulse frequency with which the encoder index is repeated. For example, 100 means that a zero index is obtained every 100 repeated pulses. 20033 Index Offset Sim [--] Long R/Z/* 0 1 536871000 Parameter setting the offset for the simulation of the index signal. With this parameter it is possible to program the SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 151 IPA Description [Unit] Format Access Default Min Max position of the first repeated index pulse as compared to the first master index, after the index repetition has been enabled. Following indexes will be repeated with the set frequency (Index Puls Simul parameter) independently of the master index. 19040 Enc Err Simul [mech.deg.] Float R Encoder simulation error. JOG FUNCTION JOG FUNCTION JOG FUNCTION JOG FUNCTION JOG FUNCTION The JOG function can be used both with a speed control and with a position control. By programming specific digital inputs, “Jog CW” and/or “Jog CCW”, it is possible to replace the Speed ref speed reference (position 1 for the switch) with the jog one (position 2 for the switch). Speed ref (speed reference) is active when is present the START command while the jog reference is active when is present Jog CW or Jog CCW. In case both the START and the JOG command are present, the START command has the priority. + Speed Ref 1(rpm) Speed Ref 2 (rpm) Jog Speed Limit (rpm) Jog Reference (rpm) Jog Ref (%) + Speed Reference 1 2 21000 Jog Speed Limit [rpm] Float R/ W 1500.0 0 IPA20003 Parameter setting the maximum reference limit for the jog function. 21001 Jog Reference [%] Float R/W 10 0 100 Jog function reference, which can be set also via an analog input. Its percentage value states the jog 21003 CW Jog Acc [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise acceleration time (active on the Jog CW reference). 21004 CCW Jog Acc [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the counterclockwise acceleration time (active on the Jog CCW reference). 21005 CW Jog Dec [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise deceleration time (active on the Jog CW reference). 21006 CCW Jog Dec [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the counterclockwise deceleration time (active on the Jog CCW reference). MUL MUL MUL MUL MULTISPEED TISPEED TISPEED TISPEED TISPEED As an alternative to the Speed ref analog reference (in the speed control configuration), it is possible to enable the Multispeed function. Enabling some digital inputs configured as Speed sel bit X (see IPA 20101). it is possible to recall up to seven fixed speeds set in the Multi Speed XX. parameters. The references can be supplied with signs, so that their definition sets the desired rotation direction. In case the digital inputs programmed as Speed Sel Bit are all at 0, the reference Speed Ref 1/2 remains active 152 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max Speed sel bit 0 Speed sel bit 1 Speed sel bit 2 Multi speed 1 high low low Multi speed 2 low high low Multi speed 3 high high low Multi speed 4 low low high Multi speed 5 high low high Multi speed 6 low high high Multi speed 7 high high high txv9201 Speed Reference (rpm) Speed Ref 1 (rpm) Speed Ref 2 (rpm) Jog Ref (rpm) + Jog CW Jog CCW 1 7 Speed Sel Bit 1 Speed Sel Bit 2 Speed Sel Bit 0 Multi Spd Index Multi Speed Conf 21301 Multi Speed 1 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 1 speed reference 21302 Multi Speed 2 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 2 speed reference 21303 Multi Speed 3 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 3 speed reference 21304 Multi Speed 4 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 4 speed reference 21305 Multi Speed 5 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 5 speed reference 21306 Multi Speed 6 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 6 speed reference 21307 Multi Speed 7 [rpm] Float R/ W 0 -IPA20003 IPA20003 Setting of the multispeed 7 speed reference 21310 Multi Spd Index [--] Word R/W 0 0 7 Read parameter, if Multi Speed Conf = Digital input. It states the currently used speed reference. Read/write parameter if Multi Speed Conf = Parameter. Setting of the multi speed reference. 21311 Multi Speed Conf [--] Enum R/W 0 0 1 Parameter for the selection of the commands enabling the multi speed references. 0 = Digital input Reference selection via digital input 1 = Parameter Reference selection via the Multi Spd Index parameter It is also possible to select up to 3 analog references as Multispeed (see IPA 20300), which can be recalled via the selection of three digital inputs. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 153 IPA Description [Unit] Format Access Default Min Max MUL MUL MUL MUL MULTIRAMP TIRAMP TIRAMP TIRAMP TIRAMP The Multiramp function allows to recall up to three different ramps (in addition to the main ramp). The acceleration and deceleration times can be set in an independent way. The recall of the desired ramp is carried out via a / two digital signals programmed as Ramp sel bit 0 and ramp sel bit 1 (see IPA 20201). The selection of each different ramp allows the reference to follow the new ramp during the acceleration and deceleration phase. Ramp sel bit 0 Ramp sel bit 1 Ramp 1 high low Ramp 2 low high Ramp 3 high high txv9202 Ramp Output Reference = 0 Ramp Enable Jog enable Ramp Sel Bit 1 Ramp Sel Bit 0 1 2 3 Multi Ramp Index Multi Ramp Conf 21440 Multi Ramp Index [--] Word R/ W 0 0 3 Read parameter if Multi Ramp Conf = Digital input. It states the ramp being used. Read/write parameter if Multi Ramp Conf = Parameter. Setting of the multi-ramp selection. 21441 Multi Ramp Conf [--] Enum R/W 1 0 1 Parameter for the selection of the multi-ramp enabling commands 0 = Digital input Ramp selection via digital input 1 = Parameter Ramp selection via the Multi Ramp Index MULTIRAMP 1 21401 M Ramp 1 CW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 1 setting of the clockwise acceleration 21411 M Ramp 1 CCW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 1 setting of the counterclockwise acceleration 21421 M Ramp 1 CW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 1 setting of the clockwise deceleration 21431 M Ramp 1 CCW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 1 setting of the counterclockwise deceleration MULTIRAMP 2 21402 M Ramp 2 CW Acc [ms/krpm] Float R/ W 336.1 0 IPA21111 Rate 2 setting of the clockwise acceleration 154 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 21412 M Ramp 2 CCW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 2 setting of the counterclockwise acceleration 21422 M Ramp 2 CW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 2 setting of the clockwise deceleration 21432 M Ramp 2 CCW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 2 setting of the counterclockwise deceleration MULTIRAMP 3 21403 M Ramp 3 CW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 3 setting of the clockwise acceleration 21413 M Ramp 3 CCW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 3 setting of the counterclockwise acceleration 21423 M Ramp 3 CW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 3 setting of the clockwise deceleration 21433 M Ramp 3 CCW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Rate 3 setting of the counterclockwise deceleration SPEED DRAW SPEED DRAW SPEED DRAW SPEED DRAW SPEED DRAW The Speed Draw functional enables the speed reference from the ramp unit to be multiplied by a value between 0 and 2 (0- 200%). This value can be entered manually via the configurator, bus or come from the motor potentiometer function. The SPEED DRAW function is working only if parameter 20023 Control Mode is set as Speed; in all other modes, this function is bypassed (ratio = 1). The function is bypassed in case of Jog run as well. The SPEED DRAW function enables the speed reference from the ramp unit to be multiplied by a value between 0 and 2 (0- 200%). This value can be entered manually via the configurator and bus, it can be sampled from an external analog reference or come from the motor potentiometer function. 20085 Speed Draw Ratio [--] Float R/W 1 0 2 Multiplication factor 20086 Speed Draw Out [rpm] Float R Resulting reference speed. 20089 Speed Draw In [rpm] Float R Speed reference input at SPEED DRAW function. 20092 Act SpdDrw Ratio [%] Float R Speed ratio currently used. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 155 IPA Description [Unit] Format Access Default Min Max MO MO MO MO MOT TT TTOR PO OR PO OR PO OR PO OR POT TT TT The Motor potentiometer function allows the speed of the drive to be varied, with the command entered from the keypad, from digital inputs, from the serial link or the field bus. Changes are made by setting a ramp time. The Motor-potentiometer reference can be added or multiplied with the output from the ramp. The Jog function is separate from the Motor potentiometer function. I/O Parameter Parameter Internal variable Ramp Output Reference = 0 Speed Draw In Speed Draw Out R a m p S e l B it 1 R a m p S e l B it 0 1 2 3 M u lt i R a m p I n d e x M u lt i R a m p C o n f A & Speed Reference Pos Speed Limit Neg Speed Limit Act SpdDrw Ratio Speed Draw En Jog En X Motor Pot Mode Speed Draw Ratio Motor Pot Output Torque Speed Limit Reverse A End Run Rev End Run Forward J o g S p e e d L im it J o g R e f e r e n c e * (-1) Ramp In = 0 M Pot Output M Pot mode M o t o r P o t E n M o t o r P o t U p M o t o r P o t D o w n M o t o r P o t M e m o M o t o r P o t R e s e t M o t o r P o t R e v MPOT Jog CW Jog CCW Motor Pot Up Lim Motor Pot Lo Lim Motor Pot Acc&Dec Motor Pot Init Motor Pot Mode Multi Speed Conf Multi Speed Index 1 7 S p e e d S e l B it 1 S p e e d S e l B it 2 S p e e d S e l B it 0 Speed Ref 1(rpm) Speed Ref 2 (rpm) Ramp Enable Jog Enable Torque 22502 Motor Pot Up Lim [%] Float R/W 100 0 200 Upper limit of the motor potentiometer output reference. 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. Considered as maximum percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. The parameter can be set through keyboard, serial line or bus. 22503 Motor Pot Lo Lim [%] Float R/W 100 0 200 Lower limit of the motor potentiometer output reference. 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. Considered as minimum percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. The parameter can be set through keyboard, serial line or bus. 22504 Motor Pot Acc [msec] Long R/W 4000 0 IPA20003 Speed reference acceleration time. [s] 0 … 6553,5 (Referred to Full Scale Speed). If Motor Pot Mode = Add To Ramp Ref: the drive main ramp (RAMP menu) is overwritten by Motor Pot Acc. If Motor Pot Mode = Speed Ref Multip: the drive main ramp (RAMP menu) is completely independent from Motor Pot Acc. The command can be sent through keyboard, terminals, serial line or bus. 22505 Motor Pot Dec [msec] Long R/ W 4000 0 IPA20003 Speed reference deceleration time. [s] 0 … 6553,5 (Referred to Full Scale Speed). If Motor Pot Mode = Add To Ramp Ref: the drive main ramp (RAMP menu) is overwritten by Motor Pot Dec. If Motor Pot Mode = Speed Ref Multip: the drive main ramp (RAMP menu) is completely independent from Motor Pot Dec. The parameter can be set through keyboard, serial line or bus. 156 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 22506 Motor Pot Init [%] Float R/W 0 0 100 Initialisation of the motor potentiometer output reference. 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. Considered as percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. The parameter can be set through keyboard, serial line or bus. 22507 Motor Pot En [--] Enum R/W 0 0 1 Enabling of motor potentiometer function. The command can be sent through keyboard, terminals, serial line or bus. 0 = Disabled 1 = Enabled 22508 Motor Pot Reset [--] Float R/W 0 0 1 Reset memory and initialisation of Motor Pot Output to a value set in Motor Pot Init. 0 = Disabled 1 = Enabled Reset The command can be sent through keyboard, terminals, serial line or bus. 22509 Motor Pot Mode [--] Enum R/W 0 0 1 Operational mode of the motor potentiometer. The command can be sent through keyboard, terminals, serial line or bus. 0 = Add to Ramp Ref Speed reference is added to Speed Ref 1 = Ramp Ref Multip The motor potentiometer acts as a Speed Ref multiplier. In this case, the drive Speed Draw function is used. Note: if the Speed Ratio parameter is set to analog input, this takes the priority over the motor- potentiometer function. If this parameter is modified parameter 22506 must be reinitialised: - 22509 changed from 0 to 1 by user -> 22506 reset automatically = 100 - 22509 changed from 1 to 0 by user -> 22506 reset automatically = 0 22510 Motor Pot Memo [--] Float R/W 0 0 1 Storage of reference setting in memory 0 = Disabled Restart from default configuration If Motor Pot Mode = Add To Ramp Ref: the speed reference is set to the value shown in Motor Pot Lo Lim. If Motor Pot Mode = Speed Ref Multip: the speed ratio is set to 100%. The command can be sent through keyboard, terminals, serial line or bus. 1 = Enabled Storage of last speed or speed ratio set. If Motor Pot Mode = Add To Ramp Ref: after Start, the motor accelerates automatically up to the preset speed. If Motor Pot Mode = Speed Ref Multip: after Start, the motor follows the speed reference multiplied by the preset ratio. 22511 Motor Pot Dir [--] Bool R/W 0 0 1 Polarity inversion of speed reference. 0=Forward direct 1=Reverse reversed reference The command can be sent through keyboard, terminals, serial line or bus. 22501 Motor Pot Output [%] Float R Monitor for motor potentiometer setting 0 … 200%. The command can be sent through keyboard, serial line or bus. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 157 IPA Description [Unit] Format Access Default Min Max BRAKE CONTROL BRAKE CONTROL BRAKE CONTROL BRAKE CONTROL BRAKE CONTROL The brake function allows to control in a suitable way the motor emergency brake with a drive digital output programmed as [20] Brake Command.. The drive enabling and disabling requires the use of a digital input programmed as [28] Virtual Enable. In case an alarm occurs or the digital input 0 drops out during the functioning procedure, the output controlling the brake drops out when the motor speed is lower than the programmable threshold. Digita Input = 0 Virtual Enable (DI) Drive Enable (DO) Start / Stop (DI) Ramp Reference Speed (*) Brake Command (DO) Brake OFF Delay 8msec 8msec 8msec Brake ON Spd Thr Brake ON Delay Brake OFF Delay Brake OFF Delay Brake ON Delay (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) Note! In case an alarm occurs, the behavior is the same as the one used for the Digital Input 0 drop. 20600 Brake Enable [--] Enum R/W 0 0 1 0 = Disabled Disabled brake function. 1 = Enabled Enabled brake function 20601 Brake OFF Delay [sec] Float R/W 0 0 10 Delay stated in seconds from the brake opening command to the reference enabling. 20602 Brake ON Delay [sec] Float R/W 0 0 10 Delay stated in seconds from the brake closing command to the drive disabling (non-torque motor). 20603 Brake ON Spd Thr [rpm] Float R/W 100 0 20000 Speed threshold closing the brake in case an alarm occurs or the digital input 0 drops out. PO PO PO PO POWERL WERL WERL WERL WERLOSS OSS OSS OSS OSS The Powerloss function controls the loss of power whether transient or long term. When running in Powerloss mode, the system is controlled so as to use the motor’s kinetic energy, keeping the DC link voltage value high. The function is activated automatically for a cut-in threshold of around 78% of normal operating voltage of the DC Link (e.g.: for a 400 V AC supply, the threshold is 440 V DC). The function's activation can be detected by the programmable PL Stop Active parameter on the digital output. There are two operating modes implemented: Coast through and Emergency Stop. The choice is made from the Powerloss Config. parameter. Coast-through mode This mode is designed to allow the controlled motor to pass through a mains dip with as little loss of speed as possible. When the function activation threshold is detected, the motor speed is controlled by a PI regulator, in order to maintain the DC Link voltage constant at a predefined value of 12% above the voltage drop threshold. The gains on the PI regulator are set via P Loss Prop Gain and P Loss Int Gain. 158 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max The function is automatically deactivated when the mains power returns, restoring the motor to the operating conditions prior to the break. If the power loss is permanent, or the motor speed drops too low to allow kinetic energy to be recovered, the drive stops in the Main Power Loss (A16) alarm conditions. Emergency Stop mode This mode is designed for use in applications where the motor or motors installed in a machine have to be stopped in a controlled and synchronised way, including where mains power is lost. When the function activation threshold is detected, the drive reduces the output frequency according to the P Loss Ramp setting, causing the motor to operate as a generator, recharging the DC Link to the value specified in the P Loss Volt Ref parameter. The motor speed is then controlled via a PI regulator and regulated to keep the DC Link voltage constant. The gains on the PI regulator are set via P Loss Prop Gain and P Loss Int Gain. While operating in Powerloss the drive current limit is set with P Loss Trq Limit. When the motor speed drops below the threshold set in P Loss Spd 0 Thr, the drive stops in Main Power Loss (A16) alarm conditions. The PL Next Factor parameter, that can be set on the analogue output, provides the speed reference (Motor Speed / Speed Reference). It can be used as a speed reference multiplier for the other motors installed on the machine, to permit synchronised stop. The drive can be notified that the mains voltage is restored via the PL Mains Status parameter or via a digital input. When the parameter value returns to the high state, and if the motor speed is above the threshold set in P Loss NoRes Thr, the system accelerates the motor again to the operating conditions prior to the break, with the standard system ramp (RAMP menu). 18138 PL Mains status [--] Bool R/W 0 0 1 It signals the mains voltage reset to the drive. The command can be sent through keyboard, programmable digital input, serial line or bus. 0 = Off 1 = On 18130 Powerloss Config [--] Enum R/W/* 0 0 2 Configuration of Powerloss function. 0 = Disabled 1 = Coast - Through 2 = Emergency Stop 18131 P Loss Prop Gain [--] Int R/W 500 0 32767 Proportional gain of Powerloss function regulation algorithm. 18132 P Loss Int Gain [--] Int R/W 500 0 32767 Integral gain of Powerloss function regulation algorithm. 18133 P Loss Volt Ref [V] Float R/W 790 100 820 Reference value for Emergency stop function algorithm. 18134 P Loss Ramp [ms/krmp] Float R/ W 336.1 0 FLT_MAX Ramp value used for activation of Emergency stop function algorithm. 18135 P Loss Trq Lim [%] Float R/W 100 0 FLT_MAX Maximum value of braking torque in Emergency Stop phase. 18136 P Loss Spd 0 Thr [rpm] Float R/W 10 0 FLT_MAX Main Loss alarm (A 16) activation threshold.. 20088 P Loss NoRes Thr [rpm] Float R/W 10 0 100000 Speed threshold below which operation can no longer be restored to the state prior to a break in power, when the power returns. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 159 IPA Description [Unit] Format Access Default Min Max 18137 PL Next Factor [--] Float R Provides the speed reference (Motor Speed / Speed Reference). It can be used as a speed reference multiplier for the other motors installed on the machine, to permit synchronised stop. The parameter can be set to a programmable analog output. 20087 Loss Active [--] ENUM R 0 0 1 Power loss function activity state. 0 = Not Active 1 = Active POSITION POSITION POSITION POSITION POSITION The drives can be configured in Position Control; the default mode is however Speed Control. DRIVE CONFIG / Control Mode -> Position Caution! In order to perform a right positioning, the drive has to reach the position 0 (or homing position) at least once. When the home position has been found, it is maintained till the drive is switched off or reset. It is possible to perform a new 0 search (or homing) at any moment by rising the digital input programmed as Pos zero search. There are 8 point-point conditions available, with constant acceleration profile, configurable in absolute or relative mode, and with options of various speed and acceleration settings for each position. Absolute mode: - Position Mode parameter= [0] Absolute : used to vary distances between stations, by modifying the position of each individual station, and in the event of an unwanted stop, allowing easier return to the zero position (home). - Position Mode parameter= [1] IncAbs : movements are incremental, in absolute steps. Example: if the preset position is 2000 u.u., the destination settings are 2000, 4000, 6000, Relative mode: - Position Mode parameter = [2] Incremental : movements are incremental with respect to the starting position Example: if the selected position preset is 2000 u.u. (user unit), with each Pos start pos command the position increases by 2000 u.u. For each movement, the parameters can be set: Pos Preset X Setting initial sector Pos Speed X Setting speed Pos Acc X Setting acceleration Pos Dec X Setting deceleration The parameters for managing functions are in the Position menu: - Find Zero - Position start - Position reference from analogue input - Self-learning measurements - Sequential position control (multi-position controller) Zero search ( Pos 0 search ) The zero search phase can be performed following different procedures: A - Using the zero sensor and the encoder slot (default mode) 160 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max B - Using only the zero sensor C - Using the encoder slot D - With parameter IPA 30045, 0 Pos at Startup (ZERO FOUND CONF menu) - also see "Self-tuning positions - POS Memo 0", on the following pages. A - Using the zero sensor and the encoder slot (default mode): Zero Sensor En = Enabled; Zero Index En = Enabled. (DI) Enable Home Src Direc = positive Zero Sensor En = enabled Zero Index En = enabled (DI) Pos 0 Sensor Index encoder Speed (*) (DO) Pos Zero Found Home Spd Ref Home Fine Spd (DI) POS 0 Search (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) 1) Enable the drive: "Enable" digital input with a high logic status. 2) Enable (high logic status) the digital input programmed as POS 0 Search. 3) When the motor receives the POS 0 Search command, it starts moving in the direction stated by the Home Src Direc parameter (positive = motor clockwise rotation direction) with the Home Spd Ref reference. When the sensor is used (high POS 0 Sensor ), the motor changes its rotation direction and the active speed reference becomes Home Fine Spd. The motor stops at the first encoder slot after freeing the sensor (low POS 0 Sensor) The position of the encoder slot is acquired as position 0. If the sensor is used at the motor start up (high POS 0 Sensor) the motor starts rotating in an opposite direction as compared to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference. The motor stops at the first encoder slot after freeing the sensor (low POS 0 Sensor). The position of the encoder slot is acquired as position 0. The Inside Index Src parameter allows to define if the encoder index corresponding to zero is internal or external to the sensor. The Zero Sensor Edge parameter allows to choose the active edge of the zero sensor. For further information see the ZERO FOUND CONFIG menu. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 161 IPA Description [Unit] Format Access Default Min Max B - Using only the zero sensor Zero Sensor En = Enabled; Zero Index En = Disabled. (DI) Enable Home Src Direc Zero Sensor En = enabled Zero Index En = disable = positive (DI) Pos 0 sensor Speed (*) (DO) POS Zero Found Home Spd Ref Home Fine Spd (DI) Pos 0 search (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) 1) Enable the drive: "Enable" digital input with a high logic status. 2) Enable (high logic status) the digital input programmed as POS 0 Search. 3) When the motor receives the POS 0 Search command, it starts moving in the direction stated by the Home Src Direc parameter (positive = motor clockwise rotation direction) with the Home Spd Ref reference. When the sensor is used (high POS 0 Sensor), the motor changes its rotation direction and the active speed reference becomes Home Fine Spd. The motor stops after the sensor has been freed (low POS 0 Sensor). This position is acquired as position 0. If the sensor is used at the motor start up (high POS 0 Sensor) the motor starts rotating in an opposite direction as compared to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference. The motor stops after the sensor has been freed (low POS 0 Sensor ). This position is acquired as position 0. The Zero Sensor Edge parameter allows to choose the active edge of the zero sensor. For further information see the ZERO FOUND CONF menu. 162 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max C - Using the encoder slot Zero Sensor En = Disabled; Zero Index En = Enabled 1) Enable the drive: "Enable" digital input with a high logic status. 2) Enable (high logic status) the digital input programmed as POS 0 Search. 3) When the motor receives POS 0 Search command, the motor starts rotating in a direction opposite to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference. The motor stops at the first encoder slot and acquires this position as 0. (DI) Enable POS SENSOR SEARCH DIR = positive ZERO SENSOR ENABLE = disable ZERO INDEX ENABLE = enabled Index encoder Speed (*) (DO) Pos Zero Found Pos speed line 0 (DI) Pos 0 search (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) NOTE! If Zero Sensor En = Disabled and Zero Index En = Disabled by rising POS 0 Search the motor stands still and the home search is not performed. If in the A and B condition the limit switch is found (End Run Forward if the speed is positive and End Run Reverse if the speed is negative) before using the sensor, the motor changes its rotation direction maintaining the Home Spd Ref reference speed. When the sensor is used (high POS 0 Sensor), the active speed reference is Home Fine Spd, but the motor does not change its rotation direction. The motor stops when the sensor is freed (low POS 0 Sensor). This position is acquired as position 0. This is useful when the 0 sensor is not placed at one of the stroke ends. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 163 IPA Description [Unit] Format Access Default Min Max (DI) Enable Home Src Direc = positive Zero Sensor En = enabled Zero Index En = enable (DI) End Run forward Index encoder Speed (*) (DO) os P Zero Found Home Spd Ref Home Fine Spd (DI) Pos 0 search (DI) Pos 0 Sensor (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) If an offset is set for the zero position (Home Pos Offset different from 0), during the zero search the motor behaves as previously described. The only difference is that in the home point the position is equal to -Home Pos Offset. Through the Home Pos Offs En parameter it is possible to stop the motor at 0 user units, i.e. a movement of - Home Pos Offset as compared to the encoder slot. D - With parameter IPA 30045, 0 Pos at Startup (ZERO FOUND CONF menu) 1) Enable parameter IPA 30045, 0 Pos at Startup (ZERO FOUND CONF menu) 2) Next time the drive is turned on it will sample the position of the encoder which will be acquired as Zero position (Home). Note: If a further zero search is made with one of the above methods, the initial zero position will be overwritten. Position Start At the end of the zero search phase it is possible to carry out the position start. The motor, when the drive (enabled) receives the POS Start Pos command, starts rotating with the reference Pos Speed and reaches the set value. There are 64 registers where it is possible to store the desired values and to recall them via digital inputs programmed as Pos Preset 0,1,2,3,4,5. (They are used to state in a binary way the positioning value. It is not necessary to use them all. If they have not been programmed, the bits are set at 0). For each value of the first 8 registers it is possible to set a maximum speed and a personalized acceleration and deceleration ramp. As for the other registers, the speed, the acceleration and deceleration ramp is the same for them all. Position reference from analogue input For absolute positioning (IPA 30091, Position Mode = 1) with continuous sampling enabled (IPA 30099, Pos An Mode = 1 164 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max ) an analogue input can be sampled to set the position reference Pos Preset 0. The sampled reference will go from Min Prs Abs Val to Max Prs Abs Val Example: 0V = Min Prs Abs Val, 10V = Max Prs Abs Val If 30099 Pos An Mode = Continuous, the analog reference is followed as long as the POS-Start Pos command remains active, and when it is deactivated the value is frozen as the final position. If 30099 Pos An Mode = Step, the analog reference is sampled by enabling the POS-Start Pos command when the engine reaches the specified position, after which sampling is deactivated (even if POS-Start Pos is still active). Other parameters dedicated to the function: IPA 30098, Pos An Filter; IPA 30097, Pos An Stdy Wind; IPA 30096, Pos An Wind Del; IPA 30099, Pos An Mode . Value Self-acquisition Position set Ramp set Speed set P o s P r e s e t 0 P o s P r e s e t 0 P o s P r e s e t 0 P o s P r e s e t 1 P o s P r e s e t 1 P o s P r e s e t 1 P o s P r e s e t 2 P o s P r e s e t 2 P o s P r e s e t 2 P o s P r e s e t 3 P o s P r e s e t 3 P o s P r e s e t 3 P o s P r e s e t 4 P o s P r e s e t 4 P o s P r e s e t 4 P o s P r e s e t 5 P o s P r e s e t 5 P o s P r e s e t 5 Pos Acc/Dec CW/CCW 0 Pos Speed 0 Pos 1 Acc/Dec CW/CCW Pos 1 Speed Pos 2 Acc/Dec CW/CCW Pos 2 Speed Pos 3 Acc/Dec CW/CCW Pos 3 Speed Pos 6 Acc/Dec CW/CCW Pos 6 Speed Pos 7 Acc/Dec CW/CCW Pos 7 Speed Pos 5 Acc/Dec CW/CCW Pos 5 Speed Pos 4 Acc/Dec CW/CCW Pos 4 Speed Pos (8..63) Acc/Dec Pos (8..63) Speed Ramp Ramp Speed limit Current limit Unit Per Rev Position Torque Pos 0 Search Pos Return Speed P o s R e t u r n A c c P o s R e t u r n D e c Preset Index Pos Preset Conf Position Mode Pos Start Pos Position reference to position return Pos Zero Found & & Preset Index P o s R e t u r n Pos Return & Zero search Value acquisition function Pos Start Pos Pos Zero Found Pos Zero Found Pos Preset 0 Pos 1 Preset Pos 2 Preset Pos 3 Preset Pos 6 Preset Pos 7 Preset Pos 5 Preset Pos 4 Preset Pos (8..63) Preset POS Memo 0: (see IPA 20101) it stores the present position as a zero position. If the zero position is stored, the value is considered to have been found (a further zero search is not necessary to perform the positioning procedure). POS Memo Pos: (see IPA 20101) it stores the present position as a value xx . The register where the value has to be stored is stated by the Preset Index parameters if the Pos Preset Conf parameter has been set as Parameter, or by the digital input if Pos Preset Conf has been set as Digital Input. Sequential position control (multi-position controller) When a position is completed (within the first eight) it is possible to continue to follow it with any subsequent movement, as long as certain conditions are fulfilled. This allows a composite movement to be executed. The following parameters control the sequence M Pos X Progress At the end of each position setting, this parameter enables or prevents movement to the next position. M Pos X Dwell Sets the delay time for forward movement M Pos X Event Setting the forward movement following an event from digital or field bus inputs M Pos X Next Pos Setting of next positioning step. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 165 IPA Description [Unit] Format Access Default Min Max The forward movement may take place: • with a delay, set in M Pos X Dwell • following an event. The event is a value given by the digital or field bus inputs which equals M Pos X Event • Combination of both the above: after a period waiting for an event to be performed. The command POS Start Pos selects the initial sector as a function of POS Preset The following parameters are available to enable, display and interrupt the sequence: Menu Parameter Function POSITION Multi Pos Enable Enabling multi-position controller [46] MultiPos Abort Command from digital or field bus input: Interrupts position sequence. Interruption possible with POS Start Pos disabled or with drive disabled. At next POS Start Pos command, the sector will be chosen according to POS Preset. Multi Pos Index Sector in execution Actual Event Value of variable Event., is compared to M Pos X Event Start on Edge Enabled: with Multi Pos Enable = ON, Start on Edge is always Disabled. Start on Edge Disabled: with the POS Start Pos command it advances, as the command is cut, it stops. As the next command is given, it moves on from the stop point. Example of use of Multi-position controller: Repeated movement of a conveyor belt Station 1 Station 2 Station 3 Station 4 d1 d2 d3 d4 d5 va vb vb va vc v dx = distance between stations, vx = speed Movement to the next station takes place when the micro-switches are in position, and in each case after a minimum preset time. - Setting parameters in absolute mode - POSITION \ POSITION FUNC Menu Position Mode = Absolute The positions shown are absolute with respect to zero (home) Multi Pos Enable = On - Event definition: with three digital inputs, Pos Actual Event can be set from 0 to 7 Digital Input 4 = POS Event Bit 0 Digital Input 5 = POS Event Bit 1 Digital Input 6 = POS Event Bit 2 166 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max - Setting five presets for the position (Pos Preset 0, 1, 2, 3 and 4) > Menu POSITION\Pos Preset 0 Parameter setting note Pos Preset 0 d1 Pos Speed 0 va Pos Acc 0 xxx will not be relayed to the other settings Pos Dec 0 xxx will not be relayed to the other settings MPos 0 Progress Dwell+Event advance to the next position setting MPos 0 Dwell 100 arrived at station 1, waits 100 msec MPos 0 Event 3 waits until Pos Actual Event word equals 3, so that the digital inputs 4 and 5 are high. MPos 0 Next Pos 1 advancement to Pos Preset 1 > Menu POSITION\Pos Preset 1 Parameter setting note Pos Preset 1 d1+d2 Pos Speed 1 vb MPos 1 Progress Dwell+Event advance to the next position setting MPos 1 Dwell 100 arrived at station 2, waits 100 msec MPos 1 Event 7 waits until Pos Actual Event word equals 7, so that the digital inputs 4, 5 and 6 are high. MPos 1 Next Pos 2 advancement to Pos Preset 2 > Menu POSITION\Pos Preset 2 Parameter setting note Pos Preset 2 d1+d2+d3 Pos Speed 2 vb MPos 2 Progress = Dwell+Event advance to the next position setting MPos 2 Dwell = 100 arrived at station 3, waits 100 msec MPos 2 Event = 1 waits until Pos Actual Event word equals 1, so that the digital input 4 is high. MPos 2 Next Pos 3 advancement to Pos Preset 3 > Menu POSITION\Pos Preset 3 Parameter setting note Pos Preset 3 d1+d2+d3+d4 Pos Speed 3 va MPos 3 Progress Dwell+Event advance to the next position setting MPos 3 Dwell 100 arrived at station 4, waits 100 msec MPos 3 Event 2 waits until Pos Actual Event word equals 2, so that the digital input 2 is high. MPos 3 Next Pos 4 advancement to Pos Preset 4 > Menu POSITION\Pos Preset 4 Parameter setting note Pos Preset 4 0 Home Pos Speed 4 vc MPos 4 Progress Dwell+Event advance to the next position setting MPos 4 Dwell 100 arrived at home waits 100 msec MPos 4 Event 5 waits until Pos Actual Event word equals 5, so that the digital inputs 4 and 5 are high. MPos 4 Next Pos 0 advancement to Pos Preset 0 > Menu POSITION\Pos Preset 5 ... 8 Parameter setting note MPos 5 Progress ... MPos 8 Progress None default 18123 Max Pos Error [deg] Float R/W 90 0 2880 Maximum position error which, if overcome, causes the intervention of the "(A 29) Position error" alarm in the "Els" or "Position" condition. 30000 Unit Per Rev [--] Float R/Z/* 1000 -10000 100000 Setting of distance (in u.u.) covered by one motor revolution. Parameter used for the conversion of the position into engineering units; by setting a negative value it is possible to combine positive positioning procedures with motor anti-clockwise rotations. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 167 IPA Description [Unit] Format Access Default Min Max 30001 Unit Per Div [--] Float R/Z/* 1 1 10000.0 This parameter is used as divider to calculate the number of motor pulses per user unit, and to avoid rounding errors introduced by mechanical ratios. As example let’s consider a mechanical system made with a 10 mm pitch ballscrew and a 1:3 gear ratio. If we want to express the distances in millimeters we can set the parameters as follows: Unit Per Rev (IPA 30000) = 10 Unit Per Div (IPA 30001) = 3 30002 Multi Pos Enable [--] Bool R/ W 0 0 1 Enabling multi-position controller 0 = Disabled 1 = Enabled 30010 Pos CW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63).. 30011 Pos CCW Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63). 30012 Pos CW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise deceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63). 30013 Pos CCW Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise deceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63) 30014 Position Speed [rpm] Float R/W 3000.0 0 IPA20003 It is active if the Pos_speed analog input is not programmed. Setting of the speed reference during the positioning procedures. 30042 Start on Edge [--] Enum R/W 0 0 1 0 = Disabled If the POS Start Pos command is disabled during a positioning phase, the motor stops in accordance with the IPA 30043 Stop by Ramp. parameter. 1 = Enable During the positioning phase the motor can be stopped only disabling the drive. The change of this parameter is active only after a homing phase. The change to this parameter is active only after the drive is reset. 30043 Stop by Ramp [--] Enum R/W 0 0 1 0 = Disabled If Start on Edge = Disabled, the motor stops without ramp if the POS Start Pos command is disabled during a positioning phase. 1 = Enable If Start on Edge = Disabled, the motor stops with a ramp time set in the Pos Stop Dec parameter if the POS Start Pos command is disabled during a positioning phase. The change to this parameter is active only after the drive is reset. 30044 Pos Reach Behav [--] Enum R/W 0 0 1 0 = Disabled 1 = Enable Pos Reached Pos Start Pos Pos Reached Pos Start Pos 0 = Disabled 1 = Enabled 168 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30057 Back Lash Window [u.u.] Float R/W 2000.0 0 IPA30018 This parameter sets the width of the position window where it is possible to correct the positioning errors caused by some mechanical clearance. During the positioning process if the input defined as [1010] POS Memo 0 becomes active the drive will complete the move, but it will be consider that the starting point of the next move command will be the position where POS Memo 0 input become active. If the input defined as POS Memo 0 becomes active outside the position window defined in Back Lash Window, the drive will not start the next position command until new zero search will be completed. This function is active only in “Inc Abs” 30090 Preset Index [--] Word R/W 0 0 63 Read parameter if Pos Preset Conf = Digital input. Read/write parameter if Pos Preset Conf = Parameter. It states which position preset is currently used. 30091 Position Mode [--] Enum R/W 0 0 1 This parameter states if the positioning values make reference to the zero position or to the actual position. (Relative or absolute moves). 0 = Inc Abs It states that the value of the position register is incremental for absolute pitches. Example: if the position preset is 2000 u.u., the destination values are 2000, 4000, 6000, ... If the positioning procedure is stopped, the new POS Start Pos command ends the previous positioning procedure. 1 = Absolute It states that the value of the position register is absolute as compared to the zero position. Example: If the currently selected position preset is 2000 u.u., with the first command of POS Start Pos the destination position is 2000 u.u. (referred to the zero position); with the following commands (if the register is not modified) the position will not change. 2=Incremental It indicates that the position register setting is incremental compared to the current position. Example: if the preset position presently selected is at 2000 u.u. (user unit), each POS Start Pos command will increase the position by 2000 u.u. If the seeking is interrupted, the next POS Start Pos command will increase the position by 2000 u.u. from the point where the motor stopped. 30094 Pos Stop Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the active clockwise/anti-clockwise deceleration time when the POS Start Pos command is disabled before the in process positioning procedure is completed. 19113 Actual Pos Error [deg] Float R Position error used with the “Els” or “Position” condition. 30004 Multi Pos Index [--] Int R Displays the sector of Pos Preset in execution during execution of the Multiposition function. 30016 Actual Position [u.u.] Float R Read-only parameter. It states the motor present position as compared to the zero position. 30081 Destination Pos [u.u.] Float R Read-only parameter stating the destination position in user units. 30093 Position Config [--] Dword R Bit-configured parameter with hexadecimal setting. Bit 0: Mapping the IPA 30044 parameter Bit 1: Mapping the IPA 30042 parameter Bit 2: Mapping the IPA 30043 parameter Bit 9: Using the absolute encoder to close the position loop Bit 11: Using the revolver to close the position loop. Bit 12: Using the external encoder to close the position loop. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 169 IPA Description [Unit] Format Access Default Min Max Bit 16: Mapping the IPA 30037 parameter Bit 17: Mapping the IPA 30038 parameter Bit 18: Mapping the IPA 30036 parameter Bit 19: Mapping the IPA 30039 parameter Bit 20: Mapping the IPA 30040 parameter Bit 21: Mapping the IPA 30041 parameter 30800 Pos Actual Event [--] Word R Displays the present state of the events from the digital or bus inputs active in the function Multi position controller to advance from one position to the next. POSITION LIMIT 30015 Position Torque [%] Float R/W 100 0 IPA22012 Setting of the maximum torque during the positioning procedures (active for all positions set in the records from 0 to 63). 30017 Min Preset Value [u.u.] Float R/Z/* -4194304 -2 23 2 23 -1 Parameter stating the minimum value to be set in the different position registers. In case the setting of a position is lower than this value, such setting is not accepted. 30018 Max Preset Value [u.u.] Float R/Z/* 4194303 -2 23 2 23 -1 Parameter stating the maximum value to be set in the different position registers. In case the setting of a position is higher than this value, such setting is not accepted. 30056 Max Prs Abs Val [u.u.] Float R/W 0 -2 23 2 23 -1 Software limit switch: maximum absolute value. When it is equal to Min Prs Abs Val, it is not enabled. If the destination value is higher than this value, the command is not performed and the drive enables the digital output [1008] Pos Out Of Lim. 30055 Min Prs Abs Val [u.u.] Float R/W 0 -2 23 2 23 -1 Software limit switch: minimum absolute value. When it is equal to Max Prs Abs Val, it is not enabled. If the destination value is lower than this value, the command is not performed and the drive enables the digital output [1008] Pos Out Of Lim. POS THR CONFIG 30050 Pos Abs Thr [u.u.] Float R/W 0 -2 23 2 23 -1 Setting of the threshold indicating the machine has passed the position referred to the zero position. When the position is higher than the value set in this parameter, the digital output programmed as [1004] Pos Abs Thr goes to +24V. 30051 Pos Exceeded [u.u.] Float R/W 0 0 IPA30018 Setting of the threshold signaling the "overcome position" referred to the last positioning procedure: | present position - starting position | > Positon Thr, the "Position Exceeded" output is set. 30052 Pos 0 Thr Offset [u.u.] Float R/W 0 0 IPA30018 Setting the offset of the position threshold. When the absolute value position is lower than the value set in this parameter, the digital output programmed as [1001] Position Zero is active. 30053 Pos Thr Close 1 [u.u.] Float R/W 0 0 IPA30018 Reached position threshold 1. The digital output reaches high logic status when the motor present position is equal to the destination position minus the Pos Thr Close 1 parameter 30054 Pos Thr Close 2 [u.u.] Float R/W 0 0 IPA30018 Reached position threshold 2. The digital output reaches high logic status when the motor present position is equal to the destination position minus the Pos Thr Close 2 parameter 30058 Pos Window [u.u.] Float R/W 0 0 IPA30018 This parameter, together with Pos Window Time, defines the behavior of the [1002] Pos Reached digital output. The output is set when, after terminating the positioning procedure, the present position is equal to the destination position +- Pos Window for a period equal to Pos Window Time. 170 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30059 Pos Window Time [sec] Float R/W 0 0 30 This parameter sets the time delay for the correct positioning inside Pos Window, IPA 30058). Used with digital output set to [1002] Pos Reached. 30060 Pos Window Tout [sec] Float R/ W 0 0 0 This parameter defines the period of time within which the position is considered as not reached. Used with digital output set to [1010] Pos Not Reached (see IPA 30058). POS PRESET 0 30100 Pos Preset 0 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 0. 30200 Pos Speed 0 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 0. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30300 Pos CW Acc 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 0. 30400 Pos CW Dec 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 0. 30380 Pos CCW Acc 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 0. 30490 Pos CCW Dec 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 0. 30500 Pos 0 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 0 Dwel 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 0 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 0 Dwell and then until the Pos Actual Event parameter equals MPos 0 Event 30600 Pos Dwell 0 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30700 Pos Event 0 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30710 MPos 0 Next Pos [--] Word R/W 1 0 7 Setting of next positioning step. 0= Pos Preset 0 . . . 7=Pos Preset 7 ANALOG POS REF 30096 Pos An Wind Del [msec] Word R/W 20 0 65 Delay time after entering the Pos An Stdy Wind window to ensure that the position reference is stable. Usually, Pos An Wind Del should be increased according to the Pos An Stdy Wind increase. 30097 Pos An Stdy Wind [u.u.] Float R/W 0.5 0 - Windows expressed in u.u., within which the position analog reference can oscillate without changing Pos Preset 0. The window is controlled according to the last stable position. An increase of the Pos An Stdy Wind value as regards the default value will result in a stability increase, but also in a delay in following the required position. Pos An Stdy should however be set to a value higher than the max. position resolution defined by the analog input. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 171 IPA Description [Unit] Format Access Default Min Max Example: Min Prs Abs Val = 0 [u.u.], Max Prs Abs Val = 10000 [u.u.], 10000 / 2047 = 4.88, set Pos An Stdy Wind = 2 * 4.88 = 10[u.u.] 30098 Pos An Filter [msec] Float R/ W 0.2 0 10 Filter on sampling of Position 0 from analogue input. 30099 Pos An Mode [--] Bool R/W 0 0 1 Enables continuous sampling of the Position reference 0 (typically where it is assigned to an analogue input); this function is active only when the Position Mode parameter is set to Absolute. 0 = Step 1 = Continuous POS PRESET 1 30101 Pos Preset 1 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 1. 30201 Pos Speed 1 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 1. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30301 Pos CW Acc 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 1. 30401 Pos CW Dec 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 1. 30481 Pos CCW Acc 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 1. 30491 Pos CCW Dec 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 1. 30501 Pos 1 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 1 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 1 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 1 Dwell and then until the Pos Actual Event parameter equals MPos 1 Event 30601 Pos Dwell 1 [msec] Long R/ W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30701 Pos Event 1 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30711 MPos 1 Next Pos [--] Word R/W 2 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 2 30102 Pos Preset 2 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 2. 30202 Pos Speed 2 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 2. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 172 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30302 Pos CW Acc 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 2. 30402 Pos CW Dec 2 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 2. 30482 Pos CCW Acc 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 2. 30492 Pos CCW Dec 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 2. 30502 Pos 2 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 2 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 2 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 2 Dwell and then until the Pos Actual Event parameter equals MPos 2 Event 30602 Pos Dwell 2 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30702 Pos Event 2 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30712 MPos 2 Next Pos [--] Word R/W 3 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 3 30103 Pos Preset 3 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 3. 30203 Pos Speed 3 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 3. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30303 Pos CW Acc 3 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 3. 30403 Pos CW Dec 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 3. 30483 Pos CCW Acc 3 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 3. 30493 Pos CCW Dec 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 3. 30503 Pos 3 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 3 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 3 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 173 IPA Description [Unit] Format Access Default Min Max MPos 3 Dwell and then until the Pos Actual Event parameter equals MPos 3 Event 30603 Pos Dwell 3 [msec] Long R/ W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30703 Pos Event 3 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30713 MPos 3 Next Pos [--] Word R/W 4 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 4 30104 Pos Preset 4 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 4 30204 Pos Speed 4 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 4. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30304 Pos CW Acc 4 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 4. 30404 Pos CW Dec 4 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 4. 30484 Pos CCW Acc 4 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 4. 30494 Pos CCW Dec 4 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 4. 30504 Pos 4 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 4 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 4 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 4 Dwell and then until the Pos Actual Event parameter equals MPos 4 Event 30604 Pos Dwell 4 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30704 Pos Event 4 [--] Word R/ W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30714 MPos 4 Next Pos [--] Word R/W 5 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 5 30105 Pos Preset 5 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 5. 30205 Pos Speed 5 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 5. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 174 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30305 Pos CW Acc 5 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 5. 30405 Pos CW Dec 5 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 5. 30485 Pos CCW Acc 5 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 5. 30495 Pos CCW Dec 5 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 5. 30505 Pos 5 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 5 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 5 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos Dwell and then until the Pos Actual Event parameter equals MPos 5 Event 30605 Pos Dwell 5 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30705 Pos Event 5 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30715 MPos 5 Next Pos [--] Word R/W 6 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 6 30106 Pos Preset 6 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 6. 30206 Pos Speed 6 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 6. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30306 Pos CW Acc 6 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 6. 30406 Pos CW Dec 6 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 6. 30486 Pos CCW Acc 6 [ms/krpm] Float R/ W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 6. 30496 Pos CCW Dec 6 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 6. 30506 Pos 6 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 6 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 6 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 175 IPA Description [Unit] Format Access Default Min Max set in MPos 6 Dwell and then until the Pos Actual Event parameter equals MPos 6 Event 30606 Pos Dwell 6 [msec] Long R/ W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30706 Pos Event 6 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30716 MPos 6 Next Pos [--] Word R/W 7 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 7 30107 Pos Preset 7 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 7. 30207 Pos Speed 7 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 7. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. 30307 Pos CW Acc 7 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 7. 30407 Pos CW Dec 7 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 7. 30487 Pos CCW Acc 7 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 7. 30497 Pos CCW Dec 7 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 7. 30507 Pos 7 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 7 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 7 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 7 Dwell 7 and then until the Pos Actual Event parameter equals MPos 7 Event 30607 Pos Dwell 7 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 30707 Pos Event 7 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. 30717 MPos 7 Next Pos [--] Word R/W 0 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET (8-63) 30108 Pos Preset 8 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 8. ........ 30163 Pos Preset 63 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 63. 176 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max ZERO FOUND CONF (Zero Configuration) Inside Index Src Zero Sensor Edge (IPA 30039) = Disabled, (IPA 30040) = Rising CW rotation Search with = Enabled, = Enabled = Positive Zero Sensor En Zero Index En Home Src Direc (IPA 30037) (IPA 30038) (IPA 30036) Pos O Sensor Index End Run Forward Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 2 Start outside the Home sensor with End Run sensor Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 2 Speed 2 Speed 2 Speed 2 Speed 1 Speed 1 Speed 2 Speed 1 Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 1 Speed 2 Speed 1 Inside Index Src Zero Sensor Edge (IPA 30039) = Enabled, (IPA 30040) =Falling Speed 2 Inside Index Src Zero Sensor Edge (IPA 30039) = Enabled, (IPA 30040) = Rising Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Start outside the Home sensor with End Run sensor Inside Index Src Zero Sensor Edge (IPA 30039) = Disabled, (IPA 30040) =Falling Speed 2 Speed 1 Speed 2 Speed 1 Speed 2 Speed 1 = * Home Spd Ref Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Start outside the Home sensor with End Run sensor SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 177 IPA Description [Unit] Format Access Default Min Max Inside Index Src Zero Sensor Edge (IPA 30039) = Disabled, (IPA 30040) = Rising CW rotation Search with = Enabled, = Enabled Zero Sensor En (IPA 30037) Zero Index En (IPA 30038) Home Src Direc (IPA 30036) = Negative Pos O Sensor End Run Reverse Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 2 Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 1 Speed 2 Speed 2 Speed 2 Speed 2 Speed 1 Speed 1 Speed 2 Speed 1 Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 1 Speed 2 Speed 1 Inside Index Src Zero Sensor Edge (IPA 30039) = Disabled, (IPA 30040) =Falling Speed 2 Inside Index Src Zero Sensor Edge (IPA 30039) = Enabled, (IPA 30040) = Rising Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Inside Index Src Zero Sensor Edge (IPA 30039) = Enabled, (IPA 30040) =Falling Speed 2 Speed 2 Speed 1 Index Speed 1 Speed 2 Speed 1 = Home Spd Ref * Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor 178 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max Home Src Direc Inside Index Src Zero Sensor Edge (IPA 30036) = Positive, (IPA 30039) = Indifferente, (IPA 30040) = Rising CW rotation Search with = Enabled , = Disabled Zero Sensor En Zero Index En (IPA 30037) (IPA 30038) Pos O Sensor End Run Forward Start outside the position sensor Speed 1 Start inside the position sensor Speed 2 Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Speed 1 Speed 2 Speed 1 Speed 2 Speed 1 Start outside the position sensor Speed 1 Start inside the position sensor Speed 1 Speed 2 Speed 1 Home Src Direc Inside Index Src Zero Sensor Edge (IPA 30036) = Negative, (IPA 30039) = Indifferente, (IPA 30040) = Rising Home Src Direc Inside Index Src Zero Sensor Edge (IPA 30036) = Positive, (IPA 30039) = Indifferente, (IPA 30040) = Falling Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Home Src Direc Inside Index Src Zero Sensor Edge (IPA 30036) = Negative, (IPA 30039) = Indifferente, (IPA 30040) =Falling Pos O Sensor End Run Reverse Speed 2 Speed 2 Speed 1 Speed 1 Speed 1 = Home Spd Ref * Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor Start outside the Home sensor with End Run sensor Speed 2 Speed 2 SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 179 IPA Description [Unit] Format Access Default Min Max Home Src Direc (IPA 30036) = Positive CW rotation Search with = Indifferent, = Indifferent Inside Index Src Zero Sensor Edge Zero Sensor En Zero Index En (IPA 30039) (IPA 30040) (IPA 30037) = Disabled, (IPA 30038) = Enabled Pos Speed Fine 0 Index Home Src Direc (IPA 30036) = Negative CW rotation Pos Speed Fine 0 Index 30020 CW Home Pos Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Clockwise acceleration during the home search. 30021 CCW Home Pos Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Counterclockwise acceleration during the home search. 30022 CW Home Pos Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Clockwise deceleration during the home search. 30023 CCW Home Pos Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Counterclockwise deceleration during the home search. 30024 Home Max Spd [rpm] Float R/W 1500.0 0 100000 Maximum speed during the home search. 30025 Home Spd Ref [%] Float R/W 10 -100.0 100 Speed reference during the home search, stated as a percentage of Home Max Spd 30027 Home Fine Spd [rpm] Float R/W 50.0 0 100000 Speed reference while searching the home absolute position. 30028 Home Pos Offset [u.u.] Float R/W 0 IPA 30017 IPA30018 Offset della posizione di home. Vedere IPA 30041. 30036 Home Src Direc [--] Enum R/W 0 0 1 Position indicator of the found home. 0 = Positive The motor rotates clockwise 1 = Negative The motor rotates counterclockwise. 30037 Zero Sensor En [--] Enum R/W 1 0 1 0 = Disabled The [1015] POS 0 sensor input is not used during the searching of home 1 = Enabled The [1015] POS 0 sensor input is used during the searching of home. 30038 Zero Index En [--] Enum R/W 1 0 1 0 = Disabled The 0 index of the encoder is not used during the searching of home 1 = Enabled The 0 index of the encoder is used during the searching of home 30039 Inside Index Src [--] Enum R/W 0 0 1 If both index and sensor are used, the home position corresponds to the first code 0 = Disabled placed outside the sensor. 1 = Enabled placed inside the sensor. 180 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30040 Zero Sensor Edge [--] Enum R/W 0 1 0 The zero sensor is active on the 0 = Rising climbing leading edge 1 = Falling drop wire leading edge 30041 Home Pos Offs En [--] Enum R/ W 0 0 1 0 = Disable At the end of the zero search procedure, the motor stops on the slot/sensor and the position of the slot/sensor is equal to - Home Pos Offset u.u. 1 = Enable At the end of the zero search procedure, after finding the slot/sensor, the motor movement corresponds to + Home Pos Offset u.u. and its position is 0 u.u. 30045 Startup Zero Pos [--] Bool R/ W 0 0 1 0 = Disable 1 = Enable If authorised, next time the drive is turned on it will sample the position of the encoder which will be acquired as Zero position (Home). POS RETURN CONF When the digital input programmed as [1012] POS Return becomes high, the motor reaches the Pos Return position with the speed and acceleration stated in this menu. The start for the return phase is the climbing leading edge of the Pos Return input. After the start, it can be stopped with a Fast Stop or by disabling the drive. Example: Forward and return movement: connect the digital output programmed as [1002] Pos Reached to the digital input programmed as [1012] POS Return. When the positioning procedure is over, the position reached output is risen thus causing the return to the starting position. 30164 Pos Return [u.u.] Float R/ W 0 IPA30017 IPA30018 Final value of the return movement in user units. 30264 Pos Return Speed [rpm] Float R/ W 1000 0 IPA20003 Maximum speed during the return movement. 30364 Pos Return Acc [ms/krpm] Float R/ W 336.1 0 IPA21111 Acceleration ramp during the return movement. 30464 Pos Return Dec [ms/krpm] Float R/ W 336.1 0 IPA21111 Deceleration ramp during the return movement. BACKLASH RECOV It allows to compensate possible mechanical clearances by performing the positioning procedures in the same direction. Example: Back Lash En = Enable, Back Lash Dir = Positive, Delta Pos = 100 u.u., Speed Comp = 10 rpm, Actual Position = 10000 u.u., Destination Pos = 15000 u.u. As the movement is positive, the drive performs the first positioning procedure at 15100 u.u. (without increasing the reached position output) and a new positioning procedure at 15000 u.u. with a 10 rpm maximum speed. The reached position output is increased at the end of this positioning procedure. Let’s assume to perform a new positioning procedure: Actual Position = 15000 u.u. Destination Pos = 8000 u.u. The movement is negative and the recovery function is not active. 31000 Back Lash En [--] Enum R/ W 0 0 1 It enables the compensation function of the mechanical allowance: 0 = Disable 1 = Enable SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 181 IPA Description [Unit] Format Access Default Min Max 31001 Back Lash Dir [--] Enum R/W 0 0 1 It detects the movement direction: 0 = Positive 1 = Negative NOTE! A positive direction is able to generate a positive position delta. 31002 Delta Pos [u.u.] Float R/ W 10 0 IPA30018 u.u. position added or taken away from the destination position. 31003 Speed Comp [rpm] Float R/ W 100 0 IPA20003 Maximum speed of the return "positioning" procedure. EL LINE SHAFT EL LINE SHAFT EL LINE SHAFT EL LINE SHAFT EL LINE SHAFT In the configuration Electrical line shaft it is possible to provide synchronism between 2 or more motors. The master encoder can be connected to XER or it is possible to use the fast link. Moreover, it is possible to save into the drive up to 4 ratios selectable through 2 programmed digital input as [2001] ELS Ratio Sel B0, [2002] ELS Ratio Sel B1. Whatever ratio is actually selected, it is possible to increase/decrease by two programmed digital inputs as [2003] ELS Inc Ratio ed [2004] ELS Dec Ratio. Connection of a digital encoder using repetition Master Slave XER XER Master XVy-EV: The connector XER give the encoder repetition / simulation to the connector XER of the slave drive. Set up the parameters as follows: - IPA 20036: Aux Enc Type = XER/EXP Rep/Sim - IPA 20035: Enc Rep Sim Cfg = Select encoder repetition or simulation If you select encoder simulation then you must program the correct number of pulses with the parameter PPR Simulation (IPA 20030). Slave XVy-EV: The connector XER receives the encoder repetition / simulation from the connector XER of the master drive. Set up the parameters as follows: - IPA 20036: Aux Enc Type = XER In_EXP Out - IPA 32009: Els Master Sel = XER/EXP Aux Enc Fast link connection instead of encoder connection Master XVy-EV: XT-OUT connector (master), connected to the XT-IN connector (slave) Set up: enable the fast link, parameter Fast Link Addr (IPA 18110) set as 1 (Master) Slave XVy-EV: Connector XT-IN (slave). Set up: enable the fast link, parameter Fast Link Addr (IPA 18110) set as >1 (Slave). The fast link is active only after a reset drive command. 182 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max Master Slave XT-OUT XT-IN In applications with a drive master and drive slave it is possible to make a connection with fast link XT-OUT (master) -XT-IN (slave) because from the master encoder frequency is always available at connector XT-OUT. drive master drive slave 1 drive slave2 drive slave 3 XT-OUT XT-IN XT-OUT XT-IN XT-OUT XT-IN XT-OUT The drive slave 1,2,3 are all synchronized with the drive master. In applications where it is necessary to synchronize the drive in cascade, master –slave, where the previous is always the master of the next it is necessary to use both the encoder repetition and the fast link. Drive 1 Drive 2 Drive 3 Drive 4 Drive 5 Master Slave dr 1 Slave dr 2 Slave dr 3 Slave dr 4 Master dr 3 Master dr 4 Master dr 5 XT-OUT XER XT-OUT XT-IN XER XT-OUT XT-IN XER XT-OUT XT-IN XER XT-OUT XT-IN XER 32000 Els PPR Master [--] Word R/ Z/ * 2048 16 65535 Set the number pulses per turn of the master encoder present on the connector XER or on the fast-link. 32008 Els Delta Time [sec] Float R/ W 1 0 10 This parameter is used together with the programmed digital input as [2003] ELS Inc Ratio and [2004] ELS Dec Ratio. It defines the rate of change from a ratio to a new ratio. This parameter is used together with the parameter Els Delta Ratio. Example: when the Els Inc/Dec ratio inputs are active, the ratio changes according to the value set by Els Delta Ratio (ex. 0.002) in the time set in the Els Delta Time parameter (ex 0.1 sec). 32009 Els Master Sel [--] Enum R/ W 0 0 2 Setting the master encoder reference source. 0 = XER/EXP Aux Enc Master encoder port XER or expansion encoder input 1 = Fast link Connectors XFL-IN, XFL-OUT 2 = XE Main Encoder Master encoder main port XE SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 183 IPA Description [Unit] Format Access Default Min Max 32010 Els Mec Ratio [--] Float R/W 1 1e-007 20 Setting this parameter equal to : Master mechanical ratio / Slave mechanical ratio The Els Ratio X parameters show directly the ratio/slip between the speed of the slow shafts. 32011 Els FL Source [--] Enum R/W 0 0 2 0 = Spd Pos Enc Mst The slave follows the Master encoder which closes the speed/position loop (IPA 20008 Master). 2 = XER Master The slave follows the motor auxiliary encoder. 32012 ElsMec Ratio Mul [--] Float R/W 1 1 - Multiplication factor in the mechanical ratio for electrical shaft. 32013 ElsMec Ratio Div [--] Float R/W 1 1 - Divisor factor in the mechanical ratio for electrical shaft. 32014 Els Delta Ratio [--] Float R/W 1 IPA32090 IPA32090 Define how much the ratio should increment (or decrement) every cycle of slow task (8msec). Example: if through the digital input a new ratio is selected changing from 1.000 up to 2.000 the change is not immediate but follows a ramp profile with a set increase in this parameter. If Els Delta Ratio is set 1.000 means an increment of 1.000 every 8msec, therefore it changes to the new ratio in 8msec. If Els Delta Ratio is set 0.010 means a change of 0.01 every 8msec, therefore it changes to the new ratio (2.000) in 800msec. Through a programmed digital input, [2005] ELS RampRatioDis it’s possible to disable this time to ramp. 32016 Els Control Mode [--] Enum R/W 0 0 1 Selects the speed control method 0 = Speed The drive is set to speed control 1 = Position The drive is set to position control NOTE! The position error check is not enabled in Speed mode. 32020 Els Ratio / Slip [--] Enum R/ W 0 0 1 0 = Slip The parameters Els Ratio 0, 1, 2, 3 are not set as ratio but as % of slipping from the Master. For instance 10 % slip correspond to 110% of the speed master, or ratio of 1.1: Els Ratio = 1 + Els Slip / 100 By default, when the ratio is sampled from the analog input, 10V correspond to what is set in parameter 32021 Els Slip Limit. 1 = Ratio If set up to Ratio the ratio is activated. By default, when the ratio is sampled from the analog input, 10V correspond to what is set in parameter 32090 Els Ratio Range. When changing the setting from “Slip” to “Ratio”, check parameters 32014, 32001, 32002, 32003 and 32004. 32021 Els Slip Limit [--] Int R/W 100 0 Limit of slippage sampled from analogue input. At default conditions, with 10V on the analog input, the set slippage is Els Slip Limit. The Els Ratio ratio corresponds to 1 + (Slip sampled by analog input / 100). 32090 Els Ratio Range [--] Word R/W 8 4 64 Value of max. ratio for ELS. A high value can reduce the ELS accuracy level. Available range: 4, 8, 16, 32 e 64. NOTE! This parameter shows the limits for the ratio between the speed of the motor shafts, therefore for the product Els Mec Ratio * Els Ratio. When changing the values of Els Ratio Range, check parameters 32014, 32001, 32002, 32003 and 32004. 184 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max EL SHAFT RATIO It is possible to load into the drive up to 4 ratios selectable through 2 programmed digital input as Els ratio sel bit 0,1 or from parameter. It is also possible to set the 4 ratios via the analog input. The set ratio is calculated as: R = slave speed/master speed. Example: if the master speed is 1000 rpm and the slave must rotate at 2000 rpm it is necessary to set a ratio: Ratio = 2000 rpm / 1000 rpm = 2.000. 32001 Els Ratio 0 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 0 for electric axis. 32002 Els Ratio 1 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 1 for electric axis. 32003 Els Ratio 2 [--] Float R/W 1 IPA32090 IPA32090 Set up speed ratio 2 for electric axis. 32004 Els Ratio 3 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 3 for electric axis. 32006 Els Ratio Index [--] Word R/W 0 0 3 Set up of the ratio selection (ratio 0, 1, 2, 3). Can also be programmed by digital inputs with [2001] Els Ratio Sel B0 and [2002] Els Ratio Sel B1. 32005 Actual Ratio [--] Float R Read-only parameter, it shows the value of the active ratio. EL SHAFT R BEND Through an external command it is possible to increase/decrease the motor slave speed momentarily to create a phase offset or “bend” in the shaft. To do this, for a fixed time the motor slave is not in synchronism with the master, because its reference is modified to be either faster or slower. At the end of the fixed time by parameter or when the digital input is not longer present, the slave gets back in synchronism with the master. The modified speed can be set on an analog input or fixed by parameter. The digital inputs activating this function ([2006] ELS Bend Rec CW, [2007] ELS Bend Rec CCW) are active even if the Start / Stop input is disabled. 32100 Els Max RB Speed [rpm] Float R/W 1000 -IPA20003 IPA20003 Parameter to set up the max limit of speed reference for the bend recover function. 32101 Els RB Time [sec] Float R/W 500.0 0 500.0 Time setting for the correction reference to be active. The digital input that enables this function ([2006] ELS Bend Rec CW , [2007] ELS Bend Rec CCW) must be kept activated during the recovery. At the end of the acceleration phase of the bend recover function, the timing starts. When the time is equal to that set in this parameter the bend recover reference becomes zero. The remaining bend will remain. If the digital input that enables this function ([2006] ELS Bend Rec CW , [2007] ELS Bend Rec CCW) goes low before the time expires (0V) the bend recover reference becomes zero. In other words, if time is not sufficient to recover, the bend that is left after time runs out will remain. 32102 Els RB Acc [rpm] Float R/W 0.97 0 100000 Acceleration ramp during the speed change. Increase the speed of the set revolutions number in the parameter every 8 msec 32103 Els RB Dec [rpm] Float R/W 0.97 0 100000 Deceleration ramp during the speed change. Decrease the speed of the set revolutions number in the parameter every 8 msec 32104 Els RB Speed Ref [%] Float R/W 0.97 0 100 Reference for bend recover function, setting available also from an analog input ([20] Els Rb Spd Ref). At default conditions, 10V on the analog input correspond to 100% of Els Max RB Speed, IPA 32100. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 185 IPA Description [Unit] Format Access Default Min Max 32105 Els RB Speed Sel [ %] Bool R/W 0 0 1 Selection of the percentage value of the maximum speed reference limit or Master speed value 0 = Els Max RB Speed 1= Master Speed BRAKING RES BRAKING RES BRAKING RES BRAKING RES BRAKING RES Parameters required for the optimization of the internal or external braking resistance system (see paragraph 4.8, Braking unit). The parameters are described in the paragraph 4.8.4. The XVy-EV drives up to size XVy-EV 32550-KBX have an internal braking resistor according to the following table: XVy-EV 10306 … XVy-EV 10612 XVy-EV 21020 … XVy-EV 21530 XVy-EV 32040 XVy-EV 32550 txv9340 Resistor value Braking Resistor [ohm] [W] 26 100 150 200 200 Drive size 100 67 36 CAUTION! Please not that if you use an external braking resistor on drives up to size XVy-EV 32550, you must disconnect internal resistor and connect its two wires together using the proper faston. 18105 Brake Config [--] Enum R/Z/* 0 0 2 Configuration of braking resistance 0=No BU or Ext BU Braking resistor not present or external braking unit 1=Ext BR & Int BU External Braking resistor and internal braking unit 2=Int BR & Int BU Internal Braking resistor and internal braking unit If you select “Int BR & Int BU” then all the other parameters are ignored. This happens also if any of the parameters Brake Res Power, Max Brake Energy or Brake Res Value is set to zero. 18109 Brake Res Value [ohm] Float R/Z/* 0 0 FLT_M Braking resistance value. 18107 Brake Res Power [kW] Float R/Z/* 0 0 FLT_M Nominal power of braking resistance. 18104 Max Brake Energy [kJ] Float R/Z/* 0 0 FLT_M Maximum brake energy. 18103 Brake Volt Thr [V] Float R/Z/* 780 (*) 820 BU intervention threshold. (*): function of IPA 20050 18412 BR Ovld Factor [%] Word R Brake resistor overload factor. When 100% has been reached, the Brake Overpower (A 13) alarm gets active. ALARMS ALARMS ALARMS ALARMS ALARMS 24101 Alarm Delay Mask [--] Dword R/Z/* 0H 0H FFFFFFFFH Delayed alarms mask. List of possible alarms on IPA 24100. 24102 Alarm Delay [sec] Float R/ W 10 0.001 10 Delayed alarms delay. 24100 Alarm Dis Mask [--] Dword R/Z/* 20000000H 0H FFFFFFFFH This parameter allows masking the intervention of some alarms thus making them inactive. It is an hexadecimal 186 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max alarm. When the masked alarm gets active, the drive goes on functioning properly (the OK relay does not change its state) and Enc W->A Mask parameter with the digital output programmed as [17] Alarm Warnings changes its logic level. List of possible excluded alarms: Motor Overtemp (error code 7) System Warning (error code 15) Enc Fbk Loss (error code 18) Enc Sim Fault (error code 19) Undervoltage (error code 20) Field Bus failure (error code 26) Enable Seq Error (error code 27) Fast link (error code 28) Position Error (error code 29) Drive Overload (error code 30) External Fault (error code 31) Example for a parameter setting : 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 txv9118 0 0 0 0 1 8 Alarm Dis Mask = 18000000h (disabled Position error and Fast link alarms) Note: The Position Error alarm is disabled as default. 1° row: Alarm code 2° row: Setting of the alarm functions : 0 = active, 1 = masked 3° row: Parameter hexadecimal setting 18042 Alarm List Clear [--] Enum R/W 0 0 1 It cancels the whole alarm history. It can be made permanent by saving the parameters: 0=Off 1=Clear Al History 24000 Alarm Status [--] Dword R Alarm status. See the alarm list, table 8.3.1.1. 24120 Warning Status [--] Dword R Warnings state. See the alarm list, table 8.3.1.1. 20016 Enc Warning Cause [--] Enum R N. bit IPA 20018=Meaning Cause 0 = None Encoder is OK 1=Low Enc AD Level Check encoder supply. 2=Low Enc AN level Check encoder supply. 3=Hall Sens Error The sequence of the Hall effect sensors is not correct. Check encoder wiring. 4=Aux DI Enc Loss No encoder on expansion input. 9=Abs 1 Ini Res Er EN DAT reset failure. Check encoder parameters setting (ENC EXP BOARD menu) and encoder connections. 10=Abs 1 Ini RX Er Reception problem at power on (EN DAT, SSI). Check encoder parameters setting (ENC EXP BOARD menu) and encoder connections. 11=Abs 1 RX Error Checksum error in the serial communication of the absolute data. Check noise on the encoder signals. 12=Abs 1 Alarm bit The error bit on the absolute encoder (EN DAT) is active. 13=Abs 1 RX Tout Er Time-out error of absolute data serial communication. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 187 IPA Description [Unit] Format Access Default Min Max 17=Phasing Loss The incremental channel and the absolute channel of the encoder shows a misalignment. 18=Enc Pulses Loss The number of incremental pulses detected between two index signals is not correct. Check noise on encoder signals. 25= Idx Out Of Site Index signal in the incremental encoder channel is not in the correct place. Check noise on encoder signal. 26= Idx Not Presen Index signal in the incremental encoder channel is not detected. Check encoder connections. 20018 Enc W->A Mask [--] Dword R This mask shows active encoder warnings. If encoder alarms are not disabled warnings becomes immediately alarms. If encoder alarms are disabled, Alarm Dis Mask signals a problem on the encoder even if there are no alarm active. The meaning of each bit is listed in the table 8.3.1.1. 24109 Par Set Cause Al [--] Enum R This parameter indicates the cause that generated the Parameter Error (A 05) alarm; parameters IPA 24110, 24111 and 24112 show the parameters with incorrect setting. 0 = None 1 = HW Unavail Hardware unavailable 2 = Resource Unavail Hardware resource unavailable 3 = Mot Fbk Not Supp Motor feedback encoder configuration error 4 = Mot Fbk Undefin Motor feedback not defined 5 = Spd/Pos Fbk Und Speed and position loop feedback encoder configuration error. 6 = Enc par Range Encoder parameters out of range 7 = Enc par Pow of 2 The parameter that has been entered is not a power of 2 8 = Motor Res Poles The number of resolver poles is not consistent with the number of motor poles 20 = Magn Induc Range Incorrect motor magnetisation inductance setting (Async.) 21 = Rotor Res Range Incorrect motor rotor resistance setting (Async.) 22 = Flux Fact Range Flow factor out of range (Async.) 23 = Slip Fact Range Slip factor out of range (Async.) 24 = Slip Value Range Slip value out of range (Async.) 30 = Size Code Err Incorrect size code 31 = Brake Volt Thr Brake threshold too low 40 = Value Not Supp Parameter value not allowed 24110 IPA 1 Par Set [--] Word R IPA of the first parameter that causes Parameter Error (A 05) alarm 24111 IPA 2 Par Set [--] Word R IPA of the second parameter that causes Parameter Error (A 05) alarm. 24112 IPA 3 Par Set [--] Word R IPA of the third parameter that causes Parameter Error (A 05) alarm. 18143 CPU Err Al Cause [--] Enum R This parameter indicates the cause that generated the CPU Overtime (A 08) alarm: 0 = None 1 = Ph In Fst Tsk OT (Phase In Fast Task Overtime) 2 = PhExe Fst Tsk OT (Phase Execution Fast Task Overtime) 3 = PhOut Fst Tsk OT (Phase Out Fast Task Overtime) 4 = PhAux Fst Tsk OT (Phase Auxiliary Fast Task Overtime) 5= Slow Tsk OT (Slow Task Overtime) 6 = System Tsk OT (System Task Overtime) 7 = DSP Tsk OT (DSP Task Overtime) 8 = Backgnd Tsk OT (Background Task Overtime) 188 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 20 = CPU Fault 21 = Watchdog Alarm 18391 PLC Err Cause [--] Word R Cause of the "PLC not running" alarm: 0 = None 1 = Wrong PLC ID 2 = Wrong PLC Tsk N (Wrong PLC Task Number) 3 = Wrong PLC Tgt ID 4 = Wrong Build N 6 = Wrong PLC Tsk ID 7 = Missing Tsk info 8 = PLC Code Chckerr 9 = DB Code Chk Err 20 = Wrong Enable Key In the cases from 1 to 8 it is necessary to reload the fw; in case 20 it is necessary to enter the right activation key in the PLC Enable Key, IPA 41001 parameter. 18393 Sys Warn Cause [--] Enum R Indicates the reason the alarm Warning System. 0= None 1= Low Max Reg Temp You are using a regulation board in range 0 .. 50 °C (see parameter 18393 RegTemp Alarm Th) type size on a EWH/EWHR (in the operating range 0 .. 60 °C). Disable the alarm to use the drive a temperature range of 0 .. 50 ° C or mount a regulation board in range 0 .. 60 °C. 18751 Load Def Err IPA [--] Word R Par IPA that caused load default error. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 189 IPA Description [Unit] Format Access Default Min Max FIELDBUS FIELDBUS FIELDBUS FIELDBUS FIELDBUS Using Process Data Channel (PDC), it is possible to exchange up to 12 words on the input and 12 words on the output. For each PDC it is possible to choose, via the FB Assign XXX X parameters, one of the following modes for the data exchange according to the following table: - Parameter: The parameters are entered into engineering units and are exchanged in an asynchronous way. The FB Format M->S 1 parameter sets the parameter writing format. The format can be different from the parameter original one. The FB Exp M->S 1 parameter defines the 10th power which the parameter is multiplied by before being transferred to the drive. - Direct Access: The parameters are entered into internal counts and are exchanged in an asynchronous way (one every 8 msec). The writing format identified by the FB Format M->S 1 parameter (see the following table) must coincide with the drive internal format. See Appendix, Chapter 4.0 Fieldbus : Parameter List and Conversion. Before establishing the Profibus communication between the Master and the drive, it is necessary to assign the drive parameters to the Process Channel. These parameters can be activated by resetting the drive. cnts= Speed (rpm) cnts= Max Ramp Rate Ramp [ms / krpm] cnts= Current [Arms] Arms Conv Fact cnts= Torque [%]* Base Torque 100 * Torque Conv Fact Dimension Format Conversion Speed INT 32 Ramp INT 16 Position FLOAT User unit Torque INT 16 Current INT 16 Rpm Conv Fact Attention: The conversion parameters (ex. Rpm Conv Fact) are in the FIELDBUS / UNITS menu and are a function of the motor data, of the drive size and of the encoder. It is therefore necessary to read them after configuring the drive. 40000 Field Bus Type [--] Enum R/ Z/ * 0 0 4 Type of expansion board if installed 0 = Not Used 1 = Profibus 2 = CanOpen 3 = DeviceNet 4 = GD-Net 5 = RTE 40001 Bus Baude Rate [kbits/s] Dword] R/Z/* 50 0 2 32 -1 Baud rate of expansion board installed, if any 40100 Bus Address [--] Word R/Z/* 0 0 65535 Address of expansion board installed 40110 CC Enabling [--] Enum R/Z/* 0 0 65535 Enables or disables the CC 0 = OFF 190 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 1 = ON 40111 PDC Enabling [--] Enum R/Z/* 0 0 65535 Enables or disables the PDC channel 0 = OFF 1 = ON 40115 FB Alarm Watch [--] Enum R/Z/* 0 0 65535 Field bus communication alarm control when drive disabled. 0 = OFF control inactive 1 = ON control active 00999 Modbus IPA Ofst [--] Word R/W Offset used to address all drive parameter with a modbus connected PLC having limitated addressing capacity. 40116 Float Word Order [--] Word R/W 0 0 65535 Identical configuration of words for Direct Access and Parameter modes 40113 Field Bus Status [--] Enum R Status of FB device 40114 FB Fail Cause [--] Dword R Failure cause of FB card 40119 RTE protocol [--] Enum R Protocol used on the optional RTE communication card. 0 - None 1 - Ethercat 2 - EthernetIP 3 - GdNet 4 - Profinet 5 - ModbusTCP 6 - Powerlink 7 - SercosIII FB 1st M->S PAR 40190 FB Assign M->S 1 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40200 FB IPA M->S 1 [--] Word R/ Z/ * 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40210 FB Format M->S 1 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40220 FB Exp M->S 1 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 191 IPA Description [Unit] Format Access Default Min Max FB 2ndM->S PAR 40191 FB Assign M->S 2 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40201 FB IPA M->S 2 [--] Word R/ Z/ * 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40211 FB Format M->S 2 [--] Word R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40221 FB Exp M->S 2 [--] Enum R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 3rd M->S PAR 40192 FB Assign M->S 3 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40202 FB IPA M->S 3 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40212 FB Format M->S 3 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40222 FB Exp M->S 3 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 4th M->S PAR 40193 FB Assign M->S 4 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40203 FB IPA M->S 4 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 192 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 40213 FB Format M->S 4 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40223 FB Exp M->S 4 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 5th M->S PAR 40194 FB Assign M->S 5 [--] Int R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40204 FB IPA M->S 5 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40214 FB Format M->S 5 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40224 FB Exp M->S 5 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 6th M->S PAR 40195 FB Assign M->S 6 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40205 FB IPA M->S 6 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40215 FB Format M->S 6 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40225 FB Exp M->S 6 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 193 IPA Description [Unit] Format Access Default Min Max FB 7th M->S PAR 40196 FB Assign M->S 7 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40206 FB IPA M->S 7 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40216 FB Format M->S 7 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40226 FB Exp M->S 7 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 8th M->S PAR 40197 FB Assign M->S 8 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40207 FB IPA M->S 8 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 40217 FB Format M->S 8 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40227 FB Exp M->S 8 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 9th M->S PAR 41198 FB Assign M->S 9 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41208 FB IPA M->S 9 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 194 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 41218 FB Format M->S 9 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41228 FB Exp M->S 9 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 10th M->S PAR 41199 FB Assign M->S 10 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41209 FB IPA M->S 10 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 41219 FB Format M->S 10 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41229 FB Exp M->S 10 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 11th M->S PAR 41200 FB Assign M->S 11 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41210 FB IPA M->S 11 [--] Word R/ Z/ * 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 41220 FB Format M->S 11 [--] Enum R/Z/* 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41230 FB Exp M->S 11 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 195 IPA Description [Unit] Format Access Default Min Max FB 12th M->S PAR 41201 FB Assign M->S 12 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41201 FB IPA M->S 12 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to write into XVy-EV with PDC channel 41221 FB Format M->S 12 [--] Enum R/ Z/ * 1 0 65535 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41231 FB Exp M->S 12 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to write into XVy-EV. FB 1st S->M PAR 40290 FB Assign S->M 1 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40300 FB IPA S->M 1 [--] Word R/ Z/ * 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40310 FB Format S->M 1 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40320 FB Exp S->M 1 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 2nd S->M PAR 40291 FB Assign S->M 2 [--] Enum R/ Z/ * 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40301 FB IPA S->M 2 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 196 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 40311 FB Format S->M 2 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40321 FB Exp S->M 2 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 3rd S->M PAR 40292 FB Assign S->M 3 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40302 FB IPA S->M 3 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40312 FB Format S->M 3 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40322 FB Exp S->M 3 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 4th S->M PAR 40293 FB Assign S->M 4 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40303 FB IPA S->M 4 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40313 FB Format S->M 4 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40323 FB Exp S->M 4 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 197 IPA Description [Unit] Format Access Default Min Max FB 5th S->M PAR 40294 FB Assign S->M 5 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40304 FB IPA S->M 5 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40314 FB Format S->M 5 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40324 FB Exp S->M 5 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 6th S->M PAR 40295 FB Assign S->M 6 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40305 FB IPA S->M 6 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40315 FB Format S->M 6 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40325 FB Exp S->M 6 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 7th S->M PAR 40296 FB Assign S->M 7 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40306 FB IPA S->M 7 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 198 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 40316 FB Format S->M 7 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40326 FB Exp S->M 7 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 8th S->M PAR 40297 FB Assign S->M 8 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 40307 FB IPA S->M 8 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 40317 FB Format S->M 8 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 40327 FB Exp S->M 8 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 9th S->M PAR 41298 FB Assign S->M 9 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41308 FB IPA S->M 9 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 41318 FB Format S->M 9 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41328 FB Exp S->M 9 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 199 IPA Description [Unit] Format Access Default Min Max FB 10th S->M PAR 41299 FB Assign S->M 10 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41309 FB IPA S->M 10 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 41319 FB Format S->M 10 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41329 FB Exp S->M 10 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 11th S->M PAR 41300 FB Assign S->M 11 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41310 FB IPA S->M 11 [--] Word R/ Z/ * 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 41320 FB Format S->M 11 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV [1] 16 Bit Integer [2] 16 Bit Uns Int [3] 32 Bit Integer [4] 32 Bit Uns Int [6] Floating Point 41331 FB Exp S->M 11 [--] Int R/Z/* 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. FB 12th S->M PAR 41301 FB Assign S->M 12 [--] Enum R/Z/* 0 0 5 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) 41311 FB IPA S->M 12 [--] Word R/Z/* 0 0 65535 Parameter index (IPA) to read from XVy-EV with PDC channel 200 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 41321 FB Format S->M 12 [--] Enum R/Z/* 1 0 65535 Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point 41331 FB Exp S->M 12 [--] Int R/ Z/ * 0 -9 9 Power of 10 used to multiply the parameter value to read into XVy-EV. CANOPEN 40902 Sync Period [usec] dword RZ* 0 0 100000 This parameter defines the SYNC interval (communication cycle, Object 1006h). Used to synchronise execution of the task within the inverter in SYNC message. If set to 0, the bus loss timeouts on SYNC are disabled. 40903 Guard Time [msec] word RZ* 20 0 65535 This parameter defines the Node Guarding interval (Object 100Ch). If set to 0, the bus loss timeouts on Node Guarding are disabled. 40904 Life Time Factor [--] Word RZ* 3 0 65535 Life time factor ( Object 100Dh ) multiplied by Node Guarding period or SYNC period is the timeout for bus loss errors. 40905 COBID Em Obj [--] Dword RZ* 0x80000081 0x00000080 0x800000FF COB-ID of Emergency object ( Object 1014h ). 40906 Cus OBJ Idx Mode [--] Enum RZ* Mod100 0 65536 Sets the address method for parameters in SDO requests. 0 = Offset 1 = Mod 100 PDO 1 RX 40910 PDO 1 RX COBID [--] Dword RZ* 0x40000201 0x00000200 0x4000027F COB ID for 1° PDO receiver ( Object 1400h , Subindex 1 ) 40915 PDO 1 RX TYPE [--] word RZ* 1 1 255 1° PDO in reception ( Object 1400h , Subindex 2 ) PDO 2 RX 40911 PDO 2 RX COBID [--] Dword RZ* 0x40000301 0x00000300 0x4000037F COB ID for 2° PDO receiver ( Object 1401h , Subindex 1 ). 40916 PDO 2 RX TYPE [--] word RZ* 1 1 255 2° PDO in reception ( Object 1401h , Subindex 2) PDO 3 RX 40912 PDO 3 RX COBID [--] Dword RZ* 0x40000401 0x00000400 0x4000047F COB ID for 3° PDO receiver ( Object 1404h , Subindex 1 ). 40917 PDO 3 RX TYPE [--] word RZ* 1 1 255 3° PDO in reception ( Object 1402h , Subindex 2) PDO 1 TX 40920 PDO 1 TX COBID [--] Dword RZ* 0x40000181 0x00000181 0x400001FF COB ID of 1° PDO in transmission ( Object 1800h , Subindex 1 ). 40925 PDO 1 TX TYPE [--] word RZ* 1 1 255 1° PDO in transmission ( Object 1800h , Subindex 2 ). SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 201 IPA Description [Unit] Format Access Default Min Max 40930 PDO 1 TX INH [100us] word RZ* 40 0 65535 Inhibition time of 1° PDO in transmission ( Object 1800h , Subindex 3 ). PDO 2 TX 40921 PDO 2 TX COBID [--] Dword RZ* 0x40000281 0x00000281 0x400002FF COB ID of 2° PDO in transmission ( Object 1801h , Subindex 1 ). 40926 PDO 2 TX TYPE [--] word RZ* 1 1 255 2° PDO in transmission ( Object 1801h , Subindex 2 ). 40931 PDO 2 TX INH [100us] word RZ* 40 0 65535 Inhibition time of 2° PDO in transmission ( Object 1801h , Subindex 3 ) PDO 3 TX 40922 PDO 3 TX COBID [--] Dword RZ* 0x40000381 0x00000381 0x400003FF COB ID of 3° PDO in transmission ( Object 1802h , Subindex 1 ). 40927 PDO 3 TX TYPE [--] word RZ* 1 1 255 3° PDO in transmission ( Object 1802h , Subindex 2 ). 40932 PDO 3 TX INH [100us] word RZ* 40 0 65535 Inhibition time of 3° PDO in transmission ( Object 1802h , Subindex 3 ) UNITS 18700 Arms Conv Fact [Arms/cnts] Float R Current conversion factor. 18752 Rpm Conv Fact [rpm/cnts] Float R Speed conversion factor. 18753 Pos Conv Fact [deg/cnts] Float R Position conversion factor. 18790 Torque Conv Fact [Nm/cnts] Float R Torque conversion factor. EN EN EN EN ENABLE KEY ABLE KEY ABLE KEY ABLE KEY ABLE KEYS SS SS The communications via the DeviceNet communication protocol and the applications developed via the MDPlc environment are protected by a software key customized for each single drive. The code of the activation key can be purchased through the Gefran commercial department. In order to allow the function check and while waiting for the personal key, each drive is enabled to function without the key protection for 100 hours. The functioning period is given adding the values read in the IPA 20045 and IPA 20046 parameters (COUNTER menu). 41000 DeviceNet Enable [--] Dword R/W* DeviceNet activation code. 41001 PLC Enable Key [--] Dword R/W* Key disabling the Plc functions. 41050 DNet En Key Stat [--] Word R Status of the DeviceNet enabling key: 0 = Disabled 1 = Enabled 60 = 200 Hours Free 200h free for valuation. 41051 PLC En Key Stat [--] Word R Status of the Plc enabling key 0 = Disabled 1 = Enabled 60 = 200 Hours Free 200h free for valuation. 202 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 41020 En Keys Mask [--] Word R Enabled key mask. 18504 Ser Num En Keys [--] Word R Serial number used to enable the key codes. TUNING TUNING TUNING TUNING TUNING 18140 Application Sel [--] Enum R/ Z/ * 0 0 65535 Application selection parameter. It is possible to select different applications: 0=Basic 2=Phasing 3=Test Generator 4=Autotuning AUTOTUNING 18330 Tuning Status [--] Enum R Tuning developing process 0 = Off 1 = Lsigma Tuning... 2 = Rs Tuning... 3 = Magn Tuning... 4 = Rr Tuning... 90 = Done 100 = Err Drive Dis 110 = Err Lsigma TOut 111 = Err Lsigma Range 130 = Err Rs Range 150 = Err Lm Range 151 = Err Lm Neg Value 160 = Err Imagn Range 170 = Err Rr Range 18313 LKG Inductance [H] Float R Motor inductance PHASING 20058 Enc Mech Offset [el.deg.] Float R/Z/* 0 -180 180 Offset between electrical angle zero of motor phases and encoder feedback device. 20057 Enc Offset [mech deg] Float R/Z/* 0 -180 180 Offset between absolute and incremental tracks on encoder feedback device. 20059 Phasing Speed [rpm] Float 5 0 100 Motor speed during Phasing procedure TEST GENERATOR 20060 Test Gen Ref [--] Enum R/Z 0 0 1 Used to select current or speed loop adjusting procedure : 0 = Current Ref: current loop adjust 1 = Pos \ Spd Ref speed loop adjust CURR TEST GEN 20061 Period Test Gen [ms] Int R/ W 16 0 32767 In current generator mode (current loop adjustment), this is the period of the generated square wave. 20062 Hig Curr Ref Gen [Apk] Float R/W IPA18703 S S Maximum value of the current reference as compared to the motor U phase. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 203 IPA Description [Unit] Format Access Default Min Max 20063 Low Curr Ref Gen [Apk] Float R/W 0 S Minimum value of the current reference as compared to the motor U phase. SPD/POS TESTGEN 20070 CW Rev Test Gen [rev] Float R/W 5 Number of clockwise revolutions performed by the motor during the speed generator Test as compared to the starting position. 20071 CCW Rev Test Gen [rev] Float R/ W 5 Number of anti-clockwise revolutions performed by the motor during the speed generator Test as compared to the starting position. 20072 Speed Test Gen [rpm] Float R/ W 100 0 100000 Motor speed during speed generator test KEYP KEYP KEYP KEYP KEYPAD PSW AD PSW AD PSW AD PSW AD PSW 18145 Keypad PSWD [--] Dword R/W 00000000H The drive manages two password access levels: - level 1 “user” access to prevent any unauthorised modification of drive configuration parameters. See Entering the user Password. - level 2 to access the Service menu (reserved for use by GEFRAN technicians). Both Passwords are entered from the keypad in the Keypad PSWD (*) parameter. The default value for the Keypad PSWD parameter is 00000000H. If it is not changed, access is always allowed to the complete list of menus and parameters (except the SERVICE menu). If a user password has been configured, access is only allowed to the MONITOR menu. Access to the complete list of menus and parameters (except the Service menu) is only allowed if the correct password is entered in the Keypad PSWD parameter Entering the user Password. 1) When the drive is turned on the motor speed is shown on the display. Press Escape (Shift + ) to access the menus. 2) Press Escape to display the MONITOR menu, then Enter to show all the measurements. 3) In the MONITOR menu, press  to display all the drive menus in sequence until the Keypad PSWD parameter appears. Press Enter to display the value 00000000H. 4) Enter a value from 1 up to a maximum of 8 digits. 5) Press Enter to confirm Press  to return to the menu list. 6) To make the password operational, store it using the Save Parameter command. The protection will be enabled the next time the inverter is turned off and then on again. Temporarily disabling the Password 1) Select the Keypad PSWD parameter (see points 1 to 3 in the previous section). 2) Press Enter to display the value 00000000H. 3) Enter the correct password value. 4) Press Enter to confirm 5) Press  to exit the password parameter and return to the MONITOR menu. In this menu, press  to display all the drive menus in sequence. The password is automatically re-enabled the next time the inverter is turned off and then on again. Removing the Password 1) After temporarily disabling the password as described in the previous point, return to the Keypad PSWD parameter. 204 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 2) Press Enter to display the value 00000000H. 3) Press Enter to confirm 4) Press  to exit the password parameter 5) Store using the Save Parameter command. You can now access the complete list of menus and parameters again (except the SERVICE menu) even after turning the inverter off and then on again. Repeat the “Entering the user Password” procedure to enter a new password. (*) The Keypad PSWD parameter is not visible via the GF-eXpress. Using the GF-eXpress tool the password (only required to enable the SERVICE menu) can be entered in the File / Password pull-down menu. NOTE ! The KEYPAD PSWD menu is shown on the keypad: - with the user password enabled after the MONITOR menu - without a password (or password disabled) after the TUNING menu - with the Service password enabled after the SERVICE menu NOTE ! With the GF-eXpress tool you can always display all the menus except the SERVICE menu: 0 - Basic Level only the MONITOR menu is displayed 1 - User Menu (default) all the menus are displayed except the SERVICE menu 3 - Service Menu all the menus are displayed (reserved for use by GEFRAN technicians) SERVICE SERVICE SERVICE SERVICE SERVICE This menu is reserved for use by Gefran technicians. To access the SERVICE menu simply enter the level 2) password: - using the GF-eXpress tool, from the File / Password pull-down menu, select “3 - Service menu” and enter the password. - using the keypad, via the Keypad PSWD parameter (from the MONITOR menu, keep pressing  until the Keypad PSWD parameter is displayed). Please refer to the Keypad PSWD parameter for more details about how to enter the Password. Temporarily disabling the Service Password This password, which is reserved for use by GEFRAN technicians, allows access to the SERVICE menu. The password is fixed with a hexadecimal value …..H 1) When the drive is turned on the motor speed is shown on the display. Press Escape (Shift + ) to access the menus. 2) Press Escape to display the MONITOR menu 3) In the MONITOR menu, press  to display all the drive menus in sequence until the Keypad PSWD parameter appears. Press Enter to display the value 00000000H. 4) Enter the Service password value. 5) Press Enter to confirm 5) Press  to exit the password parameter and return to the MONITOR menu. In this menu, press  to display all the drive menus in sequence, including the SERVICE MENU. The password is automatically re-enabled the next time the inverter is turned off and then on again. The SERVICE menu only displays the Keypad Key Word parameter, which can be used to display the user password that is enabled. If 00000000H appears in the parameter no password has been enabled. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 205 IPA Description [Unit] Format Access Default Min Max 18792 FW Build Number [--] Dword R It is a number which identifies univocally a version of the FW. The higher numbers identify more recent FW versions. 18793 Reg Temp Alarm Th [°C] Int16 R 0 0 1 “Overtemperature of regulation board” alarm threshold (code A22). KEYPAD KEY 18144 Keypad Key Word [--] Dword R 00000000H Displays the user password. If the value shown is 00000000H the password has not been entered. COUNTER 20044 Load Def Counter [--] Dwor R Counter for the number of performed loading procedures for the factory-set parameters. 20045 Tot Life Hours [Hour] Float R Life hours at last power on. 20046 Act Life Hours [Hour] Float R Hours from last power on. 20047 Power Fail Count [--] Dwor R Counter listing the number of times the drive has been switched off. 20048 Save Param Count [--] Dwor R Save parameters counter. 20049 SW Reset Count [--] Dwor R Software reset counter. ENCODER 20017 Enc Inc Tracks [--] Enum R/Z/* 1 0 1 Incremental encoder enabling for current regulation 0=Disabled 1=Enabled 20031 Enc Inc Index [--] Enum R/Z/* 1 0 1 Indicates if index on incremental encoder is present. 0=Not Present 1= Present 20028 Enc No Idx Range [--] Word R/W 2 0 65535 Maximum number of revolutions to be performed without reading the zero slot. 0...65535. If 0, the control is disabled. 20029 Enc M Lost Puls [--] Word R/W 2 0 65535 Maximum number of lost incremental pulses for each revolution. 20034 Max Loss Pos [mech deg] Float R/Z/* 90.0 0 180 Maximum allowed position loss. 20013 Phasing Err [el deg] Float R Actual phasing error 20014 Act Enc Pos Loss [mech deg] Float R Actual position loss 20015 Act Mot El Angle [el deg] Float R Motor electrical angle. XE ENC INC MEAS 18744 Inc Data Min Mod [cnts] Int R/W 11000 0 32767 AD minimum allowed module. 206 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 18741 Inc Data Act Mod [cnts] Int R AD measured module. 19002 Inc Data Pos [mech deg] Float R AD incremental position, main fbk. 19003 Inc Data N Rev [--] long R AD incremental revolution, main fbk. 19096 Index Position [mech deg] Float R AD index position, main fbk. 19004 Inc Pulses / Rev [--] Dword R AD incremental pulses/revolution, main fbk. 19006 Inc B Data Count [cnts] Int R AD incremental B channel, main fbk (XE pin 8-1) 19005 Inc A Data Count [cnts] Int R AD incremental A channel, main fbk (XE pin 5-6) XE ENC ABS MEAS 18747 Resolver Gain [times] Enum R/ Z/ * 1 0 3 Resolver input gain 0 = 5 times 1 = 2 times 2 = 1.25 times 3 = 1 times 18126 Res Shift Time [cnts] Int R/ W 580 -4000 4000 Resolver sampling shift time. 1cnts=33.3 ns. 18745 Abs Data Min Mod [cnts] Int R/ W 17000 0 32767 AN minimum allowed module. 18760 Abs Comp En [--] Enum R/ W 1 0 1 Enable offset compensation and amplitudes difference of AN channel. 0 = Disabled 1 = Enabled 18761 Abs Comp TAU [--] Int R/ W 100 1 32767 AN comp time constant. 18767 Abs Max Noise [count] INT 0 0 65535 Maximum value of electrical noise on AN transducer. 18740 Abs Act Module [cnts] Int R AN measured module. 19017 Abs Turn Pos [mech deg] Float R AN position, main fbk. 19018 Abs Rev [--] Long R AN revolution, main fbk. 18762 Abs Sin Offset [cnts] Int R AN SIN ch. compensed offset, main fbk (XE pin 10-11). 18763 Abs Cos Offset [cnts] Int R AN COS ch. compensed offset, main fbk (XE pin 12-13). 18764 Abs Gain Err [%] Float R AN SIN/COS ch. compensed gain error SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 207 IPA Description [Unit] Format Access Default Min Max 18766 Abs Meas Noise [count] INT 0 0 65535 Momentary value of electrical noise on AN transducer. 19019 Abs Sin Meas [--] Int R AN SIN ch., main fbk (XE pin 10-11) 19020 Abs Cos Meas [--] Int R AN COS ch., main fbk (XE pin 12-13) XER/EXP Inc Enc 19011 XER/EXP Turn Pos [mech deg] Float R DI incremental position, aux encoder (XER connector) 19012 XER/EXP Rev [--] Long R DI incremental revolution, aux encoder (XER connector) 19013 XER/EXP Puls Rev [--] Dword R DI incremental pulses/revolution, aux encoder (XER connector) 19095 XER/EXP Ind Pos [el deg] Float R DI index position, aux encoder (XER connector) XE HALL TRACKS 19022 XE Hall Pos [el deg] Float R HA position, main fbk (XE connector). 19026 XE Hall Rev [--] Long R HA electrical revolution, main fbk (XE connector). 19027 XE Hall Meas [--] Word R HA inputs pins H1, H2, H3, main fbk (XE connector). 19028 XE Hall N Error [--] Int R Number of times when the 000 or 111 wrong configuration has appeared during the probe reading. EXP ENC ABS1 19030 ABS1 Al Bit En [--] Enum R/W 1 0 1 ABS1 alarm bit check enable (EnDat only). 0=Disabled 1=Enabled 19031 EXP ABS1 Pos [mech deg] Float R ABS1 absolute position, main fbk. 19032 EXP ABS1 Sw Rev [--] Long R Number of calculated absolute turns. Not valid in case of encoder with Hiperface protocol. This parameter can be greater than max number of revolutions set by encoders hardware limit. 19033 EXP ABS1 Hw Rev [--] Int R Number of absolute revolutions. This number has a maximum value, the maximum number of revolutions that encoder can measure. After maximum value, count starts from zero. 19034 ABS1 Rx N Err [--] Int R ABS1 total communication error. 19035 ABS1 Alarm Bit [--] Enum R ABS1 alarm bit value (EnDat only). FAST LINK ENC 29103 RX Rev [--] Long R Number of incremental revolutions of the speed/position loop encoder, fast link receiver. 208 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 29104 RX Pos [--] Long R Incremental position of the speed/position loop encoder, fast link receiver. 29106 TX Rev [--] Long R Number of incremental revolutions of the speed/position loop encoder, fast link transmitter. 29107 TX Pos [--] Long R Incremental position of the speed/position loop encoder, fast link transmitter. 29108 RX Rev Aux [--] Long R Number of incremental revolutions of the auxiliary encoder, fast link receiver. 29109 RX Pos Aux [--] Long R Incremental position of the auxiliary encoder, fast link receiver. 29110 TX Rev Aux [--] Long R Number of incremental revolutions of the auxiliary encoder, fast link transmitter. 29111 TX Pos Aux [--] Long R Incremental position of the auxiliary encoder, fast link transmitter. 32015 FL Error [--] INT16 R Incremental number of the fast link reception errors. It is active only on the FL slaves configured with the functioning of the electric shaft. A drive reset takes it back to zero. RESERVED 18111 XER/EXP Enc Mod [--] Enum R/ Z/ * 0 0 2 0 = Fourfold 1 = A=UpB=Dir 2 = A=UpB=Down 18112 XER/EXP Enc Flt [--] Word R/Z/* 4 0 7 DI glitches digital filter 18113 XE Inc Enc Flt [--] Word R/Z/* 4 0 7 AD glitches digital filter 18114 XE Index Mask [--] Enum R/ Z/ * 1 0 1 0=original ChZ 1=ChZ & ChA & ChB 18121 Spd Loop Filter [msec] Float R/W 1 0 50 Speed loop output LP filter time constant. 18122 XE Enc Abs Flt [msec] Float R/W 1 0 50 AN filter time constant. 18119 Curr Comp Time [msec] Float R/W 0 -1000 1000 Current sampling compensation time. 18120 Over Mod Factor [%] Float R/W 15 0 50 Overmodulation factor. 40901 FBCFG Not to be modified, reserved for internal use. DEBUG 18146 Debug Mode [--] Enum R/W 0 0 1 Enabling the “Debug mode” 0=Disabled 1=Enabled SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 209 IPA Description [Unit] Format Access Default Min Max 18392 PLC Correct ChkS [--] DWord R 0 0 65535 Restricted 18390 PLC Saved ChkS [--] DWord R 0 0 65535 Restricted 18773 Quadrature Volt [Vrms] Float R Quadrature output voltage. 18774 Direct Volt [Vrms] Float R Direct output voltage. 18765 Measured Speed [rpm] Float R Speed measurement deriving from feedback devices. TASK MEASURES 18726 MaxIn Ph Exe T [us] Word R/ W 0 0 62 Maximum task INPUT phase execution time. 18727 MaxFst Tsk Exe T [us] Word R/W 0 0 62 Maximum task EXECUTE phase execution time. 18728 MaxOut Ph Exe T [us] Word R/ W 0 0 62 Maximum task OUTPUT phase execution time. 18729 MaxAux Ph Exe T [us] Word R/W 0 0 62 Maximum task AUXILIARY phase execution time. 18721 MaxSl Tsk Exe T [us] Long R/W 0 0 8000 Maximum slow task execution task time. 18709 MaxSys Tsk Exe T [us] Long R/W 0 0 64000 Maximum system task execution task time. 18781 MaxBkg Tsk Exe T [msec] Long R/ W 0 0 8000 Maximum execution time of the "Background Task". 18771 MaxDSP Exe T [cnts] Word R/ W 0 0 1875 Maximum DSP execution time. DSP. 1 cnts=33.3 nsec. 18722 Inp Phase Exe T [us] Word R Present execution time of the fast task "INPUT phase". 18723 Fst Tsk Exe T [us] Word R Actual fast task EXECUTE phase execution time. 18724 Out Phase Tsk T [us] Word R Actual task OUTPUT phase execution time. 18725 Aux Phase Exe T [us] Word R Actual task AUXILIARY phase execution time. 18720 Slow Tsk Exe T [us] Long R Actual slow task execution time. 18708 Sys Tsk Exe T [us] Long R Actual system task execution time. 18780 Bkg Tsk Exe T [msec] Long R Present execution time of the "Background Task". 18770 DSP Exe Time [cnts] Word R Actual DSP execution time 1 cnts=33.3 nsec. 210 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index In UPPERCASE = Menu In lowercase = Parameter description IPA 00999, pg.190 18010, pg.120 18011, pg.119 18017, pg.119 18031, pg.121 18032, pg.121 18042, pg.186 18070, pg.119 18071, pg.119 18100, pg.132 18101, pg.132 18102, pg.132 18103, pg.185 18104, pg.185 18105, pg.185 18107, pg.185 18109, pg.185 18110, pg.122 18111, pg.208 18112, pg.208 18113, pg.208 18114, pg.208 18119, pg.208 18120, pg.208 18121, pg.208 18122, pg.208 18123, pg.166 18124, pg.122 18126, pg.206 18130, pg.158 18131, pg.158 18132, pg.158 18133, pg.158 18134, pg.158 18135, pg.158 18136, pg.158 18138, pg.158 18140, pg.202 18143, pg.187 18144, pg.205 18145, pg.203 18146, pg.208 18150, pg.129 18151, pg.129 18222, pg.121 18313, pg.123, 202 18320, pg.132 18321, pg.132 18322, pg.132 18325, pg.132 18326, pg.132 18328, pg.132 18330, pg.202 18360, pg.123 18390, pg.209 18391, pg.188 18392, pg.209 18393, pg.188 18412, pg.185 18504, pg.202 18700, pg.201 18701, pg.121 18703, pg.121 18704, pg.121 18708, pg.209 18709, pg.209 18710, pg.119 18711, pg.119 18720, pg.209 18721, pg.209 18722, pg.209 18723, pg.209 18724, pg.209 18725, pg.209 18726, pg.209 18727, pg.209 18728, pg.209 18729, pg.209 18732, pg.118 18735, pg.118 18736, pg.119 18739, pg.118 18740, pg.206 18741, pg.206 18742, pg.119 18744, pg.205 18745, pg.206 18746, pg.118 18747, pg.206 18748, pg.118 18749, pg.118 18751, pg.188 18752, pg.201 18753, pg.201 18754, pg.119 18755, pg.119 18756, pg.119 18757, pg.119 18760, pg.206 18761, pg.206 18762, pg.206 18763, pg.206 18764, pg.206 18765, pg.209 18766, pg.207 18767, pg.206 18770, pg.209 18771, pg.209 18772, pg.119 18774, pg.209 18776, pg.118 18777, pg.118 18778, pg.120 18780, pg.209 18781, pg.209 18782, pg.118 18790, pg.201 18792, pg.205 18793, pg.205 18800, pg.131 18805, pg.118 18806, pg.118 18807, pg.118 19002, pg.206 19003, pg.206 19004, pg.206 19005, pg.206 19006, pg.206 19011, pg.207 19012, pg.207 19013, pg.207 19017, pg.206 19018, pg.206 19019, pg.207 19020, pg.207 19022, pg.207 19026, pg.207 19027, pg.207 19028, pg.207 19030, pg.207 19031, pg.207 SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index • 211 19032, pg.207 19033, pg.207 19034, pg.207 19035, pg.207 19040, pg.151 19095, pg.207 19096, pg.206 19113, pg.168 19607, pg.119 20000, pg.120 20001, pg.123 20002, pg.123 20003, pg.128 20004, pg.123 20005, pg.140 20006, pg.140 20007, pg.124 20008, pg.124 20009, pg.126 20010, pg.124 20011, pg.124 20012, pg.124 20013, pg.205 20014, pg.205 20015, pg.205 20016, pg.186 20017, pg.205 20018, pg.187 20019, pg.125 20020, pg.124 20021, pg.121 20022, pg.119 20023, pg.120 20024, pg.121 20025, pg.121 20026, pg.122 20028, pg.205 20029, pg.205 20030, pg.150 20031, pg.205 20032, pg.150 20033, pg.150 20034, pg.205 20035, pg.150 20036, pg.125 20037, pg.125 20038, pg.125, 126 20039, pg.125, 126 20040, pg.125, 126 20041, pg.125 20042, pg.125 20043, pg.125 20044, pg.205 20045, pg.205 20046, pg.205 20047, pg.205 20048, pg.205 20049, pg.205 20050, pg.120 20051, pg.120 20052, pg.120 20053, pg.121 20057, pg.202 20058, pg.202 20059, pg.202 20060, pg.202 20061, pg.202 20062, pg.202 20063, pg.203 20070, pg.203 20071, pg.203 20072, pg.203 20073, pg.122 20074, pg.122 20075, pg.122 20076*, pg.126 20077, pg.126 20080, pg.123 20081, pg.123 20082, pg.123 20083, pg.123 20085, pg.154 20086, pg.154 20087, pg.159 20088, pg.158 20089, pg.154 20092, pg.154 20100, pg.137 20101, pg.133 20102, pg.136 20103, pg.136 20104, pg.136 20105, pg.136 20106, pg.136 20107, pg.136 20150, pg.137 20151, pg.137 20152, pg.137 20153, pg.137 20154, pg.137 20155, pg.137 20156, pg.137 20157, pg.137 20162, pg.136 20163, pg.137 20164, pg.137 20170, pg.138 20171, pg.138 20172, pg.138 20173, pg.138 20174, pg.138 20175, pg.138 20176, pg.138 20177, pg.138 20178, pg.138 20179, pg.138 20180, pg.138 20181, pg.138 20182, pg.139 20183, pg.139 20184, pg.139 20185, pg.139 20186, pg.139 20187, pg.139 20188, pg.140 20189, pg.140 20200, pg.141 20201, pg.143 20202, pg.143 20203, pg.143 20204, pg.143 20205, pg.143 20250, pg.144 20251, pg.144 20252, pg.144 20253, pg.144 20254, pg.143 20255, pg.143 20256, pg.144 20257, pg.144 20258, pg.144 20259, pg.144 20260, pg.144 20270, pg.144 20271, pg.144 20272, pg.144 20273, pg.145 20274, pg.145 20275, pg.145 20276, pg.145 20277, pg.145 20278, pg.145 20279, pg.145 20280, pg.145 20281, pg.145 20282, pg.145 20283, pg.145 20284, pg.145 20285, pg.145 20286, pg.146 20289, pg.145 20290, pg.145 212 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide 20300, pg.146 20301, pg.147 20310, pg.147 20311, pg.148 20320, pg.147 20321, pg.147 20330, pg.147 20331, pg.147 20340, pg.147 20341, pg.148 20350, pg.147 20351, pg.148 20360, pg.147 20361, pg.148 20400, pg.148 20401, pg.149 20402, pg.149 20403, pg.150 20410, pg.149 20411, pg.149 20412, pg.150 20413, pg.150 20420, pg.149 20421, pg.149 20422, pg.150 20423, pg.150 20430, pg.149 20431, pg.149 20432, pg.150 20433, pg.150 20440, pg.149 20441, pg.149 20442, pg.150 20443, pg.150 20500, pg.118 20600, pg.157 20601, pg.157 20602, pg.157 20603, pg.157 21000, pg.151 21001, pg.151 21003, pg.151 21004, pg.151 21005, pg.151 21006, pg.151 21102, pg.127 21103, pg.127 21104, pg.127 21105, pg.127 21110, pg.127 21111, pg.128 21115, pg.127 21116, pg.127 21200, pg.128 21201, pg.128 21202, pg.128 21204, pg.129 21205, pg.129 21206, pg.128, 129 21207, pg.129 21210, pg.127 21211, pg.129 21212, pg.118 21213, pg.129 21301, pg.152 21302, pg.152 21303, pg.152 21304, pg.152 21305, pg.152 21306, pg.152 21307, pg.152 21310, pg.152 21311, pg.152 21401, pg.153 21402, pg.153 21403, pg.154 21411, pg.153 21412, pg.154 21413, pg.154 21421, pg.153 21422, pg.154 21423, pg.154 21431, pg.153 21432, pg.154 21433, pg.154 21440, pg.153 21441, pg.153 22000, pg.130 22001, pg.130 22002, pg.130 22003, pg.131 22004, pg.131 22005, pg.131 22007, pg.131 22009, pg.131 22010, pg.131 22011, pg.131 22012, pg.131 22013, pg.131 22014, pg.131 22501, pg.156 22502, pg.155 22503, pg.155 22504, pg.155 22505, pg.155 22506, pg.156 22507, pg.156 22508, pg.156 22509, pg.156 22510, pg.156 22515, pg.131 23000, pg.129 23001, pg.129 23002, pg.129 23003, pg.129 23010, pg.129 24000, pg.186 24100, pg.185 24101, pg.185 24102, pg.185 24109, pg.187 24110, pg.187 24111, pg.187 24112, pg.187 24120, pg.186 29004, pg.120 29103, pg.207 29104, pg.208 29106, pg.208 29107, pg.208 29108, pg.208 29109, pg.208 29110, pg.208 29111, pg.208 30000, pg.166 30001, pg.167 30002, pg.167 30004, pg.168 30010, pg.167 30011, pg.167 30012, pg.167 30013, pg.167 30014, pg.167 30015, pg.169 30016, pg.168 30017, pg.169 30018, pg.169 30020, pg.179 30021, pg.179 30022, pg.179 30023, pg.179 30024, pg.179 30025, pg.179 30027, pg.179 30028, pg.179 30036, pg.179 30037, pg.179 30038, pg.179 30039, pg.179 30040, pg.180 30041, pg.180 30042, pg.167 SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index • 213 30043, pg.167 30044, pg.167 30050, pg.169 30051, pg.169 30052, pg.169 30053, pg.169 30054, pg.169 30055, pg.169 30056, pg.169 30057, pg.168 30058, pg.169 30059, pg.170 30060, pg.170 30081, pg.168 30090, pg.168 30091, pg.168 30093, pg.168, 180 30094, pg.168 30096, pg.170 30097, pg.170 30098, pg.171 30099, pg.171 30100, pg.170 30101, pg.171 30102, pg.171 30103, pg.172 30104, pg.173 30105, pg.173 30106, pg.174 30107, pg.175 30108, pg.175 30163, pg.175 30164, pg.180 30200, pg.170 30201, pg.171 30202, pg.171 30203, pg.172 30204, pg.173 30205, pg.173 30206, pg.174 30207, pg.175 30264, pg.180 30300, pg.170 30301, pg.171 30302, pg.172 30303, pg.172 30304, pg.173 30305, pg.174 30306, pg.174 30307, pg.175 30364, pg.180 30380, pg.170 30400, pg.170 30401, pg.171 30402, pg.172 30403, pg.172 30404, pg.173 30405, pg.174 30406, pg.174 30407, pg.175 30464, pg.180 30481, pg.171 30482, pg.172 30483, pg.172 30484, pg.173 30485, pg.174 30486, pg.174 30487, pg.175 30490, pg.170 30491, pg.171 30492, pg.172 30493, pg.172 30494, pg.173 30495, pg.174 30496, pg.174 30497, pg.175 30500, pg.170 30501, pg.171 30502, pg.172 30503, pg.172 30504, pg.173 30505, pg.174 30506, pg.174 30507, pg.175 30600, pg.170 30601, pg.171 30602, pg.172 30603, pg.173 30604, pg.173 30605, pg.174 30606, pg.175 30607, pg.175 30700, pg.170 30701, pg.171 30702, pg.172 30703, pg.173 30704, pg.173 30705, pg.174 30706, pg.175 30707, pg.175 30710, pg.170 30711, pg.171 30712, pg.172 30713, pg.173 30714, pg.173 30715, pg.174 30716, pg.175 30717, pg.175 30800, pg.169 31000, pg.180 31001, pg.181 31002, pg.181 31003, pg.181 32000, pg.182 32001, pg.184 32002, pg.184 32003, pg.184 32004, pg.184 32005, pg.184 32006, pg.184 32008, pg.182 32009, pg.182 32010, pg.183 32011, pg.183 32012, pg.183 32013, pg.183 32014, pg.183 32015, pg.208 32016, pg.183 32020, pg.183 32021, pg.183 32090, pg.183 32100, pg.184 32101, pg.184 32102, pg.184 32103, pg.184 32104, pg.184 32200, pg.149 40000, pg.189 40001, pg.189 40100, pg.189 40110, pg.189 40111, pg.190 40113, pg.190 40114, pg.190 40115, pg.190 40116, pg.190 40119, pg.190 40190, pg.190 40191, pg.191 40192, pg.191 40193, pg.191 40194, pg.192 40195, pg.192 40196, pg.193 40197, pg.193 40200, pg.190 40201, pg.191 40202, pg.191 40203, pg.191 40204, pg.192 40205, pg.192 214 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide 40206, pg.193 40207, pg.193 40210, pg.190 40211, pg.191 40212, pg.191 40213, pg.192 40214, pg.192 40215, pg.192 40216, pg.193 40217, pg.193 40220, pg.190 40221, pg.191 40222, pg.191 40223, pg.192 40224, pg.192 40225, pg.192 40226, pg.193 40227, pg.193 40290, pg.195 40291, pg.195 40292, pg.196 40293, pg.196 40294, pg.197 40295, pg.197 40296, pg.197 40297, pg.198 40300, pg.195 40301, pg.195 40302, pg.196 40303, pg.196 40304, pg.197 40305, pg.197 40306, pg.197 40307, pg.198 40310, pg.195 40311, pg.196 40312, pg.196 40313, pg.196 40314, pg.197 40315, pg.197 40316, pg.198 40317, pg.198 40320, pg.195 40321, pg.196 40322, pg.196 40323, pg.196 40324, pg.197 40325, pg.197 40326, pg.198 40327, pg.198 40901, pg.208 40902, pg.200 40903, pg.200 40904, pg.200 40905, pg.200 40906, pg.200 40910, pg.200 40911, pg.200 40912, pg.200 40915, pg.200 40916, pg.200 40917, pg.200 40920, pg.200 40921, pg.201 40925, pg.200 40926, pg.201 40930, pg.201 40931, pg.201 41000, pg.201 41001, pg.201 41020, pg.202 41050, pg.201 41051, pg.201 41198, pg.193 41199, pg.194 41200, pg.194 41201, pg.195 41208, pg.193 41209, pg.194 41210, pg.194 41218, pg.194 41219, pg.194 41220, pg.194 41221, pg.195 41228, pg.194 41229, pg.194 41230, pg.194 41231, pg.195 41298, pg.198 41299, pg.199 41300, pg.199 41301, pg.199 41308, pg.198 41309, pg.199 41310, pg.199 41311, pg.199 41318, pg.198 41319, pg.199 41320, pg.199 41321, pg.200 41328, pg.198 41329, pg.199 41331, pg.199, 200 A Abs Act Module, pg.206 Abs Comp En, pg.206 Abs Comp TAU, pg.206 Abs Cos Meas, pg.207 Abs Cos Offset, pg.206 Abs Data Min Mod, pg.206 Abs Gain Err, pg.206 Abs Max Noise, pg.206 Abs Meas Noise, pg.207 Abs Rev, pg.206 Abs Sin Meas, pg.207 Abs Sin Offset, pg.206 Abs Turn Pos, pg.206 ABS1 Al Bit En, pg.207 ABS1 Alarm Bit, pg.207 ABS1 Enc Div Rev, pg.125, 126 ABS1 Enc ppr, pg.125 ABS1 Enc Revol, pg.125, 126 ABS1 Enc Supply, pg.125 ABS1 Enc Type, pg.125, 126 ABS1 Rx N Err, pg.207 Acc Gain, pg.129 Act Ctrl Mode, pg.120 Act Enc Pos Loss, pg.205 Act Life Hours, pg.205 Act Mot El Angle, pg.205 Act Neg Spd Lim, pg.119 Act Neg Trq Lim, pg.118 Act Out Curr Lim, pg.118 Act Out Power, pg.118 Act Pos Spd Lim, pg.119 Act Pos Trq Lim, pg.118 Act SpdDrw Ratio, pg.154 Act Torque, pg.118 Act Torque Eng, pg.118 Actual Pos Error, pg.168 Actual Position, pg.168 Actual Ratio, pg.184 Alarm Delay, pg.185 Alarm Delay Mask, pg.185 Alarm Dis Mask, pg.185 Alarm List Clear, pg.186 Alarm Status, pg.186 ALARMS, pg.185 An Inp 0 D_B Neg, pg.147 An Inp 0 D_B Pos, pg.147 An Inp 0 Offset, pg.147 An Inp 0 Read, pg.147 An Inp 0 Scale, pg.147 An Inp 0 Value, pg.147 An Inp 1 D_B Neg, pg.148 An Inp 1 D_B Pos, pg.147 An Inp 1 Offset, pg.147 An Inp 1 Read, pg.148 An Inp 1 Scale, pg.148 An Inp 1 Value, pg.148 An Out 0 Offset, pg.149 SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index • 215 An Out 0 Scale, pg.149 An Out 0 Value, pg.149 An Out 0 Write, pg.149 An Out 1 Offset, pg.149 An Out 1 Scale, pg.149 An Out 1 Value, pg.149 An Out 1 Write, pg.149 Analog Inp 0 Sel, pg.146 Analog Inp 1 Sel, pg.147 ANALOG INPUT 0, pg.147 ANALOG INPUT 1, pg.147 ANALOG INPUTS, pg.146 ANALOG OUT 0, pg.149 Analog Out 0 Sel, pg.148 ANALOG OUT 1, pg.149 Analog Out 1 Sel, pg.149 ANALOG OUTPUTS, pg.148 ANALOG POS REF, pg.170 AnOut MaxPosErr, pg.149 Application Sel, pg.202 Arms Conv Fact, pg.201 AUTOTUNING, pg.202 Aux Enc Type, pg.125 Aux Phase Exe T, pg.209 B Back Lash Dir, pg.181 Back Lash En, pg.180 BACKLASH RECOV, pg.180 Base Torque, pg.131 Bkg Tsk Exe T, pg.209 BR Ovld Factor, pg.185 Brake Config, pg.185 BRAKE CONTROL, pg.157 Brake Enable, pg.157 Brake ON Delay, pg.157 Brake ON Spd Thr, pg.157 Brake Res Power, pg.185 Brake Res Value, pg.185 Brake Volt Thr, pg.185 BRAKING RES, pg.185 Bus Address, pg.189 Bus Baude Rate, pg.189 C CANOPEN, pg.200 CC Enabling, pg.189 CCW Acc Ramp, pg.127 CCW Dec Ramp, pg.127 CCW Home Pos Acc, pg.179 CCW Home Pos Dec, pg.179 CCW Jog Acc, pg.151 CCW Jog Dec, pg.151 CCW Rev Test Gen, pg.203 COBID Em Obj, pg.200 COMM CONFIG, pg.121, 122 Control Mode, pg.120 COUNTER, pg.205 CPU Err Al Cause, pg.187 Curr Comp Time, pg.208 Curr Deriv Gain, pg.132 Curr Gain Calc, pg.132 Curr Integr Gain, pg.132 Curr Prop Gain, pg.132 CURR TEST GEN, pg.202 CURRENT GAINS, pg.132 Cus OBJ Idx Mode, pg.200 CW Acc Ramp, pg.127 CW Dec Ramp, pg.127 CW Home Pos Acc, pg.179 CW Home Pos Dec, pg.179 CW Jog Acc, pg.151 CW Jog Dec, pg.151 CW Rev Test Gen, pg.203 D DC Link Voltage, pg.119 DEBUG, pg.208 Debug Mode, pg.208 Delta Pos, pg.181 Destination Pos, pg.168 DeviceNet Enable, pg.201 Dig Inp 0 Status, pg.137 Dig Inp Rev Mask, pg.136 Dig Inp Status, pg.137 Dig Out Reverse, pg.143 Dig Out Status, pg.143 Digital Input 1, pg.133 Digital Input 2, pg.136 Digital Input 3, pg.136 Digital Input 4, pg.136 Digital Input 5, pg.136 Digital Input 6, pg.136 Digital Input 7, pg.136 DIGITAL INPUTS, pg.132 Digital Output 0, pg.141 Digital Output 1, pg.143 Digital Output 2, pg.143 Digital Output 3, pg.143 Digital Output 4, pg.143 Digital Output 5, pg.143 DIGITAL OUTPUTS, pg.140 Direct Volt, pg.209 DNet En Key Stat, pg.201 DO Reset at Fail, pg.140 DO Set at Fail, pg.140 DRIVE CONFIG, pg.120 Drive Max Curr, pg.120 Drive Nom Curr, pg.121 Drive Ovld Fact, pg.119 Drive Serial Add, pg.121 Drive size, pg.121 Drv Nom Curr 0Hz, pg.121 Drv Temp Src, pg.122 DSP Exe Time, pg.209 E EL LINE SHAFT, pg.181 EL SHAFT R BEND, pg.184 EL SHAFT RATIO, pg.184 Els Control Mode, pg.183 Els Delta Ratio, pg.183 Els Delta Time, pg.182 Els FL Source, pg.183 Els Master Sel, pg.182 Els Max RB Speed, pg.184 Els Mec Ratio, pg.183 Els PPR Master, pg.182 Els Ratio / Slip, pg.183 Els Ratio 0, pg.184 Els Ratio 1, pg.184 Els Ratio 2, pg.184 Els Ratio 3, pg.184 Els Ratio Index, pg.184 Els Ratio Range, pg.183 Els RB Acc, pg.184 Els RB Dec, pg.184 Els RB Speed Ref, pg.184 Els RB Time, pg.184 Els Slip Limit, pg.183 ElsMec Ratio Div, pg.183 ElsMec Ratio Mul, pg.183 En Keys Mask, pg.202 Enable I-O Keys, pg.121 ENABLE KEYS, pg.201 Enc Err Simul, pg.151 ENC EXP BOARD, pg.125, 126 Enc Inc Index, pg.205 Enc Inc Tracks, pg.205 Enc M Lost Puls, pg.205 Enc Mech Offset, pg.202 Enc Mot Ratio, pg.126 Enc No Idx Range, pg.205 Enc Offset, pg.202 Enc Postition, pg.119 Enc Rep Sim Cfg, pg.150 ENC REPETITION, pg.150 Enc Revolution, pg.119 Enc W->A Mask, pg.187 216 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide Enc Warning Cause, pg.186 ENCODER, pg.205 ENCODER PARAM, pg.123 Encoder Ratio Enable, pg.126 End Run Dec, pg.127 EnDat Del Comp, pg.125 Environment Temp, pg.120 ExAn Out 0 Offse, pg.150 ExAn Out 0 Scale, pg.150 ExAn Out 0 Value, pg.150 ExAn Out 0 Write, pg.150 ExAn Out 1 Offse, pg.150 ExAn Out 1 Scale, pg.150 ExAn Out 1 Value, pg.150 ExAn Out 1 Write, pg.150 EXP ABS1 Hw Rev, pg.207 EXP ABS1 Pos, pg.207 EXP ABS1 Sw Rev, pg.207 EXP AN OUT 0, pg.150 EXP AN OUT 1, pg.150 EXP ANALOG OUT, pg.149 Exp Analog Out 0, pg.149 Exp Analog Out 1, pg.150 Exp Dig Inp 0, pg.137 Exp Dig Inp 1, pg.137 Exp Dig Inp 2, pg.137 Exp Dig Inp 3, pg.137 Exp Dig Inp 4, pg.137 Exp Dig Inp 5, pg.137 Exp Dig Inp 6, pg.137 Exp Dig Inp 7, pg.137 Exp Dig Inp Stat, pg.137 EXP DIG INPUTS, pg.137 Exp Dig Out 1, pg.144 Exp Dig Out 2, pg.144 Exp Dig Out 3, pg.144 Exp Dig Out 4, pg.144 Exp Dig Out 5, pg.144 Exp Dig Out 6, pg.144 Exp Dig Out 7, pg.144 Exp Dig Out Stat, pg.144 EXP DIG OUTPUTS, pg.144 EXP ENC ABS1, pg.207 F Fast Link Addr, pg.122 FAST LINK ENC, pg.207 Fast Stop Dec, pg.127 FastLink Trq En, pg.131 FastLink Trq Ref, pg.131 FB 10th M->S PAR, pg.194 FB 10th S->M PAR, pg.199 FB 11th M->S PAR, pg.194 FB 11th S->M PAR, pg.199 FB 12th M->S PAR, pg.195 FB 12th S->M PAR, pg.199 FB 1st M->S PAR, pg.190 FB 1st S->M PAR, pg.195 FB 2nd S->M PAR, pg.195 FB 2ndM->S PAR, pg.191 FB 3rd M->S PAR, pg.191 FB 3rd S->M PAR, pg.196 FB 4th M->S PAR, pg.191 FB 4th S->M PAR, pg.196 FB 5th M->S PAR, pg.192 FB 5th S->M PAR, pg.197 FB 6th M->S PAR, pg.192 FB 6th S->M PAR, pg.197 FB 7th M->S PAR, pg.193 FB 7th S->M PAR, pg.197 FB 8th M->S PAR, pg.193 FB 8th S->M PAR, pg.198 FB 9th M->S PAR, pg.193 FB 9th S->M PAR, pg.198 FB Alarm Watch, pg.190 FB Assign M->S 10, pg.194 FB Assign M->S 11, pg.194 FB Assign M->S 12, pg.195 FB Assign M->S 2, pg.191 FB Assign M->S 3, pg.191 FB Assign M->S 4, pg.191 FB Assign M->S 5, pg.192 FB Assign M->S 6, pg.192 FB Assign M->S 7, pg.193 FB Assign M->S 8, pg.193 FB Assign M->S 9, pg.193 FB Assign S->M 1, pg.195 FB Assign S->M 10, pg.199 FB Assign S->M 11, pg.199 FB Assign S->M 12, pg.199 FB Assign S->M 2, pg.195 FB Assign S->M 3, pg.196 FB Assign S->M 4, pg.196 FB Assign S->M 5, pg.197 FB Assign S->M 6, pg.197 FB Assign S->M 7, pg.197 FB Assign S->M 8, pg.198 FB Assign S->M 9, pg.198 FB Exp M->S 1, pg.190 FB Exp M->S 10, pg.194 FB Exp M->S 11, pg.194 FB Exp M->S 12, pg.195 FB Exp M->S 2, pg.191 FB Exp M->S 3, pg.191 FB Exp M->S 4, pg.192 FB Exp M->S 5, pg.192 FB Exp M->S 6, pg.192 FB Exp M->S 7, pg.193 FB Exp M->S 8, pg.193 FB Exp M->S 9, pg.194 FB Exp S->M 1, pg.195 FB Exp S->M 10, pg.199 FB Exp S->M 11, pg.199 FB Exp S->M 12, pg.200 FB Exp S->M 2, pg.196 FB Exp S->M 3, pg.196 FB Exp S->M 4, pg.196 FB Exp S->M 5, pg.197 FB Exp S->M 6, pg.197 FB Exp S->M 7, pg.198 FB Exp S->M 8, pg.198 FB Exp S->M 9, pg.198 FB Fail Cause, pg.190 FB Format M->S, pg.191 FB Format M->S 1, pg.190 FB Format M->S 10, pg.194 FB Format M->S 11, pg.194 FB Format M->S 12, pg.195 FB Format M->S 3, pg.191 FB Format M->S 4, pg.192 FB Format M->S 5, pg.192 FB Format M->S 6, pg.192 FB Format M->S 7, pg.193 FB Format M->S 8, pg.193 FB Format M->S 9, pg.194 FB Format S->M 1, pg.195 FB Format S->M 10, pg.199 FB Format S->M 11, pg.199 FB Format S->M 12, pg.200 FB Format S->M 2, pg.196 FB Format S->M 3, pg.196 FB Format S->M 4, pg.196 FB Format S->M 5, pg.197 FB Format S->M 6, pg.197 FB Format S->M 7, pg.198 FB Format S->M 8, pg.198 FB Format S->M 9, pg.198 FB IPA M->S 1, pg.190 FB IPA M->S 10, pg.194 FB IPA M->S 11, pg.194 FB IPA M->S 12, pg.195 FB IPA M->S 2, pg.191 FB IPA M->S 3, pg.191 FB IPA M->S 4, pg.191 FB IPA M->S 5, pg.192 FB IPA M->S 6, pg.192 FB IPA M->S 7, pg.193 FB IPA M->S 8, pg.193 FB IPA M->S 9, pg.193 FB IPA S->M 1, pg.195 FB IPA S->M 10, pg.199 SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index • 217 FB IPA S->M 11, pg.199 FB IPA S->M 12, pg.199 FB IPA S->M 2, pg.195 FB IPA S->M 3, pg.196 FB IPA S->M 4, pg.196 FB IPA S->M 5, pg.197 FB IPA S->M 6, pg.197 FB IPA S->M 7, pg.197 FB IPA S->M 8, pg.198 FB IPA S->M 9, pg.198 FBCFG, pg.208 Field Bus Status, pg.190 FIELDBUS, pg.189 FL Trq Scale, pg.131 Float Word Order, pg.190 FLUX, pg.132 Flux Current, pg.118 Fst Tsk Exe T, pg.209 FstLnk Slow Sync, pg.122 Full Scale Speed, pg.128 FW Build Number, pg.205 FW Version, pg.119 G Guard Time, pg.200 H Heatsink Temp, pg.119 Hig Curr Ref Gen, pg.202 Home Fine Spd, pg.179 Home Max Spd, pg.179 Home Pos Offs En, pg.180 Home Pos Offset, pg.179 Home Spd Ref, pg.179 Home Src Direc, pg.179 I Inc A Data Count, pg.206 Inc B Data Count, pg.206 Inc Data Act Mod, pg.206 Inc Data Min Mod, pg.205 Inc Data N Rev, pg.206 Inc Data Pos, pg.206 Inc Pulses / Rev, pg.206 Index Offset Sim, pg.150 Index Position, pg.206 Index Puls Simul, pg.150 Inertia, pg.129 Inertia Filter, pg.129 Inp Phase Exe T, pg.209 Inside Index Src, pg.179 Intake Air Temp, pg.119 IPA 1 Par Set, pg.187 IPA 2 Par Set, pg.187 J JOG FUNCTION, pg.151 Jog Reference, pg.151 Jog Speed Limit, pg.151 K KEYPAD, pg.121 KEYPAD KEY, pg.205 Keypad Key Word, pg.205 KEYPAD PSW, pg.203 Keypad PSWD, pg.203 L Life Time Factor, pg.200 LKG Inductance, pg.123, 202 Load Def Counter, pg.205 Load Def Err IPA, pg.188 Load Default Par, pg.119 Load Param PAD, pg.119 Loss Active, pg.159 Low Curr Ref Gen, pg.203 M M Ramp 1 CCW Acc, pg.153 M Ramp 1 CCW Dec, pg.153 M Ramp 1 CW Acc, pg.153 M Ramp 1 CW Dec, pg.153 M Ramp 2 CCW Acc, pg.154 M Ramp 2 CCW Dec, pg.154 M Ramp 2 CW Acc, pg.153 M Ramp 2 CW Dec, pg.154 M Ramp 3 CCW Acc, pg.154 M Ramp 3 CCW Dec, pg.154 M Ramp 3 CW Acc, pg.154 M Ramp 3 CW Dec, pg.154 Mains Voltage, pg.120 Max Brake Energy, pg.185 Max Deflux Curr, pg.132 Max Loss Pos, pg.205 Max Neg Torque, pg.131 Max Ovld Curr, pg.121 Max Pos Error, pg.166 Max Pos Torque, pg.131 Max Preset Value, pg.169 Max Prs Abs Val, pg.169 Max Ramp Rate, pg.128 Max Torque, pg.131 MaxAux Ph Exe T, pg.209 MaxBkg Tsk Exe T, pg.209 MaxDSP Exe T, pg.209 MaxFst Tsk Exe T, pg.209 MaxIn Ph Exe T, pg.209 MaxOut Ph Exe T, pg.209 MaxSl Tsk Exe T, pg.209 MaxSys Tsk Exe T, pg.209 Measured Speed, pg.209 Min Preset Value, pg.169 Min Prs Abs Val, pg.169 Modbus IPA Ofst, pg.190 Mot Enc Source, pg.124 Mot Nom K Torque, pg.123 Mot Nominal Curr, pg.123 Mot Ovld Control, pg.123 Mot Ovld Factor, pg.123 Mot Ovld Time, pg.123 Mot Thermal Prot, pg.123 MOTOR DATA, pg.123 MOTOR OVERLOAD, pg.123 MOTOR PARAM, pg.123 Motor Poles, pg.123 MOTOR POT, pg.155 Motor Pot Acc, pg.155 Motor Pot Dec, pg.155 Motor Pot Dir, pg.156 Motor Pot En, pg.156 Motor Pot Init, pg.156 Motor Pot Lo Lim, pg.155 Motor Pot Memo, pg.156 Motor Pot Mode, pg.156 Motor Pot Output, pg.156 Motor Pot Reset, pg.156 Motor Pot Up Lim, pg.155 Motor Speed, pg.118 MotPoles/EncRev, pg.126 MPos 0 Next Pos, pg.170 MPos 1 Next Pos, pg.171 MPos 2 Next Pos, pg.172 MPos 3 Next Pos, pg.173 MPos 4 Next Pos, pg.173 MPos 5 Next Pos, pg.174 MPos 6 Next Pos, pg.175 MPos 7 Next Pos, pg.175 Multi Pos Enable, pg.167 Multi Pos Index, pg.168 Multi Ramp Conf, pg.153 Multi Ramp Index, pg.153 Multi Spd Index, pg.152 Multi Speed 1, pg.152 Multi Speed 2, pg.152 Multi Speed 3, pg.152 Multi Speed 4, pg.152 Multi Speed 5, pg.152 Multi Speed 6, pg.152 Multi Speed 7, pg.152 Multi Speed Conf, pg.152 218 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide MULTIRAMP, pg.153 MULTIRAMP 1, pg.153 MULTIRAMP 2, pg.153 MULTIRAMP 3, pg.154 MULTISPEED, pg.151 N Neg Speed Limit, pg.129 O Out Current, pg.118 Out Frequency, pg.119 Out Phase Tsk T, pg.209 Out Vlt Max Lim, pg.132 Out Volt Filter, pg.132 Output Voltage, pg.119 Over Mod Factor, pg.208 Overload Control, pg.120 P P Loss Int Gain, pg.158 P Loss NoRes Thr, pg.158 P Loss Prop Gain, pg.158 P Loss Ramp, pg.158 P Loss Spd 0 Thr, pg.158 P Loss Trq Lim, pg.158 P Loss Volt Ref, pg.158 Par Set Cause Al, pg.187 PDC Enabling, pg.190 PDO 1 RX, pg.200 PDO 1 RX COBID, pg.200 PDO 1 RX TYPE, pg.200 PDO 1 TX, pg.200 PDO 1 TX COBID, pg.200 PDO 1 TX INH, pg.201 PDO 1 TX TYPE, pg.200 PDO 2 RX, pg.200 PDO 2 RX COBID, pg.200 PDO 2 RX TYPE, pg.200 PDO 2 TX, pg.201 PDO 2 TX INH, pg.201 PDO 2 TX TYPE, pg.201 PDO 3 RX, pg.200 PDO 3 RX COBID, pg.200 PDO 3 RX TYPE, pg.200 PDO 3 TX, pg.201 PDO 3 TX COBID, pg.201 PDO 3 TX INH, pg.201 PDO 3 TX TYPE, pg.201 Period Test Gen, pg.202 PHASING, pg.202 Phasing Speed, pg.202 PL Mains status, pg.158 PLC Correct ChkS, pg.209 PLC En Key Stat, pg.201 PLC Enable Key, pg.201 PLC Err Cause, pg.188 PLC Saved ChkS, pg.209 Pos 0 Progress, pg.170 Pos 0 Thr Offset, pg.169 Pos 1 Progress, pg.171 Pos 2 Progress, pg.172 Pos 3 Progress, pg.172 Pos 4 Progress, pg.173 Pos 5 Progress, pg.174 Pos 6 Progress, pg.174 Pos 7 Progress, pg.175 Pos Abs Thr, pg.169 Pos Actual Event, pg.169 Pos An Filter, pg.171 Pos An Mode, pg.171 Pos An Stdy Wind, pg.170 Pos An Wind Del, pg.170 Pos CCW Acc, pg.167 Pos CCW Acc 0, pg.170 Pos CCW Acc 1, pg.171 Pos CCW Acc 3, pg.172 Pos CCW Acc 4, pg.173 Pos CCW Acc 5, pg.174 Pos CCW Acc 6, pg.174 Pos CCW Acc 7, pg.175 Pos CCW Dec, pg.167 Pos CCW Dec 0, pg.170 Pos CCW Dec 1, pg.171 Pos CCW Dec 2, pg.172 Pos CCW Dec 3, pg.172 Pos CCW Dec 4, pg.173 Pos CCW Dec 5, pg.174 Pos CCW Dec 6, pg.174 Pos CCW Dec 7, pg.175 Pos Conv Fact, pg.201 Pos CW Acc, pg.167 Pos CW Acc 0, pg.170 Pos CW Acc 1, pg.171 Pos CW Acc 2, pg.172 Pos CW Acc 3, pg.172 Pos CW Acc 4, pg.173 Pos CW Acc 5, pg.174 Pos CW Acc 6, pg.174 Pos CW Acc 7, pg.175 Pos CW Dec, pg.167 Pos CW Dec 0, pg.170 Pos CW Dec 1, pg.171 Pos CW Dec 2, pg.172 Pos CW Dec 3, pg.172 Pos CW Dec 4, pg.173 Pos CW Dec 5, pg.174 Pos CW Dec 6, pg.174 Pos CW Dec 7, pg.175 Pos Dwell 0, pg.170 Pos Dwell 1, pg.171 Pos Dwell 2, pg.172 Pos Dwell 3, pg.173 Pos Dwell 4, pg.173 Pos Dwell 5, pg.174 Pos Dwell 6, pg.175 Pos Dwell 7, pg.175 Pos Event 0, pg.170 Pos Event 1, pg.171 Pos Event 2, pg.172 Pos Event 3, pg.173 Pos Event 4, pg.173 Pos Event 5, pg.174 Pos Event 6, pg.175 Pos Event 7, pg.175 Pos Exceeded, pg.169 POS PRESET 6, pg.174 POS PRESET 7, pg.175 POS PRESET (8-63), pg.175 POS PRESET 0, pg.170 Pos Preset 0, pg.170 POS PRESET 1, pg.171 Pos Preset 1, pg.171 POS PRESET 2, pg.171 Pos Preset 2, pg.171 POS PRESET 3, pg.172 Pos Preset 3, pg.172 POS PRESET 4, pg.173 Pos Preset 4, pg.173 POS PRESET 5, pg.173 Pos Preset 5, pg.173 Pos Preset 6, pg.174 Pos Preset 63, pg.175 Pos Preset 7, pg.175 Pos Preset 8, pg.175 Pos Reach Behav, pg.167 Pos Return, pg.180 Pos Return Acc, pg.180 POS RETURN CONF, pg.180 Pos Return Dec, pg.180 Pos Return Speed, pg.180 Pos Speed 0, pg.170 Pos Speed 1, pg.171 Pos Speed 2, pg.171 Pos Speed 3, pg.172 Pos Speed 4, pg.173 Pos Speed 5, pg.173 Pos Speed 6, pg.174 Pos Speed 7, pg.175 Pos Speed Limit, pg.129 Pos Stop Dec, pg.168 SIEIDrive - XVy-EV User’s Guide Chapter 11 - Parameters Index • 219 Pos Thr Close 1, pg.169 Pos Thr Close 2, pg.169 POS THR CONFIG, pg.169 Pos Window, pg.169, 170 Pos Window Time, pg.170 Pos Window Tout, pg.170 POSITION, pg.159 Position Config, pg.168 Position Gain, pg.129 Position I Gain, pg.129 POSITION LIMIT, pg.169 Position Mode, pg.168 Position Speed, pg.167 Position Torque, pg.169 Power Fail Count, pg.205 POWERLOSS, pg.157 Powerloss Config, pg.158 PPR Simulation, pg.150 Preset Index, pg.168 PWM Frequency, pg.120 Q Quadrature Volt, pg.209 R RAMP, pg.127 Ramp Enable, pg.127 Ramp Exp Factor, pg.127 Ramp Output, pg.118 Ramp Reference, pg.118 Reg Card Temp, pg.119 Reg Temp Alarm Th, pg.205 Relay Config, pg.121 Res Shift Time, pg.206 RESERVED, pg.208 Resolver Gain, pg.206 Resolver Poles, pg.124 Rpm Conv Fact, pg.201 RX Pos, pg.208 RX Pos Aux, pg.208 RX Rev, pg.207 RX Rev Aux, pg.208 S SAVE / LOAD PAR, pg.119 Save Param Count, pg.205 Save Param PAD, pg.119 Save Parameters, pg.119 Ser Num En Keys, pg.202 Serial Baud Rate, pg.121 Serial Del Time, pg.122 Serial Line Conf, pg.121 Serial Prot Type, pg.121 SERVICE, pg.204 Slow Tsk Exe T, pg.209 SPD / POS GAIN, pg.129 Spd Loop Filter, pg.208 Spd-Pos Enc Sour, pg.124 SPD/POS TESTGEN, pg.203 SPEED, pg.128 Speed Comp, pg.181 SPEED DRAW, pg.154 Speed Draw In, pg.154 Speed Draw Out, pg.154 Speed Draw Ratio, pg.154 Speed Gain, pg.129 Speed Reach Wnd, pg.129 Speed Ref 1, pg.128 Speed Ref 2, pg.128 Speed Ref 3, pg.128 Speed Reference, pg.118 Speed Test Gen, pg.203 Speed Thr, pg.129 Speed Thr Delay, pg.129 Speed Thr Wnd, pg.129 Speed Zero Delay, pg.129 Speed Zero Thr, pg.129 Start on Edge, pg.167 Start Status, pg.118 Startup Zero Pos, pg.180 Stop by Ramp, pg.167 SW Reset Count, pg.205 Sync Period, pg.200 Sys Tsk Exe T, pg.209 Sys Warn Cause, pg.188 T TASK MEASURES, pg.209 Temp Hys, pg.122 Temp Thr, pg.122 Test Gen Ref, pg.202 TEST GENERATOR, pg.202 TORQUE, pg.130 Torque Conv Fact, pg.201 Torque Current, pg.118 Torque Mode, pg.130 Torque Reduction, pg.131 Torque Ref 1, pg.130 Torque Ref 2, pg.130 Torque Thr, pg.131 Torque Thr Delay, pg.131 Tot Life Hours, pg.205 Trq Lim Config, pg.131 Trq Speed Limit, pg.131 TUNING, pg.202 Tuning Status, pg.202 TX Pos, pg.208 TX Rev, pg.208 U Unit Per Div, pg.167 Unit Per Rev, pg.166 UNITS, pg.201 User Vlt Max Lim, pg.132 V Virt DI at Dis, pg.140 Virt DI at Reset, pg.140 Virt DI at Start, pg.139 Virt DI Status, pg.139 Virt Dig Inp 0, pg.138 Virt Dig Inp 1, pg.138 Virt Dig Inp 10, pg.138 Virt Dig Inp 11, pg.138 Virt Dig Inp 12, pg.139 Virt Dig Inp 13, pg.139 Virt Dig Inp 14, pg.139 Virt Dig Inp 15, pg.139 Virt Dig Inp 2, pg.138 Virt Dig Inp 3, pg.138 Virt Dig Inp 4, pg.138 Virt Dig Inp 5, pg.138 Virt Dig Inp 6, pg.138 Virt Dig Inp 7, pg.138 Virt Dig Inp 8, pg.138 Virt Dig Inp 9, pg.138 VIRT DIG INPUTS, pg.138 Virt Dig Out 0, pg.144 Virt Dig Out 1, pg.144 Virt Dig Out 10, pg.145 Virt Dig Out 11, pg.145 Virt Dig Out 12, pg.145 Virt Dig Out 13, pg.145 Virt Dig Out 14, pg.145 Virt Dig Out 15, pg.145 Virt Dig Out 2, pg.144 Virt Dig Out 3, pg.145 Virt Dig Out 4, pg.145 Virt Dig Out 5, pg.145 Virt Dig Out 6, pg.145 Virt Dig Out 7, pg.145 Virt Dig Out 8, pg.145 Virt Dig Out 9, pg.145 VIRT DIG OUTPUTS, pg.144 Virt DO at Fail, pg.145 Virt DO at Reset, pg.145 Virt DO Status, pg.146 Volt Int Gain, pg.132 Volt Prop Gain, pg.132 220 • Chapter 11 - Parameters Index SIEIDrive - XVy-EV User’s Guide W Warning Status, pg.186 X XE Enc Abs Flt, pg.208 XE ENC ABS MEAS, pg.206 XE ENC INC MEAS, pg.205 XE Enc ppr, pg.124 XE Enc Supply, pg.124 XE Enc Type, pg.124 XE Hall Meas, pg.207 XE Hall N Error, pg.207 XE Hall Pos, pg.207 XE Hall Rev, pg.207 XE HALL TRACKS, pg.207 XE Inc Enc Flt, pg.208 XE Index Mask, pg.208 XER Enc Supply, pg.125 XER/EXP Enc Flt, pg.208 XER/EXP Enc Mod, pg.208 XER/EXP Enc ppr, pg.125 XER/EXP Ind Pos, pg.207 XER/EXP Puls Rev, pg.207 XER/EXP Rev, pg.207 XER/EXP Turn Pos, pg.207 Z ZERO FOUND CONF, pg.176 Zero Index En, pg.179 Zero Sensor Edge, pg.180 Zero Sensor En, pg.179 SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 221 Chapter 12 - Motor Cables Figure 12.1: Cable SBM Motor Series / Sinusoidal Encoder 1 0 1 1 1 2 1 3 2 4 3 S E S C - S B M I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O E N C O D E R S E P A R A T O D A I C A V I D I P O T E N Z A B C D E R V S P A G F N M U T H J L K 5 4 10 3 1 7 2 9 8 6 11 12 13 14 15 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n m a r r o n e - g i a l l o / b r o w n - y e l l o w a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b i a n c o - n e r o / w h i t e - b l a c k b l u / b l u e b i a n c o - g i a l l o / w h i t e - y e l l o w r o s s o / r e d v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E S E S C - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 2 3 1 4 5 6 7 8 9 T M J N L K A H P F E C D B v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b l u / b l u e r o s s o / r e d m a r r o n e - g i a l l o / b r o w n - y e l l o w b i a n c o - n e r o / w h i t e - b l a c k b i a n c o - g i a l l o / w h i t e - y e l l o w v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l e n c o d e r c a b l e n e a r p o w e r c a b l e D e n o m i n a z i o n e / t i t l e C A V O E N C O D E R ( S E S C ) S E S C e n c o d e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 1 8 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l R e v . 0 0 0 0 : 0 - S B M - 0 5 . 0 5 . 0 6 0 0 1 T o l t a n o t a p o n t e , c o r r e t t i c o l l e g . S 7 222 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide D e n o m i n a z i o n e / t i t l e C A V O E N C O D E R ( D E H S ) D E H S e n c o d e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 / 1 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 1 8 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 5 . 0 5 . 0 6 R e v . 0 0 0 1 0 0 0 : 0 1 0 7 1 2 2 4 3 D E H S - S B M I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O E N C O D E R S E P A R A T O D A I C A V I D I P O T E N Z A B C D E R V S P A G F N M U T H J L K 5 4 1 0 3 1 7 2 9 8 6 1 1 1 2 1 3 1 4 1 5 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n m a r r o n e - g i a l l o / b r o w n - y e l l o w a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / B l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b i a n c o - n e r o / w h i t e - b l a c k b l u / b l u e b i a n c o - g i a l l o / w h i t e - y e l l o w r o s s o / r e d v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E D E H S - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 2 3 1 4 5 6 7 8 9 T M J N K L A H P G C B v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b l u / b l u e r o s s o / r e d m a r r o n e - g i a l l o / b r o w n - y e l l o w b i a n c o - n e r o / w h i t e - b l a c k b i a n c o - g i a l l o / w h i t e - y e l l o w v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l e n c o d e r c a b l e n e a r p o w e r c a b l e E - S B M - S 1 1 T o l t a n o t a p o n t e , c o r r e t t i c o l l e g . Figure 12.2: Cable SBM Motor Series / Digital Encoder + Hall Sensors SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 223 D e n o m i n a z i o n e / t i t l e C A V O E N C O D E R ( S S I - E N D A T ) p e r E X P - A B S - E V S S I - E N D A T e n c o d e r c a b l e f o r E X P - A B S - E V D i s . / d w g . N ° E A M 2 3 6 3 D a t e S c a l e D w g . s i g n T S S P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 0 3 . 1 1 . 0 6 M o d i f i c a / t i t l e D a t a / d a t e l a b e l R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . 0 0 0 : 0 2 4 3 S S I / E N D A T - S B M I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O E N C O D E R S E P A R A T O D A I C A V I D I P O T E N Z A B C D E R V S P A G F N M U T H J L K R E A L I Z Z A R E U N P O N T E T R A I P I N A e S 5 4 10 3 1 7 2 9 8 6 11 12 13 14 15 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n m a r r o n e - g i a l l o / b r o w n - y e l l o w a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b i a n c o - n e r o / w h i t e - b l a c k b l u / b l u e b i a n c o - g i a l l o / w h i t e - y e l l o w r o s s o / r e d v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y S S I / E N D A T - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o E X P - A B S / E X P - A B S c o n n e c t o r c u s t o d i a c o n n e t t o r e E X P - A B S / E X P - A B S c a s e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b l u / b l u e r o s s o / r e d m a r r o n e - g i a l l o / b r o w n - y e l l o w b i a n c o - n e r o / w h i t e - b l a c k b i a n c o - g i a l l o / w h i t e - y e l l o w v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l e n c o d e r c a b l e n e a r p o w e r c a b l e m a k e a b r i d g e b e t w e e n p i n s A a n d S 0 - S B M - … … . . C o d i c e 6 J H C D L K A P E T F B 1 8 1 1 1 2 5 6 7 9 1 3 1 4 2 Figure 12.3: Cable SBM Motor Series / Absolute Encoder with SSi - EnDat Protocol 224 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide D e n o m i n a z i o n e / t i t l e C A V O R E S O L V E R r e s o l v e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 / 3 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 2 1 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l R e v . 0 0 0 0 : 0 2 4 3 R E S - S B M I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O R E S O L V E R S E P A R A T O D A I C A V I D I P O T E N Z A B C D E R V S P A G F N M U T H J L K 5 4 1 0 3 1 7 2 9 8 6 1 1 1 2 1 3 1 4 1 5 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k g i a l l o / y e l l o w r o s s o / r e d G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E R E S - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 1 1 1 2 1 0 7 2 1 3 E C F S T D B v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k g i a l l o / y e l l o w r o s s o / r e d i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l r e s o l v e r c a b l e n e a r p o w e r c a b l e U V m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e / b r o w n n e r o / b l a c k 1 4 1 5 - S B M - 0 5 . 0 5 . 0 6 0 0 1 T o l t a n o t a p o n t e . Figure 12.4: Cable SBM Motor Series / Resolver SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 225 D e n o m i n a z i o n e / t i t l e C A V O E N C O D E R ( S E S C ) S E S C e n c o d e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 / 4 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 2 1 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l R e v . 0 0 0 0 : 0 1 0 1 1 1 2 1 3 2 4 3 S E S C - S H J I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O E N C O D E R S E P A R A T O D A I C A V I D I P O T E N Z A 5 4 1 0 3 1 7 2 9 8 6 1 1 1 2 1 3 1 4 1 5 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n m a r r o n e - g i a l l o / b r o w n - y e l l o w a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b i a n c o - n e r o / w h i t e - b l a c k b l u / b l u e b i a n c o - g i a l l o / w h i t e - y e l l o w r o s s o / r e d v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E S E S C - S H J 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 2 3 1 4 5 6 7 8 9 1 8 5 8 9 3 7 1 2 4 2 1 0 1 4 1 5 1 1 1 9 v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b l u / b l u e r o s s o / r e d m a r r o n e - g i a l l o / b r o w n - y e l l o w b i a n c o - n e r o / w h i t e - b l a c k b i a n c o - g i a l l o / w h i t e - y e l l o w v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l e n c o d e r c a b l e n e a r p o w e r c a b l e 2 1 1 2 1 1 1 0 1 8 9 8 1 7 7 1 6 6 5 1 5 4 3 1 4 1 3 1 9 - S H J - 1 7 7 0 5 . 0 5 . 0 6 0 0 1 T o l t a n o t a p o n t e , c o r r e t t i c o l l e g . Figure 12.5: Cable SHJ Motor Series / Sinusoidal Encoder 226 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide D e n o m i n a z i o n e / t i t l e C A V O E N C O D E R ( D E H S ) D E H S e n c o d e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 / 5 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 2 1 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l R e v . 0 0 0 0 : 0 1 0 1 1 1 2 2 4 3 D E H S - S H J I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O E N C O D E R S E P A R A T O D A I C A V I D I P O T E N Z A 5 4 1 0 3 1 7 2 9 8 6 1 1 1 2 1 3 1 4 1 5 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n m a r r o n e - g i a l l o / b r o w n - y e l l o w a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b i a n c o - n e r o / w h i t e - b l a c k b l u / b l u e b i a n c o - g i a l l o / w h i t e - y e l l o w r o s s o / r e d v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E D E H S - S H J 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 2 3 1 4 5 6 7 8 9 1 6 1 4 1 9 1 1 1 0 6 1 3 1 2 3 5 7 v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e - b l u / b r o w n - b l u e g i a l l o / y e l l o w m a r r o n e - r o s s o / b r o w n - r e d g r i g i o / g r e y b l u / b l u e r o s s o / r e d m a r r o n e - g i a l l o / b r o w n - y e l l o w b i a n c o - n e r o / w h i t e - b l a c k b i a n c o - g i a l l o / w h i t e - y e l l o w v e r d e - r o s s o / g r e e n - r e d v e r d e - n e r o / g r e e n - b l a c k m a r r o n e - g r i g i o / b r o w n - g r e y i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l e n c o d e r c a b l e n e a r p o w e r c a b l e 4 - S H J - 2 1 1 2 1 1 1 0 1 8 9 8 1 7 7 1 6 6 5 1 5 4 3 1 4 1 3 1 9 0 5 . 0 5 . 0 6 0 0 1 T o l t a n o t a p o n t e , c o r r e t t i c o l l e g . 1 7 7 Figure 12.6: Cable SHJ Motor Series / Digital Encoder + Hall Sensors SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 227 D e n o m i n a z i o n e / t i t l e C A V O R E S O L V E R r e s o l v e r c a b l e D i s . / d w g . N ° E A M 1 9 0 6 / 6 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 2 1 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 2 6 . 1 1 . 0 2 R e v . 0 0 0 1 0 0 0 : 0 2 4 3 R E S - S H J I N C A S O D I C U S T O D I A I N P L A S T I C A S A L D A R E G L I S C H E R M I S U L C O N N E T T O R E M E T A L L I C O I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E M O R S E T T O I S O L A T O D A L G R O U N D S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I S I C O N S I G L I A D I I N S T A L L A R E I L C A V O R E S O L V E R S E P A R A T O D A I C A V I D I P O T E N Z A 5 4 1 0 3 1 7 2 9 8 6 1 1 1 2 1 3 1 4 1 5 G L I S C H E R M I I N T E R N I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k g i a l l o / y e l l o w r o s s o / r e d G L I S C H E R M I I N T E R N I D E V O N O E S S E R E A C O N T A T T O C O N L O S C H E R M O P R I N C I P A L E R E S - S H J 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o n n e t t o r e l a t o d r i v e / d r i v e c o n n e c t o r c u s t o d i a c o n n e t t o r e d r i v e / c a s e d r i v e c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 1 1 1 2 1 0 7 2 1 3 C B H I J G F v e r d e / g r e e n a r a n c i o / o r a n g e m a r r o n e / b r o w n n e r o / b l a c k g i a l l o / y e l l o w r o s s o / r e d i n t e r n a l s h i e l d m u s t b e i n s u l a t e d ( n o c u t ) s c h e r m o / s h i e l d i n t e r n a l s h i e l d m u s t b e o n t h e m a i n s h i e l d c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n c o n n e c t s h i e l d s w i t h g r o u n d i n s u l a t e d t e r m i n a l b o a r d w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d c o n n e c t s h i e l d s o n t h e m e t a l l i c c o n n e c t o r i f p l a s t i c c a s e d o n ' t i n s t a l l r e s o l v e r c a b l e n e a r p o w e r c a b l e A E m a r r o n e / b r o w n n e r o / b l a c k m a r r o n e / b r o w n n e r o / b l a c k 1 4 1 5 B C G F A H J E D I - S H J - C H A N G E D P O S I T I O N P I N C - H Figure 12.7: Cable SHJ Motor Series / Resolver 228 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide D e n o m i n a z i o n e / t i t l e C A V O P O T E N Z A p o w e r c a b l e D i s . / d w g . N ° E A M 1 9 0 7 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 3 R e v i s i o n e / r e l e a s e 2 2 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . 0 0 0 0 0 0 0 : 0 2 I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E C O L L A R I N O P O T - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o l l a r i n o / 3 6 0 ° g r o u n d t e r m i n a l t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 s c h e r m o / s h i e l d c o n n e c t s h i e l d s w i t h 3 6 0 ° g r o u n d t e r m i n a l w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d B C A D A 1 B 2 C 3 D g i a l l o - v e r d e / y e l l o w - g r e e n U 2 / T 1 1 V 2 / T 2 2 W 2 / T 3 3 P E 2 5 6 5 6 g i a l l o - v e r d e / y e l l o w - g r e e n P O T - S B M S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n t o p o w e r t e r m i n a l b o a r d d r i v e I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) S B M 5 / 7 s c h e r m o / s h i e l d Figure 12.8: SBM 5-7 Motor Series Power Cable SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 229 D e n o m i n a z i o n e / t i t l e C A V O P O T E N Z A + F R E N O p o w e r + b r a k e c a b l e D i s . / d w g . N ° E A M 1 9 0 7 / 1 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 3 R e v i s i o n e / r e l e a s e 2 2 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . 0 0 0 0 0 0 0 : 0 2 I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E C O L L A R I N O P O T + B - S B M 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o l l a r i n o / 3 6 0 ° g r o u n d t e r m i n a l t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 s c h e r m o / s h i e l d c o n n e c t s h i e l d s w i t h 3 6 0 ° g r o u n d t e r m i n a l w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d B C F A E D A 1 B 2 C 3 D g i a l l o - v e r d e / y e l l o w - g r e e n U 2 / T 1 1 V 2 / T 2 2 W 2 / T 3 3 P E 2 E 5 F 6 5 6 g i a l l o - v e r d e / y e l l o w - g r e e n P O T + B - S B M S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n b r a k e w i r e s t o p o w e r t e r m i n a l b o a r d d r i v e S B M 5 / 7 s c h e r m o / s h i e l d Figure 12.9: SBM 5-7 Motor Series Power + Brake Cable 230 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide D e n o m i n a z i o n e / t i t l e C A V O P O T E N Z A p o w e r c a b l e D i s . / d w g . N ° E A M 1 9 0 7 / 2 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 3 R e v i s i o n e / r e l e a s e 2 2 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . 0 0 0 0 0 0 0 : 0 2 I N C A S O D I I N T E R R U Z I O N E I N T E R M E D I A E S E G U I R E L A C O N T I N U I T A ' D E G L I S C H E R M I T R A M I T E C O L L A R I N O P O T - S H J 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r c o l l a r i n o / 3 6 0 ° g r o u n d t e r m i n a l t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 s c h e r m o / s h i e l d c o n n e c t s h i e l d s w i t h 3 6 0 ° g r o u n d t e r m i n a l w h e n t h e c a b l e i s c o n n e c t e d t h r o u g h t e r m i n a l b o a r d B C A D A 1 B 2 C 3 D g i a l l o - v e r d e / y e l l o w - g r e e n U 2 / T 1 1 V 2 / T 2 2 W 2 / T 3 3 P E 2 5 6 5 6 g i a l l o - v e r d e / y e l l o w - g r e e n P O T - S H J S I C O N S I G L I A U N A C O N N E S S I O N E C O N T I N U A S E N Z A I N T E R R U Z I O N I T R A I D U E C O N N E T T O R I c o n n e c t d i r e c t l y t h e c a b l e t o b o t h c o n n e c t o r s w i t h o u t a n y i n t e r r u p t i o n t o p o w e r t e r m i n a l b o a r d d r i v e I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) I C O N D U T T O R I N O N U T I L I Z Z A T I D E V O N O E S S E R E I S O L A T I ( N O N T A G L I A T I ) n o t u s e d w i r e s m u s t b e i n s u l a t e d ( n o c u t ) - S H J - Figure 12.10: SHJ Motor Series Power Cable SIEIDrive - XVy-EV User’s Guide Chapter 12 - Motor Cables • 231 D e n o m i n a z i o n e / t i t l e C A V O F R E N O S H J b r a k e c a b l e D i s . / d w g . N ° E A M 1 9 0 7 / 3 D a t e S c a l e D w g . s i g n D L L P a g i n a / p a g e 1 / 2 R e v i s i o n e / r e l e a s e 2 3 . 1 0 . 0 2 0 M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . M o d i f i c a / t i t l e D a t a / d a t e l a b e l 0 0 . 0 0 . 0 0 R e v . 0 0 0 0 0 0 0 : 0 B R - S H J 1 4 5 D E S C R I Z I O N E / d e s c r i p t i o n c o n n e t t o r e l a t o m o t o r e / m o t o r c o n n e c t o r t u b e t t o t e r m o r e s t r i n g e n t e / p l a s t i c t u b e c a v o / c a b l e s i g l a c a v o / c a b l e l a b e l P o s . 1 2 3 4 5 6 6 A B B R - S H J B C A m a r r o n e / b r o w n b l u / b l u e m a r r o n e / b r o w n b l u / b l u e Figure 12.11: SHJ Motor Series Brake Cable 232 • Chapter 12 - Motor Cables SIEIDrive - XVy-EV User’s Guide SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 233 Appendix - Field bus and serial interface 1.0 Integrated CANopen Interface CANopen is a communication profile for CAL-based industrial systems. The reference document is the CANopen CAL-Base COMMUNICATION PROFILE for Industrial Systems; CiA Draft Standard 301 Version 3.0. Issue October 1996 by CAN in Automation e. V. The CAN protocol (ISO 11898) is CAN2.0A with an 11-bit identifier. The integrated CANopen interface is developed as a “Minimum Capabilty Device”. The data exchange is cyclic; the Master unit reads the Slave input data and writes the Slave output data; the Baud Rates for the interface are those foreseen by the CANopen specification. 1.1 CANopen Functions This chapter describes the controlled functions of the CANopen com- munication profile. The main features are: 1) The “Minimum Boot-up” is managed; the “Extended Boot-up (CAL)” is not managed. 2) The SYNC function is implemented. 3) The PDO asynchronous assignment and RTR are managed. 4) The Node Guarding is managed. 5) The emergency message is managed (“EMERGENCY”). 6) The Dynamic ID distribution function (DBT slave) is not managed. 7) A “Pre-Defined Master/Slave connection” is implemented to sim- plify the Master tasks during the initialization phase. “Inhibit-Times” (in units of 100 uS) can be modified up to a value of 1 min. 8) The high-resolution synchronization is not supported. 9) “TIME STAMP” is not managed. 10) On the access of the structured parameters, the OFFhex option subindex (access to the whole object) is not managed. 11) In order to obtain a higher efficiency level, only the “Expedited” data transfer (max. 4 Bytes) of the SDO services is managed. 1.1.1 Pre-defined Master/Slave Connection The “Pre-defined Master/Slave connection” allows a peer-to-peer com- munication between one Master and 127 Slaves; the Broadcast address is zero. 1.1.2 NMT Services (Network Management) The NMT “mandatory” services are: - Enter_Pre-Operational_State CS = 128 - Reset_Node CS = 129 - Reset_Communication CS = 130 Being that the “Minimum Boot-up” is used, also the following NMT serv- ices are managed: - Start_Remote_Mode CS = 1 CiA : CAN in Automation, user international group. CAN : Controller Area Net- work. DBT: Distributor. It is a serv- ice element of the CAN Appli- cation Layer in the CAN Ref- erence Model; the DBT has the task to assign COB-ID to the COBs used by the CMS. PDO: Process Data Object, service messages without confirmation used for the real time data transfer from/to the device. SDO: Service Data Object, service messages with confir- mation used for the acyclic data transfer from/to the de- vice. 234 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide - Stop_Remote_Mode CS = 2 The COB-ID * of an initialization NMT service is always at 0; CS is the Command Specifier defining the NMT service. 1.1.3 Initialization The XVy drive supports the Node Guarding mechanism. The Node Guarding configuration can be performed through the master via the standard Object Dictionary elements (1006h, 100Ch, 100Dh). The drive checks the master functioning conditions through the Life Guarding. If the check fails, the drive enables the "Buss Loss" alarm. The Life Guarding threshold can be calculated as follows: Value/Condition 60ms Default. No parameterization of the Node Guarding. SYNC_PERIOD (*) LIFE_TIME_FACTOR Use of the synchronous mode. If not stated by the master, the LIFE_TIME_FACTOR default value is equal to 3. NODE_GUARDING_PERIOD (*) LIFE_TIME_FACTOR NODE_GUARDING_PERIOD set by the master If not otherwise stated, the LIFE_TIME_FACTOR value is equal to 3 1.1.4 Communication Object This chapter describes the communication objects of the CANopen pro- tocol; they are managed by the interface card. The managed communication objects are: 1) 1 SDO reception Server. 2) 1 SDO transmission Server. 3) 2 reception PDOs. 4) 2 transmission PDOs. 5) 1 Emergency Object. 6) 1 Node Guarding - Life Guarding. 7) 1 SYNC object. The following table lists the used communication objects with their pri- ority level and the Message Identifier; the “Resulting COB-ID” is obtained by adding the Node-ID (card address) to the number. OBJECT PRIORITY MESSAGE ID 1st SDO rx 6 1536 1st SDO tx 6 1408 1st PDO rx 2 512 1st PDO tx 2 384 2nd PDO rx 2 768 2nd PDO tx 2 640 EMERGENCY 1 220 NODE GUARDING not used 1792 SYNC 0 128 Table 1.4.1: Communication Objects NMT: Network Management. It is a service element of the CAN Application Layer in the CAN Reference Model; it initializes, configures and controls the errors of a CAN network. CS: Command Specifier; it defines the NMT service. COB = Communi cati on Object (CAN Message). It is a transport unit inside a CAN network. The data must be sent in network inside a COB. COB-ID = COB-Identifier. It identifies a COB inside the network. It also states the COB priority. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 235 Node Guarding has no priority because it is a special NMT service; it has the Message-ID because it is not a Broadcast service. 1.1.5 Object Dictionary Elements The Object Dictionary is accessible from a master CANopen and from the keypad configurator. The following table shows the communication objects used and accessibility with master CANopen, keypad configurator. Index (hex) IPA Parameter Name 1000 Device Type 1001 Error Register 1002 Manufacturer status register 1005 COB-ID SYNC Message 1006 40902 Communication cycle period 1008 Manufacterer Device Name 1010 Store parameter 1009 Manufacterer Hardware Version 100A Manufacterer Software Version 100C 40903 Guard Time 100D 40904 Life Time Factor 100F Number of PDOs supported 1014 40905 COB-ID Emergency 1018 Identity object 1400 40910, 40915 1st Receive PDO 1401 40911, 40916 2nd Receive PDO 1402 40912, 40917 3rd Receive PDO 1600 Receive PDO1 mapping parameter 1601 Receive PDO2 mapping parameter 1602 Receive PDO3 mapping parameter 1A00 Transmit PDO1 mapping parameter 1A01 Transmit PDO2 mapping parameter 1A02 Transmit PDO3 mapping parameter 1800 40920, 40925, 40930 1st Transmit PDO 1801 40921, 40926, 40931 2nd Transmit PDO 1802 40922, 40927, 40932 3rd Transmit PDO Table 1.5.1: Objects used by the CANopen communication profile The objects shown in bold in the table allow writing of the parameters assigned with the exchange of data in the PDO. The allocation criterion is variable, and depends on the size (in bytes) of the parameter exchanged. NOTE! It is possible to save the objects permanently to the drive flash memory: 1) via configurator, only for objects with parameter reference (e.g.: index 1000 -> IPA 40902) 2) with the SAVE function from CANopen (object index 1010). 1.1.6 Rx PDO Entries The structure of the PDO Communication Parameter (index 1400h, 1401h) is: 1) Subindex 0 (Number of supported entries ) = 2 2) The structure of Subindex 1 (COB-ID used by the PDO) is: 236 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide - Bit 31 (valid/invalid PDO) can be set via SDO. - Bit 30 (RTR Remote Transmission Request) = 0 because this func- tion is not supported. - Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A). - Bits 11-28 are not used. - Bit 0-10 COB-ID (see table 1.4.1). 3) Cyclic-synchronous Subindex 2 (Transmission Type), or synchro- nous according to the master performed setting (1 if SYNC has been foreseen, 254...255 if asynchronous). If not stated, the synchronous mode is active. 1.1.7 Tx PDO Entries The structure of the PDO Communication Parameter (index 1800h, 1801h) is: 1) Subindex 0 (Number of supported entries ) = 3 2) The structure of Subindex 1 (COB-ID used by the PDO) is: - Bit 31 (valid/invalid PDO) can be set via SDO. - Bit 30 (RTR Remote Transmission Request) = 0 because this func- tion is not supported. - Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A). - Bits 11-28 are not used. - Bit 0-10 COB-ID (see table 1.4.1). 3) Cyclic-synchronous Subindex 2 (Transmission Type), or synchro- nous according to the master performed setting (1 if SYNC has been foreseen, 254...255 if asynchronous). If not stated, the synchronous mode is active. 4) Inhibit time 1.1.8 SDO Entries Only the “Expedited” data transfer mode (max. 4 Bytes) is used. The structure of the SDO Communication Parameter is: 1) Subindex 0 (Number of supported entries ) = 3 because the device is a Server of the SDO service. 2) The structure of the Subindex 1 and 2 (COB-ID used by the SDO) is: - Bit 31 (valid/invalid SDO); it is equal to 1 because just the Default SDOs are used. - Bit 30 reserved = 0. - Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A). - Bits 11-28 are not used. - Bit 0-10 COB-ID (see table 1.4.1). The element “node ID of SDO’s client resp. server” is not supported because just the Default SDOs are used. 1.1.9 COB-ID SYNC Entries The structure of the 32 bits contained in the COB-ID SYNC communi- cation parameter is: - Bit 31 = 1 because the CANopen interface card is a “consumer” of SYNC messages. - Bit 30 = 0 because the interface card does not create SYNC mes- sages. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 237 - Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A). - Bits 11-28 are not used. - Bit 0-10 COB-ID (see table 1.4.1). 1.1.10 COB-ID Emergency The structure of the 32 bits contained in the COB-ID Emergency Message communication parameter is: - Bit 31 = 0 because the CANopen interface card is not a “consumer” of Emergency messages. - Bit 30 = 0 because the interface card creates Emergency messages. - Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A). - Bits 11-28 are not used. - Bit 0-10 COB-ID (see table 1.4.1). 1.2 CANopen Management The user interface of the CANopen protocol is performed via the drive parameters. The parameters are controlled via hierarchical menus. All the writing parameters referring to the field bus are active only after the drive reset. Here following is a list of drive parameters useful to control the CANopen protocol. Fieldbus menu The CANopen protocol can be enabled by setting the IPA 40000 Field Bus Type parameter as "Can Open". The other parameters of this menu are: IPA Par. Name Type Default valueAttr. 40100 Bus Address 1 byte unsigned 0 Write 40001 Bus Baude Rate 4 bytes unsigned 0 Write 40110 CC Enabling Enum Enabled Write 40111 PDC Enabling Enum Enabled Write 40114 FB Fail Casue 4 bytes unsigned 0 Read only - Bus Address = address of the node; - Bus Baude Rate = network baud rate. The baudrate is stated directly in baud (ex. 125kb = 125000); - PDC Enabling and CC Enabling” = allow the user to enable/disable the corresponding channels. With the PDC channel it is possible to exchange up to 8 parameters The FB Fail Cause parameter defines the error cause. Presently the following causes are provided: Cod. Meaning 1 Protocol incorrect 18..24 Configuration error on M2S reception channel 25..31 Configuration error on S2M transmission channel 32 Too many bytes on M2S reception channel 33 Too many bytes on S2M transmission channel 34-35 errored IPA for PLC allocation 36 More than 4 words allocated as Fast250 us on M2S 238 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 37 More than 4 words allocated as Fast250 us on S2M 100 Baud rate not correct 101 Node address not correct 103 Non expedited SDO type not supported 104 SDO length not correct 105 Error on NMT messages 106 NMT code not supported 107 Can line on “Bus-off” status 108 Impossible to be operational (can never happen) 111 RPDO dimension exceeded 112 TPDO dimension exceeded 1.3 Process Data Channel Control This function allows to allocate the drive parameters or application vari- ables to the Process Data Channel data. As for the CANopen protocol, the PDC is performed via the PDO mes- sages ((Process data Object). The CANopen protocol uses a number of words for the Process Data Channel (abbr. PDC Process Data Channel ), which can always be set. The fieldbus Process Data Channel configuration is the following: Data 0 Data... Data n The drive can both read and write the Process Data Channel data. A datum can be made both of 2 and 4 bytes. The word "data" refers to any quantity of bytes included between 0 and 8, if the byte total number required is not higher than 16. Example It is possible to have: - from 0 to 12 data with 2 bytes - 1 datum with 4 bytes + from 0 to 10 data with 2 bytes - 2 data with 4 bytes + from 0 to 8 data with 2 bytes - 3 data with 4 bytes + from 0 to 6 data with 2 bytes - 4 data with 4 bytes + from 0 to 4 data with 2 bytes - 5 data with 4 bytes + from 0 to 2 data with 2 bytes - 6 data with 4 bytes The data exchanged via the PDC can be of two types: drive parameters and variables of an MDPlc application. The use of the MDPlc variables is described in par. 7.5.3.3 The composition of the PDC input and output data is defined via suitable parameters as described in the paragraphs 1.3.1 and 1.3.2. The master writes the data defined as PDC input and reads the data defined as PDC output. Input Output Drive PDC CanOpen Interface PDO Rx PDO Tx SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 239 1.3.1 PDC Input Configuration (FB XXX MS Parameter) The configuration of the PDC input channel can be performed via 12 menus with the same structure. IPA Par. Name Typo Default value Attr. Unit 40190 FB Assign M->S 1 Enum Not assign Writing 40200 FB IPA M->S 1 2 bytes unsigned 0 Writing -- 40210 FB Format M->S 1 Enum 16 bit int Writing -- 40220 FB Exp M->S 1 2 bytes unsigned 16 bit integer Writing This structure refers to the first input parameter. The structure is repeated 12 times for the 12 possible input parameters. The following parameter indexes are 40201..40221, 40202..40222 etc. The FB Assign M->S 1 parameter can be selected as follows: - Parameter: the PDC corresponding datum is combined to a parameter identified by FB IPA M->S 1. The parameters are entered into engineering units and are exchanged in an asynchronous way. The FB Format M->S 1 parameter sets the parameter writing format. The format can be different from the parameter original one. The FB Exp M->S 1 parameter defines the 10th power which the parameter is multiplied by before being transferred to the drive. A practical example for the parameter use: The Els Ratio 0 - IPA 32001, parameter, with a float format is written by the master. It must be written with an integer format, signed and three decimal digits. Set the parameters as follows: 40200 FB IPA M->S 1 @ 32001 40210 FB Format M->S 1 @ “16 bit integer” 40220 FB Exp M->S 1 @ 3 In this way the master must write: 1000 to set the value 1.000 -1234 to set the value -1.234. - Direct Access: the PDC corresponding datum is combined to a parameter identified by FB IPA M->S 1.1. The parameters are entered into internal counts and are exchanged in an asynchronous way (one every 8 msec). The writing format identified by the FB Format M->S 1 parameter (see the table in the FIELDBUS menu) must coincide with the drive internal format. As for parameters with a float internal format, it is possible to choose "32 bit integer" and the conversion into a float format between the received datum and the internal datum is performed automatically. - Filling: the corresponding PDC datum is not associated with any parameter, but a number of bytes is inserted equal to 0 corresponding to the parameter FB Format M->S 1. - Fast Access parameter (250 us): the corresponding PDC datum is associated with a parameter identified by FB IPA M->S 1. The parameters are emitted in internal counts and exchanged synchronously (every 250 usec). The write format identified by 240 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide parameter FB Format M->S 1 (see FIELDBUS menu table) must match that within the drive. With this data exchange mode, up to 4 words from the 12 available can be assigned. Before establishing the Profibus communication between the Master and the drive, it is necessary to assign the drive parameters to the Process Channel. These parameters can be activated by resetting the drive. 1.3.2 PDC Output Configuration (FB XXX SM Parameter) The output configuration of the PDC channel can be performed via 12 menus with the same structure. IPA Par. Name Typo Default value Attr. Unit 40290 FB Assign S->M 1 Enum Not assign Writing -- 40300 FB IPA S->M 1 2 bytes unsigned 0 Writing -- 40310 FB Format S->M 1 Enum 16 bit int Writing -- 40320 FB Exp S->M 1 2 bytes unsigned 16 bit integer Writing -- This is the structure for the first output parameter. The structure is re- peated 12 times for the 12 possible output parameters. The indexes of the following parameters are 40301..40321, 40302..40322 etc. The FB Assign S->M 1, FB IPA S->M 1 and FB Format S->M 1 and FB IPA S->M 1 parameters have the same meaning as those described in point 1.3.1. 1.3.3 Use of the PDC in MDPlc Applications It is possible to configure both the PDC input and output data in order to allow the data direct access via the MDPlc application code. For more details see the manual “Drive programming with MDPlc” on “XVy tools” cd-rom. 1.4 SDO Management The SDO service is available only if the 40110 CC Enabling parameter is ON. The drive parameters can be accessed via the “MSPA” Manufacturer Specific Profile Area (2000hex< index <5FFFhex). As the drive parameter indexes (IPA) normally exceed the CANopen MSPA, the XVy drive is supplied with an offset value allowing the access to the drive parameters. The index to be shown in the SDO command to access a drive parameter is obtained via the following rules: - Offset mode SDO index = 2000 hex + IPA-OFFSET The OFFSET value can also be accessed (and modified) via the 5FFF hex index of the CANopen Object Dictionary. The default value is 1000. The Subindex field has always to be set with 0, if not, an error message is displayed. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 241 - Mode Mod. 100 SDO index = IPA/100 + 2000 hex (if parameters) SDO index = IPA/100 + 4000 hex (direct access) SDO subindex = IPA%100 (parameters and direct access) The Data field must contain the value of the drive parameter. Example (mod Offset): Writing the value 1000 in the 23000 (Speed Gain) parameter. Set, for example, the OFFSET value (5FFF hex index of the CANopen Object Dictionary) at 18000. The required information is: 1) The SDO index resulting from the formula is 2000 hex + 23000dec - 18000 dec = 13192 dec (3388 hex) 2) The value to be written is 1000, corresponding to 03E8 hex. Drive parameter value to be assigned to SDO Index Subindex Value Subindex always 0 Drive parameter index 88 33 00 E8 03 00 00 hex hex hex hex hex hex hex Example (mod 100): Value 1000 written to parameter 23001 (Position Gain). First of all set 40906 (Cus OBJ Idx Mode) to Mod.100 The following information is required: 1) The SDO index is 2000 hex + 23001 dec /100 = 8422 dec (20E6 hex) 2) Sub-index: 23001 Mod. 100 = 1 dec (1 hex) 3) Value to be written 1000, corresponding to 03E8 hex. In case an error occurs during the parameter reading or setting, the CANopen interface sends an Abort domain transfer message; the value of Application-error-codes has the following meanings: Error class Error code Additional code (hex) Meaning 6 0 0 Parameter doen't exist 8 0 22 Acces failed because of present device state 6 1 2 Read/Write only error 8 0 0 Generic error 6 9 32 Minimum value 6 9 31 Maximum value 5 4 0 SDO time_out 5 4 1 Invalid command 3 9 30 Invalid value 242 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 1.5 Alarms Fieldbus alarms The bus failure is signaled via the 26-"Field bus failure" alarm. As for CANopen, the possible failure causes are: - "Bus-off" condition of the CAN line; - th drive has not been enabled in the "Operational" mode; - the "Life Guarding" threshold has been overcome. This alarm becomes active only when the drive is enabled. If ON, the 40115 FB Alarm Watch parameter enables the generation of the "Field bus failure" alarm also when the drive is disabled. Drive alarm handling Considering that the fieldus must function with different firmware appli- cation systems, the "drive alarm status" is not foreseen. The "drive alarm status" is not therefore given any special treatment. The XVy firmware provides a series of parameters capable of detecting the drive status. Alarm reset The alarm reset is one of the drive standard functions, i.e. each application provides the same parameter for this function. It is therefore possible to reset the alarms via the configuration channel on the firmware of all the different drives.The alarm reset can be performed by sending the value 1 to the parameter 18012. The XVy firmware provides the "Virtual Digital Input" function, through which it is possible effect a bit-controlled alarm reset. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 243 2.0 Modbus Refer to “MODBUS RTU Protocol, chapters 1 and 2“ Instruction manual (SIEI code 1S5E68). NOTE! Do not use address 0 in the Modbus protocol (Drive Serial Add, IPA 18031) since it is reserved for broadcast command. Set Serial Prot Type (IPA 18032) as "Modbus". 2.1 Modbus Functions The following functions are implemented on the drive: Code Function Description 01 (*) Read coil status This function allows to require the ON or OFF condition of the Drive discrete parameters (Coil). The broadcast mode is not allowed. 02 (*) Read input status This function allows to require the ON or OFF condition of the Drive discrete parameters (input). The broadcast mode is not allowed. 03 (*) Read holding registers This function allows to require the value of 16-bit (word) registers containing Drive parameters. The broadcast mode is not allowed. 06 Preset single register This function allows to set the value of a single 16-bit register. The broadcast mode is allowed. 16 (*) Preset multiple registers This function allows to set the value of a consecutive block made of 16-bit registers. The broadcast mode is allowed. Note: For a detailed function description refer to “MODBUS RTU Protocol, chapter 3” Instruction manual (*) Multiple request cannot be executed. Only one parameter can be accessed at the time. NOTE! The 16-bit Drive parameter (word or integer type) is referred to as 16-bit Modbus register; a 32-bit Drive parameter (Dword, long or float type) covers therefore two Modbus registers. For the float format, the first word is the most significative part of the 32- bit data. For the Dword or long format, the first word is the less significative part of the 32-bit data. Each word is the register. The registers require two bytes where the first one contains the most significative section. 2.2 Error Management Refer to “MODBUS RTU Protocol, chapter 4” Instruction manual (SIEI code 1S5E68). 2.2.1 Exception codes The protocol implemented on the drive foresees the following exception codes. Code Name Meaning 00 ILLEGAL ADDRESS Address is not valid. 01 ILLEGAL FUNCTION The received function code does not correspond to a function allowed on the addressed slave. 244 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 02 ILLEGAL DATA ADDRESS The address number, which the data field refers to, is not a register allowed on the addressed slave. 03 ILLEGAL DATA VALUE The value to be allocated, which the data field refers to, is not allowed for this register. 04 SLAVE FAIL The Slave cannot execute the requested command 05 SLAVE ACK The Slave has accept and is executing the requested command 06 SLAVE BUSY The Slave is busy 07 NAK - NEGATIVE The function can not be performed with the present operating ACKNOWLEDGEMENT conditions or attempt to write an only-reading parameter. IMPORTANT! The settings of Serial Baud Rate (IPA 20024) is enabled with the drive start-up; it is therefore required to store it and to switch the drive off. 2.3 System Configuration To use the Modbus protocol within the drive, the user must configure the Serial Prot type (IPA 18032) = [1] Modbus protocol and the address DriveSerial Add (IPA 18031) which cannot be = 0 (DRIVE CONFIG/ COMM CONFIG menu). The serial port configuration is managed by the DRIVE CONFIG / Comm Config menu (parameters: Drive Serial Add (IPA 18031), Serial Baud Rate (IPA 20024), Serial Line Conf (IPA 20025), Serial Del Time (IPA 20026) and Serial Prot Type“ (IPA 18032). In order to communicate with the drive through the GF-eXpress configurator in Modbus Protocol, it is necessary to set “Modbus” in the “Communication setup” on Target windows. 2.4 Appendix - Register and Coil Modbus Tables In the drive the register number and parameter index (IPA) are the same. 2.5 Modbus example The following functions are implemented : 03 Read Output register : This function is used to read the parameters . It is possible to read 16- bits parameters ( word & int ) and 32bit parameters ( dword & float ) . Only one parameter can be accessed on each request : 16 bit parameters are read by reading the register corresponding to the IPA, while 32 bits parameters are accessed by reading 2 registers starting from the one corresponding to the IPA of the drive . It is not possible to read more than two registers . Example with int ( word is the same ) : reading 18710 Heatsink Temp . The following bytes should be sent through the RS-485 line : 01,03,49,15,00,01,83,92 SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 245 With this meaning : 01 is the address of the drive (as in 18031 Drive Serial Add). Each drive must have a unique address, starting from 1, because 0 is reserved. 03 is the function number Read Output register 49 , 15 is the register number corresponding to IPA 18710 . This is 0x4915 in hex, MSB first . Modbus addresses start from 1 , so this is 18710-1 in hex . 00 , 01 is the number of 16 bit registers to read . 83 , 92 is the calculated CRC16 of the message The drive should answer in a similar way (temperature may be different): 01, 03, 02, 00, 1D, 78, 4D If the heatsink temperature is 29°C. If the answer looks different or there is no answer at all , see the section "Errors" below . Example with dword : If we want to read the status of the alarms, IPA 24000 Alarm Status , this is the message to send : 01, 03, 5D, BF, 00, 02 , E6 , 43 This is the answer of the drive ( no active alarms ) : 01, 03, 04, 00, 00, 00, 00, FA, 33 Dwords are exchanged in this order : LSW MSW . In each word : MSB , LSB . Example with float : Let's try to read 18735 Out Current: 01, 03, 49, 3E, 00, 02, B3 , 9B This is the answer ( drive is not running ) : 01, 03, 04, 00, 00, 00, 00, FA, 33 If for instance the current is 40: 01, 03, 04, 87, D7, 42, 1F, 13, D7 The binary format of the floating point numbers is beyond the scope of this document. 06 Preset single register : This function sets single 16 bit parameter . Please do not use on a 32 bit parameter . To set for example 23000 Speed Gain to 100, send the following string 01, 06, 59, D7 , 00, 64 , 2A , 85 246 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide The drive will answer : 01, 06, 59, D7, 00, 64, 2A, 85 If everything is ok . Please note that this function can be used in broadcast mode (address 0): 00, 06, 59, D7 , 00, 64 ,2B,54 In this case the drive does not answer , but will apply the value anyway . 16 Preset multiple registers : This function is used to set parameters . Only one parameter can be set on each request . It is not possibile to set multiple parameters . Example with int : writing to 23000 Speed Gain , value is 100 01, 10, 59, D7 , 00, 01, 2,00,64 ,7C , 99 It is necessary to write the register address , the number of registers (1 for 16 bit parameters ) , the number of data bytes ( 2 for 16 bit parameters) and then the data . The drive answers in this way : 01, 10, 59, D7, 00, 01, A3, 6D Example with dword: writing to 20162 DIG_IN_NEG 01, 10, 4E, C1 , 00, 02, 4,00,00,00,00,43,90 For 32 bits parameters , number of registers is 2 and number of data bytes is 4 . Answer : 01, 10, 4E, C1, 00, 02, 07, 1C The byte order is the same as in function 03 . Example with float: writing to 21200 Speed Ref 1 01, 10, 52, CF , 00, 02, 4,00,00,00,00,5A,DC Sets speed ref 1 to 0 . The answer is : 01, 10, 52, CF, 00, 02, 61, 4F SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 247 3.0 DeviceNet Interface (XVy-DN) This chapter describes the software for connecting of XVy drives to DeviceNet networks. It is intended for design engineeres and technicians responsible for the maintenance, commissioning and operation of DeviceNet systems. A basic knowledge of DeviceNet is assumed and may be found in the following manuals: - DeviceNet Specifications. Volume 1 - DeviceNet Communication Model and Protocol (Issued by ODVA). - DeviceNet Specifications. Volume 2 - DeviceNet Device Profiles and Object Library (Issued by ODVA) 3.1 DeviceNet General Description DeviceNet is a profile of communication for industrial systems based on CAN. As protocol CAN (ISO 11898) is used CAN2.0A with the 11 bit identifier. TheXVy-DN driver is developed as “Slave UCMM Capable Device” for operating only in “Predefined Master/Slave Connection Set”. The data transfer is carried out cyclically; the Master unit reads the data supplied by the Slaves and writes the Slave reference data; the Baud Rate supported by the SBI card are: - 125 kbit - 250 kbit - 500 kbit . The physical support is given by the RS485 serial line; a maximum of 64 Slaves can be connected to the Bus. 3.2 Connection The CAN terminals allows to connect the XVy drive to DeviceNet net- work. Refer to chapter 4.3.6 of this manual for more details. 3.3 Leds The DeviceNet connection leds are behind the CAN connector. Name Colour Function CAN Green The led is ON when the connection is powered (pin C1, C5) AL Red DeviceNet connection status see next table OP Green DeviceNet connection status see next table Table 3.3.1: AL-OP leds status codification OP AL Meaning ON ON Card power-up BLINK BLINK Self test and Duplicate MAC-ID check is running BLINK OFF Master configuration and/or I/O Polling wait not active ON OFF I/O Polling active, operative status OFF BLINK Minor fault (DUP MAC-ID fail, bus-off, bus-loss) OFF ON Major fault (configuration error, internal error) OFF OFF DeviceNet not configurated 248 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 3.4 Interface For the connection to the Bus please use a shielded twisted cable recommended by DeviceNet specification. The connection among the single cards is accomplished by a shielded cable as shown in the following figure: XVy PE Shield XVy XVy 3.5 DeviceNet Function In this chapter are described the functions of DeviceNet managed by the driver. The main characteristics of the card are: 1. XVy-DN operates only as Slave in “Predifined Master/Slave Con- nection Set”. 2. Within the “Predefined Master/Slave Connection Set” the driver is a “UCMM Capable Device”. 3. The “Explicit Messaging” is managed. 4. The “Polling” for the fast cyclical data exchange Master/Slave is managed. 5. The detection mechanism of the “Duplicate MAC ID” is implemented. Regarding the “Explicit Messaging” the fragmentation of the data frame, with a total of max. 32 byte, is managed. Connection sizes CONNECTION INSTANCE PRODUCED CONSUMED Polled I/O Depending on frame setting Explicit messaging 32 32 3.6 Object description Hereafter you find the description of the objects managed by the XVy- DN driver. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 249 3.6.1 Object Model The following figure shows the XVy-DN “Object Model”. Application Objects Drive memory access Drive par Message Router DeviceNet IDENTITY Explicit I/O Connection The following table shows: 1. The object classes of XVy-DN driver. 2. If the class is mandatory. 3. The number of instances included in every class. See “DeviceNet Specifications” for the Standard classes. Object Optional/Required # of Instances Identity Required 1 Message Router Required 1 DeviceNet Required 1 Connection Required 1 I/O, 3 Explicit Parameter Optional many Drive Parameter Access Optional many Drive memory Access Optional many 3.6.2 How Objects Affect Behavior The “Affect Behaviour” of the objects is reported in the following table: Object Effect on Behavior Identity Supports “Reset Service” Message Router No effect DeviceNet Port attributes configuration Connection Contains the number of logical ports Parameter Drive parameters read/write Drive Parameter Access Drive parameters read/write Drive Memory Access Drive parameters read/write 3.6.3 Defining Object Interface The object interface of the XVy-DN driver is the following: Object Interface Identity Message router Message Router Explicit Messaging Connection Instance DeviceNet Message router Connection Message router Parameter Message router Drive Parameter Access Message router Drive memory Access Message router 250 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 3.7 Data transfert via Explicit Messaging The data transfer via Explicit Messaging is made through two new ob- jects: one for accessing the Drive parameters, the other to direct access the drive memory. 3.7.1 Drive Parameter Access For read/write of Drive parameters, the Drive Parameter Access object is defined with the following properties: - Class ID: Fh. - Class Attribute: Revision - Instance Attribute: This instance does not have attributes. 3.7.1.1 Class Code Class code: F hex 3.7.1.2 Class attributes Number Need in implementation Access Rule Name DeviceNet Data Type Description of Attribute Semantics of values 1 Optional Get Revision UINT Revision of this object dn345 3.7.1.3 Instance Attributes Number Need in implementation Access Rule Name DeviceNet Data Type Description of Attribute Semantics of values dn350 This instance does not provide attributes 3.7.1.4 Common Services This object has no common services. 3.7.1.5 Object Specific Services Class Instance 0 hex n/a Required Get_Attribute_Single Read drive parameter value 10 hex n/a Required Set_Attribute_Single Writes drive parameter value dn356 Service Code Need in implementation Service Name Description of Service 3.7.1.6 Behavior This object is the interface between the DeviceNet and all drive parameters. The Drive parameter is accessed via the parameter index itself. For example, reading a parameter (IPA 24000: - Run a Get_Attribute_Single from class Fh, - instance = 24000 (5DC0 hex) - class 1 attribute - the drive responds with 4 bytes (Dword format). SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 251 For example, writing a parameter (IPA 23000): - Run a Set_Attribute_Single from class Fh, - instance = 23000 (53D8 hex) - class 1 attribute - to set value 20, select “Word 2 byte” (parameter format is INT, 16 bit) - the drive does not respond if there is an error (timeout). Low byte - Low word drive parameter drive High byte - Low word drive parameter drive Low byte - High word drive parameter drive High byte - High word drive parameter drive dn357 byte VALUE XX The number of bytes in the “Value” field depends on the length of drive parameter; Example: if the type of drive parameter is “Integer” the length of VALUE is 2 bytes. 3.7.2 Drive Parameter Access For read/write of Drive parameters, the Drive Parameter Access object is defined with the following properties: - Class ID: 66h. - Class Attribute: Revision - Instance Attribute: This instance does not have attributes. 3.7.2.1 Class Code Class code: 66 hex 3.7.2.2 Class attributes Number Need in implementation Access Rule Name DeviceNet Data Type Description of Attribute Semantics of values 1 Optional Get Revision UINT Revision of this object dn345 3.7.2.3 Instance Attributes Number Need in implementation Access Rule Name DeviceNet Data Type Description of Attribute Semantics of values dn350 This instance does not provide attributes 3.7.2.4 Common Services This object has no common services. 252 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 3.7.2.5 Object Specific Services Class Instance 32 hex n/a Required Get_Drive_Value Read drive parameter value 33 hex n/a Required Set_Drive_Value Writes drive parameter value 34 hex n/a Required Get_Typed_Drive_Valu e Read drive parameter value indicating the data type 35 hex n/a Required Set_Typed_Drive_Value Writes drive parameter value indicating the data type dn355 Service Code Need in implementation Service Name Description of Service 3.7.2.6 Behavior This object is the interface between the DeviceNet network and all Drive parameters. The access to the Drive parameter is carried out by the parameter index; if the parameter does not exist or may not be accessed for any reason (for example: try to write a read only parameter) an error code will be returned. Drive parameters in text format cannot be accessed. In the following are repeted patterns of how the data frame of data has to be composed for reading/writing Drive parameters. A) Write Drive Parameter In this example the writing of a Drive parameter is shown; the cases of positive or wrong writing are distinguished. A-1) Write Drive Parameter Request The data frame for writing a drive parameter is composed as follows: DATA TYPE FIELD VALUE MEANING Byte Service Code 33hex Set Drive Parameter - Object Specific Service Class ID 66hex Drive Parameter Access Class Object Instance ID XXXX Drive Parameter Index in format Low byte-High byte XX Low byte-Low word drive parameter value XX High byte-Low word drive parameter value XX Low byte-High word drive parameter value XX High byte-High word drive parameter value dn360 See Note 1) Byte 2) VALUE 1) Byte or Word depending on the type of allocation executed by the Master. 2) The number of bytes of the “Value”-field depends on the length of the Drive parameter; i.e.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. A-2) Write drive parameter - Reply OK If the Drive parameter is written correctly, the response is: DATA TYPE FIELD VALUE MEANING Byte Service Code 33hex OR 80hex Set Drive Parameter Reply code- Object Specific Service. Word Result 0000 Result field equal to zero means writing correctly executed. dn365 A-3) Write drive parameter - Reply Error If the writing of the drive parameter has been rejected, the response is SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 253 the following: DATA TYPE FIELD VALUE MEANING Byte Service Code 33hex OR 80hex Set Drive Parameter Reply code- Object Specific Service. Word Result XXXX 1 Drive specific error code. dn370 1) For error codes see table 3.7.1. . B) Read Drive Parameter In this example is shown the reading of a Drive parameter; the cases of positive or wrong reading are distinguished. B-1) Read Drive Parameter Request The data frame for the Drive parameter reading is composed as follows: DATA TYPE FIELD VALUE MEANING Byte Service Code 32hex Get Drive Parameter - Object Specific Service. See Note 1) Class ID 66hex Drive Parameter Access Class Object. See Note 1) Instance ID XXXX Drive Parameter Index in format Lowbyte-High byte. dn375 1) Byte or Word depending on the type of allocation executed by the Master. B-2) Read drive parameter - Reply OK If the Drive parameter is read correctly, the response is: DATA TYPE FIELD VALUE MEANING Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service. Word Result 0 Result field equal to zero means reading correctly executed. Low byte-Low word drive parameter value. High byte-Low word drive parameter value. Low byte-High word drive parameter value. High byte-High word drive parameter value. dn380 XX Byte 1) VALUE 1) The number of bytes of the Value-field depends on the length of the Drive parameter; i.e. if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. B-3) Read drive parameter - Reply Error If Drive parameter reading is rejected, the response is the following: DATA TYPE FIELD VALUE MEANING Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service. Word Result XXXX 1 Drive specific error code. dn385 1) For error codes see table 3.7.1. . 254 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide C) Write Typed Drive Parameter In this example the writing of a Drive parameter is shown; the cases of positive or wrong writing are distinguished. In this case, it is shown the parameter IPA number, the value and the data type used in the data transmission. The optional data type conversion is automatically executed by the firmware. C-1) Write Drive Parameter Request The data frame for writing a drive parameter is composed as follows: DATA TYPE FIELD VALUE MEANING Byte Service Code 35hex Set Drive Parameter - Object Specific Service Class ID 66hex Drive Parameter Access Class Object Instance ID XXXX Drive Parameter Index in format Low byte-High byte Byte 2) DATA TYPE XX Value data type XX Low byte-Low word drive parameter value XX High byte-Low word drive parameter value XX Low byte-High word drive parameter value XX High byte-High word drive parameter value dn390 See Note 1) Byte 3) VALUE 1) Byte or Word depending on the type of allocation executed by the Master. 2) The coding of the possible data type is listed in table 3.7.2. 3) The number of bytes of the “Value”-field depends on the length of the Drive parameter; i.e.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. C-2) Write drive parameter - Reply OK If the Drive parameter is written correctly, the response is: DATA TYPE FIELD VALUE MEANING Byte Service Code 33hex Set Drive Parameter Reply code- Object Specific Service. Word Result 0000 Result field equal to zero means writing correctly executed. dn395 C-3) Write drive parameter - Reply Error If the writing of the drive parameter has been rejected, the response is the following: DATA TYPE FIELD VALUE MEANING Byte Service Code 33hex Set Drive Parameter Reply code- Object Specific Service. Word Result XXXX 1 Drive specific error code. dn400 1) For error codes see table 3.7.1. . D) Read Drive Parameter In this example is shown the reading of a Drive parameter; the cases of positive or wrong reading are distinguished. In this case, it is shown the parameter IPA number, the value and the data type used in the data transmission. The optional data type conversion is automatically executed by the firmware. D-1) Read Drive Parameter Request The data frame for the Drive parameter reading is composed as follows: SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 255 DATA TYPE FIELD VALUE MEANING Byte Service Code 36hex Get Drive Parameter - Object Specific Service. Class ID 66hex Drive Parameter Access Class Object. Instance ID XXXX Drive Parameter Index in format Lowbyte-High byte. Byte 2) DATA TYPE XX Value data type dn405 See Note 1) For parameter format see table 3.7.2. 1) Byte or Word depending on the type of allocation executed by the Master. 2) The coding of the possible data type is listed in table 3.7.2. D-2) Read drive parameter - Reply OK If the Drive parameter is read correctly, the response is: DATA TYPE FIELD VALUE MEANING Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service. Word Result 0 Result field equal to zero means reading correctly executed. Low byte-Low word drive parameter value. High byte-Low word drive parameter value. Low byte-High word drive parameter value. High byte-High word drive parameter value. dn380 XX Byte 1) VALUE 1) The number of bytes of the Value-field depends on the length of the Drive parameter; i.e. if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. D-3) Read drive parameter - Reply Error If Drive parameter reading is rejected, the response is the following: DATA TYPE FIELD VALUE MEANING Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service. Word Result XXXX 1 Drive specific error code. dn385 1) For error codes see table 3.7.1. . Table 3.7.1: Error codes for the parameter access RESULT VALUE MEANING DB_E_ OK 0 No error DB_E_ NO_IPA -1 Parameter not exist DB_E_SYSERR -2 Generic error DB_E_TYPE -3 Type not supported DB_E_READONLY -4 Attempt to write a read only parameter DB_E_NOTWRITENOW -5 Attempt to write a parameter when not allowed DB_E_MINVAL -6 Value exceed minimum value DB_E_MAXVAL -7 Value exceed maximum value DB_E_CNFCONFLICT -8 Attempt to assign a currently invalid value DB_E_CONSTANTLIMITS -9 Attempt to access a parameter using currently invalid type Table 3.7.2: Parameter format FORMAT VALUE MEANING DB_T_VOID 0 Return the value in the original format DB_T_INT 1 16 bit signed DB_T_WORD 2 16 bit unsigned DB_T_LONG 3 32 bit signed DB_T_DWORD 4 32 bit unsigned DB_T_FLOAT 6 Float in IEEE 744 format 256 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 3.8 Polling Function This type of DeviceNet-function is used for a fast cyclic exchange of Drive-parameters between Master and XVy drive. The characteristics of the Polling-function are: 1. The data frame length is configurable through specific drive param- eter (see chapter 10, FIELDBUS menu) and can vary from 1 to 10 word for both directions (Slave->Master and Master->Slave). 2. The card, as it is a Slave, during the Polling consumes Output data and produces Input data as response. The configuration of the Drive parameters transferred via Polling is set by using configuration parameter allocated in the drive (see chapter 10, FIELDBUS menu). 3.9 XVy-DN Interface configuration The DeviceNet interface configuration is performed via the drive pa- rameters. The parameters are controlled via hierarchical menus. All the writing parameters referring to the DeviceNet interface are active only after the drive reset. Here following is a list of drive parameters useful to control the DeviceNet interface 3.9.1 Fieldbus Menu The XVy-DN communication card can be enabled by setting the IPA 40000 Field Bus Type parameter as "Devicenet". The other parameters of this menu are: IPA Par. Name Type Default val. Attr. 40100 Bus Address 1 byte unsigned 0 writing 40001 Bus Baude Rate 4 bytes unsigned 0 writing 40110 CC Enabling Enum Enabled writing 40111 PDC Enabling Enum Enabled writing 40114 FB Fail Casue 4 bytes unsigned 0 read only - Bus Address (IPA 40100) = address of the node; admitted values 1 ... 63. - Bus Baude Rate (IPA 40001) = network baud rate. The baudrate is stated directly in kbaud (ex. 125kb = 125); admitted values 125, 250, 500. - PDC Enabling (IPA 40111) and CC Enabling (IPA 40110) = allow the user to enable/disable the corresponding channels. With the PDC channel it is possible to exchange up to 8 parameters. - FB Fail Casue (IPA 40114) = error cause. See the following table 3.9.2 Error Codes Cod. Meaning 1 Protocol incorrect 18..24 Configuration error on M2S reception channel 25..31 Configuration error on S2M reception channel 32 Too many bytes on M2S reception channel 33 Too many bytes on S2M transmission channel 34-35 Errored IPA for PLC allocation 36 More than 4 words allocated as Fast250 us on M2S SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 257 37 More than 4 words allocated as Fast250 us on S2M 100 Baud-rate value not correct 101 Node address not correct 107 CAN line in “Bus-off” state 108 Dnet internal error 109 MAC-ID duplicated (there is already a node with the same address) 110 Software key for authorisation invalid or expired 3.10 Alarms 3.10.1 XVy-DN Alarms The XVy-DN interface provides two possible alarms: Alarm (A 26) FieldBus Failure, is automatically enabled if there is no communication on the bus at a PDC level (polling I/O). This alarm becomes active only when the drive is enabled. If ON, the FB Alarm Watch parameter (IPA 40115) enables the genera- tion of the "Field bus failure" alarm also when the drive is disabled. 3.10.2 Drive alarm handling Considering that the card must function on different firmware application systems, the "drive alarm status" is not foreseen. The "drive alarm status" is not therefore given any special treatment. The XVy-EV firmware, provides a series of parameters capable of detecting the drive status. Refer to chapter 10, Alarms and Fieldbus menu for more information. 3.10.3 Alarm reset The alarm reset is one of the drive standard functions, i.e. each application provides the same parameter for this function. It is therefore possible to reset the alarms via the configuration channel on the firmware of all the different drives.The alarms can be reset by sending the value 1 to the 18012 parameter. The reset of the bit-controlled alarms can be performed also via the "Virtual Digital Input" function. 3.11 Process Data Channel Control This function allows to allocate the drive parameters or application vari- ables to the Process Data Channel data. The XVy-DN interface uses a number of words for the Process Data Channel (abbr. PDC Process Data Channel ), which can always be set. The Process Data Channel configuration for the XVy-DN interface is the following: DATUM 0 DATUM... DATUMn The Slave can both read and write the Process Data Channel data. The DeviceNet data read by the Slave are defined as input data; the data written in DeviceNet by the Slave are defined as output data. A datum can be made both of 2 and 4 bytes. The word "data" refers to any quantity of bytes included between 0 and 10, if the byte total number required is not higher than 20. 258 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide Example It is possible to have: - from 0 to 10 data items of 2 byte - 1 datum of 4 bytes + from 0 to 8 data items of 2 bytes - 2 data items of 4 bytes + from 0 to 6 data items of 2 bytes - 3 data items of 4 bytes + from 0 to 4 data items of 2 bytes - 4 data items of 4 bytes + from 0 to 2 data items of 2 bytes - 5 data items of 4 bytes The data exchanged via the PDC can be of two types: -drive parameters -variables of an MDPlc application The composition of the PDC input and output data is defined via suitable parameters as described in the paragraphs 3.11.1 and 3.11.2. The master cyclically writes the data defined as PDC input and cyclically reads the data defined as PDC output. Input Output Drive PDC XVy-DN 3.11.1 PDC Input Configuration (SYS_FB_XXX_MS parameter) See section 1.3.1, Appendix. 3.11.2 PDC Output Configuration (SYS_FB_XXX_SM Parameter) See section 1.3.1, Appendix. 3.11.3 Configuration of the Virtual Digital I/Os The XVy-EV firmware, provides the "Virtual Digital I/O" function, which allows to exchange discrete signals between the master and the slave and vice versa. See the chapter 10 (DIGITAL INPUTS / VIRT DIG INPUTS e DIGITAL OUTPUTS / VIRT DIG OUTPUTS.menu) for a detailed description of these parameters. Other application firmware, for example MDPlc, does not provide the "Virtual Digital I/O" function. 3.11.4 Use of the PDC in MDPlc Applications It is possible to configure both the PDC input and output data in order to allow the data direct access via the MDPlc application code. For more details see the manual “Drive programming with MDPlc” on “XVy tools” cd-rom. SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 259 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 4.0 Fieldbus : Parameter List and Conversion Parameters can be read/written via fieldbus by setting the appropriate FB Assign X->X x , FB IPA X->X x, FB Format X->X x, FP Exp X->X x parameters (see chapter 10, FIELDBUS menu). For Direct access or Fast access you must know the internal format of the datum to be exchanged and the relation between the counts read and the engineering values (1). Key 18102 Curr Deriv Gain 16 bit integer 16 bit integer -- yes yes 18123 Max Pos Error floating point 32 bit integer F01 yes yes IPA Parameter number. For further information about the parameter see Chapter 11 - Index of Parameters Description Parameter name External format External parameter format Internal format Internal parameter format Conversion reference Reference to the equation for conversion, see the following table R/W Accessing parameters: R= Read, W= Write Table 4.1 : Conversion formulas Code (1) Conversion reference F01 [mech.deg] = IPA 18753 Pos Conv Fact * [cnts] F02 [ms/krpm] = IPA 21111 Max Ramp Rate / [cnts] F03 [%] = 100 * IPA 18790 Torque Conv Fact * [cnts] / IPA 18800 Base Torque F04 [rpm] = IPA 18752 Rpm Conv Fact * [cnts] F05 [par] = [cnts] / 1638 F06 [Kg*m2] = 0.5092958178*10-5 * EncPulses * IPA 18790 Torque Conv Fact * [cnts] F07 [msec] = (-0.125 / log(1-[cnts]/2^15)) F08 [Arms] = IPA 18700 Arms Conv Fact * [cnts] F09 [V] = [cnts] / 32.768 F10 [Nm] = IPA 18790 Torque Conv Fact * [cnts] F11 [par] = sqrt( abs[cnts] ) F12 [par] = [cnts] F13 [par] = [cnts] * (100/16384) - 100 F14 [Vrms]=(612.3724/32768) * [cnts] F15 [mech.deg] = 360/24576 * [cnts] F16 [el.deg] = 360 / 65536 * [cnts] F17 [h] = [cnts] / 3600 F18 [%] = [cnts] / 16384 F19 [V] = 10.81 / 32768 * [cnts] F20 [V] = 172.96 / 32768 * [cnts] F21 [par] = [cnts] / 8192 F22 [V] = 12.5 / 2047 * [cnts] F23 [s] = [cnts] / 125 F24 [s] = [cnts] / 256 F25 [%] = [cnts] F26 If IPA 32020 Els Ratio / Slip = Ratio -> [float] = ([cnts] - 0.5) * IPA 32000 Els PPR Master * IPA 32090 Els Ratio Range * IPA 32010 Els Mec Ratio * IPA 32012 ElsMec Ratio Mul / (2^31 * EncPulses * IPA 32013 ElsMec Ratio Div) If IPA 32020 Els Ratio / Slip = Slip -> (([cnts] - 0.5) * IPA 32000 Els PPR Master * IPA 32090 Els Ratio Range * IPA 32010 Els Mec Ratio * IPA 32012 ElsMec Ratio Mul / (2^31 * EncPulses * IPA 32013 ElsMec Ratio Div) - 1) * 100 260 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide PDC configuration - Direct Access, example in read mode: - set (FIELDBUS menu / FB 1st S->M PAR) : IPA 40290 FB Assign S->M1 = 3 (Direct Acc Par) IPA 40300 FB IPA S->M 1 = 18123 IPA 40310 FB Format S->M 1 = 3 (32 Bit Integer) IPA 40320 FP Exp S->M 1= 0 - on the drive read the value of the parameter to be sent to the PLC, for example (POSITION menu) : IPA 18123 Max Pos Error = 10000 [mech. deg] - on the drive read the value of the conversion parameter (FIELDBUS / UNITS menu) : IPA 18753 Pos Conv Fact = 10 - the value sent from the drive to the PDC, for example 1000 [cnts], is converted in the PLC, using the conversion formula F01 (see table 4.1, reference to the following pages): Max Pos Error [mech.deg] = Pos Conv Fact * Max Pos Error [cnts] = 10 * 1000 = 10000 [mech.deg] PDC configuration - Direct Access, example in write mode: - set (FIELDBUS menu / FB 1st M->S PAR) : IPA 40190 FB Assign M->S 1 = 3 (Direct Acc Par) IPA 40200 FB IPA M->S 1 = 18123 IPA 40210 FB Format M->S 1 = 3 (32 Bit Integer) IPA 40220 FP Exp M->S 1= 0 - on the drive read the value of the conversion parameter (FIELDBUS / UNITS menu): IPA 18753 Pos Conv Fact = 10 The value in counts must be entered to the PLC. Next convert the value to be written, for example IPA 18123 Max Pos Error = 1000 [mech.deg] in [counts], using the formula derived from F01 in reverse (see table 4.1, reference to the following pages): Max Pos Error [cnts] = Max Pos Error [mech.deg] / Pos Conv Fact = 1000 / 10 = 100 counts The PLC must send 100 [counts] to the PDC. The parameter reading on the drive will be in degrees (POSITION menu) : IPA 18123 Max Pos Error = 1000 [mech. deg] SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 261 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 18101 Curr Integr Gain 16 bit integer 16 bit integer -- yes yes 18102 Curr Deriv Gain 16 bit integer 16 bit integer -- yes yes 18123 Max Pos Error floating point 32 bit integer F01 yes yes 18131 P Loss Prop Gain 16 bit integer 16 bit integer -- yes yes 18132 P Loss Int Gain 16 bit integer 16 bit integer -- yes yes 18134 P Loss Ramp floating point 16 bit integer F02 yes no 18135 P Loss Trq Lim floating point 16 bit integer F03 yes no 18136 P Loss Spd 0 Thr floating point 32 bit integer F04 yes no 18137 PL Next Factor floating point 16 bit integer F05 no 18138 PL Mains Status boolean bool -> 16 bit integer -- yes yes 18150 Inertia floating point 16 bit integer F06 yes yes 18151 Inertia Filter floating point 16 bit integer F07 yes no 18330 Tuning Status ENUM 16 bit unsigned integer -- no 18412 BR Ovld Factor 16 bit unsigned integer 16 bit unsigned integer -- no 18708 Sys Tsk Exe T 32 bit integer 32 bit unsigned integer -- no 18709 MaxSys Tsk Exe T 32 bit integer 32 bit unsigned integer -- yes no 18710 Heatsink Temp 16 bit integer 16 bit integer -- no 18711 Intake Air Temp 16 bit integer 16 bit integer -- no 18712 Reg Card Temp 16 bit integer 16 bit integer -- no 18720 Slow Tsk Exe T 32 bit integer 32 bit unsigned integer -- no 18721 MaxSl Tsk Exe T 32 bit integer 32 bit unsigned integer -- yes no 18722 Inp Phase Exe T 16 bit unsigned integer 16 bit unsigned integer -- no 18723 Fst Tsk Exe T 16 bit unsigned integer 16 bit unsigned integer -- no 18724 Out Phase Tsk T 16 bit unsigned integer 16 bit unsigned integer -- no 18725 Aux Phase Exe T 16 bit unsigned integer 16 bit unsigned integer -- no 18726 MaxIn Ph Exe T 16 bit unsigned integer 16 bit unsigned integer -- yes no 18727 MaxFst Tsk Exe T 16 bit unsigned integer 16 bit unsigned integer -- yes yes 18728 MaxOut Ph Exe T 16 bit unsigned integer 16 bit unsigned integer -- yes yes 18729 MaxAux Ph Exe T 16 bit unsigned integer 16 bit unsigned integer -- yes yes 18732 Act Pos Trq Lim floating point 16 bit integer F03 no 18735 Out Current floating point 16 bit integer F08 no 18736 DC Link Voltage floating point 16 bit integer F09 no 18739 Act Torque floating point 16 bit integer F10 no 18740 Abs Act Module 16 bit integer 32 bit integer F11 no 18741 Inc Data Act Mod 16 bit integer 32 bit integer F11 no 18742 Out Frequency floating point floating point -- no 18746 Act Neg Trq Lim floating point 16 bit integer F03 no 18748 Ramp Reference floating point 32 bit integer F04 no 18749 Speed Reference floating point 32 bit integer F04 no 18751 Load Def Err IPA 16 bit unsigned integer 16 bit unsigned integer -- no 18754 Act Pos Spd Lim floating point 32 bit integer F04 no 18755 Act Neg Spd Lim floating point 32 bit integer F04 no 18756 Enc Position floating point 32 bit integer F01 no 18757 Enc Revolution floating point 32 bit integer F12 no 18762 Abs Sin Offset 16 bit integer 16 bit integer -- no 18763 Abs Cos Offset 16 bit integer 16 bit integer -- no 18764 Abs Gain Err floating point 16 bit integer F13 no 18765 Meas Motor Spd floating point 32 bit integer F04 no 18766 Abs Meas Noise 16 bit integer 16 bit integer -- no 18767 Abs Max Noise 16 bit integer 16 bit integer -- yes no 18770 DSP Exe Time 16 bit integer 16 bit integer -- no 18771 MaxDSP Exe T 16 bit integer 16 bit integer -- yes no 18773 Quadrature Volt floating point 16 bit integer F14 no 18774 Direct Volt floating point 16 bit integer F14 no 18776 Act Torque Eng floating point 16 bit integer F10 no 18777 Motor Speed floating point 32 bit integer F04 no 18780 Bkg Tsk Exe T 32 bit integer 16 bit unsigned integer -- no 18781 MaxBkg Tsk Exe T 16 bit unsigned integer 16 bit unsigned integer -- yes no 18782 Act Out Power floating point floating point -- no 18805 Torque Current floating point 16 bit integer F04 no 18806 Flux Current floating point 16 bit integer F04 no 18807 Act Out Curr Lim floating point 16 bit integer F04 no 19002 Inc Data Pos floating point 32 bit integer F01 no 19003 Inc Data N Rev 32 bit integer 32 bit integer -- no 19004 Inc Pulses / Rev 32 bit unsigned integer 32 bit integer -- no 19005 Inc B Data Count 16 bit integer 16 bit integer -- no 19006 Inc A Data Count 16 bit integer 16 bit integer -- no 19011 XER/EXP Turn Pos floating point 32 bit integer F01 no 19012 XER/EXP Rev 32 bit integer 32 bit integer -- no 262 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 19013 XER/EXP Puls Rev 32 bit unsigned integer 32 bit integer -- no 19017 Abs Turn Pos floating point 32 bit integer F01 no 19018 Abs Rev 32 bit integer 32 bit integer -- no 19019 Abs Sin Meas 16 bit integer 16 bit integer -- no 19020 Abs Cos Meas 16 bit integer 16 bit integer -- no 19022 XE Hall Pos floating point 16 bit integer F15 no 19026 XE Hall Rev 32 bit integer 32 bit integer -- no 19027 XE Hall Meas 16 bit unsigned integer 16 bit unsigned integer -- no 19028 XE Hall N Error 16 bit integer 16 bit integer -- no 19030 ABS1 Al Bit En ENUM 16 bit integer -- yes no 19031 EXP ABS1 Pos floating point 32 bit integer F01 no 19032 EXP ABS1 Sw Rev 32 bit integer 32 bit integer -- no 19033 EXP ABS1 Hw Rev 16 bit integer 16 bit integer -- no 19034 ABS1 Rx N Err 16 bit unsigned integer 16 bit integer -- no 19035 ABS1 Alarm Bit ENUM 16 bit integer -- no 19040 Enc Err Simul floating point 32 bit integer F01 no 19095 XER/EXP Ind Pos floating point 32 bit integer F01 no 19096 Index Position floating point 32 bit integer F01 no 19113 Actual Pos Error floating point 32 bit integer F01 no 19607 Drive Ovld Fact 16 bit unsigned integer 16 bit unsigned integer -- no 20000 Drive Max Curr floating point 16 bit integer F08 yes no 20003 Full Scale Speed floating point 32 bit integer F04 yes yes 20005 DO Reset at Fail 32 bit unsigned integer 32 bit unsigned integer -- yes yes 20006 DO Set at Fail 32 bit unsigned integer 32 bit unsigned integer -- yes yes 20013 Phasing Err floating point 16 bit integer F16 no 20014 Act Enc Pos Loss floating point 32 bit integer F16 no 20015 Act Mot El Angle floating point 16 bit integer F16 no 20016 Enc Warning Case ENUM 32 bit unsigned integer -- no 20018 Enc W->A Mask 32 bit unsigned integer 32 bit unsigned integer -- no 20021 Enable I-O Keys ENUM bool -> 16 bit integer -- yes yes 20023 Control Mode ENUM 16 bit unsigned integer -- yes yes 20044 Load Def Counter 32 bit unsigned integer 32 bit unsigned integer -- no 20045 Tot Life Hours floating point 32 bit integer F17 no 20046 Act Life Hours floating point 32 bit unsigned integer F17 no 20047 Power Fail Count 32 bit unsigned integer 32 bit unsigned integer -- no 20048 Save Param Count 32 bit unsigned integer 32 bit unsigned integer -- no 20049 SW Reset Count 32 bit unsigned integer 32 bit unsigned integer -- no 20085 Speed Draw Ratio floating point 16 bit integer F18 yes no 20086 Speed Draw Out floating point 32 bit integer F04 no 20087 P Loss Active ENUM bool -> 16 bit integer -- no 20088 P Loss NoRes Thr floating point 32 bit integer F04 yes no 20089 Speed Draw In floating point 32 bit integer F04 no 20092 Act SpdDrw Ratio floating point 16 bit integer F18 no 20100 Digital Input 0 ENUM 16 bit unsigned integer -- no 20101 Digital Input 1 ENUM 16 bit unsigned integer -- yes yes 20102 Digital Input 2 ENUM 16 bit unsigned integer -- yes yes 20103 Digital Input 3 ENUM 16 bit unsigned integer -- yes yes 20104 Digital Input 4 ENUM 16 bit unsigned integer -- yes yes 20105 Digital Input 5 ENUM 16 bit unsigned integer -- yes yes 20106 Digital Input 6 ENUM 16 bit unsigned integer -- yes yes 20107 Digital Input 7 ENUM 16 bit unsigned integer -- yes yes 20150 Exp Dig Inp 0 ENUM 16 bit unsigned integer -- yes yes 20151 Exp Dig Inp 1 ENUM 16 bit unsigned integer -- yes yes 20152 Exp Dig Inp 2 ENUM 16 bit unsigned integer -- yes yes 20153 Exp Dig Inp 3 ENUM 16 bit unsigned integer -- yes yes 20154 Exp Dig Inp 4 ENUM 16 bit unsigned integer -- yes yes 20155 Exp Dig Inp 5 ENUM 16 bit unsigned integer -- yes yes 20156 Exp Dig Inp 6 ENUM 16 bit unsigned integer -- yes yes 20157 Exp Dig Inp 7 ENUM 16 bit unsigned integer -- yes yes 20162 Dig Inp Rev Mask 32 bit unsigned integer 32 bit unsigned integer -- yes yes 20163 Dig Inp Status 16 bit unsigned integer 16 bit unsigned integer -- no 20164 Exp Dig Inp Stat 16 bit unsigned integer 16 bit unsigned integer -- no 20170 Virt Dig Inp 0 ENUM 16 bit unsigned integer -- yes yes 20171 Virt Dig Inp 1 ENUM 16 bit unsigned integer -- yes yes 20172 Virt Dig Inp 2 ENUM 16 bit unsigned integer -- yes yes 20173 Virt Dig Inp 3 ENUM 16 bit unsigned integer -- yes yes 20174 Virt Dig Inp 4 ENUM 16 bit unsigned integer -- yes yes 20175 Virt Dig Inp 5 ENUM 16 bit unsigned integer -- yes yes 20176 Virt Dig Inp 6 ENUM 16 bit unsigned integer -- yes yes SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 263 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 20177 Virt Dig Inp 7 ENUM 16 bit unsigned integer -- yes yes 20178 Virt Dig Inp 8 ENUM 16 bit unsigned integer -- yes yes 20179 Virt Dig Inp 9 ENUM 16 bit unsigned integer -- yes yes 20180 Virt Dig Inp 10 ENUM 16 bit unsigned integer -- yes yes 20181 Virt Dig Inp 11 ENUM 16 bit unsigned integer -- yes yes 20182 Virt Dig Inp 12 ENUM 16 bit unsigned integer -- yes yes 20183 Virt Dig Inp 13 ENUM 16 bit unsigned integer -- yes yes 20184 Virt Dig Inp 14 ENUM 16 bit unsigned integer -- yes yes 20185 Virt Dig Inp 15 ENUM 16 bit unsigned integer -- yes yes 20186 Virt DI Status 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20187 Virt DI at Start 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20188 Virt DI at Dis 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20189 Virt DI at Reset 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20200 Digital Output 0 ENUM 16 bit unsigned integer -- yes yes 20201 Digital Output 1 ENUM 16 bit unsigned integer -- yes yes 20202 Digital Output 2 ENUM 16 bit unsigned integer -- yes yes 20203 Digital Output 3 ENUM 16 bit unsigned integer -- yes yes 20204 Digital Output 4 ENUM 16 bit unsigned integer -- yes yes 20205 Digital Output 5 ENUM 16 bit unsigned integer -- yes yes 20250 Exp Dig Out 0 ENUM 16 bit unsigned integer -- yes yes 20251 Exp Dig Out 1 ENUM 16 bit unsigned integer -- yes yes 20252 Exp Dig Out 2 ENUM 16 bit unsigned integer -- yes yes 20253 Exp Dig Out 3 ENUM 16 bit unsigned integer -- yes yes 20254 Dig Out Reverse 32 bit unsigned integer 32 bit unsigned integer -- yes yes 20255 Dig Out Status 16 bit unsigned integer 16 bit unsigned integer -- no 20256 Exp Dig Out Stat 16 bit unsigned integer 16 bit unsigned integer -- no 20257 Exp Dig Out 4 ENUM 16 bit unsigned integer -- yes yes 20258 Exp Dig Out 5 ENUM 16 bit unsigned integer -- yes yes 20259 Exp Dig Out 6 ENUM 16 bit unsigned integer -- yes yes 20260 Exp Dig Out 7 ENUM 16 bit unsigned integer -- yes yes 20270 Virt Dig Out 0 ENUM 16 bit unsigned integer -- yes yes 20271 Virt Dig Out 1 ENUM 16 bit unsigned integer -- yes yes 20272 Virt Dig Out 2 ENUM 16 bit unsigned integer -- yes yes 20273 Virt Dig Out 3 ENUM 16 bit unsigned integer -- yes yes 20274 Virt Dig Out 4 ENUM 16 bit unsigned integer -- yes yes 20275 Virt Dig Out 5 ENUM 16 bit unsigned integer -- yes yes 20276 Virt Dig Out 6 ENUM 16 bit unsigned integer -- yes yes 20277 Virt Dig Out 7 ENUM 16 bit unsigned integer -- yes yes 20278 Virt Dig Out 8 ENUM 16 bit unsigned integer -- yes yes 20279 Virt Dig Out 9 ENUM 16 bit unsigned integer -- yes yes 20280 Virt Dig Out 10 ENUM 16 bit unsigned integer -- yes yes 20281 Virt Dig Out 11 ENUM 16 bit unsigned integer -- yes yes 20282 Virt Dig Out 12 ENUM 16 bit unsigned integer -- yes yes 20283 Virt Dig Out 13 ENUM 16 bit unsigned integer -- yes yes 20284 Virt Dig Out 14 ENUM 16 bit unsigned integer -- yes yes 20285 Virt Dig Out 15 ENUM 16 bit unsigned integer -- yes yes 20286 Virt DO Status 16 bit unsigned integer 16 bit unsigned integer -- no 20289 Virt DO at Reset 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20290 Virt DO at Fail 16 bit unsigned integer 16 bit unsigned integer -- yes yes 20300 Analog Inp 0 Sel ENUM 16 bit unsigned integer -- yes yes 20301 Analog Inp 1 Sel ENUM 16 bit unsigned integer -- yes yes 20310 An Inp 0 Read floating point 16 bit integer F19 no 20311 An Inp 1 Read floating point 16 bit integer F19 no 20320 An Inp 0 Offset floating point 16 bit integer F20 yes yes 20321 An Inp 1 Offset floating point 16 bit integer F20 yes yes 20330 An Inp 0 D_B Pos floating point 16 bit integer F20 yes yes 20331 An Inp 1 D_B Pos floating point 16 bit integer F20 yes yes 20340 An Inp 0 D_B Neg floating point 16 bit integer F20 yes yes 20341 An Inp 1 D_B Neg floating point 16 bit integer F20 yes yes 20350 An Inp 0 Scale floating point 16 bit integer F21 yes yes 20351 An Inp 1 Scale floating point 16 bit integer F21 yes yes 20360 An Inp 0 Value floating point 16 bit integer F20 no 20361 An Inp 1 Value floating point 16 bit integer F20 no 20400 Analog Out 0 Sel ENUM 16 bit unsigned integer -- yes yes 20401 Analog Out 1 Sel ENUM 16 bit unsigned integer -- yes yes 20402 Exp Analog Out 0 ENUM 16 bit unsigned integer -- yes yes 20403 Exp Analog Out 1 ENUM 16 bit unsigned integer -- yes yes 20410 An Out 0 Write floating point 16 bit integer F22 no 20411 An Out 1 Write floating point 16 bit integer F22 no 264 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 20412 ExAn Out 0 Write floating point 16 bit integer F22 no 20413 ExAn Out 1 Write floating point 16 bit integer F22 no 20420 An Out 0 Scale floating point 16 bit integer F21 yes yes 20421 An Out 1 Scale floating point 16 bit integer F21 yes yes 20422 ExAn Out 0 Scale floating point 16 bit integer F21 yes yes 20423 ExAn Out 1 Scale floating point 16 bit integer F21 yes yes 20430 An Out 0 Offset floating point 16 bit integer F22 yes yes 20431 An Out 1 Offset floating point 16 bit integer F22 yes yes 20432 ExAn Out 0 Offset floating point 16 bit integer F22 yes yes 20433 ExAn Out 1 Offset floating point 16 bit integer F22 yes yes 20440 An Out 0 Value floating point 16 bit integer F22 no 20441 An Out 1 Value floating point 16 bit integer F22 no 20442 ExAn Out 0 Value floating point 16 bit integer F22 no 20443 ExAn Out 1 Value floating point 16 bit integer F22 no 20500 Start Status ENUM 16 bit unsigned integer -- no 20600 Brake Enable ENUM 16 bit unsigned integer -- yes yes 20601 Brake OFF Delay floating point 16 bit unsigned integer F23 yes yes 20602 Brake ON Delay floating point 16 bit unsigned integer F23 yes yes 20603 Brake ON Spd Thr floating point 32 bit integer F04 yes yes 21000 Jog Speed Limit floating point 32 bit integer F04 yes yes 21001 Jog Reference floating point 16 bit integer F04 yes yes 21003 CW Jog Acc floating point 32 bit integer F02 yes yes 21004 CCW Jog Acc floating point 32 bit integer F02 yes yes 21005 CW Jog Dec floating point 32 bit integer F02 yes yes 21006 CCW Jog Dec floating point 32 bit integer F02 yes yes 21102 CW Acc Ramp floating point 16 bit integer F02 yes no 21103 CCW Acc Ramp floating point 16 bit integer F02 yes no 21104 CW Dec Ramp floating point 16 bit integer F02 yes no 21105 CCW Dec Ramp floating point 16 bit integer F02 yes no 21110 Ramp Exp Factor 16 bit integer 16 bit integer -- yes no 21115 Fast Stop Dec floating point 32 bit integer F02 yes yes 21116 End Run Dec floating point 32 bit integer F02 yes yes 21200 Speed Ref 1 floating point 32 bit integer F04 yes yes 21201 Speed Ref 2 floating point 32 bit integer F04 yes yes 21204 Pos Speed Limit floating point 32 bit integer F04 yes no 21205 Neg Speed Limit floating point 32 bit integer F04 yes no 21206 Speed Thr floating point 32 bit integer F04 yes yes 21207 Speed Reach Wnd floating point 32 bit integer F04 yes yes 21208 Speed Zero Thr floating point 32 bit integer F04 yes yes 21209 Speed Zero Delay floating point 16 bit unsigned integer F23 yes yes 21210 Ramp Enable ENUM 16 bit unsigned integer -- yes yes 21211 Speed Thr Wnd floating point 32 bit integer F04 yes yes 21212 Ramp Output floating point 32 bit integer F04 no 21213 Speed Thr Delay floating point 16 bit unsigned integer F23 yes yes 21301 Multi Speed 1 floating point 32 bit integer F04 yes yes 21302 Multi Speed 2 floating point 32 bit integer F04 yes yes 21303 Multi Speed 3 floating point 32 bit integer F04 yes yes 21304 Multi Speed 4 floating point 32 bit integer F04 yes yes 21305 Multi Speed 5 floating point 32 bit integer F04 yes yes 21306 Multi Speed 6 floating point 32 bit integer F04 yes yes 21307 Multi Speed 7 floating point 32 bit integer F04 yes yes 21310 Multi Spd Index 16 bit unsigned integer 16 bit unsigned integer -- yes yes 21311 Multi Speed Conf ENUM 16 bit unsigned integer -- yes yes 21401 M Ramp 1 CW Acc floating point 32 bit integer F02 yes yes 21402 M Ramp 2 CW Acc floating point 32 bit integer F02 yes yes 21403 M Ramp 3 CW Acc floating point 32 bit integer F02 yes yes 21411 M Ramp 1 CCW Acc floating point 32 bit integer F02 yes yes 21412 M Ramp 2 CCW Acc floating point 32 bit integer F02 yes yes 21413 M Ramp 3 CCW Acc floating point 32 bit integer F02 yes yes 21421 M Ramp 1 CW Dec floating point 32 bit integer F02 yes yes 21422 M Ramp 2 CW Dec floating point 32 bit integer F02 yes yes 21423 M Ramp 3 CW Dec floating point 32 bit integer F02 yes yes 21431 M Ramp 1 CCW Dec floating point 32 bit integer F02 yes yes 21432 M Ramp 2 CCW Dec floating point 32 bit integer F02 yes yes 21433 M Ramp 3 CCW Dec floating point 32 bit integer F02 yes yes 21440 Multi Ramp Index 16 bit unsigned integer 16 bit unsigned integer -- yes yes 21441 Multi Ramp Conf ENUM 16 bit unsigned integer -- yes yes 22000 Torque Ref 1 floating point 16 bit integer F10 yes yes 22001 Torque Ref 2 floating point 16 bit integer F03 yes yes SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 265 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 22002 Torque Mode ENUM 16 bit unsigned integer -- yes yes 22003 Trq Lim Config ENUM 16 bit unsigned integer -- yes yes 22004 Max Pos Torque floating point 16 bit integer F03 yes yes 22005 Max Neg Torque floating point 16 bit integer F03 yes yes 22007 Torque Thr floating point 16 bit integer F03 yes yes 22009 Trq Speed Limit floating point 32 bit integer F04 yes yes 22010 Torque Thr Delay floating point 16 bit unsigned integer F23 yes yes 22011 Torque Reduction floating point 16 bit integer F03 yes yes 22012 Max Torque floating point 16 bit integer F03 no 22013 FastLink Trq En ENUM bool -> 16 bit integer -- yes yes 22014 FastLink Trq Ref floating point 16 bit integer F03 no 22015 FL Trq Scale floating point 16 bit integer F24 yes yes 22501 Motor Pot Output floating point 32 bit integer F25 no 22502 Motor Pot Up Lim floating point floating point -- yes yes 22503 Motor Pot Lo Lim floating point floating point -- yes yes 22504 Motor Pot Acc 32 bit integer 32 bit integer -- yes yes 22505 Motor Pot Dec 32 bit integer 32 bit integer -- yes yes 22506 Motor Pot Init floating point floating point -- yes yes 22507 Motor Pot En ENUM bool -> 16 bit integer -- yes yes 22508 Motor Pot Reset ENUM bool -> 16 bit integer -- yes yes 22509 Motor Pot Mode ENUM bool -> 16 bit integer -- yes yes 22510 Motor Pot Memo ENUM bool -> 16 bit integer -- yes yes 22511 Motor Pot Dir ENUM bool -> 16 bit integer -- yes yes 23000 Speed Gain 16 bit integer 16 bit integer -- yes yes 23001 Position Gain 16 bit integer 16 bit integer -- yes yes 23002 Position I Gain 16 bit integer 16 bit integer -- yes yes 23003 Acc Gain 16 bit integer 16 bit integer -- yes yes 23010 Gain Mult Fct ENUM 16 bit integer -- yes yes 24000 Alarm Status 32 bit unsigned integer 32 bit unsigned integer -- no 24101 Alarm Delay Mask 32 bit unsigned integer 32 bit unsigned integer -- yes yes 24102 Alarm Delay floating point 16 bit unsigned integer F23 yes yes 24120 Warning Status 32 bit unsigned integer 32 bit unsigned integer -- no 29004 Act Ctrl Mode ENUM 16 bit unsigned integer -- no 29103 RX Rev 32 bit integer 32 bit integer -- no 29104 RX Pos 32 bit integer 32 bit integer -- no 29106 TX Rev 32 bit integer 32 bit integer -- no 29107 TX Pos 32 bit integer 32 bit integer -- no 29108 RX Rev Aux 32 bit integer 32 bit integer -- no 29109 RX Pos Aux 32 bit integer 32 bit integer -- no 29110 TX Rev Aux 32 bit integer 32 bit integer -- no 29111 TX Pos Aux 32 bit integer 32 bit integer -- no 30000 Unit Per Rev floating point floating point -- yes yes 30001 Unit Per Div floating point floating point -- yes yes 30002 Multi Pos Enable boolean bool -> 16 bit integer -- yes yes 30004 Multi Pos Index 16 bit integer 16 bit integer -- no 30010 Pos CW Acc floating point 32 bit integer F02 yes yes 30011 Pos CCW Acc floating point 32 bit integer F02 yes yes 30012 Pos CW Dec floating point 32 bit integer F02 yes yes 30013 Pos CCW Dec floating point 32 bit integer F02 yes yes 30014 Position Speed floating point 32 bit integer F04 yes yes 30015 Position Torque floating point 16 bit integer F03 yes yes 30016 Actual Position floating point floating point -- no 30017 Min Preset Value floating point floating point -- yes yes 30018 Max Preset Value floating point floating point -- yes yes 30020 CW Home Pos Acc floating point 32 bit integer F02 yes yes 30021 CCW Home Pos Acc floating point 32 bit integer F02 yes yes 30022 CW Home Pos Dec floating point 32 bit integer F02 yes yes 30023 CCW Home Pos Dec floating point 32 bit integer F02 yes yes 30024 Home Max Spd floating point 32 bit integer F04 yes yes 30025 Home Spd Ref floating point 16 bit integer F04 yes yes 30027 Home Fine Spd floating point 32 bit integer F04 yes yes 30028 Home Pos Offset floating point floating point -- yes yes 30036 Home Src Direc ENUM 16 bit unsigned integer -- yes yes 30037 Zero Sensor En ENUM 16 bit unsigned integer -- yes yes 30038 Zero Index En ENUM 16 bit unsigned integer -- yes yes 30039 Inside Index Src ENUM 16 bit unsigned integer -- yes yes 30040 Zero Sensor Edge ENUM 16 bit unsigned integer -- yes yes 30041 Home Pos Offs En ENUM 16 bit unsigned integer -- yes yes 30042 Start On Edge ENUM 16 bit unsigned integer -- yes yes 266 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30043 Stop By Ramp ENUM 16 bit unsigned integer -- yes yes 30044 Pos Reach Behav ENUM 16 bit unsigned integer -- yes yes 30045 Startup Zero Pos boolean bool -> 16 bit integer -- yes yes 30050 Pos Abs Thr floating point floating point -- yes yes 30051 Positon Thr floating point floating point -- yes yes 30052 Pos 0 Thr Offset floating point floating point -- yes yes 30053 Pos Thr Close 1 floating point floating point -- yes yes 30054 Pos Thr Close 2 floating point floating point -- yes yes 30055 Max Prs Abs Val floating point floating point -- yes yes 30056 Min Prs Abs Val floating point floating point -- yes yes 30057 Back Lash Window floating point floating point -- yes yes 30058 Pos Window floating point floating point -- yes yes 30059 Pos Window Time floating point 16 bit unsigned integer F23 yes yes 30060 Pos Window Tout floating point 16 bit unsigned integer F23 yes yes 30081 Destination Pos floating point floating point -- no 30090 Preset Index 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30091 Positioning Mode ENUM 16 bit unsigned integer -- yes yes 30093 Position Config 32 bit unsigned integer 32 bit unsigned integer -- no 30094 Pos Stop dec floating point 32 bit integer F02 yes yes 30096 Pos An Wind Del 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30097 Pos An Stdy Wind floating point floating point -- yes yes 30098 Pos An Filter floating point floating point -- yes yes 30099 Pos An Mode ENUM bool -> 16 bit integer -- yes yes 30100 Pos Preset 0 floating point floating point -- yes yes 30101 Pos Preset 1 floating point floating point -- yes yes 30102 Pos Preset 2 floating point floating point -- yes yes 30103 Pos Preset 3 floating point floating point -- yes yes 30104 Pos Preset 4 floating point floating point -- yes yes 30105 Pos Preset 5 floating point floating point -- yes yes 30106 Pos Preset 6 floating point floating point -- yes yes 30107 Pos Preset 7 floating point floating point -- yes yes 30108 Pos Preset 8 floating point floating point -- yes yes 30109 Pos Preset 9 floating point floating point -- yes yes 30110 Pos Preset 10 floating point floating point -- yes yes 30111 Pos Preset 11 floating point floating point -- yes yes 30112 Pos Preset 12 floating point floating point -- yes yes 30113 Pos Preset 13 floating point floating point -- yes yes 30114 Pos Preset 14 floating point floating point -- yes yes 30115 Pos Preset 15 floating point floating point -- yes yes 30116 Pos Preset 16 floating point floating point -- yes yes 30117 Pos Preset 17 floating point floating point -- yes yes 30118 Pos Preset 18 floating point floating point -- yes yes 30119 Pos Preset 19 floating point floating point -- yes yes 30120 Pos Preset 20 floating point floating point -- yes yes 30121 Pos Preset 21 floating point floating point -- yes yes 30122 Pos Preset 22 floating point floating point -- yes yes 30123 Pos Preset 23 floating point floating point -- yes yes 30124 Pos Preset 24 floating point floating point -- yes yes 30125 Pos Preset 25 floating point floating point -- yes yes 30126 Pos Preset 26 floating point floating point -- yes yes 30127 Pos Preset 27 floating point floating point -- yes yes 30128 Pos Preset 28 floating point floating point -- yes yes 30129 Pos Preset 29 floating point floating point -- yes yes 30130 Pos Preset 30 floating point floating point -- yes yes 30131 Pos Preset 31 floating point floating point -- yes yes 30132 Pos Preset 32 floating point floating point -- yes yes 30133 Pos Preset 33 floating point floating point -- yes yes 30134 Pos Preset 34 floating point floating point -- yes yes 30135 Pos Preset 35 floating point floating point -- yes yes 30136 Pos Preset 36 floating point floating point -- yes yes 30137 Pos Preset 37 floating point floating point -- yes yes 30138 Pos Preset 38 floating point floating point -- yes yes 30139 Pos Preset 39 floating point floating point -- yes yes 30140 Pos Preset 40 floating point floating point -- yes yes 30141 Pos Preset 41 floating point floating point -- yes yes 30142 Pos Preset 42 floating point floating point -- yes yes 30143 Pos Preset 43 floating point floating point -- yes yes 30144 Pos Preset 44 floating point floating point -- yes yes 30145 Pos Preset 45 floating point floating point -- yes yes SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 267 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30146 Pos Preset 46 floating point floating point -- yes yes 30147 Pos Preset 47 floating point floating point -- yes yes 30148 Pos Preset 48 floating point floating point -- yes yes 30149 Pos Preset 49 floating point floating point -- yes yes 30150 Pos Preset 50 floating point floating point -- yes yes 30151 Pos Preset 51 floating point floating point -- yes yes 30152 Pos Preset 52 floating point floating point -- yes yes 30153 Pos Preset 53 floating point floating point -- yes yes 30154 Pos Preset 54 floating point floating point -- yes yes 30155 Pos Preset 55 floating point floating point -- yes yes 30156 Pos Preset 56 floating point floating point -- yes yes 30157 Pos Preset 57 floating point floating point -- yes yes 30158 Pos Preset 58 floating point floating point -- yes yes 30159 Pos Preset 59 floating point floating point -- yes yes 30160 Pos Preset 60 floating point floating point -- yes yes 30161 Pos Preset 61 floating point floating point -- yes yes 30162 Pos Preset 62 floating point floating point -- yes yes 30163 Pos Preset 63 floating point floating point -- yes yes 30164 Pos Return floating point floating point -- yes yes 30200 Pos Speed 0 floating point 32 bit integer F04 yes yes 30201 Pos Speed 1 floating point 32 bit integer F04 yes yes 30202 Pos Speed 2 floating point 32 bit integer F04 yes yes 30203 Pos Speed 3 floating point 32 bit integer F04 yes yes 30204 Pos Speed 4 floating point 32 bit integer F04 yes yes 30205 Pos Speed 5 floating point 32 bit integer F04 yes yes 30206 Pos Speed 6 floating point 32 bit integer F04 yes yes 30207 Pos Speed 7 floating point 32 bit integer F04 yes yes 30264 Pos Return Speed floating point 32 bit integer F04 yes yes 30300 Pos CW Acc 0 floating point 32 bit integer F02 yes yes 30301 Pos CW Acc 1 floating point 32 bit integer F02 yes yes 30302 Pos CW Acc 2 floating point 32 bit integer F02 yes yes 30303 Pos CW Acc 3 floating point 32 bit integer F02 yes yes 30304 Pos CW Acc 4 floating point 32 bit integer F02 yes yes 30305 Pos CW Acc 5 floating point 32 bit integer F02 yes yes 30306 Pos CW Acc 6 floating point 32 bit integer F02 yes yes 30307 Pos CW Acc 7 floating point 32 bit integer F02 yes yes 30364 Pos Return Acc floating point 32 bit integer F02 yes yes 30400 Pos CW Dec 0 floating point 32 bit integer F02 yes yes 30401 Pos CW Dec 1 floating point 32 bit integer F02 yes yes 30402 Pos CW Dec 2 floating point 32 bit integer F02 yes yes 30403 Pos CW Dec 3 floating point 32 bit integer F02 yes yes 30404 Pos CW Dec 4 floating point 32 bit integer F02 yes yes 30405 Pos CW Dec 5 floating point 32 bit integer F02 yes yes 30406 Pos CW Dec 6 floating point 32 bit integer F02 yes yes 30407 Pos CW Dec 7 floating point 32 bit integer F02 yes yes 30464 Pos Return Dec floating point 32 bit integer F02 yes yes 30480 Pos CCW Acc 0 floating point 32 bit integer F02 yes yes 30481 Pos CCW Acc 1 floating point 32 bit integer F02 yes yes 30482 Pos CCW Acc 2 floating point 32 bit integer F02 yes yes 30483 Pos CCW Acc 3 floating point 32 bit integer F02 yes yes 30484 Pos CCW Acc 4 floating point 32 bit integer F02 yes yes 30485 Pos CCW Acc 5 floating point 32 bit integer F02 yes yes 30486 Pos CCW Acc 6 floating point 32 bit integer F02 yes yes 30487 Pos CCW Acc 7 floating point 32 bit integer F02 yes yes 30490 Pos CCW Dec 0 floating point 32 bit integer F02 yes yes 30491 Pos CCW Dec 1 floating point 32 bit integer F02 yes yes 30492 Pos CCW Dec 2 floating point 32 bit integer F02 yes yes 30493 Pos CCW Dec 3 floating point 32 bit integer F02 yes yes 30494 Pos CCW Dec 4 floating point 32 bit integer F02 yes yes 30495 Pos CCW Dec 5 floating point 32 bit integer F02 yes yes 30496 Pos CCW Dec 6 floating point 32 bit integer F02 yes yes 30497 Pos CCW Dec 7 floating point 32 bit integer F02 yes yes 30500 MPos 0 Progress ENUM 16 bit integer -- yes yes 30501 MPos 1 Progress ENUM 16 bit integer -- yes yes 30502 MPos 2 Progress ENUM 16 bit integer -- yes yes 30503 MPos 3 Progress ENUM 16 bit integer -- yes yes 30504 MPos 4 Progress ENUM 16 bit integer -- yes yes 30505 MPos 5 Progress ENUM 16 bit integer -- yes yes 30506 MPos 6 Progress ENUM 16 bit integer -- yes yes 268 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30507 MPos 7 Progress ENUM 16 bit integer -- yes yes 30600 MPos 0 Dwell 32 bit integer 32 bit integer -- yes yes 30601 MPos 1 Dwell 32 bit integer 32 bit integer -- yes yes 30602 MPos 2 Dwell 32 bit integer 32 bit integer -- yes yes 30603 MPos 3 Dwell 32 bit integer 32 bit integer -- yes yes 30604 MPos 4 Dwell 32 bit integer 32 bit integer -- yes yes 30605 MPos 5 Dwell 32 bit integer 32 bit integer -- yes yes 30606 MPos 6 Dwell 32 bit integer 32 bit integer -- yes yes 30607 MPos 7 Dwell 32 bit integer 32 bit integer -- yes yes 30700 MPos 0 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30701 MPos 1 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30702 MPos 2 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30703 MPos 3 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30704 MPos 4 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30705 MPos 5 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30706 MPos 6 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30707 MPos 7 Event 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30710 MPos 0 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30711 MPos 1 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30712 MPos 2 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30713 MPos 3 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30714 MPos 4 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30715 MPos 5 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30716 MPos 6 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30717 MPos 7 Next Pos 16 bit unsigned integer 16 bit unsigned integer -- yes yes 30800 Pos Actual Event 16 bit unsigned integer 16 bit unsigned integer -- no 31000 Back Lash En ENUM 16 bit unsigned integer -- yes yes 31001 Back Lash Dir ENUM 16 bit unsigned integer -- yes yes 31002 Delta Pos floating point floating point -- yes yes 31003 Speed Comp floating point 32 bit integer F04 yes yes 32000 Els PPR Master 16 bit unsigned integer 16 bit unsigned integer -- yes yes 32001 Els Ratio 0 floating point 32 bit integer F26 yes yes 32002 Els Ratio 1 floating point 32 bit integer F26 yes yes 32003 Els Ratio 2 floating point 32 bit integer F26 yes yes 32004 Els Ratio 3 floating point 32 bit integer F26 yes yes 32005 Actual Ratio floating point 32 bit integer F26 no 32006 Els Ratio Index 16 bit unsigned integer 16 bit unsigned integer -- yes yes 32008 Els Delta Time floating point 16 bit unsigned integer F23 yes yes 32009 Els Master Sel ENUM 16 bit unsigned integer -- yes yes 32010 Els Mec Ratio floating point floating point -- yes yes 32011 Els FL Source ENUM 16 bit integer -- yes yes 32012 ElsMec Ratio Mul floating point floating point -- yes yes 32013 ElsMec Ratio Div floating point floating point -- yes yes 32014 Els Delta Ratio floating point 32 bit integer F26 yes yes 32015 FL Error 16 bit unsigned integer 16 bit unsigned integer -- no 32016 Els Control Mode ENUM bool -> 16 bit integer -- yes yes 32020 Els Ratio / Slip ENUM 16 bit unsigned integer -- yes yes 32021 Els Slip Limit 16 bit integer 16 bit integer -- yes yes 32090 Els Ratio Range ENUM 16 bit unsigned integer -- yes yes 32100 Els Max RB Speed floating point 16 bit unsigned integer F04 yes yes 32101 Els RB Time floating point 16 bit unsigned integer F23 yes yes 32102 Els RB Acc floating point 16 bit unsigned integer F02 yes yes 32103 Els RB Dec floating point 16 bit unsigned integer F02 yes yes 32104 Els RB Speed Ref floating point 16 bit unsigned integer F04 yes yes 32105 Els RB Speed Sel ENUM 16 bit unsigned integer F04 yes yes 32200 AnOut MaxPosErr floating point 16 bit unsigned integer F01 yes yes 40113 Field Bus Status ENUM 32 bit unsigned integer -- no 40114 FB Fail Cause 32 bit unsigned integer 32 bit unsigned integer -- no 40191 FB Assign M->S 2 ENUM 16 bit unsigned integer -- yes yes 40192 FB Assign M->S 3 ENUM 16 bit unsigned integer -- yes yes 40193 FB Assign M->S 4 ENUM 16 bit unsigned integer -- yes yes 40194 FB Assign M->S 5 ENUM 16 bit unsigned integer -- yes yes 40195 FB Assign M->S 6 ENUM 16 bit unsigned integer -- yes yes 40196 FB Assign M->S 7 ENUM 16 bit unsigned integer -- yes yes 40197 FB Assign M->S 8 ENUM 16 bit unsigned integer -- yes yes 40201 FB IPA M->S 2 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40202 FB IPA M->S 3 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40203 FB IPA M->S 4 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40204 FB IPA M->S 5 16 bit unsigned integer 16 bit unsigned integer -- yes yes SIEIDrive - XVy-EV User’s Guide Appendix - Fieldbus: Parameter List and conversion • 269 IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 40205 FB IPA M->S 6 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40206 FB IPA M->S 7 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40207 FB IPA M->S 8 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40211 FB Format M->S 2 ENUM 16 bit unsigned integer -- yes yes 40212 FB Format M->S 3 ENUM 16 bit unsigned integer -- yes yes 40213 FB Format M->S 4 ENUM 16 bit unsigned integer -- yes yes 40214 FB Format M->S 5 ENUM 16 bit unsigned integer -- yes yes 40215 FB Format M->S 6 ENUM 16 bit unsigned integer -- yes yes 40216 FB Format M->S 7 ENUM 16 bit unsigned integer -- yes yes 40217 FB Format M->S 8 ENUM 16 bit unsigned integer -- yes yes 40221 FB Exp M->S 2 16 bit integer 16 bit integer -- yes yes 40222 FB Exp M->S 3 16 bit integer 16 bit integer -- yes yes 40223 FB Exp M->S 4 16 bit integer 16 bit integer -- yes yes 40224 FB Exp M->S 5 16 bit integer 16 bit integer -- yes yes 40225 FB Exp M->S 6 16 bit integer 16 bit integer -- yes yes 40226 FB Exp M->S 7 16 bit integer 16 bit integer -- yes yes 40227 FB Exp M->S 8 16 bit integer 16 bit integer -- yes yes 40291 FB Assign S->M 2 ENUM 16 bit unsigned integer -- yes yes 40292 FB Assign S->M 3 ENUM 16 bit unsigned integer -- yes yes 40293 FB Assign S->M 4 ENUM 16 bit unsigned integer -- yes yes 40294 FB Assign S->M 5 ENUM 16 bit unsigned integer -- yes yes 40295 FB Assign S->M 6 ENUM 16 bit unsigned integer -- yes yes 40296 FB Assign S->M 7 ENUM 16 bit unsigned integer -- yes yes 40297 FB Assign S->M 8 ENUM 16 bit unsigned integer -- yes yes 40301 FB IPA S->M 2 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40302 FB IPA S->M 3 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40303 FB IPA S->M 4 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40304 FB IPA S->M 5 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40305 FB IPA S->M 6 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40306 FB IPA S->M 7 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40307 FB IPA S->M 8 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40311 FB Format S->M 2 ENUM 16 bit unsigned integer -- yes yes 40312 FB Format S->M 3 ENUM 16 bit unsigned integer -- yes yes 40313 FB Format S->M 4 ENUM 16 bit unsigned integer -- yes yes 40314 FB Format S->M 5 ENUM 16 bit unsigned integer -- yes yes 40315 FB Format S->M 6 ENUM 16 bit unsigned integer -- yes yes 40316 FB Format S->M 7 ENUM 16 bit unsigned integer -- yes yes 40317 FB Format S->M 8 ENUM 16 bit unsigned integer -- yes yes 40321 FB Exp S->M 2 16 bit integer 16 bit integer -- yes yes 40322 FB Exp S->M 3 16 bit integer 16 bit integer -- yes yes 40323 FB Exp S->M 4 16 bit integer 16 bit integer -- yes yes 40324 FB Exp S->M 5 16 bit integer 16 bit integer -- yes yes 40325 FB Exp S->M 6 16 bit integer 16 bit integer -- yes yes 40326 FB Exp S->M 7 16 bit integer 16 bit integer -- yes yes 40327 FB Exp S->M 8 16 bit integer 16 bit integer -- yes yes 40916 PDO 2 RX TYPE 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40917 PDO 3 RX TYPE 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40926 PDO 2 TX TYPE 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40927 PDO 3 TX TYPE 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40931 PDO 2 TX INH 16 bit unsigned integer 16 bit unsigned integer -- yes yes 40932 PDO 3 TX INH 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41001 PLC Enable Key 32 bit unsigned integer 32 bit unsigned integer -- yes yes 41199 FB Assign M->S10 ENUM 16 bit unsigned integer -- yes yes 41200 FB Assign M->S11 ENUM 16 bit unsigned integer -- yes yes 41201 FB Assign M->S12 ENUM 16 bit unsigned integer -- yes yes 41209 FB IPA M->S10 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41210 FB IPA M->S11 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41211 FB IPA M->S12 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41219 FB Format M->S10 ENUM 16 bit unsigned integer -- yes yes 41220 FB Format M->S11 ENUM 16 bit unsigned integer -- yes yes 41221 FB Format M->S12 ENUM 16 bit unsigned integer -- yes yes 41229 FB Exp M->S10 16 bit integer 16 bit integer -- yes yes 41230 FB Exp M->S11 16 bit integer 16 bit integer -- yes yes 41231 FB Exp M->S12 16 bit integer 16 bit integer -- yes yes 41299 FB Assign S->M10 ENUM 16 bit unsigned integer -- yes yes 41300 FB Assign S->M11 ENUM 16 bit unsigned integer -- yes yes 41301 FB Assign S->M12 ENUM 16 bit unsigned integer -- yes yes 41309 FB IPA S->M10 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41310 FB IPA S->M11 16 bit unsigned integer 16 bit unsigned integer -- yes yes 270 • Appendix - Fieldbus: Parameter List and conversion SIEIDrive - XVy-EV User’s Guide IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 41311 FB IPA S->M12 16 bit unsigned integer 16 bit unsigned integer -- yes yes 41319 FB Format S->M10 ENUM 16 bit unsigned integer -- yes yes 41320 FB Format S->M11 ENUM 16 bit unsigned integer -- yes yes 41321 FB Format S->M12 ENUM 16 bit unsigned integer -- yes yes 41329 FB Exp S->M10 16 bit integer 16 bit integer -- yes yes 41330 FB Exp S->M11 16 bit integer 16 bit integer -- yes yes 41331 FB Exp S->M12 16 bit integer 16 bit integer -- yes yes * H I U D Q Z R U O G Z L G H GEFRAN BENELUX Lammerdries-Zuid, 14A B-2250 OLEN Ph. +32 (0) 14248181 Fax. +32 (0) 14248180 [email protected] GEFRAN BRASIL ELETROELETRÔNICA Avenida Dr. Altino Arantes, 377/379 Vila Clementino 04042-032 SÂO PAULO - SP Ph. +55 (0) 1155851133 Fax +55 (0) 1132974012 [email protected] GEFRAN DEUTSCHLAND Philipp-Reis-Straße 9a 63500 SELIGENSTADT Ph. +49 (0) 61828090 Fax +49 (0) 6182809222 [email protected] SIEI AREG - GERMANY Gottlieb-Daimler-Strasse 17/3 D-74385 Pleidelsheim Ph. +49 7144 89 736 0 Fax +49 7144 89 736 97 [email protected] GEFRAN ESPAÑA Josep Pla, 163 2°-6ª 08020 BARCELONA Ph. +34 934982643 Fax +34 932662713 [email protected] GEFRAN FRANCE 4, rue Jean Desparmet - BP 8237 69355 LYON Cedex 08 Ph. +33 (0) 478770300 Fax +33 (0) 478770320 [email protected] GEFRAN SUISSE SA Rue Fritz Courvoisier 40 2302 La Chaux-de-Fonds Ph. +41 (0) 329684955 Fax +41 (0) 329683574 offi[email protected] GEFRAN - UK Ltd. 7 Pearson Road, Central Park TELFORD, TF2 9TX Ph. +44 (0) 845 2604555 Fax +44 (0) 845 2604556 [email protected] GEFRAN Inc. 8 Lowell Avenue WINCHESTER - MA 01890 Toll Free 1-888-888-4474 Ph. +1 (781) 7295249 Fax +1 (781) 7291468 [email protected] GEFRAN INDIA Pvt. Ltd. Survey No: 182/1 KH, Bhukum, Paud road, Taluka – Mulshi, Pune - 411 042. MH, INDIA Ph:+91-20-3939 4400 Fax: +91-20-3939 4401 [email protected] GEFRAN INDIA Pvt. Ltd. Head office (Pune office) Survey No: 182/1 KH, Bhukum, Paud road, Taluka – Mulshi, Pune - 411 042. MH, INDIA Ph:+91-20-3939 4400 Fax: +91-20-3939 4401 [email protected] Branch office (Mumbai office) Laxmi Palace, M.G. Road Naupada, Thane (W) 400602 Mumbai Ph. +91 22 2540 3384 Ph. +91 22 2542 6640 Fax +91 22 2542 7889 [email protected] GEFRAN SIEI Electric Pte Ltd Block B, Gr.Flr, No.155, Fu Te Xi Yi Road, Wai Gao Qiao Trade Zone 200131 Shanghai - CHINA Ph. +86 21 5866 7816 Ph. +86 21 5866 1555 [email protected] GEFRAN SIEI Drives Technology No.1265, Beihe Road, Jiading District 201821 Shanghai - CHINA Ph. +86 21 69169898 Fax +86 21 69169333 [email protected] GEFRAN S.p.A. Via Sebina 74 25050 Provaglio d’Iseo (BS) ITALY Ph. +39 030 98881 Fax +39 030 9839063 [email protected] www.gefran.com Drive & Motion Control Unit Via Carducci 24 21040 Gerenzano [VA] ITALY Ph. +39 02 967601 Fax +39 02 9682653 [email protected] Technical Assistance : [email protected] Customer Service : [email protected] Ph. +39 02 96760500 Fax +39 02 96760278 M a n u a l e X V y - E V - E N R e v . 0 . 4 - 1 9 . 1 1 . 2 0 1 0 1 S 3 A 4 3 Thank you for choosing this Gefran product. We will be glad to receive any possible information which could help us improving this manual. The e-mail address is the following: [email protected]. Before using the product, read the safety instruction section carefully.) Keep the manual in a safe place and available to engineering and installation personnel during the product functioning period. Gefran Spa has the right to modify products, data and dimensions without notice. The data can only be used for the product description and they can not be understood as legally stated properties. All rights reserved. This manual is updated according to software version 4.40. NOTE! Refer to the “Drive programmation with MDPlc” (inside the XVy tools cd-rom) to use the drive with the Plc function in the dedicated MDPlc development environment. The identification number of the software version can be read on the inverter nameplate or on the label on the FLASH memories mounted on the regulation card. Tables of Contents Safety Symbol Legend - Precautions de securité ........................................................... 8 Chapter 0 - Safety Precautions ........................................................................................ 9 Chapter 1 - Functions and General Features .................................................................. 15 1.1 Motors and Encoders ............................................................................................................... 17 1.1.1 Motors ..................................................................................................................................................... 17 Chapter 2 - Inspection Procedures, Components Identification and Standard Specifications ................................................................................................18 2.1 Delivery Inspection Procedures ............................................................................................... 18 2.1.1 General .................................................................................................................................................... 18 2.1.2 Drive type designation ............................................................................................................................. 19 2.1.3 Nameplate ............................................................................................................................................... 20 2.2 Component identification ......................................................................................................... 21 2.3 Standard specifications ........................................................................................................... 23 2.3.1 Permissible environmental conditions .................................................................................................... 23 Disposal of the Device ...................................................................................................................................... 24 2.3.2 AC Input/Output Connection ..................................................................................................................... 24 2.3.3 Rated and overload currents .................................................................................................................... 26 I x T Algorithm ................................................................................................................................................. 27 I2T Algorithm ................................................................................................................................................. 30 Chapter 3 - Installation Guidelines .................................................................................34 3.1 Mechanical Specification ........................................................................................................ 34 3.2 Watts Loss, Heat Dissipation, Internal Fans and Minimum Cabinet Opening Suggested for the Cooling ................................................................................................................................... 38 3.3 Installation Mounting Clearance .............................................................................................. 40 3.2.1 Cooling Fans Power Supply ...................................................................................................................... 39 Chapter 4 - Wiring Procedure .........................................................................................41 4.1 Accessing the Connectors (IP20 models) ................................................................................ 41 4.2 Power Section ......................................................................................................................... 43 4.3 Regulation Section ................................................................................................................... 46 4.3.1 R-XVy-EV Regulation Card ....................................................................................................................... 46 4.3.2 Terminal Assignments on Regulation Section ......................................................................................... 48 4.2.1 Terminal Assignment on Power Section / Cable Cross-Section ............................................................... 43 4.1.1 Removing the Covers ............................................................................................................................... 41 4.1.2. Wiring Suggestion .................................................................................................................................. 42 4.4 Feedback Devices .................................................................................................................... 51 4.4.1 XE Connector Assignments ..................................................................................................................... 52 4.4.2 XER Encoder Connector Assignments (for auxiliary encoders) ................................................................ 52 4.4.3 Feedback /Drive Connections .................................................................................................................. 53 4.3.3.1 Resolver Connections (RES) ............................................................................................................... 53 4.4.3.2 Sinusoidal Encoder SinCos Connections (SESC) ................................................................................. 53 4.4.3.3 Digital Encoder with Hall Effect Sensors Connections (DEHS) .............................................................. 54 4.4.3.4 Absolute Encoder Connections (SSi / EnDat /Hiperface protocols) ....................................................... 55 4.4.3.5 Encoder /Resolver Specifications (XE connector) ................................................................................ 55 4.4.3.6 Encoder Simulation / Repetition, Auxiliary Encoder Input (XER/EXP Connector) ................................... 56 4.4.4 Encoder Cable Length .............................................................................................................................. 57 4.4.5 Checking Encoder / Drive Connections .................................................................................................... 58 4.5 CANopen Connection ............................................................................................................... 59 SIEIDrive - XVy-EV User’s Guide Table of Contents • 3 4.6 Fast Link Connections .............................................................................................................. 60 4.7 Serial Interface ......................................................................................................................... 61 4.8 Standard Connection Diagram ................................................................................................. 63 4.9 Circuit Protection ..................................................................................................................... 66 4.9.1 External Fuses for the Power Section ...................................................................................................... 66 4.9.2 External Fuses for the Power Section DC Input Side ................................................................................ 67 4.9.3 Internal Fuses .......................................................................................................................................... 68 4.10.1 AC Input Chokes .................................................................................................................................... 69 4.10.2 Output Chokes ........................................................................................................................................ 69 4.10.3 Interference Suppression Filters ............................................................................................................ 71 4.8.1 XVy-EV Connections ................................................................................................................................ 63 4.8.2 Parallel Connection on the AC (Input) and DC (Intermediate Circuit) Side of Several Drives ................... 65 4.7.1 Serial Interface Description ...................................................................................................................... 61 4.7.2 RS 485 Serial Interface Connector Description ........................................................................................ 62 4.6.1 Fast Link Data .......................................................................................................................................... 60 4.10 Chokes / Filters ...................................................................................................................... 68 4.11 Braking Units .......................................................................................................................... 73 4.11.1 Internal Braking Unit .............................................................................................................................. 73 4.11.2 Internal and External Braking Resistors ................................................................................................. 74 4.11.3 Control of the External Braking Power .................................................................................................... 78 4.11.4 External Resistance Interaction with the System Parameters .............................................................. 78 4.11.5 Choice of the Thermal Relay for Brake Resistor ..................................................................................... 78 4.12 Buffering the Regulator Supply .............................................................................................. 80 4.13 Discharge Time of the DC-Link ............................................................................................... 82 Chapter 5 - Sizing Criteria ...............................................................................................83 5.1 Motor Check ............................................................................................................................ 84 5.2 Check of the Drive Size ............................................................................................................ 85 5.3 Application Example: Flying Cut .............................................................................................. 86 Chapter 6 - Maintenance ................................................................................................. 88 6.1 Care ......................................................................................................................................... 88 6.2 Service ..................................................................................................................................... 88 6.3 Repairs ..................................................................................................................................... 88 6.4 Customer Service .................................................................................................................... 88 Chapter 7 - Settings and Commissioning .......................................................................89 7.1 PC Configurator ........................................................................................................................ 89 7.2 Commissioning ......................................................................................................................... 89 7.2.1 Connection with the PC ............................................................................................................................ 89 7.2.2 Essential Parameters Set up ................................................................................................................... 92 7.2.3 Speed Mode Configuration Example ......................................................................................................... 93 7.2.4 Position Mode Configuration Example ..................................................................................................... 94 7.2.5 Electrical Line Shaft Mode Configuration Example ................................................................................... 95 7.3 Download Firmware ................................................................................................................. 96 7.4 Automatic Electric Phasing Procedure for Encoder/Resolver .................................................. 97 Chapter 8 - Keypad Operation .........................................................................................99 8.1 Keypad Description .................................................................................................................. 99 8.1.1 LED .......................................................................................................................................................... 99 8.1.2 Function Keys ........................................................................................................................................ 100 8.1.3 Display - Using keypad .......................................................................................................................... 101 8.2 Keypad operations ................................................................................................................. 102 4 • Table of Contents SIEIDrive - XVy-EV User’s Guide 8.3 Alarms and Errors Handling ................................................................................................... 105 8.4 Saving drive parameters on the keypad ................................................................................ 109 8.3.1 Alarms (Failure register) ....................................................................................................................... 105 8.3.2 Alarm description .................................................................................................................................. 106 8.4.1 Configuring the drive using parameters saved on the keypad ................................................................ 109 8.2.1 Errors ..................................................................................................................................................... 104 Chapter 9 - Block Diagrams .......................................................................................... 111 Chapter 10 - Parameters and Functions ....................................................................... 115 10.1 Parameters menu ................................................................................................................. 115 10.2 Legend ................................................................................................................................. 117 10.3 Parameters Description and Functions ................................................................................. 118 MONITOR .......................................................................................................................................... 118 SAVE / LOAD PAR ............................................................................................................................. 119 DRIVE CONFIG ................................................................................................................................... 120 MOTOR DATA .................................................................................................................................... 123 ENCODER PARAM ............................................................................................................................. 123 RAMP ............................................................................................................................................... 127 SPEED ............................................................................................................................................... 128 SPD / POS GAIN ................................................................................................................................ 129 TORQUE ............................................................................................................................................. 130 CURRENT GAINS ............................................................................................................................... 132 FLUX ................................................................................................................................................. 132 DIGITAL INPUTS ................................................................................................................................ 132 DIGITAL OUTPUTS ............................................................................................................................. 140 ANALOG INPUTS .............................................................................................................................. 146 ANALOG OUTPUTS ........................................................................................................................... 148 ENC REPETITION ............................................................................................................................... 150 JOG FUNCTION .................................................................................................................................. 151 MULTISPEED ..................................................................................................................................... 151 MULTIRAMP ..................................................................................................................................... 153 SPEED DRAW ................................................................................................................................... 154 MOTOR POT ....................................................................................................................................... 155 BRAKE CONTROL ............................................................................................................................... 157 POWERLOSS ..................................................................................................................................... 157 POSITION .......................................................................................................................................... 159 EL LINE SHAFT .................................................................................................................................. 181 BRAKING RES .................................................................................................................................... 185 ALARMS ........................................................................................................................................... 185 FIELDBUS .......................................................................................................................................... 189 ENABLE KEYS .................................................................................................................................... 201 TUNING ............................................................................................................................................. 202 KEYPAD PSW .................................................................................................................................... 203 SERVICE ............................................................................................................................................ 204 Chapter 11 - Parameters Index ..................................................................................... 210 IPA ............................................................................................................................................... 210 Chapter 12 - Motor Cables ............................................................................................ 221 Appendix - Field bus and serial interface ..................................................................... 233 1.0 Integrated CANopen Interface ............................................................................................. 233 1.1 CANopen Functions ............................................................................................................... 233 1.1.1 Pre-defined Master/Slave Connection ................................................................................................... 233 1.1.2 NMT Services (Network Management) ................................................................................................. 233 SIEIDrive - XVy-EV User’s Guide Table of Contents • 5 ......................................... 251 3...................... 246 2................................................1..............................XVy-EV User’s Guide .5 DeviceNet Function ............2........... 250 3.Register and Coil Modbus Tables ....................................... 235 1.........................1........................................................................................7............................................. 247 3...3 Process Data Channel Control ................................................................................................................5 Alarms .......................................................................................3 Leds .......................1 Modbus Functions ......................................7......................................... 249 3.6 Rx PDO Entries ......................................6 Object description ................ 245 16 Preset multiple registers : ...................................................4 Common Services .........................................................................................................................4 Appendix .............6 Behavior .............................................................................................................................. 252 3.....................................7..................................... 235 1......................................3 System Configuration ..................................... 240 1..............................................................................7........ 247 3.. 250 3................................................. 250 3........................................1 Class Code ........2 Class attributes ...................................7............................................................................................................... 252 3............. 234 1..........................................................................................................................0 DeviceNet Interface (XVy-DN) ................................................................3.........1.................4 Common Services ..... 243 2..............8 SDO Entries ............................1...........................................7........................ 251 3...............................3 Instance Attributes ....... 248 3...............................................................................................5 Object Specific Services .. 244 06 Preset single register : .........................................................................1. 251 3....................................2 Class attributes ................................................................................................................................................................ 251 3...........................................................................................................................................................................1 PDC Input Configuration (FB XXX MS Parameter) ................1....................................................................2............ 250 3....................................................... 250 3........................................1 DeviceNet General Description .........................2 PDC Output Configuration (FB XXX SM Parameter) ........ 234 1............................. 238 1........................................................... 244 03 Read Output register : .....1....................................................................................................2 Connection .................................................................................................... 240 1....................................7................ 243 2...........................................................................................3 Instance Attributes ..........7.............. 251 3.............. 256 6 • Table of Contents SIEIDrive .......7..........................7.......7 Data transfert via Explicit Messaging ...........................................................................................................2 How Objects Affect Behavior ..7.................... 250 3.....................6................2 CANopen Management ...... 243 2...............................................1................6 Behavior .......... 236 1............................................................. 236 1..........................5 Modbus example .........................6....................... 247 3................................. 242 2.................................................5 Object Dictionary Elements .......................................................................................................... 244 2............................. 250 3.........7 Tx PDO Entries ............1...............................9 COB-ID SYNC Entries ...........................2....................................4 Interface ....................................................................8 Polling Function ............................................................................................................... 249 3.................................................................................................................2..........................................................1 Class Code ..................................................................................... 248 3... 243 3...........................................................................................1....................................................................................4 SDO Management ...................................................................................................................................0 Modbus .. 249 3.....................3 Defining Object Interface .............................................................................. 240 1.........................................................................................1.........................1 Drive Parameter Access .....................3......................................................................................................................................3 Initialization ....................2......7......................................................4 Communication Object ...............................................................1 Object Model ................................................................................................................................................................. 237 1............................................. 237 1................1..6...........................2 Error Management ............................10 COB-ID Emergency ........................... 236 1............................3................................................................................................................................................................ 239 1.........................................................2....1.........1 Exception codes .......................................5 Object Specific Services ........7...................................................2............................. 247 3.......................1.............................3 Use of the PDC in MDPlc Applications .................................................................................. 248 3.............7...........2 Drive Parameter Access ........... 250 3............... 244 2..................................................................................................1............................... ........... 258 3.................................................................. 258 3.......................XVy-EV User’s Guide Table of Contents • 7 ........................3.............................................. 257 3.......................................................................................................... 257 3.........1 Fieldbus Menu ................................4 Use of the PDC in MDPlc Applications ............................................................................................................................1 XVy-DN Alarms ..........................10..........................................9 XVy-DN Interface configuration .... 256 3........... 259 Key .................................................................11....................10 Alarms . 258 3.....................................................................2 Drive alarm handling ........... 257 3..............................11............................................................ 256 3.............9............................................................................................10.. 258 4.....................................................................................................11................9............2 Error Codes .......... 259 SIEIDrive ..................0 Fieldbus : Parameter List and Conversion ...........................11........................................... 257 3..............................................................3 Alarm reset .................................10....................3 Configuration of the Virtual Digital I/Os ...........................................11 Process Data Channel Control ............................................................................................................................1 PDC Input Configuration (SYS_FB_XXX_MS parameter) .................................................................................................................. 257 3........................2 PDC Output Configuration (SYS_FB_XXX_SM Parameter) ... 256 3... Si ces consignes ne sont pas strictement respectées.. Indique et le mode d'utilisation. if not strictly observed. il y a des risques de blessures corporelles ou de mort. Si ces consignes ne sont pas strictement respectées. il y a des risques de détérioration ou de destruction des appareils Indicates a procedure. condition. if not strictly observed. could result in damage to or destruction of equipment. Indique le mode d'utilisation. or statement that. Indicates an essential or important procedure. Indique le mode d'utilisation. la procédure et la condition d'exploitation.XVy-EV User’s Guide .Precautions de securité Indicates a procedure. Ces consignes doivent être rigoureusement respectées pour optimiser ces applications. condition. Indique un mode d'utilisation. or statement. la procédure et la condition d'exploitation. condition. or statement that should be be strictly followed in order to optimize these applications. Indicates a procedure. la procédure et la condition d'exploitation. condition. could result in personal injury or death. de procédure et de condition d'exploitation essentiels ou importants Warning Caution Attention NOTE! 8 • Chapter 0 Safety SIEIDrive . or statement that.Safety Symbol Legend . as far as the machine industry is concerned. It is the responsibility of the user to insure that any such motion does not result in an unsafe condition. Factory provided interlocks and operating limits should not be bypassed or modified. le chassis de l’oscilloscope doit être relié à la terre et un amplificateur différentiel devrait être utilisé en entrée.XVy-EV et leurs accessoires doivent être employés seulement après avoir verifié que la machine ait été produit avec les même dispositifs de sécurité demandés par la réglementation 89/392/EEC concernant le secteur de l’industrie. Care should be used in the selection of probes and leads and in the adjustment of the oscilloscope so that accurate readings may be made. Voir le manuel d’instruction pour une utilisation correcte des instruments. but may need to be considered in equipment being shipped to Europe. Selon les normes EEC. Les sondes et conducteurs doivent être choissis avec soin pour effectuer les meilleures mesures à l’aide d’un oscilloscope. Risque d’incendies et d’explosions: L’utilisation des drives dans des zônes à risques (présence de vapeurs ou de poussières inflammables).Safety Precautions According to the EEC standards the SIEIDrive . These standards do not apply in the Americas. peut provoquer des incendies ou des explosions. Drives should be installed away from hazardous areas. Electrical Shock and Burn Hazard: When using instruments such as oscilloscopes to work on live equipment. Drive systems cause mechanical motion.Chapter 0 .XVy-EV User’s Guide Chapter 0 Safety • 9 . Décharge Èlectrique et Risque de Brúlure : Lors de l’utilisation d’instruments (par example oscilloscope) sur des systémes en marche. Warning SIEIDrive . Les dispositifs de sécurité prévues par l’usine et les limitations operationelles ne doivent être dépassés ou modifiés. les drives SIEIDrive . Fire and Explosion Hazard: Fires or explosions might result from mounting Drives in hazardous areas such as locations where flammable or combustible vapors or dusts are present. Les drives doivent être installés loin des zônes dangeureuses.XVy-EV and accessories must be used only after checking that the machine has been produced using those safety devices required by the 89/392/EEC set of rules. Les systèmes provoquent des mouvements mécaniques. even if used with motors suitable for use in these locations. et équipés de moteurs appropriés. the oscilloscope’s chassis should be grounded and a differential amplifier input should be used. See instrument manufacturer’s instruction book for proper operation and adjustments to the instrument. L’utilisateur est responsable de la sécurité concernant les mouvements mécaniques. Il faut toujours connecter le variateur à la terre (PE) par les des bornes (PE2) et le châssis (PE1). The electrical installation and the opening of the device should therefore only be carried out by qualified personnel. Les normes EN 50178 spécifient qu'en cas de courant de dispersion vers la terre. Always connect the Drive to the protective ground (PE) via the marked connection terminals (PE2) and the housing (PE1). Follow the instructions given in this manual and observe the local and national safety regulations applicable. Replace all covers before applying power to the Drive.On doit suivir les instructions donneés dans ce manuel et observer les régles nationales de sécurité. Adjustable frequency drives are electrical apparatus for use in industrial installations. Une partie des drives sont sous tension pendant l’operation. la mise à la terre (PE1) doit avoir une double connexion pour la redondance. Brushless Drives and AC Input filters have ground discharge currents greater than 3. Il doit être élevé seulement avec des moyens appropriés et par du personnel qualifié. Le courant de dispersion vers la terre est supérieur à 3. Les drives à fréquence variable sont des dispositifs électriques utilisés dans des installations industriels. Warning 10 • Chapter 0 Safety SIEIDrive . Drive is not equipped with motor overspeed protection logic other than that controlled by software.5 mA.5 ma. Attention à l’Élévation: Une élévation inappropriée peut causer des dommages sérieux ou fatals.5 mA the protective conductor ground connection (PE1) must be fixed type and doubled for redundancy. Failure to do so may result in death or serious injury. L’installation électrique et l’ouverture des drives devrait être executé uniquement par du personel qualifié. Lift only with adequate equipment and trained personnel.Strain Hazard: Improper lifting practices can cause serious or fatal injury. supérieur à 3.5 mA sur les variateurs Brushless et sur les filtres à courant alterné (CA). Remettre tous les capots avant de mettre sous tension le drive. Tous les moteurs et les drives doivent être mis à la terre selon le Code Electrique National ou équivalent. De mauvaises installations de moteurs ou de drives peuvent provoquer des dommages materiels ou blesser des personnes. Drives and motors must be ground connected according to the NEC. Des erreurs peuvent provoquer de sérieux accidents ou même la mort. Parts of the Drives are energized during operation. EN 50178 specifies that with discharge currents greater than 3.XVy-EV User’s Guide . Improper installation of motors or Drives may therefore cause the failure of the device as well as serious injury to persons or material damage. XVy-EV User’s Guide Chapter 0 Safety • 11 . En cas de panne. Do not connect power supply voltage that exceeds the standard specification voltage fluctuation permissible. the use of wye/delta transformer is mandatory. même s'il est désactivé. Minimum time to wait before working on the terminals or inside the device is listed in section 4. Do not operate the Drive without the ground wire connected. with a secondary three phase wiring referred to ground. if the use of a wye / delta transformer is avoided. If the front plate has to be removed because of ambient temperature higher than 40 degrees. unless it has been disconnected from the AC input feeder. 1 Gefran drives are designed to be powered from standard three phase lines that are electrically symmetrical with respect to ground (TN or TT network). If excessive voltage is applied to the Drive. even if it is disabled. des composants internes peuvent être endommagés. qu’aucun contact occasionnel ne puisse arriver avec les parties sous tension. Le temps minimum d’attente avant de pouvoir travailler sur les bornes ou bien à l’intérieur de l’appareil est indiqué dans la section 4. Ne jamais ouvrir l’appareil lorsqu’il est suns tension. 2 In case of supply with IT network. damage to the internal components will result. Dans le cas d’ une alimentation en tension excessive. The motor chassis should be grounded to earth through a ground lead separate from all other equipment ground leads to prevent noise coupling.10.The drive may cause accidental motion in the event of a failure. l’utilisateur doit s’assurer. Si la plaque frontale doit être enlevée pour un fonctionnement avec la température de l’environnement plus haute que 40°C. the user has to ensure that no occasional contact with live parts may occur. an insulation loss of one of the devices connected to the same network can cause functional problem to the drive. Please refer to the following connection sample.10 on Instruction manual . Warning SIEIDrive . par des moyens opportuns. le variateur peut causer une mise en marche accidentelle. Ne pas raccorder de tension d’alimentation dépassant la fluctuation de tension permise par les normes. Power supply and grounding In case of a three phase supply not symmetrical to ground. sauf s'il a été débranché de l'alimentateur à courant alterné. Never open the device or covers while the AC Input power supply is switched on. Laisser le capot de ventilation en place pour températures de 104°F (40°C) ou inférieures. Caution 12 • Chapter 0 Safety AC OUTPUT CHOKE AC INPUT CHOKE PE1/ SIEIDrive . and after correcting the problem. The connector is to be fixed using the crimp tool specified by the connector manufacturer. Le connecteur doit être fixé a l’aide d’un instrument de serrage specifié par le producteur du connecteur. etc.W2/T3 W1/L3 U2/T1 U1/L1 V2/T2 V1/L2 PE2/ AC Main Supply L1 L2 L3 Safety ground Earth All wires (including motor ground) must be connected inside the motor terminal box Ne pas faire fonctionner le drive sans prise de terre.XVy-EV User’s Guide . do not install the Drive in any location that exceeds the allowable temperature. Étant donné que la température ambiante influe sur la vie et la fiabilité du drive. Because the ambient temperature greatly affects Drive life and reliability. The grounding connector shall be sized in accordance with the NEC or Canadian Electrical Code. Le connecteur de terre devrait être dimensionné selon la norme NEC ou le Canadian Electrical code. Leave the ventilation cover attached for temperatures of 104° F (40° C) or below. The connection shall be made by a UL listed or CSA certified closed-loop terminal connector sized for the wire gauge involved. resume operation. consult the TROUBLESHOOTING section of this instruction book. on ne devrait pas installer le drive dans des places ou la temperature permise est dépassée. Do not perform a megger test between the Drive terminals or on the control circuit terminals. Ne pas exécuter un test megger entre les bornes du drive ou entre les bornes du circuit de contrôle. Le chassis du moteur doit être mis à la terre à l’aide d’un connecteur de terre separé des autres pour éviter le couplage des perturbations. Le raccordement devrait être fait par un connecteur certifié et mentionné à boucle fermé par les normes CSA et UL et dimensionné pour l’épaisseur du cable correspondant. Do not reset the alarm automatically by external sequence. If the Drive’s Fault Alarm is activated. Lors du déballage du drive. Il n’est pas permis de raccorder la sortie de plusieurs convertisseurs en parallèle. Var compensation capacitors) should not be connected to the output of the drive (terminals U2. shock etc. V2 W2). Do not touch or damage any components when handling the device. Aucune tension ne doit être appliquée sur la sortie du convertisseur (bornes U2. Manipuler l’appareil de façon à ne pas toucher ou endommager des parties. While the Drive is operating. V2.XVy-EV User’s Guide Chapter 0 Safety • 13 . Aucune charge capacitive ne doit être connectée à la sortie du convertisseur (bornes U2. The changing of the isolation gaps or the removing of the isolation and covers is not permissible. consulter la section du manuel concernant les défauts et après avoir corrigé l’erreur. il empêche la ventilation et provoque une surchauffe du drive). The parallel connection of several drives via the outputs and the direct connection of the inputs and outputs (bypass) are not permissible. humidité. la température des ailettes du dissipateur thermique peut arriver à 194°F (90°). Caution SIEIDrive . The Drive must be mounted on a wall that is constructed of heat resistant material. Le drive doit être monté sur un mur construit avec des matériaux résistants à la chaleur.) Protéger l’appareil contre des effets extérieurs non permis (température. V2 et W2) (par exemple des condensateurs de mise en phase).g. Protect the device from impermissible environmental conditions (temperature. reprendre l’opération. No voltage should be connected to the output of the drive (terminals U2. retirer le sachet déshydraté. chocs etc. W2). V2 et W2). etc Be sure to remove the desicant dryer packet(s) when unpacking the Drive. the temperature of the Drive's cooling fins can rise to a temperature of 194° F (90°C). ni d’effectuer une connexion directe de l’entrée avec la sortie du convertisseur (Bypass). (Si celui-ci n’est pas retiré. A capacitative load (e. humidity.). Ne pas réiniliatiser l’alarme automatiquement par une séquence externe. (If not removed these packets may become lodged in the fan or air passages and cause the Drive to overheat).Si la Fault Alarm du drive est activée. Il n’est pas permis de changer les distances d’isolement ou bien d’enlever des matériaux isolants ou des capots. Pendant le fonctionnement du drive. des signaux. pour régénérer les condensateurs : appliquer une tension d'alimentation sans actionner le variateur . il faut utiliser des instruments de mesure appropriés (résistance interne minimale 10 k/V). NOTE! 14 • Chapter 0 Safety SIEIDrive . “Controller” et “Drive” sont interchangeables dans le domaine industriel. “Controller” and “Drive” are sometimes used interchangably throughout the industry. We will use the term “Drive” in this document.  Il ne faut pas éxécuter de tests de rigidité diélectrique sur des parties du convertisseurs. NOTE! If the Drives have been stored for longer than two years. Le moteur doit être protégé contre la surcharge No dielectric tests should be carried out on parts of the drive.XVy-EV User’s Guide . Ce dernier est responsable de l’existence d’une connexion de terre adéquate et d’une protection des câbles d’alimentation selon les prescriptions locales et nationales. il faut alimenter variateurs à vide pendant deux heures. connect them to a power supply for two hours with no load connected in order to regenerate the capacitors.Caution The electrical commissioning should only be carried out by qualified personnel. La mise en service électrique doit être effectuée par un personnel qualifié. ayant été stockés pendant longtemps. A suitable measuring instrument (internal resistance of at least 10 kV) should be used for measuring the signal voltages. En cas de stockage des variateurs pendant plus de trois ans. Before commissioning devices that have been stored for long periods. il est conseillé de contrôler l'état des condensateurs CC avant d'en effectuer le branchement. The terms “Inverter”. The motor must be protected against overloads. Les mots “Inverter”. Nous utiliserons dans ce manuel seulement le mot “Drive”. the operation of the DC link capacitors may be impaired and must be “reformed”. Avant la mise en service des appareils. Pour mesurer les tensions. who are also responsible for the provision of a suitable ground connection and a protected power supply feeder in accordance with the local and national regulations. (the input voltage has to be applied without enabling the drive). both in a feedback and in a feedforward condition. it can be considered as a combination of a digital drive and a PLC using a special software tool called GF-eXpress.XVy-EV represents a new concept in motion control technology. SIEIDrive . Thanks to the innovative software installed on the flash eprom. an analog interface.Functions and General Features SIEIDrive . which store the desired and the actual information. The PID speed loop (a position loop derivative) and the PID2 acceleration control (a second position loop derivative) are added to increase the accuracy of the controlled axes.XVy-EV User’s Guide Chapter 1 Functions and General Features • 15 . (PI type) is based on two symmetrical register circuits. • Motor-driven potentiometer • Sequential position control (multi-position controller) • Power interrupt management • Linear motor control • Plc functions with MDPlc dedicated software environment. standard languages according to IEC 61131 • “GF-eXpress” Windows ® configurator via Slink3 protocol • 1 configurable main encoder / resolver input • 1 configurable auxiliary encoder input / encoder repetition / simulation output • 2 analog differential inputs (11 bits + sign) • 2 analog outputs (11 bits + sign) • 7 programmable digital inputs • 6 programmable digital outputs • 1 digital relay output 1A 250V • RS485 asynchronous opto-isolated multi-drop serial port • 2 fast synchronous serial ports for a master-slave communications between drives (Fast Link connectors) • Fiber optical communication adapters SIEIDrive .XVy-EV is an IGBT servodrive particularly suitable for high bandwidth applications with brushless servomotors. The drive position loop. • Flux reduction. • Brake control.XVy-EV features full-digital regulation with a 16KHz cycle. a 5KHz current loop bandwidth. a position loop with zero tracking failure. SIEIDrive . this very fast servodrive based on the DSP (digital signal processor) VECONTM is aimed at providing real-time control of servosystems and it is integrated with versatile and innovative power hardware. some dedicated digital interface and I/O expansion.Chapter 1 . The drive has the following features: • Torque control • Speed control • Position control • Electrical line shaft • PID function. (1) . EXP-E card. B/B-. able to provide the repeat of the encoder data. 120V. EXP-F2E card. B/B-... with +5V or 15. 1 input in opto-isolated frequency for encoder. (1) . Anot. Expansion card for an opto-isolated encoder input. EXP-FO card. with 15. 2 analogue outputs ±10V.24V.24V.. 150kHz max.denied) with 15.. optoisolated. (1) .24V.. able to provide the repeat of the encoder data. removable connectors. Expansion card for digital I/Os.24V. 0/0-. 150kHz max. C/C-. • • • • • • NOTE! (1) If a supplementary type digital encoder is used (A. EXP-FIO card. 150kHz max.24V. Expansion card for digital I/Os: 12 digital inputs..24V. 8 inputs + 6 outputs. with +5V or 15.• • Standard Fieldbus communication: CANopen and Modbus IP20 (NEMA 1) protection. EXP-D8-120 card. optoisolated. the encoder missing signal is available.. 150kHz max. ±10V / 0…20mA. Expansion card for a digital encoder output + 5V. 8 inputs + 4 outputs.24V. Expansion card for digital I/Os: 12 digital inputs. 150kHz max. 15…30V.. with +5V or 15. Expansion card for absolute encoder with SSI / EnDat (2) and Hyperface (3) protocols. channels: A/A-. 0…20mA. 8 digital outputs. with +5V or 15. 150kHz max.. EXP-ABS-EV card. Channels: A/A-. (3) Only single-turn encoders with incremental tracks are managed 16 • Chapter 1 Functions and General Features SIEIDrive . with +5V or 15. Opto-isolated encoder input expansion card.. Options (Maximum one expansion card per drive) • • • • • • • ENC-ADPT card. with +5V or 15. zero reset input (C/C-) with 15. Expansion card for a digital encoder output + 5V… +15V / +24V EXP-D8R4 card. 2 analogue inputs.30V (1) EXP-FI card. EXP-D14-A4F card. with +5V or 15. 8 digital inputs. EXP-D20-A6 card. Expansion card for digital I/Os. EXP-D16 card. 2 analogue outputs..24V.. 2 analogue inputs ±10V or 0÷20mA or 4÷20mA. 15…30V.24V. EXP-FIH card. with +5V or 15. ground connection screws for shielded cables mounted on board.24V. B/B-. 15…30V. 8 digital outputs. 150kHz max.. 150kHz max. Channels: A/A-. (1) . zero reset input (C/C-) with 15.24V. 150kHz max.. Encoder connection adapter. Expansion card for digital I/Os: 8 digital outputs. Channels: A/A-. opto-isolated.30V..24V. 15…30V. 150kHz max.. 0/0-. optoisolated. 15…30V. 150kHz max. Opto-isolated encoder input expansion card.. 0/0-.. B/B-. Expansion card for an opto-isolated encoder input.. (2) Single/multi-turn encoders are managed.30V. serial encoder interface brought out via 1/2 D-sub connectors. with +5V or 15. Bnot). zero reset input (QC+ / QC. with +5V or 15. opto-isolated. with 15. 150kHz max.. 150kHz max.24V. opto-isolated. ±10V. 2 analogue outputs. Channels: A/A-. Terminals 1 to 15 with point-to-point connection to the VGA-type connector. with/without incremental tracks and limited number of bits. with +5V or 15. B. book case. with +5V or 15.XVy-EV User’s Guide . B/B-. 150kHz max.24V. digital .4. Klixon type of sensors must be selected in the MOTOR DATA menu.1. IPA 20004 = [0] PTC.XVy-EV drives are designed for the field oriented regulation of brushless servomotors.1 Motors What motor data is required for connecting the drive? Nameplate specifications Motor rated voltage Motor rated current Number of poles Motor rated speed Motor thermal protection type Motor protection Temperature-dependent contacts in the motor winding Temperature-dependent contacts "Klixon" type can be connected directly to the drive via PIN2 and PIN 7 of the XE connectors. The connection cables to the motor PTC must be made of twisted pair shielded cable. NOTE! The motor PTC interface circuit (or Klixon) has to be considered as treated as signal circuit.XVy-EV User’s Guide Chapter 1 Functions and General Features • 17 . PTC type of sensor must be selected in the MOTOR DATA menu .1. IPA 20004 = [1] NC Contact. for more details). A sinusoidal . the cable route should not be parallel to motor cables or it must be separated by at least 20 cm.absolute encoder or resolver can be used to feedback a signal to the position / speed regulator (see chapter 4. 1. SIEIDrive . Thermistors PTC thermistors according to DIN 44081 or 44082 fitted in the motor can be connected directly to the drive via PIN 2 and PIN 7 of the XE connector.1 Motors and Encoders The SIEIDrive . and Standard Specification SIEIDrive .1 Delivery Inspection Procedures 2. The devices should only be stored in dry rooms within the specified temperature ranges . This also applies when the device is unpacked and installed in the control cabinet. They should only be transported with suitable transport equipment (see weight data). check the following: • the packaging for any external damage • whether the delivery note matches your order.Inspection Procedures. apply when the devices are in operation.1 General A high degree of care is taken in packing the SIEIDrive . Open the packaging with suitable tools.3... “Permissible Environmental Conditions”).XVy-EV drives and preparing them for delivery. Check whether: • any parts were damaged during transport • the device type corresponds to your order In the event of any damage or of an incomplete or incorrect delivery please notify the responsible sales offices immediately. Components Identification and Standard Specifications 2. Observe the instructions printed on the packaging. This does not.Chapter 2 . Always ensure that there is no moisture condensation in devices that are connected to the power supply! 18 • Chapter 2 Inspection . Upon delivery.1.1.XVy-EV User’s Guide . NOTE! A certain degree of moisture condensation is permissible if this arises from changes in temperature (see section 2. however. 1) C/CP=compact version K=Keypad. see table 2. X= without brake unit Software version Example: XVy-EV9470650-C-KBX-IP00 Drive type XVy-EV. I. size 1.. internal braking unit. size 9.3. max output current 68 A rms. X=without keypad B=Internal Brake Unit. X= without brake unit Software version Special version Water Cooled. see table 2. Special version XVy-EV X XX XX-XXX-EWHR Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms. SIEIDrive .3. Compact sizes (C/CP) XVy-EV X XXX XXX-X-XXX Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms.XVy-EV User’s Guide Chapter 2 Inspection .1) K=Keypad. X=without keypad B=Internal Brake Unit. internal braking unit. max output current 650 A rms. product code: Standard sizes XVy-EV X XX XX-XXX Drive Series XVy Evolution Enclosure dimension identification Rated current (A rms) Maximum output current (A rms. High Temperature R=With Internal Brake Resistor Example: XVy-EV455110-KBX-EWH Drive type XVy-EV.2 Drive type designation The main technical characteristic of the drive are showed in the product code and in the nameplate. rated current 39 A rms. size 4. water cooled. with keypad. rated current 470 A rms.3.1. rated current 3 A rms. X= without brake unit Software version Example: XVy-EV10306-KBX Drive type XVy-EV.2.e. standard software. with keypad. standard software. standard software. IP00 open housing. max output current 6 A rms.3. and Standard Specification • 19 .3.3. see table 2. with keypad. internal braking unit.1) K=Keypad. X=without keypad B=Internal Brake Unit.. 2.1. and Standard Specification SIEIDrive .1: Identification nameplate Type : Inp: XVy-EV 10306 -KBX AC servo S/N 02006233 50/60Hz 3Ph 230-480 Vac (Fctry Set=400) 2. AC Input current.9A@480Vac With line choke Out : 0-480Vac 0-450Hz 3Ph 1.000 0.A 0. CFG 4.9A@230Vac 2.1.A Figure 2. Frequency Main Power Out: Output voltage..3: Nameplates position 20 • Chapter 2 Inspection .5kW@480Vac 2Hp@480Vac 3A@230V Cont.2.2: Firmware & Card revision level nameplate Firmware HW release Release D F P 4.1. Figure 2.3.6A@480V LISTED INDUSTRIAL CONTROL EQUIPMENT L L Type: Drive model S/N: Serial number Main Power In: Power supply voltage. Output current.1.3 Nameplate Check that all the data stated in the nameplate enclosed to the drive correspond to what has been ordered. CONF A1 0.000 Prod. Serv.3.3.A R S S/N 02006233 BU SW..XVy-EV User’s Guide . Output frequency Figure 2. XVy-EV converts the constant voltage and frequency of a three-phase power supply into a direct voltage and then converts this direct voltage into a new three-phase power supply with a variable voltage and frequency.4. IGBT inverter Converts direct voltage to a variable three-phase alternating voltage with variable frequency.. SIEIDrive . This variable three-phase power supply can be used for infinitely variable adjustment of the speed of brushless servomotors.1 Three-phase rectifier bridge (*) Converts the alternating current into direct current using a three phase full wave bridge. This is used for processing control commands.2. and Standard Specification • 21 . Output voltage Three-phase..2. For speed and position feedback (see section 3.1: Basic Setup of drive 1 2 3 4 5 6 7 8 AC Input supply voltage (*) AC Mains choke (*) See section 4.7. Figure 2.2). Configurable control section Modules for open-loop and closed-loop control of the power section... DC intermediate circuit With charging resistor and smoothing capacitor.. In the XVy-EV . variable alternating voltage.-DC versions. reference values and actual values. Feedback For speed feedback (see section 3.-DC versions the rectifier bridge is not included: the drives are powered by DC on the intermediate circuit. (*) not included in the XVy-EV ..-DC versions the DC voltage = 600 Vdc.4..XVy-EV User’s Guide Chapter 2 Inspection . Direct voltage (UDC) = √2 x Mains voltage (ULN) In the XVy-EV .2)..2 Component identification An SIEIDrive . Figure 2.9. Cover 17. Fairlead 4. and Standard Specification SIEIDrive . Plug 19. Cable entry plate 21. Bracket 15. Hexagonal bar 24. Dissipator 23.2. IGBT Bridge 27.. PV33 Power card 26. Piana M5 2. Flamboyanted screw 10. Button 11.XVy-EV User’s Guide . RXVy Regulation card 25. Internal brake resistor 22 • Chapter 2 Inspection . Grover M5 3. Q..2: Drive view & components 6 4 Ref. Fan support 18. Cooling fun for type 3-6 and higher 12.. Screw 6. Flamboyanted screw 5. Fan support 20.ty 1. Top cover 16.. Cooling fan IGBT Bridge 13. NTC thermal sensor 14. Resistor square 22. UL840 degree of pollution 2 IEC68-2 Part 6 IEC801 Part 2.. to XVy-EV 32550-. IPA 20051 = 40°C (104°) Ambient temp = 0 .remove front plate (better than class 3K3 as per EN50178) Environment Temp parameter... +50 with derating 32 … +104. +104 .-IP00 models) IP54 (NEMA 12) for the cabinet with externally mounted heatsink (size type XVy-EV 10306-. class 2K3 per EN50178 -20…+60°C (-4…+140°F).2. 1 g/m3 to 25 g/m3 without moisture condensation or icing (Class 3K3 as per EN50178 storage _________________ 5% to 95 %. 50°C (32°. IPA 20051 = 50°C (122°F) Ambient temp = 0 .. XVy-EV . and Standard Specification • 23 ..2% reduction of the output rated current for each exceeding C°.1 Permissible environmental conditions ENVIRONMENT TA Ambient temperature [°C] __ TA Ambient temperature [°F] ___ (*) TA Ambient temperature [°C] (*) TA Ambient temperature [°F] (*)Max input water temperature [°C] ___ (*)Max input water temperature [°F] ___ (*) Nominal Flow [L/min] _____ (*) Nominal Flow [Gal/min] ___ Installation location _________ 0 … +40... vapour oil and dripped water.. Temperature: operation 1) _________________________ 0…40°C (32°…104°F) operation 2) ________________________ 0…50°C (32°…122°F) storage _________________ -25…+55°C (-13…+131°F)..3.. Above 1000 m (3281 feet) a current reduction of 1..104°F) Over 40°C: . fog. cUL 2) 3) 4) (*) Environment Temp parameter..3 Standard specifications 2. class 1K4 per EN50178 -20…+55°C (-4…+131°F). for devices with keypad Air humidity: operation _______________ 5 % to 85 %.+30°C (-13°. -EWHR SIEIDrive ..15°C (158°. UL508C. IP00 (XVy-EV... for devices with keypad transport ________________ -25…+70°C (-13…+158°F)....+86°F)... 1 g/m3 to 29 g/m3 (Class 1K3 as per EN50178) transport ________________ 95 % 3).... corrosive or inflammable gases.2% for every 100 m (328 feet) of additional height applies.. +40 . dust. 40°C (32°..59°F)... Greatest absolute air humidity if the device is brought suddenly from 70. 60 g/m3 4) Air pressure: operation _______________ [kPa] 86 to 106 (class 3K3 as per EN50178) storage _________________ [kPa] 86 to 106 (class 1K4 as per EN50178) transport ________________ [kPa] 70 to 106 (class 2K3 as per EN50178) STANDARD Climatic conditions __________ Clearance and creepage ______ Vibration __________________ Interference immunity ________ EMC compatibility ___________ Approvals __________________ 1) IEC 68-2 Part 2 and 3 EN 50178. avoid saline environment) Degree of protection _________ IP20 (NEMA 1). +122 with derating Installation location 0 … +60 with derating 32 … +140 with derating Installation location 30 86 8 2...122°F) Current reduction to 80% of the output rated current Over 40°C (104°): removal of the top cover (better than class 3K3 as per EN50178) Greatest relative air humidity occurs with the temperature @ 40°C (104°F) or if the temperature of the device is brought suddenly from -25 . vibration..XVy-EV User’s Guide Chapter 2 Inspection .11 Pollution degree 2 or better (free from direct sunlight..) Installation altitude __________ Max 2000 m (6562 feet) above sea level. UL.3 and 4 EN61800-3 (see “EMC Guidelines” instruction book) CE. . XVy-EV ..3.5 mA. From size XVy-EV 43366. set the Mains voltage parameter to the value of the AC Input voltage concerned.1. therefore cannot be damaged by connection to lower voltages down to 208Vac. simply select in the menu the proper line voltage under “Drive Config” NOTE! In some cases AC Input chokes.7. Adjustable Frequency Drives and AC Input filters have ground discharge currents greater then 3.) are recyclable: the material used is >ABS+PC< . When commissioning. 2. EN 50178 specifies that with discharge currents greater than 3. see figure 4. insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance. 24 • Chapter 2 Inspection .1. the drive must be powered by a rectified DC supply of 600 Vdc. and possibly noise suppression filters should be fitted on the AC Input side of the device.. All drives are capable of operation at 480 Vac. This automatically sets the threshold for the Undervoltage alarm at the appropriate level. See chapter “Chokes/ Filters”. For the use of an AC input choke see chapter 4.Disposal of the Device The drive can be disposed as electronic scrap in accordance with the currently valid national regulations for the disposal of electronic parts..8.2..5 mA the protective conductor ground connection (PE1) must be fixed type. The use of Gefran SM32 series power supplies is recommended for this.2 AC Input/Output Connection The drive must be connected to an AC mains supply capable of delivering a symmetrical short circuit current (at 480V +10% Vmax) lower or equal to the values indicated on following table. After connection. and Standard Specification SIEIDrive .-DC versions In this version.. consult the manual of the power supply unit). available with an output current from 185 to 2000A. The plastic covers of the Drives (up to size XVy-EV 32550-. No external connection of the regulator power supply to the existing AC Input supply is required since the power supply is taken from the DC Link circuit..XVy-EV User’s Guide . 5 23 22 22 30 30 37 37 55 55 75 90 100 200 250 455110 EWH/EWHR 570140 EWH/EWHR 5100180 EWH/EWHR 6125230 EWH/EWHR @ ULN =230Vac. f SW =default [Arms] @ ULN =400Vac.2 3 22 1. f SW =default [kW] 125 250 300 160 315 350 @ ULN =400Vac.5 2 4 5.3 4 8 230 230 200 280 243.2 132 159 242 326 388 Inverter Output for continuous service.5 7. Braking torque 150% Standard internal.2 3 5.. Braking torque 150% Option internal (with external resistor). Braking torque 150% External braking unit (optional) KF for switching frequency ULN AC Input voltage (1) [Vrms] FLN AC Input frequency [Hz] I N AC Input current for continuous service.90 0.8 68 80 80 97 125 97 125 53 46. f SW =default [kW] @ ULN =460Vac.5 9 11 18. 450 V DC (for 480 VAC mains) 6720 6720 8660 8660 11100 13200 15900 19400 24200 32600 38800 U2 Max output voltage [Vrms] f2 Max output frequency [Hz] I 2N Continuous output current for continuous service.2 21 1030 10.8 12. Braking torque 150% Option internal (with external resistor).5 3.-DC version..9 10.5 59 4 16 See table 2.4 86.8 21.4 4. Braking torque 150% Chapter 2 Inspection .1 15.9 27 36.3 2. 480 V +10%.3.1 20.2 86.98 50/60 Hz ±5% 98 110 96 98 110 96 122 137 120 122 137 120 158 177 153 192 216 188 231 242 210 n.5 11 15 20 25 30 40 50 0.3.1 1.5 22 30 37 39 45 45 55 55 75 75 90 110 132 160 200 4 5 3 3 2..a. 309 268 n.2 5.9 14.9 30.Connection without 3-phase choke @ 230Vac [Arms] @ 400Vac [Arms] @ 460Vac [Arms] Table 2. Undervoltage threshold [V] Braking IGBT Unit (standard drive) 9560650-CP txv0010 Type .9 8 16 14.8 7.4 310 3. Braking torque 150% Standard internal.98 x U LN (AC Input voltage) 450 400 400 400 400 400 400 400 400 400 400 400 400 52 175 60 150 60 125 75 100 75 100 10 7.a.4 108.9 33 28.3 18.2 5.7 45 47 55.10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 7230420 6125230 7145290 7190350 8280400 8350460 9470650-C OUT PUT 20.9 6. Braking torque 150% Standard internal. 392 V DC (for 400 VAC mains) 406 V DC (for 415 VAC mains).4 7.2 210 72 84 94 82 84 94 82 1410 2010 2290 2700 3670 4500 Option internal (with external resistor). 362 316 n.5 6 8 10.9 3 2.3 16.8 420 4.. [kVA] 2.4 108. f SW =default [Arms] @ ULN =460Vac.1 8 4 2 4 69.2.5 35.96 0. f SW =default [Hp] External braking unit (optional) Standard internal.6 68 80 80 97 125 97 125 159 159 138.7 9.3 190 190 165.2 0. 372 V DC (for 380 VAC mains).93 0.4 40 34.7 for higher fSW IN PUT 400 V -15% .7 29 26.9 12.9 9 7.5 14.7 550 760 6.a.5 7.8 27. 431 V DC (for 440 VAC mains).6 69.6 10..1 14.9 4.a. 3Ph 2.5 7.5 7.4 17..9 4 5.7 0.5 14 18. IEC 146 class 1: - @ ULN =230-400Vac.. 3Ph 0.-DC version Standard internal.2 24.5 15 18.87 0.4 110 55.75 1.3 29 33 39 53 65 65 56.3 7. 480 V +10%.8 @ 50°C (122°F) 0. IEC 146 class 1: 0. and Standard Specification • 25 230 V -15% .5 13. 600 (3) 540 (3) For these types an external inductance is mandatory 5540 820 VDC 225 VDC (for 230 VAC mains).8 4500 5540 20.1 39 33.8 20.5 8 7 6 5.Connection with 3-phase choke @ 230Vac [Arms] @ 400Vac [Arms] @ 460Vac [Arms] .4 15. 520 (2) 468 (2) n.9 6.8 13.1 22. IEC 146 class 1 : .1 3. f SW =default [Arms] fSW switching frequency (Default) [kHz] fSW switching frequency (Higher) [kHz] Iovld (I x t) [Arms] Derating factor: KV at 460/480Vac KT for ambient temperature (1) for DC versions: rectified voltage supply up to 700 VDC).6 84.87 0.7 84.9 10.8 4. (2) (3) 650ADC @ 600VDC for XVy-EV .3.6 67.1 IEC 146 class 1 PN Output power for continuous service (recommended motor output).5 24.0 9.6 194 67.6 4 4 350 305 470 470 2 4 560 487.3 26.5 3.4 6. Braking torque 150% SIEIDrive ..5 2.XVy-EV ..87 0.2 4..3 14.1: Input / Output Specifications Max short circuit power without line reactor (Zmin=1%) [kVA] Overvoltage threshold [V] 550ADC @ 600VDC for XVy-EV .XVy-EV User’s Guide 200 200 3 4.2 25 33 39 55 69 77 66 80 69 62 53 44 37 35 39 28.1 4. 3.3.3. The current rated and overload values change according to the type of selected algorithm as shown in tables 2. 26 • Chapter 2 Inspection .2 below. and Standard Specification SIEIDrive .3 Rated and overload currents The XVy-EV drive manages two different overload algorithms which can be selected by the user through the IPA 18778 Overload Control parameter according to the application: • • I xT algorithm dedicated to high-dynamics solutions where the overload can reach up to 200% of the rated current (default setting).2.3..3.XVy-EV User’s Guide . I2xT algorithm dedicated to applications where a limited overload is required for a longer period of time (limit = 136% In Class 1 for 60s every 300s).1 and 2.. 5 11 15 19 22 30 37 39 45 45 55 55 75 75 90 110 132 XVy-EV 10306 XVy-EV 10408 I x T Algorithm XVy-EV 10612 XVy-EV 20816 XVy-EV 21020 XVy-EV 21530 XVy-EV 32040 XVy-EV 32550 XVy-EV 43366 XVy-EV 43570 XVy-EV 44590 XVy-EV 455110 XVy-EV 455110 EWH/EWHR XVy-EV 570140 XVy-EV 570140 EWH/EWHR XVy-EV 5100180 XVy-EV 5100180 EWH/EWHR XVy-EV 6125230 XVy-EV 6125230 EWH/EWHR XVy-EV 7145290 Table 2.3 29 33 39 53 65 68 80 80 97 97 125 4..5 0.2 12 12.0 11 15 20.9 0.5 6.0 3.4 12 12 8 17 13 15 6 1.0 6.9 0.5 2.6 12 16 21 26 31 40 50 52 63 63 76 76 99 99 Iovld SIEIDrive .0 8.XVy-EV User’s Guide Recovery @ 90%In [s] Thsink 5°C 2400 2400 2400 2400 2400 2384 2400 2400 2400 1969 1992 1957 1976 1980 1980 1979 1979 1978 1978 1977 1983 1983 1029 754 15 6 Thsink 45°C 40 40 20 10 10 10 20 20 20 16 8 8 8.5 0.0 5.2 8 8.5 9.5 6.3.9 0.5 0.0 4.0 12.3 8 8.0 16.0 27 54 54 54 54 54 108 108 108 108 1 1 0.0 10.5 1.5 1 4 4 4 4 3 Hz<fe<10 Hz Iovld duration (2) Pot In Type [Arms] [kW] @ 0 Hz @ 3 Hz 3.5 7.2 3.3.0 8. (2) Minimum granted overload. For temperatures lower than 20°C (Tsink < 45°C) the maximum overload time is automatically increased.5 0.5 177 228 125 159 127 156 170 250 200 250-C-IP20 315-C-IP20 250 420 500 190 230 280 160 350 470 560 228 290 347 420 400 400 560 560 0.5 1.5 0.5 6.5 1 1 1 1 1 1 1 1 1 108 146 108 108 108 108 108 108 108 54 54 54 54 (1) 65 68 80 80 97 97 125 125 159 190 230 280 350 470 560 21.9 15 20 29 33 39 53 108 108 0.8 30 41 58 66 71 97 118 124 146 146 177 177 228 228 290 347 420 400 460 650 650 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 240 4 4 Thsink 45°C 4 4 2 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1.0 4.5 1.0 1 27 3.9 0..9 0.0 22 30 41 58 66 71 97 118 124 146 146 177 4.0 6.1: Rated and overload currents with I x T algorithm XVy-EV 7190350 XVy-EV 7230420 XVy-EV 8280400 XVy-EV 8350460 XVy-EV 9470650-C (1) For frequencies between 3 to 10Hz all time duration values have to be calculated with a linear interpolation of values at 3 Hz and at 10 Hz.fs<3Hz fs>10Hz Iovld Recovery duration @ 90%In In Iovld [s] [Arms] [s] [s] [Arms] [Arms] Thsink 5°C 240 240 12.0 8.9 0.0 8. and Standard Specification • 27 XVy-EV 9560650-CP . Chapter 2 Inspection .0 16.0 9. the time used by ovld% to reach 100% is: T= (Iovld .1. For output frequencies between 3 and 10 Hz the overload and the recovery times of the IxT algorythm can be obtained with a linear interpolation between the 3 Hz and the 10 Hz values..1. 4. 13 line XVy-EV 10612.The I x T algorythm depends on the output frequency and also on the ambient temperature. column 2 and 7) Here follows an example that shows how to perform the selection of the drives.XVy-EV User’s Guide .3. the Iovld overload current = 12 Arms and the Tovld overload time = 2 seconds (if f > 10 Hz and the ambient temperature is 20°C). Another overload is possible if ovld% is brought to zero by reducing the Imot current. IPA 19607 (MONITOR menu) is calculated by the drive firmware as follows: Drive Ovld Fact = ovld % = ò ( Imot .In) = 3 [sec] Now the current limit is reduced to In and the drive is in an overload condition. For output frequencies from 0 to 3 Hz the I x T algorythm does not depend from ambient temperature and the recovery from overload conditions will be asymmetrical (the IxT integral charge and discharge operations are different).3.3.1. if Imot = 5 Arms. (The IxT integral will have the same charge and discharge).9 and 10).3. For example.3. and Standard Specification SIEIDrive . See the table 2. column 4. Tovld * 100 Example: considering the XVy-EV 10612 drive..In ) . it is possible to see that the In rated current (with 400Vrms main supply) = 6 Arms. Assuming that the Imot output current = 10 Arms.3.3. The overload stated in the Drive Ovld Fact parameter. is the instantaneous motor output current is the drive nominal current at the drive output frequency (as stated in table 2.In ) . while from output frequencies higher than 10 Hz the overload duration times will be dependent from ambient temperature and the recovery from overload conditions will be symmetrical.In) * Tovld (Imot . the current limit returns to its maximum value after: 28 • Chapter 2 Inspection . column 2.1. Definitions Tovld Imot In is the lasting period of an overload on the Iovld current (as mentioned in the table 2. as specified in table 2.3. dt ( Iovld . it is possible to calculate that during the acceleration phase ovld% increases up to 43. The peak current is 38 Arms and the peak duration is 1 second. The average motor current value will be 16 Arms. Let us consider now the following load cycle to select the proper drive to use: Time (sec) Speed (rpm) Motor current (A) 0 0 38 1 2000 12 2 2000 -14 3 1000 20 4 2000 -14 5 1000 -14 6 0 0 I(A) 38 2000 20 12 1000 2000 2000 2000 N(rpm) 1000 N(rpm) t 0 1 2 3 4 5 6 7 8 9 10 11 12 -14 This cycle will be repeated continuously.6%.33 Arms and ovld%  0%.In) = 12 [sec] and therefore it will be possible to perform a new overload.. therefore it is possible to consider the average current = 12.T= (Iovld . Looking these results we can say that the XVy-EV 32040 is suitable for this application.3 Arms and Iolvd=40. and Standard Specification • 29 .In) * Tovld (Imot . During the following 6 seconds the current is lower than In. SIEIDrive ..XVy-EV User’s Guide Chapter 2 Inspection . Assuming to use a XVy-EV 32040 with In=20.6 Arms. 4 37.5 0.5 0.0 .0 63.1 22.9 85.8 461.5 0.0 16.0 146.4 XVy-EV 7145290 90.0 4.5 0.0 44.5 0.8 33.4 621.0 75.5 108.3 XVy-EV 570140 45.1 6.0 324.3 XVy-EV 43570 22.7 101.8 XVy-EV 8350460 200.4 126.4 XVy-EV 32550 15.0 23.3 457.0 47.0 440.6 1061.0 79.0 226.0 8.6 384.0 XVy-EV 20816 4.5 12.7 45.0 44.5 0.2 135.5 0.3 144.0 280.9 181.5 0.9 732.3 XVy-EV 455110 EWH/EWHR 37.0 580.8 XVy-EV 6125230 75.5 88.2 88.0 17..0 XVy-EV 7230420 132.7 471.2 10.0 155.1 XVy-EV 5100180 55.6 7.5 0.6 544.0 65.5 27.5 SIEIDrive .0 55.1 119.5 9.6 170.5 0.5 592.1 32.0 32.9 12.9 338.6 12.9 23.1 23.6 340.1 193.0 269.2 11.7 31.5 0.1 199.0 308.3.5 0.6 208.0 79.9 XVy-EV 44590 30.4 60.1 8.3 415.0 400.0 485.5 XVy-EV 10408 2.2 101.4 XVy-EV 6125230 EWH/EWHR 75.0 93.7 60.1 251.2 3 5.5 XVy-EV 10306 1.0 129. and Standard Specification For frequencies between 0 Hz to F1 all currents have to be calculated with a linear interpolation of values at 0 Hz and at F1.5 0.6 31.5 0.5 0.0 142.0 210.1 XVy-EV 43366 18.2 I2T Algorithm XVy-EV 10612 3.6 285.0 XVy-EV 21020 5.5 0.1 XVy-EV 455110 37.0 [Arms] [Arms] [Hz] [s] 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 I slow ovld I fast ovld 0 Hz<fout<f1 In I slow ovld I fast ovld Pot T fast ovld Type [kW] 3.1 44.2 13.0 79.0 65.3 743.6 10.2 119.9 238.0 175.1 XVy-EV 570140 EWH/EWHR 45.0 8.8 XVy-EV 5100180 EWH/EWHR 55.0 181.6 672.0 93.5 126..2 170.0 79.2 208.1 17.5 6.0 99.6 259.5 0.4 71.0 XVy-EV 9470650-C 250-C-IP20 339.5 0.6 10.2: Rated and overload currents with I2 x T algorithm XVy-EV 7190350 110.6 16.0 193.5 155.5 8.7 107.0 114.5 0.0 185.4 17.XVy-EV User’s Guide XVy-EV 9560650-CP 315-C-IP20 406.0 4.4 107.6 17.4 30 • Chapter 2 Inspection .0 114.7 24.5 0.5 0.4 24.0 250.5 0.0 14.9 237.2 80.0 659.3 3 5.0 XVy-EV 8280400 160.5 0.4 7.6 144.5 0.0 60.5 XVy-EV 21530 7.9 33.4 86.2 176.5 135. XVy-EV 32040 11.0 63.1 13.5 0.0 115.2 75.9 259.0 5.5 108.5 Table 2.8 42.0 320.7 3 3 3 3 3 3 3 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 7.0 39.0 99.4 380.0 887.3.0 147.0 512.fout = 0 Hz fout>F1 F1 T slow ovld In [Arms] [Arms] [Arms] 4.8 [Arms] [s] 0.3 50.1 146.0 55.0 142.8 53. 3. At that point. fsl-ov% reaches 100% in 60s if the current delivered by the drive is 136% of In. fsl-ov% increases up to 100%. only the fsl-ov% value is increased. the maximum current is limited to 136% of In. Table 2.36 In)2 )· dt (Ifs-ov . Fast overload (183% In for 0. the drive is able to deliver a rated current of 7. after that. as shown in table 2. at frequencies higher than F1. the rated current reduction factor is 0.36 In) )· Tovld 2 2 ·100 Current limit management When the drive delivers a current higher than the In value shown in table 2. The I2xT algorithm manages two drive overload levels: 1.5s every 60s) The slow overload is calculated based on the following formula: ? sl-ov% = ∫ (Imot2 .3.In2) dt (Isl-ov2 . The drive can also deliver a maximum current of 183% of In..3.(1. with a maximum of 13.3.9 according to sizes.5Arms. the drive limits the maximum current which can be delivered to In value. F1 is the frequency shown in the table for each drive size. SIEIDrive . For output frequencies ranging from 0Hz to F1.3.3.73Arms for 0.2. and Standard Specification • 31 . Slow overload (136% In for 60s every 300s) 2. The rated and overload currents and the corresponding overload and recovery times do not depend on the room temperature.XVy-EV User’s Guide Chapter 2 Inspection .. In this case. when the output current exceeds the 136% threshold.5s. The fast overload is calculated based on the formula: ? fs-ov% = ∫ (Imot2 .20Arms for 60s (slow overload). Assuming that the drive delivers a current Im = 9A ( In < Im < 136%In).2 shows that. the ffsov% value is increased until 100% is reached in 0.2. .(1.5s (fast overload) or 10. the overload times should be calculated using a linear interpolation of 0Hz and F1 values. At 0Hz frequency.In2)Tovld ·100 and appears in the IPA 19697 Drive Ovld Fact parameter (MONITOR menu).7 … 0. Example of overload time calculation with slow overload: Refer to the XVy-EV10612 size for 400Vac mains operation.The I2xT algorithm depends on the output frequency. 06 = 93 count = 3.. Table 2.7.5Arms.In2) .3.3.06 s Tfs = At the same time.Isl-ov2) . 60 (7. Assuming that the drive delivers a current Im = 12A ( 136%In < Im < 183%In) the values of fsl-ov% and ffs-ov% are both increased.In2) · Tsl-ov (Imot2 . The drive will be able to deliver the maximum current of 183%In again only when Drive Ovld Fact returns to 0%.5s (fast overload) or 10. and Standard Specification SIEIDrive .202) .68 s - Example of overload time calculation in case of fast overload: Refer to the XVy-EV10612 size for 400Vac mains operation.7.202 . the recovery time will be: Trec = (Isl-ov2 .20Arms for 60s (slow overload).52) · 60 = 118. Tfs-ov (Imot2 .The maximum overload time Tsl is: Tsl = (Isl-ov2 .24% 32 • Chapter 2 Inspection . The time required for fsl-ov% discharge depends on the current delivered by the drive (should be lower than In). Assuming that I mot = 3Arms. the fsl-ov% value is also increased to reach the value fsl-ov% = (Imot2-In2) .In2) (92 .202 .Isl-ov2) (13.10.10. Tsl-ov (In .5 .2 shows that.5 (122 . the drive is able to deliver a rated current of 7.202) = 1.52) . 1.73Arms for 0.XVy-EV User’s Guide . at frequencies higher than F1.5Arms.Imot ) (10. The maximum overload time Tfs is: Tfs = (Ifs-ov2 . with a maximum of 13.52) = [s] Tsl = (10. 0.7.3 ) 2 2 2 2 Trec = = 60. the Drive Ovld Fact parameter has reached 100% and the maximum current is decreased to the rated one = 7. Tfs = (122-752) ..85 s When the Tovl time has elapsed.732 . 60 .52).22-7.98 s 2 2 Tsl-ov = SIEIDrive .In ) (10.7. Tsl-ov =(10.7.202 .52) = 52.60= 2867.. This current value can be kept for: Tsl-ov = (Isl-ov2 .[Max fsl-ov% =(Isl-ov2 .93 (10. the current limit is lowered to 136% In.In2) .fsl-ov* (Imot .202 . Tsl-ov .4 count = 100%] Now.. and Standard Specification • 33 .52) .XVy-EV User’s Guide Chapter 2 Inspection .In2) . 1) 306.5) 145..6) 69 (2.8) 299.1: Drive Dimensions.5 (5.9) 3.9) 115 (4.5 (11.5) 115 (4.XVy-EV User’s Guide 32550 .7) 296.4) 199 (7.5) 315 (12.5) 84 (3.6) 310.8) 3.7) 299.5 (3.2) 164 (6.7) 240 (9.1.4) 69 (2.7) 284 (11.8) 62 (2.2) 9 (0.35) M5 4.9) 208 (8.0) 199.2) 323 (12.1 Mechanical Specification Figure 3.1) 8..5 (5.7 (8.7) 99.3) 168 (6.6 (19) txv0020 34 • Chapter 3 Installation Guidelines SIEIDrive .5 (12.5 (7.9) 151.5 (12.Installation Guidelines 3.Chapter 3 . XVy-EV 32550 sizes E5 d E2 E4 E3 E1 Mounting with external dissipator (E) Mounting wall (D) 10306 10408 10612 20816 21020 21530 32040 XVy-EV Type Drive dimensions: a mm (inch) b mm (inch) c mm (inch) d mm (inch) D1 mm (inch) D2 mm (inch) E1 mm (inch) E2 mm (inch) E3 mm (inch) E4 mm (inch) E5 mm (inch) Ød Weight kg (lbs) 105. XVy-EV 10306 .5 (11.5 (4.5 (11.95 (10.6 (7. 4 80..9) 725 (28.1) 509 (20) 741 (29.2) 308 (12.6) 309 (12.XVy-EV User’s Guide Chapter 3 Installation Guidelines • 35 8350460 455110 43366 43570 44590 .2) 297.7) 509 (20) 965 (38) 442 (17.2) 268 (10. XVy-EV 43570 .9) 891 (35) 100 (3.9) 891 (35) 100 (3.7) 509 (20) 909 (35.5 22.4) 100 (3.2 48.8) 297.6 22 48.8) 150 (5.7) 550 (21.5) 225 (8.6 109 240.9) 947 (37..7) 509 (20) 909 (35.1) 489 (19.9 34 74.9) 100 (3.5 (11.1 176.7 SIEIDrive .5 (11.5) M6 59 130 75.3 txv0030 376 (14.1.5 (11. XVy-EV 8280400 sizes D4 D1 D2 D2 Mounting wall (D) D3 D3 D3 D3 570140 5100180 6125230 7145290 7190350 7230420 8280400 XVy-EV type Drive dimensions: a b c D1 D2 D3 D4 Ø Weight kg lbs 18 39.8) 297.Figure 3.2: Drive dimensions.3) 166.2 86.7) 564 (22.5 190.9 mm (inch) mm (inch) mm (inch) mm (inch) mm (inch) mm (inch) mm (inch) 475 (18. 9) 947 (37.5 170.5 52.3: Drive dimensions.6) 1091 (43) 450 (17. C and CP sizes c 430 800 D2 D2 D2 Ød V W D C U 22 40 D-C-U-V-W 400 68 115 68 68 60 1114 31 U2-V2-W2 65 205.Figure 3.5 40 22 Ød 0V 230V (**) U2 V2 W2 27.3) M8 155 341.5 D2 D2 D2 M8 (**) External fan power supply a XVy-EV type Drive dimensions: a b c D2 D4 Ø Weight kg lbs mm (inch) mm (inch) mm (inch) mm (inch) mm (inch) 9470650-C 9560650-CP 776 (30.XVy-EV User’s Guide b D4 b .7 776 (30.5 D2 D2 D2 M8 a Figure 3.5 125.9) 947 (37.1.5 170.6) 1091 (43) 450 (17.4: Drive dimensions.5 209.7) 225 (8.5 40 22 Ød 0V 230V (**) U2 V2 W2 27.5 52.1.5 209. C and CP -IP00 sizes D2 D2 D2 Ød V W c 31 D C U 22 40 400 68 115 68 68 60 1114 D4 65 205.5 125.7 txv0034 36 • Chapter 3 Installation Guidelines SIEIDrive .7) 225 (8.3) M8 155 341. Figure 3.XVy-EV User’s Guide Chapter 3 Installation Guidelines • 37 . XVy-EV 570140 .1. 5125230 EWH/EWHR SIEIDrive . XVy-EV 455110 EWH/EWHR Figure 3.6: Drive Dimensions.1.5: Drive Dimensions... 8 380 340 512 468 546 490 658 582 864 780 1100 1000 1250 1100 1580 1390 1950 1750 2440 2200 2850 2560 3400 3050 4400 3950 5400 4700 6400 5700 6400 max 5700 max 8000 7900 8000 max 7900 max Airflow of fan [m3/h] Internal fan Heatsink fans 11 30 11 30 11 30 11 2x30 11 2x30 11 2x30 30 2x79 30 2x79 80 80 170 170 340 340 650 975 975 975 1820 2000 1710 1710 txv0040 1) 1) fSW=default.8) 31 (4.3. I2=I2N NOTE! All the Drives have internal fans.6 330 300. typ.5) 2x200 (2x31) 2x370 (2x57.3 138.0 96. Table 3.1: Heat dissipation and Required Air Flow Type XVy-EV 10306 XVy-EV 10408 XVy-EV 10612 XVy-EV 20816 XVy-EV 21020 XVy-EV 21530 XVy-EV 32040 XVy-EV 32550 XVy-EV 43366 XVy-EV 43570 XVy-EV 44590 XVy-EV 455110 XVy-EV 570140 XVy-EV 5100180 XVy-EV 6125230 XVy-EV 7145290 XVy-EV 7190350 XVy-EV 7230420 XVy-EV 8280400 XVy-EV 8350460 XVy-EV 9470650-C XVy-EV 9470650-C-IP00 XVy-EV 9560650-CP XVy-EV 9560650-CP-IP00 Heat Dissipation [W] @ULN=400Vac 1) @ULN=460Vac 77.2.1) 2x1600 (2 x 248) txv0050 XVy-EV type 10306 … 10612 20816 … 21530 32040 … 32550 43366 … 43570 44590 … 455110 570140 … 5100180 6125230 … 7230420 8280400 … 9560650 38 • Chapter 3 Installation Guidelines SIEIDrive . Internal Fans and Minimum Cabinet Opening Suggested for the Cooling The heat dissipation of the Drives depends on the operating state of the connected motor.inch) Control section 31 (4.7 179. Heat Dissipation.0 104.5 72.6) 72 (11.2.1) 128 (19. “AC Input/Output Connection”).6 164.8) 2x150 (2x 23.2: Minimum cabinet opening suggested for the cooling Minimum cooling opening [cm 2] (sq. Table 3.6) Heatsink 36 (5. Tamb ≤40°C.8) 36 (5.35) 2x620 (2x96.2 Watts Loss.1 230 215.2.3 126.XVy-EV User’s Guide . motor power factor and nominal continuous current.3. Heat dissipation losses refer to default Switching frequency. The table below shows values that refer to operation at default switching frequency (see section 2. 03A/[email protected]/215W@1x230Vac. SIEIDrive ..2: Example for external connection U3 2V3 230VAC (*) 1V3 1V3 Drive U3 115VAC 2V3 Drive *) Only for XVy-EV6125230 and XVy-EV8280400 sizes NOTE! An internal fuse (2. 0.50/60Hz 1.2A@115V/60Hz.2. 7230420 8280400 .2.3.1: UL type fans connections XVy-EV7145290 . Sizes XVy-EV 6125230 to XVy-EV 9560650 Power supply for these fans is externally connected by the user.65A@115V/60Hz.65A@230V/50Hz 1.1 Cooling Fans Power Supply Sizes XVy-EV 10306 to XVy-EV 5100180 Power supply (+24VAC) for these fans are provided from the internal drive power supply unit.03A/215W@1x230Vac. 8350460 9470650-C 9470650-C-IP00 9560650-CP 9560650-CP-IP00 Drive fans Fan power supply (values for 1 fan) 0.. On XVy-EV 6125230 and XVy-EV 8280400sizes the fuse must be mounted externally.5A 250VAC slo-blo) for XVy-EV 7145290 and XVyEV 7190350.03A/[email protected]@230V/50Hz 1.. 0.70A@230V/50Hz 1.XVy-EV User’s Guide Chapter 3 Installation Guidelines • 39 .50/60Hz txv0057 2 2 2 2 Figure 3.8A@115V/60Hz. 0.2.XVy-EV7190350 XVy-EV6125230 e XVy-EV8280400 Drive U3 2V3 0 AUTOTRAFO Drive U3 M 2V3 115 ~ 230VAC fans 230 1V3 1V3 M M No.. AC Input voltage is connected at the power terminal strip: XVy-EV type 6125230 7145290 .2 115VAC fans ~ ~ Figure 3. sizes is provided.50/60Hz 1.50/60Hz 1. From XVy-EV 8280400 size the top and bottom clearance must be at least 380 mm (15 inches)..2: Mounting Clearance 150 mm ( 6" ) [380mm (15")] 10 mm ( 0. on front and sides must be ensured a space of at least 140 mm (5. Improper handling and the use of unsuitable tools may cause damage. A space of at least 50 mm (2 inches) must be ensured at the front.] from XVy-EV8280400 size NOTE! Fastening screws should be re-tightened after a few days of operation.XVy-EV User’s Guide .4" ) [140mm (5.4" ) [140mm (5. Angle of Inclination The maximum angle of inclination is 30° NOTE! The drives must be mounted in such a way that the free flow of air is ensured.3.1: Max. The clearance to the device must be at least 150 mm (6 inches). 40 • Chapter 3 Installation Guidelines SIEIDrive .3.5")] 20 mm ( 0.3.5")] [380mm (15")] 10 mm ( 0.5")] 50 mm ( 2" ) [140mm (5.8" ) 150 mm ( 6" ) [140mm (5. The technical equipment required (carriage or crane for large weights) should be used.5 inches). Figure 3.3 Installation Mounting Clearance NOTE! The dimensions and weights specifed in this manual should be taken into consideration when the device is mounted..5”)] [. Figure 3. Devices that generate a large amount of heat must not be mounted in the direct vicinity of the drive. 1..1: Removing the covers (XVy-EV 10306 to XVy-EV 32550 sizes ) 3 2 no.unscrew the screw (1). The top cover must be removed in order to mount option cards and change the internal jumper settings: .1 Removing the Covers NOTE! Observe the safety instructions and warnings given in this manual.lift the top cover on the bottom side (over the connector level) and then push it to the top (6).Wiring Procedure 4. remove the cover of devices (2) by pressing on both sides as shown on the above figure (3).remove the keypad and disconnect the connector (5) .30-60 size 2 1 XVy-EV 10306 to XVy-EV 21530 sizes : The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections: . The devices can be opened without the use of force.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 41 .Chapter 4 . Only use the tools specified. XVy-EV 32040 to XVy-EV 32550 sizes : The terminal cover and cable entry plate of the device must be removed in order to fit the electrical connections: .unscrew the two screws (4) to remove the cable entry plate.1 Accessing the Connectors (IP20 models) 4.lift the top cover on the bottom side (over the connector level) and then push it to the top (6) SIEIDrive .2 “Drive view & components” to identify the single part. See figure 2.2. 2 for 20-40 .remove the keypad and disconnect the connector (5) . .1.unscrew the two screws (4) to remove the cable entry plate. The top cover must be removed in order to mount the option card and change the internal jumper settings: .unscrew the two screws (1) and remove the cover of devices .. Figure 4. 1.XVy-EV User’s Guide .2. Caution In order to avoid damage to the drive it is not allowed to transport it by holding the cards! 4.2: Removing the covers (XVy-EV 43570 to XVy-EV 9560650 sizes) 4 3 1 3 2 2 XVy-EV 43570 to XVy-EV 9560650 sizes : The terminal cover of the device must be removed in order to fit the electrical connections: unscrew the two screw (2) and remove the cover (1) The top cover must be removed in order to mount the option card and change the internal jumper settings: unscrew the two screw (3) and remove the top cover by moving it as indicated on figure (4).1.Figure 4. Wiring Suggestion Shield Omega connector Grounding 360° of a shielded cable on Omega plug CAN connector Regulation section strip (17 to 32 terminals) Regulation section strip (1 to 16 terminals) 42 • Chapter 4 Wiring Procedure SIEIDrive . Please check that motor phases are connected in the right sequence before enabling the drive.480 Vac) 1.1: Power Section Terminals from XVy-EV 10306 to XVy-EV 32550 Caution The terminals of the devices are made accessible by removing the cover and the cable entry plate (see section 4. 5100180 only. All the power terminals are located on the power card PV33-.65 x I2N Intermediate circuit connection D U2/T1 M V2/T2 W2/T3 PE2/ Motor connection AC line volt 3Ph.. On XVy-EV 10306 up to XVy-EV 21530 sizes it is also possible to extract the removable connector..4.2.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 43 ... Reserved EM FEXT Reserved FEXT - PE1 / Grounding (protective earth) conductor SIEIDrive . “Accessing the connectors”). 1.1..2.36 I2N Motor ground connection EM Note! EM and FEXT terminals are available on sizes 32040 . Function U1/L1 Max 3Ph~ 230V -15%…480V +10% V1/L2 W1/L3 BR1 C Braking resistor (optional) AC mains voltage Braking unit resistor command (braking resistor must be connected between BR1 and C) 770 Vdc (230.1 Terminal Assignment on Power Section / Cable Cross-Section Table 4.2 Power Section Please note that a wrong connection on motor phases can cause the motor to move without control and can destroy the drive.1.. 4. .2: Power Section Terminals from XVy-EV 43570 to XVy-EV 9560650 The terminals of the devices are made accessible by removing the cover (see section 4..1.. Motor ground connection 44 • Chapter 4 Wiring Procedure SIEIDrive ..1. 5100180 sizes 770 Vdc (230..1.65 x I2N M V2/T2 W2/T3 PE / Motor connection AC line volt 3Ph.2..36 I2N Grounding (protective earth) conductor..480 Vac) 1.XVy-EV User’s Guide .3: Power Section Terminals XVy-EV .. 230V -15%…480V +10% Braking resistor (optional) Intermediate circuit connection D BR1 U2/T1 Braking unit resistor command (braking resistor must be connected between BR1 and C) Available in XVy-EV 43570 . 1..-DC versions.65 x I2N M Note! EM and FEXT terminals are available on sizes 32040 . Function U1/L1 Max 3Ph~ V1/L2 W1/L3 C AC mains voltage Terminations not included in the XVy-EV .-IP00 sizes Function U1/L1 Max 3Ph~ V1/L2 W1/L3 C AC mains voltage 400V -15%…480V +10% Intermediate circuit connection D U2/T1 770 Vdc (400. 5100180 only.480 Vac) 1. 1.2... V2/T2 W2/T3 PE2/ EM Motor connection AC line volt 3Ph. “Accessing the connectors”).36 I2N Motor ground connection Reserved EM FEXT FEXT Reserved - - PE1 / Grounding (protective earth) conductor Table 4.Table 4.. 5 1. U2.5 … 0.6 0. U2.6 0.6 0.6 1.5 … 0.V1.5 … 0.2 … 1.5 … 0.5 … 0.5 … 0.2 … 1. V2.5 … 0.6 0.6 0. W1.1.5 1.6 0.6 0.5 2 2 3 4 4 4 12 12 10 … 30 10 … 30 10 … 30 10 … 30 50 50 50 50 50 50 (…) = kcmils.2 … 1.5 … 0.5 0.5 … 0.XVy-EV drive. V1.6 0. PE2 terminals AWG 14 14 14 10 10 10 8 6 6 6 6 6 6 2 2 2 2 2 2 2 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) mm 2 2 2 4 4 4 8 10 16 16 16 16 16 50 50 50 50 50 50 50 50…240 50…240 50…240 50…240 50…240 50…240 2 Tightening torque Nm 0.9 1.9 0.C.5 … 0.6 0.W1. C.4: Maximum cable cross section for power terminals U1.Maximum cable sizes for power terminals U1.6 0.5 … 0.2 … 1.5 2 2 3 3 3 4 4 4 4 4 4 4 50 50 50 50 50 50 txv0060 Nm 0. W2. *=copper bar The grounding conductor of the motor cable may conduct up to twice the value of the rated current if there is a ground fault at the output of the SIEIDrive .5 … 0.6 0.6 0.2 … 1.5 1.5 … 0.6 1.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 45 .V2.5 … 0.5 … 0.2.D Tightening terminals torque AWG 14 14 14 10 10 10 8 6 6 6 4 2 2 1/0 2/0 4/0 (300) (350) 4xAWG2 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) 1/0 (500) mm 2 2 2 4 4 4 8 10 16 16 25 35 35 50 70 95 150 185 4x35 150 * 50…240 50…240 50…240 50…240 50…240 50…240 2 Type XVy-EV 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9470650-C-IP00 9470650-C-DC-IP00 9560650-CP 9560650-CP-IP00 9560650-CP-DC-IP00 BR1 terminals AWG 14 14 14 10 10 10 8 6 10 10 8 8 6 6 nd nd nd nd nd nd nd nd nd nd nd nd mm 2 2 2 4 4 4 8 10 6 6 10 10 16 16 nd nd nd nd nd nd nd nd nd nd nd nd 2 Tightening torque Nm 0.6 1.6 3 3 nd nd nd nd nd nd nd nd nd nd nd nd PE1. D.6 0.5 … 0.6 0.2 … 1. SIEIDrive .6 1.6 0.W2.5 … 0. PE Table 4. NOTE! Use 60/75°C copper conductor only.5 … 0. XVy-EV User’s Guide .1 R-XVy-EV Regulation Card LEDs & Test points on Regulation Card Designation Color Function RST PWM RUN PWR RS485 CAN AL OP XY4 XY5 red green green green green green red green (test point) (test point) LED lit during the Hardware Reset LED lit during IGBT modulation CPU status LED lit when the voltage +5V is present and at correct level LED is lit when RS485 interface is supplied LED is lit when CAN interface is supplied LED is lit during the “Field bus failure” alarm or when the integrated CanOpen interface is not ready to communicate with the master LED is lit when the connection reaches the “Operational” phase Phase current signal (U) Reference point 46 • Chapter 4 Wiring Procedure SIEIDrive .3 Regulation Section 4.4.3. C5 terminals ) XE 11 6 1 15 10 5 1 6 XS 9 5 X1 (1...32 terminals ) XFL (OUT) XFL (IN) 11 6 1 15 10 5 XER Table 4.....10V / -10.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 47 .20 mA OFF = 0.3.4.1: Connectors Location CAN (C1.3. When fitting a regulation card as a spare. remember to set again the encoders jumpers. S23 jumper settings .+10 V S21-S22-S23 Hall sensor settings ON = Hall sensors OFF = No Hall sensors S45-S46 INTERNAL USE ...20 mA / 4.+10 V Adaptation to the input signal of analog input 1 (terminals 3 and 4) S9 ON = 0....1..16 terminals ) X1 (17. SIEIDrive .20 mA OFF = 0..Do not modify factory setting Designation S0 S1 S2 S3 Factory setting OFF OFF OFF OFF ON OFF OFF OFF OFF txv0070 (*) on multidrop connection the jumpers must be ON only for the last drop of a serial line NOTE! See chapter 4.3..Figure 4...20 mA / 4.1: Jumpers on Regulation Card Function Service only ! (Test and software loading: bootstrap-loader) Service only ! (Test and software loading: monitor mode) Service only ! (Test and software loading: boot-sector protection) Service only ! (Test and software loading: manual reset) Terminating resistor for the serial interface RS485 (*) ON = Termination resistor IN S5-S6 OFF = No termination resistor Adaptation to the input signal of analog input 0 (terminals 1 and 2) S8 ON = 0. Caution The devices are factory set accordingly. Feedback drive connection for more details on S21 .10V / -10. 2 Terminal Assignments on Regulation Section Table 4.1: Plug-in Terminal Strip Assignments on Regulation Card Strip X1 Function Programmable/configurable analog differential input.2mA @ 15V 5mA @ 24V 6. contact “Drive OK” N. reference point: terminal 19 Reference voltage . default setting: “[8] Ramp In = 0” Programmable digital input. Reference point: terminal 4.4mA @ 30V COM-DI Digital input 0 Digital input 1 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Programmable digital output.4mA @ 30V Programmable digital output. Reference point: terminal 2.2. Signal: terminal 3. Reference point: terminal 16 +24V DC supply input Reference point for +24 VDC I/O +24 V ±10% 120mA +24 V ±10% 1A - Analog output 0 Programmable analog output.4.10V.O. terminals: 12 and 13 +30V/40mA +30V/25mA +30V 3. 26. 28. default setting: “[1] Actual speed” Analog output 1 Programmable analog output. 27. default setting: “[2] Drive reset” +10V/10mA -10V/10mA +30V 3. 23.C. default setting: “[2] Motor current” 0V +10V . 8 . 29 Reference point for digital outputs. contact “Drive OK” common contact 250 V AC 1A AC11 V+ H SH L V- CAN external positive supply (dedicated for supply of transceiver and optocouplers) CAN_H bus line (dominant high) CAN_H shield CAN_L bus line (dominant low) External supply reference 48 • Chapter 4 Wiring Procedure SIEIDrive . 7. 24 and 25. default setting: “[11] End Run Forward” Programmable digital input. 0V or open: inverter disabled.20mA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 C5 C4 C3 C2 C1 Analog input 0 Analog input 1 Programmable/configurable analog differential input. max ±10V 0. default setting: “[10[ End Run Reverse” Programmable digital input. default setting: “[9] Reverse” Supply input for digital outputs. terminals 12. Signal: terminal 1. Default setting: none Reference point for Digital inputs. +15…+30V: Drive enabled Programmable digital input.10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 2 Digital output 3 Digital output 4 Digital output 5 Relay-NO Relay-NC Relay-COM ±10V/5mA Analog output reference point Reference voltage +10V. terminals 6.3. default setting: “[4] Start / Stop” Programmable digital input. default setting: none +30V/25mA “Drive OK” N. 22. Default setting: [3] Speed Ref 1". default setting: “[3] Speed Reached” Digital output 1 Programmable digital output. default setting: “Speed 0 thr” +24V OUT +24V IN 0 V (+24V) +24V DC supply output. 13.3.XVy-EV User’s Guide . 9. Drive enable.2mA @ 15V 5mA @ 24V 6. reference point: terminal 19 Programmable digital input. default setting: “[3] External fault” Programmable digital input. The connections between each potential are shown in Figure 4. The analog outputs and the ±10V reference point have same potential (terminal 19).5 mm (0.2: Maximum permissible cable cross-section on the plug-in terminals of the regulator section Maximum Permissible Cable Cross-Section Terminals flexible 1 . 1.3.5 62 [203] 0.4 0... 16 28 .02 inch) flat screwdriver is recommended. length [mm2] m [feet] 0.14 ...1. 1.5 x 0.4 txv0065 The use of a 75 x 2.5 150 [492] txv0055 Potentials of the control section The potentials of the regulation section are isolated and can be disconnected via jumpers from ground.. Maximum Cable Sizes for control terminals Table 4.14 . Remove 6...5 AWG 28 . with a tolerance of ±10%.5 0. The analog inputs are designed as differential amplifiers. 1.4 mm (3 x 0.2.. 29 30 .. Power supplies obtained from a single rectifier and capacitor filter are not sufficient..22 27 [88] 0. Only one unprepared wire (without ferrule) should be connected to each terminal point. Terminals 12 to 13 and 26 to 29 have terminal 11 as a common reference point and terminal 10 as common supply.26 inch) of the insulation at the cable ends. The digital inputs are optocoupled with the control circuit.5 0.14 .Caution The + 24Vdc voltage used for external power for the control card must be stabilised... The digital outputs are optocoupled with the control circuit..3.2.. 1.1 x 0..XVy-EV User’s Guide Chapter 4 Wiring Procedure • 49 .75 93 [305] 1 125 [410] 1. SIEIDrive .2. Maximum Cable Length Table 4.3: Maximum Control Cable Lengths Cable section Max.5 [mm2] multi-core 0.. 32 0.3.14 . The digital inputs have terminal 5 as reference point. The analog outputs are not designed as differential amplifiers and have a common reference point (terminal 19). maximum absorption 1A. 16 Tightening torque [Nm] 0. 10V 21 32 31 30 8 Digital input 2 (Ramp In=0) Relay COM NC NO DO-Supply +24V 9 Digital input 3 (Reverse) 22 10 12 Digital input 4 (End Run Reverse) Digital output 0 (Speed Reached) Digital output 1 (Speed 0 thr) 23 Digital input 5 (End Run Forward) 13 24 Digital input 6 (External fault) Digital output 2 26 25 COM DI Digital input 7 (Drive reset) Digital output 3 27 5 Internal power supply from Power Card Digital output 4 28 15 Digital output 5 16 0 (+24 V) Fuse 14 16 COM DO 29 11 S34 50 • Chapter 4 Wiring Procedure SIEIDrive .2.1: Potentials of the control section To Expansion Cards 1 2 3 4 Analog input 0 (Speed Ref 1) Analog output 0 (Actual speed) 0V Analog output 1 (Motor current) 0V 17 Analog input 1 18 19 20 6 Digital input 0 (Enable drive) S35 +10V 7 Digital input 1 (Start / Stop) .XVy-EV User’s Guide .3.Figure 4. 4. (3) X X X X X X X X X (1).C/Cneg and three Hall sensor digital position signals) Sinusoidal incremental encoder with SESC A/Aneg.4 Feedback Devices The XVy-EV can control various feedback devices connector to the XE . (1) (4).B/Bneg. with all shieds connected to ground on both sides.B/Bneg.3 for more details on connection. Table 4. (2) X (1). See chapter 4.4. Can be used up to three feedback devices at the same time if the incremental signals of absolute encoders are not connected to XE. Resolver RES Three Hall effect sensors digital position HS signals single-ended Segnali assoluti SinCos due tracce. Sinusoidal incremental encoder with SEHS A/Aneg. SC sinusoidal incremental encoder (1Vpp) SE 5V digital incremental encoder.B/Bneg.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 51 . In this last case can be used the DE . see table 4.1.XE 11 6 1 15 10 5 1 6 XS 9 5 4.C/Cneg and two sin/cos traces for absolute position (1Vpp).1: Feedback devices 11 6 1 15 10 5 XER Feedback devices 5V digital incremental encoder with A/Aneg. (1) txv3420 (1) Digital or sinusoid encoder plugged into the XE connector on the drive or XE1 on card EXP-ABS-XVy (see SERVICE / ENCODER / XE ENC INC MEAS menu) (2) Three Hall effect sensors connected to XE connectors (see Service / Encoder / XE HALL TRACKS menu) (3) Sin/cos signals. (1) (4). with resolver excitation (see SERVICE / ENCODER / XE ENC ABS MEAS menu) (4) Absolute encoder serial link plugged into the XE1 connector on the EXP-ABSXVy card (see SERVICE / ENCODER / EXP ENC ABS1 menu. Some types of sinusoidal encoders may require installation with galvanic isolation from the motor frame and shaft. SIEIDrive .C/Cneg and three Hall sensor digital position signals (1Vpp).4. The encoder/resolver should be coupled to the motor shaft with a backlash free connection. DE SSI absolute encoder with SSI protocol EnDat absolute encoder with EnDat protocol Hiperface absolute encoder with Hiperface protocol DEHS XE connector on XVy Drive X XER connector on expansion card EXP-ABS-EV Note (1).XER terminals (15-pin high-density connectors fitted on drive) or to the expansion card EXP-ABS-XVy (optional). (2) (3) (2) (3) (1) (1) (4). The encoder/resolver cable must be made of shielded twisted pairs with an overall shield. SSi / EnDat and Hiperface feedback devices only. etc. EXP-D14A4F. Please note that it is mandatory to use a shielded cable with at least 80 % coverage. EXP-FO. Please note that for resolver feedback it is mandatory to use a twisted pair cable with shields on each pair and an overall shield. EXP-F2E.2 XER Encoder Connector Assignments (for auxiliary encoders) A +5V auxiliary incremental digital encoder can be plugged into the XER connector (controller card) or an expansion card (e.1: XE Connector Assignments I=Input O=Output I I I I I I O I O I I I I O O txv0090 Assignment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B– Klixon Z+ Z– A+ A– 0VE B+ +5VE SIN+ / H1 SIN– / H2 COS+ / H3 COS– EXC+ EXC– Function Incremental Encoder BKlixon contact Zero channel Z (+) Zero channel Z (–) Incremental Encoder A (+) Incremental Encoder A (–) Encoder Supply 0V reference Incremental Encoder B(+) Encoder Supply Sin / resolver input (+) / Hall 1 input Sin / resolver (–) / Hall 2 input Cos / resolver (+) / Hall 3 input Cos / resolver (–) Resolver excitation (+) Resolver excitation (–) 5 10 15 1 6 11 Back View of VGA D-sub connector (solder side) 4.1: XER Connector Assignments Assignment 1 B– 2 3 Z+ 4 Z– 5 A+ 6 A– 7 0VR 8 B+ 9 +5VR 10 … 15 Function Digital incremental channel B (–) Input / Repetition Zero pulse (+) channel Input / Repetition Zero pulse (–) channel Input / Repetition Digital incremental channel A (+) Input / Repetition Digital incremental channel A (–) Input / Repetition Encoder Supply 0V reference Incremental channel B(+) Input / Repetition Encoder supply I=Input O=Output I/O I/O I/O I/O I/O O I/O O txv0100 52 • Chapter 4 Wiring Procedure SIEIDrive . Table 4. Table 4.4.4.1 XE Connector Assignments The connection with the drive is through a 15 pole high density sub-D connector (VGA type female).4.1. The shield should be connected to ground on both sides of the connector. EXPFI.4.g. but not grounded at the motor end.4.XVy-EV User’s Guide .2.) The connection with the drive is through a 15 pole high density sub-D connector (VGA type female). EXP-FIH. 4.4) selectable through the setting of jumpers on the regulation board.4.2 Sinusoidal Encoder SinCos Connections (SESC) The following table shows the connections between the XVy-EV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable).3 Feedback /Drive Connections The XVy-EV drive can handle several feedback devices (see paragraph 4. All the shields must be connected together to cable shield pin of resolver connector on the motor side and to connector body on drive side. 4.1: Resolver/Encoder jumpers settings Encoder DE / DEHS SE / SEHS SESC / SC HS RES SSI / ENDAT / Hiperface S21 ON ON OFF ON OFF OFF Jumpers settings S22 ON ON OFF ON OFF OFF S23 ON ON OFF ON OFF OFF txv0110 In the following paragraphs are specified the connections between XVyEV drives and the feedback sensors installed on standard motors.4.3.25) + sfr (2 x 0. the pairs should be the signal wires cos+/cos-. exc+/ exc-.4. The jumper setting will be as follows: Table 4. SIEIDrive .1 Resolver Connections (RES) The following table shows the connections between the XVy-EV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable). SBM Motors 19 Poles connector A B (SHIELD) C D E F G H J K L M N P R S (Klixon) T (Klixon) U V SHJ Motors 10 Poles connector F (SHIELD) B G C H Function XVy drive 15 Pole XE connector SHIELD to connector body 12 13 11 10 Cable section [mm2] Cable shield Resolver Cos+ Resolver CosResolver SinResolver Sin+ (2 x 0.3.25) + sfr txv0240 For resolver cable use twisted pair shielded cable.3.sin+/sin-.3.25) + sfr (2 x 0.25) + sfr I (Klixon) J (Klixon) A E Klixon contact Klixon contact Resolver Excitation+ Resolver Excitation- 7 2 14 15 (2 x 0. motor temperature sensor wires. 4.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 53 . 25 2 x 0.c.14) + sfr 0.14) + sfr (2 x 0. the pairs should be the signal wires A+/A-. All the shields must be connected together to cable shield pin of encoder connector on the motor side and to connector body on drive side.25 txv0220 For encoder cable use twisted pair shielded cable.14 1 x 0.14 2 x 0. 0. motor temperature sensor wires. motor temperature sensor wires.3 Digital Encoder with Hall Effect Sensors Connections (DEHS) The following table shows the connections between the SIEIDrive . B+/B-. encoder supply wires.14 (2 x 0.5 n.Z+/Z-. 0.XVy-EV User’s Guide .5 2 x 0. encoder supply wires.14) + sfr (2 x 0.c.sin+/sin-. Z+/Z-.14) + sfr (2 x 0.Input Sin+ Input Incremental Encoder B+ Incremental Encoder BIncremental Encoder AIncremental Encoder A+ Zero Channel Z+ Zero Channel ZEncoder supply +5VDC Klixon contact Klixon contact XVy drive 15 Pole XE connector 7 SHIELD to connector body 12 13 11 10 8 1 6 5 3 4 9 7 2 Cable section [mm2] 0.cos+/cos-.4.5 2 x 0. the pairs should be the signal wires A+/A-.Input Sin.SBM Motors 19 Poles connector A B (SHIELD) C D E F G H J K L M N P R S (Klixon) T (Klixon) U V SHJ Motors 19 Poles connector 12 19 (SHIELD) 15 11 14 10 4 8 7 3 5 9 2 17 (Klixon 18 (Klixon) Function Encoder supply 0VDC reference Cable shield Cos+ input Cos.14) + sfr (2 x 0.25 txv0230 For encoder cable use twisted pair shielded cable.XVyEV drives and the signal connector on servomotors by Gefran (see chapter 12 for more details on cable).3.14) + sfr 0. All the shields must be connected together to cable shield 54 • Chapter 4 Wiring Procedure SIEIDrive .5 n.B+/B-. 4. SBM Motors 19 Poles connector A B (SHIELD) C D E F G H J K L M N P R S (Klixon) T (Klixon) U V SHJ Motors 19 Poles connector 6 7 (SHIELD) 5 4 3 13 1 11 10 14 9 12 15 16 Function Encoder supply 0VDC reference Cable shield Hall 3 input Hall 2 Input Hall 1 Input Incremental Encoder B+ Incremental Encoder BIncremental Encoder A+ Incremental Encoder AZero Channel Z+ Zero Channel ZEncoder supply +5VDC Klixon contact Klixon contact XVy drive 15 Pole XE connector 7 SHIELD to connector body 12 11 10 8 1 5 6 3 4 9 7 2 Cable section [mm2] 0.14 (2 x 0. Please refer to the following table: Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Signal B. motor temperature sensor wires.(2) signal (only for monitoring) Encoder CLOCK+ signal (ENDAT or SSI only) Encoder CLOCK. Digital encoders max.pin of encoder connector on the motor side and to connector body on drive side. speed ) Number of pulses per revolution __ min 1. TTL 5V compatible.4 Absolute Encoder Connections (SSi / EnDat /Hiperface protocols) EXP-ABS-EV expansion board has to be connected: . Power supply _______________ + 5 V (Internal supply) * SIEIDrive . B+/B-.(Cosine-) GND B+ (Sine+) ALIM EQP / SENSECLK+ CLKDT+ DTSENSE+ Description Incremental encoder B. speed ) Number of pulses per revolution __ min 1.5 Encoder /Resolver Specifications (XE connector) Sinusoidal encoders max.(Sine-) KLIXON Reserved Reserved A+ (Cosine+) A. differential.4. All the shields must be connected together to cable shield pin of encoder connector on the motor side and to connector body on drive side. . max 65535 Channels ___________________ three-channel.3 mA pp per channel Suggested cable _____________ see chapter 12. clock+/clock-.signal Klixon contact (referred to GND) Incremental encoder A+ signal Incremental encoder A. encoder supply wires.signal (ENDAT or SSI only) Encoder DATA+ signal Encoder DATA. 4. data+/data-.to the encoder signals connector (XE1 connector on EXP-ABS-EV). frequency ______________ 250 kHz ( select the appropriate number of pulses depending on required max. max 65535 Channels ___________________ three-channel.4. frequency ______________ 200 kHz ( select the appropriate number of pulses depending on required max. An encoder loss detection is possible via firmware setting. the pairs should be the signal wires A+/A-.to XVy-EV drive though the cable supplied with the board (XE2 connector on EXP-ABS-EV.signal Ground of encoder supply voltage Incremental encoder B+ signal Encoder supply voltage Equipotential (1) signal or SENSE.3. Power supply ________________ + 5 V (Internal supply) * Load capacity _______________ > 8.signal SENSE+ (2) signal (only for monitoring) t0010g For encoder cable use twisted pair shielded cable. An encoder loss detection is possible via firmware setting. 4.3. XE connector on XVY-EV drive).XVy-EV User’s Guide Chapter 4 Wiring Procedure • 55 . differential. Absolute Encoder Absolute trace frequency _______ Incremental trace max. parameter.. max 65535 Channels ___________________ three-channel. 10 mA per channel Suggested cable _____________ see chapter 12 * Via keypad (030 .ENCODER PARAM menu) it is possible to select 4 different values of internal encoder supply voltage to compensate the voltage reduction due to encoder cable length and load current encoder. with TTL Line Driver levels. that can be used as simulation of the servomotor feedback device.5V via XE Enc Supply (IPA 20012) or XER Enc Supply (IPA 20019).1V.XVy-EV User’s Guide ..4.2V. 1=5.1:3 see chapter 12 4.1V.5V via XE Enc Supply (IPA 20012) or XER Enc Supply (IPA 20019).Load capacity _______________ > 4. 3=6.6 Encoder Simulation / Repetition.3. Auxiliary Encoder Input (XER/EXP Connector) Digital encoder input max.).2V. 2=6. speed ) Number of pulses per revolution __ min 1. 1=5. Encoder loss detection is not possible.8 .5 mA / 6.ENCODER PARAM menu) it is possible to select 4 different values of internal encoder supply voltage to compensate the voltage reduction due to encoder cable length and load current encoder.+24V with external supply max absorption of encoder supply 250 mA max Suggested cable _____________ see chapter 12 Resolver interface Resolver excitation ____________ Resolver excitation voltage ______ Resolver excitation current ______ Resolver excitation frequency ____ Resolver input _______________ Resolver input impedence ______ Resolver transformation ratio ____ Suggested cable _____________ sinusoidal 6V rms 50mA rms max 8kHz differential 4k 1:1 .6V.6V. parameter.41 version. Selection available are: 0=5. 2=6. differential RS-485 clock and data (bidirectional) 2μs +5V(TTL) /+15V(HTL) +5V / +15V..1:2 . On the regulation board there is available an incremental encoder output.* 12 bit rev. Power supply ________________ + 5 V (Internal supply) * Load capacity _______________ > 4. 3=6.8 . differential. 10 mA per channel Suggested cable _____________ see chapter 12 * Via keypad (030 . Note: from the fw 2.. Selection available are: 0=5.. frequency Max encoder resolution ________ Interface electrical level ________ Interface signals _____________ Clock synchronous period ______ Encoder supply ______________ 500 kHz (on the EXP-ABS-EV expansion card) 200 kHz 29 bit (17 bit/rev. frequency ______________ 400 kHz ( select the appropriate number of pulses depending on required max.5 mA / 6. This function is performed by the microprocessor and it is possible to 56 • Chapter 4 Wiring Procedure SIEIDrive .. 1): Digital encoder simulation (XER Port) Interface ___________________ opto-isolated Simulation __________________ differential digital incremental Standard outputs _____________ A+.simulate an encoder output with a programmable number of pulses/rev. B+.5V TTL load capacity ____________ 20mA max. A-.1. For this figures we have considered cables with the following specifications: Distributed capacitance: 90pF/m CABLE LENGHT (Sinusoidal encoder) 200 Lenght [mt] 150 100 50 0 100 120 140 160 180 200 Encoder frequency [KHz] SIEIDrive . or to repeat the signals of the motor encoder. B-.4 Encoder Cable Length The following figures show the maximum encoder frequency as function of the encoder cable length.5 mm2 power supply section 4.4. The encoder output signals are available on the XER connector (see table 4. speed ) Max absorption of the encoder simulation power supply ________________ 150mA@5V Mechanics __________________ Male high density 15-pole D-sub connector (type VGA) for standard inputs and extractable terminals to be connected to a 0.I+.XVy-EV inputs with a TTL outputs ____________ 3 inputs Max.2. frequency ______________ 400kHz ( select the appropriate number of pulses depending on required max. IOutputs levels _______________ Standard TTL Voltage limits on the TTL high-state outputs (on the pins) (Uhigh TTL) _________________ > 2.4.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 57 .5V Voltage limits on the TTL low-state outputs (on the pins) (Ulow TTL) _________________ < 0. each Parallel connection of standard SIEIDrive .14.. 2 mm ) 200 2 Lenght [mt] 150 100 50 0 0 1 2 3 4 5 Voltage drop [V] 20mA 50mA 100mA 150mA 4. DE (Dig. pos” parameters values increasing up to “360” and than come back to “0” .check “.. see next table) : .check “...CABLE LENGHT (Digital encoders) 200 180 160 140 120 100 80 60 40 20 0 100 Lenght [mt] XER Port XE Port 200 300 400 500 600 Encoder frequency [KHz] The following figure shows the voltage drop as function of the cable length and of the current absorbtion: VOLTAGE DROP (Cable Cross-section 0.rotate manually clockwise the motor shaft .5 Checking Encoder / Drive Connections It is strongly recommended to follow the next instructions (parameters to be check are only those for used feedback devices.XVy-EV User’s Guide ..4. XE conn.Enc. HS (Hall+Dig) X X X X X X X X txv0255 SC (SinCos) menu: SERVICE / ENCODER / XE ENC INC MEAS Inc Data Pos (IPA 19002) X Inc Data N Rev (IPA 19003) X menu: SERVICE / ENCODER / XE ENC ABS MEAS Abs Turn Pos (IPA 19017) X Abs Rev (IPA 19018) X menu: SERVICE / ENCODER / XER/EXP Inc Enc XER/EXP Turn Pos (IPA 19011) XER/EXP Rev (IPA 19012) menu: SERVICE / ENCODER / XE HALL TRACKS XE Hall Pos (IPA 19022) XE Hall Rev (IPA 19026) RES (resolver) XER conn.) 58 • Chapter 4 Wiring Procedure SIEIDrive . rev” parameters values increasing on each turn. dedicated for supply of transceiver and optocouplers txv0245 V+ H SH L V- (*) The supplier size have to be according to the used bus specification (CANopen or DeviceNet). SIEIDrive . with a minimum distance of 20 cm.5 CANopen Connection The SIEIDrive . use the equipotential connection cables to reduce the current flow between the drives and the CAN bus master.XVy-EV brushless drive can be connected in a CANopen network.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 59 . The Bus connection is provided via a shielded loop to be placed far from the power cables. NOTE ON TERMINATING RESISTOR: Attention The first and last network components must have a 120 ohm resistance between pins C2 and C4.4. The cable shielding must be ground connected on both ends. If the cable shieldings are ground connected on different points of the system. the pins are: Pin / Signal VL SH H V+ Description External supply reference CAN_L bus line (dominant low) CAN_H shield CAN_H bus line (dominant high) CAN external positive supply +24V (*). Card absorption is 30 mA@24V. that is optimized to exchange I/O and regulation parameters between different drives.6.6 Fast Link Connections On the XFL connectors a fast serial connection is available.5 meters (with conductor shielded cables). L=30 m (code 8S899B) Optical fiber interface kit _______ Trasmitter and receiver (code S370E) (*) Ferrite on Slave side 60 • Chapter 4 Wiring Procedure SIEIDrive . 40 meters (with plastic optical fiber) Baud rate ___________________ 3 Mbit Max Data Exchanged __________ 15 words + 1 CRC / Info every 250 S in synchronous way from master to slave PWM ______________________ Drive Synchronization 8 conductors shielded cable (*) __ L= 65 cm (code S7QK7).1: XFL-OUT Connector (FAST LINK Output) Pin 1 2 3 4 5 6 7 8 Function DT_OUT+ DT_OUTCLK_OUT+ CLK_OUT- Description Data output Fast-Link (+) Data output Fast-Link (-) Clock ouput Fast-Link (+) Clock ouput Fast-Link (-) txv0200 Figure 4. but is supported by the existing hardware.XVy-EV User’s Guide .2: XFL-IN Connector (FAST LINK Input) Pin 1 2 3 4 5 6 7 8 Function DT_IN+ DT_INCLK_IN+ CLK_IN- Description Data input Fast-Link (+) Data input Fast-Link (-) Clock input Fast-Link (+) Clock input Fast-Link (-) txv0210 4. L=115 cm (code S7QK8) Plastic optical fiber cable _______ L=5 m (code 8S895B).6. This interface can have two different connection architectures : Multi Point : one drive is configured as master (transmitting) and the others as slaves (receiving).4. L=10 m (code 8S896B).6. Peer-to-Peer: This software is not yet released. This synchronous serial interface is named FAST LINK. Figure 4.1 Fast Link Data Max number of drops _________ 8 (1 Master + 7 Slaves) Max length _________________ 1. L=20 m (code 8S897B). Address setting is carried out via the Drive Serial Add (IPA 18031) parameter. twisted conductors with a common shield. The transmission is carried out via a differential signal.XVy-EV devices (up to 128 address selectable) can be networked together via the RS 485 interface.1: RS485 Serial Interface XS 0VS +5 V S 470 R 100 R 470 R 150 R S5 S6 TxA/RxA TxB/RxB +5 V PE 5 9 4 8 3 7 2 6 1 RS485 The RS 485 on the SIEIDrive .e. sending and receiving take place in sequence.XVy-EV drives are connected via jumpers S5 and S6. The differential signal is transferred via PIN 3 (TxA/RxA) and PIN 7 (TxB/ RxB).7. Further information concerning the parameters to be transferred. Bus terminating resistors must be connected at the physical beginning and end of an RS 485 bus in order to prevent signal reflection. The communication may be with or without galvanic isolation: when using galvanic isolation an external power supply is necessary (+5V).1 Serial Interface Description The RS 485 serial interface enables data transfer via a loop made of two symmetrical.400 KBaud. SIEIDrive . Up to 31 SIEIDrive .4. “Parameter lists”. The maximum transmission distance is 1200 m (3936 feet) with a transfer rate of up to 38.XVy-EV series devices is located on the Regulation card in the form of a 9-pole SUB-D socket connector (XS). Communication without galvanic isolation is suggested only in case of temporary connections for setup with one drive connected.7.7 Serial Interface 4. DRIVE CONFIG / COMM CONFIG menu. The bus terminating resistors on SIEIDrive . RS 485 interfaces are bus-compatible in half-duplex mode. i.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 61 . This enables a direct point-to-point connection with a PLC or PC. Figure 4. their type and value range is given in the table contained in section 10. only shielded cables are used .power cables and control cables for contactors/relays are routed separately NOTE! See the manual “SLINK3 Communication protocol” for more detail.XVy-EV User’s Guide . an external power supply is necessary (pin 5 / 0V and pin 9 / +5V).2 RS 485 Serial Interface Connector Description Table 4. 4. Pins 6 and 8 are reserved for use with the “PCI-COM” interface card.7. In all other cases (within the line) jumpers S5 and S6 must not be mounted. When connecting the serial interface ensure that: . For multidrop connection (two or more drive).1: Assignment of the plug XS connector for the RS 485 serial interface Designation PIN 1 PIN 2 PIN 3 PIN 4 PIN 5 PIN 6 PIN 7 PIN 8 PIN 9 Function Internal use Internal use RxA/TxA Internal use 0V (Ground for 5 V) Internal use RxB/TxB Internal use +5 V I = Input I/O – – I/O – – – I/O – – O = Output Elec. A connection point to point can be done using “PCI-COM” option interface.7.2. without jumper setting.NOTE! Ensure that only the first and last drop of an RS 485 bus have a bus terminating resistor (S5 and S6 mounted). Interface – – RS485 – Power supply – RS 485 – Power supply ai4110 62 • Chapter 4 Wiring Procedure SIEIDrive . Out. Inp. from size XVy-EV 43366 insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance. Out.5 12 13 26 27 28 29 17 10 11 K0 14 + 24V 16 Dig. EMC installation and wiring techniques are not shown. The connection of option card is also shown separately. Out. Nota! U3/2V3 and 1V3 only from sizes 75kW.5 (End Run fwd) 22 Dig.4 (End Run rev) Keypad Enable ZeroSpeed Limit Shift L1 L2 L3 N PE U3 2V3 1V3 SMPS 1 2 3 4 .1 K1M 6 21 REV 0 FWD Dig. to disable EXCEXC+ COSCOS+/H3 SIN-/H2 SIN+/H1 +5VE +B 0VE AA+ ZZ+ PTC B 8 9 10 11 12 13 14 15 30 31 32 Ok relay 3 4 1 2 XE 20 19 Digital Inp. Inp.XVy-EV User’s Guide G1 Chapter 4 Wiring Procedure • 63 E V2/T2 M 3~ 3 4 Thermistor PE1 C Navigation Escape Help Enter + Alarm Home Drive Controls Jog 5 6 7 RS 485 Press 2 sec.7 (Drive Reset) 24 Dig..1 XVy-EV Connections Figure 4. For this see appropriate chapter.2 Dig.8.10 V 0 V 10 + 10 V R1 (2 .8 Standard Connection Diagram 4.8.3 Dig. Inp.8. Inp. see figure 4. Out.1.6 (External fault) Analog input 1 Analog input 0 23 Dig. 0 . Inp.Torque +Torque Alarm Speed D M1 K1M PE2 W2/T3 L1 F1 W1/L3 V1/L2 U1/L1 5 6 U2/T1 1 2 The circuit diagram is for the standard configuration of the drive as delivered.1 In the case of DC power supply.1 0 V24 5 COM DI Dig.1. Out..1: Typical connection COM DO Dig. SIEIDrive . 5 kohm) Dig.2 K2 7 18 + + . For more details see chapter 4.4.3 (Reverse) Dig.0 DO supply Analog output 0 9 8 (Ramp in = 0) Analog output 1 (Start) (Enable drive) 25 Dig.4 Dig. Inp. consult the manual of the power supply unit.2.2. The automatic restart of the drive after a failure alarm is not included. Out. Inp. The automatic restart of the drive after a failure alarm is not included.3 Dig.10 V 0 V 10 + 10 V R1 (2 .Torque +Torque Alarm PE Speed M1 PE1 K1M PE2 W2/T3 5 6 L1 F1 D C U2/T1 1 2 The circuit diagram is for the standard configuration of the drive as delivered.. Out. Out.6 (External fault) Analog input 1 Analog input 0 23 Dig. Inp. 5 kohm) Dig.5 + 24V Dig. EMC installation and wiring techniques are not shown..3 (Reverse) Dig.2: Typical connection diagram for XVy-EV . Inp.1 5 16 0 V24 COM DI Dig. L1 : Insertion of an AC mains inductance the power supply input of the power supply unit is compulsory (for the type of inductance. Inp. Inp.2 Dig.4 Dig. For more details see chapter 4.8.0 DO supply 9 Analog output 0 (Ramp in = 0) Analog output 1 (Start) (Enable drive) 25 Dig.4 (End Run rev) Keypad Enable ZeroSpeed Limit Shift L1 L2 L3 SM32 or DC Power supply U3 2V3 1V3 SMPS 1 2 3 4 N . Inp.2. to disable EXCEXC+ COSCOS+/H3 SIN-/H2 SIN+/H1 +5VE +B 0VE AA+ ZZ+ PTC B 8 9 10 11 12 13 14 15 30 31 32 Ok relay 3 4 1 2 XE 20 19 Digital Inp. Out.5 (End Run fwd) 22 Dig.Figure 4.. Out.-DC versions. Out. consult the manual of the power supply unit). Out.1.2 8 K2 7 18 + + 17 10 12 13 26 27 28 29 K0 14 11 . Inp. The connection of option card is also shown separately. COM DO Dig.1 64 • Chapter 4 Wiring Procedure G1 SIEIDrive .7 (Drive Reset) 24 Dig. For this see appropriate chapter.1 K1M 6 21 REV 0 FWD Dig.XVy-EV User’s Guide E V2/T2 M 3~ 3 4 Thermistor Navigation Escape Help Enter + Alarm Home Drive Controls Jog 5 6 7 RS 485 Press 2 sec.. 0 . Inp. Note! U3/2V3 and 1V3 only from size 6125230 . U2 V2 W2 C D M..XVy-EV User’s Guide Chapter 4 Wiring Procedure • 65 . 3 F. BUy.9...8. 4 Such connection is suitable for a maximum of 6 inverters..) (MASTER) SIEIDrive ..1) have to be the same (provided by the same supplier)..2. dissipate the braking power.e.2).. 3 The mains power supply has to be simultaneous for all inverters. it is necessary to use one internal "BU" braking unit (with external resistance) or one (or more) external braking units ("BU32-.4. U V W DRIVE . 5 If required. F61 L6 U V W DRIVE 6 U2 V2 W2 C D M6 3 F62 F7 7 BR RBR CR 8 9 10 D C BU-32-..10.. 6 Fast fuses (F12.. (BUy-.. i.. L. Figure 4. 2 AC line chokes (see chapter 4.1: Parallel Connection on the AC and DC Side of Several Drives F11 L1 U V W DRIVE 1 U2 V2 W2 C D M1 3 F12 F21 L2 U V W BR DRIVE 2 U2 V2 W2 C D M2 3 F22 Caution L1 L2 L3 K1 RBR (*) (*) Do not connect if external braking unit are used F..") of which one has to be configured as master and the others as slave.. a single switch /line contactor has to be used.F62) have to be fitted on the dc-link side ( C and D terminals) of each inverters (see chapter 4.8.2 Parallel Connection on the AC (Input) and DC (Intermediate Circuit) Side of Several Drives Features and Limits: 1 The inverters used have to be all the same size. (E27). S..... 22 x 58 mm. (E33). weights..Fuses type (Code) Europe Connections without three-phase reactor GRD2/10 (F4D13) or Z14GR10 (F4M03) GRD2/16 (F4D14) or Z14GR16 (F4M05) GRD2/20 (F4D15) or Z14GR20 (F4M07) GRD2/25 (F4D16) or Z14GR25 (F4M09) GRD3/35 (F4D20) or Z22GR40 GRD3/50 (F4D21) or Z22GR40 GRD3/50 (F4D21) or Z22GR50 (F4M15) A70P10 A70P20 A70P20 A70P25 A70P35 A70P40 A70P40 America 25000 25000 10000 25000 25000 10000 25000 10000 10000 FWP10 FWP20 FWP20 FWP25 FWP35 FWP40 FWP40 (S7G49) (S7G48) (S7G48) (S7G51) (S7G86) (S7G52) (S7G52) For these types an external reactor is mandatory if the AC input impedence is equal or less than 1% Connections without three-phase reactor 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9470650-C-IP00 9560650-CP 9560650-CP-IP00 50000 50000 50000 50000 50000 50000 50000 50000 30000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 GRD2/10 (F4D13) or Z14GR10 (F4M03) A70P10 A70P10 FWP10 FWP10 FWP20 FWP20 FWP25 FWP35 FWP40 FWP50 FWP80 (S7G49) (S7G49) (S7G48) (S7G48) (S7G51) (S7G86) (S7G52) (S7G53) (S7G54) GRD2/16 (F4D14) or Z14GR16 (F4M05) GRD2/20 (F4D15) or Z14GR20 (F4M07) GRD2/25 (F4D16) or Z14GR25 (F4M09) GRD3/50 (F4D21) or Z22GR40 GRD3/50 (F4D21) or Z22GR50 (F4M15) GRD3/50 (F4D21) or Z22GR50 S00C+üf1/80/80A/660V or Z22gR80 S00C+üf1/80/100A/660V or M00üf01/100A/660V (F4G18) A70P20 A70P20 A70P25 A70P35 A70P40 A70P50 A70P80 A70P100 FWP100 (S7G55) S00C+üf1/80/160A/660V or M00üf01/160A/660V (F4E15) A70P175 FWP175 (S7G57) S1üf1/110/250A/660V or M1üf1/250A/660V (F4G28) S2üf1/110/400A/660V or M2üf1/400A/660V (F4G34) A70P300 FWP300 (S7G60) A70P400 FWP400 (S7G62) S2üf1/110/500A/660V or M2üf1/500A/660V (F4G30) S2üf1/110/630A/660V (F4E31) S2üf1/110/630A/660V (F4E31) S2üf1/110/630A/660V (F4E31) S2üf1/110/630A/660V (F4E31) A70P500 FWP500 (S7G63) A70P600 FWP600 A70P600 FWP600 A70P600 FWP600 A70P600 FWP600 (S7G65) (S7G65) (S7G65) (S7G65) txv0150 Fuse manufacturers: Type GRD2. heat dissipation. Bussmann NOTE! The technical data of the fuses.g.1..9... Use fast fuses only. 8350460 DC link capacitors life time [h] F1 .1 External Fuses for the Power Section The drive must be fused on the AC Input side.9 Circuit Protection 4.. SIEIDrive . auxiliary contactors.. Connections with three-phase inductance on AC input are not essential but will improve the DC link capacitors lifetime and drive reliability in unusual power events.. Table 4. e. are found in the manufacturers data sheets..9. Eltville A70P. 14 x 51 mm... (blade fuses). Jean Müller.. M..1: External Fuse Types for AC input side Drive type XVy-EV 10306 10408 10612 20816 21020 21530 32040 32550 43366 . dimensions. Z14.XVy-EV User’s Guide 66 • Chapter 4 Wiring Procedure ..4.. Z22.. GRD3. Gould Shawmut FWP. XVy-EV User’s Guide Chapter 4 Wiring Procedure • 67 . are found in the manufacturers data sheets. Z22.2. SIEIDrive ..g.2 External Fuses for the Power Section DC Input Side Use the following fuses when an external bus supply is used. dimensions.. auxiliary contactors.9. e. FWP. heat dissipation.... Eltville Gould Shawmut Bussmann NOTE! The technical data of the fuses.. S00 .1: External fuses type for DC input side Drive type XVy-EV 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9470650-C-IP00 9470650-C-DC-IP00 9560650-CP 9560650-CP-IP00 9560650-CP-DC-IP00 Europe Fuses type Z14GR10 Z14GR16 Z14GR20 Z14GR32 Z14GR40 Z22GR63 S00C+/üf1/80/80A/660V Code F4M03 America Fuses type Code A70P10 FWP10A14F S7G49 F4M05 A70P20-1 FWP20A14F S7G48 F4M07 A70P20-1 FWP20A14F S7G48 F4M11 A70P30-1 FWP30A14F S7I50 F4M13 A70P40-4 F4M17 A70P60-4 F4EAF A70P80 FWP40B FWP60B FWP80 FWP100 FWP150 FWP175 S7G52 S7I34 S7G54 S7G55 S7G56 S7G57 S7G58 S7G59 S7G61 S7G62 S7G63 S7G65 S00C+/üf1/80/100A/660V F4EAG A70P100 S00C+/üf1/80/125A/660V F4EAJ A70P150 S00C+/üf1/80/160A/660V F4EAL A70P175 S00üF1/80/200A/660V S1üF1/110/250A/660V S1üF1/110/315A/660V S1üF1/110/400A/660V S1üF1/110/500A/660V S2üf1/110/630A/660V F4G23 A70P200 FWP200 F4G28 A70P250 FWP250 F4G30 A70P350 FWP350 F4G34 A70P400 FWP400 F4E30 A70P500 F4E31 A70P600 FWP500 FWP600 S3üF1/110/800A/660V F4H02 A70P800 FWP800 S7813 txv0160 Fuse manufacturers: Type Z14. Jean Müller.4. S2... weights.9... S1. A70P.... Table 4... 4. For the use of output sinusoidal filters. Siba: 70 059 76. please contact the factory.10 Chokes / Filters NOTE! A three-phase inductance should be connected on the AC Input side in order to limit the input RMS current XVy-EV series drives.9. capacitor life will be shortened and general reliability will be less.5 .5233) Fitted on: Power card PV33-4 and higher Power card PV33-5 and higher Regulation card R-XVy and higher Bottom cover (power terminals side) txv0170 10306 .5A 6. While the drive will work without the inductance.3x32 (Bussmann: MDL 2. The inductance can be provided by an AC Input choke or an AC Input transformer. consult the manual of the power supply unit). see figure 4.XVy-EV User’s Guide . from size XVy-EV 43366 insertion of an AC mains inductance on the power supply input of the power supply unit is compulsory (for the type of inductance.5.1: Internal fuses Drive type 43366 … 9560650 Designation F1 Protection of +24V Fuse (source) 2A fast 5 x 20 mm (Bussmann: SF523220 or Schurter: FSF0034.1: Input/output choke dimensions NOTE! NOTE! 68 • Chapter 4 Wiring Procedure SIEIDrive .1. Gould Shawmut: GDL1-1/2.8. Figure 4.2.. 9560650 F1 +24V 7145290 … 8350460 F3 Fans transformer 4.3.9. In the case of DC power supply.3 Internal Fuses Table 4.1519 or Littlefuse: 217002) Resettable fuse 2.10. Schurter: 0034.2.. 9) 150 (5.1) 79 (3.9) 65 (2.8) 55 (2. listed in table 2. The rated current of the filters should be approx.4) 0.5 (20.51 0.4) 4.10.8 (17.5 (20.7) 180 (7.6) 100 (3.7) 7.1. 20% above the rated current of the frequency drive in order to take into account additional losses due to PWM waveform.9) 155 (6.1) 240 (9.2.2 Output Chokes For motors with long cable runs (typically over 30 m [98.3.5) 375 (14.4 11 14 18 24.5) 75 (2.10. current [A] 7.9) 9.9) 150 (5.69 2.3 1.1) 210 (8.1 in section 2.8) 270 (10.2) 2 (4.9) 150 (5.4) 2.1) 80 (3.8 17. .9) 250 (9.3) 300 (11. Freq.9) 250 (9.9) 12.5 (27.5 6.1: 3-Phase AC Input Chokes Three-phases main chokes Drive type XVy-EV Mains Rated inductance current [mH] 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9560650-CP 0.8 (4.3.8) 545 (21.2.9) 45 (1.2.reduce the AC mains harmonic distortion . 4.1) 85 (3.2 (4.2) 250 (9.085 297 600 50/60 LR3-160 S7D40 44 (97.3) 55 (121.3) 100 (3.6) 355 (13. “AC Input/Output Connection”.5) 90 (3.0) 300 (11.9 (4.5) For all the sizes an input choke is strongly recommended in order to: .7) 150 (5.4) 120 (4.7 8.4 30 41 58 71 102 173 3.2 (13.8) 5 (11) 6.1) 168 (6.9) 150 (5.8) 130 (5.9 (10.1) 80 (3.3) 160 (6.1) 155 (6.8) 133 (5.6) 260 (10.7 5.5 46.2) 54 (2.7) Dimensions : mm (inch) b c D1 E1 [A] 3.8) 270 (10.8) 120 (4.prolong the life time of the DC link capacitors and the reliability of the input rectifier.9) 180 (7.148 50/60 LR3y-1015 50/60 LR3y-1022 50/60 LR3y-1030 50/60 LR3y-2040 50/60 LR3y-2055 50/60 LR3y-2075 50/60 LR3y-3110 50/60 LR3y-3150 50/60 LR3-022 50/60 LR3-030 50/60 LR3-037 50/60 LR3-055 50/60 LR3-090 S7AAE S7AAF S7AB3 S7AAG S7AB5 S7AB6 S7AB7 S7AB8 S7FF4 S7FF3 S7FF2 S7FF1 S7D19 125 (4.1.3) 215 (8.6) 79 (3.35 0.1) 54 (2.1) 170 (6.6) 182 (7.reduce the problems due to a low impedance AC mains (  1%).1) 255 (10) 250 (9.1) 69 (2.18 0.10.5) 150 (5.68 0.0) 1.4.71 2.9) 90 (3.8) 80 (3.13 0.6) 120 (4.24 0.2) 9. NOTE! The current rating of these inductors (reactors) is based on the nominal current of standard motors.5 feet]) an output choke is recommended to maintain the voltage waveform within the specified limits.4 22.5 36. SIEIDrive .5) 90 (3.7 11.1 AC Input Chokes Table 4.63 1.9) 150 (5.2) txv0180 Saturat. Suggested choke ratings and part numbers are listed in table 4.1) 180 (7.9) 130 (5.1) 100 (3.085 0.06 380 550 710 1050 50/60 LR3-200 50/60 LR3-315 S7AE9 S7D28 54 (119) 300 (11.29 0.8) 125 (4.7) 70 (2.1) 180 (7.7) 110 (242.89 0.10.1) 180 (7. Weight kg (lbs) a 1.5 61 83 120 145 212 350 [Hz] Model Cod.8) 265 (10.2) 160 (6.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 69 . 12 0.18 0.4) 150 (5.8) LU3-011 S7FG4 8 (17.7) 180 (7.1) 240 (9.4) 14 (30.24 0.7) 170 (6.0] 500 [10.1) 180 (7.5 16 27 32 42 58 76 110 180 Saturat.6) 300 (11.4] Please contact the nearest Gefran office 380 [15.3) 160 (6.1) 180 (7.3) 160 (6.2 (11.9) 70 (2.6) 130 (5.7) 180 (7.6) 9.9) 54 (2.07 [A] 9.1) 150 (5.9) 80 (3. current [A] 20 20 34 57 68 72 100 130 192 310 Model Cod.5) LU3-005 S7FG3 5.8) 260 (10.3) 150 (5. Slightly less drop will occur at 60Hz.3) 210 (8.5 (20.9) 80 (3.43 0.1) LU3-015 S7FM2 7.4) LU3-003 S7FG2 5.1) 200 (7.5 9.5) LU3-022 S7FH3 LU3-030 S7FH4 LU3-037 S7FH5 LU3-055 S7FH6 8 (17.9) 60 (2.9) 70 (2.0) 120 (4.33 0.022 580 1100 LU3-200 S7AF0 LU3-315 S7FH9 95 [209.5 (60.51 0.87 0.9) 80 (3.7 (21.3) D1 E1 LU3-001 S7FG1 100 (3.1) 180 (7.5 (16.2) 240 (9.10.7 (6.4 1.5) NOTE! When the drive is operated at the rated current and at 50 Hz.1) 150 (5.8) 90 (3. 70 • Chapter 4 Wiring Procedure SIEIDrive .1) 180 (7.7] 310 [12.8 (12.1: Recommended values for output chokes Three-phases output choke Drive type XVy-EV 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9560650-CP 0.5 (40.3) c 71 (2.9) 60 (2.8] 134 [5.1) 180 (7.XVy-EV User’s Guide .8) 170 (6.8) 180 (7. the output chokes cause a voltage drop of approx.9) 200 (7.7) 150 (5.8) 0.1) 160 (6.1) 150 (5.9) 110 (4.2.9) 80 (3.4 0.4) Dimensions : mm (inch) b 128 (5.041 310 540 LU3-160 S7FH8 27.9) 9.8) 170 (6.3) 160 (6.4) 250 (9.4) 240 (9.2] 250 [9.1) 180 (7. Weight kg (lbs) a 2.Table 4.3) 110 (4. 2% of the output voltage.0) 170 (6.1) 180 (7.1) 180 (7.1) 150 (5.9) LU3-090 S7FH7 18.1) 200 (7.9) 70 (2.3) 210 (8.3] txv0190 Mains Rated inductance current [mH] 1. 4) 13 (28.5) 150 (5. The filter selection is depending on the drive size and the installation environment.9) 57 (2.72) 120 (4. Motor cable length : max 5 m.4) 200 (7.7) 4.7) 170 (6.5) 40 (88.4) 375 (14.7) 13 (28.5) 270 (10.3.8) 85 (3.4 (3.8) 260 (10.7) 170 (6. 2nd Environment.6 (5.72) Mains supply : 230 .235 (9.9) 270 (10.0) 255 (10.6) 102 (4.1: Recommended EMI filters Drive type XVy-EV 10306 … 10612 20816 … 21530 32040 32550 43366 … 43570 44590 … 455110 570140 … 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650-C 9560650-CP 10306 … 10612 20816 … 21530 32040 32550 43366 … 43570 44590 455110 570140 … 5100180 6125230 … 7145290 7190350 7230420 8280400 8350460 9560650-CP 10306 … 32040 10306 … 9560650-CP EN 618003:2004 Model Cod.0) 102 (4.31) .7) 120 (4.8) 260 (10.) in order to make it EMC compliant according the EMC Directive 89/336/ EEC. Category C3.4 (29.2) 135 (5. Motor cable length : max 30 m.4) 250 (9.9) 45 (1.8) 260 (10.4) 120 (4.120 (4.1) 1.7) 105 (4.375 (14.7) E1 59 (2.72) 145 (5. Category C4.6 (3.7) 120 (4.6 (5.72) 110 (4.400V ±15%.360 (14. 2nd Environment.8) 104 (4.8) .8) 280 (11.1) 155 (6.375 (14.3) 255 (10.31) 350 (13.72) 120 (4.4 (9.365 (14.7) 13 (28.31) 300 (11.8) .7) 170 (6.4) 200 (7.1) 1.8) 260 (10.7) 4.8) 235 (9.4) 1.72) 13.96 (2.2) 135 (5.25) 235 (9.480 +10% 0.8) 260 (10. Table 4. 460 .94) .8) 390 (15.0) 4.8) 390 (15.1) 45 (1.4) 200 (7.25) 235 (9.6) 90 (3.9) .8) 85 (3.1 (2.3) 90 (3.31) 300 (11.9) Mains supply : 460 .M6 (1): (2): (3): (4): Category C3.7) 2.3) 90 (3.2) 135 (5.9) 2.6) 90 (3.2) 1.7) 300 (11.4 (9.120 (4.7) 120 (4.1) 155 (6.3 (5.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 71 . Motor cable length : max 100 m.1) 155 (6.33) .400V ±15% 375 (14.6) 65 (2.2) 40 (88.1) 45 (1.7) 400 (15.7) 300 (11. 2nd Environment.1) 60 (2.25) 235 (9.2) 135 (5.100 (3.10.5) 150 (5.8) 260 (10.8) 150 (5.31) .1 (2.4) 60 (2.8) 104 (4.25) 95 (3. see the “EMC guide” on the cd-rom included.255 (10.1) 155 (6.2) 135 (5.7) .9) 45 (1. Motor cable length : max 100 m.5) 300 (11.1) 1.31) 300 (11.4) 65 (2.1) 100 (3.72) 120 (4.4) 4.9) 45 (1.8) 375 (14.9) 250 (9. 1st Environment.8) 375 (14. ground.8) 1.25) 235 (9.6) 90 (3.4) 365 (14.8) 150 (5.72) 120 (4.2 (29.25) 235 (9.0) 235 (9. Category C2.7) 120 (4.6 (5.8) 85 (3.0) 2.2) 135 (5.7) 270 (10.8) 260 (10.10.7) 270 (10.7) 300 (11.7) .3 Interference Suppression Filters SIEIDrive .25) 235 (9.31) 300 (11.5) 390 (15.6) 90 (3.9) 400 (15.2) 375 (14. For more information.1) 390 (15.72) 40 (88.5) .9) 45 (1.235 (9.2) Dimensions : mm (inch) a b c d D1 Mains supply : 230 . etc. SIEIDrive .3) 105 (4.365 (14.94) 100 (3.4 (3.8) 260 (10.120 (4.25) 235 (9.4.4) 65 (2.8) .2) 360 (14. The document describes the present situation concerning the EMC standards and the compliance tests made on the drives as required by CE.XVy-EV drives must be equipped with an external EMI filter in order to reduce the radiofrequency emissions on the mains line as required for operation in Europe.3) 105 (4.25) 255 (10.0) 102 (4.3) 90 (3. In the Guide it is also indicated how to install the drive in an enclosure (connection of filter and mains reactors.9) 45 (1.360 (14.255 (10.5) 2.7) R P M5 M5 M5 M5 M5 M5 M5 M5 - M Ø6 Ø6 Ø6 Ø6 M6 M6 M6 M6 M6 M10 M10 M10 M10 M10 M10 Ø6 Ø6 Ø6 Ø6 M6 M6 M6 M6 M6 M6 M10 M10 M10 M10 (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (4) EMI FFP 480-9 EMI FFP 480-24 EMI FFP 480-30 EMI FFP 480-40 EMI 480-45 EMI 480-70 EMI 480-100 EMI 480-150 EMI 480-180 EMI 480-250 EMI 480-250 EMI 480-320 EMI 480-400 EMI-480-600 EMI-480-800 EMI FFP 480-9 EMI FFP 480-24 EMI FFP 480-30 EMI FFP 480-40 EMI 480-45 EMI 480-55 EMI 480-70 EMI 480-100 EMI 480-150 EMI 480-180 EMI 480-250 EMI 480-250 EMI 480-400 EMI-480-600 EMI-C 480-25 ECF3 S7DEQ S7DER S7DES S7DET S7DFU S7DFZ S7DGA S7DGB S7DGC S7DGG S7DGG S7DGH S7DGI S7DGL S7DGM S7DEQ S7DER S7DES S7DET S7DFU S7DFV S7DFZ S7DGA S7DGB S7DGC S7DGG S7DGG S7DGI S7DGL S7DFA F4ZZ2 1.6) 102 (4.120 (4.2) 135 (5.31) .9) .6 (5.31) .7) 13.8) 250 (9.3 (2.5) 150 (5.0) 365 (14.480 +10% 360 (14.2) 300 (11. cable shield.2) 135 (5. Weight kg (lbs) 1.7) 400 (15.8) 260 (10.4 (9.4 (29.4 (9.6 (3.7) 170 (6.7) 400 (15.8) 2.12 (2.5x3 txv0195 120 (4.2) M5 4.0) 59 (2.3 (5.9) 57 (2.5) 150 (5.2) Mains supply : 500V ±10% 150 (5.3) 2 (4.5) .2) 1.9) 45 (1.72) 13 (28.3 (2.0) 150 (5.3) 2.1) 375 (14.1) 13.6) 65 (2.8) .2) 135 (5.0) 235 (9.4) 200 (7.1) 60 (2. .800 c a a c E1 43 b M LOAD LINE E1 b 25 T2 28 5-8 D1 D1 D1 M EMI-C 480-25 EMI 480-45.5 mm2 block M4 D1 a E1 LOAD L1 L2 L3 200±20 a E1 M D1 b 4.. b c P b1 D1 25 25 a 72 • Chapter 4 Wiring Procedure SIEIDrive ..3.10.Figure 4. P EMI 480-250...XVy-EV User’s Guide ...1: Filter dimension EMI FFP .5x3 M5 P1 L1 L2 L3 LINE b c 200±20 ECF .180 c Wires 2. Drive sizes XVy-EV 43366 up to XVy-EV 5100180 can have an optional internal braking unit factory mounted. Warning 4. The braking resistors can be subject to unforeseen overloads due to possible failures. The resistors have to be protected using thermal protection devices. Such devices do not have to interrupt the circuit where the resistor is inserted but their auxiliary contact must interrupt the power supply of the drive power section. such contact has to be used together with the one belonging to the thermal protection device. or when circuit terminals C and D are connected to external devices.1: Operation with Braking Unit (Principle) _ E R BR M BU All SIEIDrive ... an internal braking unit..11 Braking Units In regenerative operation.) connected to terminals C (+Bus) and D (Bus).XVy-EV User’s Guide Chapter 4 Wiring Procedure • 73 . the AC Input must be protected with superfast semiconductor fuses! Observe the mounting instruction concerned. these activate a braking resistor that is modulated across the capacitors of the intermediate circuit. the frequency-controlled three-phase motor feeds energy back to the DC link circuit via the drive.XVy-EV drives can be equipped with an external braking unit (BU-32. thus providing very short deceleration times and four-quadrant operation. SIEIDrive . NOTE! When the internal braking unit is present. as standard configuration.4..xx. When used. The feedback energy is converted to heat via the braking resistor (RBR). This creates an increase in the intermediate circuit voltage. In case the resistor foresees the precence of a protection contact. Braking units (BU) are therefore used in order to prevent the DC voltage rising to a value causing the drive to trip.1 Internal Braking Unit Drive sizes XVy-EV 10306 up to XVy-EV 32550 have.11..11. or BUy-. Figure 4. up to size XVy-EV 32550 and XVyEV.1 6.8 19 100 12 16 67 17 22 36 16 31 26 52 42 15 78 10 23 78 10 37 104 22 7.5 External braking unit (optional) txv0260 IRMS IPK T Nominal current of the braking unit Peak current deliverable for 60 seconds max. Figure 4.43570 44590 455110 570140 … 5100180 6125230 … 9560650 IRMS [A] 4.1: Technical data of the internal braking units Drive type XVy-EV 10306 …20816 21020 … 21530 32040 32550 43366 .6 12 17 18 37 29 50 IPK T Minimum R BR [A] [s] [ohm] 7.1.11..11.XVy-EV User’s Guide PE1 / D PE2/ C . are equipped with an Internal Braking Resistor according to the following table: Drive Type 10306 …10612 21020 … 21530 32040 32550 Resistor Type CBR-100R CBR-67R RFI1300-36R RFI1300-26R PNBR [W] 100 150 200 200 RBR [Ohm] 100 67 36 26 EBR [kJ] 11 11 16 16 455110 EWHR 570140 EWHR 5100180 EWHR 5125230 EWHR 12R-S8T1DE 10R-8SWW1 8R-S8T1DD 1000 12 10 8 30 txv0225 For bigger sizes.1: Connection with internal Braking Unit and external braking resistor Braking Unit W1/L3 W2/T3 U1/L1 U2/T1 V1/L2 V2/T2 BR1 F1 Braking resistor 3Ph~ 74 • Chapter 4 Wiring Procedure SIEIDrive .EWHR.2.2 Internal and External Braking Resistors The SIEIDrive . the braking resistor is optional and has always to be mounted externally.XVy-EV drives.Table 4. BRAKING RES menu..11. The figure below shows the configuration for internal brake unit operation. Minimum cycle time for a working at IPK for 10 seconds 4. For parameter settings refer to the section 10. 43) 7.6 7.78) 605 (23..8) 70 (2.8) a1 290 (11.6) 365 (14.7 (3.1) 47 (1.5 (0.2) (1) Max overload energy.30 0. 30”.4) 625 (24. 1”.8) 75 (2.75 0.9) 260 (10..9) 70 (2.69) 17. Weight kg (lbs) 0..11. RF. (2) Max overload energy.5 (3.69) 17.8) 260 (10.81) a1 a1 Warning When using an external resistor..5 (0.17) 100 (3.5 (0.7) 93.17) 106 (4.35) a 300 (11.2: External resistors RFPD.8) 250 (9. BR T8K0.75) 2. BR T2K0: PG 11/PG16 BR T4K0: PG 13 BR T8K0: PG 16 RF.4) 17.5 (0.6) 625 (24.3) 7...5 7.7 EBR [kJ] (1) 1.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 75 .4) txv0250 b1 c1 11 RF 220 T 100R 19 RF 300 DT 100R 38 RFPD 750 DT 100R 38 RFPD 750 DT 68R 48 RFPD 900 DT 68R 58 RFPD 1100 DT 40R 75 RFPR 1900 D 28R 150 BR T4K0-15R4 150 BR T4K0-11R6 220 BR T8K0-7R7 93.duty-cycle 10%.0 (15.4 (3. it is necessary to follows the recommended external resistors to be used with drives internal braking units: Table 4.0 (15..2.22 0. 455110 570140 .1) 1.4) 106 (4. T b PG 7: on version with Thermostat only c a c a b Cable length = 300 (11.17) 106 (4.5 (3..95) 4.9) 200 (7.69) 17.2) 320 (12.6) 40 (1..5 mm a1 a BR T4K0.6) 60 (2..9) 100 (3.9) 250 (9.5 (3.5 9 11 19 40 40 80 (2) Resistor Type S8T0CE S8T0CB S8SY4 S8T0CD S8SY5 S8SY6 S8SZ5 S8T00G S8T00H S8T00I Cod..7 (5..5 (1.5 (3.. DT 2 RFPR.69) 70 (2.2 (9..1 1.7) 30 (1.2.75 0.69) 17.2 (4.7) 93. Parameters description: PNBR RBR EBR PPBR TBRL Nominal power of the braking resistor Braking resistor value Max surge energy which can be dissipated by the resistor Peak power applied to the braking resistor Maximum braking time in condition of limit operating cycle (braking power = PPBR with typical triangular profile) SIEIDrive .9 4 4 8 RBR [Ohm] 100 100 100 68 68 40 28 15.3) Dimensions : mm (inch) c 36 (1.85) 2.4 11.8) 605 (23.7 (3.2) 106 (4.duty-cycle 25% Figure 4.1: Lists and technical data of the external standard resistors XVy-EV PNBR [kW] 10306 10408 …20612 20816 21020 21530 32040 32550 43366 …43570 44590 . b Cables length 500 mm / Section 4 mm Length cables 400 mm / Section 4 mm Engrave the ground symbol 2 c b Thermal protection cable Threaded hole 5 MA b1 a c1 c c1 b1 n 4 holes 5.9 1.8) 350 (13.8) 250 (9.5 7.If the application requires to use an External Braking Resistor.11.43) 11..95) 100 (3. remove the connections of the internal braking resistor from terminals BR1 and C and connect the two wires together using the proper faston..8) 70 (2.17) 106 (4.8) 605 (23.2) 200 (7.5 (0.75) 1.8) 40 (1.5 (25.5 2.8) 70 (2.6) b 27 (1.09) 1.9) 160 (6. 5100180 0.7) 93.5 (3.7) 93...6) 625 (24. Resistor model: Standard resistor data Example code:RFPD 900 DT 68R RFPD = resistor type 900 = nominal power (900 W) T= with safety thermostat 68R = resistor value (68 ohm) NOTE! The suggested match of resistor-model and inverter-size.2.P PPBR EBR n TBRL TCL t TCL Minimum cycle time in condition of limit operating cycle (braking power = PPBR with typical triangular profile) The BU Overpower alarm occurs if the duty cycle exceeds the maximum data allowed in order to prevent possible damage to the resistor.11.4: Braking cycle with TBR / TC = 20% P.XVy-EV User’s Guide .2.Figure 4.3: Limit operating braking cycle with typical triangular power profile n.11. allows a braking stop at nominal torque with duty cycle TBR / TC = 20% Where: TBR = Braking time TC = Cycle time Figure 4.n n TBR TC t 76 • Chapter 4 Wiring Procedure SIEIDrive . 2. the following example can be taken into consideration (see also table 4. have been sized to tolerate an overload equal to 4 times their nominal power for 10 seconds. In any event they can tolerate also an overload.11.8[s] 6084 It is necessary to consider the following relation: A) 1) 2) If TBR < EBR / PNBR verify: PMB < 2 * EBR / TBR Where: PMB is the maximum cycle power (see figure 4.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 77 . it must be dimensioned PMB < PNBR Figure 4. whose energy dissipation is the same of the maximum power level defined by: Where: VBR = braking unit threshold With reference to the figure 4. in case of very long braking time.1).11.2.2.11.5: Generic braking cycle with triangular profile n.2.1.11.3.5) x The average power of the cycle must not be higher than the nominal power of the resistor. B) If TBR > EBR / PNBR that is to say. whose technical data are reported in the table 4.2.These resistors. where the power profile is the typical triangular one. Resistor model: MRI/T600 100R Nominal power PNBR = 600 [W] Maximum energy EBR = 4 x 600[W] x 10[s] = 24000[J] Inverter mains supply = 460V Voltage threshold: VBR =780V P PBR = VBR 2 R BR = 780 2 = 6084 [W] 100 T BRL = 2 E BR P PBR = 2 24000 = 7.P PPBR PMB TBR TC t SIEIDrive .11. 11.11. Such parameters are able to define the resistor overload possibility in case of continuous maximum power peaks. it is necessary to increase the nominal power of the resistor.4 External Resistance Interaction with the System Parameters When the external braking resistance is installed it is always necessary to carry out some modifications in the parameters. default) the maximum time for the peak power application is calculated as 78 • Chapter 4 Wiring Procedure SIEIDrive . such a function is in a position to avoid any possible overload but it cannot protect against component failure that might render impossible the logical control of the braking resistor current. respecting the limit of the internal braking unit as stated in the table 4.2 · Jtot · 2 · f where: P = Dissipated power Jtot = Total inertia ( Kgm2 )  = Max speed ( rad/sec ) f = Cycle frequency in Herz (number of cycles per second). a possible instantaneous overload defined as Emax BR in [Joule] or as a product given by Pmax_BR x Tmax_BR [Joule] supplied by the producer of the resistor. f = 1/TBR (sec) 4. Generally the following condition must be satisfied IRMS 1 2 PPBR RBR T BR TC 4. PPBR = V2BR / RBR (VBR= 780 V.11. BRAKING RES menu for furthers details.XVy-EV User’s Guide . which the resistor bank is subject to. According to Emax BR and to the peak power value.1. As stated in the dimensioning procedure for the bus braking system. It is important to remember that the drives are supplied with a I2t function for the resistor bank protection. with a given ambient condition.If one of the above mentioned rules is not respected.11. when the DC bus power supply is continuously connected to the braking resistance. 4.3 Control of the External Braking Power The braking resistance average power is defined by the following formula: P = 0.5 Choice of the Thermal Relay for Brake Resistor Here is a procedure aimed at stating the coordination of a thermal relay for the protection of the resistor bank in case of a sudden component failure (not detected). See chapter 10. the resistor bank has. the peak current on the resistors is IPK = VBR / RBR Therefore. The thermal relays to be used are those coordinated for the protection of three-phase motors. In this case it is advisable to use all the three contacts which have to be connected in series to be able to break the substantial DC voltage involved. which can be dissipated on the resistor bank.XVy-EV User’s Guide Chapter 4 Wiring Procedure • 79 . the overload ratio obtained from the curves. it is necessary to use a thermal relay with a time/current feature able to obtain a K factor lower than the one stated above. such value is stated during the dimensioning procedure of the braking system. Given that K. In case the above-mentioned conditions are not satisfied.Tmax BR = Emax BR / PPBR Furthermore. SIEIDrive . the current value to which the thermal relay has to be set is: Iterm = I PK / k Now it is necessary to check that the product VBR x Iterm is higher than the average power. the time/current curves of the thermal relays are must have an overload ratio requiring a thermal relay intervention time lower than Tmax BR. 2 17.4 36.72 2.24 5.24 4.3 2.37 0.95 0.62 0. The buffer time is determined by the capacitance of the DC Link capacitors.1 17. The minimum values are shown in the table below.4 Maximum permissible external capacitance Maximum power required by switched mode power supply Cstd [µF] 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9470650 9560650 220 330 330 830 830 830 1500 1500 1800 1800 2200 3300 4950 4950 6600 6600 9900 14100 14100 14100 29700 56400 voltage =400V [s] 0.12 1.4. The buffer time (tBuff) can be extended (only on 11 kW drive and higher) by connecting external capacitors in parallel (on terminal C (+ bus) and D(.37 0.24 0.3 6.24 0.62 0.95 0.95 1.1 Cext [µF] 0 0 0 0 0 0 1500 1500 4500 4500 4500 4500 4500 4500 0 0 0 0 0 0 0 0 PSMPS [W] 65 65 65 65 65 65 65 65 70 70 70 70 70 70 70 70 70 70 70 70 140 140 txv0270 SMPS = Switched Mode Power Supply 80 • Chapter 4 Wiring Procedure SIEIDrive .12.54 1.2 36.1: DC Link Buffer Time Internal capacitance XVy-EV Buffer time tBuff (minimum value) with the internal capacitance at : AC Input AC Input voltage =460V [s] 0.12 1. Table 4.4 12.2 6.165 0. The drive is disabled as soon as the voltage of the DC Link circuit is below the threshold value (UBuff). the power supply of the control section is derived from a switching power supplier (SMPS) of the DC link circuit.54 1.bus)).83 4.8 4.72 1.88 2. The regulator supply is buffered by the energy of the DC Link circuit until the limit value (Umin) is reached.25 0.12 Buffering the Regulator Supply When no external power supply is available on the terminals 15 and 16 of the regulation card.8 12.1 12.1 12.2 17.6 8.6 5.8 12.1 8.3 8.XVy-EV User’s Guide .8 12.62 1.3 2. 1800mF = 2154 mF .Figure 4. 1.U2min [μF] [W] [s] [V] . 1.1800 mF = 354mF SIEIDrive .C std fA018 Cext. 106 µF / F (400 V) 2 .12. 70 W .5 s 250 V 2 .5 s .(250 V) 2 . Cstd PSMPS tBuff UBuff.5 s.XVy-EV User’s Guide PE1 / PE2/ 1 = 1 + 1 Cx C1x C2x W1/L3 W2/T3 U1/L1 U2/T1 V1/L2 V2/T2 BR1 D C Chapter 4 Wiring Procedure • 81 . A voltage failure buffer is required for max.1: Buffering the Regulator Supply by Means of Additional Intermediate Circuit Capacitors F1 CX 900 VDC or 3Ph~ NOTE! When connecting the intermediate circuit terminals C and D the AC Input side must be protected with superfast semiconductor fuses! Formula for calculating the size of the external capacitors: Cext = 2 P SMPS t Buff 10 6 U2 Buff . Umin UBuff = 400 V at ULN = 400 V UBuff = 460 V at ULN = 460 V Umin = 250 V Calculation example A XVy-EV 43570 drive is operated with an AC Input supply ULN = 400 V. PSMPS 70 W UBuff 400 V Cstd 1800 μF C ext = tBuff Umin 1. XVyEV drive is disconnected from the AC Input before an operator may service parts inside the drive to avoid electric shock hazard. without any options. CONDITION The value consider the time to turn-off for a drive supplied at 480Vac +10%. This represents the worst case condition.1 15.1 29.9 6.3 12. (the loads on the switching supply are the regulation card. the keypad and the 24Vdc fans “if mounted”).4 23.4. The drive is disconnected from the line.5 8.XVy-EV User’s Guide .5 4.7 34 41 55 69 81 110 124 161 183 218 282 348 485 580 Time (seconds) 90 150 205 220 60 90 120 300 txv0280 This is the minimum time that must be elapsed when a SIEIDrive . 82 • Chapter 4 Wiring Procedure SIEIDrive .13.1: DC Link Discharge Time XVy-EV 10306 10408 10612 20816 21020 21530 32040 32550 43366 43570 44590 455110 570140 5100180 6125230 7145290 7190350 7230420 8280400 8350460 9330660 9560650 I2N 3.13 Discharge Time of the DC-Link Table 4. with significant transmitted power and marginal dynamic performance. . common reducer transmissions are used. the dynamic performance of the entire system is strongly influenced by the mechanics of the system itself. direct coupling is normally used. according to the application. does not depend on the motor and/or on the electronics.XVy-EV User’s Guide Chapter 5 Sizing Criteria • 83 . With direct coupling. the following considerations are important: . sometimes very strong. On the contrary. motor overheating may occur. in applications where the load changes according to a faster cycle. therefore. . The use of a reduction ratio in the transmission reduces. apart from the time set by the system limit accelerations. but on a mechanical design which is not suitable for the required performance. as it is not possible to stabilize the electronics to a period less than 3 times the ring time of the system mechanical oscillations. the required torque is often equal to the sum of the motor and load inertial torques. that is the optimum economical choice.Refer the system inertia and loads back to the motor axis. In mandrel applications. it increases the motor side.Calculate the acceleration cycle and the cycle of the relative inertial torques. the load inertia influence.Chapter 5 .the degree of precision depends on the sensor and not on the motor . The drive and motor are capable of much higher bandwidth than the mechanics. In this case. After choosing the motor and the transmission.the response speed depends on the transmission rigidity (mechanical passband) . In such applications.the system audible noise.Trace a cycle speed/time diagram. remembering that the reaching of a precise position or speed value requires. SIEIDrive . The choice of the mechanical transmission must be carried out. In case of axis applications. a settling period equal to 3 times the period of the system passband. In such conditions.Sizing Criteria Because of the high performance obtained by the drive/brushless motor set. on the other. where the system dynamic performance is fundamental. In particular. In case of applications whose speed and load are constant or variable for periods longer than the motor time constant. it is necessary to check the application. do the following: . . it is sufficient to check that the maximum load is within the capacity limits stated for the motor and the drive. but. on one side. which may not be due to a too-small motor. therefore. the system dynamics are influenced by the shaft torsional rigidity and by the relative resonance frequency.the passband controlling the drive depends on the mechanics.the motor noise is due to continuous acceleration and braking. . - State the cycle torque/time diagram by adding the inertial torques to the loads. the cycle effective torque is given by: Ceff = - C12 t1 + C22 t2 + … + Cn2 tn t1 + t2 + … + tn Calculate. . C2. which is obtained using the following formula. Calculate the maximum duration period of the cycle maximum torque. . calculate the motor temperature increase.. 5. eff is within the area of the motor continuous operating range.. given by the relation: ΔTmax = where: Ln Tn n L0 = = = = 65 Ln ω (C ) L + ( ω ) L T eff n 2 eff n 2 n 0 motor rated losses motor rated torque motor rated speed motor rated losses in ωn 84 • Chapter 5 Sizing Criteria SIEIDrive .. Ipk = where: Cpk = Kt = 2 Cpk Kt cycle peak torque motor torque constant Check of the thermal sizing Check first that the point Ceff . and the motor demagnetization current. with the same formula. Cn. t2. tn. Calculate the torque required with the cycle maximum speed.XVy-EV User’s Guide . Calculate the cycle maximum torque.1 Motor Check The motor check phases are: check of the peak torque thermal Sizing electrical Sizing Check of the demagnetization current Such control is performed by comparing directly the maximum value of the peak current. The motor and the electronic have to be checked on the basis of the obtained data. If the cycle is made up of n duration segments t1. and of their corresponding torques C1. the average quadratic speed. Calculate the cycle average torque.. In particular. Calculate from the torque/time diagram the cycle effective torque. The following relation must be satisfied: Vmax = where: Emin Ke ωpk Rw Cpk Kt PN Lw = = = = = = = = (K w e pk + Rw Cpk Kt ) + (K 2 Cpk PN wpk Lw 2 t ) 2 £Emin minimum voltage supplied by the drive motor voltage constant cycle maximum speed motor terminal to terminal resistance cycle maximum torque motor torque constant motor pole number motor terminal to terminal inductance If such condition is not satisfied.If the maximum temperature is higher than the motor maximum. the drive must have a rated current higher than Imax. it is necessary to choose a motor with a winding suitable for a higher speed. from where the needed energy is derived. remember that the drive maximum current must be compared to Imax only if the relative time is lower than 2 seconds.XVy-EV User’s Guide Chapter 5 Sizing Criteria • 85 . the voltage required by the motor is lower or equal to that supplied by the drive with the minimum expected power supply voltage. it is necessary to check that at maximum speed. if not. Check of the electric sizing In this case.2 Check of the Drive Size The drive size is chosen according to the torque to be supplied to the motor with a specific winding. 5. The peak and average currents required by the drive are provided by: Imax = Cpk Kt Imed = Cave Kt Cpk Cave Kt where: = cycle maximum torque = cycle average torque = motor torque constant The drive must be in a position to develop continuous and peak currents higher than the calculated values. in this case a higher current will be needed. SIEIDrive . a bigger motor is needed. 55 = 9.5 = 550 ms The acceleration (and deceleration) is: a = Vmax / Tacc = 5 / 0.091/ (0.091 m/s2 Assuming that the motor weight is about 20 kilos.300 = 1. The cutter must.2.04/2)2 = 0. keep such speed for 300 ms (cutting time Tt). The cutter weighs 80 kilos plus the motor weight.3 Application Example: Flying Cut Consider a continuous belt moving cutter.545 rad/s2 Inertia: J = Mtot x (Dp/2)2 = 100 x (0.091 N The total semi-cycle time is: Tsc = 2 x Tacc + Tst + Tt = 2 x 0.04 kgm2 The pinion inertia is given by: Jp = (Dp/2)4 x hp x x = 5. The pinion dimensions are: diameter Dp = 40 mm length hp = 30 mm The speed. get synchronized with the belt speed.150 + 0.375 m The average speed during the acceleration is: Vmed = Vmax / 2 = 5 / 2 = 2. As the mechanical transmission system is rather complex.25) / 2 = 1.550 + 0.5. brake and return to the rest position.XVy-EV User’s Guide . The belt speed is 5 m/s.04/2) = 454.806 x 10-5 Kgm2 86 • Chapter 5 Sizing Criteria SIEIDrive . with a command. increase its speed till reaching the belt. acceleration and inertia brought to the motor axis are: Speed: max = Vmax / (Dp/2) = 5 / (0.55 s The transmission is carried out via a pinion and a rack. the required inertial power is: F = a x (Mcarr + Mmot) = 9. The total stroke of the cutter carriage is 5 m.375 / 2.5 m/s The acceleration and deceleration times are: Tacc = Sacc / Vmed = 1.04/2) = 250 rad/s Acceleration: ma = a / (Dp/2) = 9.25 m The carriage will run across the remaining space during its acceleration and deceleration phase.091 x (80 + 20) = 909. If these two spaces are equal: Sacc = Sdec = (Stot . it is necessary to provide a speed stabilization time Tst with transients to about 150 ms. The cutting space with a constant speed is given by: St = Vt x (Tt + Tst) = 5 x (300 x 10-3 + 150 x 10-3) = 2.St) / 2 = (5 . The cutter is mounted on a carriage. 0017 = 0.8 Nm.806 x 10-5 + 0. The total inertia is: Jtot = J + Jp + 0. Check now a SBM75.8 Arms Imed = Cmed / Kt = 9.95 = 19.383 Nm while the effective torque is 17.073 Nm.98 Nm The average (continuative) and effective torques are therefore.545 x 0.where  is the density of the material forming the pinion (steel). The motor is therefore suitable for the application with a high margin.04 + 5. supposing null the torque at constant speed: Cmed = Cmax x Tacc x 2 / Tsc = 14.0017 = 0. Given the torque constant Kt = 1.30. considering that its nominal torque at nominal speed is 18. the maximum torque (overload) required to the motor is: Cmax = ma x Jtot / 0.50. the average and maximum current absorbed by the motor are: Imax = Cmax / Kt = 12. the obtained average torque is 14.0417 kgm2 Assuming a pinion efficiency equal to 0.XVy-EV User’s Guide Chapter 5 Sizing Criteria • 87 .0417 / 0.3 motor with an inertia of 0.09 Arms The drive size to be used with the present application is therefore XVy-EV 21020. Repeating the operations for a SBM77.95 = 454.3 motor with an inertia of 0.95.30. SIEIDrive .832 Nm As the cycle effective torque is higher than the motor rated torque at nominal speed.179 Nm Ceff = Cmax x (2 x Tacc / Tsc)1/2 = 16.0017 kgm2.0023 kgm2. a motor of a bigger size must be chosen. 4 Customer Service For customer service. After these steps.When ordering spare parts do not only state the drive type but also the drive serial number.Maintenance 6. 88 • Chapter 6 Maintenance SIEIDrive . .1 Care The drives of the XVy series must be installed according to the relevant installation regulations. observe the following points: . Before commissioning these drives. They should not be cleaned with a wet or moist cloth.2 Service The screws of all terminals on the drive should be re-tightened two weeks after initial commissioning. If the drives have been stored for more than three years. If you carry out a repair on your own. 6.3 Repairs Repairs of the drive should only be carried out by qualified personnel (suggested by the manufacturer). 6. They do not require any particular maintenance.XVy-EV User’s Guide . please refer to your Gefran office. It is also useful to state the type of the regulation card and the system software version. This should be repeated each year.When changing the cards ensure that the positions of switches and jumpers are observed! 6. the capacitance of the intermediate circuit capacitors may have been impaired.Chapter 6 . To this purpose apply an input voltage without applying any load on the output. The power supply must be switched off before cleaning. the drive is ready to be installed without limits. it is advisable to supply power to the drives for at least two hours in order to regain the capacitor original ratings. the configurator allows downloading the firmware in order to create some personalized applications using the MDPlc development environment.Check the connections with the motor U.exe. it’s necessary to use the configurator GF-eXpress. if the measured voltage is not in the indicated range.1 PC Configurator The configurator GF-eXpress is a program supplied together with the product. To perform the correct parameter settings. in GF-eXpress folder).Check the input connection 24Vdc (if present) . carry out the following verifications: .Line voltage (max permissible voltage 480Vac + 10%) . L3 . it’s possible now to power the drive. GF-eXpress configurator 1) Install the GF-eXpress application from the attached CD-rom (setup. therefore user is able to start up the drive control and run the motor immediately (when used a motor series SBM with encoder sin. in XVyBasic folder). 7. L2.1 Connection with the PC The drive is delivered from the factory with a standard configuration in the speed mode. 2) Install the Catalog application from the attached CD-rom (setup.Check the I/O connections . 480-650Vdc for input voltage 400Vac.Chapter 7 . Connect the drive to your PC using the serial communication as suggested in the manual.Check all the drive and motor ground connections After having checked as shown above. 432-528 for input voltage 480Vac.XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 89 .cos at 2048 p/r).Voltage of the intermediate circuit DC bus (270-350 for input voltage 230Vac.Check the connections with the line L1.exe.2. Its installation requires a PC with MS Windows ® ME/XP/VISTA or Windows NT®4/2000 system. 3) From Windows Start / Programs / GEFRAN menu run the GF-eXpress command to start the configurator.Settings and Commissioning 7. The configurator communicates with the drive using the Slink-3 protocol.Check the breaking resistance connection (if present) . with minimum 8 Mb RAM. SIEIDrive . then check: . V. W . The input and output state is already programmed as in the following example. check the line voltage) 7. Together with the drive parameterization.2 Commissioning Before powering up the drive.Check the connections between the encoder and XE connector . check that the termination resistance switch is on the 120 ohm position. 4) Select DRIVES 5) Select XVy Servodrive or XVyA 90 • Chapter 7 Settings and Commissioning SIEIDrive .XVy-EV User’s Guide . 6) At this point there are 2 options: Wizard: A guided procedure for easy setup of the drive: windows will open from which the basic setup of the drive. the programme recognises the size of the drive and the firmware version.37 Basic”) and the size of the drive must be selected manually. the motor. a window “Manual” is displayed to modify the connection settings.If the PC is connected to the drive via the serial link. SIEIDrive .XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 91 . e.g. Alternatively. when the parameter file (the Basic firmware versions installed will be displayed. “V. it is possible to continue by deselecting “ON LINE MODE”. Otherwise. the control method and feedback.4. the loop current. Full Scale Speed It’s now possible to enable the drive and rotate the motor in the function of the inputs configuration and setup.Parameters For expert users. 92 • Chapter 7 Settings and Commissioning SIEIDrive . Drive size IPA 20000. 7. As an example three types of configurations are described. XE Enc ppr IPA 20012.2. XE Enc Supply IPA 20003.XVy-EV User’s Guide .2 Essential Parameters Set up The essential parameters to check before starting the motor are: MENU MONITOR DRIVE CONFIG MOTOR DATA ENCODER PARAM SPEED PARAMETER IPA 20053. a list is displayed of all parameters resident in the drive: the data are subdivided into several windows and into Windows-type tree-structure menus. XE Enc Type IPA 20011. Drive Max Curr IPA 20002. Motor poles IPA 20010. 23. default setting: “[3] Speed Reached” Programmable digital output. Default setting:"[3] Speed Ref 1".4mA @ 30V COM-DI Digital input 0 Digital input 1 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V OUT +24V IN 0 V (+24V) +30V/40mA Analog output 0 Analog output 1 0V +10V .3 Speed Mode Configuration Example Strip X1 Function Programmable/configurable analog differential input. Reference point: terminal 2. default setting: “[3] External fault” Programmable digital input. Signal: terminal 3. contact “Drive OK” N. default setting: “[1] Actual speed” ±10V/5mA Programmable analog output. 22. contact “Drive OK” common contact 250 V AC 1A AC11 SIEIDrive . 7. 9. default setting: “[11] End Run Forward” Programmable digital input. Reference point: terminal 16 +24V DC supply input Reference point for +24 VDC I/O Programmable analog output. 0V or open: inverter disabled.. Default setting: none Reference point for Digital inputs. default setting: “[8] Ramp In = 0”” Programmable digital input. default setting: “[4] Start / Stop” Programmable digital input.25mA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Analog input 0 Analog input 1 Programmable/configurable analog differential input.4mA @ 30V +10V/10mA -10V/10mA +22. Drive enable. max ±10V 0. default setting: “Speed 0 thr” +24V DC supply output. default setting: “[10] End Run Reverse” Programmable digital input..XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 93 .10V.10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 2 Digital output 3 Digital output 4 Digital output 5 Relay-NO Relay-NC Relay-COM +30V/40mA Programmable digital output.C. reference point: terminal 19 Reference voltage . terminals 6.2mA @ 15V 5mA @ 24V 6. default setting: “[9] Reverse” Supply input for digital outputs Reference point for digital outputs.7. reference point: terminal 19 Programmable digital input. default setting: “[2] Motor current” Analog output reference point Reference voltage +10V. Reference point: terminal 4. +15…+30V: Drive enabled Programmable digital input. default setting: none “Drive OK” N.2. terminals: 12 and 13 Programmable digital output. 24 and 25. default setting: “[2] Drive reset” +30V 3. 8 .O. Signal: terminal 1.28V 120mA@24V +30V/40mA +10V/10mA -10V +30V 3.2mA @ 15V 5mA @ 24V 6. default setting: “[11] End Run Forward” Programmable digital input. contact “Drive OK” common contact 250 V AC 1A AC11 94 • Chapter 7 Settings and Commissioning SIEIDrive .2mA @ 15V 5mA @ 24V 6.10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 2 Digital output 3 Digital output 4 Digital output 5 Relay-NO Relay-NC Relay-COM ±10V/5mA Analog output reference point +10V/10mA -10V/10mA Programmable digital input. default setting: none +30V/25mA “Drive OK” N. Reference point: terminal 16 +24V DC supply input Reference point for +24 VDC I/O +24 V ±10% 120mA +24 V ±10% 1A - Analog output 0 Programmable analog output. default setting: “[2] Motor current” 0V +10V . 7. default setting: “Speed 0 thr” +24V OUT +24V IN 0 V (+24V) +24V DC supply output. default setting: “[10] End Run Reverse” Programmable digital input. configured as: “[1009] POS Start Pos” Programmable digital input.4mA @ 30V Programmable digital output. +15…+30V: Drive enabled Programmable digital input. 8 . default setting: “[3] External fault” Programmable digital input. terminals: 12 and 13 +30V/40mA +30V 3. 9. terminals 6. contact “Drive OK” N.2mA @ 15V 5mA @ 24V 6. Drive enable.4mA @ 30V Digital output 0 Programmable digital output.20mA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Analog input 0 Analog input 1 Not configured COM-DI Digital input 0 Digital input 1 Digital input 2 Digital input 3 Supply-DO COM-DO Reference point for Digital inputs. 22.O. configured as: “[1015] POS 0 Sensor” Supply input for digital outputs Reference point for digital outputs. default setting: “[2] Drive reset” +30V 3. 24 and 25. default setting: “[1] Actual speed” Analog output 1 Programmable analog output.4 Position Mode Configuration Example Strip X1 Function Not configured max ±10V 0. configured as: “[1002] POS Pos reached” +30V/25mA Digital output 1 Programmable digital output.2.7. configured as: “[1007] POS 0 Search” Programmable digital input.XVy-EV User’s Guide . 0V or open: inverter disabled. 23.C. 2.2mA @ 15V 5mA @ 24V 6.10V Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital output 2 Digital output 3 Digital output 4 Digital output 5 Relay-NO Relay-NC Relay-COM ±10V/5mA Analog output reference point +10V/10mA -10V/10mA Programmable digital input. 22. configured as: “[2001] ELS Ratio Sel B0” Programmable digital input. configured as: “[4] Start / Stop” Programmable digital input.2mA @ 15V 5mA @ 24V 6.4mA @ 30V +30V/25mA Analog output 0 Programmable analog output. not configured +24V DC supply output.XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 95 . default setting: “[3] External fault” Programmable digital input. 8 .O. default setting: “[1] Actual speed” Analog output 1 Programmable analog output. configured as: “[2003] ELS Inc Ratio” Programmable digital input. terminals: 12 and 13 Programmable digital output. configured as: “[2002] ELS Ratio Sel B1” Supply input for digital outputs Reference point for digital outputs. configured as: “[2004] ELS Dec Ratio” Programmable digital input. 24 and 25. terminals 6.4mA @ 30V Programmable digital output. 9.7. Reference point: terminal 16 +24V DC supply input Reference point for +24 VDC I/O +24 V ±10% 120mA +24 V ±10% 1A +30V/40mA +30V 3. 7. default setting: none +30V/25mA “Drive OK” N.C. 23. contact “Drive OK” common contact 250 V AC 1A AC11 SIEIDrive . default setting: “[2] Drive reset” +30V 3. default setting: “[2] Motor current” 0V +10V . 0V or open: inverter disabled.20mA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Analog input 0 Analog input 1 Not configured COM-DI Digital input 0 Digital input 1 Digital input 2 Digital input 3 Supply-DO COM-DO Digital output 0 Digital output 1 +24V OUT +24V IN 0 V (+24V) Reference point for Digital inputs. +15…+30V: Drive enabled Programmable digital input. configured as: “Speed 0 thr” Programmable digital output.5 Electrical Line Shaft Mode Configuration Example Strip X1 Function Not configured max ±10V 0. Drive enable. contact “Drive OK” N. The firmware upgrade can be performed making reference to the following points.gfe). 10.the parameter file.XX to version 4. It is therefore not possible to load firmware earlier than version 4. Perform the “Download Firmware” command via the "Service" menu. Reset the drive with the configurator reset command or disable and afterwards enable again the 24 VDC voltage.3 Download Firmware The standard firmware loaded at the factory is an application called Basic. Reset the drive using the configurator "reset" command or switch the device off and then on again.the firmware (XVyBasicVX_XX.XX The XVy-EV drive is not compatible with 3. 7. 9. Now the firmware download is active. 2.XVy-EV User’s Guide . 96 • Chapter 7 Settings and Commissioning SIEIDrive . Open the GF-eXpress configurator.X onto this drive.7. (*) In case it is not found. The XVyBasicVX_XX. search the . the user's tool for the drive tuning (XVyBasicVX_XX. 1. Select the used drive in the displayed window and enable the communication with the drive via the "Target/connect" menu. The firmware update is now over. 3 Open the parameter file of the old firmware version 4 Read all parameters through the “Read All Target Parameter” command in the “Parameter” menu 5.gfe file with the Browser button (the file is default located in the path \GEFRAN\CATALOG\ Drives\SERVODRIVE\XVy\XVy-x-xy). 6. the user can reload the parameters via the “Write All Target Parameter” command in the “Parameter” menu or he can tune the drive Upgrade from version 3.sre) . the display shows the quantity of data (Byte number) which are being transferred.X versions. choose this file and perform the Load command. Perform the "Load default Target values" command via the "Parameters" menu and answer yes to the question "Save them into target ?". 8. The Basic Application Firmware consists of 2 files: . 11.sre file of the last version is default (*) stated. After a few seconds the motor starts rotating and stops in a fixed position after performing a revolution. with the value referring to the motor rated current (from the TUNING / PHASING menu) 6. 8.4. Before performing the automatic electric phasing. If using an encoder without zero pulse the procedure cannot be completed and will be aborted as unsuccessful. Procedure If this procedure is performed using the software of the GF-eXpress configurator. make sure that it rotates in a clockwise direction (from the motor shaft side). The simple electric and automatic phasing sequence of the XVy drive allows to store the phasing angle in a drive parameter (electric phasing) in order to constantly supply precise information about the phase of the position/speed motor feedback (encoder/resolver). the following sequence has to be respected: 1.5 "Encoder Control/Drive Connections" paragraph ) during the motor rotation. Check that the drive performs a current ramp till the limit set in the Mot Nominal Curr (IPA 20001) parameter while the motor rotor carries out a small movement 11. on the contrary.Gefran. Perform the command "Drive Reset" or switch the drive off and on again 9. Start the software of the GF-eXpress configurator (from the Windows Start menu) 2. The counting of the encoder/revolver must increase (see 4. Save the parameters (Command "Save parameters” (*) ). If the motor is SIEI-marked. with NON. Note! The following procedure must be performed using incremental encoders with zero pulse. Enable the drive using the Digital 0 Input 10.7. so that it can move freely 5. Such procedure has to be performed every time the XVy drive is used with NON-Gefran motors. it is advisable to check the encoder/resolver connections (as described in the paragraph "Encoder Control/Drive Connections") and the power/U-V-W phase sequence connections.4 Automatic Electric Phasing Procedure for Encoder/ Resolver The knowledge of the right phase relation between the current and the motor magnetic angle is fundamental for the drive performances. Display in MONITOR Window the Enc Mech Offset (IPA 20058) parameter and the Enc Offset (IPA 20057) parameter (from the Service>Phasing menu) 4. Set the Application Sel (IPA 18140) parameter as "Phasing" (from the TUNING menu) 7. Set the Mot Nominal Curr (IPA 20001) parameter.XVy-EV User’s Guide Chapter 7 Settings and Commissioning • 97 . check the wiring on the power cables between the drive and the motor. Remove any mechanical coupling from the motor shaft. are factory-phased (mechanical phasing). All Gefran motors.motors. Enable the "MONITOR Window" function 3. SIEIDrive . If the motor has been supplied by Gefran. The current value of the phasing angle is stored in the Enc Mech Offset (IPA 20058) parameter 14. 13. Save the parameters (command "Save parameters” (*)) 17. (*) it is possible to run “Save parameters” in the following ways: . Check the value of the Enc Mech Offset (IPA 20058) parameter keeping the drive enabled.from the Parameters menu . Perform the command "Save parametesr” (*) by keeping the drive enabled. Set the Application Sel (IPA 18140) parameter (from the SERVICE menu) with the original selection "Basic" (factory default) or "Plc" 16.“Save parameters into target” key 98 • Chapter 7 Settings and Commissioning SIEIDrive .12.XVy-EV User’s Guide . Use the command "Drive Reset" or switch the drive off and on again At the end of this electric and automatic phasing procedure.Ctrl+Alt+S . the parameter value has to be near the zero (values in the range of ±4 degrees are allowed) because Gefran motors are factory phased (mechanically) with the XVy-EV Gefran drives. it is suggested to configure the XVy drive with a speed mode and to check the motor functioning procedure. Disable the drive 15. Keypad Operation 8. This LED is ON when the drive is power supplied and enabled.control operation.1. LIMIT (yellow) This LED is ON if the drive reaches its torque limit.. This LED is ON when the drive is running with positive torque. to disable Help Navigation Escape Home Enter Shift The keypad consists of an LCD display with two lines of 16 characters each. Enable I-O Keys IPA20022 = Keys Enabled) . when this user option is selected (DRIVE CONFIG / KEYPAD. diagnostics. SIEIDrive . During normal operation this LED will be OFF.XVy-EV User’s Guide Chapter 8 Keypad Operation • 99 .1 LED The LEDs meaning can be summarized as follows: . This LED starts to blink in case of a fault condition of the drive. voltage.Torque (yellow) + Torque (yellow) Alarm (red) • Enable (green) This LED is ON when the drive is running with negative torque. seven LEDs and nine function keys.1 Keypad Description . ZeroSpeed (yellow) This LED is ON when the motor speed is zero.Torque +Torque Alarm Enable ZeroSpeed Limit Drive Controls Jog Speed + Alarm Press 2 sec. etc.display speed. It is used to: . during operation .set parameters 8.Chapter 8 . During normal operation this LED will be OFF. keys (Motor potentiometer) can be activated only when the speed and current are displayed (press Left in the Monitor menu) 100 • Chapter 8 Keypad Operation SIEIDrive . it is used to Escape out of numeric edit or selection with no change]. The Enable I-O Keys parameter must be enabled (DRIVE CONFIG / KEYPAD menu). or digit values in numeric editing. return to Monitor menu from any main menu level]. Alarm. The “plus” key increases the reference velocity for the Motor pot.XVy-EV User’s Guide .2 The “minus” key reduces the reference velocity for the Motor pot. when the Shift key is pressed first]. picklists in selectors. The Jog and + / . holding it for 2 seconds disables the drive. picklists in selectors. or digit values in numeric editing. to acknowledge alarms in the Alarm list mode. See paragraph 8. Control Keys Text reference Function START STOP + [Jog] (*) [Rotation control] (*) Down [Help] START key commands the drive to Enable and Start The Enable I-O Keys parameter must be enabled (DRIVE CONFIG / KEYPAD menu) STOP key commands to Stop and disable. Jog.2 Function Keys The keypad has nine function keys with different modes defined by the state of the keypad itself.8. [After pressing Shift key. Active alarms and Alarms pending for acknowledge can be browsed with Up / Down arrows keys.2 Used to scroll down menu items in menu navigation. to enter Selections or numeric values after editing. function [Jog. See paragraph 8. Home) Home Enter Enter [Home] Shift Shift [.. to return to normal mode from alarm list or Help modes. Shift button enables the keypad second functions (Rotation control. When the Shift key is pressed.] (*) Secondary function. it changes the motor direction of rotation (in Jog mode and in Motor pot function)]. Used to go up one level in menu navigation. an item-specific information menu is entered when applicable] Jog + Help Alarm Up [Alarm] Used to scroll up menu items in menu navigation. [After pressing Shift key. function [Control of direction of rotation. Press Shift to activate these functions. Escape Left [Escape] Used to go down one level in menu navigation.. to issue commands. Left arrow key returns to normal mode. to scroll digits in numeric edit mode. [After pressing Shift key. [Home second function. Escape. Help.1. the Alarm list display mode is entered. 3 Display .g. After few seconds the display will shown the speed in rpm. Note! When three asterisks (***) are displayed this means the number of characters to be displayed exceeds the field length. The first MONITOR menu is displayed. the load in Arms will be displayed.0 Arms 1) XVyBasic MONITOR Enter <- 1) 2) MONITOR Start Status <- 1) 2) MONITOR Ramp Output Enter <- 2) 3) Ramp Output 0. Press Enter to go to the MONITOR menu and display the Start Status parameter. MONITOR menu).g. This field shows the selection or true value of the parameter selected.0 rpm 1) Menu 2) Parameter 3)Select / Value This field shows the index for the menu currently displayed (E. Pressing LEFT causes the display to show the parameter mode. 4.1. Pressing Down displays the next parameter Ramp Output Pressing Enter displays the value of the parameter. the display shown: drive configuration (Basic or Plc) and the firmware version. SIEIDrive . Start Status = IPA 20500).Using keypad XVyBasic Sync FW V. By pressing the Down or Up key.XVy-EV User’s Guide Chapter 8 Keypad Operation • 101 .0 rpm 2) 3) Out Current 0.8.XX 2) 3) At drive power on. In that case you can display the information using a PC and the GF-eXpress configuration software. This field shows the name of the parameter currently displayed (E. Flt Motor Speed 0. Figure 8.XVy-EV User’s Guide . press Enter. Drive config KEYPAD X3 <<- Press Down three times to select the Mains Voltage parameter.3. <- Enter POSITION <POS THR CONFIG <- Enter Enter Enter XVyBasic POSITION <- POSITION POS PRESET 0 <<- POS PRESET 0 <ANALOG POS REF <- Full list of menus and parameters in chapter 10. MAIN VOLTAGE 380 Vrms Enter Press Enter 102 • Chapter 8 Keypad Operation SIEIDrive . Drive config Mains Voltage Enter <- Press Enter Mains Voltage 460/480 Vrms Enter Press Enter. Mains Voltage 460/480 Vrms Set the voltage values using the Up or Down keys.1...1: Navigation within the menus Main Menu 2nd Level Menu 3rd Level Menu XVyBasic MONITOR Enter <- XVyBasic SAVE / LOAD PAR <- Enter POSITION POSITION FUNC <<- Enter XVyBasic .. the cursor will start blinking.2 Keypad operations Changing parameters XVyBasic DRIVE CONFIG Enter <- 1 2 3 4 5 6 From the DRIVE CONFIG menu. 8... press Enter. Loading default parameters The default parameters relate to the size of the drive. SAVE / LOAD PAR <Load Default Par Enter Press Enter SAVE / LOAD PAR Load now SAVE / LOAD PAR Load done. SAVE / LOAD PAR Save now SAVE / LOAD PAR Save done. the display will show Save Parameters again. the display will show the Load Default Par parameter again.Saving parameters XVyBasic SAVE / LOAD PAR <Enter 1 2 From the SAVE / LOAD PAR menu. SAVE / LOAD PAR <Load Default Par 4 5 The display will show the confirmation messages “Load now” and “Load done. SAVE / LOAD PAR <Save parameters Press the Down key to select the Load Default Par parameter. press Enter. XVyBasic SAVE / LOAD PAR <Enter 1 2 3 From the SAVE / LOAD PAR menu.XVy-EV User’s Guide Chapter 8 Keypad Operation • 103 .” When the operation is complete.3.1. SAVE / LOAD PAR <Save Parameters 3 4 The display will show the confirmation messages “Save now” and “Save done. which is not modified by this operation. SIEIDrive . Reset alarms and drives See section 8.” When the operation is complete. SAVE / LOAD PAR <Save parameters Enter Press Enter again to save the settings. 2. then press Left The speed display is enabled (or press Down or Up.0 rpm Shift Flt Motor Speed <-150. to enable current display) Flt Motor Speed <0. Table 8. Press Shift to enable the secondary functions. Flt Motor Speed <-150. to move back to Status Index 2 "Parameter Display" press any function key of the keypad.g.0 rpm 4 Motor potentiometer function Enable the drive (+ 24Vdc at terminal 6) and send the Start command (+ 24Vdc at terminal 6). XVyBasic MONITOR <- 1 2 3 From the MONITOR menu.1 Errors If the operator will try to give to a parameter a wrong value (e. then press Left Flt Motor Speed <0. press Start to activate.2. outside the Min/Max permitted values). press Start to activate. to enable current display). the display will show an "E" followed by the numeric code of the error (e.0 rpm Flt Motor Speed <150.XVy-EV User’s Guide . E 04).g.Jog function The drive should be enabled: + 24Vdc at terminal 6.0 rpm The speed display is enabled (or press Down or Up.0 rpm 4 Press Shift to enable the secondary functions. then press – to revert the direction rotation and press + to decrease the reference speed 8. XVyBasic MONITOR <- 1 2 3 From the MONITOR menu.1.0 rpm Shift Press + to increase the reference speed. then press + to pass to the set reference Press – to invert the rotation direction and press + to decrease the reference speed and pass to the set reference Flt Motor Speed <150.1: Errors list Code E 01 Code E 02 Code E 03 Code E 04 Code E 05 Code E 06 Code E 07 Code E 08 Code E 09 Error code 1 Error code 2 Error code 3 Error code 4 Error code 5 Error code 6 Error code 7 Error code 8 Error code 9 Parameter does not exist System error Type does not exist Read-only parameter Write enabled only when drive is enabled Value outside min value Value outside max value System error Value exceed limit 104 • Chapter 8 Keypad Operation SIEIDrive . 13h Enc Fbk Loss record number alarm code time in which the alarm occurred short description of alarm Use the UP and DOWN keys to display all the alarms that have been saved. To display the alarm log.1). The type of alarm and the moment the alarm occurred. press the Shift + UP keys (if the drive is not in an alarm condition) or select HIS from the list of alarms (par 8.15h Enc Fbk Loss RA (Reset Alarm) RD (Reset Drive) HIS (Alarm log) alarm code time in which the alarm occurred short description of alarm To reset the alarm.8. then select RD with the Up or Down keys and press Enter.1 Alarms (Failure register) In the event of an alarm. can be displayed using the keypad. Displaying the alarm log The drive can save up to 25 alarms. while the keypad displays an alarm code and description.Torque +Torque Alarm Enable ZeroSpeed Limit . To reset the drive.13h 24 A18 100.13h SIEIDrive .1: Led Status and Keypad .3. 24 A18 Enc Fbk Loss 100.Torque +Torque Alarm Enable ZeroSpeed Limit A 01 IGBT desaturat Enter A 01 RD RA A18 115. starting from the most recent. Figure 8.XVy-EV User’s Guide Chapter 8 Keypad Operation • 105 .3 Alarms and Errors Handling 8. 24 A00 No Alarm 0. the “Alarm” LED flashes red.3. enable the drive and press Enter. select HIS with the UP or DOWN keys and press Enter.00h 24 A18 No Description 100. To enter the alarm log display mode. then select RA with the Up or Down keys and press Enter.3. No alarm is displayed on the keypad if the item in the list is empty. enable the drive and press Enter. No Description is displayed on the keypad if the string describing the alarm has not been defined. In that case reference should be made to the alarm code. 3. The working cycle is too high for the drive size.2 Alarm description (A 01) IGBT desaturat Short circuit on the motor winding or on the power bridge. The cause could be an incorrect setting of the current regulator gains as compared (A 03) Overvoltage Overvoltage on the intermediate circuit. The braking resistance is not connected in the right way or it is open. (A 05) Parameter Error Parameters setting error.1: Alarms list Description on the keypad Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 IGBT desaturat Overcurrent Overvoltage Heatsink Ot Parameter Error Current Fbk Loss Motor Overtemp CPU Overtime Enable key error Inval Flash Par Flash Fault Brake Overpower Reg Pwr Failure System Warning Main Loss Enc Fbk Loss Enc Sim Fault Undervoltage Intake Air Ot Regulation Ot Module Overtemp Load Default Err Reset Required FieldBus Failure Enable Seq Error Fast Link Error Position Error Drive Overload External Fault PLC Application Description on GF-eXpress Short circuit on the power section (*) Drive overcurrent protection (*) DC Link overvoltage (*) Drive thermal protection (*) Wrong setting of a parameter Current feedback sensor failure (*) Motor thermal protection (*) CPU overtime error Wrong enabling key for PLC and/or DeviceNet Invalid parameters value Bad flash device Overpower of the braking resistor (*) Failure on the regulation power supply (*) System Warning Main power loss (*) Encoder feedback loss (*) Encoder simulation alarm (*) Undervoltage of the DC Link section (*) Intake air temperature too high (*) Overtemperature of the regulation board (*) Overtemperature of the IGBT module (*) Load default error (*) Reset required after a parameter modification Field bus communication failure (*) Wrong drive enabling sequence (*) Fast link communication failure (*) Position error greater then the limit (*) Drive overload alarm (*) External Fault (*) PLC application not running (*) alarms resettable with an ALARM RESET command 8.1. (A 04) Heatsink Ot Drive thermal protection. The threshold is 950V.3.Table 8. (A 02) Overcurrent Overcurrent protection intervention.XVy-EV User’s Guide . The IPAs are showed on IPA 1 Par Set (IPA 24110) and IPA 2 Par Set (IPA 24111) 106 • Chapter 8 Keypad Operation SIEIDrive . (A 18) Enc Fbk Loss Error detected in encoder feedback.9 VAC 406. (A 07) Motor Overtemp Intervention of the motor thermal protection. (A 11) Inval Flash Par The parameter value is not recognized. according to the following table. Firmware error. Main supply 230 VAC 380 VAC 400 VAC 415 VAC 440 VAC 460 VAC DC-bus threshold undervoltage 225. Check the encoder simulation parameters. Overtemperature on the motor winding or PTC sensor not connected to the drive.XVy-EV User’s Guide Chapter 8 Keypad Operation • 107 .(A 06) Current Fbk Loss Current feedback sensor failure.6 VAC 431.. The resistance temperature is calculated by an algorithm of the drive. Failure cause is specified in parameter Enc Warning Case (IPA 20016.3 VAC 391. (A 14) Reg Pwr Failure ±15V internal power supply of regulation board R-XVy is not working. (A 09) Enable key error Wrong enabling key for Plc and/or DeviceNet. Wait 30 seconds and give the Drive Reset command. (A 15) System warning Generic error: Check parameter 18393 for the alarm cause (A 16) Main Loss Power supply failure The Powerloss function is activated. (A 13) Brake Overpower The internal braking resistance is too warm because of a too high working cycle. (A 08) CPU Overtime On CPU Err Al Cause (IPA 18143) the cause is specified.7 VAC SIEIDrive . (A 12) Flash Fault Alarm on a non preset flash.4 VAC 372. ALARMS menu) (A 19) Encoder Simulat Encoder simulation alarm.1 VAC 450. (A 20) Undervoltage Always active when the drive is enabled. Do the Parameter Saving and Drive Reset commands with the correct parameters. The threshold level depends on the power supply level selected in parameter Mains Voltage (IPA 20050). (A 25) Reset Required There has been a modification of one or more parameters that requires a DRIVE RESET to be active. It occurs in slave drives when the fast link serial communication is physically interrupted.XVy-EV User’s Guide . Active only if the application selected is MDPlc. (A 28) Fast Link Error Fast Link communication alarm. Drive overload duration is too high. Check drive sizing using the overload table specified in section 2. (A 29) Position Error Position error alarm. 108 • Chapter 8 Keypad Operation SIEIDrive . but +24V is not available on this terminal.(A 21) Intake Air Ot Temperature of intake air too high. detected by sensors on Power stage. It happens in the position slaves and with the electric shaft mode when the error is higher than the Max Pos Error (IPA 18123) parameter. A digital input has been programmed as an external alarm. (A 26) FieldBus Failure Bus communication not present (A 27) Enable Seq Error Sequence error alarm When the drive is power supplied (after the drive reset). detected by TAC sensor. (A 23) Module Overtemp IGBT module Overtemperature. it is active if the digital input 0 is high. (A 30) Drive Overload Drive overload alarm.3 IxT Algorythm (A 31) External Fault External alarm present. (A 22) Regulation Ot Overtemperature of regulation board.3. detected by sensor on reg board. (A 32) PLC Application MDPlc application not loaded. This might take a few minutes. Select Continue or Reset using the UP and DOWN keys. set the Save Param Pad parameter (SAVE / LOAD PAR menu) to Save Now. Load Param Pad Load now Load Param ???? Pad The drive runs a series of checks to verify the compatibility of the parameters.XVy-EV User’s Guide Chapter 8 Keypad Operation • 109 . To start the procedure. first set the Load Param Pad parameter (SAVE / LOAD PAR menu) to Load Now.2.8. Press Enter on Continue to continue.4. Press ESC to quit and complete the procedure.4 Saving drive parameters on the keypad The drive parameters can be saved on the keypad for subsequent configuration of another drive. . The following messages are displayed if an error occurs: N: 20009 Continue E: 04 ? An error occurred when writing the parameter to the drive (See list of errors 8. Save Param Pad Load now Save Param ???? Pad The Keypad Error message is displayed in case of an error in the keypad memory Keypad error Reset required At this stage the only option is to reset the drive by pressing 8.1. Press Enter on Reset to reset the drive. This might take a few minutes.1).1 Configuring the drive using parameters saved on the keypad To configure the drive using the parameters saved on the keypad. The IPA and parameter value are saved on the keypad. Code Mismatch Continue ? SIEIDrive . Size mismatch Continue ? The drive is not the same size as that used to save the parameters. This could result in incompatibility of parameters. The drive will be reset to make all the new parameters operational. This could result in incompatibility of parameters. Select Continue or Reset using the UP and DOWN keys. The Keypad Error message is displayed in case of an error in the keypad memory Keypad error Reset required At this stage the only option is to reset the drive by pressing 110 • Chapter 8 Keypad Operation SIEIDrive . Press Enter on n if you do not wish to save the parameters to the drive. Press Enter on Continue to continue.XVy-EV User’s Guide . Press Enter on Continue to continue. the following message is displayed at the end of the procedure: Errors loading… Save Otherwise the following message is displayed Successfully Save y Select y or n using the UP and DOWN keys. If any errors have occurred. Press Enter on y to save the parameters to the drive. Press Enter on Reset to reset the drive.The software running on the drive is not the same as that used to save the parameters. Press Enter on Reset to reset the drive. Select Continue or Reset using the UP and DOWN keys. Block Diagrams Neg Speed Limit Speed Draw Ratio Analog output 0V A M Pot mode Multi Speed Conf MPOT M Pot Output 1 2 3 19 An Out 0 Scale An Out Value x An Out 0 Write An Out 1 Scale GND Multi Speed Index + 21AO0 1 7 Motor Pot Up Lim Motor Pot Lo Lim Motor Pot Acc&Dec Motor Pot Init Motor Pot Mode An Out 0 Offset An Out 1 Value 23 x An Out 1 Write + AO1 An Out 1 Offset Analog input 0 An Inp 0 Offset An Inp 0 D_B Neg An Inp 0 Value Speed Thr 20 Speed Thr Actual Speed Speed Thr Speed 0 Thr Speed Reference Speed Thr Offset Speed Reached 21 +0V Analog input 1 An Inp 1 Read Disable An In 1 An Inp 1 D_B Pos An Inp 1 Scale 3 INPUTS .Digital input 6 7 8 9 22 23 24 25 Digital output 12 13 26 27 28 29 14 16 COM NO NC I/O Parameter Parameter Internal variable DI0 DI1 DI2 DI3 DI4 DI5 DI6 DI7 DO0 DO1 DO2 DO3 DO4 DO5 +24V 0V Drive OK Drive Fault Disable drive FAILURE Torque Jog CW Reference = 0 Ramp In = 0 Ramp Output Torque Speed Limit Reverse End Run Rev End Run Forward Jog CCW Ramp Enable Jog Enable Multi Ramp Index Multi Ramp Conf Ramp Sel Bit 0 Jog Speed Limit Ramp Sel Bit 1 + x 2 Speed Sel Bit 0 Speed Sel Bit 1 Speed Sel Bit 2 1 Motor Pot En Motor Pot Up Motor Pot Down Motor Pot Reset Motor Pot Memo Motor Pot Dir An Inp 0 Read Disable An In 0 An Inp 0 D_B Pos An Inp 0 Scale Jog Reference SIEIDrive . REFERENCES +10V + x 4 Chapter 9 Block Diagram • 111 An Inp 1 Offset An Inp 1 D_B Neg An Inp 1 Value Motor Current Torque Thr Torque Thr State 0 V ref 19 -10V .XVy-EV User’s Guide Alarm Status Drive Reset Alarm Reset Pos Speed Limit Speed Reference Speed Ref 1(rpm) X * (-1) Act Speed Ratio Motor Pot Mode A Motor Pot Output Speed Ref 2 (rpm) Chapter 9 . OUTPUTS . park transf. S3 Speed Gain Trq Speed Limit 2 1 1 S1 + - 2 Position I Gain Acc Gain Line Shaft Position Gain ELS Inc Ratio ELS Ratio Sel B0 ELS Ratio Sel B1 ELS Dec Ratio 112 • Chapter 9 Block Diagram Iq* + Xn Encoder Absolute position Actual position register SENSOR CONNECTOR XE Control Mode Speed Torque Position Speed Reference Position Ref 3 S2 Target speed position register Els Ref X n. Inv.n position command from electric gear Els delta time Ratio Actual Ratio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BPTC Z+ ZA+ A0V ENC B+ +5V ENC SIN+/H1 SIN-/H2 COS+/H3 COSEXC+ EXC- B- Els Ratio Index Els Ratio / Slip 3 2 Ratio 1 0 Z+ ZA+ A0V ENC B+ +5V ENC SENSOR CONNECTOR XER Switch Els Position Speed Control Mode Torque 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SIEIDrive .Torque Ref 1 Torque Ref 2 Max Pos Torque Max Neg Torque 2 1 FastLink Trq Ref S4 FL Trq Scale 1 2 + Ki Pwm Id* Ki Park transf Id Iq High speed deflux algorithm Motor flux angle Mod.XVy-EV User’s Guide 1 3 1 1 1 2 1 1 S1 S2 S3 S4 1 1 1 1 Torque Limited 2 1 1 2 True Torque Mode 1 1 2 1 REGULATION DIAGRAM . Stop By Ramp Pos Stop Dec Speed limit Torque limit Pos Start Pos Pos Zero Found Destination Pos & Pos Return Speed Pos Return Acc Pos Return Dec Pos Return POS RETURN CONF Pos Return Pos Zero Found Pos Start Pos CW Home Pos Acc Home Max Spd 2 1 CW Home Pos Dec ZERO FOUND CONF POSITION BLOCK Home Spd Ref 2 1 PosThr Offset & Index encoder Pos 0 Sensor Zero Sensor En Pos Exceeded Actual Position Abs Pos Thr Pos Thr Close 1 Pos Thr Close 2 Pos 0 Search CCW Home Pos Acc CCW Home Pos Dec SIEIDrive - XVy-EV User’s Guide Pos Torque 1 2 3 Positioning Mode Unit x Rev Unit x Rev Div Max Prs Abs Val Position reference Min Prs Abs Val Pos acc/dec (8..63) & Pos speed (8..63) Max Preset Value Position set Pos Preset 0 Pos Preset 1 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Preset 6 Pos Preset 7 Ramp set Pos acc/dec 0 Pos acc/dec 1 Pos acc/dec 2 Pos acc/dec 3 Pos acc/dec 4 Pos acc/dec 5 Pos acc/dec 6 Speed set Pos speed 0 Pos speed 1 Pos speed 2 Pos speed 3 Pos speed 4 Pos speed 5 Pos speed 6 Pos speed 7 Multi Pos En Pos Preset (8..63) Pos index Position Zero Pos 0 Search Pos Reached Pos Exceeded Home Fine Spd Pos Abs Thr Pos Thr Close 1 Pos Thr Close 2 Chapter 9 Block Diagram • 113 114 • Chapter 9 Block Diagram SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions 10.1 Parameters menu SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 115 116 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide 10.2 Legend Access: mode parameter R = read only W = write Z = write only when drive disabled * = the enabling function, related to the parameter, is active only after the drive reset command Format : parameter format Int = integer signed 16 bits Enum = integer signed 16 bits Word = integer unsigned 16 bits Long = integer signed 32 bits Dword = integer unsigned 32 bits Float = floating point Bool = 1 bit Parameter number Parameter name Parameter unit of measure (u.u.=user unit) IPA Description [Unit] Format Access Default Min Max Parameter default value S = function datum of the drive size Parameter minimum value S = function datum of the drive size Parameter maximum value S = function datum of the drive size ENCODER PARAM PARAM ENC EXP BOARD 20038 ABS1 Enc Div Rev [--] Dword R/Z/* 8192 Number of division per rev of the abs tracks of the abs enc. n.1 Main menu 2nd level 1 8192 NOTA! - FLT_M = 3.4028234738 - In order to perform the Save Parameters, the Reset Drive command, or Load Default Par (*) via the serial line, the number of the parameter index to be brought to a high logic level Save Parameters Reset Drive Load Default Par (*) = = = 18011 18010 18017 the default command does not change the parameters: - Mains Voltage, IPA 20050 - Application Sel, IPA 18140 SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 117 3 Parameters Description and Functions The standard factory-loaded XVy-EV configuration (IPA 18140=0=Basic in SERVICE menu) allows torque. 100% equal to the motor rated torque. This parameter is the resulting of the value between Torque and speed. Act Neg Trq Lim [%] Float R Present torque lower limit. Speed Reference [rpm] Float R Speed reference. Base Torque Act Torque Eng [Nm] Float R Torque applied to motor in Nm. Act Pos Trq Lim [%] Float R Present torque upper limit.10. Torque Current [Arms] Float R Present value of the quadrature axis current (filtered). 118 • Chapter 10 . Motor Speed [rpm] Float R Speed of motor. 100% is the rated torque of the IPA 18800 motor. 100% equal to the motor rated torque. Ramp Output [rpm] Float R Parameter reading the speed reference on the output of the ramp block. Act Torque [%] Float R Torque applied to motor (filtered). Act Out Power [kW] Float R Value of the motor Output Power. Speed 1 2 time(msec/rpm) 3 1 CW Acc Ramp 2 CW Dec Ramp 4 3 CCW Acc Ramp 4 CCW Dec Ramp 18735 18805 18806 18807 18732 18746 18739 18776 18748 18749 18777 18782 Out Current [Arms] Float R Motor present current (filtered). Ramp Reference [rpm] Float R Ramp reference. position and electric shaft regulation. The parameter list sorted as shown on the keyboard and GF-eXpress (default setting) is given below.Parameters and Functions SIEIDrive .XVy-EV User’s Guide . The drive is supplied defaulted to run as a speed regulator. The four regulation modes are correlated one with the other and are enabled via a suitable bit parameter which can be addressed as a digital input. IPA Description [Unit] Format Access Default Min Max MONITOR 20500 21212 Start Status [--] Word R Condition of the drive start command. speed. Flux Current [Arms] Float R Present value of the direct axis current (filtered). Act Out Curr Lim [Arms] Float R Present value of the maximum current to be supplied by the drive. Out Frequency [Hz] Float R Output frequency DC Link Voltage [V] Float R DC link voltage (filtered). the drive automatically limits the output current to the drive rated current. 0 = Load Done 1 = Load Now Load Param PAD [--] Bool R/W 0 Loading values of parameters on the keypad to the drive memory. All unsaved modifications will be lost when the drive is powered down. Act Neg Spd Lim [rpm] Float R Negative speed limit. Output Voltage [Vrms] Float R Output voltage Heatsink Temp [°C] Int R Drive heatsink temperature Intake Air Temp [°C] Int R Input air temperature. 0 = Save Done 1 = Save Now Load Default Par [--] Bool R/W 0 0 1 The factory setting parameters will be restored.Parameters and Functions • 119 .XVy-EV User’s Guide Chapter 10 . but are not automatically stored in memory. Save Parameters [--] Bool R/W 0 0 1 Any changes to the value of the parameters have an immediate effect on the running of the drive. If the temperature probe is not present. Reg Card Temp [°C] Int R Regulation card temperature FW Version [--] Float R Firmware version Drive Ovld Fact [%] Word R Drive overload factor: when it reaches 100%. the parameter always shows an invalid value.IPA Description [Unit] Format Access Default Min Max 18754 18755 18756 18757 18742 18736 18772 18710 18711 18712 20022 19607 Act Pos Spd Lim [rpm] Float R Positive speed limit. The Save Parameters instruction is used to store the value of the current parameters to the permanent store. Enc Postition [mech. 0 = Load Done 1 = Load Now Save Param PAD [--] Bool R/W 0 The values of the drive parameters are saved in the keypad memory. The maximum peak current can be supplied again by reducing the drive supplied current to a value lower than the rated one till the I2T integral value returns to zero. deg] Float R Speed/pos feedback position. 0 = Save Done 1 = Save Now 0 1 SAVE / LOAD PAR SAVE LO PAR 18011 18017 18070 18071 0 1 SIEIDrive . Enc Revolution [--] Float R Revolutions number for speed/pos feedback. .. The drive is factory programmed for speed control.. Mains Voltage [--] Enum R/Z/* 1 Main voltage supply 0=230 Vrms 1=400 Vrms 2=460/480 Vrms 3=380 Vrms 4=415 Vrms 5=440 Vrms Environment Temp [--] Enum R/Z/* 0 Environment temperature 0=0.. see IPA 20023 1=Torque 2=Speed 0 5 0 1 6 3 0 0 IPA18703 1 120 • Chapter 10 .. EWH/EWHR) PWM Frequency [--] Enum R/W/* 0 Switching frequency: 0=Default (see table 2.3. electric axis and position control (as for the selection see the next table). 20050 20051 20052 20000 18778 29004 The different working modes can be selected also via a suitably programmed digital input.140°F) (only for XVy-EV .XVy-EV User’s Guide ..IPA Description [Unit] Format Access Default Min Max 18010 Reset Drive Resets the drive 0 = Reset Now 1 = Drive Working [--] Bool R/W 0 0 1 DRIVE CONFIG 20023 Control Mode [--] Enum R/W/* 2 1 Configuration of the drive working mode.104°F) 1=0.40°C (32°. See Digital inputs for further details. It is possible to select four different modes: torque.15 (*) 0 0 0 0 0 txv9030 8 (*) These bits have to be set at 0 to be compatible with future versions. 1=Torque 2=Speed 4=Position 8=Els Function configuration Drive disabled Torque control Speed control Position control Electric line shaft control Bit0 0 1 0 0 0 Bit1 0 0 1 0 0 Bit2 0 0 0 1 0 Bit3 0 0 0 0 1 Bit4 0 0 0 0 0 Bit5.1) 2= 2 kHz 4= 4 kHz 8= 8 kHz Drive Max Curr [Arms] Float R/Z IP18701 Setting the drive maximum current output to the motor.. speed..60°C (32°.122°F) 2=0..50°C (32°. Overload Control [--] Enum R/Z* 0 Choice of algorithm to calculate drive overload: 0 = IxT 1 = I2xT Act Ctrl Mode [--] Enum R It states the selected functioning method.Parameters and Functions SIEIDrive .2.. The GF-eXpress configurator has to be configured as the drive in the Communication Settings menu. 1 stop bit) E. whose default setting is 38400. 1 stop bit) N. Max Ovld Curr [Arms] Maximum overload current. It is possible to select one of the following values: 1200. 1 stop bit) O.XVy-EV User’s Guide Chapter 10 .8. 0= Drive Ready 1 = Drive OK 1 KEYPAD 20021 Enable I-O Keys [--] Enables Start (I) and Stop (O) keys on keypad. 8 data bit. Serial Line Conf [--] Enum R/W/* 32785 32785 32927 Configuration of the drive RS485 serial port.8. GF-eXpress window.3.1). Attention ! The change of the serial port configuration becomes active only after the drive Reset has been performed. 2 stop bit) E. see IPA 20025.2=32793 (No parity.1) Drv Nom Curr 0Hz [Arms] Nominal current of drive at 0Hz (see table 2.8.8. possible communication problems between the drive and the GF-eXpress configurator. 19200.2. If this value is modified. it is advisable to mark the drive with a label. 2 stop bit) O.8. Example: : 10306 = XVy-EV 10306 Float Float Float Enum R R R R/Z/* 0 0 [Unit] Format Access Default Min Max 18701 18704 18703 18222 Drive Nom Curr [Arms] Drive nominal current (see I2N table 2. will be avoided. Relay Config [—] Relay Configuration.IPA Description 20053 4=Position 8=Els Note! When the IPA 18104 Application Sel parameter = “Autotuning” or “Phasing” or “Test generator”.2=36927 (Odd parity.2=32831 (Even parity. 38400. 0= Disabled 1 = Enabled Bool 0 0 1 COMM CONFIG 18031 18032 Drive Serial Add [--] Word R/W/* 0 0 127 Drive address when it is connected via the RS485 serial line.1=32785 (NO parity. It is possible to select one of the following values: N. in this way. 2 stop bit) The factory configuration is 32785 (N. it is advisable to mark the drive with a label if you change the default to highlight the different serial line configuration.8. 8 data bit.8. 20024 20025 SIEIDrive . 8 data bit. 9600. In this case too.3. 8 data bit. 2400.1=36919 (Odd parity. 4800. the Act Ctrl Mode parameter is displayed as “* * *” Drive size [--] Enum R Display size of drive. 8 data bit. 8 data bit.1).Parameters and Functions • 121 .3. as for the previous parameter.1=32823 (Even parity. Serial Prot Type [--] Word R/Z/* 0 0 1 Configuration of the communication protocol of the drive 485 serial line: 0=Slink 1= Modbus Serial Baud Rate [--] Enum R/W/* 38400 1200 38400 Configuration of the communication speed (baudrate) of the drive serial line. Parameters and Functions SIEIDrive . So when those temperature are selected bit Drv Th Overtemp becomes Low after 5 sec the power supply is off.Temp Hys value. 0 The fast link is disabled 1 Fast link enable (the drive is the master) >1 Fast link enable (the drive is the slave). 0=Off 1=Heatsink Temp 2=Intake Air Temp 3=Reg Card Temp Int Int Enum R/W R/W R/W 45 2 0 1 1 0 100 IPA20073 3 122 • Chapter 10 . 20073 20074 20075 Temp Thr [°C] Temperature intervention threshold.XVy-EV User’s Guide . it is necessary to configure this parameter. DrvOvertemp becomes low when the temperature is higher or equal to Temp Th . On sizes >18. Such delay avoids any conflict on the serial line when the RS485 interface is not set for an automatic TX / RX switching. Heatsink Temp and Intake Air Temp are not updated when the power supply is switched off. Using fast link in electrical line shaft configuration. FstLnk Slow Sync [--] Bool R/Z/* 0 0 1 Enabling synchronisation of slow task 0=OFF 1=ON TEMP CONTROL This function is a simple hysteresis comparator: bit Drv Th Overtemp (output of function) becomes high when the source temperature is lower or equal to the setted threshold value. Temp Hys [°C] Fall in Hysteresis Drv Temp Src [--] Selection of source temperature.IPA Description [Unit] Format Access Default Min Max 20026 18110 18124 Serial Del Time [msec] Word R/W 0 0 800 Setting of the minimum delay between the drive reception of the last byte and the beginning of its response. Fast Link Addr [--] Word R/Z/* 0 0 8 Enable of fast link on the XT-IN and XT-OUT connectors.5kW. Note: the motor pole number has to be lower than the pulse number/revolution of the motor mounted encoder. also at power-on. but digital encoders with hall channels are also supported.5 0. 100 PARAM ENCODER PARAM The signals coming from the position sensors are mainly used in two points of the brushless motor control system: First is to modulate the three stator currents in order to obtain an equivalent field presenting a 90 electric degree phase shift as compared to the field of the permanent magnets. Mot Nominal Curr [Arms] Float R/Z/* IPA18701 0.XVy-EV User’s Guide Chapter 10 . [H] Float R/Z/* 0.005 10-6 20 MOTOR OVERLOAD 20080 20081 Mot Ovld Control [--] Enum R/Z/* 0 0 1 Enabled the motor protection to excessive overload. Mot Thermal Prot [--] Enum R/Z/* 1 0 1 Thermal protection type of servomotors. The feedback of the speed/space loop requires the maximum possible resolution. the loop quality defines the limit of the control loop.IPA Description [Unit] Format Access Default Min Max MOT DA MOTOR DATA 20002 Motor Poles [--] Word R/Z/* 8 2 8 Settings of motor poles.1 100 Motor torque constant. Mot Ovld Time [sec] Float R/Z 5 0. These two functions are usually performed by two different position sensors. or a Sin-Cos type encoder. SIEIDrive . We recommend for best accuracy and smoothness. The features of the two sensors are. the current limit is reduced to the value Mot Nominal Curr (IPA 20001) till when Mot Ovld Factor goes back to zero. Note: The Mot Ovld Time and Mot Ovld Factor parameters are only used to calculate the I2t motor limit. One determines commutation. it is necessary to know. It is calculated with the following formula: Mot Ovld Factor (%) = ò ( Imot . different. for this purpose resolvers are normally used.Mot Nominal Curr ) . Mot Ovld Curr [A] Float R/Z IPA18701 0 IPA18703 Motor overload current. When 100% has been reached.1 2097 Motor overload time. the other. Mot Ovld Time 2 2 . in fact.Mot Nominal Curr ) .0 IPA18703 Motor nominal current Mot Nom K Torque [Nm/Arms] Float R/Z 1. dt 2 2 20082 20083 ( Mot Ovld Curr . speed and sinewave accuracy. 0=PTC 1=NC Contact 2=KTY84 20001 18360 20004 MOTOR PARAM 18313 LKG Inductance Motor inductance.Parameters and Functions • 123 . the resolver. which are usually integrated into one single encoder. Mot Ovld Factor [%] Int R Motor overload factor. the absolute position in the electrical revolution. 0 = Disabled 1= Enabled When this is selected the Mot Ovld Time and Mot Ovld Factor parameters must be set. In order to keep the stator field in the desired position. They are also used for feedback of the speed/space loop. 2V and the maximum 6. In the XVy-EV drives (as default configuration). after the initialization phasing procedure (executed at power on and alarm reset). Warning! During this procedure the motor shaft performs a limited number of rotations.2V 1=5. 20011 20012 20020 124 • Chapter 10 . 0=5. 20007 Mot Enc Source [--] Enum R/Z/* 1 1 4 Motor encoder source 1=XE Main Encoder 2=Riservato 3=EXP ABS1 Encoder 4=Reserved 20008 Spd-Pos Enc Sour [--] Enum R/Z/* 0 0 4 Speed/pos encoder source 0=Same as motor 1=XE Main Encode 2=XER/EXP Aux Enc 3=EXP ABS1 Encoder 4=Reserved 20010 XE Enc Type [--] Enum R/Z/* 1 0 10 Software setting of the encoder type used for the feedback. 0=Off 1=Sincos 5 tracks Absolute sine and cosine once per revolution. I zero slot or index Hall sensors. incremental and sinusoidal A and B. so that the level of the motor feedback signals is suitable to be read by the drive.1V 3=6.6V 2=6. I zero marker or index 2=Dig + Hall 4=Hall Hall sensors 5=Sincos 2 tracks Absolute sine and cosine once per revolution. the field modulation is based on the reading of the sensor with the highest resolution. XE Enc Supply [V] Enum R/Z 0 0 3 It is possible to program the encoder supply level between the minimum 5.IPA Description [Unit] Format Access Default Min Max The XVy-EV drive digitizes the data of the sinewave in a resolver or SinCos encoder to a resolution of 212 (16. incremental digital A-B channel. each time the drive is reset and the enable command is performed. This is necessary to allow so many kinds with so few connectors.5V Resolver Poles [--] Word R/Z/* 0 0 1 Number of poles on resolver. 6=An + Hall 8=Resolver Two pole resolver 9=Only Ana Inc Trk Incremental encoder with analog tracks (*) 10=Only Dig Inc Trk Incremental encoder with digital tracks (*) (*) When using these encoders. 5 sec. the drive executes an internal phasing procedure for approx.Parameters and Functions SIEIDrive . XE Enc ppr [--] Word R/Z/* 2048 1 65535 Number of pulses per revolution of the encoder. to be connected to the XE connector (standard connection). To select the encoder type the XVy-EV drives needs a software parameter setting and also a hardware setting through jumpers. which becomes absolute since the sensor mechanical position is known.384 pulses equivalent).5V value.XVy-EV User’s Guide . The above working mode can be changed through the parameters on SERVICE / ENCODER menu. thus obtaining a high precision level and very good behaviour in conditions of low speed and locked shaft. in order to balance possible voltage drops on a long encoder cable. IPA Description [Unit] Format Access Default Min Max 20036 20037 20019 20078 Aux Enc Type [--] Enum R/Z/* 1 0 2 Auxiliary encoder type: XER connector 0=OFF XER port disabled 1=XER In EXP out XER used for secondary encoder input and encoder output on expansion card.1 encoder supply.1V 3 = 6. type: ABS1 connector. IPA 20012. See XE Enc Supply. 2=XER/EXP Rep/Sim XER and output on expansion used for repeat/simulation of motor encoder.2V 1 = 5. ABS1 Enc ppr [--] Word R/Z/* Number of pulses per rev of the inc tracks (if present) of the abs enc.Parameters and Functions • 125 . n.5V EnDat Del Comp [--] Enum R/W Signal propagation delay compensation on EnDat cable: 0 = No delay comp 1 = 1 us delay comp 2 = 2 us delay comp 0 0 4 20039 20038 20042 20041 4096 8192 512 0 1 1 1 0 4096 131072 65535 3 20043 0 0 2 SIEIDrive .1.2V 1=5. 0=Off 1=On Caution! Phasing must be repeated if this parameter is modified.6V 2=6.1 ABS1 Enc Supply [--] Enum R/W Absolute encoder n. ABS1 Enc Div Rev [--] Dword R/Z/* Number of division per rev of the abs tracks of the abs enc. 0 = Off 1 = EnDat + 2 ana inc 2 = SSI 3 = EnDat 4 = SSI + 2 ana inc 5 = Hiperface ABS1 Enc Revol [--] Word R/Z/* Number of turns that can be distinguished by the ABS encoder No.5V Res Data Inv [°C] Bool R/Z/* 0 0 1 Enables inversion of the resolver SIN channel. 1.XVy-EV User’s Guide Chapter 10 . 0=5. XER/EXP Enc ppr [--] Word R/Z/* 2048 1 65535 Auxiliary encoder pulses per revolution. ENC EXP BOARD 20040 ABS1 Enc Type [--] Enum R/Z First absolute enc. 0 = 5. XER Enc Supply [V] Enum R/W 0 0 3 Auxiliary encoder supply.1V 3=6.6V 2 = 6. 3=XER Out EXP In XER used as encoder repeat output and encoder input on expansion card. n. 33333… .. This implies a kinematic unit that should not be considered for the proper torque (case of absolute encoder) and the calculation of motor speed.IPA Description [Unit] Format Access Default Min Max ENC MOTOR RATIO There are engines on the market that have the device mounted position feedback via toothed belt or other multiplier (see fig. 3 = 1. Can be seen by the following calculation: Considering an 8-pole motor and an encoder that are k = 4:3 = 1.Parameters and Functions SIEIDrive .XVy-EV User’s Guide . k4 = 4 20077 Encoder Ratio Enable [--] Enum R/Z/* 0 0 1 Enables the management of the mounted encoder with the encoder ratio 0 = Disable 1 = Enable 20009 MotPoles/EncRev [--] Word R/Z/* 8 2 IPA20002 This parameter indicates the number of poles of the motor corresponding to a turn encoder.).. Encoder Toothed belt Stator Rotor Figure: Motor with encoder mounted with the kinematic The kinematic relations are handled by the drive and many depend on the number of poles of the motor (Pn) in accordance with the following report: ki = (Pn/2) / i for all values of i ranging from 1 to Pn / 2 Es: pole motor => have managed the following kinematic relations k k1 = 1. k2 = 2.3333. k3 = 1. we obtain the following value: 8 / k = 8 / (4 / 3) = 6 20076* Enc Mot Ratio [:1] Float R Ratio K encoder used monitor (displayed with 5 decimal places) 126 • Chapter 10 . If during the deceleration time a new start command is given. Ramp Enable Jog enable Reference = 0 Speed Pos Lim R amp In=0 Ramp Output Speed Neg Lim The drive behaviour after the Start command depends on the parameter settings: . These parameters are active in the only in the speed control configuration. CW Dec Ramp [ms/krpm] Float R/W 336. this means that the slowest ramp will increase the speed by 1count/125 s every 125 s and this will limit the maximum value of the ramp Chapter 10 .1 0 IPA21111 Setting of the clockwise deceleration time. for a position control application see the specific paragraph. When the motor is stopped. the drive stops with the deceleration ramp time. .IPA Description [Unit] Format Access Default Min Max RAMP The acceleration and deceleration of the speed reference is set by the CW Acc Ramp / CW Dec Ramp parameters for clockwise rotation direction and by CCW Acc Ramp / CCW Dec Ramp for counterclockwise rotation direction. The Jog function does not require the Start command.Parameters and Functions • 127 SIEIDrive . The cycle time of the speed control loop is 125 s and if the parameter Ramp Exp Factor is set to 1.commands are given simultaneously. the drive is torque-enabled. If commanded to stop.1 0 IPA21111 Setting of the clockwise acceleration time. used to increase the maximum value allowed for the ramp parameters. the ramp generator updates the ramp output every 125 s. Set a digital input as Fast/stop.If the ramp circuit is used (Ramp Enable = enable) the motor reaches the desired speed at set ramp rate.If the ramp circuit is not used (Ramp Enable = disable) the motor reaches the desired speed in the shortest possible time limited only by current. the start command has the priority. Ramp Exp Factor [--] Int R/W 1 1 1000 Ramp expansion factor. 21115 Fast Stop Dec [ms/krpm] Float R/W 100 0 IPA21111 Setting of the Fast Stop deceleration time 21116 End Run Dec [ms/krpm] Float R/W 100 0 IPA21111 Setting of the End Run deceleration time 21210 Ramp Enable [--] Enum R/W 1 0 1 Ramp enabling command : 0=Disabled 1=Enabled 21102 21103 21104 21105 21110 CW Acc Ramp [ms/krpm] Float R/W 336. but requires the enable.1 0 IPA21111 Setting of the counterclockwise acceleration time. CCW Dec Ramp [ms/krpm] Float R/W 336. The Fast stop function allows stopping the motor in the shortest possible time in case of emergency regardless of the normal ramps set. CCW Acc Ramp [ms/krpm] Float R/W 336. the drive regains the set speed. In case the Start and Jog+ or Jog.1 0 IPA21111 Setting of the counterclockwise deceleration time. The drive can be disabled by opening the Enable drive command.XVy-EV User’s Guide . CCW). if this parameter is set to a value N higher than 1 this means that the ramp output will be updated every N x 125 s and this will mean that the maximum value of the ramp parameters will be limited to N x 8738 msec/krpm. the Speed Ref 2 parameter is read-only.500 = 1000 rpm Speed Ref 3 [rpm] Dword R/W 0 -IPA20003 IPA20003 Speed Ref 3 may be used instead of Speed Ref 1 e Speed Ref 2 sum by means Speed Ref 3 Sel digital input selection to set speed reference of the control. Pos Speed Lim and Neg Speed Lim parameters are active only in the Speed loop configuration.Parameters and Functions SIEIDrive . Speed Ref 1 = 1500 rpm Speed Ref 2 = 500 rpm Speed Ref = 1500 + 500 = 2000 rpm Example 2: Speed Ref 1 = 1500 Rpm Speed Ref 2 = -500 rpm Speed Ref = 1500 . In case an analog input is set as [3] Speed Ref 1. Setting of the speed reference if no analog input has been set as [3] Speed Ref 1 . In the following table there are some examples about the influence of the Ramp Exp Factor parameter on all the ramp parameters settings: Encoder pulses/rev 2048 2048 2048 1024 512 Ramp Exp Factor 1 4 10 1 2 Max Ramp Rate 8738 msec/krpm 34952 msec/krpm 87355 msec/krpm 4369 msec/krpm 4369 msec/krpm txv9065 21111 Max Ramp Rate Max ramp time [ms/krpm] Float R SPEED The value of the speed reference determines the value of the motor speed. Setting of the speed reference 2 if no analog input has been set as [4] Speed Ref 2. When the ramp is enabled (parameter Ramp Enable = enable). The Speed Ref 1. See the specific paragraph for the Position loop configuration Jog CW Jog CCW Speed Ref 1 (rpm) Speed Ref 3 Sel Reverse Speed Ref (rpm) End Run Reverse Ramp in=0 End Run Forward Speed Pos Lim + * (-1) Jog Ref Speed Ref 2 (rpm) Multi Speed Speed Neg Lim Speed Ref 3 (rpm) 20003 21200 21201 Full Scale Speed [rpm] Float R/Z/* 3000 0 100000 Setting of the analog input full scale value. Speed Ref 2 [rpm] Float R/W 0 -IPA20003 IPA20003 Speed reference 2. The total reference is the result of the sum of the values of Speed Ref 1 and Speed Ref 2. In case an analog input is set as [4] Speed Ref 2.IPA Description [Unit] Format Access Default Min Max parameters to 8738 msec/krpm (with a 2048 ppr encoder).XVy-EV User’s Guide . Speed Ref 2. the speed reference (Speed Ref) follows the time set in the acc and dec parameters (CW . the parameter is read-only. Example 1: 21202 128 • Chapter 10 . Speed Ref 1 [rpm] Float R/W 0 -IPA20003 IPA20003 Speed reference 1. while the sign defines the rotation direction. Speed Thr). Position I Gain [--] Int R/W 0 0 32767 Position integral gain. Speed Gain [--] Int R/W 100 0 32767 Speed proportional gain. suitable for most general purpose applications. If the speed falls under the Speed Thr . Speed Reach Wnd [rpm] Float R/W 10 0 IPA20003 Setting of the window on the speed reference in order to consider the digital output programmed as [4] = Speed Reached enabled.IPA Description [Unit] Format Access Default Min Max 21206 21207 21208 21209 21213 Speed Thr [rpm] Float R/W 10 0 IPA20003 Setting of the threshold value for overspeed.XVy-EV User’s Guide Chapter 10 . 1= x 1 16= x 16 23003 23010 SIEIDrive . Acc Gain [--] Int R/Z/* 3000. Speed Thr Wnd [sec] Float R/W 10 0 100000 Window applied to the Speed Thr IPA 21206 parameter to enable digital output [15] Speed Thr. Speed Zero Thr [rpm] Float R/W 10 0 1000 Zero speed threshold (the test is performed according to the speed filtered at 100ms) Speed Zero Delay [sec] Float R/W 0. Gain Mult Fct [--] Enum R/W 1 1 16 Multiplier factor speed and position gains. When the speed is higher than the value set in this parameter.Parameters and Functions • 129 .1 0 1000 Delay on zero speed signalling Speed Thr Delay [sec] Float R/W 10 0 1000 Setting of the delay for signalling that the motor has reached the speed threshold (IPA 21206 . the digital output programmed as [15] Speed Thr de is set to 0V.0 0 100000 Acceleration proportional gain (speed regulator). Position Gain [--] Int R/W 50 0 32767 Position proportional gain.0 Setting of the maximum speed for motor counterclockwise rotation direction 0 100000 21211 21204 21205 SPD / POS GAIN 18150 18151 23000 23001 23002 Inertia [kg*m2] Float R/W 0 0 Motor inertia used for inertial compensation. Pos Speed Limit [rpm] Float R/W 3000. Inertia Filter [msec] Float R/W 1 0 200 Filter time constant on inertial compensation.Speed Thr Wnd value. they can be set much higher if machine construction allows it and the application requires it. the digital output set as [4] = Speed Thr goes to +24V. These are conservative. Neg Speed Limit [rpm] Float R/W 3000.0 0 100000 Setting of the maximum speed for motor clockwise rotation direction. a digital output set with [15] Speed Thr de is brought to +24V. See parameter Speed Thr Delay IPA 21213. relatively low performance settings. Such threshold is stated as an absolute value. When the motor speed is higher than the value set in Speed Thr + Speed Thr Wnd for a time higher than the value of this parameter. the motor can 130 • Chapter 10 . The components of the forward and quadrature current are calculated directly from the phase currents read by the AD converters. the torque reference must be set to Torque Ref 1.. Torque Ref 1 Torque Ref 2 FastLink Trq Ref 2 1 Max Pos Torque Max Neg Torque S4 FL Trq Scale 2 1 + S3 - Iq* Ki Control Mode + Id* Ki - Speed Gain Torque Position Line Shaft Trq Speed Limit Position I Gain Acc Gain Position Gain Speed High speed deflux algorithm 2 1 Switch 1 Speed 1 1 1 1 Control Mode Torque Torque Limited 2 1 1 2 True Torque Mode 1 1 2 1 Els 1 3 1 1 Position 1 2 1 1 Speed Reference S1 Position Ref Els Ref 2 3 S2 Target speed position register + - S1 S2 S3 S4 22000 22001 22002 Torque Ref 1 [%] Float R/W 0 -IPA22012 IPA22012 Setting of the torque reference if no analog input has been programmed as [1] Torque Ref 1. Torque Ref 2 [%] Float R/W 0 -IPA22012 IPA22012 Setting of the torque reference if no analog input has been programmed as [2] Torque Ref 2. The Torque Ref 1 and Torque Ref 2 parameters are active if the Torque loop functioning mode is selected. the torque reference must be set to Torque Ref 1. In this case the motor supplies a torque equal to the sum of Torque Ref 1 (IPA 22000) and Torque Ref 2 (IPA 22001). The torque control functioning mode is active if the Control Mode parameter (IPA 20023) is set as "Torque". To allow the motor to run. therefore no control is carried out. the parameter is read-only.IPA Description [Unit] Format Access Default Min Max ORQ TORQUE The current loop is the fastest control section and has a sampling frequency of 16 kHz. The quadrature component contributes to the rotating torque while the forward component is (usually) set at zero.Parameters and Functions SIEIDrive . the parameter is read-only. limits and thresholds) are stated as a percentage. Base Torque parameter (IPA 18800). All torque values (references. the motor will reach the maximum speed set in 22009 Trq Speed Limit. The total reference is the sum of the values of Torque Ref 1 and Torque Ref 2.XVy-EV User’s Guide . 100% is equal to the motor rated torque. both components are controlled in order to obtain the desired behaviour. Torque Ref 2 or through FastLink Trq Ref. Torque Ref 2 or through FastLink Trq Ref. To allow the motor to run. Torque Mode [--] Enum R/W 0 0 1 0 = Torque Limited The speed reference can be ignored. 1 = True Torque Mode The speed regulator is disabled. There are two current loops working simultaneously. If an analog input has been programmed as [2] Torque Ref 2. The torque limits (22004 Max Pos Torque and 22005 Max Neg Torque) are operative as well. If an analog input has been programmed as [1] Torque Ref 1. If the torque reference is high enough. If the torque reference is high enough. the torque reference coming from a drive master through Fast Link is added to Torque Ref 1 and Torque ref 2. Torque Thr Delay [sec] Float R/W 10 0 10 Setting of the delay time signaling that the level of the torque supplied by the motor has been reached. Trq Lim Config [--] Enum R/W 0 0 2 0 = Torque lim symm Symmetric torque limits. the digital output programmed as [16] Torque Thr Del is brought to +24V. the digital output set as [6] Torque Thr is brought to +24V. FastLink Trq En [--] Bool R/W/Z 0 0 1 If this function is enabled.IPA Description [Unit] Format Access Default Min Max 22003 22004 22005 22007 22009 22010 22011 22013 reach a speed higher than the rated one.Parameters and Functions • 131 . If the scale which has been set is negative. FastLink Trq Ref [%] Float R Torque reference reading from Fast Link (after the scaling). This function is normally used to perform a Helper configuration between two motors. Max Neg Torque = negative torque limit. Base Torque [Nm] Float R Rated torque of motor matching rated current of motor. Max Pos Torque = positive torque limit. The limit is considered equal to the value of the Max Pos Torque parameter (IPA 22004). stated as a percentage of the motor rated torque. 22515 22012 22014 18800 SIEIDrive . Max Torque [%] Float R Maximum torque value supplied by the drive-motor system equal to Mot Nom K Torque * Drive Max Curr. The torque limits (22004 Max Pos Torque and 22005 Max Neg Torque) are operative as well. When Torque Mode is selected as Torque Limited. Max Neg Torque [%] Float R/W 100 0 IPA22012 Setting of the negative torque limit. When the torque is higher than the value set in this parameter. the torque direction is inverted compared to the master. Torque Thr [Arms] Float R/W 0 0 IPA20000 Setting of the torque threshold defined with an absolute value. 1=Torque lim +/Asymmetric torque limits. Trq Speed Limit [rpm] Float R/W 3000 0 10000 Speed limit during the torque control. When the motor supplied torque is higher than that set in Torque Thr for a period longer than the value of this parameter. 2 = Torque lim motor/brake Different torque limits for the functioning of the drive as a motor (Max Pos Torque) and as a brake (Max Neg Torque) Max Pos Torque [%] Float R/W 100 0 IPA22012 Setting of the positive torque limit.XVy-EV User’s Guide Chapter 10 . FL Trq Scale [--] Float R/W 1 -10 +10 Torque reference scale coming from the drive master. Torque Reduction [%] Float R/W 50 0 IPA22012 Active torque limit when the digital input set as Torque reduction is brought to +24V. 18321 User Vlt Max Lim [Vrms] Int R/W 400 Setting flux reduction starting voltage. without taking special precautions. 18345 Curr Gain Calc [--] Enum R/W 0 0 1 0=Off : no calculation 1=Calc from motor parameter the current gains are recalculated according to the motor parameters (LKG Inductance . For information on how to reach speeds greater than 150% of nominal. Out Volt Filter [msec] Float R/W 10 Filter time constant on output voltage. contact the Gefran technical support centre. Caution ! If the drive is disabled when the motor is running above nominal speed. 10 612 18322 18325 18326 18328 1 0 0 500 32767 32767 DIGITAL DIGITAL INPUTS The regulation board of the XVy-EV drive has 8 digital inputs.Parameters and Functions SIEIDrive . and avoid damage to the drive. For advanced applications such values have to be optimized according to the motor used.XVy-EV User’s Guide . 132 • Chapter 10 . Normally it is possible to run the motor up to 150% of nominal speed. In order to reach higher speeds. 18320 Max Deflux Curr [Arms] Float R/Z/* 0 IPA20000 0 Maximum flux reduction current of motor (only negative values are permitted). to brake the load at least up to the motor’s nominal speed. generated by the permanent magnets. This rule can be applied also to the virtual inputs. FLUX Flux reduction function In the brushless motor. Volt Prop Gain [--] Int R/W 500 Proportional gain on voltage loop Volt Int Gain [--] Int R/W 500 Integral gain on voltage loop Out Vlt Max Lim [Vrms] Int R Monitor flux reduction starting voltage. Seven digital inputs can be programmed to different functions and they are located on the I/O terminal block on R-XVy regulation board. 18100 Curr Prop Gain [--] Int R/W S 0 32767 Current loop proportional gain. 18102 Curr Deriv Gain [--] Int R/W 0 0 32767 Current loop derivative gain. Only values below mains voltage have an effect. IPA 18313). the flux is constant. The gains of this loop are factory set with appropriate values for the motors and specifically for the motor purchased if this drive was bought with a motor. It is used to reduce the maximum working voltage of the motor. It is possible to implement the flux reduction function by passing a negative current through the stator windings with vectors oriented to reduce overall flow. The changes in the digital input setting can be enabled by resetting the drive. 18101 Curr Integr Gain [--] Int R/W S 0 32767 Current loop integral gain. Refreshing time = 8ms.IPA Description [Unit] Format Access Default Min Max CURRENT GAINS The current loop is controlled by a PID regulator. an independent braking unit must be used. the voltage on the motor could reach values that might damage the drive. the maximum control bandwidth is 5 kHz. The possibilities listed as “Choices for the digital input association” are available. speed and electric axis configuration this command must be programmed on a digital input. When this command is active. In the torque. before a jog function can be performed. With a start following a Fast/stop command it is necessary to set the Enable digital input with a low logic status and the Fast/stop digital input with a high logic status. motor x rotation in a clockwise (CW) direction. it replaces the present reference with a zero reference and uses the set ramp. It only allows. 6 = Jog CW Jog forward function command. Momentary input active on the edge. 12 = Reference = 0 Speed reference = 0. It is active only in the speed and position configuration. 10 = End Run Reverse Clockwise end run command. If its value is high. It is active only in the speed and position configuration.XVy-EV User’s Guide Chapter 10 . External alarm signal. The Fast/stop command is used in emergency and dangerous situations in order to stop the drive in the shortest possible time. the motor goes to the set speed. braking the motor with no decel ramp in the shortest possible time till zero speed has been reached. 9 = Reverse Inverse command. It is active only in the torque and speed configurations (with 22002 = Torque limited). the speed reference and the ramp times are those set in the Jog parameter menu. regardless of reference. It is active on the leading edge. motor rotation in a counterclockwise (CCW) direction. It only allows. When this input is active. 7 = Jog CCW Jog reverse function command. The Fast/stop command must be present before the drive enabling command (Enable command). When the command is active. it changes the motor rotation direction by following the set ramp. regardless of reference. it starts the drive operation. this input must be high to run in any mode. Default = Start/stop Choices for the digital input association: 0 = OFF Unconfigured input. Active on the drop wire leading edge. 14 = Torque loop It selects the Torque Regulation mode. if a speed reference is present. It is active only in the speed and position configurations. This digital zero keeps the motor rotor stopped in a torque condition. the drive will stop. it is possible to cause a braking stop with the shortest possible time. When this input is active (high logic status). It is active only in the speed and position configurations. By disabling the voltage on this input while the drive is active. it stops the speed command instantly. 15 = Speed loop Select the mode to Speed regulation. 16 = Position loop Select the mode to Position regulation. It is active on the 5 = Fast/stop leading edge. Emergency stop command. The drive must be disabled for a reset to occur. 11 = End Run Forward Counterclockwise end run command. without any offset drift typical for A/D (analog/digital) converters.IPA Description [Unit] Format Access Default Min Max 20101 Digital Input 1 [--] Enum R/W 4 0 2007 Choice of the parameters to be set on Digital Input 1. If a digital input is set as Fast/stop. if its value is low. When this input is active. 8 = Ramp in = 0 Ramp In = 0 command. 2 = Drive reset Alarm Reset command. 3 = External fault 4 = Start/stop Start /stop command. the speed reference and the ramp times are those set in the Jog parameter menu. SIEIDrive . It is active on the leading edge. It is active only in the speed configuration.Parameters and Functions • 133 . . Ramp sel bit 0. 21 = Speed sel Bit 0 Multi-speed function.. the torque limits are set by the Torque Reduction parameter.Parameters and Functions SIEIDrive . Command Disabling analog input 1 (both the value and the offset are disabled). 24 = Ramp sel Bit 0 Multi-ramp function. waiting for the Motor Pot Up command 36 = Motor Pot Dir Speed reference polarity Low state = positive reference.. Low state = After Start. it functions in parallel with the physical one (Digital Input 0). the motor stops. In other words. 25 = Ramp sel Bit 1 Multi-ramp function. 37 = POS Event Bit 0 38 = POS Event Bit 1 39 = POS Event Bit 2 40 = POS Event Bit 3 41 = POS Event Bit 4 42 = POS Event Bit 5 43 = POS Event Bit 6 44 = POS Event Bit 7 45 = Multi Pos Enable Enabling multi-position controller 134 • Chapter 10 . 29 = Torque Reduct It enables the torque reduction.1 The number given by the binary combinations of these digital inputs selects the ramp times set in the parameters of the Multiramp function.IPA Description [Unit] Format Access Default Min Max 17 = ELS loop 18 = Disable An Inp 0 19 = Disable An Inp 1 It selects the Electric Axis mode. The number given of the binary combination of the digital inputs set as POS Event Bit 0. the motor accelerates automatically up to the speed setting. With a high logic level analog input 0 is disabled. With a high logic level the analog input 1 is disabled. Motor potentiometer selection 30 = Motor Pot Up Increases speed reference according to the ramp time set in Motor Pot Acc. Command Disabling analog input 0 (both the value and the offset are disabled). 32 = Motor Pot Enable Enables motor potentiometer function 33 = Motor Pot Reset Reset memory 35 = Motor Pot Memo Storage of reference setting in memory High state = storage of last speed setting in memory.. Bit 0 selection. 27 = Alarm reset When this digital input is active.XVy-EV User’s Guide . 31 = Motor Pot Down Reduces speed reference according to the ramp time set in Motor Pot Dec. 22 = Speed sel Bit 1 Multi-speed function. The reset is executed only if the alarm cause is no more present. this enables virtual digital input to be used.7. After Start. Speed sel bit 0. all the set Virtual digital inputs are active only if this input is equal to 1 (high logic level). forms the parameter value IPA 30800 Pos Actual Event which is the event that causes the multiposition controller to go to "Event Match" or "Dwell + Event". IPA 22011. Bit 1 selection. Bit 1 selection. it is possible to reset all the active alarm (high logic level). Bit 0 selection... 28 = Virtual Enable Virtual Enable. 23 = Speed sel Bit 2 Multi-speed function. Bit 1 selection. When it is active. High state = negative reference Sequential position control selection Inputs active only in Sequential position control configuration.2 The number given by the binary combination of these digital inputs selects a digital speed reference set in the parameters of the Multispeed function. 26 = Virtual DI OK When the virtual digital input 14 (only this one) is set with VIRTUAL DI OK. Initiates the start of a move to new position. When this command is active. the motor performs a homing (see the POSITION menu).1 The number given by the binary combinations of these digital inputs selects the active speed ratio. 1006 = POS Preset 5 Bit 5 position preset. 1016 = Save parameters Els ratio sel 0.5) selects the number of the active position preset. Such function is normally used in point-to-point self-acquisition positioning procedures..IPA Description [Unit] Format Access Default Min Max 46 = Multi Pos Abort Powerloss 47 = PL Mains status 48 = Speed ref 3 Sel Ends position sequence.. It is active only in the position configuration. It signals the mains voltage reset to the drive If active the speed set point is Speed Ref 3 instead ofSpeed Ref 1 and Speed Ref 2 sum Speed Ref 1 (rpm) Speed Ref 3 Sel Speed Ref 2 (rpm) Speed Ref 3 (rpm) Pos-preset 0. 1009 = POS Start Pos Positioning start command. all Pos Preset parameters must have a default value (=0) with the exception of Pos Preset 0 and Pos Preset 1.5 These inputs are only active with the position configuration. 1012 = POS Return Command returning to a set position.. Active pulse input on the climbing leading edge. Movement starting towards an absolute predefined position.. 1002 = POS Preset 1 Bit 1 position preset. 1005 = POS Preset 4 Bit 4 position preset. The number given by the binary combination of the digital inputs set as Pos Preset (0. 1007 = POS 0 Search Command to Search for the zero position. 1015 = POS 0 sensor Zero sensor. 1010 = POS Memo 0 Command Storing the 0 position.. it allows storage of the present position as a destination position. SIEIDrive . Bit 2 position preset. Momentary input active on the rising leading edge. Example: with a three-position positioner. it allows storage of the present position as a zero position. Such function is normally used in point-to-point self-acquisition positioning procedures. Momentary input active on the rising leading edge. 1003 = POS Preset 2 1004 = POS Preset 3 Bit 3 position preset. Used for the zero search. 1001 = POS Preset 0 Bit 0 position preset. whose task is the identification of the active position preset (binary combination).XVy-EV User’s Guide Chapter 10 . Momentary input active on the rising leading edge. 1011 = POS Memo Pos Position storing command.Parameters and Functions • 135 .. see IPA 20100.e. When this command is active. Through this bit-set parameter it is possible to decide whether to change the logic condition.XVy-EV User’s Guide . Default = [11] End Run Forward Digital Input 6 [--] Enum R/W/* 3 0 2007 Choice of the parameters to be set on Digital Input 6. Normally digital inputs become active when switching from a low to a high logic level occurs. Example: The intervention of two limit switches (End Run Forward and End Run Reverse) has to be set on two digital inputs. Digital Input 2 [--] Enum R/W/* 8 0 2007 Choice of the parameters to be set on Digital Input 2. The possibilities listed as “Choices for the digital input association” are available. The possibilities listed as “Choices for the digital input association” are available. The possibilities listed as “Choices for the digital input association” are available. bend recover. DIGITAL INPUT Dig Inp Rev Mask 7 0 6 0 1 5 0 4 1 3 1 2 0 8 1 0 0 0 txv9110 2001 = ELS Ratio Sel B0 2002 = ELS Ratio Sel B1 2003 = ELS Inc Ratio 20103 20104 20105 20106 20107 20162 It is necessary to set Dig Inp Rev Mask = 18H 136 • Chapter 10 . When this command is active. active low logic level. Be careful when using this since new ratios will change as fast as current limit allows. The possibilities listed as “Choices for the digital input association” are available. 2004 = ELS Dec Ratio Ratio decreasing command. Default = [10] End Run Reverse Digital Input 5 [--] Enum R/W/* 11 0 2007 Choice of the parameters to be set on Digital Input 5. Ratio increasing command. the ramp time set via the Els Delta Ratio parameter (ramp for ratio switching) is ignored and the change will be made immediately. the selected ratio between master and slave is increased with a time constant defined by the Els Delta Time and Els Delta Ratio parameters. Default = [9] Inverse Digital Input 4 [--] Enum R/W/* 10 0 2007 Choice of the parameters to be set on Digital Input 4. When this command is active.IPA Description [Unit] Format Access Default Min Max 20102 Electric Line Shaft function: Preset selection of the bit 0 ratio. 2005 = ELS RampRatioDis Ramp disabling command during a ratio switching phase. inactive high logic level. i. in CW rotation. see IPA 20100. the selected ratio between master and slave is decreased with a time constant defined by the Els Delta Time and Els Delta Ratio. Default = [2] Drive reset Dig Inp Rev Mask [--] DWord R/W 0H 0H 0FFFFFFFFH This parameter allows changing the logic level of the set digital inputs. Default = [3] External fault Digital Input 7 [--] Enum R/W/* 2 0 2007 Choice of the parameters to be set on Digital Input 7.Parameters and Functions SIEIDrive . see IPA 20100. 2007 = ELS Bend Rec CCW Command to activate the correction reference (slave drive). Electric Line Shaft function: Preset selection of the bit 1 ratio. The possibilities listed as “Choices for the digital input association” are available. see IPA 20100. the limit switch intervention has to be active with a low logic level. Default = [8] Ramp in = 0 Digital Input 3 [--] Enum R/W/* 9 0 2007 Choice of the parameters to be set on Digital Input 3. bend recover. seee IPA 20100. in CCW rotation. This parameter cannot modify the logic level of digital input 0. 2006 = ELS Bend Rec CW Command to activate the correction reference (slave drive). parameters. see IPA 20100. The possibilities listed as “Choices for the digital input association” are available. digital input 3 and digital input 4. XVy-EV User’s Guide Chapter 10 .IPA Description [Unit] Format Access Default Min Max 20100 20163 Dig Inp 0 Status [--] Enum R Drive enabled. Sono disponibili le stesse possibilità degli ingressi digitali. It is an hexadecimal parameter. It is possible to add up to 8 programmable digital inputs through the following parameters. The same possibilities stated for the digital inputs are available. Vedere la lista “Codifica per l’associazione degli ingressi” IPA 20101. Exp Dig Inp 5 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. Exp Dig Inp 4 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. EXP DIG INPUTS Inside the XVy-EV drive it is possible to install an option expansion card of the digital inputs and outputs. Dig Inp Status [--] Word R Read-only parameter stating the present condition (high logic level 1 and low logic level 0) of the digital inputs. The same possibilities stated for the digital inputs are available. Exp Dig Inp 3 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. 20151 Exp Dig Inp 1 [--] Enum R/W/* 0 0 2007 Scelta dei parametri programmabili su un ingresso digitale. The programming procedure is the same as the one for the digital inputs. See “Choices for the digital input association” list on IPA 20101. Exp Dig Inp 7 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. Example: The digital inputs are: DIG IN 0 = 1 DIG IN 1 = 1 DIG IN 6 = 1 DIGITAL INPUT Dig Inps Status 7 0 6 1 4 5 0 4 0 3 0 2 0 3 1 1 0 1 txv9111 The value displayed by the Dig Inps Status parameter is 43H . See “Choices for the digital input association” list on IPA 20101. The same possibilities stated for the digital inputs are available. Exp Dig Inp 6 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101. The same possibilities stated for the digital inputs are available. It is an hexadecimal parameter. Example: The digital inputs are: Exp Dig Inp 0 = 1 Exp Dig Inp 5 = 1 Exp Dig Inp 7 = 1 20152 20153 20154 20155 20156 20157 20164 SIEIDrive .Parameters and Functions • 137 . See “Choices for the digital input association” list on IPA 20101. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. 20150 Exp Dig Inp 0 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. See “Choices for the digital input association” list on IPA 20101. Exp Dig Inp 2 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on a digital input. The same possibilities stated for the digital inputs are available. Exp Dig Inp Stat [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital inputs on the EXP-D14A4F expansion card. See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101. The same possibilities stated for the digital inputs are available. 20174 Virt Dig Inp 4 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 4. See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101.Write the status of the virtual digital inputs (see IPA 20186). it is always necessary : .XVy-EV User’s Guide 20176 20177 20178 20179 20180 20181 138 • Chapter 10 . The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. SIEIDrive . See “Choices for the digital input association” list on IPA 20101. configured through the serial interface or field bus. VIRT DIG INPUTS Digital virtual inputs which are not physically present on the terminals but which are available to program possible commands.Parameters and Functions . 20170 Virt Dig Inp 0 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 0. The same possibilities stated for the digital inputs are available. When an external application needs to use some drive programmable functions through digital input. The same possibilities stated for the digital inputs are available. 20171 Virt Dig Inp 1 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 1. See “Choices for the digital input association” list on IPA 20101. Virt Dig Inp 8 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 8. Virt Dig Inp 7 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 7. The same possibilities stated for the digital inputs are available.IPA Description EXP DIGIT INPUT Exp Dig Inp Stat 7 1 6 0 A 5 1 4 0 [Unit] 3 0 2 0 1 1 0 0 1 Format Access Default Min Max txv9112 The value displayed by the Exp Dig Inp Stat parameter is A1 H. The same possibilities stated for the digital inputs are available. The same possibilities stated for the digital inputs are available. 20173 Virt Dig Inp 3 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 3. Virt Dig Inp 9 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 9. The same possibilities stated for the digital inputs are available. Virt Dig Inp 11 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 11. Virt Dig Inp 6 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 6. The same possibilities stated for the digital inputs are available. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101.Set the desired functionality see list “Choices for the digital input association” IPA 20101 . See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101. 20175 Virt Dig Inp 5 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 5. 20172 Virt Dig Inp 2 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 2. The same possibilities stated for the digital inputs are available. Virt Dig Inp 10 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 10. See “Choices for the digital input association” list on IPA 20101. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101.(do not reset) Virt Dig Inp 1 Programmed as Pos Preset 1 . Virt Dig Inp 13 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 13. Through this parameter it is possible to state if each configured input will be reset or not at the power-on. The same possibilities stated for the digital inputs are available. Virt Dig Inp 15 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 15. 0 = The parameter is reset at each drive starting. Virt DI Status [--] Word R/W 0000H 0000H FFFFH It displays and sets the status of the virtual digital inputs. See “Choices for the digital input association” list on IPA 20101. See “Choices for the digital input association” list on IPA 20101. This is a Hexadecimal setting.XVy-EV User’s Guide Chapter 10 . The same possibilities stated for the digital inputs are available.Parameters and Functions • 139 .(do not reset) Virt Dig Inp 3 SIEIDrive . Programming example If the virtual digital inputs have to be enabled via the serial input: Virt Dig Inp 0 Programmed as POS Preset 0 Virt Dig Inp 1 Programmed as POS Preset 1 Virt Dig Inp 2 Programmed as POS Preset 2 Virt Dig Inp 3 Programmed as POS Preset 3 If we set to high logic level : the bit 0 referring to Virt Dig Inp 0 = 1 the bit 1 referring to Virt Dig Inp 1 = 1 the bit 2 referring to Virt Dig Inp 2 = 1 the bit 3 referring to Virt Dig Inp 3 = 1 VIRT DIG IN Virt DI Status 15 14 13 12 11 10 0 0 0 0 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 1 2 1 1 1 0 1 txv9113 20187 The drive will write in the Virt DI Status parameter the value obtained by adding 1 (bit 0) + 2 (bit 1) + 4 (bit 2) + 8 (bit 3) = 15 = F Virt DI Status = 000FH Virt DI at Start [--] Word R/W FFFFH 0000H FFFFH Setting of the status of the virtual digital inputs when the drive is started. Application example If the virtual digital inputs 0 and 2 must be reset at the power-on. The same possibilities stated for the digital inputs are available. See “Choices for the digital input association” list on IPA 20101. Virt Dig Inp 14 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 14.(reset ) Virt Dig Inp 2 Programmed as Pos Preset 2 . 1 = The parameter is not reset at each drive starting. Hexadecimal setting. it is necessary to: .IPA Description [Unit] Format Access Default Min Max 20182 20183 20184 20185 20186 Virt Dig Inp 12 [--] Enum R/W/* 0 0 2007 Choice of the programmable parameters on Virt Dig Inp 12. The same possibilities stated for the digital inputs are available.(reset ) Virt Dig Inp 0 Programmed as Pos Preset 0 . Hexadecimal setting. The logic status is normally low and it becomes high when the drive is in an alarm condition.12. 0 = The parameter is reset at each drive starting.. 1 = The parameter is reset when the drive is in an alarm condition 0 = The parameter is not reset when the drive is in an alarm condition.6.... Hexadecimal setting. Virt DI at Reset [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital input condition when a drive alarm gets active.O...6. 20005 20006 140 • Chapter 10 .. and it is used as “Drive OK”.bit 1 referring to Virt Dig Inp 1 = 1 . which digital output. 8... corresponding to the set bit. This parameter allows to state.. Refreshing time = 8ms. Through this parameter it is possible to state if each configured input will be reset or not when the drive is disabled... The procedure to be followed is the same as the one used for the Virt DI at Start parameter. 5 refer to the digital outputs. DO Set at Fail [--] Long R/W 0H 0H FFFFH Setting of the digital output state when a drive alarm gets active: only for alarm code 1. 20189 DIGITAL DIGITAL OUTPUTS In the regulation board of the XVy-EV drives there is one slow Relay Output and six fast Digital Outputs. 18. The bits 0 . which disable PWM. the bits 8 .. which digital output.IPA Description [Unit] Format Access Default Min Max Programmed as Pos Preset 3 It is necessary to set with a high logic level (not reset): . 1 = The parameter is not reset at each drive starting. The same rule can be applied also to the virtual outputs... contact. which disable PWM. This parameter allows to state. 13 refer to the digital outputs of the expansion card..C. NOTE! It is possible to set all the drive alarms on a digital output. 0 = The output does not change its logic level 1 = The output is reset and set with 0.32. The relay output has one N. Through this parameter it is possible to state if each configured input has to be reset or not when an alarm intervenes. 18. The bits 0 .. when a drive alarm intervenes. 13 refer to the digital outputs of the expansion card.bit 2 referring to Virt Dig Inp 2 = 0 VIRT DIG IN Virt DI at Start 15 14 13 12 11 10 0 0 0 0 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 1 2 0 1 1 0 0 txv9114 20188 it is therefore necessary to write in the Virtual DI at start parameter the value obtained by adding 0 (bit 0) + 2 (bit 1) + 0 (bit 2) + 8 (bit 3) = 10 = A Virt DI at Start = A Virt DI at Dis [--] Word R/W FFFFH 0000H FFFFH Setting of the status of the virtual digital inputs when the drive is disabled. Hexadecimal setting. and one N. 5 refer to the digital outputs.. when an alarm condition intervenes.bit 3 referring to Virt Dig Inp 3 = 1 It is necessary to set with a low logic level (reset): . the bits 8 . Hexadecimal setting. corresponding to the set bit. is brought to a high logic level. 8.XVy-EV User’s Guide . DO Reset at Fail [--] Long R/W 0H 0H FFFFH Setting of the digital output state when a drive alarm gets active: only for alarm code 1.12. is brought to a 0 logic level... The changes in the digital output setting can be enabled by resetting the drive.32.Parameters and Functions SIEIDrive .bit 0 referring to Virt Dig Inp 0 = 0 . The digital output reaches a high logic evel if the speed. The digital output reaches high logic status when the motor present speed is equal to the reference within a window defined by the Speed Reach Wnd parameter. 11 = Fast Link Rx On slave drive active during reception of Fast link. The signal remains active for 8 ms. is higher than the one set in the Torque Thr parameter. 4 = Speed 0 Thr The digital output acquires high logic status when the motor speed is zero with a dead band (positive and negative) defined on the Speed Zero Thr and Speed Zero Delay parameters. in this way the motor can brake in controlled mode. The digital output acquires the high logic status with a torque limit functioning condition.XVy-EV User’s Guide Chapter 10 .IPA Description [Unit] Format Access Default Min Max 20200 0 = The output does not change its logic level 1 = The output is set to an high logic level. 8 = AD Index (XE ) Repetition of incremental encoder index connected on XE connector. 16 = Torque thr del Reached delayed torque threshold. is higher than the value set in the Speed Thr parameter for a time higher than the value set in the Speed Thr Delay parameter. 10 = Position Error The drive is in Position error (exceeded the threshold of Max Pos Error set in the SERVICE menu). When a previously delayed alarm gets active (see IPA 24102). with an absolute value. 12 = UV Active The drive is in undervoltage alarm (power supply voltage is lower than the undervoltage threshold). 7 = Speed Thr The digital output acquires the high logic status if the speed. braking to a stop. This output can be used only on a slave drive. Speed threshold exceeded. 5 = Torque Limit Torque limit. 13 = Cost Through Act When there is a Mains loss condition. enabled (enable command active) and no alarm is present. is higher than the value set in the Speed Thr and Speed Thr Wnd parameters. The digital output acquires the high logic status when the motor supplied torque. 9 = DI Index (XER) Repetition of incremental encoder index connected on XER connector. with an absolute value. 14 = Speed Thr > 0 Speed  0. Same meaning of Speed 0 Thr but with an inverted logic level. 6 = Torque Thr Overcome torque. 2 = Drive Ready The digital output is set to a high logic level when the unit is initialised (with or without the mains power supply) and no alarms are present.: 1010 Choices for digital output association: 0 = OFF Output not configured. the digital output set as Alarm warning reaches the high logic level. 17 = Alarm Warning Active alarm. is higher than the value set in the Torque Thr parameter for a period longer than Torque Thr Delay. When a previously masked alarm goes active (see IPA 24100). 1 = Drive Enable The digital output reaches high logic status when the drive is power supplied. The digital output reaches the high logic status if the torque. Speed = 0. either positive or negative. the digital output set as Alarm coming SIEIDrive . 15 = Speed Thr del Delayed speed threshold reached. The signal remains active for 8 ms. it activates the energy recovery. with an absolute value.Parameters and Functions • 141 . 18 = Alarm Coming Delayed alarm. Digital Output 0 [--] Enum R/W/* 3 0 Selection of parameters that can be set as Digital Output Digital Output. 3 = Speed Reached Reached speed. 1003 = Pos Exceeded Position threshold. detected by OTS sensors on Power stage.Pos Window for a period equal to Pos Window Time. 118 = Enc Fbk Loss Main encoder count alarm. Encoder simulation alarm. detected by TAC sensor. 1004 = Pos Abs Thr Absolute position threshold. 128 = Fast Link Error Fast link communication error. 101 = IGBT Desaturat Short circuit alarm of the power module. The digital output acquires the high logic status when the difference between the motor present position and the destination position is lower or equal to the Pos Thr Close 1 parameter. 1006 = Pos Thr Close 1 Reached position threshold 1. This alarm gets active when. The digital output reaches high logic status when the motor present position is equal to the zero position with an dead band defined by the Pos 0 Thr Offset parameter. 1002 = Pos Reached The digital output acquires the high logic status when the control finishes the positioning procedure and the position is equal to the destination position +. 142 • Chapter 10 . at the start up. Temperature of intake air too high. 22 = PL Stop active It indicates that the drive is in an Emergency stop condition. 127 = Enable Seq Error Alarm for a wrong sequence in the drive power supply. The digital output reaches high logic status if the position is higher than the value set in the Pos Abs Thr. 119 = Enc Sim Fault 120 = Undervoltage Undervoltage alarm. 113 = Brake Overpower Brake overpower alarm. 23 = Drv Th Overtemp Output of the temperature check function 24 = Drive OK The digital output is set to a high logic level when the drive is powered and there are no alarms present 100 = Drive fault Drive in an alarm condition. 102 = Overcurrent 103 = Overvoltage Overcurrent alarm on the DC LINK intermediate circuit. the drive shows a high Digital input 0. 131 = Sequence Fault External alarm for the drive. 20 = Brake Command Command for the motor emergency brake. parameter.Parameters and Functions SIEIDrive . 107 = Motor overtemp Motor overtemperature alarm. The digital output reaches high logic status at the end of the zero searching phase. 1005 = Pos Zero Found Found zero position. Overcurrent alarm.IPA Description [Unit] Format Access Default Min Max reaches the high logic level.XVy-EV User’s Guide . detected by TAR sensor on regulation board. 111 = Inval Flash Par 112 = Flash Fault Flash error alarm. 1001 = Position Zero Position 0 reached. 121 = Intake Air Ot 122 = Regulation Ot Overtemperature of regulation board. 123 = Module Overtemp IGBT module Overtemperature. 129 = Position Fault The drive is in Position error (A 29) alarm. 21 = Fast Stop It states that the drive is in a Fast Stop condition. 104 = Heatsink Ot 105 = Drive Overload Drive IxT integral has reached maximum value 106 = Current Fbk Loss Loss of Power Supply TA. Motor Overload 108 = Motor Overload 109 = CPU Overtime CPU alarm Invalid flash parameter alarm. 19 = 80% Overload Thr The IxT or I2t integral has reached 80% of the maximum value. Heatsink overtemperature alarm. The digital output acquires the high logic status when the difference between the present position and the starting position is higher than the value set in the Positon Thr parameter. Default = Drive Enable Dig Out Reverse [--] Dword R/W 00H 0H FFFFFFFFH This parameter allows to change the logic level of the programmed digital outputs. it is not executed and the digital output programmed as Pos Out Of Lim changes to high logic status. 4 and 5 have to be programmed with an inverted condition: DIGITAL OUTPUT Dig Out Reverse 5 1 3 4 1 3 0 2 0 2 1 1 0 0 txv9115 20203 20204 20205 20254 20255 It is necessary to set Dig Out Reverse = 32H Dig Out Status [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital outputs. Example: the digital outputs are: DIGITAL OUTPUT Dig Out Status 5 0 0 4 0 3 1 2 0 8 1 0 0 0 txv9116 DIG OUT 3 = 1 The value displayed by the Dig Out Status parameter is 8H SIEIDrive .Pos Window for a period at least equal to Pos Window Time. Default = External Fault Digital Output 5 [--] Enum R/W/* 1 0 1010 Choice of the programmable parameters on Digital Output 5 The possibilities listed as “Choices for Digital output association” are available.IPA Description [Unit] Format Access Default Min Max 20201 20202 1007 = Pos Thr Close 2 Reached position threshold 2.Parameters and Functions • 143 . Takes the low logic state when a new POS Start Pos command is issued. see IPA 20200. If a value required is out of range. Default = Drive Fault Digital Output 4 [--] Enum R/W/* 131 0 1010 Choice of the programmable parameters on Digital Output 4 The possibilities listed as “Choices for Digital output association” are available. 1009 = Pos Loop Active It states that the drive present functioning mode is Position 1010 = Pos Not Reached The digital output has a logic state high when position control has ended. It is an hexadecimal parameter. Hexadecimal setting. The digital output acquires the high logic status when the difference between the motor present position and the destination position is lower or equal to the Pos Thr Close 2 parameter. Example: the digital outputs 1. see IPA 20200. see IPA 20200. Via this bitmapped parameter it is possible to choose which output the normal logic level has to be switched to. Default = Speed 0 thr Digital Output 2 [--] Enum R/W/* 5 0 1010 Choice of the programmable parameters on Digital Output 2 The possibilities listed as “Choices for Digital output association” are available. and the position is not entered in the +. 1008 = Pos Out Of Lim A value has been set up out of range Min Preset Value/Max Preset Value.Default = Torque Limit Digital Output 3 [--] Enum R/W/* 100 0 1010 Choice of the programmable parameters on Digital Output 3 The possibilities listed as “Choices for Digital output association” are available. see IPA 20200. see IPA 20200. The output becomes high when the multi-positioning sequence is complete 1011 = Mpos end cycle Digital Output 1 [--] Enum R/W/* 4 0 1010 Choice of the programmable parameters on Digital Output 1 The possibilities listed as “Choices for Digital output association” are available.XVy-EV User’s Guide Chapter 10 . The digital outputs usually have a 0 logic level when they are inactive and they switch to a high logic level when they become active. 0.. Exp Dig Out 6 [--] Enum R/W/* 1 0 1010 Choice of the programmable parameters on Exp Dig Out 6.. See “Choices for the digital output association” list on IPA 20200. 20251 Exp Dig Out 1 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 1.. See “Choices for the digital output association” list on IPA 20200. Exp Dig Out 7 [--] Enum R/W/* 1 0 1010 Choice of the programmable parameters on Exp Dig Out 7.Parameters and Functions SIEIDrive . The same possibilities stated for the digital outputs are available.XVy-EV User’s Guide .. See “Choices for the digital output association” list on IPA 20200. 20270 Virt Dig Out 0 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 0. The same possibilities stated for the digital outputs are available. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. See “Choices for the digital output association” list on IPA 20200. The programming procedure for the expanded digital outputs is the same as for the digital outputs. See “Choices for the digital output association” list on IPA 20200. See “Choices for the digital output association” list on IPA 20200. The same possibilities stated for the digital outputs are available. By setting the Virtual digital outputs. Exp Dig Out Stat [--] Word R Only-reading parameter stating the present condition (high logic level 1 and low logic level 0) of the digital outputs set on the EB-DIO expansion card. The same possibilities stated for the digital outputs are available. The same possibilities stated for the digital outputs are available.. Up to six Digital Outputs can be expanded and programmed through the below parameters.IPA Description [Unit] Format Access Default Min Max EXP DIG OUTPUTS It is possible to install inside the drive a card for the digital inputs and outputs expansion. See “Choices for the digital output association” list on IPA 20200. The same possibilities stated for the digital outputs are available. 20252 Exp Dig Out 2 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 2. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200. See “Choices for the digital output association” list on IPA 20200. Refreshing time = 8ms. 20271 Virt Dig Out 1 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 1. The same possibilities stated for the digital outputs are available. which are not physically present on the terminals but which are available to set possible Digital outputs to be read via the serial line or the field bus.. 20253 Exp Dig Out 3 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 3. The same possibilities stated for the digital outputs are available. The function performed by a digital output programmed on a Digital output or on a Virtual digital output is the same. Exp Dig Out 5 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 5. See “Choices for the digital output association” list on IPA 20200. The programming procedure is the same as the one stated for the digital outputs. 20250 Exp Dig Out 0 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 0. 20257 Exp Dig Out 4 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Exp Dig Out 4. 20258 20259 20260 20256 VIRT DIG OUTPUTS Virtual digital outputs. the Digital outputs on the terminal strip are still available.. The same possibilities stated for the digital outputs are available. 144 • Chapter 10 . 20272 Virt Dig Out 2 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 2.. Virt Dig Out 9 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 9. See “Choices for the digital output association” list on IPA 20200. 8.Parameters and Functions • 145 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20289 20290 SIEIDrive .32. Virt Dig Out 13 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 13..6. Hexadecimal setting. Virt Dig Out 14 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 14.. The same possibilities stated for the digital outputs are available. Virt Dig Out 11 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 11. The same possibilities stated for the digital outputs are available. when an alarm condition intervenes. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.XVy-EV User’s Guide . Virt Dig Out 12 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 12. The same possibilities stated for the digital outputs are available. The same possibilities stated for the digital outputs are available.. which disable PWM.32.. 18. Virt DO at Reset [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital output state when a drive alarm gets active: only for alarm code 1. is brought to a 0 logic level. See “Choices for the digital output association” list on IPA 20200. See “Choices for the digital output association” list on IPA 20200.. Virt Dig Out 7 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 7. Virt DO at Fail [--] Word R/W 0000H 0000H FFFFH Setting of the virtual digital output state when a drive alarm gets active: only for alarm code 1. See “Choices for the digital output association” list on IPA 20200. Virt Dig Out 10 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 10. Virt Dig Out 15 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 15. See “Choices for the digital output association” list on IPA 20200.. The same possibilities stated for the digital outputs are available. See “Choices for the digital output association” list on IPA 20200.. See “Choices for the digital output association” list on IPA 20200. The same possibilities stated for the digital outputs are available. 8. 18. See “Choices for the digital output association” list on IPA 20200. Virt Dig Out 5 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 5.12. The same possibilities stated for the digital outputs are available. which disable PWM. Virt Dig Out 6 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 6.6. The same possibilities stated for the digital outputs are available. which virtual digital output. The same possibilities stated for the digital outputs are available. Chapter 10 . This parameter allows to state. See “Choices for the digital output association” list on IPA 20200. See “Choices for the digital output association” list on IPA 20200. which virtual output. The same possibilities stated for the digital outputs are available. Virt Dig Out 4 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 4.12.. See “Choices for the digital output association” list on IPA 20200.. See “Choices for the digital output association” list on IPA 20200.. The same possibilities stated for the digital outputs are available.. corresponding to the set bit.IPA Description [Unit] Format Access Default Min Max 20273 Virt Dig Out 3 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 3. when a drive alarm intervenes. 0 = The output does not change its logic level 1 = The output is reset and set with 0. The same possibilities stated for the digital outputs are available. This parameter allows to state. Virt Dig Out 8 [--] Enum R/W/* 0 0 1010 Choice of the programmable parameters on Virt Dig Out 8.. 0 = The output does not change its logic level 1 = The output is set to an high logic level. Virt DO Status [--] Word R Only-reading parameter stating the present condition of the virtual digital outputs (high logic level 1 and low logic level 0). Default = Speed Ref 1.XVy-EV User’s Guide . is brought to a high logic level. JOG FUNCTION menu. Resolution = 12 bit (11 bit + sign).81 V. (2) 7 = Speed limit (8 ms) Signal setting the same maximum speed for both clockwise and counterclockwise rotation direction. (1) 146 • Chapter 10 . 1 = Torque Ref 1 (500 us) Torque reference 1. Bandwith = 1. ANAL ALOG ANALOG INPUTS The regulation board of the XVy-EV drive has two programmable analog inputs. The possibilities listed as “Choices for Analog Input association” are available. active in the configuration of the torque control (1) 2 = Torque Ref 2 (500 us) Torque reference 2.IPA Description [Unit] Format Access Default Min Max 20286 corresponding to the set bit. (2) 5 = Speed Pos Lim (8 ms) Signal setting the maximum speed for clockwise rotation direction. Hexadecimal setting. NOTE! Input maximum value: 10. (2) 8 = Jog Ref (8 ms) Reference signal for jog function. (2) 6 = Speed Neg Lim (8 ms) Signal setting the max speed for CCW rotation direction. 10V=par. (2) 4 = Speed Ref 2 (500 us) Speed 2 reference signal.(8 ms) Setting of the negative torque limit. An Inp 0 Read 1 Disable An In 0 + An Inp 0 D_B Pos An Inp 0 Scale x An Inp 0 Value 2 Analog input 0 An Inp 0 Offset An Inp 0 D_B Neg An Inp 1 D_B Pos An Inp 1 Scale x Analog input 1 3 An Inp 1 Read + Disable An In 1 4 An Inp 1 Offset An Inp 1 D_B Neg An Inp 1 Value 20300 Analog Inp 0 Sel [--] Enum R/W 3 0 24 Choice of the parameter to be programmed on analog_input_0. 9 = Torque Limit + (8 ms) Setting of the positive torque limit. Choices for Analog Input association 0 = OFF The analog input is not configured. Hexadecimal setting. (1) 10 = Torque Limit . Jog Speed Limit parameter.5 kHz. The Analog Input channels are available on the I/O Terminal Block.Parameters and Functions SIEIDrive . active in the configuration of the torque control (1) 3 = Speed Ref 1 (500 us) Speed 1 reference signal. (2) 18 = Multi Speed 2 (8 ms) Analog input of Speed 2 reference for the multi-speed function. EL SHAFT R BEND menu 10V = Max Prs Abs Val parameter . ZERO FOUND CONF menu 15 = Speed Threshold (8 ms) Analog signal setting the “over-speed” threshold. 10V = Els Max RB Speed parameter. (1) 12 = Max Spd Trq Lim (8 ms) Speed limit with torque control (speed limited).signal to set the active ratio (ratio 1) with an electric axis mode.XVy-EV User’s Guide Chapter 10 . (3) 24 = Els Ratio [3] (8 ms) An.0 Writing parameter for the setting of a multiplication factor of the analog signal. 10 10 SIEIDrive . An Inp 0 Read [V] Float R Parameter reading the voltage value of the analog input An Inp 0 Value [V] Float R Read-only parameter of the analog input after the offset. signal to set the bend recover ref. see IPA 20300. (3) 22 = Els Ratio [1] (8 ms) An. An Inp 0 Scale [--] Float R/W 1 -3. (4) 26 = Speed Ratio 3 (500 ns) Speed reference. the scaling and the dead band. in electrical line shaft mode. (2) 14 = Pos Speed Ref 0 (8 ms) Speed reference during zero search. An Inp 0 D_B Neg [V] Float R/W 0 -10 Writing parameter for the setting of a negative reference threshold.IPA Description [Unit] Format Access Default Min Max 11 = Torque Limit (8 ms) Setting of the positive and negative torque limit. (3) 23 = Els Ratio [2] (8 ms) An. An Inp 0 D_B Pos [V] Float R/W 0 0 Writing parameter for the setting of a positive reference threshold. An Inp 1 D_B Pos [V] Float R/W 0 -10 Writing parameter for the setting of a positive reference threshold under which the analog value is set to 0.00 Analog Inp 1 Sel [--] Enum R/W 1 0 65535 Choice of the parameter to be programmed on Analog Inp 1 Sel. (1) 17 = Multi Speed 1 (8 ms) Analog input of Speed 1 reference for the multi-speed function. (2) 27 = Speed Ratio (8 ms) Speed reference multiplication factor (5) 10V = 2 * Base Torque parameter. TORQUE menu 10V = Full Scale Speed parameter . POSITION FUNC menu (5) 10V = multiplication factor 2. EL SHAFT R BEND menu 21 = Els Ratio [0] (8 ms) An. The possibilities listed as “Choices for Analog Input association” are available. (2) 13 = Pos Speed (8 ms) Speed reference during positioning procedures. Default = Torque Ref 1 (1): (2): (3): (4): 20301 ANALOG INPUT 0 20320 20330 20340 20350 20310 20360 An Inp 0 Offset [V] Float R/W 0 -10 Writing parameter for the offset setting to be algebraically added to the analog signal. (3) 25 = Pos Preset 0 (8 ms) Position reference. under which the analog value is set to 0. 10 10 0 3 ANALOG INPUT 1 20321 20331 An Inp 1 Offset [V] Float R/W 0 -10 Writing parameter for the offset to be algebraically added to the analog signal. POSITION FUNC menu 0V = Min Prs Abs Val parameter .(2) 19 = Multi Speed 4 (8 ms) Analog input of Speed 4 reference for the multi-speed function. 10V = Home Max Spd parameter. SPEED menu 10V = Els Max RB Speed parameter .signal to set the active ratio (ratio 0) with an electric axis mode.(2) 20 = Els Rb Spd Ref (8 ms) An.signal to set the active ratio (ratio 3) with an electric axis mode.signal to set the active ratio (ratio 2) with an electric axis mode. (2) 16 = Torque Thr (8 ms) Setting of the reached torque threshold. under which the analog value is set to 0.Parameters and Functions • 147 . Deafult =Actual speed (8 ms) Choices for Analog Output association: 0=Off The analog output is not configured. An Inp 1 Value [V] Float R Read-only parameter of the analog input after the offset. the analog output supplies 10V when the torque is equal to 200% of the Base Torque parameter (IPA 18800. An Inp 1 Scale [--] Float R/W 1 -3.0 Writing parameter for the setting of a multiplication factor of the analog signal. With a scale factor equal to 1. 1=Actual Speed (8 ms) Analog signal proportional to the actual motor speed. the analog output supplies 10V when the current is equal to the Drive Max Curr parameter. With a scale factor equal to 1. With a scale factor equal to 1.drive intermediate circuit (DC Bus). 2=MotorCurrent (8 ms) Analog signal proportional to the actual current supplied by the drive. the analog output supplies 10V when the voltage is equal to 1000 V. The possibilities listed as “Choices for Analog Output association” are available. With a scale equal to 1.Parameters and Functions SIEIDrive .MONITOR or TORQUE menu). the analog output supplies 10V when the speed is equal to the Full Scale Speed parameter. 10 3 ANALOG OUTPUTS The drives of the XVy-EV series are equipped with 2 ±10V differential analog outputs and a 12-bit (11 bit + sign) A/D converter. the scaling and the dead band. 148 • Chapter 10 .IPA Description [Unit] Format Access Default Min Max 20341 20351 20311 20361 An Inp 1 D_B Neg [V] Float R/W 0 -10 Writing parameter for the setting of a negative reference threshold under which the analog value is set to 0. 3=Motor Torque (8 ms) Analog signal proportional to the torque supplied by the motor. 5=Drive Temp (8 ms) Analog signal proportional to the drive internal temperature. With a scale factor equal to 1. Basic Software allows to program up to two Analog Outputs.XVy-EV User’s Guide . 4=DC Link Voltage (8 ms) Analog signal proportional to the Voltage of the DC+/ DC. An Inp 1 Read [V] Float R Parameter reading the analog input. Bandwith = 280 Hz Analog output 0V An Out 0 Scale An Out Value 19 GND x An Out 0 Write An Out 1 Scale + 17AO0 An Out 0 Offset An Out 1 Value 18 x An Out 1 Write + AO1 An Out 1 Offset 20400 Analog Out 0 Sel [--] Enum R/W 1 0 12 Choice of the parameter to be programmed on Analog Out 0 Sel. the analog output supplies 10V when the temperature is equal to 100°C (212°F). 001 . Analog signal proportional to the position error. R -3. Up to two Analog Outputs can be expanded and programmed through the below parameters. 20401 32200 Analog signal proportional to the output of the ramp circuit. Unit of measure : Volt. An Out 1 Offset [V] Float R/W 0 Parameter for the offset setting to be algebraically added to the analog signal. 14=Flt Act Spd 100 (8 ms) Actual speed value with low-pass filter (100 msec) Analog Out 1 Sel [--] Enum R/W 2 0 12 Choice of the parameter to be programmed on Analog Out 1 Sel.IPA Description NOTE! [Unit] Format Access Default Min Max The drive internal fan is normally stopped.Parameters and Functions • 149 .XVy-EV User’s Guide Chapter 10 . 10=Flt Act Spd 400 (8 ms) Actual speed value with low pass filter (400 msec) 11=Flt Motor Curr (8 ms) Motor current value with low pass filter (400 msec) Value of the motor torque with low-pass filter (400 msec) 12=Flt Motor Torque 13 = PL Next Factor Speed reference multiplication factor.0 -10 3 10 EXP ANALOG OUT It is possible to install inside the drive a card for the analog outputs expansion. The possibilities listed as “Choices for Analog Output association” are available. -3. Signal available for possible potentiometer connections for the drive references. 20402 Exp Analog Out 0 [--] Enum R/W 0 0 14 Choice of the parameter to be programmed on Exp Analog Out 0. The possibilities listed as “Choices for Analog Output association” are available. 8= -10V (8 ms) -10V Analog signal. The analog output reaches 10V 9=Position Error (8 ms) when the position error is equal to the AnOut MaxPosErr parameter (IPA 32200). The programming procedure for the expanded analog outputs is the same as for the digital inputs. SIEIDrive . Signal available for possible potentiometer connections for the drive references. see IPA 20400 (except selections 1 and 13). Default = [2] Motor current (1 ms). 7=+10V (8 ms) +10V Analog signal. With a scale factor equal to 1.0 -10 3 10 ANALOG OUT 1 20421 20431 20411 20441 An Out 1 Scale [--] Float R/W 1 Parameter for the setting of a multiplication factor of the analog signal. the analog output supplies 10V when the output voltage of the ramp circuit is equal to the Full Scale Speed parameter. An Out 0 Value [V] Float Parameter reading the actual voltage of the analog output 0. An Out 1 Write [V] Float R Parameter reading the analog output. 6=Ramp Output (8 ms) ANALOG OUT 0 20420 20430 20410 20440 An Out 0 Scale [--] Float R/W 1 Parameter for the setting of a multiplication factor of the analog signal. Unit of measure : Volt. An Out 0 Write [V] Float R Parameter reading the analog output. AnOut MaxPosErr [deg] Float R/W 90 0 2880 Position error to scale the Analog Output. Refreshing time = 8ms. An Out 0 Offset [V] Float R/W 0 Parameter for the offset setting to be algebraically added to the analog signal. It becomes active when the temperature exceeds 55°C (131°F). An Out 1 Value [V] Float R Parameter reading the real value of the analog output 1. ExAn Out 1 Value [V] Float R Parameter of the actual voltage of the analog output 1. The maximum repetition frequency is 500 kHz. ExAn Out 0 Offse [V] Float R/W 0 Writing parameter for the offset setting to be algebraically added to the analog signal. This port can be configured both as an input (frequency reference. 20035 Enc Rep Sim Cfg [--] Enum R/Z/* 0 0 1 The following possibilities are available: 0=Main Enc Repet Hw repetition of motor encoder (not available on motor with resolver) 1=Spd Pos Enc Sim Simulation of motor encoder.IPA Description [Unit] Format Access Default Min Max 20403 Exp Analog Out 1 [--] Enum R/W 0 0 14 Choice of the parameter to be programmed on Exp Analog Out 1. For example.Parameters and Functions SIEIDrive . -3. 20032 Index Puls Simul [--] Dword R/Z/* 1024 1 536871000 Parameter setting the gain for the simulation of the zero slot. EXP AN OUT 0 20422 20432 20412 20442 ExAn Out 0 Scale [--] Float R/W 1 Writing parameter for the setting of a multiplication factor of the analog signal. The following indexes will be repeated with a frequency set independently of the master index. 20033 Index Offset Sim [--] Long R/Z/* 0 1 536871000 Parameter setting the offset for the simulation of the index signal. 20030 PPR Simulation [--] Dword R/Z/* 1024 1 131071 Parameter setting the pulse/revolution number for the encoder simulation signal. ExAn Out 1 Write [V] Float R Parameter reading the analog output.0 -10 3 10 ENC REPETITION The signal coming from the encoder/resolver and used as a feedback for the speed/space loop can be repeated/ simulated (as a digital encoder) on the XER port with a desired ratio. see IPA 20400 (except selections 1 and 13). -3. for the electric axis) or as an output. a drive alarm occurs as the counting storage can not be assured. With this parameter it is possible to program the 150 • Chapter 10 . The index can be repeated up to a total accumulated limit of 131070 pulses.XVy-EV User’s Guide . The repetition can be enabled/disabled via the software (in order to avoid possible failures the XER connector is default configured as an input). ExAn Out 0 Value [V] Float R Parameter reading the actual voltage of the analog output. It states the pulse frequency with which the encoder index is repeated. 2=Aux Enc Repeater Hw repetition of the auxiliary encoder (XER). The possibilities listed as “Choices for Analog Output association” are available. coming from the master encoder. It is possible to set the position of the first repeated index pulse as compared to the first master index after the index repetition has been enabled. ExAn Out 1 Offse [V] Float R/W 0 Writing parameter for the offset setting to be algebraically added to the analog signal.0 -10 3 10 EXP AN OUT 1 20423 20433 20413 20443 ExAn Out 1 Scale [--] Float R/W 1 Writing parameter for the setting of a multiplication factor of the analog signal. 100 means that a zero index is obtained every 100 repeated pulses. if such frequency is exceeded. ExAn Out 0 Write [V] Float R Parameter reading the analog output. MULTISPEED MULTISPEED As an alternative to the Speed ref analog reference (in the speed control configuration).0 0 IPA20003 Parameter setting the maximum reference limit for the jog function. Speed Ref 1(rpm) + Jog Speed Limit (rpm) 1 Speed Reference 2 Speed Ref 2 (rpm) Jog Ref (%) Jog Reference (rpm) 21000 21001 21003 21004 21005 21006 Jog Speed Limit [rpm] Float R/W 1500.XVy-EV User’s Guide Chapter 10 . In case the digital inputs programmed as Speed Sel Bit are all at 0. CW Jog Dec [ms/krpm] Float R/W 336. The references can be supplied with signs. it is possible to enable the Multispeed function. Speed ref (speed reference) is active when is present the START command while the jog reference is active when is present Jog CW or Jog CCW. Enabling some digital inputs configured as Speed sel bit X (see IPA 20101).] Float R Encoder simulation error.1 0 IPA21111 Setting of the clockwise deceleration time (active on the Jog CW reference). Its percentage value states the jog CW Jog Acc [ms/krpm] Float R/W 336. the START command has the priority. after the index repetition has been enabled.1 0 IPA21111 Setting of the counterclockwise acceleration time (active on the Jog CCW reference).deg. which can be set also via an analog input.1 0 IPA21111 Setting of the counterclockwise deceleration time (active on the Jog CCW reference).1 0 IPA21111 Setting of the clockwise acceleration time (active on the Jog CW reference). so that their definition sets the desired rotation direction. CCW Jog Dec [ms/krpm] Float R/W 336. it is possible to replace the Speed ref speed reference (position 1 for the switch) with the jog one (position 2 for the switch). it is possible to recall up to seven fixed speeds set in the Multi Speed XX.IPA Description [Unit] Format Access Default Min Max 19040 position of the first repeated index pulse as compared to the first master index. By programming specific digital inputs. parameters. JOG FUNCTION The JOG function can be used both with a speed control and with a position control. CCW Jog Acc [ms/krpm] Float R/W 336. “Jog CW” and/or “Jog CCW”. Jog Reference [%] Float R/W 10 0 100 Jog function reference.Parameters and Functions • 151 . Enc Err Simul [mech. In case both the START and the JOG command are present. the reference Speed Ref 1/2 remains active SIEIDrive . Following indexes will be repeated with the set frequency (Index Puls Simul parameter) independently of the master index. 7 1 152 • Chapter 10 .XVy-EV User’s Guide .IPA Description [Unit] Format Access Default Min Max Speed sel bit 0 Multi speed 1 Multi speed 2 Multi speed 3 Multi speed 4 Multi speed 5 Multi speed 6 Multi speed 7 high low high low high low high Speed sel bit 1 low high high low low high high Speed sel bit 2 low low low high high high high txv9201 Jog CW Speed Ref 1 (rpm) Jog CCW Speed Reference (rpm) + Jog Ref (rpm) 1 Multi Spd Index Multi Speed Conf Speed Ref 2 (rpm) 7 Speed Sel Bit 0 Speed Sel Bit 1 Speed Sel Bit 2 21301 21302 21303 21304 21305 21306 21307 21310 Multi Speed Setting of the Multi Speed Setting of the 1 [rpm] multispeed 1 speed reference 2 [rpm] multispeed 2 speed reference Float Float R/W R/W 0 0 -IPA20003 IPA20003 -IPA20003 IPA20003 IPA20003 IPA20003 IPA20003 IPA20003 IPA20003 21311 Multi Speed 3 [rpm] Float R/W 0 -IPA20003 Setting of the multispeed 3 speed reference Multi Speed 4 [rpm] Float R/W 0 -IPA20003 Setting of the multispeed 4 speed reference Multi Speed 5 [rpm] Float R/W 0 -IPA20003 Setting of the multispeed 5 speed reference Multi Speed 6 [rpm] Float R/W 0 -IPA20003 Setting of the multispeed 6 speed reference Multi Speed 7 [rpm] Float R/W 0 -IPA20003 Setting of the multispeed 7 speed reference Multi Spd Index [--] Word R/W 0 0 Read parameter.Parameters and Functions SIEIDrive . Setting of the multi speed reference. 0 = Digital input Reference selection via digital input 1 = Parameter Reference selection via the Multi Spd Index parameter It is also possible to select up to 3 analog references as Multispeed (see IPA 20300). Read/write parameter if Multi Speed Conf = Parameter. It states the currently used speed reference. Multi Speed Conf [--] Enum R/W 0 0 Parameter for the selection of the commands enabling the multi speed references. if Multi Speed Conf = Digital input. which can be recalled via the selection of three digital inputs. 1 336.1 336. It states the ramp being used.1 336. Multi Ramp Conf [--] Enum R/W 1 0 Parameter for the selection of the multi-ramp enabling commands 0 = Digital input Ramp selection via digital input 1 = Parameter Ramp selection via the Multi Ramp Index 3 1 MULTIRAMP 1 21401 21411 21421 21431 M Ramp 1 CW Acc [ms/krpm] Rate 1 setting of the clockwise acceleration M Ramp 1 CCW Acc [ms/krpm] Rate 1 setting of the counterclockwise acceleration M Ramp 1 CW Dec [ms/krpm] Rate 1 setting of the clockwise deceleration M Ramp 1 CCW Dec [ms/krpm] Rate 1 setting of the counterclockwise deceleration Float Float Float Float R/W R/W R/W R/W 336. Read/write parameter if Multi Ramp Conf = Parameter. Ramp sel bit 0 Ramp 1 Ramp 2 Ramp 3 high low high Ramp Enable Ramp sel bit 1 low high high txv9202 Jog enable Reference = 0 Ramp Output Multi Ramp Index Multi Ramp Conf 1 2 3 Ramp Sel Bit 0 Ramp Sel Bit 1 21440 21441 Multi Ramp Index [--] Word R/W 0 0 Read parameter if Multi Ramp Conf = Digital input.1 0 IPA21111 SIEIDrive .XVy-EV User’s Guide Chapter 10 .IPA Description [Unit] Format Access Default Min Max MULTIRAMP MULTIRAMP The Multiramp function allows to recall up to three different ramps (in addition to the main ramp).1 0 0 0 0 IPA21111 IPA21111 IPA21111 IPA21111 MULTIRAMP 2 21402 M Ramp 2 CW Acc [ms/krpm] Rate 2 setting of the clockwise acceleration Float R/W 336.Parameters and Functions • 153 . Setting of the multi-ramp selection. The acceleration and deceleration times can be set in an independent way. The recall of the desired ramp is carried out via a / two digital signals programmed as Ramp sel bit 0 and ramp sel bit 1 (see IPA 20201). The selection of each different ramp allows the reference to follow the new ramp during the acceleration and deceleration phase. 1 336. in all other modes. This value can be entered manually via the configurator. bus or come from the motor potentiometer function.1 336.IPA Description [Unit] Format Access Default Min Max 21412 21422 21432 M Ramp 2 CCW Acc [ms/krpm] Rate 2 setting of the counterclockwise acceleration M Ramp 2 CW Dec [ms/krpm] Rate 2 setting of the clockwise deceleration M Ramp 2 CCW Dec [ms/krpm] Rate 2 setting of the counterclockwise deceleration Float Float Float R/W R/W R/W 336. 20085 Speed Draw Ratio [--] Float R/W 1 0 2 Multiplication factor 20086 Speed Draw Out [rpm] Float R Resulting reference speed. The function is bypassed in case of Jog run as well. The SPEED DRAW function is working only if parameter 20023 Control Mode is set as Speed. The SPEED DRAW function enables the speed reference from the ramp unit to be multiplied by a value between 0 and 2 (0200%).XVy-EV User’s Guide .1 336.1 0 0 0 0 IPA21111 IPA21111 IPA21111 IPA21111 SPEED DRAW The Speed Draw functional enables the speed reference from the ramp unit to be multiplied by a value between 0 and 2 (0200%). 154 • Chapter 10 .1 336. 20092 Act SpdDrw Ratio [%] Float R Speed ratio currently used. it can be sampled from an external analog reference or come from the motor potentiometer function.1 0 0 0 IPA21111 IPA21111 IPA21111 MULTIRAMP 3 21403 21413 21423 21433 M Ramp 3 CW Acc [ms/krpm] Rate 3 setting of the clockwise acceleration M Ramp 3 CCW Acc [ms/krpm] Rate 3 setting of the counterclockwise acceleration M Ramp 3 CW Dec [ms/krpm] Rate 3 setting of the clockwise deceleration M Ramp 3 CCW Dec [ms/krpm] Rate 3 setting of the counterclockwise deceleration Float Float Float Float R/W R/W R/W R/W 336.Parameters and Functions SIEIDrive . This value can be entered manually via the configurator and bus. this function is bypassed (ratio = 1).1 336. 20089 Speed Draw In [rpm] Float R Speed reference input at SPEED DRAW function. Considered as minimum percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. from the serial link or the field bus. serial line or bus. 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. The Jog function is separate from the Motor potentiometer function. Considered as maximum percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. with the command entered from the keypad. serial line or bus. The command can be sent through keyboard. terminals.5 (Referred to Full Scale Speed). 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. from digital inputs. serial line or bus. Motor Pot Dec [msec] Long R/W 4000 0 IPA20003 Speed reference deceleration time. Changes are made by setting a ramp time. If Motor Pot Mode = Add To Ramp Ref: the drive main ramp (RAMP menu) is overwritten by Motor Pot Acc. If Motor Pot Mode = Add To Ramp Ref: the drive main ramp (RAMP menu) is overwritten by Motor Pot Dec. serial line or bus. [s] 0 … 6553. Motor Pot Lo Lim [%] Float R/W 100 0 200 Lower limit of the motor potentiometer output reference.IPA Description [Unit] Format Access Default Min Max MOT POT MOTOR POT The Motor potentiometer function allows the speed of the drive to be varied. If Motor Pot Mode = Speed Ref Multip: the drive main ramp (RAMP menu) is completely independent from Motor Pot Dec. SIEIDrive . The parameter can be set through keyboard. Motor Pot Acc [msec] Long R/W 4000 0 IPA20003 Speed reference acceleration time.XVy-EV User’s Guide Speed Sel Bit 0 Speed Sel Bit 1 Speed Sel Bit 2 Motor Pot En Motor Pot Up Motor Pot Down Motor Pot Reset Motor Pot Memo Motor Pot Rev Jog Reference I/O Parameter Parameter Internal variable Chapter 10 . The parameter can be set through keyboard.5 (Referred to Full Scale Speed). The parameter can be set through keyboard. The Motor-potentiometer reference can be added or multiplied with the output from the ramp. If Motor Pot Mode = Speed Ref Multip: the drive main ramp (RAMP menu) is completely independent from Motor Pot Acc. [s] 0 … 6553. Torque Jog CW Speed Ref 1(rpm) Jog CCW Torque Speed Limit Reverse End Run Rev End Run Forward Ramp In = 0 Reference = 0 Ramp Speed Draw Output In Ramp Enable Jog Enable Speed Draw En Jog En & Speed Draw Out Pos Speed Limit Speed Reference X * (-1) Speed Ref 2 (rpm) Act SpdDrw Ratio Motor Pot Mode Speed Draw Ratio A M Pot mode Multi Speed Index Multi Speed Conf M Pot Output Motor Pot Up Lim Motor Pot Lo Lim Motor Pot Acc&Dec Motor Pot Init Motor Pot Mode Multi Ramp Index A Motor Pot Output 1 2 3 Neg Speed Limit Jog Speed Limit Multi Ramp Conf Ramp Sel Bit 0 1 7 MPOT Ramp Sel Bit 1 22502 22503 22504 22505 Motor Pot Up Lim [%] Float R/W 100 0 200 Upper limit of the motor potentiometer output reference.Parameters and Functions • 155 . serial line or bus. The command can be sent through keyboard. If Motor Pot Mode = Speed Ref Multip: after Start. terminals. 0 = Disabled 1 = Enabled Motor Pot Reset [--] Float R/W 0 0 1 Reset memory and initialisation of Motor Pot Output to a value set in Motor Pot Init. serial line or bus. serial line or bus. Note: if the Speed Ratio parameter is set to analog input. The parameter can be set through keyboard. serial line or bus. serial line or bus. terminals. serial line or bus. 0 = Add to Ramp Ref Speed reference is added to Speed Ref 1 = Ramp Ref Multip The motor potentiometer acts as a Speed Ref multiplier. Motor Pot Dir [--] Bool R/W 0 Polarity inversion of speed reference. this takes the priority over the motorpotentiometer function. The command can be sent through keyboard. If Motor Pot Mode = Add To Ramp Ref: after Start. 0 … 200% Referred to Full scale speed if Motor Pot Mode = Add To Ramp Ref. In this case. terminals.22509 changed from 1 to 0 by user -> 22506 reset automatically = 0 Motor Pot Memo [--] Float R/W 0 0 1 Storage of reference setting in memory 0 = Disabled Restart from default configuration If Motor Pot Mode = Add To Ramp Ref: the speed reference is set to the value shown in Motor Pot Lo Lim. The command can be sent through keyboard.22509 changed from 0 to 1 by user -> 22506 reset automatically = 100 . 1 = Enabled Storage of last speed or speed ratio set. 0 1 22511 22501 156 • Chapter 10 . Considered as percentage of main speed reference multiplication if Motor Pot Mode = Speed ref Multip. serial line or bus. the motor accelerates automatically up to the preset speed. Motor Pot Output [%] Float R Monitor for motor potentiometer setting 0 … 200%. Motor Pot Mode [--] Enum R/W 0 0 1 Operational mode of the motor potentiometer. terminals. 22510 If this parameter is modified parameter 22506 must be reinitialised: .Parameters and Functions SIEIDrive . terminals. If Motor Pot Mode = Speed Ref Multip: the speed ratio is set to 100%. the motor follows the speed reference multiplied by the preset ratio.IPA Description [Unit] Format Access Default Min Max 22506 Motor Pot Init [%] Float R/W 0 0 Initialisation of the motor potentiometer output reference. 0=Forward direct 1=Reverse reversed reference The command can be sent through keyboard. the drive Speed Draw function is used.XVy-EV User’s Guide . 100 22507 22508 22509 Motor Pot En [--] Enum R/W 0 0 1 Enabling of motor potentiometer function. 0 = Disabled 1 = Enabled Reset The command can be sent through keyboard. The command can be sent through keyboard. The function is activated automatically for a cut-in threshold of around 78% of normal operating voltage of the DC Link (e. the threshold is 440 V DC).Parameters and Functions • 157 . SIEIDrive .. Brake Enable [--] Enum R/W 0 0 1 0 = Disabled Disabled brake function.XVy-EV User’s Guide Chapter 10 . the motor speed is controlled by a PI regulator. The choice is made from the Powerloss Config. The function's activation can be detected by the programmable PL Stop Active parameter on the digital output. Digita Input = 0 Virtual Enable (DI) Start / Stop (DI) Drive Enable (DO) Brake ON Delay Brake ON Delay Ramp Reference Speed (*) Brake Command (DO) Brake ON Spd Thr 8msec Brake OFF Delay 8msec Brake OFF Delay 8msec Brake OFF Delay (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) 20600 Note! In case an alarm occurs.IPA Description [Unit] Format Access Default Min Max BRAKE CONTROL The brake function allows to control in a suitable way the motor emergency brake with a drive digital output programmed as [20] Brake Command. The gains on the PI regulator are set via P Loss Prop Gain and P Loss Int Gain.g. There are two operating modes implemented: Coast through and Emergency Stop. When the function activation threshold is detected. 1 = Enabled Enabled brake function Brake OFF Delay [sec] Float R/W 0 0 Delay stated in seconds from the brake opening command to the reference enabling. The drive enabling and disabling requires the use of a digital input programmed as [28] Virtual Enable. 10 10 20000 20601 20602 20603 POWERL WERLOSS POWERLOSS The Powerloss function controls the loss of power whether transient or long term. keeping the DC link voltage value high.: for a 400 V AC supply. Brake ON Delay [sec] Float R/W 0 0 Delay stated in seconds from the brake closing command to the drive disabling (non-torque motor). parameter. the behavior is the same as the one used for the Digital Input 0 drop. Brake ON Spd Thr [rpm] Float R/W 100 0 Speed threshold closing the brake in case an alarm occurs or the digital input 0 drops out. Coast-through mode This mode is designed to allow the controlled motor to pass through a mains dip with as little loss of speed as possible. When running in Powerloss mode. the system is controlled so as to use the motor’s kinetic energy. the output controlling the brake drops out when the motor speed is lower than the programmable threshold. In case an alarm occurs or the digital input 0 drops out during the functioning procedure. in order to maintain the DC Link voltage constant at a predefined value of 12% above the voltage drop threshold. when the power returns. 158 • Chapter 10 . 18138 PL Mains status [--] Bool R/W 0 0 1 It signals the mains voltage reset to the drive. serial line or bus.1 0 FLT_MAX Ramp value used for activation of Emergency stop function algorithm. to permit synchronised stop. the drive stops in Main Power Loss (A16) alarm conditions. The drive can be notified that the mains voltage is restored via the PL Mains Status parameter or via a digital input. 18134 P Loss Ramp [ms/krmp] Float R/W 336. When the parameter value returns to the high state. 0 = Off 1 = On 18130 Powerloss Config [--] Enum R/W/* 0 0 2 Configuration of Powerloss function.XVy-EV User’s Guide . provides the speed reference (Motor Speed / Speed Reference). or the motor speed drops too low to allow kinetic energy to be recovered. The command can be sent through keyboard. While operating in Powerloss the drive current limit is set with P Loss Trq Limit. and if the motor speed is above the threshold set in P Loss NoRes Thr. If the power loss is permanent.IPA Description [Unit] Format Access Default Min Max The function is automatically deactivated when the mains power returns. the drive reduces the output frequency according to the P Loss Ramp setting. 20088 P Loss NoRes Thr [rpm] Float R/W 10 0 100000 Speed threshold below which operation can no longer be restored to the state prior to a break in power. including where mains power is lost. recharging the DC Link to the value specified in the P Loss Volt Ref parameter. the drive stops in the Main Power Loss (A16) alarm conditions. The motor speed is then controlled via a PI regulator and regulated to keep the DC Link voltage constant. When the motor speed drops below the threshold set in P Loss Spd 0 Thr. It can be used as a speed reference multiplier for the other motors installed on the machine. 18136 P Loss Spd 0 Thr [rpm] Float R/W 10 0 FLT_MAX Main Loss alarm (A 16) activation threshold. programmable digital input. with the standard system ramp (RAMP menu). 0 = Disabled 1 = Coast . 18132 P Loss Int Gain [--] Int R/W 500 0 32767 Integral gain of Powerloss function regulation algorithm. causing the motor to operate as a generator.Parameters and Functions SIEIDrive . restoring the motor to the operating conditions prior to the break. Emergency Stop mode This mode is designed for use in applications where the motor or motors installed in a machine have to be stopped in a controlled and synchronised way. that can be set on the analogue output..Through 2 = Emergency Stop 18131 P Loss Prop Gain [--] Int R/W 500 0 32767 Proportional gain of Powerloss function regulation algorithm. The gains on the PI regulator are set via P Loss Prop Gain and P Loss Int Gain. 18135 P Loss Trq Lim [%] Float R/W 100 0 FLT_MAX Maximum value of braking torque in Emergency Stop phase. 18133 P Loss Volt Ref [V] Float R/W 790 100 820 Reference value for Emergency stop function algorithm. When the function activation threshold is detected. The PL Next Factor parameter. the system accelerates the motor again to the operating conditions prior to the break. DRIVE CONFIG / Control Mode -> Position Caution! In order to perform a right positioning. Loss Active [--] ENUM R 0 0 1 Power loss function activity state. Absolute mode: . to permit synchronised stop. There are 8 point-point conditions available. the drive has to reach the position 0 (or homing position) at least once. When the home position has been found. and with options of various speed and acceleration settings for each position.Self-learning measurements .Position Mode parameter= [0] Absolute : used to vary distances between stations.Position reference from analogue input . configurable in absolute or relative mode. It can be used as a speed reference multiplier for the other motors installed on the machine. The parameter can be set to a programmable analog output. with constant acceleration profile. the default mode is however Speed Control.Position Mode parameter= [1] IncAbs : movements are incremental. (user unit). It is possible to perform a new 0 search (or homing) at any moment by rising the digital input programmed as Pos zero search. it is maintained till the drive is switched off or reset. . the parameters can be set: Pos Preset X Setting initial sector Pos Speed X Setting speed Pos Acc X Setting acceleration Pos Dec X Setting deceleration The parameters for managing functions are in the Position menu: . allowing easier return to the zero position (home).. For each movement.Parameters and Functions • 159 . 4000.XVy-EV User’s Guide Chapter 10 . 6000.Find Zero .Position Mode parameter = [2] Incremental : movements are incremental with respect to the starting position Example: if the selected position preset is 2000 u. by modifying the position of each individual station. and in the event of an unwanted stop.IPA Description [Unit] Format Access Default Min Max 18137 20087 PL Next Factor [--] Float R Provides the speed reference (Motor Speed / Speed Reference). with each Pos start pos command the position increases by 2000 u. 0 = Not Active 1 = Active POSITION The drives can be configured in Position Control. Example: if the preset position is 2000 u.u. in absolute steps.u. the destination settings are 2000.u.Sequential position control (multi-position controller) Zero search ( Pos 0 search ) The zero search phase can be performed following different procedures: AUsing the zero sensor and the encoder slot (default mode) SIEIDrive .Position start . Relative mode: . XVy-EV User’s Guide . The motor stops at the first encoder slot after freeing the sensor (low POS 0 Sensor). 160 • Chapter 10 . The Inside Index Src parameter allows to define if the encoder index corresponding to zero is internal or external to the sensor. (DI) Enable (DI) POS 0 Search (DI) Pos 0 Sensor Index encoder Home Spd Ref Speed (*) Home Fine Spd Home Src Direc = positive Zero Sensor En = enabled (DO) Pos Zero Found Zero Index En = enabled (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) 1) 2) 3) Enable the drive: "Enable" digital input with a high logic status.IPA Description [Unit] Format Access Default Min Max BCDA- Using only the zero sensor Using the encoder slot With parameter IPA 30045.Parameters and Functions SIEIDrive . on the following pages. When the motor receives the POS 0 Search command. The position of the encoder slot is acquired as position 0. For further information see the ZERO FOUND CONFIG menu. Using the zero sensor and the encoder slot (default mode): Zero Sensor En = Enabled. The motor stops at the first encoder slot after freeing the sensor (low POS 0 Sensor) The position of the encoder slot is acquired as position 0. Zero Index En = Enabled. the motor changes its rotation direction and the active speed reference becomes Home Fine Spd. If the sensor is used at the motor start up (high POS 0 Sensor) the motor starts rotating in an opposite direction as compared to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference. it starts moving in the direction stated by the Home Src Direc parameter (positive = motor clockwise rotation direction) with the Home Spd Ref reference. Enable (high logic status) the digital input programmed as POS 0 Search. When the sensor is used (high POS 0 Sensor ).POS Memo 0". 0 Pos at Startup (ZERO FOUND CONF menu) also see "Self-tuning positions . The Zero Sensor Edge parameter allows to choose the active edge of the zero sensor. SIEIDrive . For further information see the ZERO FOUND CONF menu. the motor changes its rotation direction and the active speed reference becomes Home Fine Spd. Zero Index En = Disabled. If the sensor is used at the motor start up (high POS 0 Sensor) the motor starts rotating in an opposite direction as compared to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference.Parameters and Functions • 161 . This position is acquired as position 0. The motor stops after the sensor has been freed (low POS 0 Sensor). The motor stops after the sensor has been freed (low POS 0 Sensor ). When the sensor is used (high POS 0 Sensor). When the motor receives the POS 0 Search command. (DI) Enable (DI) Pos 0 search (DI) Pos 0 sensor Home Spd Ref Speed (*) Home Fine Spd Home Src Direc = positive Zero Sensor En = enabled (DO) POS Zero Found Zero Index En = disable (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) 1) 2) 3) Enable the drive: "Enable" digital input with a high logic status.IPA Description [Unit] Format Access Default Min Max B- Using only the zero sensor Zero Sensor En = Enabled.XVy-EV User’s Guide Chapter 10 . it starts moving in the direction stated by the Home Src Direc parameter (positive = motor clockwise rotation direction) with the Home Spd Ref reference. Enable (high logic status) the digital input programmed as POS 0 Search. This position is acquired as position 0. The Zero Sensor Edge parameter allows to choose the active edge of the zero sensor. This position is acquired as position 0. Enable (high logic status) the digital input programmed as POS 0 Search. the motor starts rotating in a direction opposite to the one stated by the Home Src Direc parameter (positive = the motor rotates in an anti-clockwise direction) with the Home Fine Spd reference. but the motor does not change its rotation direction. (DI) Enable (DI) Pos 0 search Index encoder Speed (*) Pos speed line 0 POS SENSOR SEARCH DIR = positive ZERO SENSOR ENABLE = disable (DO) Pos Zero Found ZERO INDEX ENABLE = enabled (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) NOTE ! If Zero Sensor En = Disabled and Zero Index En = Disabled by rising POS 0 Search the motor stands still and the home search is not performed. the motor changes its rotation direction maintaining the Home Spd Ref reference speed. The motor stops at the first encoder slot and acquires this position as 0. Zero Index En = Enabled 1) 2) 3) Enable the drive: "Enable" digital input with a high logic status. If in the A and B condition the limit switch is found (End Run Forward if the speed is positive and End Run Reverse if the speed is negative) before using the sensor.Parameters and Functions SIEIDrive .IPA Description [Unit] Format Access Default Min Max C- Using the encoder slot Zero Sensor En = Disabled. This is useful when the 0 sensor is not placed at one of the stroke ends. the active speed reference is Home Fine Spd. 162 • Chapter 10 . When the motor receives POS 0 Search command.XVy-EV User’s Guide . When the sensor is used (high POS 0 Sensor). The motor stops when the sensor is freed (low POS 0 Sensor). (They are used to state in a binary way the positioning value.4. There are 64 registers where it is possible to store the desired values and to recall them via digital inputs programmed as Pos Preset 0. The only difference is that in the home point the position is equal to -Home Pos Offset.Home Pos Offset as compared to the encoder slot.2.1. the acceleration and deceleration ramp is the same for them all.5. Pos An Mode = 1 SIEIDrive . during the zero search the motor behaves as previously described. The motor. Note: Position Start At the end of the zero search phase it is possible to carry out the position start. For each value of the first 8 registers it is possible to set a maximum speed and a personalized acceleration and deceleration ramp. starts rotating with the reference Pos Speed and reaches the set value.IPA Description [Unit] Format Access Default Min Max (DI) Enable (DI) Pos 0 search (DI) End Run forward (DI) Pos 0 Sensor Index encoder Home Spd Ref Speed (*) Home Fine Spd Home Src Direc = positive Zero Sensor En = enabled (DO) Pos Zero Found Zero Index En = enable (*) Speed = 100 ms Filtered Actual speed (Flt Act Spd 100) If an offset is set for the zero position (Home Pos Offset different from 0). 0 Pos at Startup (ZERO FOUND CONF menu) Enable parameter IPA 30045. It is not necessary to use them all. when the drive (enabled) receives the POS Start Pos command. 0 Pos at Startup (ZERO FOUND CONF menu) Next time the drive is turned on it will sample the position of the encoder which will be acquired as Zero position (Home). If they have not been programmed. the speed. D1) 2) With parameter IPA 30045. Position Mode = 1) with continuous sampling enabled (IPA 30099.Parameters and Functions • 163 . the initial zero position will be overwritten. Through the Home Pos Offs En parameter it is possible to stop the motor at 0 user units.XVy-EV User’s Guide Chapter 10 . a movement of .3. i. Position reference from analogue input For absolute positioning (IPA 30091. If a further zero search is made with one of the above methods. the bits are set at 0). As for the other registers.e. . POS Memo Pos: (see IPA 20101) it stores the present position as a value xx ..Parameters and Functions SIEIDrive . IPA 30097. If the zero position is stored. The following parameters control the sequence M Pos X Progress M Pos X Dwell M Pos X Event M Pos X Next Pos At the end of each position setting. as long as certain conditions are fulfilled. This allows a composite movement to be executed. 164 • Chapter 10 .63) Position Torque Pos Return & Ramp Pos Zero Found Position Mode Pos Return Speed Pos Preset 0 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Preset 1 Pos Preset 0 Pos Preset 0 Pos Preset 1 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Preset 1 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Return Acc Pos Return Dec Pos 0 Search Pos Return to position return Zero search POS Memo 0: (see IPA 20101) it stores the present position as a zero position. this parameter enables or prevents movement to the next position. Value Self-acquisition Value acquisition function Pos Start Pos & Pos Zero Found Preset Index Ramp Speed limit Current limit Position reference Pos Start Pos & Pos Zero Found Preset Index Pos Preset Conf Unit Per Rev Position set Pos Preset 0 Pos Preset 1 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Preset 6 Pos Preset 7 Pos Preset (8. Other parameters dedicated to the function: IPA 30098. Pos An Wind Del. The sampled reference will go from Min Prs Abs Val to Max Prs Abs Val Example: 0V = Min Prs Abs Val. Pos An Stdy Wind. the value is considered to have been found (a further zero search is not necessary to perform the positioning procedure). 10V = Max Prs Abs Val If 30099 Pos An Mode = Continuous.63) Speed set Pos Speed 0 Pos Speed 1 Pos Speed 2 Pos Speed 3 Pos Speed 4 Pos Speed 5 Pos Speed 6 Pos Speed 7 Pos Speed (8.. If 30099 Pos An Mode = Step.63) Ramp set Pos Acc/Dec CW/CCW 0 Pos Acc/Dec CW/CCW 1 Pos Acc/Dec CW/CCW 2 Pos Acc/Dec CW/CCW 3 Pos Acc/Dec CW/CCW 4 Pos Acc/Dec CW/CCW 5 Pos Acc/Dec CW/CCW 6 Pos Acc/Dec CW/CCW 7 Pos Acc/Dec (8. and when it is deactivated the value is frozen as the final position. Pos An Filter.XVy-EV User’s Guide . IPA 30099. Sequential position control (multi-position controller) When a position is completed (within the first eight) it is possible to continue to follow it with any subsequent movement. the analog reference is followed as long as the POS-Start Pos command remains active. or by the digital input if Pos Preset Conf has been set as Digital Input. after which sampling is deactivated (even if POS-Start Pos is still active).IPA Description [Unit] Format Access Default Min Max ) an analogue input can be sampled to set the position reference Pos Preset 0. the analog reference is sampled by enabling the POS-Start Pos command when the engine reaches the specified position. Pos An Mode . IPA 30096. The register where the value has to be stored is stated by the Preset Index parameters if the Pos Preset Conf parameter has been set as Parameter. Sets the delay time for forward movement Setting the forward movement following an event from digital or field bus inputs Setting of next positioning step. Parameters and Functions • 165 .IPA Description [Unit] Format Access Default Min Max The forward movement may take place: • with a delay.Setting parameters in absolute mode . it moves on from the stop point. The event is a value given by the digital or field bus inputs which equals M Pos X Event • Combination of both the above: after a period waiting for an event to be performed.Event definition: with three digital inputs. set in M Pos X Dwell • following an event. vx = speed Movement to the next station takes place when the micro-switches are in position. Multi Pos Index Actual Event Start on Edge Start on Edge Example of use of Multi-position controller: Repeated movement of a conveyor belt Station 1 Station 2 Station 3 Station 4 d1 d2 d5 d3 d4 v va vb vb va vc dx = distance between stations. display and interrupt the sequence: Menu POSITION Parameter Multi Pos Enable [46] MultiPos Abort Function Enabling multi-position controller Command from digital or field bus input: Interrupts position sequence. as the command is cut. and in each case after a minimum preset time. Sector in execution Value of variable Event. is compared to M Pos X Event Enabled: with Multi Pos Enable = ON..XVy-EV User’s Guide Chapter 10 . Interruption possible with POS Start Pos disabled or with drive disabled. Disabled: with the POS Start Pos command it advances. Start on Edge is always Disabled. the sector will be chosen according to POS Preset. As the next command is given. . it stops. Pos Actual Event can be set from 0 to 7 Digital Input 4 = POS Event Bit 0 Digital Input 5 = POS Event Bit 1 Digital Input 6 = POS Event Bit 2 SIEIDrive .POSITION \ POSITION FUNC Menu Position Mode = Absolute The positions shown are absolute with respect to zero (home) Multi Pos Enable = On . The command POS Start Pos selects the initial sector as a function of POS Preset The following parameters are available to enable. At next POS Start Pos command. so that the digital input 2 is high. MPos 8 Progress setting None note default 18123 30000 Max Pos Error [deg] Float R/W 90 0 2880 Maximum position error which. waits 100 msec waits until Pos Actual Event word equals 3.Setting five presets for the position (Pos Preset 0.. if overcome. advancement to Pos Preset 1 > Menu POSITION\Pos Preset 1 Parameter Pos Preset 1 Pos Speed 1 MPos 1 Progress MPos 1 Dwell MPos 1 Event MPos 1 Next Pos setting d1+d2 vb Dwell+Event 100 7 2 note advance to the next position setting arrived at station 2. 1. advancement to Pos Preset 2 > Menu POSITION\Pos Preset 2 Parameter Pos Preset 2 Pos Speed 2 MPos 2 Progress MPos 2 Dwell MPos 2 Event MPos 2 Next Pos setting d1+d2+d3 vb = Dwell+Event = 100 =1 3 note advance to the next position setting arrived at station 3... 2. by setting a negative value it is possible to combine positive positioning procedures with motor anti-clockwise rotations. so that the digital inputs 4. Unit Per Rev [--] Float R/Z/* 1000 -10000 100000 Setting of distance (in u. so that the digital inputs 4 and 5 are high. 5 and 6 are high. so that the digital input 4 is high. advancement to Pos Preset 0 > Menu POSITION\Pos Preset 5 . causes the intervention of the "(A 29) Position error" alarm in the "Els" or "Position" condition. advancement to Pos Preset 4 > Menu POSITION\Pos Preset 4 Parameter Pos Preset 4 Pos Speed 4 MPos 4 Progress MPos 4 Dwell MPos 4 Event MPos 4 Next Pos setting 0 vc Dwell+Event 100 5 0 note Home advance to the next position setting arrived at home waits 100 msec waits until Pos Actual Event word equals 5. 8 Parameter MPos 5 Progress . advancement to Pos Preset 3 > Menu POSITION\Pos Preset 3 Parameter Pos Preset 3 Pos Speed 3 MPos 3 Progress MPos 3 Dwell MPos 3 Event MPos 3 Next Pos setting d1+d2+d3+d4 va Dwell+Event 100 2 4 note advance to the next position setting arrived at station 4.u.IPA Description [Unit] Format Access Default Min Max .Parameters and Functions SIEIDrive .XVy-EV User’s Guide . so that the digital inputs 4 and 5 are high. waits 100 msec waits until Pos Actual Event word equals 1. waits 100 msec waits until Pos Actual Event word equals 2. 166 • Chapter 10 . waits 100 msec waits until Pos Actual Event word equals 7. 3 and 4) > Menu POSITION\Pos Preset 0 Parameter Pos Preset 0 Pos Speed 0 Pos Acc 0 Pos Dec 0 MPos 0 Progress MPos 0 Dwell MPos 0 Event MPos 0 Next Pos setting d1 va xxx xxx Dwell+Event 100 3 1 note will not be relayed to the other settings will not be relayed to the other settings advance to the next position setting arrived at station 1. Parameter used for the conversion of the position into engineering units..) covered by one motor revolution. As example let’s consider a mechanical system made with a 10 mm pitch ballscrew and a 1:3 gear ratio.IPA Description [Unit] Format Access Default Min Max 30001 30002 30010 30011 30012 Unit Per Div [--] Float R/Z/* 1 1 10000. Setting of the speed reference during the positioning procedures. and to avoid rounding errors introduced by mechanical ratios. the motor stops in accordance with the IPA 30043 Stop by Ramp. 1 = Enable During the positioning phase the motor can be stopped only disabling the drive.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63).. the motor stops without ramp if the POS Start Pos command is disabled during a positioning phase. Pos Reach Behav [--] Enum R/W 0 0 1 0 = Disabled 1 = Enable 0 = Disabled 1 = Enabled 30013 30014 30042 30043 30044 Pos Start Pos Pos Start Pos Pos Reached Pos Reached SIEIDrive .Parameters and Functions • 167 . 1 = Enable If Start on Edge = Disabled.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63). Start on Edge [--] Enum R/W 0 0 1 0 = Disabled If the POS Start Pos command is disabled during a positioning phase.XVy-EV User’s Guide Chapter 10 . The change to this parameter is active only after the drive is reset.1 0 IPA21111 Setting of the clockwise deceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63). Pos CCW Acc [ms/krpm] Float R/W 336. If we want to express the distances in millimeters we can set the parameters as follows: Unit Per Rev (IPA 30000) = 10 Unit Per Div (IPA 30001) = 3 Multi Pos Enable [--] Bool R/W 0 0 1 Enabling multi-position controller 0 = Disabled 1 = Enabled Pos CW Acc [ms/krpm] Float R/W 336. Pos CCW Dec [ms/krpm] Float R/W 336. Stop by Ramp [--] Enum R/W 0 0 1 0 = Disabled If Start on Edge = Disabled. the motor stops with a ramp time set in the Pos Stop Dec parameter if the POS Start Pos command is disabled during a positioning phase.0 This parameter is used as divider to calculate the number of motor pulses per user unit. Pos CW Dec [ms/krpm] Float R/W 336. parameter.1 0 IPA21111 Setting of the counterclockwise deceleration rate during the positioning procedures (ramp rate active for the positions set by the registers 8 to 63) Position Speed [rpm] Float R/W 3000. The change of this parameter is active only after a homing phase. The change to this parameter is active only after the drive is reset.0 0 IPA20003 It is active if the Pos_speed analog input is not programmed. IPA Description [Unit] Format Access Default Min Max 30057 30090 30091 Back Lash Window [u.u.] Float R/W 2000.0 0 IPA30018 This parameter sets the width of the position window where it is possible to correct the positioning errors caused by some mechanical clearance. During the positioning process if the input defined as [1010] POS Memo 0 becomes active the drive will complete the move, but it will be consider that the starting point of the next move command will be the position where POS Memo 0 input become active. If the input defined as POS Memo 0 becomes active outside the position window defined in Back Lash Window, the drive will not start the next position command until new zero search will be completed. This function is active only in “Inc Abs” Preset Index [--] Word R/W 0 0 63 Read parameter if Pos Preset Conf = Digital input. Read/write parameter if Pos Preset Conf = Parameter. It states which position preset is currently used. Position Mode [--] Enum R/W 0 0 1 This parameter states if the positioning values make reference to the zero position or to the actual position. (Relative or absolute moves). 0 = Inc Abs It states that the value of the position register is incremental for absolute pitches. Example: if the position preset is 2000 u.u., the destination values are 2000, 4000, 6000, ... If the positioning procedure is stopped, the new POS Start Pos command ends the previous positioning procedure. 1 = Absolute It states that the value of the position register is absolute as compared to the zero position. Example: If the currently selected position preset is 2000 u.u., with the first command of POS Start Pos the destination position is 2000 u.u. (referred to the zero position); with the following commands (if the register is not modified) the position will not change. 2=Incremental It indicates that the position register setting is incremental compared to the current position. Example: if the preset position presently selected is at 2000 u.u. (user unit), each POS Start Pos command will increase the position by 2000 u.u. If the seeking is interrupted, the next POS Start Pos command will increase the position by 2000 u.u. from the point where the motor stopped. 30094 19113 30004 30016 30081 30093 Pos Stop Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the active clockwise/anti-clockwise deceleration time when the POS Start Pos command is disabled before the in process positioning procedure is completed. Actual Pos Error [deg] Float R Position error used with the “Els” or “Position” condition. Multi Pos Index [--] Int R Displays the sector of Pos Preset in execution during execution of the Multiposition function. Actual Position [u.u.] Float R Read-only parameter. It states the motor present position as compared to the zero position. Destination Pos [u.u.] Float R Read-only parameter stating the destination position in user units. Position Config [--] Dword R Bit-configured parameter with hexadecimal setting. Bit 0: Mapping the IPA 30044 parameter Bit 1: Mapping the IPA 30042 parameter Bit 2: Mapping the IPA 30043 parameter Bit 9: Using the absolute encoder to close the position loop Bit 11: Using the revolver to close the position loop. Bit 12: Using the external encoder to close the position loop. 168 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30800 Bit 16: Mapping the IPA 30037 parameter Bit 17: Mapping the IPA 30038 parameter Bit 18: Mapping the IPA 30036 parameter Bit 19: Mapping the IPA 30039 parameter Bit 20: Mapping the IPA 30040 parameter Bit 21: Mapping the IPA 30041 parameter Pos Actual Event [--] Word R Displays the present state of the events from the digital or bus inputs active in the function Multi position controller to advance from one position to the next. POSITION LIMIT 30015 Position Torque [%] Float R/W 100 0 IPA22012 Setting of the maximum torque during the positioning procedures (active for all positions set in the records from 0 to 63). Min Preset Value [u.u.] Float R/Z/* -4194304 -223 223-1 Parameter stating the minimum value to be set in the different position registers. In case the setting of a position is lower than this value, such setting is not accepted. Max Preset Value [u.u.] Float R/Z/* 4194303 -223 223-1 Parameter stating the maximum value to be set in the different position registers. In case the setting of a position is higher than this value, such setting is not accepted. Max Prs Abs Val [u.u.] Float R/W 0 -223 223-1 Software limit switch: maximum absolute value. When it is equal to Min Prs Abs Val, it is not enabled. If the destination value is higher than this value, the command is not performed and the drive enables the digital output [1008] Pos Out Of Lim. Min Prs Abs Val [u.u.] Float R/W 0 -223 223-1 Software limit switch: minimum absolute value. When it is equal to Max Prs Abs Val, it is not enabled. If the destination value is lower than this value, the command is not performed and the drive enables the digital output [1008] Pos Out Of Lim. 30017 30018 30056 30055 POS THR CONFIG 30050 Pos Abs Thr [u.u.] Float R/W 0 -223 223-1 Setting of the threshold indicating the machine has passed the position referred to the zero position. When the position is higher than the value set in this parameter, the digital output programmed as [1004] Pos Abs Thr goes to +24V. Pos Exceeded [u.u.] Float R/W 0 0 IPA30018 Setting of the threshold signaling the "overcome position" referred to the last positioning procedure: | present position - starting position | > Positon Thr, the "Position Exceeded" output is set. Pos 0 Thr Offset [u.u.] Float R/W 0 0 IPA30018 Setting the offset of the position threshold. When the absolute value position is lower than the value set in this parameter, the digital output programmed as [1001] Position Zero is active. Pos Thr Close 1 [u.u.] Float R/W 0 0 IPA30018 Reached position threshold 1. The digital output reaches high logic status when the motor present position is equal to the destination position minus the Pos Thr Close 1 parameter Pos Thr Close 2 [u.u.] Float R/W 0 0 IPA30018 Reached position threshold 2. The digital output reaches high logic status when the motor present position is equal to the destination position minus the Pos Thr Close 2 parameter Pos Window [u.u.] Float R/W 0 0 IPA30018 This parameter, together with Pos Window Time, defines the behavior of the [1002] Pos Reached digital output. The output is set when, after terminating the positioning procedure, the present position is equal to the destination position +- Pos Window for a period equal to Pos Window Time. Chapter 10 - Parameters and Functions • 169 30051 30052 30053 30054 30058 SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30059 30060 Pos Window Time [sec] Float R/W 0 0 30 This parameter sets the time delay for the correct positioning inside Pos Window, IPA 30058). Used with digital output set to [1002] Pos Reached. Pos Window Tout [sec] Float R/W 0 0 This parameter defines the period of time within which the position is considered as not reached. Used with digital output set to [1010] Pos Not Reached (see IPA 30058). 0 POS PRESET 0 30100 30200 Pos Preset 0 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 0. Pos Speed 0 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 0. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. Pos CW Acc 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 0. Pos CW Dec 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 0. Pos CCW Acc 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 0. Pos CCW Dec 0 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 0. Pos 0 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 0 Dwel 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 0 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 0 Dwell and then until the Pos Actual Event parameter equals MPos 0 Event Pos Dwell 0 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. Pos Event 0 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. MPos 0 Next Pos [--] Word R/W 1 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 30300 30400 30380 30490 30500 30600 30700 30710 ANALOG POS REF 30096 Pos An Wind Del [msec] Word R/W 20 0 65 Delay time after entering the Pos An Stdy Wind window to ensure that the position reference is stable. Usually, Pos An Wind Del should be increased according to the Pos An Stdy Wind increase. Pos An Stdy Wind [u.u.] Float R/W 0.5 0 Windows expressed in u.u., within which the position analog reference can oscillate without changing Pos Preset 0. The window is controlled according to the last stable position. An increase of the Pos An Stdy Wind value as regards the default value will result in a stability increase, but also in a delay in following the required position. Pos An Stdy should however be set to a value higher than the max. position resolution defined by the analog input. 30097 170 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30098 30099 Example: Min Prs Abs Val = 0 [u.u.], Max Prs Abs Val = 10000 [u.u.], 10000 / 2047 = 4.88, set Pos An Stdy Wind = 2 * 4.88 = 10[u.u.] Pos An Filter [msec] Float R/W 0.2 0 10 Filter on sampling of Position 0 from analogue input. Pos An Mode [--] Bool R/W 0 0 1 Enables continuous sampling of the Position reference 0 (typically where it is assigned to an analogue input); this function is active only when the Position Mode parameter is set to Absolute. 0 = Step 1 = Continuous POS PRESET 1 30101 30201 Pos Preset 1 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 1. Pos Speed 1 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 1. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. Pos CW Acc 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 1. Pos CW Dec 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 1. Pos CCW Acc 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 1. Pos CCW Dec 1 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 1. Pos 1 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 1 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 1 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 1 Dwell and then until the Pos Actual Event parameter equals MPos 1 Event Pos Dwell 1 [msec] Long R/W 0 Delay in reaching the specified value and moving onto the next station. Pos Event 1 [--] Word R/W 0 Value of Pos Actual Event variable, from which to move on to the next value. MPos 1 Next Pos [--] Word R/W 2 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 0 0 0 32000 65535 7 30301 30401 30481 30491 30501 30601 30701 30711 POS PRESET 2 30102 30202 Pos Preset 2 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 2. Pos Speed 2 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 2. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. Chapter 10 - Parameters and Functions • 171 SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 30302 30402 30482 30492 30502 Pos CW Acc 2 [ms/krpm] Float R/W 336.1 Setting of the clockwise acceleration rate during the positioning phase of preset 2. 0 IPA21111 30602 30702 30712 Pos CW Dec 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 2. Pos CCW Acc 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 2. Pos CCW Dec 2 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 2. Pos 2 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 2 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 2 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in MPos 2 Dwell and then until the Pos Actual Event parameter equals MPos 2 Event Pos Dwell 2 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. Pos Event 2 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable, from which to move on to the next value. MPos 2 Next Pos [--] Word R/W 3 0 7 Setting of next positioning step. 0= Pos Preset 0 ... 7=Pos Preset 7 POS PRESET 3 30103 30203 Pos Preset 3 [u.u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 3. Pos Speed 3 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 3. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. Pos CW Acc 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 3. Pos CW Dec 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 3. Pos CCW Acc 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 3. Pos CCW Dec 3 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 3. Pos 3 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase, waits for the period set with MPos 3 Dwell 2 = Event match When the position is reached before going to the next phase, waits until the Pos Actual Event parameter equals MPos 3 Event 3 = Dwell+Event When the position is reached before going to the next phase, waits for the time set in 30303 30403 30483 30493 30503 172 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide from which to move on to the next value. Pos CCW Dec 4 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 4. SIEIDrive .] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 4 Pos Speed 4 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 4. 7=Pos Preset 7 POS PRESET 4 30104 30204 Pos Preset 4 [u. waits for the period set with MPos 4 Dwell 2 = Event match When the position is reached before going to the next phase. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 4. MPos 3 Next Pos [--] Word R/W 4 0 7 Setting of next positioning step. Pos Event 4 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable. MPos 4 Next Pos [--] Word R/W 5 0 7 Setting of next positioning step. Pos Speed 5 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 5. Pos CCW Acc 4 [ms/krpm] Float R/W 336.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 5. Pos Event 3 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active.u. Pos CW Dec 4 [ms/krpm] Float R/W 336.. 0= Pos Preset 0 . Pos CW Acc 4 [ms/krpm] Float R/W 336. waits until the Pos Actual Event parameter equals MPos 4 Event 3 = Dwell+Event When the position is reached before going to the next phase.u..1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 4.IPA Description [Unit] Format Access Default Min Max 30603 30703 30713 MPos 3 Dwell and then until the Pos Actual Event parameter equals MPos 3 Event Pos Dwell 3 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. from which to move on to the next value. Pos 4 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase. 7=Pos Preset 7 30304 30404 30484 30494 30504 30604 30704 30714 POS PRESET 5 30105 30205 Pos Preset 5 [u.XVy-EV User’s Guide Chapter 10 .1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 4...Parameters and Functions • 173 . waits for the time set in MPos 4 Dwell and then until the Pos Actual Event parameter equals MPos 4 Event Pos Dwell 4 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. 0= Pos Preset 0 . Pos Event 5 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable. waits until the Pos Actual Event parameter equals MPos 6 Event 3 = Dwell+Event When the position is reached before going to the next phase. Pos CCW Acc 6 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 5. waits for the time 30306 30406 30486 30496 30506 174 • Chapter 10 .1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 6. 7=Pos Preset 7 POS PRESET 6 30106 30206 Pos Preset 6 [u. waits until the Pos Actual Event parameter equals MPos 5 Event 3 = Dwell+Event When the position is reached before going to the next phase. waits for the time set in MPos Dwell and then until the Pos Actual Event parameter equals MPos 5 Event Pos Dwell 5 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station. Pos CCW Dec 6 [ms/krpm] Float R/W 336. Pos 5 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase. 0= Pos Preset 0 .Parameters and Functions SIEIDrive . MPos 5 Next Pos [--] Word R/W 6 0 7 Setting of next positioning step. 0 IPA21111 30605 30705 30715 Pos CW Dec 5 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 5.1 Setting of the clockwise acceleration rate during the positioning phase of preset 5. Pos 6 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase...XVy-EV User’s Guide .1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 6. from which to move on to the next value. Pos CCW Dec 5 [ms/krpm] Float R/W 336. waits for the period set with MPos 6 Dwell 2 = Event match When the position is reached before going to the next phase.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 6. Pos CCW Acc 5 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 6. Pos Speed 6 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 6.u. If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active.IPA Description [Unit] Format Access Default Min Max 30305 30405 30485 30495 30505 Pos CW Acc 5 [ms/krpm] Float R/W 336. waits for the period set with MPos 5 Dwell 2 = Event match When the position is reached before going to the next phase.1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 6. Pos CW Dec 6 [ms/krpm] Float R/W 336. Pos CW Acc 6 [ms/krpm] Float R/W 336.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 5. 7=Pos Preset 7 POS PRESET 7 30107 30207 Pos Preset 7 [u. Pos Event 6 [--] Word R/W 0 0 65535 Value of Pos Actual Event variable. Pos CW Dec 7 [ms/krpm] Float R/W 336.] Setting of the position value in the register 8. 7=Pos Preset 7 0 0 65535 7 30307 30407 30487 30497 30507 30607 30707 30717 POS PRESET (8-63) 30108 . 0= Pos Preset 0 .1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 7.1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 7. Float R/W 0 IPA30017 IPA30018 Float R/W 0 IPA30017 IPA30018 SIEIDrive .1 0 IPA21111 Setting of the clockwise acceleration rate during the positioning phase of preset 7. Pos Speed 7 [rpm] Float R/W 0 0 IPA20003 Maximum speed setting during the positioning phase of preset 7.IPA Description [Unit] Format Access Default Min Max 30606 30706 30716 set in MPos 6 Dwell and then until the Pos Actual Event parameter equals MPos 6 Event Pos Dwell 6 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station.. Pos CCW Acc 7 [ms/krpm] Float R/W 336.. waits for the time set in MPos 7 Dwell 7 and then until the Pos Actual Event parameter equals MPos 7 Event Pos Dwell 7 [msec] Long R/W 0 0 32000 Delay in reaching the specified value and moving onto the next station..u. waits until the Pos Actual Event parameter equals MPos 7 Event 3 = Dwell+Event When the position is reached before going to the next phase. waits for the period set with MPos 7 Dwell 2 = Event match When the position is reached before going to the next phase.... If this value is set with 0 (rpm) the Pos Speed parameter in the POSITION menu becomes active. Pos Event 7 [--] Word R/W 0 Value of Pos Actual Event variable. MPos 6 Next Pos [--] Word R/W 7 0 7 Setting of next positioning step. Pos 7 Progress [--] Enum R/W 0 0 3 Setting performance of the Multi-position controller function to reach the required setting 0 = None The position control sequence is interrupted 1 = Dwell When the position is reached before going to the next phase.Parameters and Functions • 175 ..1 0 IPA21111 Setting of the counterclockwise acceleration rate during the positioning phase of preset 7. 0= Pos Preset 0 . Pos CW Acc 7 [ms/krpm] Float R/W 336. 30163 Pos Preset 8 [u.. Pos Preset 63 [u.] Float R/W 0 IPA30017 IPA30018 Setting of the position value in the register 7.. Pos CCW Dec 7 [ms/krpm] Float R/W 336.XVy-EV User’s Guide Chapter 10 . MPos 7 Next Pos [--] Word R/W 0 Setting of next positioning step.] Setting of the position value in the register 63. from which to move on to the next value..u.. from which to move on to the next value.u. IPA Description [Unit] Format Access Default Min Max ZERO FOUND CONF (Zero Configuration) Search with Zero Sensor En (IPA 30037) = Enabled.Parameters and Functions SIEIDrive . Zero Index En (IPA 30038) = Enabled Home Src Direc (IPA 30036) = Positive Speed 1 = Home Spd Ref * Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Inside Index Src (IPA 30039) = Disabled. Zero Sensor Edge (IPA 30040) =Falling Start outside the position sensor Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 2 Speed 2 Speed 2 Speed 1 Speed 1 Speed 2 Inside Index Src (IPA 30039) = Disabled. Zero Sensor Edge (IPA 30040) =Falling Start outside the position sensor Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 2 Speed 2 Speed 1 Speed 1 Speed 2 176 • Chapter 10 . Zero Sensor Edge (IPA 30040) = Rising CW rotation Index Pos O Sensor End Run Forward Start outside the position sensor Speed 1 Speed 2 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 2 Speed 1 Speed 2 Speed 1 Inside Index Src (IPA 30039) = Enabled.XVy-EV User’s Guide . Zero Sensor Edge (IPA 30040) = Rising Speed 1 Speed 2 Speed 2 Start outside the position sensor Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 2 Speed 2 Speed 2 Speed 1 Speed 1 Inside Index Src (IPA 30039) = Enabled. Zero Sensor Edge (IPA 30040) =Falling Start outside the position sensor Speed 2 Speed 2 Speed 2 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 1 Speed 2 SIEIDrive . Zero Sensor Edge (IPA 30040) = Rising CW rotation Index Pos O Sensor End Run Reverse Start outside the position sensor Speed 2 Speed 2 Speed 1 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 2 Inside Index Src (IPA 30039) = Enabled.XVy-EV User’s Guide Chapter 10 .IPA Description [Unit] Format Access Default Min Max Search with Zero Sensor En (IPA 30037) = Enabled. Zero Index En (IPA 30038) = Enabled Home Src Direc (IPA 30036) = Negative Speed 1 = Home Spd Ref * Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Inside Index Src (IPA 30039) = Disabled. Zero Sensor Edge (IPA 30040) = Rising Start outside the position sensor Speed 2 Speed 2 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 1 Speed 2 Speed 2 Speed 2 Inside Index Src (IPA 30039) = Disabled.Parameters and Functions • 177 . Zero Sensor Edge (IPA 30040) =Falling Speed 2 Speed 1 Start outside the position sensor Start inside the position sensor Speed 1 Speed 2 Start outside the Home sensor with End Run sensor Speed 1 Speed 2 Inside Index Src (IPA 30039) = Enabled. IPA Description [Unit] Format Access Default Min Max Search with Zero Sensor En (IPA 30037) = Enabled . Zero Sensor Edge (IPA 30040) =Falling Start outside the position sensor Speed 2 Speed 2 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 1 178 • Chapter 10 .Parameters and Functions SIEIDrive .XVy-EV User’s Guide . Zero Sensor Edge (IPA 30040) = Rising CW rotation Pos O Sensor End Run Forward Start outside the position sensor Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 2 Speed 1 Speed 2 Speed 1 Home Src Direc (IPA 30036) = Positive. Inside Index Src (IPA 30039) = Indifferente. Zero Sensor Edge (IPA 30040) = Falling Start outside the position sensor Speed 1 Speed 2 Speed 2 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 2 Home Src Direc (IPA 30036) = Negative. Inside Index Src (IPA 30039) = Indifferente. Zero Sensor Edge (IPA 30040) = Rising Pos O Sensor End Run Reverse Start outside the position sensor Speed 2 Speed 1 Start inside the position sensor Start outside the Home sensor with End Run sensor Speed 1 Speed 1 Speed 2 Home Src Direc (IPA 30036) = Negative. Inside Index Src (IPA 30039) = Indifferente. Inside Index Src (IPA 30039) = Indifferente. Zero Index En (IPA 30038) = Disabled Speed 1 = Home Spd Ref * Home Max Spd (IPA 30024) 100 Speed 2 = Home Fine Spd (IPA 30027) Home Src Direc (IPA 30036) = Positive. 0 100 Speed reference during the home search.XVy-EV User’s Guide Chapter 10 . stated as a percentage of Home Max Spd Home Fine Spd [rpm] Float R/W 50.0 0 100000 Maximum speed during the home search.1 0 IPA21111 Counterclockwise deceleration during the home search. CCW Home Pos Acc [ms/krpm] Float R/W 336.IPA Description [Unit] Format Access Default Min Max Search with Inside Index Src (IPA 30039) = Indifferent. the home position corresponds to the first code 0 = Disabled placed outside the sensor. Vedere IPA 30041. Zero Index En [--] Enum R/W 1 0 1 0 = Disabled The 0 index of the encoder is not used during the searching of home 1 = Enabled The 0 index of the encoder is used during the searching of home Inside Index Src [--] Enum R/W 0 0 1 If both index and sensor are used. Home Src Direc [--] Enum R/W 0 0 1 Position indicator of the found home.1 0 IPA21111 Clockwise deceleration during the home search. CW Home Pos Dec [ms/krpm] Float R/W 336.0 0 100000 Speed reference while searching the home absolute position. Home Pos Offset [u. Home Spd Ref [%] Float R/W 10 -100.] Float R/W 0 IPA 30017 IPA30018 Offset della posizione di home. 1 = Enabled placed inside the sensor. SIEIDrive . Zero Sensor Edge (IPA 30040) = Indifferent Zero Sensor En (IPA 30037) = Disabled.u. CCW Home Pos Dec [ms/krpm] Float R/W 336. Home Max Spd [rpm] Float R/W 1500. Zero Index En (IPA 30038) = Enabled Home Src Direc (IPA 30036) = Positive Index CW rotation Pos Speed Fine 0 Home Src Direc (IPA 30036) = Negative Index CW rotation Pos Speed Fine 0 30020 30021 30022 30023 30024 30025 30027 30028 30036 30037 30038 30039 CW Home Pos Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Counterclockwise acceleration during the home search.Parameters and Functions • 179 . Zero Sensor En [--] Enum R/W 1 0 1 0 = Disabled The [1015] POS 0 sensor input is not used during the searching of home 1 = Enabled The [1015] POS 0 sensor input is used during the searching of home. 0 = Positive The motor rotates clockwise 1 = Negative The motor rotates counterclockwise.1 0 IPA21111 Clockwise acceleration during the home search. IPA Description [Unit] Format Access Default Min Max 30040 30041 30045 Zero Sensor Edge [--] Enum R/W 0 1 0 The zero sensor is active on the 0 = Rising climbing leading edge 1 = Falling drop wire leading edge Home Pos Offs En [--] Enum R/W 0 0 1 0 = Disable At the end of the zero search procedure, the motor stops on the slot/sensor and the position of the slot/sensor is equal to - Home Pos Offset u.u. 1 = Enable At the end of the zero search procedure, after finding the slot/sensor, the motor movement corresponds to + Home Pos Offset u.u. and its position is 0 u.u. Startup Zero Pos [--] Bool R/W 0 0 1 0 = Disable 1 = Enable If authorised, next time the drive is turned on it will sample the position of the encoder which will be acquired as Zero position (Home). POS RETURN CONF When the digital input programmed as [1012] POS Return becomes high, the motor reaches the Pos Return position with the speed and acceleration stated in this menu. The start for the return phase is the climbing leading edge of the Pos Return input. After the start, it can be stopped with a Fast Stop or by disabling the drive. Example: Forward and return movement: connect the digital output programmed as [1002] Pos Reached to the digital input programmed as [1012] POS Return. When the positioning procedure is over, the position reached output is risen thus causing the return to the starting position. 30164 Pos Return [u.u.] Float R/W 0 IPA30017 IPA30018 Final value of the return movement in user units. 30264 Pos Return Speed [rpm] Float R/W 1000 0 IPA20003 Maximum speed during the return movement. 30364 Pos Return Acc [ms/krpm] Float R/W 336.1 0 IPA21111 Acceleration ramp during the return movement. 30464 Pos Return Dec [ms/krpm] Float R/W 336.1 0 IPA21111 Deceleration ramp during the return movement. BACKLASH RECOV It allows to compensate possible mechanical clearances by performing the positioning procedures in the same direction. Example: Back Lash En = Enable, Back Lash Dir = Positive, Delta Pos = 100 u.u., Speed Comp = 10 rpm, Actual Position = 10000 u.u., Destination Pos = 15000 u.u. As the movement is positive, the drive performs the first positioning procedure at 15100 u.u. (without increasing the reached position output) and a new positioning procedure at 15000 u.u. with a 10 rpm maximum speed. The reached position output is increased at the end of this positioning procedure. Let’s assume to perform a new positioning procedure: Actual Position = 15000 u.u. Destination Pos = 8000 u.u. The movement is negative and the recovery function is not active. 31000 Back Lash En [--] Enum R/W It enables the compensation function of the mechanical allowance: 0 = Disable 1 = Enable 0 0 1 180 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 31001 31002 31003 Back Lash Dir [--] Enum R/W 0 It detects the movement direction: 0 = Positive 1 = Negative NOTE! A positive direction is able to generate a positive position delta. Delta Pos [u.u.] Float R/W 10 u.u. position added or taken away from the destination position. Speed Comp [rpm] Float R/W 100 Maximum speed of the return "positioning" procedure. 0 1 0 0 IPA30018 IPA20003 EL LINE SHAFT In the configuration Electrical line shaft it is possible to provide synchronism between 2 or more motors. The master encoder can be connected to XER or it is possible to use the fast link. Moreover, it is possible to save into the drive up to 4 ratios selectable through 2 programmed digital input as [2001] ELS Ratio Sel B0, [2002] ELS Ratio Sel B1. Whatever ratio is actually selected, it is possible to increase/decrease by two programmed digital inputs as [2003] ELS Inc Ratio ed [2004] ELS Dec Ratio. Connection of a digital encoder using repetition XER XER Master Slave Master XVy-EV: The connector XER give the encoder repetition / simulation to the connector XER of the slave drive. Set up the parameters as follows: - IPA 20036: Aux Enc Type = XER/EXP Rep/Sim - IPA 20035: Enc Rep Sim Cfg = Select encoder repetition or simulation If you select encoder simulation then you must program the correct number of pulses with the parameter PPR Simulation (IPA 20030). Slave XVy-EV: The connector XER receives the encoder repetition / simulation from the connector XER of the master drive. Set up the parameters as follows: - IPA 20036: Aux Enc Type = XER In_EXP Out - IPA 32009: Els Master Sel = XER/EXP Aux Enc Fast link connection instead of encoder connection Master XVy-EV: XT-OUT connector (master), connected to the XT-IN connector (slave) Set up: enable the fast link, parameter Fast Link Addr (IPA 18110) set as 1 (Master) Slave XVy-EV: Connector XT-IN (slave). Set up: enable the fast link, parameter Fast Link Addr (IPA 18110) set as >1 (Slave). The fast link is active only after a reset drive command. SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 181 IPA Description [Unit] Format Access Default Min Max XT-OUT XT-IN Master Slave In applications with a drive master and drive slave it is possible to make a connection with fast link XT-OUT (master) -XT-IN (slave) because from the master encoder frequency is always available at connector XT-OUT. XT-IN XT-IN XT-IN XT-OUT XT-OUT XT-OUT XT-OUT drive master drive slave 1 drive slave2 drive slave 3 The drive slave 1,2,3 are all synchronized with the drive master. In applications where it is necessary to synchronize the drive in cascade, master –slave, where the previous is always the master of the next it is necessary to use both the encoder repetition and the fast link. XT-IN XT-IN XT-IN XT-IN XT-OUT XT-OUT XT-OUT XT-OUT XT-OUT XER XER Drive 2 Slave dr 1 Master dr 3 XER Drive 3 Slave dr 2 Master dr 4 XER Drive 4 Slave dr 3 Master dr 5 XER Drive 1 Master Drive 5 Slave dr 4 32000 32008 Els PPR Master [--] Word R/Z/* 2048 16 65535 Set the number pulses per turn of the master encoder present on the connector XER or on the fast-link. Els Delta Time [sec] Float R/W 1 0 10 This parameter is used together with the programmed digital input as [2003] ELS Inc Ratio and [2004] ELS Dec Ratio. It defines the rate of change from a ratio to a new ratio. This parameter is used together with the parameter Els Delta Ratio. Example: when the Els Inc/Dec ratio inputs are active, the ratio changes according to the value set by Els Delta Ratio (ex. 0.002) in the time set in the Els Delta Time parameter (ex 0.1 sec). Els Master Sel [--] Enum R/W 0 0 2 Setting the master encoder reference source. 0 = XER/EXP Aux Enc Master encoder port XER or expansion encoder input 1 = Fast link Connectors XFL-IN, XFL-OUT 2 = XE Main Encoder Master encoder main port XE 32009 182 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide IPA Description [Unit] Format Access Default Min Max 32010 32011 32012 32013 32014 Els Mec Ratio [--] Float R/W 1 1e-007 20 Setting this parameter equal to : Master mechanical ratio / Slave mechanical ratio The Els Ratio X parameters show directly the ratio/slip between the speed of the slow shafts. Els FL Source [--] Enum R/W 0 0 2 0 = Spd Pos Enc Mst The slave follows the Master encoder which closes the speed/position loop (IPA 20008 Master). 2 = XER Master The slave follows the motor auxiliary encoder. ElsMec Ratio Mul [--] Float R/W 1 1 Multiplication factor in the mechanical ratio for electrical shaft. ElsMec Ratio Div [--] Float R/W 1 1 Divisor factor in the mechanical ratio for electrical shaft. Els Delta Ratio [--] Float R/W 1 IPA32090 IPA32090 Define how much the ratio should increment (or decrement) every cycle of slow task (8msec). Example: if through the digital input a new ratio is selected changing from 1.000 up to 2.000 the change is not immediate but follows a ramp profile with a set increase in this parameter. If Els Delta Ratio is set 1.000 means an increment of 1.000 every 8msec, therefore it changes to the new ratio in 8msec. If Els Delta Ratio is set 0.010 means a change of 0.01 every 8msec, therefore it changes to the new ratio (2.000) in 800msec. Through a programmed digital input, [2005] ELS RampRatioDis it’s possible to disable this time to ramp. 32016 32020 Els Control Mode [--] Enum R/W 0 0 1 Selects the speed control method 0 = Speed The drive is set to speed control 1 = Position The drive is set to position control NOTE! The position error check is not enabled in Speed mode. Els Ratio / Slip [--] Enum R/W 0 0 1 0 = Slip The parameters Els Ratio 0, 1, 2, 3 are not set as ratio but as % of slipping from the Master. For instance 10 % slip correspond to 110% of the speed master, or ratio of 1.1: Els Ratio = 1 + Els Slip / 100 By default, when the ratio is sampled from the analog input, 10V correspond to what is set in parameter 32021 Els Slip Limit. 1 = Ratio If set up to Ratio the ratio is activated. By default, when the ratio is sampled from the analog input, 10V correspond to what is set in parameter 32090 Els Ratio Range. When changing the setting from “Slip” to “Ratio”, check parameters 32014, 32001, 32002, 32003 and 32004. Els Slip Limit [--] Int R/W 100 0 Limit of slippage sampled from analogue input. At default conditions, with 10V on the analog input, the set slippage is Els Slip Limit. The Els Ratio ratio corresponds to 1 + (Slip sampled by analog input / 100). Els Ratio Range [--] Word R/W 8 4 64 Value of max. ratio for ELS. A high value can reduce the ELS accuracy level. Available range: 4, 8, 16, 32 e 64. NOTE! This parameter shows the limits for the ratio between the speed of the motor shafts, therefore for the product Els Mec Ratio * Els Ratio. When changing the values of Els Ratio Range, check parameters 32014, 32001, 32002, 32003 and 32004. 32021 32090 SIEIDrive - XVy-EV User’s Guide Chapter 10 - Parameters and Functions • 183 IPA Description [Unit] Format Access Default Min Max EL SHAFT RATIO It is possible to load into the drive up to 4 ratios selectable through 2 programmed digital input as Els ratio sel bit 0,1 or from parameter. It is also possible to set the 4 ratios via the analog input. The set ratio is calculated as: R = slave speed/master speed. Example: if the master speed is 1000 rpm and the slave must rotate at 2000 rpm it is necessary to set a ratio: Ratio = 2000 rpm / 1000 rpm = 2.000. 32001 Els Ratio 0 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 0 for electric axis. 32002 Els Ratio 1 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 1 for electric axis. 32003 Els Ratio 2 [--] Float R/W 1 IPA32090 IPA32090 Set up speed ratio 2 for electric axis. 32004 Els Ratio 3 [--] Float R/W 1 -IPA32090 IPA32090 Set up speed ratio 3 for electric axis. 32006 Els Ratio Index [--] Word R/W 0 0 3 Set up of the ratio selection (ratio 0, 1, 2, 3). Can also be programmed by digital inputs with [2001] Els Ratio Sel B0 and [2002] Els Ratio Sel B1. 32005 Actual Ratio [--] Float R Read-only parameter, it shows the value of the active ratio. EL SHAFT R BEND Through an external command it is possible to increase/decrease the motor slave speed momentarily to create a phase offset or “bend” in the shaft. To do this, for a fixed time the motor slave is not in synchronism with the master, because its reference is modified to be either faster or slower. At the end of the fixed time by parameter or when the digital input is not longer present, the slave gets back in synchronism with the master. The modified speed can be set on an analog input or fixed by parameter. The digital inputs activating this function ([2006] ELS Bend Rec CW, [2007] ELS Bend Rec CCW) are active even if the Start / Stop input is disabled. 32100 Els Max RB Speed [rpm] Float R/W 1000 -IPA20003 IPA20003 Parameter to set up the max limit of speed reference for the bend recover function. 32101 Els RB Time [sec] Float R/W 500.0 0 500.0 Time setting for the correction reference to be active. The digital input that enables this function ([2006] ELS Bend Rec CW , [2007] ELS Bend Rec CCW) must be kept activated during the recovery. At the end of the acceleration phase of the bend recover function, the timing starts. When the time is equal to that set in this parameter the bend recover reference becomes zero. The remaining bend will remain. If the digital input that enables this function ([2006] ELS Bend Rec CW , [2007] ELS Bend Rec CCW) goes low before the time expires (0V) the bend recover reference becomes zero. In other words, if time is not sufficient to recover, the bend that is left after time runs out will remain. 32102 Els RB Acc [rpm] Float R/W 0.97 0 100000 Acceleration ramp during the speed change. Increase the speed of the set revolutions number in the parameter every 8 msec 32103 Els RB Dec [rpm] Float R/W 0.97 0 100000 Deceleration ramp during the speed change. Decrease the speed of the set revolutions number in the parameter every 8 msec 32104 Els RB Speed Ref [%] Float R/W 0.97 0 100 Reference for bend recover function, setting available also from an analog input ([20] Els Rb Spd Ref). At default conditions, 10V on the analog input correspond to 100% of Els Max RB Speed, IPA 32100. 184 • Chapter 10 - Parameters and Functions SIEIDrive - XVy-EV User’s Guide Parameters and Functions • 185 . Max Brake Energy Maximum brake energy. you must disconnect internal resistor and connect its two wires together using the proper faston. Max Brake Energy or Brake Res Value is set to zero. Alarm Dis Mask [--] Dword R/Z/* 20000000H 0H FFFFFFFFH This parameter allows masking the intervention of some alarms thus making them inactive. (*): function of IPA 20050 [ohm] [kW] [kJ] [V] Float Float Float Float R/Z/* R/Z/* R/Z/* R/Z/* 0 0 0 780 0 0 0 (*) FLT_M FLT_M FLT_M 820 18412 BR Ovld Factor [%] Word R Brake resistor overload factor. When 100% has been reached. Brake Volt Thr BU intervention threshold. Alarm Delay [sec] Float R/W 10 0.IPA Description [Unit] Format Access Default Min Max 32105 Els RB Speed Sel [ %] Bool R/W 0 0 Selection of the percentage value of the maximum speed reference limit or Master speed value 0 = Els Max RB Speed 1= Master Speed 1 BRAKING RES Parameters required for the optimization of the internal or external braking resistance system (see paragraph 4.XVy-EV User’s Guide Chapter 10 .001 10 Delayed alarms delay.8. 18109 18107 18104 18103 Brake Res Value Braking resistance value. The parameters are described in the paragraph 4. List of possible alarms on IPA 24100. The XVy-EV drives up to size XVy-EV 32550-KBX have an internal braking resistor according to the following table: Drive size XVy-EV 10306 … XVy-EV 10612 XVy-EV 21020 … XVy-EV 21530 XVy-EV 32040 XVy-EV 32550 Resistor value [ohm] 100 67 36 26 Braking Resistor [W] 100 150 200 200 txv9340 CAUTION! Please not that if you use an external braking resistor on drives up to size XVy-EV 32550.8. It is an hexadecimal ALARMS 24101 24102 24100 SIEIDrive . Alarm Delay Mask [--] Dword R/Z/* 0H 0H FFFFFFFFH Delayed alarms mask. This happens also if any of the parameters Brake Res Power. the Brake Overpower (A 13) alarm gets active. Braking unit). 18105 Brake Config [--] Enum R/Z/* 0 Configuration of braking resistance 0=No BU or Ext BU Braking resistor not present or external braking unit 1=Ext BR & Int BU External Braking resistor and internal braking unit 2=Int BR & Int BU Internal Braking resistor and internal braking unit 0 2 If you select “Int BR & Int BU” then all the other parameters are ignored. Brake Res Power Nominal power of braking resistance.4. Check noise on the encoder signals. Time-out error of absolute data serial communication. List of possible excluded alarms: Motor Overtemp (error code 7) System Warning (error code 15) Enc Fbk Loss (error code 18) Enc Sim Fault (error code 19) Undervoltage (error code 20) Field Bus failure (error code 26) Enable Seq Error (error code 27) Fast link (error code 28) Position Error (error code 29) Drive Overload (error code 30) External Fault (error code 31) Example for a parameter setting : 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 9 0 8 0 7 0 0 6 0 5 0 4 0 3 0 0 txv9118 2 0 1 0 18042 24000 24120 20016 Alarm Dis Mask = 18000000h (disabled Position error and Fast link alarms) Note: The Position Error alarm is disabled as default.1.1. No encoder on expansion input.1. The sequence of the Hall effect sensors is not correct. SSI). table 8. Reception problem at power on (EN DAT. See the alarm list. 1° row: Alarm code 2° row: Setting of the alarm functions : 0 = active. 186 • Chapter 10 . table 8. It can be made permanent by saving the parameters: 0=Off 1=Clear Al History Alarm Status [--] Dword R Alarm status. See the alarm list. When the masked alarm gets active. Check encoder parameters setting (ENC EXP BOARD menu) and encoder connections. Warning Status [--] Dword R Warnings state.1. Check encoder parameters setting (ENC EXP BOARD menu) and encoder connections. Check encoder wiring. Check encoder supply.Parameters and Functions SIEIDrive . bit IPA 20018=Meaning 0 = None 1=Low Enc AD Level 2=Low Enc AN level 3=Hall Sens Error 4=Aux DI Enc Loss 9=Abs 1 Ini Res Er 10=Abs 1 Ini RX Er 11=Abs 1 RX Error 12=Abs 1 Alarm bit 13=Abs 1 RX Tout Er 0 1 Cause Encoder is OK Check encoder supply. the drive goes on functioning properly (the OK relay does not change its state) and Enc W->A Mask parameter with the digital output programmed as [17] Alarm Warnings changes its logic level. EN DAT reset failure. 1 = masked 3° row: Parameter hexadecimal setting Alarm List Clear [--] Enum R/W 0 It cancels the whole alarm history. The error bit on the absolute encoder (EN DAT) is active. Enc Warning Cause [--] Enum R N.IPA Description [Unit] Format Access Default Min Max alarm. Checksum error in the serial communication of the absolute data.3.3.XVy-EV User’s Guide . Parameters and Functions • 187 . Check noise on encoder signal.IPA Description [Unit] Format Access Default Min Max 20018 The incremental channel and the absolute channel of the encoder shows a misalignment. parameters IPA 24110. If encoder alarms are not disabled warnings becomes immediately alarms.) 22 = Flux Fact Range Flow factor out of range (Async. If encoder alarms are disabled. 18=Enc Pulses Loss The number of incremental pulses detected between two index signals is not correct.) 23 = Slip Fact Range Slip factor out of range (Async. Check encoder connections. IPA 3 Par Set [--] Word R IPA of the third parameter that causes Parameter Error (A 05) alarm. 24111 and 24112 show the parameters with incorrect setting. CPU Err Al Cause [--] Enum R This parameter indicates the cause that generated the CPU Overtime (A 08) alarm: 0 = None 1 = Ph In Fst Tsk OT (Phase In Fast Task Overtime) 2 = PhExe Fst Tsk OT (Phase Execution Fast Task Overtime) 3 = PhOut Fst Tsk OT (Phase Out Fast Task Overtime) 4 = PhAux Fst Tsk OT (Phase Auxiliary Fast Task Overtime) 5= Slow Tsk OT (Slow Task Overtime) 6 = System Tsk OT (System Task Overtime) 7 = DSP Tsk OT (DSP Task Overtime) 8 = Backgnd Tsk OT (Background Task Overtime) 17=Phasing Loss 24109 24110 24111 24112 18143 SIEIDrive .3.1. 0 = None 1 = HW Unavail Hardware unavailable 2 = Resource Unavail Hardware resource unavailable 3 = Mot Fbk Not Supp Motor feedback encoder configuration error 4 = Mot Fbk Undefin Motor feedback not defined 5 = Spd/Pos Fbk Und Speed and position loop feedback encoder configuration error. The meaning of each bit is listed in the table 8.) 30 = Size Code Err Incorrect size code 31 = Brake Volt Thr Brake threshold too low 40 = Value Not Supp Parameter value not allowed IPA 1 Par Set [--] Word R IPA of the first parameter that causes Parameter Error (A 05) alarm IPA 2 Par Set [--] Word R IPA of the second parameter that causes Parameter Error (A 05) alarm. Alarm Dis Mask signals a problem on the encoder even if there are no alarm active. 25= Idx Out Of Site Index signal in the incremental encoder channel is not in the correct place.) 24 = Slip Value Range Slip value out of range (Async.1.XVy-EV User’s Guide Chapter 10 . 6 = Enc par Range Encoder parameters out of range 7 = Enc par Pow of 2 The parameter that has been entered is not a power of 2 8 = Motor Res Poles The number of resolver poles is not consistent with the number of motor poles 20 = Magn Induc Range Incorrect motor magnetisation inductance setting (Async. Par Set Cause Al [--] Enum R This parameter indicates the cause that generated the Parameter Error (A 05) alarm. Enc W->A Mask [--] Dword R This mask shows active encoder warnings.) 21 = Rotor Res Range Incorrect motor rotor resistance setting (Async. 26= Idx Not Presen Index signal in the incremental encoder channel is not detected. Check noise on encoder signals. 60 °C). 60 °C.XVy-EV User’s Guide .. 50 °C (see parameter 18393 RegTemp Alarm Th) type size on a EWH/EWHR (in the operating range 0 .. 50 ° C or mount a regulation board in range 0 . Load Def Err IPA [--] Word R Par IPA that caused load default error. IPA 41001 parameter. in case 20 it is necessary to enter the right activation key in the PLC Enable Key. Sys Warn Cause [--] Enum R Indicates the reason the alarm Warning System.. 0= None 1= Low Max Reg Temp You are using a regulation board in range 0 . Disable the alarm to use the drive a temperature range of 0 .IPA Description [Unit] Format Access Default Min Max 18391 18393 20 = CPU Fault 21 = Watchdog Alarm PLC Err Cause [--] Word R Cause of the "PLC not running" alarm: 0 = None 1 = Wrong PLC ID 2 = Wrong PLC Tsk N (Wrong PLC Task Number) 3 = Wrong PLC Tgt ID 4 = Wrong Build N 6 = Wrong PLC Tsk ID 7 = Missing Tsk info 8 = PLC Code Chckerr 9 = DB Code Chk Err 20 = Wrong Enable Key In the cases from 1 to 8 it is necessary to reload the fw. 18751 188 • Chapter 10 .Parameters and Functions SIEIDrive .. if any Bus Address [--] Address of expansion board installed CC Enabling [--] Enables or disables the CC 0 = OFF Dword] R/Z/* Word Enum R/Z/* R/Z/* 50 0 0 0 0 0 232-1 65535 65535 SIEIDrive . Chapter 4.Parameter: The parameters are entered into engineering units and are exchanged in an asynchronous way. of the drive size and of the encoder. Enum R/Z/* 0 0 4 40000 40001 40100 40110 Field Bus Type [--] Type of expansion board if installed 0 = Not Used 1 = Profibus 2 = CanOpen 3 = DeviceNet 4 = GD-Net 5 = RTE Bus Baude Rate [kbits/s] Baud rate of expansion board installed.Parameters and Functions • 189 . Before establishing the Profibus communication between the Master and the drive. The FB Format M->S 1 parameter sets the parameter writing format. . The FB Exp M->S 1 parameter defines the 10th power which the parameter is multiplied by before being transferred to the drive.Direct Access: The parameters are entered into internal counts and are exchanged in an asynchronous way (one every 8 msec). it is possible to exchange up to 12 words on the input and 12 words on the output. The format can be different from the parameter original one.IPA Description [Unit] Format Access Default Min Max FIELDBUS Using Process Data Channel (PDC). one of the following modes for the data exchange according to the following table: .0 Fieldbus : Parameter List and Conversion. For each PDC it is possible to choose. These parameters can be activated by resetting the drive. The writing format identified by the FB Format M->S 1 parameter (see the following table) must coincide with the drive internal format. via the FB Assign XXX X parameters. Rpm Conv Fact) are in the FIELDBUS / UNITS menu and are a function of the motor data. It is therefore necessary to read them after configuring the drive.XVy-EV User’s Guide Chapter 10 . it is necessary to assign the drive parameters to the Process Channel. See Appendix. Dimension Speed Ramp Position Torque Current Format INT 32 INT 16 FLOAT INT 16 INT 16 cnts= cnts= Conversion Speed (rpm) Rpm Conv Fact Max Ramp Rate Ramp [ms / krpm] User unit Torque [%]* Base Torque cnts= 100 * Torque Conv Fact cnts= Current [Arms] Arms Conv Fact Attention: The conversion parameters (ex. GdNet 4 .Profinet 5 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 1 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 1 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 1 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV.Powerlink 7 .EthernetIP 3 .Ethercat 2 .Parameters and Functions SIEIDrive . 0 0 5 40200 40210 0 1 0 0 65535 65535 40220 0 -9 9 190 • Chapter 10 .IPA Description [Unit] Format Access Default Min Max 40111 40115 00999 1 = ON PDC Enabling [--] Enum R/Z/* 0 0 65535 Enables or disables the PDC channel 0 = OFF 1 = ON FB Alarm Watch [--] Enum R/Z/* 0 0 65535 Field bus communication alarm control when drive disabled. Float Word Order [--] Word R/W Identical configuration of words for Direct Access and Parameter modes Field Bus Status [--] Enum R Status of FB device FB Fail Cause [--] Dword R Failure cause of FB card RTE protocol [--] Enum R Protocol used on the optional RTE communication card. 0 .XVy-EV User’s Guide .None 1 .SercosIII 0 0 65535 40116 40113 40114 40119 FB 1st M->S PAR 40190 FB Assign M->S 1 [--] Enum R/Z/* Exchange data mode.ModbusTCP 6 . 0 = OFF control inactive 1 = ON control active Modbus IPA Ofst [--] Word R/W Offset used to address all drive parameter with a modbus connected PLC having limitated addressing capacity. 0 0 5 40202 40212 0 1 0 0 65535 65535 40222 0 -9 9 FB 4th M->S PAR 40193 FB Assign M->S 4 [--] Enum Exchange data mode. -9 9 FB 3rd M->S PAR 40192 FB Assign M->S 3 [--] Enum R/Z/* Exchange data mode.XVy-EV User’s Guide Chapter 10 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 2 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel 0 0 5 40201 40211 0 0 0 65535 65535 40221 FB Format M->S 2 [--] Word R/Z/* 1 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 2 [--] Enum R/Z/* 0 Power of 10 used to multiply the parameter value to write into XVy-EV. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 3 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 3 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 3 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV.Parameters and Functions • 191 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 4 [--] Word Parameter index (IPA) to write into XVy-EV with PDC channel R/Z/* 0 0 5 40203 R/Z/* 0 0 65535 SIEIDrive .IPA Description [Unit] Format Access Default Min Max FB 2ndM->S PAR 40191 FB Assign M->S 2 [--] Enum R/Z/* Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par 4 = Filling 5 = Fast Access Par [--] Int R/Z/* 0 0 5 Direct access parameter (8ms) Fast access parameter (250uS) 0 1 0 0 65535 65535 40204 40214 40224 FB IPA M->S 5 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 5 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 5 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 0 5 40205 40215 0 1 0 0 65535 65535 40225 0 -9 9 192 • Chapter 10 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 6 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 6 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 6 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 -9 9 FB 6th M->S PAR 40195 FB Assign M->S 6 [--] Enum R/Z/* Exchange data mode. 0 65535 -9 9 FB 5th M->S PAR 40194 FB Assign M->S 5 Exchange data mode.XVy-EV User’s Guide .IPA Description [Unit] Format Access Default Min Max 40213 40223 FB Format M->S 4 [--] Enum R/Z/* 1 Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 4 [--] Int R/Z/* 0 Power of 10 used to multiply the parameter value to write into XVy-EV.Parameters and Functions SIEIDrive . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 9 [--] Word Parameter index (IPA) to write into XVy-EV with PDC channel R/Z/* 0 0 5 41208 R/Z/* 0 0 65535 SIEIDrive .XVy-EV User’s Guide Chapter 10 .Parameters and Functions • 193 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 8 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 8 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 8 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 0 5 40207 40217 0 1 0 0 65535 65535 40227 0 -9 9 FB 9th M->S PAR 41198 FB Assign M->S 9 [--] Enum Exchange data mode. 0 0 5 40206 40216 0 1 0 0 65535 65535 40226 0 -9 9 FB 8th M->S PAR 40197 FB Assign M->S 8 [--] Enum R/Z/* Exchange data mode.IPA Description [Unit] Format Access Default Min Max FB 7th M->S PAR 40196 FB Assign M->S 7 [--] Enum R/Z/* Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 7 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 7 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 7 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 0 5 41209 41219 0 1 0 0 65535 65535 41229 0 -9 9 FB 11th M->S PAR 41200 FB Assign M->S 11 [--] Enum R/Z/* Exchange data mode. 1 0 65535 0 -9 9 FB 10th M->S PAR 41199 FB Assign M->S 10 [--] Enum R/Z/* Exchange data mode.Parameters and Functions SIEIDrive . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 11 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 11 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 11 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV.XVy-EV User’s Guide . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 10 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 10 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 10 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 0 5 41210 41220 0 1 0 0 65535 65535 41230 0 -9 9 194 • Chapter 10 .IPA Description [Unit] Format Access Default Min Max 41218 41228 FB Format M->S 9 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 9 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV. 0 0 5 41201 41221 0 1 0 0 65535 65535 41231 0 -9 9 FB 1st S->M PAR 40290 FB Assign S->M 1 Exchange data mode.XVy-EV User’s Guide Chapter 10 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 2 [--] Word Parameter index (IPA) to read from XVy-EV with PDC channel 0 5 40301 R/Z/* 0 0 65535 SIEIDrive . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par 4 = Filling 5 = Fast Access Par [--] Enum R/Z/* 0 0 5 Direct access parameter (8ms) Fast access parameter (250uS) R/Z/* R/Z/* 0 1 0 0 65535 65535 40300 40310 40320 FB IPA S->M 1 [--] Word Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 1 [--] Enum Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 1 [--] Int Power of 10 used to multiply the parameter value to read into R/Z/* 0 XVy-EV.Parameters and Functions • 195 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA M->S 12 [--] Word R/Z/* Parameter index (IPA) to write into XVy-EV with PDC channel FB Format M->S 12 [--] Enum R/Z/* Format of the parameter to write into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp M->S 12 [--] Int R/Z/* Power of 10 used to multiply the parameter value to write into XVy-EV.IPA Description [Unit] Format Access Default Min Max FB 12th M->S PAR 41201 FB Assign M->S 12 [--] Enum R/Z/* Exchange data mode. R/Z/* 0 -9 9 FB 2nd S->M PAR 40291 FB Assign S->M 2 [--] Enum Exchange data mode. IPA Description [Unit] Format Access Default Min Max 40311 40321 FB Format S->M 2 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 2 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par 4 = Filling 5 = Fast Access Par [--] Enum R/Z/* 0 0 5 Direct access parameter (8ms) Fast access parameter (250uS) R/Z/* R/Z/* 0 1 0 0 65535 65535 40302 40312 40322 FB IPA S->M 3 [--] Word Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 3 [--] Enum Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 3 [--] Int Power of 10 used to multiply the parameter value to read into R/Z/* 0 XVy-EV. 0 5 40303 40313 0 1 0 0 65535 65535 40323 0 -9 9 196 • Chapter 10 . 0 -9 9 FB 4th S->M PAR 40293 FB Assign S->M 4 [--] Enum R/Z/* Exchange data mode.Parameters and Functions SIEIDrive .XVy-EV User’s Guide . 1 0 65535 0 -9 9 FB 3rd S->M PAR 40292 FB Assign S->M 3 Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 4 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 4 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 4 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. IPA Description [Unit] Format Access Default Min Max FB 5th S->M PAR 40294 FB Assign S->M 5 [--] Enum R/Z/* Exchange data mode.XVy-EV User’s Guide Chapter 10 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 7 [--] Word Parameter index (IPA) to read from XVy-EV with PDC channel R/Z/* 0 0 5 40306 R/Z/* 0 0 65535 SIEIDrive . 0 0 5 40305 40315 0 1 0 0 65535 65535 40325 0 -9 9 FB 7th S->M PAR 40296 FB Assign S->M 7 [--] Enum Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 6 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 6 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 6 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV.Parameters and Functions • 197 . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 5 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 5 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 5 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. 0 0 5 40304 40314 0 1 0 0 65535 65535 40324 0 -9 9 FB 6th S->M PAR 40295 FB Assign S->M 6 [--] Enum R/Z/* Exchange data mode. IPA Description [Unit] Format Access Default Min Max 40316 40326 FB Format S->M 7 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 7 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 9 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 9 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 9 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. 0 -9 9 FB 9th S->M PAR 41298 FB Assign S->M 9 [--] Enum R/Z/* Exchange data mode.XVy-EV User’s Guide . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 8 [--] Word Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 8 [--] Enum Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 8 [--] Int Power of 10 used to multiply the parameter value to read into R/Z/* 0 0 5 40307 40317 R/Z/* R/Z/* 0 1 0 0 65535 65535 40327 R/Z/* 0 XVy-EV.Parameters and Functions SIEIDrive . 1 0 65535 0 -9 9 FB 8th S->M PAR 40297 FB Assign S->M 8 [--] Enum Exchange data mode. 0 5 41308 41318 0 1 0 0 65535 65535 41328 0 -9 9 198 • Chapter 10 . Parameters and Functions • 199 . 0 0 5 41310 41320 0 1 0 0 65535 65535 41331 0 -9 9 FB 12th S->M PAR 41301 FB Assign S->M 12 [--] Enum R/Z/* Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 12 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel 0 0 5 41311 0 0 65535 SIEIDrive . 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 11 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 11 [--] Enum R/Z/* Format of the parameter to read into XVy-EV [1] 16 Bit Integer [2] 16 Bit Uns Int [3] 32 Bit Integer [4] 32 Bit Uns Int [6] Floating Point FB Exp S->M 11 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV. 0 0 5 41309 41319 0 1 0 0 65535 65535 41329 0 -9 9 FB 11th S->M PAR 41300 FB Assign S->M 11 [--] Enum R/Z/* Exchange data mode.IPA Description [Unit] Format Access Default Min Max FB 10th S->M PAR 41299 FB Assign S->M 10 [--] Enum R/Z/* Exchange data mode. 0 = Not assigned 1 = Parameter 3 = Direct Acc Par Direct access parameter (8ms) 4 = Filling 5 = Fast Access Par Fast access parameter (250uS) FB IPA S->M 10 [--] Word R/Z/* Parameter index (IPA) to read from XVy-EV with PDC channel FB Format S->M 10 [--] Enum R/Z/* Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point FB Exp S->M 10 [--] Int R/Z/* Power of 10 used to multiply the parameter value to read into XVy-EV.XVy-EV User’s Guide Chapter 10 . Subindex 1 ) PDO 1 RX TYPE [--] word RZ* 1° PDO in reception ( Object 1400h . If set to 0. Used to synchronise execution of the task within the inverter in SYNC message. COBID Em Obj [--] Dword RZ* 0x80000081 0x00000080 0x800000FF COB-ID of Emergency object ( Object 1014h ). Object 1006h). If set to 0. Subindex 2 ) 0x40000201 0x00000200 0x4000027F 1 1 255 PDO 2 RX 40911 40916 PDO 2 RX COBID [--] Dword RZ* COB ID for 2° PDO receiver ( Object 1401h . Subindex 2 ). Subindex 1 ). PDO 2 RX TYPE [--] word RZ* 2° PDO in reception ( Object 1401h .IPA Description [Unit] Format Access Default Min Max 41321 FB Format S->M 12 [--] Format of the parameter to read into XVy-EV 1 = 16 Bit Integer 2 = 16 Bit Uns Int 3 = 32 Bit Integer 4 = 32 Bit Uns Int 6 = Floating Point Enum R/Z/* 1 0 65535 41331 FB Exp S->M 12 [--] Int R/Z/* 0 Power of 10 used to multiply the parameter value to read into XVy-EV. Subindex 1 ). 0 = Offset 1 = Mod 100 40903 40904 40905 40906 PDO 1 RX 40910 40915 PDO 1 RX COBID [--] Dword RZ* COB ID for 1° PDO receiver ( Object 1400h . Subindex 1 ). 0x40000181 0x00000181 0x400001FF 1 1 255 200 • Chapter 10 . Subindex 2) 0x40000401 0x00000400 0x4000047F 1 1 255 PDO 1 TX 40920 40925 PDO 1 TX COBID [--] Dword RZ* COB ID of 1° PDO in transmission ( Object 1800h . the bus loss timeouts on Node Guarding are disabled. PDO 1 TX TYPE [--] word RZ* 1° PDO in transmission ( Object 1800h . Subindex 2) 0x40000301 0x00000300 0x4000037F 1 1 255 PDO 3 RX 40912 40917 PDO 3 RX COBID [--] Dword RZ* COB ID for 3° PDO receiver ( Object 1404h . Cus OBJ Idx Mode [--] Enum RZ* Mod100 0 65536 Sets the address method for parameters in SDO requests. the bus loss timeouts on SYNC are disabled. Guard Time [msec] word RZ* 20 0 65535 This parameter defines the Node Guarding interval (Object 100Ch). PDO 3 RX TYPE [--] word RZ* 3° PDO in reception ( Object 1402h . -9 9 CANOPEN 40902 Sync Period [usec] dword RZ* 0 0 100000 This parameter defines the SYNC interval (communication cycle. Life Time Factor [--] Word RZ* 3 0 65535 Life time factor ( Object 100Dh ) multiplied by Node Guarding period or SYNC period is the timeout for bus loss errors.XVy-EV User’s Guide .Parameters and Functions SIEIDrive . Parameters and Functions • 201 . Pos Conv Fact Position conversion factor. PDO 3 TX TYPE [--] word RZ* 3° PDO in transmission ( Object 1802h . 41001 PLC Enable Key [--] Dword R/W* Key disabling the Plc functions. Subindex 1 ). 41050 DNet En Key Stat [--] Word R Status of the DeviceNet enabling key: 0 = Disabled 1 = Enabled 60 = 200 Hours Free 200h free for valuation. Subindex 3 ) 0x00000281 0x400002FF 1 0 255 65535 PDO 3 TX 40922 40927 40932 PDO 3 TX COBID [--] Dword RZ* COB ID of 3° PDO in transmission ( Object 1802h . The code of the activation key can be purchased through the Gefran commercial department. Subindex 2 ). The functioning period is given adding the values read in the IPA 20045 and IPA 20046 parameters (COUNTER menu). Subindex 2 ). Rpm Conv Fact Speed conversion factor. PDO 3 TX INH [100us] word RZ* Inhibition time of 3° PDO in transmission ( Object 1802h . 41000 DeviceNet Enable [--] Dword R/W* DeviceNet activation code. Subindex 3 ). PDO 2 TX TYPE [--] word RZ* 1 2° PDO in transmission ( Object 1801h . Subindex 3 ) 0x40000381 0x00000381 0x400003FF 1 40 1 0 255 65535 UNITS 18700 18752 18753 18790 Arms Conv Fact Current conversion factor. PDO 2 TX INH [100us] word RZ* 40 Inhibition time of 2° PDO in transmission ( Object 1801h . 41051 PLC En Key Stat [--] Word R Status of the Plc enabling key 0 = Disabled 1 = Enabled 60 = 200 Hours Free 200h free for valuation. each drive is enabled to function without the key protection for 100 hours. In order to allow the function check and while waiting for the personal key.IPA Description [Unit] Format Access Default Min Max 40930 PDO 1 TX INH [100us] word RZ* Inhibition time of 1° PDO in transmission ( Object 1800h . SIEIDrive .XVy-EV User’s Guide Chapter 10 . Torque Conv Fact Torque conversion factor. Subindex 1 ). [Arms/cnts] [rpm/cnts] [deg/cnts] [Nm/cnts] Float Float Float Float R R R R ENABLE KEYS ENABLE KEYS The communications via the DeviceNet communication protocol and the applications developed via the MDPlc environment are protected by a software key customized for each single drive. 40 0 65535 PDO 2 TX 40921 40926 40931 PDO 2 TX COBID [--] Dword RZ* 0x40000281 COB ID of 2° PDO in transmission ( Object 1801h . .. It is possible to select different applications: 0=Basic 2=Phasing 3=Test Generator 4=Autotuning 0 65535 AUTOTUNING 18330 Tuning Status Tuning developing process 0 = Off 1 = Lsigma Tuning.. TUNING 18140 Application Sel [--] Enum R/Z/* 0 Application selection parameter. Phasing Speed [rpm] Float 5 Motor speed during Phasing procedure -180 -180 0 180 180 100 TEST GENERATOR 20060 Test Gen Ref [--] Enum Used to select current or speed loop adjusting procedure : 0 = Current Ref: current loop adjust 1 = Pos \ Spd Ref speed loop adjust R/Z 0 0 1 CURR TEST GEN 20061 20062 Period Test Gen [ms] Int R/W 16 0 32767 In current generator mode (current loop adjustment)..XVy-EV User’s Guide . 4 = Rr Tuning..] Float R/Z/* 0 Offset between electrical angle zero of motor phases and encoder feedback device. Enc Offset [mech deg] Float R/Z/* 0 Offset between absolute and incremental tracks on encoder feedback device.deg.Parameters and Functions SIEIDrive . 3 = Magn Tuning. Hig Curr Ref Gen [Apk] Float R/W IPA18703 S S Maximum value of the current reference as compared to the motor U phase. 90 = Done 100 = Err Drive Dis 110 = Err Lsigma TOut 111 = Err Lsigma Range 130 = Err Rs Range 150 = Err Lm Range 151 = Err Lm Neg Value 160 = Err Imagn Range 170 = Err Rr Range LKG Inductance Motor inductance [--] Enum R 18313 [H] Float R PHASING 20058 20057 20059 Enc Mech Offset [el. this is the period of the generated square wave.IPA Description [Unit] Format Access Default Min Max 41020 18504 En Keys Mask Enabled key mask.. 2 = Rs Tuning.. [--] Word Word R R Ser Num En Keys [--] Serial number used to enable the key codes. 202 • Chapter 10 .. level 1 “user” access to prevent any unauthorised modification of drive configuration parameters. In this menu. The protection will be enabled the next time the inverter is turned off and then on again. 2) Press Enter to display the value 00000000H. . If it is not changed. 4) Press Enter to confirm 5) Press  to exit the password parameter and return to the MONITOR menu. 0 S SPD/POS TESTGEN 20070 CW Rev Test Gen [rev] Float R/W 5 Number of clockwise revolutions performed by the motor during the speed generator Test as compared to the starting position. Access to the complete list of menus and parameters (except the Service menu) is only allowed if the correct password is entered in the Keypad PSWD parameter Entering the user Password.IPA Description [Unit] Format Access Default Min Max 20063 Low Curr Ref Gen [Apk] Float R/W Minimum value of the current reference as compared to the motor U phase. 1) When the drive is turned on the motor speed is shown on the display. Removing the Password 1) After temporarily disabling the password as described in the previous point. 4) Enter a value from 1 up to a maximum of 8 digits. 6) To make the password operational.level 2 to access the Service menu (reserved for use by GEFRAN technicians). See Entering the user Password. return to the Keypad PSWD parameter. SIEIDrive . Both Passwords are entered from the keypad in the Keypad PSWD (*) parameter. The password is automatically re-enabled the next time the inverter is turned off and then on again. access is always allowed to the complete list of menus and parameters (except the SERVICE menu). 5) Press Enter to confirm Press  to return to the menu list. 3) Enter the correct password value. press  to display all the drive menus in sequence. Speed Test Gen [rpm] Float R/W 100 0 100000 Motor speed during speed generator test Keypad PSWD [--] Dword R/W 00000000H 20071 20072 KEYPAD PSW KEYPAD 18145 The drive manages two password access levels: . If a user password has been configured.XVy-EV User’s Guide Chapter 10 . 2) Press Escape to display the MONITOR menu. press  to display all the drive menus in sequence until the Keypad PSWD parameter appears. then Enter to show all the measurements. access is only allowed to the MONITOR menu. 3) In the MONITOR menu. Press Escape (Shift + ) to access the menus. store it using the Save Parameter command. The default value for the Keypad PSWD parameter is 00000000H. Press Enter to display the value 00000000H. Temporarily disabling the Password 1) Select the Keypad PSWD parameter (see points 1 to 3 in the previous section). CCW Rev Test Gen [rev] Float R/W 5 Number of anti-clockwise revolutions performed by the motor during the speed generator Test as compared to the starting position.Parameters and Functions • 203 . In this menu.User Menu (default) 3 .. allows access to the SERVICE menu. NOTE ! The KEYPAD PSWD menu is shown on the keypad: .IPA Description [Unit] Format Access Default Min Max 2) Press Enter to display the value 00000000H.with the user password enabled after the MONITOR menu . from the File / Password pull-down menu.Basic Level 1 . 204 • Chapter 10 . keep pressing  until the Keypad PSWD parameter is displayed).using the keypad. including the SERVICE MENU.Parameters and Functions SIEIDrive . 2) Press Escape to display the MONITOR menu 3) In the MONITOR menu. which is reserved for use by GEFRAN technicians. Please refer to the Keypad PSWD parameter for more details about how to enter the Password. The password is fixed with a hexadecimal value …. Temporarily disabling the Service Password This password.H 1) When the drive is turned on the motor speed is shown on the display.using the GF-eXpress tool. select “3 . press  to display all the drive menus in sequence until the Keypad PSWD parameter appears. which can be used to display the user password that is enabled. If 00000000H appears in the parameter no password has been enabled. The SERVICE menu only displays the Keypad Key Word parameter. 3) Press Enter to confirm 4) Press  to exit the password parameter 5) Store using the Save Parameter command. via the Keypad PSWD parameter (from the MONITOR menu. . Using the GF-eXpress tool the password (only required to enable the SERVICE menu) can be entered in the File / Password pull-down menu.with the Service password enabled after the SERVICE menu With the GF-eXpress tool 0 .Service menu” and enter the password. 4) Enter the Service password value.Service Menu you can always display all the menus except the SERVICE menu: only the MONITOR menu is displayed all the menus are displayed except the SERVICE menu all the menus are displayed (reserved for use by GEFRAN technicians) NOTE ! SERVICE This menu is reserved for use by Gefran technicians. (*) The Keypad PSWD parameter is not visible via the GF-eXpress. press  to display all the drive menus in sequence. Repeat the “Entering the user Password” procedure to enter a new password. The password is automatically re-enabled the next time the inverter is turned off and then on again.XVy-EV User’s Guide . 5) Press Enter to confirm 5) Press  to exit the password parameter and return to the MONITOR menu. Press Enter to display the value 00000000H. To access the SERVICE menu simply enter the level 2) password: .without a password (or password disabled) after the TUNING menu . You can now access the complete list of menus and parameters again (except the SERVICE menu) even after turning the inverter off and then on again. Press Escape (Shift + ) to access the menus. Save Param Count [--] Dwor R Save parameters counter. [cnts] Int R/W 11000 0 32767 SIEIDrive .. 0 1 18793 KEYPAD KEY 18144 Keypad Key Word [--] Dword R 00000000H Displays the user password. The higher numbers identify more recent FW versions. 20031 20028 20029 20034 20013 20014 20015 XE ENC INC MEAS 18744 Inc Data Min Mod AD minimum allowed module. 0. SW Reset Count [--] Dwor R Software reset counter. Reg Temp Alarm Th [°C] Int16 R 0 “Overtemperature of regulation board” alarm threshold (code A22).0 0 180 Maximum allowed position loss.XVy-EV User’s Guide Chapter 10 .IPA Description [Unit] Format Access Default Min Max 18792 FW Build Number [--] Dword R It is a number which identifies univocally a version of the FW. 0=Not Present 1= Present Enc No Idx Range [--] Word R/W 2 0 65535 Maximum number of revolutions to be performed without reading the zero slot. Tot Life Hours [Hour] Float R Life hours at last power on.. COUNTER 20044 20045 20046 20047 20048 20049 Load Def Counter [--] Dwor R Counter for the number of performed loading procedures for the factory-set parameters. Phasing Err [el deg] Float R Actual phasing error Act Enc Pos Loss [mech deg] Float R Actual position loss Act Mot El Angle [el deg] Float R Motor electrical angle. Max Loss Pos [mech deg] Float R/Z/* 90. Act Life Hours [Hour] Float R Hours from last power on. Power Fail Count [--] Dwor R Counter listing the number of times the drive has been switched off. If the value shown is 00000000H the password has not been entered.Parameters and Functions • 205 . Enc M Lost Puls [--] Word R/W 2 0 65535 Maximum number of lost incremental pulses for each revolution.65535. ENCODER 20017 Enc Inc Tracks [--] Enum R/Z/* 1 0 1 Incremental encoder enabling for current regulation 0=Disabled 1=Enabled Enc Inc Index [--] Enum R/Z/* 1 0 1 Indicates if index on incremental encoder is present. the control is disabled. If 0. main fbk (XE pin 12-13).IPA Description [Unit] Format Access Default Min Max 18741 19002 19003 19096 19004 19006 19005 Inc Data Act Mod AD measured module. Inc Data N Rev [--] AD incremental revolution. Abs Act Module [cnts] Int R AN measured module. Inc Pulses / Rev [--] AD incremental pulses/revolution. Abs Cos Offset [cnts] Int AN COS ch. Abs Max Noise [count] INT Maximum value of electrical noise on AN transducer. 1cnts=33. Inc B Data Count [cnts] Int AD incremental B channel. main fbk (XE pin 5-6) Dword R R Int R XE ENC ABS MEAS 18747 Resolver Gain [times] Enum R/Z/* Resolver input gain 0 = 5 times 1 = 2 times 2 = 1. [cnts] Int R Float long Float R R R Inc Data Pos [mech deg] AD incremental position. compensed offset. main fbk. 0 = Disabled 1 = Enabled Abs Comp TAU [--] Int R/W AN comp time constant. main fbk. Abs Data Min Mod [cnts] Int R/W AN minimum allowed module. Abs Sin Offset [cnts] Int AN SIN ch. main fbk. compensed offset. Abs Gain Err [%] Float AN SIN/COS ch. main fbk. Abs Comp En [--] Enum R/W Enable offset compensation and amplitudes difference of AN channel. Abs Turn Pos AN position. compensed gain error 206 • Chapter 10 . main fbk (XE pin 8-1) Inc A Data Count [cnts] AD incremental A channel. main fbk (XE pin 10-11). main fbk.25 times 3 = 1 times Res Shift Time [cnts] Int R/W Resolver sampling shift time.XVy-EV User’s Guide .3 ns. main fbk. [mech deg] Float R R R R R 1 0 3 18126 18745 18760 580 17000 1 -4000 0 0 4000 32767 1 18761 18767 18740 19017 19018 18762 18763 18764 100 0 1 0 32767 65535 Abs Rev [--] Long AN revolution. Index Position [mech deg] AD index position.Parameters and Functions SIEIDrive . aux encoder (XER connector) Float R XE HALL TRACKS 19022 19026 19027 19028 XE Hall Pos [el deg] Float R HA position. main fbk (XE connector).IPA Description [Unit] Format Access Default Min Max 18766 19019 19020 Abs Meas Noise [count] Momentary value of electrical noise on AN transducer. This parameter can be greater than max number of revolutions set by encoders hardware limit. Abs Sin Meas [--] AN SIN ch. main fbk. This number has a maximum value.. main fbk (XE pin 12-13) INT Int Int R R 0 0 65535 XER/EXP Inc Enc 19011 19012 19013 19095 XER/EXP Turn Pos [mech deg] Float R DI incremental position. SIEIDrive . EXP ENC ABS1 19030 ABS1 Al Bit En [--] Enum R/W 1 0 ABS1 alarm bit check enable (EnDat only).XVy-EV User’s Guide Chapter 10 .Parameters and Functions • 207 . count starts from zero. ABS1 Rx N Err ABS1 total communication error. XE Hall Meas [--] Word R HA inputs pins H1. the maximum number of revolutions that encoder can measure. aux encoder (XER connector) XER/EXP Rev [--] Long R DI incremental revolution. 0=Disabled 1=Enabled EXP ABS1 Pos [mech deg] Float R ABS1 absolute position. aux encoder (XER connector) XER/EXP Ind Pos [el deg] DI index position.. EXP ABS1 Hw Rev [--] Int R Number of absolute revolutions. Not valid in case of encoder with Hiperface protocol. After maximum value. EXP ABS1 Sw Rev [--] Long R Number of calculated absolute turns. main fbk (XE connector). main fbk (XE pin 10-11) Abs Cos Meas [--] AN COS ch. aux encoder (XER connector) XER/EXP Puls Rev [--] Dword R DI incremental pulses/revolution. H2. main fbk (XE connector). XE Hall N Error [--] Int R Number of times when the 000 or 111 wrong configuration has appeared during the probe reading. ABS1 Alarm Bit ABS1 alarm bit value (EnDat only). [--] [--] Int Enum R R 1 19031 19032 19033 19034 19035 FAST LINK ENC 29103 RX Rev [--] Long R Number of incremental revolutions of the speed/position loop encoder. fast link receiver. XE Hall Rev [--] Long R HA electrical revolution. H3. RESERVED 18111 XER/EXP Enc Mod 0 = Fourfold 1 = A=UpB=Dir 2 = A=UpB=Down XER/EXP Enc Flt DI glitches digital filter XE Inc Enc Flt AD glitches digital filter [--] Enum R/Z/* 0 0 2 18112 18113 18114 [--] [--] Word Word Enum R/Z/* R/Z/* R/Z/* 4 4 1 0 0 0 7 7 1 18121 18122 18119 18120 40901 XE Index Mask [--] 0=original ChZ 1=ChZ & ChA & ChB Spd Loop Filter [msec] Speed loop output LP filter time constant. RX Rev Aux [--] Long R Number of incremental revolutions of the auxiliary encoder. XE Enc Abs Flt [msec] AN filter time constant. fast link receiver. Over Mod Factor [%] Overmodulation factor. TX Pos [--] Long R Incremental position of the speed/position loop encoder. fast link transmitter. FL Error [--] INT16 R Incremental number of the fast link reception errors. fast link transmitter. fast link transmitter. Float Float Float Float R/W R/W R/W R/W 1 1 0 15 0 0 -1000 0 50 50 1000 50 DEBUG 18146 Debug Mode Enabling the “Debug mode” 0=Disabled 1=Enabled [--] Enum R/W 0 0 1 208 • Chapter 10 . Curr Comp Time [msec] Current sampling compensation time. FBCFG Not to be modified. TX Rev [--] Long R Number of incremental revolutions of the speed/position loop encoder. It is active only on the FL slaves configured with the functioning of the electric shaft. TX Rev Aux [--] Long R Number of incremental revolutions of the auxiliary encoder.Parameters and Functions SIEIDrive . TX Pos Aux [--] Long R Incremental position of the auxiliary encoder. fast link receiver. RX Pos Aux [--] Long R Incremental position of the auxiliary encoder. A drive reset takes it back to zero. reserved for internal use. fast link receiver.IPA Description [Unit] Format Access Default Min Max 29104 29106 29107 29108 29109 29110 29111 32015 RX Pos [--] Long R Incremental position of the speed/position loop encoder.XVy-EV User’s Guide . fast link transmitter. Fst Tsk Exe T [us] Word Actual fast task EXECUTE phase execution time. DSP.3 nsec. MaxSl Tsk Exe T [us] Maximum slow task execution task time. MaxAux Ph Exe T [us] Maximum task AUXILIARY phase execution time. R/W R/W R/W R/W R/W R/W R/W R/W R R R R R R R R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 62 62 62 8000 64000 8000 1875 MaxSys Tsk Exe T [us] Long Maximum system task execution task time.Parameters and Functions • 209 . Direct Volt Direct output voltage.IPA Description [Unit] Format Access Default Min Max 18392 18390 18773 18774 18765 PLC Correct ChkS Restricted PLC Saved ChkS Restricted Quadrature Volt Quadrature output voltage. Word Word Word Word Long TASK MEASURES 18726 18727 18728 18729 18721 18709 18781 18771 18722 18723 18724 18725 18720 18708 18780 18770 MaxIn Ph Exe T [us] Maximum task INPUT phase execution time. DSP Exe Time [cnts] Actual DSP execution time 1 cnts=33. Sys Tsk Exe T [us] Actual system task execution time. MaxDSP Exe T [cnts] Word Maximum DSP execution time.XVy-EV User’s Guide Chapter 10 . Aux Phase Exe T [us] Word Actual task AUXILIARY phase execution time.3 nsec. Measured Speed Speed measurement deriving from [--] [--] [Vrms] [Vrms] DWord R DWord R Float Float R R R 0 0 0 0 65535 65535 [rpm] Float feedback devices. Inp Phase Exe T [us] Word Present execution time of the fast task "INPUT phase". Bkg Tsk Exe T [msec] Present execution time of the "Background Task". Slow Tsk Exe T [us] Long Actual slow task execution time. 1 cnts=33. MaxBkg Tsk Exe T [msec] Long Maximum execution time of the "Background Task". Out Phase Tsk T [us] Word Actual task OUTPUT phase execution time. Long Long Word SIEIDrive . MaxOut Ph Exe T [us] Maximum task OUTPUT phase execution time. MaxFst Tsk Exe T [us] Maximum task EXECUTE phase execution time. 188 18752.207 19028.XVy-EV User’s Guide .206 18130.206 19018.209 18781. pg. pg.132 18103. pg. pg.203 18146. pg. pg. pg.209 18724. pg.206 18741. pg.208 18114. pg.186 18070.209 18723. pg. pg.158 18133. pg. pg.120 18780.209 18732.Parameters Index SIEIDrive . pg. pg.132 18102. pg.206 18762.202 18360.208 18122. pg.118 18777. pg.122 18111.209 18393. pg.121 18703.119 18031.206 18761.207 19026. pg.207 19027. pg.118 18740.119 18100. pg. pg. pg. pg.132 18322. pg. pg.209 18766.207 19013. pg.207 19020. pg. pg.207 19022.158 18132.208 18123. pg.206 18748. pg. pg.206 18742. pg.209 18771.207 19017. pg. pg. pg.158 18135.119 18744. pg.209 18726. pg. pg. pg. pg.209 18721. pg.121 18313. pg.201 18753.118 18790. pg. pg.190 18010. pg. pg.118 18778.187 18144. pg.201 18754. pg. pg. pg. pg. pg.201 18792.209 18729.207 19031. pg. pg. pg.119 18760.201 18701. pg.206 19003.209 18782.188 18392. pg.188 18412.132 18326. pg. pg. pg.120 18011.118 18735. pg. pg.209 18776.166 18124. pg.118 18747.119 18711.206 19004. pg.121 18032.206 18765.206 18770. pg.118 18806. pg. pg.123 18390.118 18751. pg. pg.119 18755.207 210 • Chapter 11 . pg.185 18109.206 19006.121 18042.132 In UPPERCASE = Menu In lowercase = Parameter description 18321.209 18728. pg. pg. pg.206 18763.119 18720.158 18136. pg.123. pg.205 18800.132 18328. pg.158 18140. pg. pg. pg. pg.Chapter 11 .132 18101. pg. pg. pg. pg.208 18119.207 19012. pg.158 18134.208 18120.208 18113.119 18017. pg. pg.118 18807. pg.Parameters Index IPA 00999.119 18071. pg. pg.205 18793. pg.158 18138.119 18757.185 18110.208 18121.129 18222.121 18704. pg. pg.119 18756.206 18746. pg. pg. pg. pg. pg. pg. pg. pg.205 18145. pg.118 18749. pg. pg. pg.129 18151. pg. pg.118 19002.206 19019.208 18112.132 18325. pg. pg. pg. pg. pg. pg. pg. pg.185 18504.202 18143. pg. pg.119 18739. pg.132 18330. pg. pg. pg. pg.121 18708.208 18150.209 18727.185 18104. pg.209 18772.122 18126. pg.158 18131.202 18700.209 18709.207 18767.185 18105.205 18745. pg. pg. pg.131 18805.118 18736.206 19011.209 18391.119 18774.206 19005. pg.206 18764. pg. pg. pg.207 19030. pg. 202 18320. pg. pg. pg. pg.209 18725. pg.209 18722. pg.209 18710.185 18107. Parameters Index • 211 .144 20258.140 20007.159 20088.122 20076*.203 20070.144 20270.145 20275.150 20034. pg. pg.187 20019.128 20004. pg. pg. pg.146 20289. pg.137 20101.138 20179.121 20025.124 20021.144 20271.XVy-EV User’s Guide Chapter 11 . pg. pg.150 20033.136 20106.137 20151.144 20272. pg. pg.145 20290. pg.136 20150.144 20252. pg.205 20018. pg. pg.206 19113. pg.168 19607.144 20273.205 20050.144 20259.205 20014. pg. pg. pg. pg. pg.145 20274.125.120 20053. pg.123 20081. pg.120 20001.122 20074. pg.143 20203. pg.137 20157.202 20060. pg.119 20000. pg. pg.121 20057. pg. pg. pg.123 20085.123 20082.137 20154. pg. pg. pg. pg.125 20038.139 20183.124 20011.120 20024. pg. pg.207 19035. pg.136 20105.138 20171.123 20083.205 20030. 126 20039.122 20075. pg. pg. pg. pg. pg. pg. pg. pg. pg.145 SIEIDrive .202 20061. pg. pg. pg.144 20253.124 20013. pg. pg. pg.138 20173.143 20250. pg.202 20059. pg.145 20278.138 20175.121 20026.138 20182.138 20180.205 20048. pg. pg. pg.154 20092.124 20008. pg.154 20100. pg. pg. pg. pg.140 20006.186 20017.205 20032. pg.205 20045. pg.136 20107.125 20043. pg.154 20087. pg. pg. pg. pg.207 19033. pg. pg. pg. pg.144 20251.126 20080. pg. pg.137 20164. pg.137 20155.205 20047. pg.203 20072. pg. pg. pg.138 20176.123 20005.150 20036. pg. pg. pg. pg. pg. pg.205 20049.139 20185. pg.145 20280.202 20058. pg. pg. pg.143 20205.137 20162.123 20003. pg.119 20023. pg.124 20009.121 20022.125 20037.145 20282. pg. pg.145 20277. pg.205 20015. pg. pg. pg.19032. pg. pg. pg. pg.145 20286. pg.137 20156.203 20071. 126 20040.139 20186.145 20281. pg. pg.202 20063. pg. pg. pg.202 20062.138 20178.144 20260. pg.205 20016. pg. pg.125. pg. pg. pg. pg.143 20202. pg.140 20189. pg. pg. pg. pg.124 20012. pg.207 19034. pg.143 20255. pg. pg. pg. pg.143 20256.140 20200. pg.143 20204.145 20285.150 20031. pg. pg.145 20279. pg.137 20170.126 20010. pg. pg.205 20029.205 20046.158 20089. pg. pg. pg.138 20177.136 20163.144 20257. pg.151 19095. pg.125.139 20188. pg.145 20283. pg.125 20042. pg.207 19040.141 20201.137 20153.125 20044.144 20254. pg. pg.138 20172.136 20103. pg. pg. pg.123 20002.137 20152. pg. pg.203 20073.133 20102. pg.126 20077.205 20035. pg. pg. pg.145 20284. pg. pg.122 20028.139 20184. pg. pg.139 20187. pg.154 20086.120 20052. pg.138 20181. pg.125 20020.207 19096.145 20276. 126 20041.136 20104.138 20174. pg. pg.120 20051. pg. pg. 151 21001.179 30040. pg. pg.180 30042. pg.149 20442.152 21305.131 22007.166 30001. pg. pg.130 22003.207 29104.179 30024. pg. pg. pg.154 21431.148 20350.155 22503. pg.127 21200.129 23003. pg.208 29111.150 20423. pg. pg. pg. pg. pg. pg. pg.118 20600. pg.157 20603. pg. pg.150 20430. pg. pg.179 30025. pg. pg. pg.167 30015. pg. pg.149 20432.148 20320.155 22504. pg.149 20411. pg.167 30002. pg.129 23002.149 20431. pg.179 30022. pg.147 20310. pg. pg.149 20441.157 20601.153 21402. pg.128 21202.156 22509.151 21005. pg.155 22506.154 21421.150 20410. pg. pg. pg. pg.167 30014.128 21204. pg.169 30018. pg.129 21210.131 22005.XVy-EV User’s Guide .153 21403.127 21116. pg.179 30036.154 21433.153 21432.127 21110. pg.150 20440. pg.147 20321. pg.179 30037.185 24109.157 21000. pg.129 24000.131 23000. pg. pg. pg.180 30041.187 24120.157 20602. pg. pg.179 30038. pg.152 21303. pg. pg.147 20361.208 29106.153 21422.149 20403.208 29110.154 21440.168 30017.149 20412.167 30004. pg. pg.152 21304. pg. pg. pg. pg. pg.187 24110. pg.120 29103.153 22000.131 22011. pg.150 20413.131 22009.154 21423.152 21311. pg. pg. pg.179 30028.167 212 • Chapter 11 . pg.129 21301. pg. pg. pg.167 30013.186 29004. pg. pg.152 21306.153 21412.147 20311. pg. pg.128. pg.147 20331.152 21307. pg. pg. pg. pg. pg. pg. pg. pg. pg.185 24101.127 21105.128 21115. pg. pg. pg. pg. pg.150 20500. pg.179 30027. 129 21207. pg.208 29107. pg.130 22001. pg.152 21310.118 21213. pg.187 24112. pg.185 24102. pg.151 21003.149 20421. pg.129 23001.169 30020. pg.151 21102. pg. pg.131 22501. pg.148 20360. pg.147 20351.146 20301.149 20422. pg. pg.150 20420. pg.148 20401.186 24100.156 22515.131 22014. pg. pg.131 22013. pg.167 30012. pg. pg. pg.130 22002.148 20400. pg. pg.156 22507.127 21211. pg.154 21413.155 22505. pg. pg. pg. pg. pg.128 21201. pg. pg.179 30023.149 20402.153 21441.147 20330.152 21401.150 20443. pg.208 29109. pg. pg.208 30000. pg.208 29108.147 20341. pg. pg. pg. pg.129 21205. pg.154 21411. pg. pg.151 21006. pg.129 21212. pg.169 30016.Parameters Index SIEIDrive .127 21111. pg.127 21103.150 20433.156 22502. pg. pg. pg. pg.20300. pg. pg. pg. pg.147 20340. pg.156 22510. pg.131 22010.187 24111. pg. pg.179 30039.131 22004.168 30010.152 21302. pg.151 21004. pg. pg.179 30021. pg.131 22012.127 21104. pg. pg. pg.156 22508. pg. pg.167 30011. pg. pg. pg.129 23010.129 21206. pg. pg. 184 32004.173 30495.170 30491. pg. pg.170 30098.180 30300.175 30264. pg.173 30714.171 30482. pg. pg.172 30303. pg. pg.170 30401. pg.169 30054. pg.170 30301.191 40202.174 30496. pg.182 32010.170 30201. pg. pg.175 30500.XVy-EV User’s Guide Chapter 11 . pg.184 32002.190 40201. pg. pg. pg. pg.174 30716.190 40190. pg.175 30707.173 30405.175 30800.192 40195. pg. pg. pg. pg.168 30091. pg. pg.172 30503.181 31003.191 40194.170 30060.172 30703. pg. pg.183 32020.170 30081. pg. pg. pg.171 30712.184 32003. pg.180 30380.190 40116. pg. pg. pg.190 40114. pg.192 SIEIDrive . pg. pg. pg.170 30097.172 30484.192 40205. pg.170 30101.171 30203.168 30093. pg.169 30052. pg.183 32014. pg. pg.169 30059.169 31000. pg.184 32005. pg. pg. pg.171 30492. pg.189 40100. pg.175 30464.171 30099. pg. pg.173 30704. pg. pg.169 30051. pg. pg.169 30056.30043. pg.174 30487.183 32013. pg.172 30204.169 30057.189 40111. pg. pg.180 30481.183 32015.174 30497.173 30206.170 30711.181 32000. pg. pg. pg.174 30107.191 40192.191 40193. pg. pg. pg.175 30700. pg.171 30402.175 30164.167 30044.149 40000.174 30706.172 30493.168 30096.171 30502. pg. pg.171 30100.173 30485. pg.175 30710.175 30490.180 30200.172 30304. pg.175 30600. pg.173 30305. pg. pg.182 32009.174 30507.190 40113. pg. pg. pg.189 40110. pg.180 31001. pg.172 30494. pg.170 30501. pg. pg. pg.171 30102.170 30400.183 32021. pg. pg.172 30713.173 30105.175 30364.172 30104.173 30505. pg.174 30406.169 30055. pg. pg. 180 30094. pg.191 40203.170 30601. pg. pg. pg. pg.183 32011. pg. pg.208 32016.174 30407. pg.175 30108. pg.184 32200. pg.192 40196. pg.168 30090. pg.184 32102.183 32012. pg. pg.172 30404. pg. pg.169 30053.174 30207. pg. pg.175 30607. pg. pg. pg.173 30205. pg. pg.170 30701.181 31002.172 30504. pg. pg.171 30202.184 32103. pg.173 30604. pg.182 32001.171 30602.Parameters Index • 213 . pg. pg. pg. pg.172 30603. pg. pg. pg. pg.168.174 30307. pg. pg. pg. pg.172 30483. pg.174 30306.175 30717. pg. pg.174 30486. pg. pg.174 30606.171 30702. pg.193 40200. pg.174 30506. pg.183 32090. pg. pg. pg. pg. pg.190 40119. pg. pg.171 30302. pg. pg. pg. pg.190 40115. pg.184 32008. pg. pg.175 30163. pg.173 30605.172 30403.184 32006. pg.190 40191. pg. pg.191 40204. pg.167 30050. pg. pg.173 30705. pg.171 30103. pg. pg. pg.193 40197.173 30715.168 30058. pg. pg. pg. pg.184 32104.173 30106.184 32101.183 32100.189 40001. pg.195 41208.197 40297. pg. pg.194 41231.193 41209. pg. pg.199 41311. pg. pg.200 40916. pg. pg. pg. pg.193 40217.186 ALARMS.147 An Inp 0 D_B Pos. pg. pg.200 40921.185 Alarm Dis Mask. pg.206 Abs Comp En.125 ABS1 Enc Revol.201 40925.147 An Inp 1 Offset. pg. pg. pg.207 ABS1 Enc Div Rev.195 40311. pg.194 41220. pg.191 40222.185 Alarm Delay Mask. pg.207 Abs Cos Offset. 200 A Abs Act Module.200 40905.194 41229.194 41218. pg. pg. pg.200 40903.197 40296. pg. pg.195 41228.202 41050.147 An Inp 0 Scale.147 An Inp 0 Offset.197 40326. pg.184 Alarm Delay.40206. pg. pg.119 Act Pos Trq Lim.200 40911.197 40315.196 40322.200 40910. pg. pg. pg.206 Abs Comp TAU.198 40310. pg. pg. pg. pg. pg.194 41201. pg.199. pg.147 An Inp 0 Value. pg.195 40302.196 40323. pg. pg. pg.198 40317.201 41198. pg. pg.118 Act Torque Eng. pg.194 41221.194 41210.191 40213. pg. pg. 126 ABS1 Rx N Err. pg.168 Actual Ratio. pg.194 41219. pg.194 41230. pg. pg.118 Act Pos Spd Lim.120 Act Enc Pos Loss. pg. pg.192 40214. pg. pg.206 Abs Meas Noise.125 ABS1 Enc Type. pg.196 40313. pg.148 An Inp 1 Value.198 41319.207 Acc Gain.198 41329.206 Abs Cos Meas.200 40906.199 41310.192 40215. pg.201 40930. pg.195 40292. pg. pg. pg. pg. 126 ABS1 Enc Supply.199 41318.199 41308. pg.198 40320.193 40290.206 Abs Gain Err. pg. pg. pg. pg.207 Abs Sin Offset.199 41300.185 Alarm List Clear.200 40904. pg. pg. pg. pg.190 40211. pg.196 40303.193 41199. pg.208 40902. pg.201 40931. pg. pg.197 40305. pg.206 ABS1 Al Bit En.154 Act Torque. pg. pg. pg.199 41301. pg. pg. pg. pg. pg. pg. pg.201 41020.198 41299.147 An Inp 1 Read.206 Abs Data Min Mod. pg.198 41309. pg. pg. pg.185 An Inp 0 D_B Neg.148 An Inp 1 Scale.125. pg. pg. pg. pg.196 40312.193 40227.190 40221.201 41001.196 40314. pg.147 An Inp 1 D_B Neg. pg. pg. pg. pg. pg. pg. pg.197 40306.125.207 ABS1 Alarm Bit. pg.201 41000. pg. pg. pg.194 41200.193 40210. pg. pg.129 Act Ctrl Mode. pg.207 Abs Rev.205 Act Mot El Angle.198 40300.148 An Inp 1 D_B Pos.193 40207. pg.192 40224. pg.195 40301. pg. pg. pg.198 40901.119 Act Neg Trq Lim. pg. pg. pg. pg. 126 ABS1 Enc ppr.195 41298. pg. pg.205 Act Life Hours.200 40917. pg.118 Act Out Power.206 Abs Turn Pos. pg.148 An Out 0 Offset.118 Act Out Curr Lim. pg.192 40216. pg.200 40912. pg. pg.198 40327.149 214 • Chapter 11 .118 Act SpdDrw Ratio. pg.197 40295. pg.197 40307.118 Actual Pos Error.197 40316.192 40226.XVy-EV User’s Guide . pg. pg. pg. pg.192 40225.197 40325.199 41321. pg.206 Abs Max Noise.147 An Inp 0 Read.205 Act Neg Spd Lim.200 41328.125.196 40293.195 40291.168 Actual Position. pg. pg.191 40223. pg.200 40915.186 Alarm Status. pg. pg.196 40294.199 41320. pg. pg. pg.193 40220. pg. pg.Parameters Index SIEIDrive .199 41331. pg.191 40212.200 40926. pg. pg. pg. pg. pg.201 41051.195 40321. pg.200 40920.196 40324.206 Abs Sin Meas. pg. pg. pg. pg. pg. pg. pg.196 40304. 170 AnOut MaxPosErr. pg. pg. pg.149 An Out 1 Offset. pg.136 DIGITAL INPUTS. pg. pg.203 COBID Em Obj.205 Enc Offset.183 Els Delta Time.136 Digital Input 3. pg. pg.184 Els Mec Ratio.157 Brake Enable.179 CW Home Pos Dec. pg.184 Els Ratio 2. pg. pg. 126 Enc Inc Index. pg.143 Digital Input 1. pg.180 Base Torque. pg. pg. pg.208 Curr Deriv Gain. pg. pg. pg. pg.149 Application Sel. pg.182 Els FL Source.201 Enc Err Simul.184 Els Slip Limit. pg. pg. pg.140 Direct Volt. pg. pg.180 BACKLASH RECOV.183 ElsMec Ratio Mul. pg. pg.151 CCW Jog Dec.187 D DC Link Voltage. pg. pg. pg.149 An Out 1 Value.XVy-EV User’s Guide Chapter 11 . 122 Control Mode.151 SIEIDrive .122 DSP Exe Time.140 DO Set at Fail. pg. pg. pg.184 Els Ratio 1. pg.147 ANALOG INPUTS.202 Arms Conv Fact.143 Dig Out Status.119 Enc Rep Sim Cfg.183 Els Delta Ratio. pg. pg. pg. pg. pg. pg.125 Aux Phase Exe T.149 Analog Out 0 Sel. pg. pg. pg. pg. pg. pg. pg. pg. pg. pg.203 DRIVE CONFIG.151 CW Rev Test Gen.209 CCW Rev Test Gen.133 Digital Input 2.121. pg.127 CW Dec Ramp.151 ENC EXP BOARD.119 DEBUG.179 CCW Jog Acc. pg.184 Els RB Dec.143 Digital Output 2. pg.185 Brake Volt Thr.141 Digital Output 1.149 An Out 0 Write.120 COUNTER. pg. pg.121 Drv Nom Curr 0Hz.184 Els RB Time.202 Enc Postition.185 Brake Config. pg. pg. pg. pg. pg.182 Els Max RB Speed.209 DNet En Key Stat.208 Delta Pos.136 Digital Input 4.132 Digital Output 0.200 CC Enabling.132 CURR TEST GEN. pg.136 Digital Input 5.An Out 0 Scale.157 Brake ON Delay.132 Curr Gain Calc. pg.183 En Keys Mask.181 Back Lash En. pg.132 Curr Integr Gain.149 An Out 1 Scale.143 Digital Output 4. pg.132 Cus OBJ Idx Mode. pg.201 DO Reset at Fail. pg.187 Curr Comp Time.132 Curr Prop Gain. pg.120 Drive Max Curr.168 DeviceNet Enable.Parameters Index • 215 .121 Drive size. pg. pg.147 ANALOG INPUT 1.209 BR Ovld Factor. pg. pg.201 Dig Inp 0 Status.148 ANALOG OUT 1.183 Els RB Acc. pg. pg.181 Destination Pos. pg. pg. pg. pg. pg. pg. pg.183 Els PPR Master.143 Digital Output 3.136 Digital Input 7. pg.179 CCW Home Pos Dec.143 DIGITAL OUTPUTS.189 C CANOPEN.151 CW Jog Dec.148 ANALOG POS REF.209 E EL LINE SHAFT. pg. pg. pg.184 Els Ratio Index.157 Brake ON Spd Thr.201 AUTOTUNING. pg. pg. pg.208 Debug Mode.131 Bkg Tsk Exe T. pg. pg. pg.202 Enc Mot Ratio.200 CW Acc Ramp.127 CW Home Pos Acc.119 Drive Serial Add. pg. pg. pg.126 Enc No Idx Range. pg. pg. pg.137 Dig Out Reverse. pg. pg.157 Brake Res Power. pg. pg. pg. pg. pg. pg.183 Els Ratio 0. pg.202 Enable I-O Keys.143 Digital Output 5. pg. pg. pg. pg.119 Enc W->A Mask. pg.137 Dig Inp Rev Mask.179 CW Jog Acc.185 BRAKING RES. pg.120 Drive Nom Curr.150 ENC REPETITION.184 Els Control Mode.125. pg. pg.149 Analog Out 1 Sel. pg. pg. pg. pg.200 COMM CONFIG. pg.205 Enc M Lost Puls. pg.189 Bus Baude Rate. pg.149 Analog Inp 0 Sel. pg.121 ENABLE KEYS. pg. pg.183 ElsMec Ratio Div.185 BRAKE CONTROL.127 CCW Dec Ramp. pg.149 An Out 0 Value.205 Enc Mech Offset. pg.184 Els Ratio 3.181 EL SHAFT R BEND. pg.147 ANALOG INPUT 0.149 An Out 1 Write. pg. pg.150 Enc Revolution.205 Enc Inc Tracks.183 Els Master Sel. pg.140 B Back Lash Dir.202 Aux Enc Type. pg.189 CCW Acc Ramp. pg. pg. pg.136 Digital Input 6. pg. pg. pg. pg.205 CPU Err Al Cause. pg.185 Bus Address. pg.149 ANALOG OUTPUTS. pg.121 Drive Ovld Fact. pg. pg. pg. pg. pg.185 Brake Res Value. pg. pg.184 EL SHAFT RATIO. pg.127 CCW Home Pos Acc. pg.202 CURRENT GAINS.146 Analog Inp 1 Sel. pg.184 Els Ratio Range.121 Drv Temp Src.182 Els Ratio / Slip.146 ANALOG OUT 0.184 Els RB Speed Ref.136 Dig Inp Status. pg.150 EXP ABS1 Hw Rev. pg.207 F Fast Link Addr. pg.199 FB 11th M->S PAR. pg.144 Exp Dig Out 5. pg.XVy-EV User’s Guide .127 EnDat Del Comp.199 FB Assign S->M 12.190 FB Format M->S 10. pg.150 ExAn Out 1 Offse.191 FB Exp M->S 3. pg.196 FB Format S->M 5.192 FB Format M->S 6.191 FB Format M->S 1. pg. pg.144 Exp Dig Out 7.144 EXP DIG OUTPUTS.192 FB 6th S->M PAR.137 Exp Dig Out 1.195 FB Format S->M 10. pg.149 Exp Analog Out 1. pg. pg.198 FB 9th M->S PAR. pg. pg.196 FB Assign S->M 5.193 FB Format M->S 8.192 FB Exp M->S 5. pg.137 Exp Dig Inp 5.144 Exp Dig Out Stat. pg.194 FB 11th S->M PAR. pg. pg. pg.191 FB IPA M->S 4. pg. pg. pg. pg. pg.197 FB Assign S->M 8.207 Fast Stop Dec. pg. pg. pg.198 FB IPA M->S 1.127 FastLink Trq En. pg.195 FB IPA S->M 10.195 FB 12th S->M PAR.150 ExAn Out 0 Value. pg. pg.144 Exp Dig Out 6.150 Exp Dig Inp 0. pg. pg. pg. pg. pg. pg. pg.150 ExAn Out 0 Scale. pg. pg.192 FB Exp M->S 6. pg.205 ENCODER PARAM. pg. pg.191 FB IPA M->S 5.194 FB Assign M->S 12. pg.197 FB Exp S->M 6. pg. pg.Parameters Index SIEIDrive . pg.193 FB IPA S->M 1.191 FB Assign M->S 3.196 FB Format S->M 4.199 FB Assign S->M 11.192 FB Assign M->S 7. pg.192 FB Exp M->S 7.197 FB 8th M->S PAR.194 FB IPA M->S 11.196 FB Format S->M 3. pg. pg. pg.137 Exp Dig Inp 2. pg.193 FB Assign S->M 1.197 FB 7th M->S PAR.120 ExAn Out 0 Offse.125 Environment Temp.198 FB Format S->M 9. pg.192 FB Format M->S 7.195 FB Assign S->M 10. pg.197 FB Format S->M 6. pg. pg. pg.198 FB Assign S->M 9.137 Exp Dig Inp 1.207 EXP AN OUT 0.199 FB 1st M->S PAR.195 FB Assign M->S 2. pg.191 FB 4th S->M PAR.193 FB Format M->S 9. pg.190 FB Format M->S. pg. pg.190 FB IPA M->S 10.193 FB Assign M->S 8.195 FB 2ndM->S PAR. pg. pg. pg. pg.144 Exp Dig Out 2. pg. pg. pg.194 FB Format M->S 11. pg. pg.191 FB Assign M->S 5.196 FB Exp S->M 4.150 EXP ANALOG OUT.207 EXP ABS1 Pos.196 FB Exp S->M 5. pg.190 FB Assign M->S 10.137 Exp Dig Inp 3. pg.Enc Warning Cause. pg.192 FB Format M->S 5. pg.191 FB IPA M->S 3. pg.198 FB Exp M->S 1. pg.150 EXP AN OUT 1.197 FB Assign S->M 7. pg.193 FB 8th S->M PAR.193 FB Exp M->S 8.191 FB 3rd S->M PAR. pg.192 FB Assign M->S 6.194 FB Format S->M 1. pg. pg. pg. pg. pg. pg.196 FB Assign S->M 4. pg.137 Exp Dig Inp Stat.196 FB 5th M->S PAR. pg.199 FB Format S->M 12.197 FB Exp S->M 7.192 FB IPA M->S 6.195 FB Exp S->M 10.150 ExAn Out 1 Write. pg. pg. pg. pg. pg.191 FB 3rd M->S PAR.194 FB Exp M->S 12. pg. pg.126 End Run Dec.197 FB Assign S->M 6.194 FB Format M->S 12.199 FB 12th M->S PAR. pg.137 Exp Dig Inp 6.194 FB Exp M->S 11. pg. pg. pg.198 FB Fail Cause. pg. pg.199 FB Exp S->M 12.137 EXP DIG INPUTS.186 ENCODER.195 FB IPA M->S 2.207 EXP ABS1 Sw Rev.144 Exp Dig Out 3. pg. pg. pg. pg. pg.197 FB 6th M->S PAR. pg.193 FB Assign M->S 9. pg. pg. pg. pg.195 FB Exp M->S 2. pg. pg.198 FB Alarm Watch. pg. pg. pg.150 ExAn Out 0 Write. pg. pg.192 FB IPA M->S 7. pg.194 FB 10th S->M PAR. pg.192 FB 5th S->M PAR.200 FB Exp S->M 2. pg.199 FB Exp S->M 11. pg. pg.195 FB Assign S->M 3. pg. pg.199 216 • Chapter 11 . pg.191 FB Format M->S 4.149 Exp Analog Out 0.191 FB Assign M->S 4.200 FB Format S->M 2. pg. pg.193 FB IPA M->S 8. pg.194 FB Exp S->M 1.195 FB Format M->S 3. pg. pg.194 FB IPA M->S 12. pg. pg.198 FB Exp S->M 9. pg. pg.197 FB Format S->M 7.193 FB 9th S->M PAR.150 ExAn Out 1 Value. pg. pg.199 FB Format S->M 11.131 FastLink Trq Ref.137 Exp Dig Inp 7. pg.131 FB 10th M->S PAR. pg. pg.199 FB Assign S->M 2. pg. pg.198 FB Exp S->M 8. pg.144 EXP ENC ABS1. pg.190 FB Exp M->S 10. pg.193 FB Exp M->S 9. pg. pg. pg. pg.150 ExAn Out 1 Scale. pg. pg. pg.195 FB 2nd S->M PAR. pg.193 FB IPA M->S 9. pg.198 FB Format S->M 8. pg. pg.196 FB 4th M->S PAR.123 Encoder Ratio Enable. pg.137 Exp Dig Inp 4.190 FB 1st S->M PAR. pg.191 FB Exp M->S 4.193 FB 7th S->M PAR.194 FB Assign M->S 11. pg.196 FB Exp S->M 3.144 Exp Dig Out 4. pg.122 FAST LINK ENC. pg. pg. 150 Index Position. pg. pg. pg.190 FIELDBUS. pg. pg. pg.209 MaxSys Tsk Exe T. pg.123 Mot Nominal Curr.154 M Ramp 3 CW Acc.185 Max Deflux Curr.153 M Ramp 2 CW Dec. pg. pg. pg.206 Inc Data Min Mod.209 Inside Index Src. pg. pg.152 Multi Speed 3.152 Multi Speed 5.Parameters Index • 217 .209 MaxFst Tsk Exe T.169 Max Prs Abs Val. pg. pg. pg.187 MaxIn Ph Exe T.199 FB IPA S->M 12. pg. pg.119 Hig Curr Ref Gen.154 M Ramp 3 CCW Acc.119 IPA 1 Par Set.131 MaxAux Ph Exe T.152 Multi Speed 2. pg. pg.206 Inc Data Pos. pg.121 KEYPAD KEY.209 Min Preset Value. pg.123 Motor Poles.156 Motor Pot Mode.179 Home Src Direc.126 MPos 0 Next Pos.188 Load Default Par.155 Motor Pot Memo.156 Motor Pot Output.123 Mot Ovld Time.124 Mot Nom K Torque. pg.175 MPos 7 Next Pos. pg. pg.152 Multi Speed 7.198 FBCFG. pg.167 Multi Pos Index.169 Min Prs Abs Val.179 Home Spd Ref.131 Max Preset Value.152 Multi Speed 1. pg. pg. pg. pg. 202 Load Def Counter.129 Inp Phase Exe T. pg. pg.179 Intake Air Temp. pg. pg.179 Home Max Spd. pg.180 Home Pos Offset. pg.123 MOTOR POT.132 Max Loss Pos.206 Inc B Data Count.208 Field Bus Status. pg.131 Max Ovld Curr.195 FB IPA S->M 3.174 MPos 6 Next Pos. pg.173 MPos 4 Next Pos. pg.206 Inc Data Act Mod. pg. pg. pg. pg. pg.123 MOTOR OVERLOAD.154 M Ramp 3 CCW Dec. pg.206 Index Puls Simul. pg. pg. pg. pg. pg. pg. pg.153 Multi Spd Index.154 M Ramp 2 CW Acc.171 MPos 2 Next Pos.170 MPos 1 Next Pos.169 Modbus IPA Ofst.153 Multi Ramp Index. pg.196 FB IPA S->M 5.121 Max Pos Error.123. pg.190 FLUX. pg.119 Loss Active. pg. pg. pg.154 M Ramp 3 CW Dec. pg.155 Motor Pot Dir. pg.173 MPos 5 Next Pos. pg.199 FB IPA S->M 2. pg.154 Mains Voltage.209 MaxSl Tsk Exe T.175 Multi Pos Enable. pg.156 Motor Pot En.123 Mot Ovld Control.123 Mot Ovld Factor. pg. pg.209 Measured Speed.132 Flux Current.166 Max Pos Torque.122 Full Scale Speed. pg. pg.120 Max Brake Energy. pg. pg.128 Max Torque.206 Inc Pulses / Rev. pg. pg. pg. pg.119 IPA 2 Par Set. pg. pg. pg.197 FB IPA S->M 7. pg. pg.205 FW Version. pg.154 M Ramp 2 CCW Dec.152 Multi Speed 4.150 Inertia.151 Jog Reference. pg.168 Multi Ramp Conf.156 Motor Pot Init.152 Multi Speed 6. pg.123 Mot Thermal Prot. pg. pg. pg. pg. pg.205 KEYPAD PSW. pg. pg.118 Fst Tsk Exe T. pg. pg. pg.203 G Guard Time. pg.203 Keypad PSWD.FB IPA S->M 11.197 FB IPA S->M 8. pg. pg. pg. pg. pg.209 MaxBkg Tsk Exe T.200 LKG Inductance.205 Inc Data N Rev.179 Home Pos Offs En.118 MotPoles/EncRev. pg. pg.151 Jog Speed Limit. pg. pg. pg. pg.197 FB IPA S->M 6.152 SIEIDrive .202 Home Fine Spd. pg. pg.205 Max Neg Torque.156 Motor Pot Lo Lim.205 Keypad Key Word.209 MaxOut Ph Exe T. pg. pg.159 Low Curr Ref Gen. pg.155 Motor Pot Acc.XVy-EV User’s Guide Chapter 11 .153 M Ramp 1 CW Acc.200 M M Ramp 1 CCW Acc. pg.209 FstLnk Slow Sync.203 L Life Time Factor.155 Motor Speed.187 J JOG FUNCTION. pg. pg.190 Mot Enc Source. pg. pg. pg. pg. pg.153 M Ramp 1 CW Dec. pg. pg. pg.156 Motor Pot Up Lim. pg.156 Motor Pot Reset.206 Index Offset Sim.198 FB IPA S->M 9. pg. pg. pg. pg. pg.155 Motor Pot Dec.209 H Heatsink Temp.119 Load Param PAD.196 FB IPA S->M 4. pg.151 K KEYPAD. pg. pg. pg.131 Float Word Order. pg.153 M Ramp 2 CCW Acc. pg.129 Inertia Filter. pg. pg. pg.189 FL Trq Scale.179 I Inc A Data Count.123 MOTOR DATA. pg. pg. pg. pg. pg.128 FW Build Number.152 Multi Speed Conf. pg.169 Max Ramp Rate. pg. pg. pg.153 M Ramp 1 CCW Dec. pg.172 MPos 3 Next Pos.209 MaxDSP Exe T. pg. pg.123 MOTOR PARAM.205 Load Def Err IPA. pg. pg. MULTIRAMP 1. pg. pg.173 Pos Event 4. pg.171 Pos 2 Progress. pg.171 Pos Speed 2.Parameters Index SIEIDrive .200 PDO 1 TX INH. pg.174 Pos CW Dec 7.170 Pos CW Acc 1. pg. pg. pg.190 PDO 1 RX. pg.167 Pos CW Acc 0. pg.172 Pos CW Dec 3.170 Pos CCW Dec 1.180 POS RETURN CONF.175 Pos Dwell 7.171 Pos CW Dec 2. pg.171 Pos An Mode. pg. pg. pg.169 POS PRESET 6. pg.153 MULTIRAMP 2.173 Pos CCW Dec 5. pg.174 Pos 7 Progress. pg.188 PLC Saved ChkS. pg.201 PDO 2 TX INH.201 Period Test Gen. pg. pg. pg. pg. pg. pg.200 PDO 1 TX.132 Out Volt Filter.170 Pos CCW Acc 1.200 PDO 1 RX COBID. pg.151 N Neg Speed Limit.167 Pos CCW Acc 0.180 Pos Return Dec.200 PDO 1 TX COBID.174 Pos CW Dec 6.158 P Loss Prop Gain. pg.201 PDO 3 TX INH. pg. pg. pg. pg.174 Pos Preset 63. pg. pg.129 O Out Current. pg.172 Pos Preset 3. pg.171 Pos CCW Dec 2.175 Pos CCW Dec.167 Pos CCW Dec 0.202 PL Mains status.173 Pos CCW Acc 5.174 Pos CCW Acc 6.172 Pos Event 3.202 PHASING.174 POS PRESET 7.171 POS PRESET 2.158 P Loss Volt Ref.173 Pos 5 Progress. pg. pg.172 Pos CW Dec 4. pg. pg. pg. pg. pg.209 Pos 0 Progress.173 Pos Preset 6.171 POS PRESET 3.173 POS PRESET 5. pg. pg.200 PDO 2 RX. pg. pg. pg. pg.170 POS PRESET 1. pg. pg.120 P P Loss Int Gain. pg.173 Pos CW Dec 5. pg.180 Pos Return Acc.172 Pos 4 Progress.153 .172 Pos Speed 4.201 PLC Enable Key.173 Pos Speed 6. pg. pg.118 Out Frequency. pg. pg. pg. pg. pg.201 PDO 3 TX TYPE.200 PDO 2 RX TYPE. pg.180 Pos Return Speed. pg. pg.153 MULTIRAMP 3.168 218 • Chapter 11 . pg.169 Pos 1 Progress.173 Pos Preset 5. pg. pg. pg.175 Pos CW Dec. pg.158 Par Set Cause Al.201 PDO 2 TX TYPE. pg.175 POS PRESET 0.171 Pos Preset 1. pg. pg. pg. pg.201 PDO 3 RX. pg.172 Pos CW Acc 3.209 Out Vlt Max Lim. pg. pg.200 PDO 3 RX TYPE.174 Pos CCW Acc 7. pg. pg.200 PDO 2 RX COBID.170 Pos Event 1. pg. pg.170 Pos An Wind Del. pg. pg.170 Pos CW Dec 1. pg.174 Pos Event 6. pg. pg. pg. pg.173 Pos Event 5.173 Pos CW Acc 5. pg.170 Pos Dwell 1.175 Pos Speed Limit.187 PDC Enabling.175 Pos Preset 7. pg.174 Pos CW Acc 7.169 Pos Actual Event. pg. pg. pg.172 Pos CCW Dec 4.201 Pos CW Acc. pg.171 Pos Speed 3.172 Pos CCW Dec 3. pg.158 P Loss NoRes Thr. pg. pg. pg. pg.173 Pos Speed 5. pg. pg.209 PLC En Key Stat.175 POS PRESET (8-63).173 Pos Preset 4.XVy-EV User’s Guide . pg. pg. pg.174 Pos CCW Dec 6.170 Pos CCW Acc.171 Pos Event 2.169 Pos An Filter.172 Pos 3 Progress. pg.158 PLC Correct ChkS. pg. pg.174 Pos Speed 7.202 Phasing Speed.129 Pos Stop Dec. pg. pg.171 Pos An Stdy Wind. pg.119 Out Phase Tsk T.175 Pos Preset 8. pg.171 Pos CW Acc 2. pg.201 PLC Err Cause. pg.158 P Loss Ramp.200 PDO 3 RX COBID.200 PDO 2 TX. pg.175 Pos Exceeded. pg. pg. pg. pg.170 Pos Speed 1. pg. pg. pg.201 PDO 3 TX COBID.175 Pos Reach Behav. pg.175 Pos Event 7. pg. pg. pg. pg. pg.172 Pos CW Acc 4.173 Pos Dwell 4.173 Pos Dwell 5. pg.170 Pos 0 Thr Offset.172 Pos CCW Acc 4.172 Pos Dwell 3. pg.200 PDO 3 TX.170 Pos Preset 0. pg. pg. pg.180 Pos Speed 0.175 Pos Abs Thr. pg.175 Pos Event 0.171 Pos Dwell 2.158 P Loss Trq Lim. pg.174 Pos CCW Dec 7.119 Over Mod Factor. pg.171 Pos Preset 2.158 P Loss Spd 0 Thr. pg. pg. pg.175 Pos Dwell 0. pg.MULTIRAMP pg. pg. pg. pg. pg.171 Pos CCW Acc 3.174 Pos 6 Progress. pg. pg. pg.172 POS PRESET 4.154 MULTISPEED.175 Pos Conv Fact.208 Overload Control.167 Pos Return.132 Output Voltage. pg. pg. pg. pg.200 PDO 1 RX TYPE. pg.174 Pos CW Acc 6.167 Pos CW Dec 0.201 PDO 1 TX TYPE.174 Pos Dwell 6. pg. pg. pg. pg. pg. 146 Volt Int Gain.121 Res Shift Time. pg.144 Virt Dig Out 1. pg.203 SPEED.118 Startup Zero Pos. pg.145 Virt DO at Reset.188 TX Pos.124 SPD/POS TESTGEN.145 Virt Dig Out 9. pg.170 POSITION.167 Position Torque. pg.119 Save Parameters.205 Relay Config.166 UNITS.202 Tuning Status. pg.128 Speed Comp. pg. pg.208 Spd-Pos Enc Sour.130 Torque Reduction.145 Virt Dig Out 14. pg. pg. pg. pg.145 Virt Dig Out 2. pg. pg.180 Stop by Ramp.118 Speed Test Gen.181 SPEED DRAW.120 Q Quadrature Volt.121 Serial Del Time.129 Start on Edge.145 Virt Dig Out 11. pg. pg.138 Virt Dig Inp 4.129 Speed Ref 1.145 Virt Dig Out 13.168 Position Gain.131 Torque Thr Delay.138 Virt Dig Inp 1.118 Torque Mode.150 Preset Index. pg.132 T TASK MEASURES. pg. pg. pg.131 TUNING. pg.208 RX Pos Aux. pg. pg.167 Unit Per Rev. pg.205 Trq Lim Config.121 SIEIDrive . pg.145 Virt Dig Out 7. pg.202 TORQUE. pg. pg.129 Speed Thr Wnd. pg.201 RX Pos.145 Virt Dig Out 15.130 Torque Thr. pg.129 Spd Loop Filter.169 POS THR CONFIG. pg. pg. pg.138 VIRT DIG INPUTS. pg.Parameters Index • 219 . pg.138 Virt Dig Out 0. pg. pg.206 RESERVED. pg.209 R RAMP pg.208 Resolver Gain.154 Speed Draw In. pg.144 Virt Dig Out 3.131 Torque Ref 1.131 Tot Life Hours. pg. pg.138 Virt Dig Inp 11. pg.122 Temp Thr.138 Virt Dig Inp 3.140 Virt DI at Start. Ramp Enable. pg.129 Speed Reach Wnd. pg.169 Pos Window. pg. pg.145 Virt Dig Out 12.204 Slow Tsk Exe T.154 Speed Draw Out. pg. pg.119 Save Param Count. pg.129 POSITION LIMIT.128 Speed Ref 2.144 Virt DO at Fail. pg. pg. pg.139 Virt Dig Inp 2. pg.138 Virt Dig Inp 12. pg.167 SW Reset Count.144 Virt Dig Out 10. pg. pg.129 Speed Zero Thr. pg. pg.122 Serial Line Conf.145 Virt Dig Out 4. pg. pg. pg. pg. pg. pg. pg. pg. pg.145 Virt Dig Out 8. pg. pg. pg.207 RX Rev Aux. pg. pg. pg.139 Virt Dig Inp 15.169 Pos Thr Close 2.138 Virt Dig Inp 5. pg.140 Virt DI at Reset.209 SPD / POS GAIN.127 Ramp Output. pg.130 Torque Ref 2. pg. pg.129 Position I Gain. pg.124 Rpm Conv Fact.206 Resolver Poles. pg.209 Temp Hys.169 Power Fail Count.168 PWM Frequency. pg. pg.208 RX Rev. pg. pg.168 Position Speed.209 Sys Warn Cause.138 Virt Dig Inp 6. pg. pg. pg.129 Speed Thr Delay.154 Speed Draw Ratio.139 Virt Dig Inp 13. pg.202 TEST GENERATOR. pg. pg. pg. 170 Pos Window Time.158 PPR Simulation.169. pg.145 Virt Dig Out 6.145 VIRT DIG OUTPUTS. pg. pg. pg.202 Serial Baud Rate.159 Position Config.157 Powerloss Config.138 Virt Dig Inp 8.XVy-EV User’s Guide Chapter 11 .132 Volt Prop Gain. pg. pg.139 Virt DI Status.208 U Unit Per Div.169 Position Mode.170 Pos Window Tout. pg. pg. pg. pg. pg.121 Serial Prot Type.119 Ser Num En Keys. pg. pg. pg.208 TX Rev. pg. pg.132 V Virt DI at Dis. pg. pg. pg. pg. pg. pg. pg.205 Sync Period. pg. pg.138 Virt Dig Inp 10.139 Virt Dig Inp 14. pg.205 Save Param PAD. pg.122 Test Gen Ref. pg. pg.118 Reg Card Temp. pg. pg.203 Speed Thr. pg.200 Sys Tsk Exe T. pg. pg. pg. pg.145 Virt Dig Out 5.127 .201 Torque Current. pg.205 POWERLOSS. pg. pg. pg. pg. pg. pg. pg.128 Speed Ref 3. pg.208 SERVICE. pg. pg.167 Start Status.202 S SAVE / LOAD PAR.138 Virt Dig Inp 7.138 Virt Dig Inp 9. pg.128 Speed Reference. pg.130 Torque Conv Fact.Pos Thr Close 1. pg.118 Ramp Reference. pg.154 Speed Gain. pg.201 User Vlt Max Lim. pg.145 Virt DO Status. pg.119 Reg Temp Alarm Th.129 Speed Zero Delay.127 Ramp Exp Factor.131 Trq Speed Limit. pg.139 Virt Dig Inp 0. pg. XVy-EV User’s Guide . pg. pg. pg.207 Z ZERO FOUND CONF.179 220 • Chapter 11 .176 Zero Index En.208 XE ENC ABS MEAS.186 X XE Enc Abs Flt.125 XER/EXP Ind Pos.124 XE Enc Supply.208 XER/EXP Enc Mod. pg. pg.124 XE Hall Meas. pg. pg.208 XER Enc Supply. pg.179 Zero Sensor Edge.205 XE Enc ppr. pg.207 XER/EXP Turn Pos. pg. pg. pg. pg.207 XER/EXP Puls Rev.207 XE Hall N Error. pg.207 XE Inc Enc Flt.206 XE ENC INC MEAS. pg.207 XER/EXP Rev.207 XE Hall Rev. pg. pg.207 XE Hall Pos. pg. pg.208 XE Index Mask.125 XER/EXP Enc Flt. pg. pg.124 XE Enc Type.208 XER/EXP Enc ppr. pg.207 XE HALL TRACKS. pg. pg.W Warning Status. pg.Parameters Index SIEIDrive .180 Zero Sensor En. pg. N° EAM 1906 Denominazione / title Revisione / release 0 18. / dwg. Pagina / page 0 label 1/2 00.00 Data/date Modifica / title Figure 12. 0 label 05.Motor Cables B schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 SESC-SBM SESC-SBM IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO ENCODER SEPARATO DAI CAVI DI POTENZA don't install encoder cable near power cable 01 Rev.Motor Cables • 221 .02 Pos. sign 0:0 DLL Chapter 12 .verde / green giallo / yellow verde / green giallo / yellow rosso / red arancio / orange rosso / red arancio / orange GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) 5 15 D C E marrone / brown nero / black GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE 10 4 9 14 3 13 B R P F marrone-blu / brown-blue internal shield must be insulated (no cut) internal shield must be on the main shield 8 12 7 11 2 A V S G marrone-rosso / brown-red grigio / grey N T bianco-nero / white-black 1 M U H L K J J H M N L K A P F E C D 6 marrone-grigio /brown-grey blu / blue bianco-giallo / white-yellow marrone-grigio /brown-grey 1 8 3 4 marrone / brown 5 nero / black 6 marrone-blu / brown-blue 7 marrone-rosso / brown-red 9 grigio / grey 10 bianco-nero / white-black 11 blu / blue 12 bianco-giallo / white-yellow 13 7 2 SIEIDrive .XVy-EV User’s Guide SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption not used wires must be insulated (no cut) I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red S T verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red Chapter 12 .00.10.1: Cable SBM Motor Series / Sinusoidal Encoder Dis.05. 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SBMCAVO ENCODER (SESC) SESC encoder cable Date Scale Dwg. Modifica / title 00 Rev.06 Data/date Tolta nota ponte. corretti colleg. sign 0:0 DLL SIEIDrive . Pagina / page 0 label 1/2 00.06 Data/date Tolta nota ponte. Modifica / title 00 Rev. / dwg.XVy-EV User’s Guide .Motor Cables SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption not used wires must be insulated (no cut) I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) E S bianco-giallo / white-yellow marrone-grigio /brown-grey verde-nero / green-black marrone-giallo / brown-yellow T B verde-rosso / green-red schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 DEHS-SBM DEHS-SBM IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO ENCODER SEPARATO DAI CAVI DI POTENZA don't install encoder cable near power cable 01 Rev. N° EAM 1906/1 Denominazione / title Revisione / release 0 18. 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SBMCAVO ENCODER (DEHS) DEHS encoder cable Date Scale Dwg.verde / green giallo / yellow verde / green giallo / yellow rosso / red arancio / orange marrone / brown nero / Black marrone-blu / brown-blue marrone-rosso / brown-red grigio / grey bianco-nero / white-black blu / blue bianco-giallo / white-yellow marrone-grigio /brown-grey rosso / red arancio / orange GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE D marrone / brown C E nero /black B R F marrone-blu / brown-blue internal shield must be insulated (no cut) internal shield must be on the main shield 10 12 11 7 2 P S A J H M N K L A P 1 8 3 4 5 6 7 9 V G marrone-rosso / brown-red grigio / grey N T G bianco-nero / white-black M U H 5 4 3 2 1 1 9 8 7 6 10 1 1 1 1 5 4 3 2 1 L K J blu / blue C verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red 222 • Chapter 12 .02 Figure 12.05.2: Cable SBM Motor Series / Digital Encoder + Hall Sensors Pos.00 Data/date Modifica / title Dis.00.10. 0 label 05. corretti colleg. 06 0:0 TSS Figure 12. label Data/date Modifica / title Codice …….00 Data/date Modifica / title Rev.XVy-EV User’s Guide 13 14 I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) not used wires must be insulated (no cut) IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND REALIZZARE UN PONTE TRA I PIN A e S E F bianco-giallo / white-yellow marrone-grigio /brown-grey verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red make a bridge between pins A and S B schermo / shield 1 5 6 connect shields with ground insulated terminal board when the cable is connected through terminal board 4 3 2 6 SSI/ENDAT-SBM SSI/ENDAT-SBM IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO ENCODER SEPARATO DAI CAVI DI POTENZA 4 don't install encoder cable near power cable 00 Rev.11. 0 label 00. sign 03.3: Cable SBM Motor Series / Absolute Encoder with SSi .arancio / orange rosso / red arancio / orange rosso / red nero / black marrone / brown nero / black marrone / brown GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) 5 15 verde / green giallo / yellow marrone-blu / brown-blue marrone-rosso / brown-red grigio / grey bianco-nero / white-black blu / blue bianco-giallo / white-yellow marrone-grigio /brown-grey verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red D C E verde / green giallo / yellow 1 8 11 12 5 6 10 4 14 9 B R F marrone-blu / brown-blue internal shield must be insulated (no cut) P S marrone-rosso / brown-red A V G J H C D L K A P 7 9 2 3 13 8 2 12 7 grigio / grey N T T SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption bianco-nero / white-black M U H J blu / blue 11 1 L 6 K SIEIDrive .00. 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato EXP-ABS / EXP-ABS connector custodia connettore EXP-ABS / EXP-ABS case connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label Chapter 12 . Pagina / page 1/2 Dis.EnDat Protocol Pos.Motor Cables • 223 -SBMCAVO ENCODER (SSI-ENDAT) per EXP-ABS-EV SSI-ENDAT encoder cable for EXP-ABS-EV .. / dwg. N° Denominazione / title EAM 2363 Revisione / release Date Scale Dwg. 02 Pos. 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SBMCAVO RESOLVER resolver cable Date Scale Dwg.00.06 Data/date Tolta nota ponte. 0 label 05.00 Data/date Modifica / title Figure 12.05. N° EAM 1906/3 Denominazione / title Revisione / release 0 21.Motor Cables schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 RES-SBM RES-SBM IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO RESOLVER SEPARATO DAI CAVI DI POTENZA don't install resolver cable near power cable 01 Rev.C D 12 13 GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE rosso / red arancio / orange verde / green giallo / yellow verde / green giallo / yellow C D E B R P S F E F internal shield must be insulated (no cut) marrone / brown nero / black marrone / brown nero / black rosso / red arancio / orange 11 10 A V G marrone / brown N T S T 14 15 nero / black internal shield must be on the main shield 7 2 M U H 5 4 3 2 1 1 9 8 7 6 10 1 1 1 1 5 4 3 2 1 L K J marrone / brown U V B SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption nero / black 224 • Chapter 12 . / dwg. Modifica / title 00 Rev. Pagina / page 0 label 1/2 00.XVy-EV User’s Guide .10.4: Cable SBM Motor Series / Resolver Dis. sign 0:0 DLL SIEIDrive . 10. / dwg.02 Pos.XVy-EV User’s Guide SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) not used wires must be insulated (no cut) verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red 17 18 verde-nero / green-black marrone-giallo / brown-yellow 7 2 verde-rosso / green-red 19 schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 SESC-SHJ SESC-SHJ IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO ENCODER SEPARATO DAI CAVI DI POTENZA don't install encoder cable near power cable 01 Rev. Modifica / title 00 Rev. N° EAM 1906/4 Denominazione / title Revisione / release 0 21.verde / green giallo / yellow verde / green giallo / yellow rosso / red arancio / orange GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) rosso / red arancio / orange 4 3 5 marrone / brown nero / black GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE internal shield must be on the main shield 2 1 3 1 1 8 1 5 1 4 6 marrone-blu / brown-blue internal shield must be insulated (no cut) 1 9 7 marrone-rosso / brown-red grigio / grey 1 2 1 7 1 6 8 bianco-nero / white-black 1 1 9 5 4 3 2 1 1 9 8 7 6 10 1 1 1 1 5 4 3 2 1 blu / blue 1 0 8 4 5 9 3 7 12 2 10 14 15 11 marrone-grigio /brown-grey bianco-giallo / white-yellow marrone-grigio /brown-grey 1 8 3 4 marrone / brown 5 nero / black 6 marrone-blu / brown-blue 7 marrone-rosso / brown-red 9 grigio / grey 10 bianco-nero / white-black 11 blu / blue 12 bianco-giallo / white-yellow 13 SIEIDrive . 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SHJCAVO ENCODER (SESC) SESC encoder cable Date Scale Dwg.Motor Cables • 225 . 0 label 05. corretti colleg.06 Data/date Tolta nota ponte. sign 0:0 DLL Chapter 12 . Pagina / page 0 label 1/2 00.5: Cable SHJ Motor Series / Sinusoidal Encoder Dis.00.00 Data/date Modifica / title Figure 12.05. 02 Figure 12. Pagina / page 0 label 1/2 00. corretti colleg.Motor Cables SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption not used wires must be insulated (no cut) I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) 4 17 16 verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red 7 schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 DEHS-SHJ DEHS-SHJ IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO ENCODER SEPARATO DAI CAVI DI POTENZA don't install encoder cable near power cable 01 Rev.00.05.00 Data/date Modifica / title Dis. 0 label 05. / dwg. N° EAM 1906/5 Denominazione / title Revisione / release 0 21. sign 0:0 DLL SIEIDrive . 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SHJCAVO ENCODER (DEHS) DEHS encoder cable Date Scale Dwg. Modifica / title 00 Rev.XVy-EV User’s Guide .6: Cable SHJ Motor Series / Digital Encoder + Hall Sensors Pos.06 Data/date Tolta nota ponte.verde / green giallo / yellow verde / green giallo / yellow rosso / red arancio / orange marrone / brown nero / black marrone-blu / brown-blue marrone-rosso / brown-red grigio / grey bianco-nero / white-black blu / blue bianco-giallo / white-yellow marrone-grigio /brown-grey rosso / red arancio / orange GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE internal shield must be on the main shield 10 12 11 7 2 4 marrone / brown 3 5 nero / black 2 1 3 1 4 6 1 13 14 9 11 10 6 internal shield must be insulated (no cut) 1 8 3 4 5 6 7 9 marrone-blu / brown-blue 1 1 8 1 5 1 9 7 12 marrone-rosso / brown-red grigio / grey 1 2 1 7 1 6 8 3 bianco-nero / white-black 5 4 3 2 1 1 9 8 7 6 10 1 1 1 1 5 4 3 2 1 1 1 1 0 9 blu / blue 5 verde-nero / green-black marrone-giallo / brown-yellow verde-rosso / green-red bianco-giallo / white-yellow marrone-grigio /brown-grey 226 • Chapter 12 .10. / dwg. 1 2 3 4 5 6 DESCRIZIONE / description connettore lato motore / motor connector connettore lato drive / drive connector custodia connettore drive / case drive connector tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label -SHJCAVO RESOLVER resolver cable Date Scale Dwg.Motor Cables • 227 .02 Data/date CHANGED POSITION PIN C-H Modifica / title 00 Rev.11.7: Cable SHJ Motor Series / Resolver Dis. sign 0:0 DLL Chapter 12 .00. 0 label 26. N° EAM 1906/6 Denominazione / title Revisione / release 0 21. Pagina / page 0 label 1/2 00.00 Data/date Modifica / title Figure 12.02 Pos.XVy-EV User’s Guide schermo / shield 1 3 4 5 connect shields with ground insulated terminal board when the cable is connected through terminal board IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE MORSETTO ISOLATO DAL GROUND 4 2 6 RES-SHJ RES-SHJ IN CASO DI CUSTODIA IN PLASTICA SALDARE GLI SCHERMI SUL CONNETTORE METALLICO connect shields on the metallic connector if plastic case SI CONSIGLIA DI INSTALLARE IL CAVO RESOLVER SEPARATO DAI CAVI DI POTENZA don't install resolver cable near power cable 01 Rev.10.B G GLI SCHERMI INTERNI DEVONO ESSERE ISOLATI (NON TAGLIATI) GLI SCHERMI INTERNI DEVONO ESSERE A CONTATTO CON LO SCHERMO PRINCIPALE rosso / red arancio / orange verde / green giallo / yellow verde / green giallo / yellow 12 13 11 10 B C A D C H internal shield must be insulated (no cut) internal shield must be on the main shield marrone / brown nero / black rosso / red arancio / orange I H E J I J marrone / brown nero / black marrone / brown nero / black 7 2 14 15 G F 5 4 3 2 1 1 9 8 7 6 10 1 1 1 1 5 4 3 2 1 A E F SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI connect directly the cable to both connectors without any interruption marrone / brown nero / black SIEIDrive . 0 label 00.Motor Cables IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE COLLARINO schermo / shield 1 2 4 5 connect shields with 360° ground terminal when the cable is connected through terminal board 6 POT-SBM POT-SBM schermo / shield I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) not used wires must be insulated (no cut) DESCRIZIONE / description connettore lato motore / motor connector collarino / 360° ground terminal 00 Rev.8: SBM 5-7 Motor Series Power Cable Dis. 1 2 3 4 5 6 tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label SBM 5/7 CAVO POTENZA power cable Date Scale Dwg.00.02 Pos. sign 0:0 DLL SIEIDrive . / dwg.00.10.00 Data/date Modifica / title to power terminal board drive giallo-verde / yellow-green Figure 12. Pagina / page 0 label 1/3 00.XVy-EV User’s Guide . N° EAM 1907 Denominazione / title Revisione / release 0 22.00 Data/date Modifica / title 00 Rev.A not used wires must be insulated (no cut) 3 giallo-verde / yellow-green 2 1 I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) 1 U2/T1 V2/T2 W2/T3 PE2 B 2 A B C 3 D C D connect directly the cable to both connectors without any interruption 5 6 SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI 5 6 228 • Chapter 12 . XVy-EV User’s Guide IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE COLLARINO schermo / shield 1 2 4 5 connect shields with 360° ground terminal when the cable is connected through terminal board 6 POT+B-SBM POT+B-SBM schermo / shield DESCRIZIONE / description connettore lato motore / motor connector collarino / 360° ground terminal 00 Rev. / dwg.9: SBM 5-7 Motor Series Power + Brake Cable Dis.00 Data/date Modifica / title Figure 12. N° EAM 1907/1 Denominazione / title Revisione / release 0 22. sign 0:0 DLL to power terminal board drive giallo-verde / yellow-green Chapter 12 .A 2 3 giallo-verde / yellow-green 1 1 U2/T1 V2/T2 W2/T3 PE2 B 2 A B E F C 3 D C D connect directly the cable to both connectors without any interruption E 5 5 6 brake wires F 6 SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI SIEIDrive . Pagina / page 0 label 1/3 00. 1 2 3 4 5 6 tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label SBM 5/7 CAVO POTENZA + FRENO power + brake cable Date Scale Dwg.00.00 Data/date Modifica / title 00 Rev.10.02 Pos.00.Motor Cables • 229 . 0 label 00. Pagina / page 0 label 1/3 00.A not used wires must be insulated (no cut) 3 giallo-verde / yellow-green 2 1 I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) 1 U2/T1 V2/T2 W2/T3 PE2 B 2 A B D C giallo-verde / yellow-green 5 6 D connect directly the cable to both connectors without any interruption 5 6 SI CONSIGLIA UNA CONNESSIONE CONTINUA SENZA INTERRUZIONI TRA I DUE CONNETTORI 230 • Chapter 12 .00. N° EAM 1907/2 Denominazione / title Revisione / release 0 Date Scale Dwg. 1 2 3 4 5 6 tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label SIEIDrive .02 0:0 DLL Pos.XVy-EV User’s Guide -SHJCAVO POTENZA power cable to power terminal board drive C 3 . 0 label 00.10.Motor Cables IN CASO DI INTERRUZIONE INTERMEDIA ESEGUIRE LA CONTINUITA' DEGLI SCHERMI TRAMITE COLLARINO schermo / shield 1 2 4 5 connect shields with 360° ground terminal when the cable is connected through terminal board 6 POT-SHJ POT-SHJ I CONDUTTORI NON UTILIZZATI DEVONO ESSERE ISOLATI (NON TAGLIATI) not used wires must be insulated (no cut) Figure 12. / dwg.10: SHJ Motor Series Power Cable DESCRIZIONE / description connettore lato motore / motor connector collarino / 360° ground terminal 00 Rev.00 Data/date Modifica / title Dis.00 Data/date Modifica / title 00 Rev.00. sign 22. sign 23. Pagina / page 0 label 1/2 00.XVy-EV User’s Guide blu / blue 4 5 1 C B blu / blue 6 BR-SHJ BR-SHJ DESCRIZIONE / description connettore lato motore / motor connector 00 Rev.00 Data/date Modifica / title 00 Rev.11: SHJ Motor Series Brake Cable Dis.B A marrone / brown marrone / brown A SIEIDrive .02 0:0 DLL Pos.00. N° EAM 1907/3 Denominazione / title Revisione / release 0 Date Scale Dwg.00. 0 label 00.10. / dwg.Motor Cables • 231 CAVO FRENO SHJ brake cable .00 Data/date Modifica / title Figure 12. 1 2 3 4 5 6 tubetto termorestringente / plastic tube cavo / cable sigla cavo / cable label Chapter 12 . XVy-EV User’s Guide .Motor Cables SIEIDrive .232 • Chapter 12 . user international group. the “Extended Boot-up (CAL)” is not managed. The integrated CANopen interface is developed as a “Minimum Capabilty Device”. CiA Draft Standard 301 Version 3. The CAN protocol (ISO 11898) is CAN2. 1. the Broadcast address is zero. 1. 5) The emergency message is managed (“EMERGENCY”).Appendix . 6) The Dynamic ID distribution function (DBT slave) is not managed. CAN : Controller Area Network. also the following NMT services are managed: . 2) The SYNC function is implemented. Issue October 1996 by CAN in Automation e.1. the Baud Rates for the interface are those foreseen by the CANopen specification. the DBT has the task to assign COB-ID to the COBs used by the CMS. 3) The PDO asynchronous assignment and RTR are managed.1 CANopen Functions This chapter describes the controlled functions of the CANopen communication profile. 9) “TIME STAMP” is not managed.Enter_Pre-Operational_State CS = 128 . V. 8) The high-resolution synchronization is not supported.Reset_Node CS = 129 .1.0 Integrated CANopen Interface CiA : CAN in Automation. 10) On the access of the structured parameters.2 NMT Services (Network Management) The NMT “mandatory” services are: . the Master unit reads the Slave input data and writes the Slave output data.Field bus and serial interface • 233 . The reference document is the CANopen CAL-Base COMMUNICATION PROFILE for Industrial Systems.Start_Remote_Mode CS = 1 SIEIDrive . The data exchange is cyclic. DBT: Distributor.Reset_Communication CS = 130 Being that the “Minimum Boot-up” is used.0A with an 11-bit identifier. “Inhibit-Times” (in units of 100 uS) can be modified up to a value of 1 min. 1. The main features are: 1) The “Minimum Boot-up” is managed. 4 Bytes) of the SDO services is managed. 4) The Node Guarding is managed. 7) A “Pre-Defined Master/Slave connection” is implemented to simplify the Master tasks during the initialization phase.Field bus and serial interface 1. It is a service element of the CAN Application Layer in the CAN Reference Model. service messages with confirmation used for the acyclic data transfer from/to the device.1 Pre-defined Master/Slave Connection PDO: Process Data Object. service messages without confirmation used for the real time data transfer from/to the device. SDO: Service Data Object. 11) In order to obtain a higher efficiency level. only the “Expedited” data transfer (max.XVy-EV User’s Guide Appendix . The “Pre-defined Master/Slave connection” allows a peer-to-peer communication between one Master and 127 Slaves. CANopen is a communication profile for CAL-based industrial systems.0. the OFFhex option subindex (access to the whole object) is not managed. OBJECT 1st SDO rx 1st SDO tx 1st PDO rx 1st PDO tx 2nd PDO rx 2nd PDO tx EMERGENCY NODE GUARDING SYNC PRIORITY 6 6 2 2 2 2 1 not used 0 MESSAGE ID 1536 1408 512 384 768 640 220 1792 128 Table 1. 2) 1 SDO transmission Server.Life Guarding.3 Initialization The XVy drive supports the Node Guarding mechanism. It also states the COB priority. No parameterization of the Node Guarding. configures and controls the errors of a CAN network.1: Communication Objects 234 • Appendix . The data must be sent in network inside a COB. 3) 2 reception PDOs.NMT: Network Management.XVy-EV User’s Guide . 1.4. NODE_GUARDING_PERIOD (*) LIFE_TIME_FACTOR NODE_GUARDING_PERIOD set by the master If not otherwise stated. 7) 1 SYNC object.1. If not stated by the master. The following table lists the used communication objects with their priority level and the Message Identifier. the “Resulting COB-ID” is obtained by adding the Node-ID (card address) to the number. the LIFE_TIME_FACTOR value is equal to 3 1. 4) 2 transmission PDOs. they are managed by the interface card. the LIFE_TIME_FACTOR default value is equal to 3. COB = Communication Object (CAN Message). 5) 1 Emergency Object. 100Ch. If the check fails. 6) 1 Node Guarding . COB-ID = COB-Identifier. It is a service element of the CAN Application Layer in the CAN Reference Model. CS: Command Specifier. it initializes.1. SYNC_PERIOD (*) LIFE_TIME_FACTOR Use of the synchronous mode. the drive enables the "Buss Loss" alarm. it defines the NMT service. It identifies a COB inside the network. - Stop_Remote_Mode CS = 2 The COB-ID * of an initialization NMT service is always at 0. The Life Guarding threshold can be calculated as follows: Value/Condition 60ms Default. It is a transport unit inside a CAN network. The Node Guarding configuration can be performed through the master via the standard Object Dictionary elements (1006h.Field bus and serial interface SIEIDrive . The managed communication objects are: 1) 1 SDO reception Server.4 Communication Object This chapter describes the communication objects of the CANopen protocol. The drive checks the master functioning conditions through the Life Guarding. 100Dh). CS is the Command Specifier defining the NMT service. 1. NOTE! It is possible to save the objects permanently to the drive flash memory: 1) 2) via configurator. 40931 40922. The allocation criterion is variable.: index 1000 -> IPA 40902) with the SAVE function from CANopen (object index 1010). 40925. 40917 40920. and depends on the size (in bytes) of the parameter exchanged. The following table shows the communication objects used and accessibility with master CANopen. 40932 Table 1. 40927. 1.XVy-EV User’s Guide Appendix .5 Object Dictionary Elements The Object Dictionary is accessible from a master CANopen and from the keypad configurator. 40930 40921.5.Field bus and serial interface • 235 . 1401h) is: 1) Subindex 0 (Number of supported entries ) = 2 2) The structure of Subindex 1 (COB-ID used by the PDO) is: SIEIDrive . Index (hex) 1000 1001 1002 1005 1006 1008 1010 1009 100A 100C 100D 100F 1014 1018 1400 1401 1402 1600 1601 1602 1A00 1A01 1A02 1800 1801 1802 IPA Parameter Name Device Type Error Register Manufacturer status register COB-ID SYNC Message Communication cycle period Manufacterer Device Name Store parameter Manufacterer Hardware Version Manufacterer Software Version Guard Time Life Time Factor Number of PDOs supported COB-ID Emergency Identity object 1st Receive PDO 2nd Receive PDO 3rd Receive PDO Receive PDO1 mapping parameter Receive PDO2 mapping parameter Receive PDO3 mapping parameter Transmit PDO1 mapping parameter Transmit PDO2 mapping parameter Transmit PDO3 mapping parameter 1st Transmit PDO 2nd Transmit PDO 3rd Transmit PDO 40902 40903 40904 40905 40910. 1. keypad configurator.g. 40916 40912. 40926. only for objects with parameter reference (e.1. it has the Message-ID because it is not a Broadcast service. 40915 40911.Node Guarding has no priority because it is a special NMT service.6 Rx PDO Entries The structure of the PDO Communication Parameter (index 1400h.1: Objects used by the CANopen communication profile The objects shown in bold in the table allow writing of the parameters assigned with the exchange of data in the PDO. Bit 30 reserved = 0. 254.1.Bits 11-28 are not used. the synchronous mode is active. The element “node ID of SDO’s client resp. . 2) The structure of the Subindex 1 and 2 (COB-ID used by the SDO) is: .7 Tx PDO Entries The structure of the PDO Communication Parameter (index 1800h.Field bus and serial interface SIEIDrive .XVy-EV User’s Guide .Bit 0-10 COB-ID (see table 1.Bit 0-10 COB-ID (see table 1. The structure of the SDO Communication Parameter is: 1) Subindex 0 (Number of supported entries ) = 3 because the device is a Server of the SDO service.1)..Bit 30 = 0 because the interface card does not create SYNC messages.Bits 11-28 are not used. .0A). 1. . or synchronous according to the master performed setting (1 if SYNC has been foreseen.. 3) Cyclic-synchronous Subindex 2 (Transmission Type). .1).4.4.Bit 31 = 1 because the CANopen interface card is a “consumer” of SYNC messages. 1. If not stated.0A). . 4) Inhibit time 1. or synchronous according to the master performed setting (1 if SYNC has been foreseen.255 if asynchronous).- Bit 31 (valid/invalid PDO) can be set via SDO.Bit 30 (RTR Remote Transmission Request) = 0 because this function is not supported.Bit 31 (valid/invalid SDO). the synchronous mode is active. 4 Bytes) is used.Bit 29 = 0 because the 11-bit ID is used (CAN 2. .Bit 0-10 COB-ID (see table 1.9 COB-ID SYNC Entries The structure of the 32 bits contained in the COB-ID SYNC communication parameter is: . 1801h) is: 1) Subindex 0 (Number of supported entries ) = 3 2) The structure of Subindex 1 (COB-ID used by the PDO) is: .255 if asynchronous). . 236 • Appendix . . it is equal to 1 because just the Default SDOs are used.4. 3) Cyclic-synchronous Subindex 2 (Transmission Type).. . If not stated. .1. ..0A). .1.Bit 31 (valid/invalid PDO) can be set via SDO. server” is not supported because just the Default SDOs are used.Bit 29 = 0 because the 11-bit ID is used (CAN 2.8 SDO Entries Only the “Expedited” data transfer mode (max.Bits 11-28 are not used. Bit 30 (RTR Remote Transmission Request) = 0 because this function is not supported.Bit 29 = 0 because the 11-bit ID is used (CAN 2.1). 254. 4.31 32 33 34-35 36 Meaning Protocol incorrect Configuration error on M2S reception channel Configuration error on S2M transmission channel Too many bytes on M2S reception channel Too many bytes on S2M transmission channel errored IPA for PLC allocation More than 4 words allocated as Fast250 us on M2S SIEIDrive .Bits 11-28 are not used. .10 COB-ID Emergency The structure of the 32 bits contained in the COB-ID Emergency Message communication parameter is: . 0 Write 0 Write Enabled Write Enabled Write 0 Read only - Bus Address = address of the node. Bit 0-10 COB-ID (see table 1.0A).1. With the PDC channel it is possible to exchange up to 8 parameters The FB Fail Cause parameter defines the error cause..Bit 0-10 COB-ID (see table 1.Field bus and serial interface • 237 . .1).. 1 18. . 1. 1. Bus Baude Rate = network baud rate. Here following is a list of drive parameters useful to control the CANopen protocol. Name Bus Address Bus Baude Rate CC Enabling PDC Enabling FB Fail Casue Type 1 byte unsigned 4 bytes unsigned Enum Enum 4 bytes unsigned Default valueAttr. Fieldbus menu The CANopen protocol can be enabled by setting the IPA 40000 Field Bus Type parameter as "Can Open". The parameters are controlled via hierarchical menus. PDC Enabling and CC Enabling” = allow the user to enable/disable the corresponding channels.XVy-EV User’s Guide Appendix .1).Bit 31 = 0 because the CANopen interface card is not a “consumer” of Emergency messages. . Bits 11-28 are not used.- Bit 29 = 0 because the 11-bit ID is used (CAN 2.4.Bit 30 = 0 because the interface card creates Emergency messages.0A).Bit 29 = 0 because the 11-bit ID is used (CAN 2.24 25.2 CANopen Management The user interface of the CANopen protocol is performed via the drive parameters. The other parameters of this menu are: IPA 40100 40001 40110 40111 40114 Par. 125kb = 125000). All the writing parameters referring to the field bus are active only after the drive reset. Presently the following causes are provided: Cod. The baudrate is stated directly in baud (ex. PDC Process Data Channel ). The use of the MDPlc variables is described in par.5. 7. if the byte total number required is not higher than 16. Example It is possible to have: from 0 to 12 data with 2 bytes 1 datum with 4 bytes + from 0 to 10 data with 2 bytes 2 data with 4 bytes + from 0 to 8 data with 2 bytes 3 data with 4 bytes + from 0 to 6 data with 2 bytes 4 data with 4 bytes + from 0 to 4 data with 2 bytes 5 data with 4 bytes + from 0 to 2 data with 2 bytes 6 data with 4 bytes The data exchanged via the PDC can be of two types: drive parameters and variables of an MDPlc application. The fieldbus Process Data Channel configuration is the following: Data 0 Data. the PDC is performed via the PDO messages ((Process data Object). A datum can be made both of 2 and 4 bytes. which can always be set.1 and 1..37 100 101 103 104 105 106 107 108 111 112 More than 4 words allocated as Fast250 us on S2M Baud rate not correct Node address not correct Non expedited SDO type not supported SDO length not correct Error on NMT messages NMT code not supported Can line on “Bus-off” status Impossible to be operational (can never happen) RPDO dimension exceeded TPDO dimension exceeded 1. Drive Input PDC Output CanOpen Interface PDO Rx PDO Tx 238 • Appendix .3 Process Data Channel Control This function allows to allocate the drive parameters or application variables to the Process Data Channel data.Field bus and serial interface SIEIDrive .. The master writes the data defined as PDC input and reads the data defined as PDC output. The word "data" refers to any quantity of bytes included between 0 and 8.3.3.XVy-EV User’s Guide .3.3 The composition of the PDC input and output data is defined via suitable parameters as described in the paragraphs 1. Data n The drive can both read and write the Process Data Channel data. As for the CANopen protocol. The CANopen protocol uses a number of words for the Process Data Channel (abbr.2. As for parameters with a float internal format. Set the parameters as follows: 40200 FB IPA M->S 1 @ 32001 40210 FB Format M->S 1 @ “16 bit integer” 40220 FB Exp M->S 1 @ 3 In this way the master must write: 1000 to set the value 1.3. Name FB Assign M->S 1 FB IPA M->S 1 FB Format M->S 1 FB Exp M->S 1 Typo Enum 2 bytes unsigned Enum 2 bytes unsigned Default value Not assign 0 16 bit int 16 bit integer Attr. The structure is repeated 12 times for the 12 possible input parameters.40222 etc. parameter. Writing Writing Writing Writing Unit --- This structure refers to the first input parameter. it is possible to choose "32 bit integer" and the conversion into a float format between the received datum and the internal datum is performed automatically. The following parameter indexes are 40201. but a number of bytes is inserted equal to 0 corresponding to the parameter FB Format M->S 1. Filling: the corresponding PDC datum is not associated with any parameter.1 PDC Input Configuration (FB XXX MS Parameter) The configuration of the PDC input channel can be performed via 12 menus with the same structure.40221.. Fast Access parameter (250 us): the corresponding PDC datum is associated with a parameter identified by FB IPA M->S 1.1. The write format identified by Appendix . The parameters are emitted in internal counts and exchanged synchronously (every 250 usec). The parameters are entered into internal counts and are exchanged in an asynchronous way (one every 8 msec). The writing format identified by the FB Format M->S 1 parameter (see the table in the FIELDBUS menu) must coincide with the drive internal format.. The FB Format M->S 1 parameter sets the parameter writing format. The parameters are entered into engineering units and are exchanged in an asynchronous way. A practical example for the parameter use: The Els Ratio 0 .1. IPA 40190 40200 40210 40220 Par. with a float format is written by the master. Direct Access: the PDC corresponding datum is combined to a parameter identified by FB IPA M->S 1. The FB Exp M->S 1 parameter defines the 10th power which the parameter is multiplied by before being transferred to the drive.234. The FB Assign M->S 1 parameter can be selected as follows: Parameter: the PDC corresponding datum is combined to a parameter identified by FB IPA M->S 1. It must be written with an integer format.XVy-EV User’s Guide .Field bus and serial interface • 239 - - SIEIDrive .000 -1234 to set the value -1. The format can be different from the parameter original one.IPA 32001. signed and three decimal digits. 40202. up to 4 words from the 12 available can be assigned. The index to be shown in the SDO command to access a drive parameter is obtained via the following rules: .40321. These parameters can be activated by resetting the drive.1. The drive parameters can be accessed via the “MSPA” Manufacturer Specific Profile Area (2000hex< index <5FFFhex).2 PDC Output Configuration (FB XXX SM Parameter) The output configuration of the PDC channel can be performed via 12 menus with the same structure.4 SDO Management The SDO service is available only if the 40110 CC Enabling parameter is ON. the XVy drive is supplied with an offset value allowing the access to the drive parameters. 1.3 Use of the PDC in MDPlc Applications It is possible to configure both the PDC input and output data in order to allow the data direct access via the MDPlc application code..Offset mode SDO index = 2000 hex + IPA-OFFSET The OFFSET value can also be accessed (and modified) via the 5FFF hex index of the CANopen Object Dictionary. Before establishing the Profibus communication between the Master and the drive. The structure is repeated 12 times for the 12 possible output parameters. FB IPA S->M 1 and FB Format S->M 1 and FB IPA S->M 1 parameters have the same meaning as those described in point 1. IPA 40290 40300 40310 40320 Par.parameter FB Format M->S 1 (see FIELDBUS menu table) must match that within the drive. 240 • Appendix . With this data exchange mode.3. The indexes of the following parameters are 40301. Writing Writing Writing Writing Unit ----- This is the structure for the first output parameter.. 1. 1.3. Name FB Assign S->M 1 FB IPA S->M 1 FB Format S->M 1 FB Exp S->M 1 Typo Enum 2 bytes unsigned Enum 2 bytes unsigned Default value Not assign 0 16 bit int 16 bit integer Attr. For more details see the manual “Drive programming with MDPlc” on “XVy tools” cd-rom. The default value is 1000. an error message is displayed. As the drive parameter indexes (IPA) normally exceed the CANopen MSPA.XVy-EV User’s Guide .Field bus and serial interface SIEIDrive . The FB Assign S->M 1.40322 etc. it is necessary to assign the drive parameters to the Process Channel.3. if not. The Subindex field has always to be set with 0. 40302. First of all set 40906 (Cus OBJ Idx Mode) to Mod.Mode Mod. corresponding to 03E8 hex..Field bus and serial interface • 241 . 100 SDO index = IPA/100 + 2000 hex (if parameters) SDO index = IPA/100 + 4000 hex (direct access) SDO subindex = IPA%100 (parameters and direct access) The Data field must contain the value of the drive parameter. The required information is: 1) The SDO index resulting from the formula is 2000 hex + 23000dec .XVy-EV User’s Guide Appendix . the CANopen interface sends an Abort domain transfer message. corresponding to 03E8 hex.100 The following information is required: 1) The SDO index is 2000 hex + 23001 dec /100 = 8422 dec (20E6 hex) 2) Sub-index: 23001 Mod. In case an error occurs during the parameter reading or setting. Index Subindex Value 88hex 33hex 00hex E8hex 03hex 00hex 00hex Drive parameter value to be assigned to SDO Subindex always 0 Drive parameter index Example (mod 100): Value 1000 written to parameter 23001 (Position Gain). the value of Application-error-codes has the following meanings: Error class Error code Additional code (hex) Meaning 6 8 6 8 6 6 5 5 3 0 0 1 0 9 9 4 4 9 0 22 2 0 32 31 0 1 30 Parameter doen't exist Acces failed because of present device state Read/Write only error Generic error Minimum value Maximum value SDO time_out Invalid command Invalid value SIEIDrive . 100 = 1 dec (1 hex) 3) Value to be written 1000. Example (mod Offset): Writing the value 1000 in the 23000 (Speed Gain) parameter. for example.18000 dec = 13192 dec (3388 hex) 2) The value to be written is 1000. Set. the OFFSET value (5FFF hex index of the CANopen Object Dictionary) at 18000. 1."Bus-off" condition of the CAN line. As for CANopen.5 Alarms Fieldbus alarms The bus failure is signaled via the 26-"Field bus failure" alarm.XVy-EV User’s Guide .the "Life Guarding" threshold has been overcome. the 40115 FB Alarm Watch parameter enables the generation of the "Field bus failure" alarm also when the drive is disabled. the possible failure causes are: .th drive has not been enabled in the "Operational" mode. This alarm becomes active only when the drive is enabled. The "drive alarm status" is not therefore given any special treatment. The XVy firmware provides the "Virtual Digital Input" function. .Field bus and serial interface SIEIDrive . The XVy firmware provides a series of parameters capable of detecting the drive status. i. 242 • Appendix . It is therefore possible to reset the alarms via the configuration channel on the firmware of all the different drives. the "drive alarm status" is not foreseen. . Alarm reset The alarm reset is one of the drive standard functions. through which it is possible effect a bit-controlled alarm reset.The alarm reset can be performed by sending the value 1 to the parameter 18012. Drive alarm handling Considering that the fieldus must function with different firmware application systems. each application provides the same parameter for this function. If ON.e. long or float type) covers therefore two Modbus registers. The received function code does not correspond to a function allowed on the addressed slave.1 Exception codes The protocol implemented on the drive foresees the following exception codes.2. The broadcast mode is allowed. a 32-bit Drive parameter (Dword. 06 Preset single register This function allows to set the value of a single 16-bit register. The registers require two bytes where the first one contains the most significative section. IPA 18031) since it is reserved for broadcast command. Each word is the register. Note: (*) For a detailed function description refer to “MODBUS RTU Protocol. For the Dword or long format.2 Error Management Refer to “MODBUS RTU Protocol. The broadcast mode is not allowed. 2. Set Serial Prot Type (IPA 18032) as "Modbus".1 Modbus Functions The following functions are implemented on the drive: Description This function allows to require the ON or OFF condition of the Drive discrete parameters (Coil). chapters 1 and 2“ Instruction manual (SIEI code 1S5E68). For the float format. The broadcast mode is not allowed. chapter 3” Instruction manual Multiple request cannot be executed. Only one parameter can be accessed at the time. The broadcast mode is allowed.XVy-EV User’s Guide . Code Name 00 ILLEGAL ADDRESS 01 ILLEGAL FUNCTION Meaning Address is not valid. the first word is the most significative part of the 32bit data. The broadcast mode is not allowed. 2. 02 (*) Read input status This function allows to require the ON or OFF condition of the Drive discrete parameters (input). Code Function 01 (*) Read coil status NOTE! The 16-bit Drive parameter (word or integer type) is referred to as 16-bit Modbus register. Appendix .2. NOTE! Do not use address 0 in the Modbus protocol (Drive Serial Add. chapter 4” Instruction manual (SIEI code 1S5E68). 2. 03 (*) Read holding registers This function allows to require the value of 16-bit (word) registers containing Drive parameters.0 Modbus Refer to “MODBUS RTU Protocol.Field bus and serial interface • 243 SIEIDrive . the first word is the less significative part of the 32-bit data. 16 (*) Preset multiple registers This function allows to set the value of a consecutive block made of 16-bit registers. Only one parameter can be accessed on each request : 16 bit parameters are read by reading the register corresponding to the IPA.00.3 System Configuration To use the Modbus protocol within the drive.4 Appendix . 2. The serial port configuration is managed by the DRIVE CONFIG / Comm Config menu (parameters: Drive Serial Add (IPA 18031).02 03 04 05 06 07 ILLEGAL DATA ADDRESS The address number. while 32 bits parameters are accessed by reading 2 registers starting from the one corresponding to the IPA of the drive .49. which the data field refers to.Register and Coil Modbus Tables In the drive the register number and parameter index (IPA) are the same.01.Field bus and serial interface SIEIDrive .92 244 • Appendix . SLAVE FAIL The Slave cannot execute the requested command SLAVE ACK The Slave has accept and is executing the requested command SLAVE BUSY The Slave is busy NAK . is not allowed for this register.5 Modbus example The following functions are implemented : 03 Read Output register : This function is used to read the parameters . It is possible to read 16bits parameters ( word & int ) and 32bit parameters ( dword & float ) .03. Example with int ( word is the same ) : reading 18710 Heatsink Temp . Serial Line Conf (IPA 20025).XVy-EV User’s Guide . The following bytes should be sent through the RS-485 line : 01. IMPORTANT! The settings of Serial Baud Rate (IPA 20024) is enabled with the drive start-up. it is therefore required to store it and to switch the drive off. Serial Del Time (IPA 20026) and Serial Prot Type“ (IPA 18032).83. the user must configure the Serial Prot type (IPA 18032) = [1] Modbus protocol and the address DriveSerial Add (IPA 18031) which cannot be = 0 (DRIVE CONFIG/ COMM CONFIG menu). it is necessary to set “Modbus” in the “Communication setup” on Target windows. 2. 2. In order to communicate with the drive through the GF-eXpress configurator in Modbus Protocol. Serial Baud Rate (IPA 20024). ILLEGAL DATA VALUE The value to be allocated. It is not possible to read more than two registers . which the data field refers to.15. is not a register allowed on the addressed slave.NEGATIVE The function can not be performed with the present operating ACKNOWLEDGEMENT conditions or attempt to write an only-reading parameter. 43 This is the answer of the drive ( no active alarms ) : 01. 06 Preset single register : This function sets single 16 bit parameter . 59. B3 . 00. 01 is the number of 16 bit registers to read .XVy-EV User’s Guide Appendix . 03. 00. D7.With this meaning : 01 is the address of the drive (as in 18031 Drive Serial Add). 9B This is the answer ( drive is not running ) : 01. see the section "Errors" below . 00. 49. 03. 4D If the heatsink temperature is 29°C. 5D. this is the message to send : 01. 13. 00. 87. Modbus addresses start from 1 . 00. MSB first . 04. FA. LSB . 15 is the register number corresponding to IPA 18710 . 00. 03. 02 . If the answer looks different or there is no answer at all . Example with dword : If we want to read the status of the alarms. 04. FA. 06. 03. Please do not use on a 32 bit parameter . IPA 24000 Alarm Status . D7 . 85 SIEIDrive . 33 Dwords are exchanged in this order : LSW MSW . 00. 02. 42. 04. 03. Example with float : Let's try to read 18735 Out Current: 01. BF. 83 . 00. 00. 3E. because 0 is reserved.Field bus and serial interface • 245 . 1F. 1D. 02. 2A . In each word : MSB . send the following string 01. so this is 18710-1 in hex . Each drive must have a unique address. 00. 00 . 64 . E6 . 00. starting from 1. 03. 33 If for instance the current is 40: 01. 03 is the function number Read Output register 49 . 78. This is 0x4915 in hex. 00. To set for example 23000 Speed Gain to 100. 92 is the calculated CRC16 of the message The drive should answer in a similar way (temperature may be different): 01. D7 The binary format of the floating point numbers is beyond the scope of this document. Please note that this function can be used in broadcast mode (address 0): 00. 1C The byte order is the same as in function 03 .54 In this case the drive does not answer . 4E.90 For 32 bits parameters . 00.00. 00. 02. 00. 64. Example with int : writing to 23000 Speed Gain . D7 . 52.00. 01.XVy-EV User’s Guide .2B. D7 . 01.DC Sets speed ref 1 to 0 .00. 10. 02. 10. 00. value is 100 01.00.00. The answer is : 01. C1 . 99 It is necessary to write the register address . D7. A3. 2. It is not possibile to set multiple parameters . 00. the number of data bytes ( 2 for 16 bit parameters) and then the data . 52. 00. 10. 59.00. 00. 85 If everything is ok . 16 Preset multiple registers : This function is used to set parameters . 4. 6D Example with dword: writing to 20162 DIG_IN_NEG 01. number of registers is 2 and number of data bytes is 4 . 61.The drive will answer : 01. Answer : 01. Only one parameter can be set on each request .64 . 02. CF . 4. 4F 246 • Appendix .7C . 2A. The drive answers in this way : 01. 10. 10. 00.00. 02. 59. 07. 59.5A. Example with float: writing to 21200 Speed Ref 1 01. 59. 10. the number of registers (1 for 16 bit parameters ) .00. 06. CF. 64 . D7.Field bus and serial interface SIEIDrive . but will apply the value anyway . C1.43. 4E.00. 06. operative status Minor fault (DUP MAC-ID fail.Field bus and serial interface • 247 . As protocol CAN (ISO 11898) is used CAN2. Refer to chapter 4.3. 3.0A with the 11 bit identifier.DeviceNet Device Profiles and Object Library (Issued by ODVA) 3. .0 DeviceNet Interface (XVy-DN) This chapter describes the software for connecting of XVy drives to DeviceNet networks. It is intended for design engineeres and technicians responsible for the maintenance.6 of this manual for more details.500 kbit . bus-loss) Major fault (configuration error.2 Connection The CAN terminals allows to connect the XVy drive to DeviceNet network. Name CAN AL OP Colour Green Red Green Function The led is ON when the connection is powered (pin C1. TheXVy-DN driver is developed as “Slave UCMM Capable Device” for operating only in “Predefined Master/Slave Connection Set”. internal error) DeviceNet not configurated SIEIDrive . The data transfer is carried out cyclically. Volume 2 .125 kbit . The physical support is given by the RS485 serial line.3 Leds The DeviceNet connection leds are behind the CAN connector. the Baud Rate supported by the SBI card are: .XVy-EV User’s Guide Appendix .1 DeviceNet General Description DeviceNet is a profile of communication for industrial systems based on CAN.DeviceNet Communication Model and Protocol (Issued by ODVA). 3.DeviceNet Specifications.3. a maximum of 64 Slaves can be connected to the Bus.3. commissioning and operation of DeviceNet systems. bus-off. the Master unit reads the data supplied by the Slaves and writes the Slave reference data. C5) DeviceNet connection status see next table DeviceNet connection status see next table Table 3.1: AL-OP leds status codification OP ON BLINK BLINK ON OFF OFF OFF AL ON BLINK OFF OFF BLINK ON OFF Meaning Card power-up Self test and Duplicate MAC-ID check is running Master configuration and/or I/O Polling wait not active I/O Polling active. A basic knowledge of DeviceNet is assumed and may be found in the following manuals: . Volume 1 .250 kbit .DeviceNet Specifications. 3.4 Interface For the connection to the Bus please use a shielded twisted cable recommended by DeviceNet specification. The connection among the single cards is accomplished by a shielded cable as shown in the following figure: XVy XVy XVy PE Shield 3.5 DeviceNet Function In this chapter are described the functions of DeviceNet managed by the driver. The main characteristics of the card are: 1. XVy-DN operates only as Slave in “Predifined Master/Slave Connection Set”. 2. Within the “Predefined Master/Slave Connection Set” the driver is a “UCMM Capable Device”. 3. The “Explicit Messaging” is managed. 4. The “Polling” for the fast cyclical data exchange Master/Slave is managed. 5. The detection mechanism of the “Duplicate MAC ID” is implemented. Regarding the “Explicit Messaging” the fragmentation of the data frame, with a total of max. 32 byte, is managed. Connection sizes CONNECTION INSTANCE Polled I/O Explicit messaging PRODUCED CONSUMED Depending on frame setting 32 32 3.6 Object description Hereafter you find the description of the objects managed by the XVyDN driver. 248 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide 3.6.1 Object Model The following figure shows the XVy-DN “Object Model”. Application Objects Drive memory access Drive par IDENTITY Message Router Connection DeviceNet I/O Explicit The following table shows: 1. The object classes of XVy-DN driver. 2. If the class is mandatory. 3. The number of instances included in every class. See “DeviceNet Specifications” for the Standard classes. Object Identity Message Router DeviceNet Connection Parameter Drive Parameter Access Drive memory Access Optional/Required Required Required Required Required Optional Optional Optional # of Instances 1 1 1 1 I/O, 3 Explicit many many many 3.6.2 How Objects Affect Behavior The “Affect Behaviour” of the objects is reported in the following table: Object Identity Message Router DeviceNet Connection Parameter Drive Parameter Access Drive Memory Access Effect on Behavior Supports “Reset Service” No effect Port attributes configuration Contains the number of logical ports Drive parameters read/write Drive parameters read/write Drive parameters read/write 3.6.3 Defining Object Interface The object interface of the XVy-DN driver is the following: Object Identity Message Router DeviceNet Connection Parameter Drive Parameter Access Drive memory Access Interface Message router Explicit Messaging Connection Instance Message router Message router Message router Message router Message router SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 249 3.7 Data transfert via Explicit Messaging The data transfer via Explicit Messaging is made through two new objects: one for accessing the Drive parameters, the other to direct access the drive memory. 3.7.1 Drive Parameter Access For read/write of Drive parameters, the Drive Parameter Access object is defined with the following properties: - Class ID: Fh. - Class Attribute: Revision - Instance Attribute: This instance does not have attributes. 3.7.1.1 Class Code Class code: F hex 3.7.1.2 Class attributes Number 1 Need in implementation Optional Access Rule Get Name Revision DeviceNet Description Data Type of Attribute UINT Revision of this object dn345 Semantics of values 3.7.1.3 Instance Attributes Number Need in implementation Access Rule Name DeviceNet Description Data Type of Attribute Semantics of values dn350 This instance does not provide attributes 3.7.1.4 Common Services This object has no common services. 3.7.1.5 Object Specific Services Service Code 0hex 10hex Need in implementation Class Instance n/a Required n/a Required Service Name Get_Attribute_Single Set_Attribute_Single Description of Service Read drive parameter value Writes drive parameter value dn356 3.7.1.6 Behavior This object is the interface between the DeviceNet and all drive parameters. The Drive parameter is accessed via the parameter index itself. For example, reading a parameter (IPA 24000: - Run a Get_Attribute_Single from class Fh, - instance = 24000 (5DC0 hex) - class 1 attribute - the drive responds with 4 bytes (Dword format). 250 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide For example, writing a parameter (IPA 23000): - Run a Set_Attribute_Single from class Fh, - instance = 23000 (53D8 hex) - class 1 attribute - to set value 20, select “Word 2 byte” (parameter format is INT, 16 bit) - the drive does not respond if there is an error (timeout). Low byte - Low word drive parameter drive High byte - Low word drive parameter drive Low byte - High word drive parameter drive High byte - High word drive parameter drive dn357 byte VALUE XX The number of bytes in the “Value” field depends on the length of drive parameter; Example: if the type of drive parameter is “Integer” the length of VALUE is 2 bytes. 3.7.2 Drive Parameter Access For read/write of Drive parameters, the Drive Parameter Access object is defined with the following properties: - Class ID: 66h. - Class Attribute: Revision - Instance Attribute: This instance does not have attributes. 3.7.2.1 Class Code Class code: 66 hex 3.7.2.2 Class attributes Number 1 Need in implementation Optional Access Rule Get Name Revision DeviceNet Description Data Type of Attribute UINT Revision of this object dn345 Semantics of values 3.7.2.3 Instance Attributes Number Need in implementation Access Rule Name DeviceNet Description Data Type of Attribute Semantics of values dn350 This instance does not provide attributes 3.7.2.4 Common Services This object has no common services. SIEIDrive - XVy-EV User’s Guide Appendix - Field bus and serial interface • 251 3.7.2.5 Object Specific Services Service Code 32hex 33hex 34hex 35hex Need in implementation Class Instance n/a Required n/a Required Service Name Get_Drive_Value Set_Drive_Value Description of Service Read drive parameter value Writes drive parameter value Read drive parameter value indicating the data type Writes drive parameter value indicating the data type dn355 n/a Required Get_Typed_Drive_Valu e n/a Required Set_Typed_Drive_Value 3.7.2.6 Behavior This object is the interface between the DeviceNet network and all Drive parameters. The access to the Drive parameter is carried out by the parameter index; if the parameter does not exist or may not be accessed for any reason (for example: try to write a read only parameter) an error code will be returned. Drive parameters in text format cannot be accessed. In the following are repeted patterns of how the data frame of data has to be composed for reading/writing Drive parameters. A) Write Drive Parameter In this example the writing of a Drive parameter is shown; the cases of positive or wrong writing are distinguished. A-1) Write Drive Parameter Request The data frame for writing a drive parameter is composed as follows: DATA TYPE Byte See Note 1) FIELD Service Code Class ID Instance ID VALUE VALUE 33hex 66hex XXXX XX XX XX XX MEANING Set Drive Parameter - Object Specific Service Drive Parameter Access Class Object Drive Parameter Index in format Low byte-High byte Low byte-Low word drive parameter value High byte-Low word drive parameter value Low byte-High word drive parameter value High byte-High word drive parameter value dn360 Byte 2) 1) 2) Byte or Word depending on the type of allocation executed by the Master. The number of bytes of the “Value”-field depends on the length of the Drive parameter; i.e.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. A-2) Write drive parameter - Reply OK If the Drive parameter is written correctly, the response is: DATA TYPE Byte Word FIELD VALUE Service Code 33hex OR 80hex Result 0000 MEANING Set Drive Parameter Reply code- Object Specific Service. Result field equal to zero means writing correctly executed. dn365 A-3) Write drive parameter - Reply Error If the writing of the drive parameter has been rejected, the response is 252 • Appendix - Field bus and serial interface SIEIDrive - XVy-EV User’s Guide B) Read Drive Parameter In this example is shown the reading of a Drive parameter.1. .7. dn380 Byte 1) VALUE XX 1) The number of bytes of the Value-field depends on the length of the Drive parameter. Drive Parameter Access Class Object. B-3) Read drive parameter . .Object Specific Service. Low byte-High word drive parameter value.Object Specific Service. Drive specific error code. B-1) Read Drive Parameter Request The data frame for the Drive parameter reading is composed as follows: DATA TYPE FIELD Byte Service Code Class ID See Note 1) See Note 1) Instance ID VALUE 32hex 66hex XXXX MEANING Get Drive Parameter . High byte-Low word drive parameter value.Object Specific Service. Result field equal to zero means reading correctly executed. dn370 1) For error codes see table 3.the following: DATA TYPE Byte Word FIELD VALUE Service Code 33hex OR 80hex Result XXXX 1 MEANING Set Drive Parameter Reply code.Reply OK If the Drive parameter is read correctly.Reply Error If Drive parameter reading is rejected.XVy-EV User’s Guide Appendix . Low byte-Low word drive parameter value. High byte-High word drive parameter value. Drive Parameter Index in format Lowbyte-High byte.Object Specific Service. the response is: DATA TYPE Byte Word FIELD Service Code Result VALUE 32hex 0 MEANING Get Drive Parameter Reply code.7.1.e. the cases of positive or wrong reading are distinguished.Field bus and serial interface • 253 . if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. B-2) Read drive parameter . SIEIDrive . Drive specific error code. the response is the following: DATA TYPE Byte Word FIELD Service Code Result VALUE 32hex XXXX 1 MEANING Get Drive Parameter Reply code. dn375 1) Byte or Word depending on the type of allocation executed by the Master. dn385 1) For error codes see table 3. i. the cases of positive or wrong writing are distinguished. the value and the data type used in the data transmission.e.Object Specific Service. In this case. Drive specific error code.Object Specific Service.XVy-EV User’s Guide .1. the value and the data type used in the data transmission. In this case.Reply Error If the writing of the drive parameter has been rejected.Reply OK If the Drive parameter is written correctly. D) Read Drive Parameter In this example is shown the reading of a Drive parameter.Field bus and serial interface SIEIDrive . dn395 C-3) Write drive parameter . C-2) Write drive parameter . The optional data type conversion is automatically executed by the firmware. The optional data type conversion is automatically executed by the firmware. it is shown the parameter IPA number. the response is: DATA TYPE Byte Word FIELD Service Code Result VALUE 33hex 0000 MEANING Set Drive Parameter Reply code. the response is the following: DATA TYPE Byte Word FIELD Service Code Result VALUE 33hex XXXX 1 MEANING Set Drive Parameter Reply code.2.C) Write Typed Drive Parameter In this example the writing of a Drive parameter is shown. . C-1) Write Drive Parameter Request The data frame for writing a drive parameter is composed as follows: DATA TYPE FIELD Byte Service Code Class ID See Note 1) Instance ID DATA Byte 2) TYPE Byte 3) VALUE VALUE 35hex 66hex XXXX XX XX XX XX XX MEANING Set Drive Parameter .7. dn400 1) For error codes see table 3. The number of bytes of the “Value”-field depends on the length of the Drive parameter. it is shown the parameter IPA number.Object Specific Service Drive Parameter Access Class Object Drive Parameter Index in format Low byte-High byte Value data type Low byte-Low word drive parameter value High byte-Low word drive parameter value Low byte-High word drive parameter value High byte-High word drive parameter value dn390 1) 2) 3) Byte or Word depending on the type of allocation executed by the Master.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes. D-1) Read Drive Parameter Request The data frame for the Drive parameter reading is composed as follows: 254 • Appendix . i. The coding of the possible data type is listed in table 3. Result field equal to zero means writing correctly executed. the cases of positive or wrong reading are distinguished.7. 7. D-2) Read drive parameter . Drive Parameter Access Class Object. the response is the following: DATA TYPE Byte Word FIELD Service Code Result VALUE 32hex XXXX 1 MEANING Get Drive Parameter Reply code. Table 3.7.7. 2) The coding of the possible data type is listed in table 3.DATA TYPE FIELD Byte Service Code Class ID See Note 1) Instance ID DATA Byte 2) TYPE VALUE 36hex 66hex XXXX XX MEANING Get Drive Parameter .7.2. Drive specific error code.Reply Error If Drive parameter reading is rejected. if the Drive parameter type is “Integer” the length of VALUE is 2 bytes.Field bus and serial interface • 255 .7.Object Specific Service.Object Specific Service.Object Specific Service. High byte-Low word drive parameter value. Result field equal to zero means reading correctly executed.1. Low byte-Low word drive parameter value. dn380 Byte 1) VALUE XX 1) The number of bytes of the Value-field depends on the length of the Drive parameter.Reply OK If the Drive parameter is read correctly.e. i. 1) Byte or Word depending on the type of allocation executed by the Master. High byte-High word drive parameter value. dn385 1) For error codes see table 3. the response is: DATA TYPE Byte Word FIELD Service Code Result VALUE 32hex 0 MEANING Get Drive Parameter Reply code.2: Parameter format RESULT DB_E_ OK DB_E_ NO_IPA DB_E_SYSERR DB_E_TYPE DB_E_READONLY DB_E_NOTWRITENOW DB_E_MINVAL DB_E_MAXVAL DB_E_CNFCONFLICT DB_E_CONSTANTLIMITS FORMAT DB_T_VOID DB_T_INT DB_T_WORD DB_T_LONG DB_T_DWORD DB_T_FLOAT VALUE 0 1 2 3 4 6 MEANING Return the value in the original format 16 bit signed 16 bit unsigned 32 bit signed 32 bit unsigned Float in IEEE 744 format SIEIDrive . Drive Parameter Index in format Lowbyte-High byte. Low byte-High word drive parameter value.1: Error codes for the parameter access 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 VALUE MEANING No error Parameter not exist Generic error Type not supported Attempt to write a read only parameter Attempt to write a parameter when not allowed Value exceed minimum value Value exceed maximum value Attempt to assign a currently invalid value Attempt to access a parameter using currently invalid type Table 3. . Value data type dn405 For parameter format see table 3.2. D-3) Read drive parameter .XVy-EV User’s Guide Appendix . 125kb = 125). 500. FIELDBUS menu) and can vary from 1 to 10 word for both directions (Slave->Master and Master->Slave). admitted values 1 . The parameters are controlled via hierarchical menus. 3. Bus Baude Rate (IPA 40001) = network baud rate. 63. during the Polling consumes Output data and produces Input data as response. 250.. The card.. 2. writing writing writing writing read only - Bus Address (IPA 40100) = address of the node.9 XVy-DN Interface configuration The DeviceNet interface configuration is performed via the drive parameters. 0 0 Enabled Enabled 0 Attr. See the following table 3.1 Fieldbus Menu The XVy-DN communication card can be enabled by setting the IPA 40000 Field Bus Type parameter as "Devicenet".XVy-EV User’s Guide .9. The configuration of the Drive parameters transferred via Polling is set by using configuration parameter allocated in the drive (see chapter 10.8 Polling Function This type of DeviceNet-function is used for a fast cyclic exchange of Drive-parameters between Master and XVy drive.3. PDC Enabling (IPA 40111) and CC Enabling (IPA 40110) = allow the user to enable/disable the corresponding channels. With the PDC channel it is possible to exchange up to 8 parameters. The baudrate is stated directly in kbaud (ex. The data frame length is configurable through specific drive parameter (see chapter 10. The other parameters of this menu are: IPA 40100 40001 40110 40111 40114 Par.24 25. The characteristics of the Polling-function are: 1. FB Fail Casue (IPA 40114) = error cause. 1 18. Here following is a list of drive parameters useful to control the DeviceNet interface 3. as it is a Slave.2 Error Codes Cod.31 32 33 34-35 36 Meaning Protocol incorrect Configuration error on M2S reception channel Configuration error on S2M reception channel Too many bytes on M2S reception channel Too many bytes on S2M transmission channel Errored IPA for PLC allocation More than 4 words allocated as Fast250 us on M2S 256 • Appendix .9. FIELDBUS menu).Field bus and serial interface SIEIDrive . All the writing parameters referring to the DeviceNet interface are active only after the drive reset.. Name Bus Address Bus Baude Rate CC Enabling PDC Enabling FB Fail Casue Type 1 byte unsigned 4 bytes unsigned Enum Enum 4 bytes unsigned Default val.. admitted values 125. if the byte total number required is not higher than 20. SIEIDrive . The XVy-DN interface uses a number of words for the Process Data Channel (abbr. PDC Process Data Channel ). Refer to chapter 10.10.2 Drive alarm handling Considering that the card must function on different firmware application systems. The reset of the bit-controlled alarms can be performed also via the "Virtual Digital Input" function. provides a series of parameters capable of detecting the drive status.10.10.37 100 101 107 108 109 110 More than 4 words allocated as Fast250 us on S2M Baud-rate value not correct Node address not correct CAN line in “Bus-off” state Dnet internal error MAC-ID duplicated (there is already a node with the same address) Software key for authorisation invalid or expired 3. i. DATUMn The Slave can both read and write the Process Data Channel data. the "drive alarm status" is not foreseen. is automatically enabled if there is no communication on the bus at a PDC level (polling I/O). The Process Data Channel configuration for the XVy-DN interface is the following: DATUM 0 DATUM.3 Alarm reset The alarm reset is one of the drive standard functions. The "drive alarm status" is not therefore given any special treatment. If ON. 3. which can always be set. the data written in DeviceNet by the Slave are defined as output data. 3. The word "data" refers to any quantity of bytes included between 0 and 10.Field bus and serial interface • 257 .XVy-EV User’s Guide Appendix .. each application provides the same parameter for this function. A datum can be made both of 2 and 4 bytes.11 Process Data Channel Control This function allows to allocate the drive parameters or application variables to the Process Data Channel data.1 XVy-DN Alarms The XVy-DN interface provides two possible alarms: Alarm (A 26) FieldBus Failure. The DeviceNet data read by the Slave are defined as input data.e. 3. Alarms and Fieldbus menu for more information. The XVy-EV firmware. It is therefore possible to reset the alarms via the configuration channel on the firmware of all the different drives..The alarms can be reset by sending the value 1 to the 18012 parameter.10 Alarms 3. This alarm becomes active only when the drive is enabled. the FB Alarm Watch parameter (IPA 40115) enables the generation of the "Field bus failure" alarm also when the drive is disabled. 1. Appendix. See the chapter 10 (DIGITAL INPUTS / VIRT DIG INPUTS e DIGITAL OUTPUTS / VIRT DIG OUTPUTS.11.from 0 to 10 data items of 2 byte .5 data items of 4 bytes The data exchanged via the PDC can be of two types: -drive parameters -variables of an MDPlc application The composition of the PDC input and output data is defined via suitable parameters as described in the paragraphs 3. For more details see the manual “Drive programming with MDPlc” on “XVy tools” cd-rom.3 data items of 4 bytes + from 0 to 4 data items of 2 bytes .Example It is possible to have: . 3.11.4 data items of 4 bytes + from 0 to 2 data items of 2 bytes . The master cyclically writes the data defined as PDC input and cyclically reads the data defined as PDC output.Field bus and serial interface SIEIDrive .1. 3. 258 • Appendix .2. Other application firmware. 3.2 PDC Output Configuration (SYS_FB_XXX_SM Parameter) See section 1. Drive PDC Input XVy-DN Output 3.1 and 3.1 PDC Input Configuration (SYS_FB_XXX_MS parameter) See section 1.11. which allows to exchange discrete signals between the master and the slave and vice versa.3 Configuration of the Virtual Digital I/Os The XVy-EV firmware.menu) for a detailed description of these parameters.11.11.2 data items of 4 bytes + from 0 to 6 data items of 2 bytes .1 datum of 4 bytes + from 0 to 8 data items of 2 bytes .4 Use of the PDC in MDPlc Applications It is possible to configure both the PDC input and output data in order to allow the data direct access via the MDPlc application code. provides the "Virtual Digital I/O" function. Appendix.11. does not provide the "Virtual Digital I/O" function.3.XVy-EV User’s Guide . for example MDPlc.3. deg] = IPA 18753 Pos Conv Fact * [cnts] [ms/krpm] = IPA 21111 Max Ramp Rate / [cnts] [%] = 100 * IPA 18790 Torque Conv Fact * [cnts] / IPA 18800 Base Torque [rpm] = IPA 18752 Rpm Conv Fact * [cnts] [par] = [cnts] / 1638 [Kg*m2] = 0.125 / log(1-[cnts]/2^15)) [Arms] = IPA 18700 Arms Conv Fact * [cnts] [V] = [cnts] / 32.96 / 32768 * [cnts] [par] = [cnts] / 8192 [V] = 12.100 [Vrms]=(612. Key IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 18102 18123 Curr Deriv Gain Max Pos Error IPA 16 bit integer floating point 16 bit integer 32 bit integer -F01 yes yes yes yes Description External format Internal format Conversion reference R/W Parameter number.768 [Nm] = IPA 18790 Torque Conv Fact * [cnts] [par] = sqrt( abs[cnts] ) [par] = [cnts] [par] = [cnts] * (100/16384) . FIELDBUS menu).0 Fieldbus : Parameter List and Conversion Parameters can be read/written via fieldbus by setting the appropriate FB Assign X->X x .Fieldbus: Parameter List and conversion • 259 .XVy-EV User’s Guide Appendix . FP Exp X->X x parameters (see chapter 10.81 / 32768 * [cnts] [V] = 172.Index of Parameters Parameter name External parameter format Internal parameter format Reference to the equation for conversion. For Direct access or Fast access you must know the internal format of the datum to be exchanged and the relation between the counts read and the engineering values (1).5) * IPA 32000 Els PPR Master * IPA 32090 Els Ratio Range * IPA 32010 Els Mec Ratio * IPA 32012 ElsMec Ratio Mul / (2^31 * EncPulses * IPA 32013 ElsMec Ratio Div) . W= Write Table 4.1 : Conversion formulas Code F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 (1) Conversion reference [mech.5) * IPA 32000 Els PPR Master * IPA 32090 Els Ratio Range * IPA 32010 Els Mec Ratio * IPA 32012 ElsMec Ratio Mul / (2^31 * EncPulses * IPA 32013 ElsMec Ratio Div) If IPA 32020 Els Ratio / Slip = Slip -> (([cnts] .1) * 100 SIEIDrive .0.4.deg] = 360 / 65536 * [cnts] [h] = [cnts] / 3600 [%] = [cnts] / 16384 [V] = 10. For further information about the parameter see Chapter 11 .3724/32768) * [cnts] [mech. see the following table Accessing parameters: R= Read. FB IPA X->X x.5 / 2047 * [cnts] [s] = [cnts] / 125 [s] = [cnts] / 256 [%] = [cnts] If IPA 32020 Els Ratio / Slip = Ratio -> [float] = ([cnts] .deg] = 360/24576 * [cnts] [el.5092958178*10-5 * EncPulses * IPA 18790 Torque Conv Fact * [cnts] [msec] = (-0.0. FB Format X->X x. 1.the value sent from the drive to the PDC.on the drive read the value of the conversion parameter (FIELDBUS / UNITS menu) : IPA 18753 Pos Conv Fact = 10 .XVy-EV User’s Guide . is converted in the PLC. using the formula derived from F01 in reverse (see table 4. deg] 260 • Appendix . Next convert the value to be written. for example (POSITION menu) : IPA 18123 Max Pos Error = 10000 [mech. example in read mode: . for example 1000 [cnts]. The parameter reading on the drive will be in degrees (POSITION menu) : IPA 18123 Max Pos Error = 1000 [mech.deg] in [counts]. reference to the following pages): Max Pos Error [mech.set (FIELDBUS menu / FB 1st S->M PAR) : IPA 40290 FB Assign S->M1 = 3 (Direct Acc Par) IPA 40300 FB IPA S->M 1 = 18123 IPA 40310 FB Format S->M 1 = 3 (32 Bit Integer) IPA 40320 FP Exp S->M 1= 0 .PDC configuration .deg] PDC configuration .Direct Access.deg] = Pos Conv Fact * Max Pos Error [cnts] = 10 * 1000 = 10000 [mech.deg] / Pos Conv Fact = 1000 / 10 = 100 counts The PLC must send 100 [counts] to the PDC. reference to the following pages): Max Pos Error [cnts] = Max Pos Error [mech.1.on the drive read the value of the conversion parameter (FIELDBUS / UNITS menu): IPA 18753 Pos Conv Fact = 10 The value in counts must be entered to the PLC. for example IPA 18123 Max Pos Error = 1000 [mech.set (FIELDBUS menu / FB 1st M->S PAR) : IPA 40190 FB Assign M->S 1 = 3 (Direct Acc Par) IPA 40200 FB IPA M->S 1 = 18123 IPA 40210 FB Format M->S 1 = 3 (32 Bit Integer) IPA 40220 FP Exp M->S 1= 0 . using the conversion formula F01 (see table 4.on the drive read the value of the parameter to be sent to the PLC. example in write mode: .Direct Access. deg] .Fieldbus: Parameter List and conversion SIEIDrive . IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 18101 18102 18123 18131 18132 18134 18135 18136 18137 18138 18150 18151 18330 18412 18708 18709 18710 18711 18712 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18732 18735 18736 18739 18740 18741 18742 18746 18748 18749 18751 18754 18755 18756 18757 18762 18763 18764 18765 18766 18767 18770 18771 18773 18774 18776 18777 18780 18781 18782 18805 18806 18807 19002 19003 19004 19005 19006 19011 19012 Curr Integr Gain Curr Deriv Gain Max Pos Error P Loss Prop Gain P Loss Int Gain P Loss Ramp P Loss Trq Lim P Loss Spd 0 Thr PL Next Factor PL Mains Status Inertia Inertia Filter Tuning Status BR Ovld Factor Sys Tsk Exe T MaxSys Tsk Exe T Heatsink Temp Intake Air Temp Reg Card Temp Slow Tsk Exe T MaxSl Tsk Exe T Inp Phase Exe T Fst Tsk Exe T Out Phase Tsk T Aux Phase Exe T MaxIn Ph Exe T MaxFst Tsk Exe T MaxOut Ph Exe T MaxAux Ph Exe T Act Pos Trq Lim Out Current DC Link Voltage Act Torque Abs Act Module Inc Data Act Mod Out Frequency Act Neg Trq Lim Ramp Reference Speed Reference Load Def Err IPA Act Pos Spd Lim Act Neg Spd Lim Enc Position Enc Revolution Abs Sin Offset Abs Cos Offset Abs Gain Err Meas Motor Spd Abs Meas Noise Abs Max Noise DSP Exe Time MaxDSP Exe T Quadrature Volt Direct Volt Act Torque Eng Motor Speed Bkg Tsk Exe T MaxBkg Tsk Exe T Act Out Power Torque Current Flux Current Act Out Curr Lim Inc Data Pos Inc Data N Rev Inc Pulses / Rev Inc B Data Count Inc A Data Count XER/EXP Turn Pos XER/EXP Rev 16 bit integer 16 bit integer floating point 16 bit integer 16 bit integer floating point floating point floating point floating point boolean floating point floating point ENUM 16 bit unsigned integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer floating point floating point floating point floating point 16 bit integer 16 bit integer floating point floating point floating point floating point 16 bit unsigned integer floating point floating point floating point floating point 16 bit integer 16 bit integer floating point floating point 16 bit integer 16 bit integer 16 bit integer 16 bit integer floating point floating point floating point floating point 32 bit integer 16 bit unsigned integer floating point floating point floating point floating point floating point 32 bit integer 32 bit unsigned integer 16 bit integer 16 bit integer floating point 32 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit integer bool -> 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 32 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 32 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer floating point 16 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer floating point 16 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer --F01 --F02 F03 F04 F05 -F06 F07 -----------------F03 F08 F09 F10 F11 F11 -F03 F04 F04 -F04 F04 F01 F12 --F13 F04 ----F14 F14 F10 F04 ---F04 F04 F04 F01 ----F01 -- yes yes yes yes yes yes yes yes no yes yes yes no no no yes no no no no yes no no no no yes yes yes yes no no no no no no no no no no no no no no no no no no no no yes no yes no no no no no yes no no no no no no no no no no no yes yes yes yes yes no no no yes yes no no no no yes yes yes no no no SIEIDrive .Fieldbus: Parameter List and conversion • 261 .XVy-EV User’s Guide Appendix . Fieldbus: Parameter List and conversion SIEIDrive .IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 19013 19017 19018 19019 19020 19022 19026 19027 19028 19030 19031 19032 19033 19034 19035 19040 19095 19096 19113 19607 20000 20003 20005 20006 20013 20014 20015 20016 20018 20021 20023 20044 20045 20046 20047 20048 20049 20085 20086 20087 20088 20089 20092 20100 20101 20102 20103 20104 20105 20106 20107 20150 20151 20152 20153 20154 20155 20156 20157 20162 20163 20164 20170 20171 20172 20173 20174 20175 20176 XER/EXP Puls Rev Abs Turn Pos Abs Rev Abs Sin Meas Abs Cos Meas XE Hall Pos XE Hall Rev XE Hall Meas XE Hall N Error ABS1 Al Bit En EXP ABS1 Pos EXP ABS1 Sw Rev EXP ABS1 Hw Rev ABS1 Rx N Err ABS1 Alarm Bit Enc Err Simul XER/EXP Ind Pos Index Position Actual Pos Error Drive Ovld Fact Drive Max Curr Full Scale Speed DO Reset at Fail DO Set at Fail Phasing Err Act Enc Pos Loss Act Mot El Angle Enc Warning Case Enc W->A Mask Enable I-O Keys Control Mode Load Def Counter Tot Life Hours Act Life Hours Power Fail Count Save Param Count SW Reset Count Speed Draw Ratio Speed Draw Out P Loss Active P Loss NoRes Thr Speed Draw In Act SpdDrw Ratio Digital Input 0 Digital Input 1 Digital Input 2 Digital Input 3 Digital Input 4 Digital Input 5 Digital Input 6 Digital Input 7 Exp Dig Inp 0 Exp Dig Inp 1 Exp Dig Inp 2 Exp Dig Inp 3 Exp Dig Inp 4 Exp Dig Inp 5 Exp Dig Inp 6 Exp Dig Inp 7 Dig Inp Rev Mask Dig Inp Status Exp Dig Inp Stat Virt Dig Inp 0 Virt Dig Inp 1 Virt Dig Inp 2 Virt Dig Inp 3 Virt Dig Inp 4 Virt Dig Inp 5 Virt Dig Inp 6 32 bit unsigned integer floating point 32 bit integer 16 bit integer 16 bit integer floating point 32 bit integer 16 bit unsigned integer 16 bit integer ENUM floating point 32 bit integer 16 bit integer 16 bit unsigned integer ENUM floating point floating point floating point floating point 16 bit unsigned integer floating point floating point 32 bit unsigned integer 32 bit unsigned integer floating point floating point floating point ENUM 32 bit unsigned integer ENUM ENUM 32 bit unsigned integer floating point floating point 32 bit unsigned integer 32 bit unsigned integer 32 bit unsigned integer floating point floating point ENUM floating point floating point floating point ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM 32 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit unsigned integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit integer 32 bit integer 32 bit unsigned integer 32 bit unsigned integer 16 bit integer 32 bit integer 16 bit integer 32 bit unsigned integer 32 bit unsigned integer bool -> 16 bit integer 16 bit unsigned integer 32 bit unsigned integer 32 bit integer 32 bit unsigned integer 32 bit unsigned integer 32 bit unsigned integer 32 bit unsigned integer 16 bit integer 32 bit integer bool -> 16 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer -F01 ---F15 ----F01 ----F01 F01 F01 F01 -F08 F04 --F16 F16 F16 -----F17 F17 ---F18 F04 -F04 F04 F18 --------------------------- no no no no no no no no no yes no no no no no no no no no no yes yes yes yes no no no no no yes yes no no no no no no yes no no yes no no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no no yes yes yes yes yes yes yes no no yes yes yes yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 262 • Appendix .XVy-EV User’s Guide . IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20200 20201 20202 20203 20204 20205 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20289 20290 20300 20301 20310 20311 20320 20321 20330 20331 20340 20341 20350 20351 20360 20361 20400 20401 20402 20403 20410 20411 Virt Dig Inp 7 Virt Dig Inp 8 Virt Dig Inp 9 Virt Dig Inp 10 Virt Dig Inp 11 Virt Dig Inp 12 Virt Dig Inp 13 Virt Dig Inp 14 Virt Dig Inp 15 Virt DI Status Virt DI at Start Virt DI at Dis Virt DI at Reset Digital Output 0 Digital Output 1 Digital Output 2 Digital Output 3 Digital Output 4 Digital Output 5 Exp Dig Out 0 Exp Dig Out 1 Exp Dig Out 2 Exp Dig Out 3 Dig Out Reverse Dig Out Status Exp Dig Out Stat Exp Dig Out 4 Exp Dig Out 5 Exp Dig Out 6 Exp Dig Out 7 Virt Dig Out 0 Virt Dig Out 1 Virt Dig Out 2 Virt Dig Out 3 Virt Dig Out 4 Virt Dig Out 5 Virt Dig Out 6 Virt Dig Out 7 Virt Dig Out 8 Virt Dig Out 9 Virt Dig Out 10 Virt Dig Out 11 Virt Dig Out 12 Virt Dig Out 13 Virt Dig Out 14 Virt Dig Out 15 Virt DO Status Virt DO at Reset Virt DO at Fail Analog Inp 0 Sel Analog Inp 1 Sel An Inp 0 Read An Inp 1 Read An Inp 0 Offset An Inp 1 Offset An Inp 0 D_B Pos An Inp 1 D_B Pos An Inp 0 D_B Neg An Inp 1 D_B Neg An Inp 0 Scale An Inp 1 Scale An Inp 0 Value An Inp 1 Value Analog Out 0 Sel Analog Out 1 Sel Exp Analog Out 0 Exp Analog Out 1 An Out 0 Write An Out 1 Write ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ENUM ENUM ENUM ENUM floating point floating point 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer ---------------------------------------------------F19 F19 F20 F20 F20 F20 F20 F20 F21 F21 F20 F20 ----F22 F22 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes no no yes yes yes yes yes yes yes yes no no yes yes yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes SIEIDrive .Fieldbus: Parameter List and conversion • 263 .XVy-EV User’s Guide Appendix . IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 20412 20413 20420 20421 20422 20423 20430 20431 20432 20433 20440 20441 20442 20443 20500 20600 20601 20602 20603 21000 21001 21003 21004 21005 21006 21102 21103 21104 21105 21110 21115 21116 21200 21201 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21301 21302 21303 21304 21305 21306 21307 21310 21311 21401 21402 21403 21411 21412 21413 21421 21422 21423 21431 21432 21433 21440 21441 22000 22001 ExAn Out 0 Write ExAn Out 1 Write An Out 0 Scale An Out 1 Scale ExAn Out 0 Scale ExAn Out 1 Scale An Out 0 Offset An Out 1 Offset ExAn Out 0 Offset ExAn Out 1 Offset An Out 0 Value An Out 1 Value ExAn Out 0 Value ExAn Out 1 Value Start Status Brake Enable Brake OFF Delay Brake ON Delay Brake ON Spd Thr Jog Speed Limit Jog Reference CW Jog Acc CCW Jog Acc CW Jog Dec CCW Jog Dec CW Acc Ramp CCW Acc Ramp CW Dec Ramp CCW Dec Ramp Ramp Exp Factor Fast Stop Dec End Run Dec Speed Ref 1 Speed Ref 2 Pos Speed Limit Neg Speed Limit Speed Thr Speed Reach Wnd Speed Zero Thr Speed Zero Delay Ramp Enable Speed Thr Wnd Ramp Output Speed Thr Delay Multi Speed 1 Multi Speed 2 Multi Speed 3 Multi Speed 4 Multi Speed 5 Multi Speed 6 Multi Speed 7 Multi Spd Index Multi Speed Conf M Ramp 1 CW Acc M Ramp 2 CW Acc M Ramp 3 CW Acc M Ramp 1 CCW Acc M Ramp 2 CCW Acc M Ramp 3 CCW Acc M Ramp 1 CW Dec M Ramp 2 CW Dec M Ramp 3 CW Dec M Ramp 1 CCW Dec M Ramp 2 CCW Dec M Ramp 3 CCW Dec Multi Ramp Index Multi Ramp Conf Torque Ref 1 Torque Ref 2 floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ENUM ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit integer floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit unsigned integer ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit unsigned integer ENUM floating point floating point 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit integer 32 bit integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 32 bit integer 32 bit integer 16 bit unsigned integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer F22 F22 F21 F21 F21 F21 F22 F22 F22 F22 F22 F22 F22 F22 --F23 F23 F04 F04 F04 F02 F02 F02 F02 F02 F02 F02 F02 -F02 F02 F04 F04 F04 F04 F04 F04 F04 F23 -F04 F04 F23 F04 F04 F04 F04 F04 F04 F04 --F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 --F10 F03 no no yes yes yes yes yes yes yes yes no no no no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no no no no no yes yes yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 264 • Appendix .XVy-EV User’s Guide .Fieldbus: Parameter List and conversion SIEIDrive . XVy-EV User’s Guide Appendix .IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 22002 22003 22004 22005 22007 22009 22010 22011 22012 22013 22014 22015 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 23000 23001 23002 23003 23010 24000 24101 24102 24120 29004 29103 29104 29106 29107 29108 29109 29110 29111 30000 30001 30002 30004 30010 30011 30012 30013 30014 30015 30016 30017 30018 30020 30021 30022 30023 30024 30025 30027 30028 30036 30037 30038 30039 30040 30041 30042 Torque Mode Trq Lim Config Max Pos Torque Max Neg Torque Torque Thr Trq Speed Limit Torque Thr Delay Torque Reduction Max Torque FastLink Trq En FastLink Trq Ref FL Trq Scale Motor Pot Output Motor Pot Up Lim Motor Pot Lo Lim Motor Pot Acc Motor Pot Dec Motor Pot Init Motor Pot En Motor Pot Reset Motor Pot Mode Motor Pot Memo Motor Pot Dir Speed Gain Position Gain Position I Gain Acc Gain Gain Mult Fct Alarm Status Alarm Delay Mask Alarm Delay Warning Status Act Ctrl Mode RX Rev RX Pos TX Rev TX Pos RX Rev Aux RX Pos Aux TX Rev Aux TX Pos Aux Unit Per Rev Unit Per Div Multi Pos Enable Multi Pos Index Pos CW Acc Pos CCW Acc Pos CW Dec Pos CCW Dec Position Speed Position Torque Actual Position Min Preset Value Max Preset Value CW Home Pos Acc CCW Home Pos Acc CW Home Pos Dec CCW Home Pos Dec Home Max Spd Home Spd Ref Home Fine Spd Home Pos Offset Home Src Direc Zero Sensor En Zero Index En Inside Index Src Zero Sensor Edge Home Pos Offs En Start On Edge ENUM ENUM floating point floating point floating point floating point floating point floating point floating point ENUM floating point floating point floating point floating point floating point 32 bit integer 32 bit integer floating point ENUM ENUM ENUM ENUM ENUM 16 bit integer 16 bit integer 16 bit integer 16 bit integer ENUM 32 bit unsigned integer 32 bit unsigned integer floating point 32 bit unsigned integer ENUM 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer floating point floating point boolean 16 bit integer floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 32 bit integer 16 bit unsigned integer 16 bit integer 16 bit integer bool -> 16 bit integer 16 bit integer 16 bit integer 32 bit integer floating point floating point 32 bit integer 32 bit integer floating point bool -> 16 bit integer bool -> 16 bit integer bool -> 16 bit integer bool -> 16 bit integer bool -> 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 32 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer floating point floating point bool -> 16 bit integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer floating point floating point floating point 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer 32 bit integer floating point 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer --F03 F03 F03 F04 F23 F03 F03 -F03 F24 F25 -----------------F23 --------------F02 F02 F02 F02 F04 F03 ---F02 F02 F02 F02 F04 F04 F04 --------- yes yes yes yes yes yes yes yes no yes no yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes no no no no no no no no no no yes yes yes no yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes SIEIDrive .Fieldbus: Parameter List and conversion • 265 . Fieldbus: Parameter List and conversion SIEIDrive .XVy-EV User’s Guide .IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30043 30044 30045 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30081 30090 30091 30093 30094 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 Stop By Ramp Pos Reach Behav Startup Zero Pos Pos Abs Thr Positon Thr Pos 0 Thr Offset Pos Thr Close 1 Pos Thr Close 2 Max Prs Abs Val Min Prs Abs Val Back Lash Window Pos Window Pos Window Time Pos Window Tout Destination Pos Preset Index Positioning Mode Position Config Pos Stop dec Pos An Wind Del Pos An Stdy Wind Pos An Filter Pos An Mode Pos Preset 0 Pos Preset 1 Pos Preset 2 Pos Preset 3 Pos Preset 4 Pos Preset 5 Pos Preset 6 Pos Preset 7 Pos Preset 8 Pos Preset 9 Pos Preset 10 Pos Preset 11 Pos Preset 12 Pos Preset 13 Pos Preset 14 Pos Preset 15 Pos Preset 16 Pos Preset 17 Pos Preset 18 Pos Preset 19 Pos Preset 20 Pos Preset 21 Pos Preset 22 Pos Preset 23 Pos Preset 24 Pos Preset 25 Pos Preset 26 Pos Preset 27 Pos Preset 28 Pos Preset 29 Pos Preset 30 Pos Preset 31 Pos Preset 32 Pos Preset 33 Pos Preset 34 Pos Preset 35 Pos Preset 36 Pos Preset 37 Pos Preset 38 Pos Preset 39 Pos Preset 40 Pos Preset 41 Pos Preset 42 Pos Preset 43 Pos Preset 44 Pos Preset 45 ENUM ENUM boolean floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit unsigned integer ENUM 32 bit unsigned integer floating point 16 bit unsigned integer floating point floating point ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit unsigned integer 16 bit unsigned integer bool -> 16 bit integer floating point floating point floating point floating point floating point floating point floating point floating point floating point 16 bit unsigned integer 16 bit unsigned integer floating point 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 32 bit integer 16 bit unsigned integer floating point floating point bool -> 16 bit integer floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ------------F23 F23 ----F02 --------------------------------------------------- yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 266 • Appendix . IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30200 30201 30202 30203 30204 30205 30206 30207 30264 30300 30301 30302 30303 30304 30305 30306 30307 30364 30400 30401 30402 30403 30404 30405 30406 30407 30464 30480 30481 30482 30483 30484 30485 30486 30487 30490 30491 30492 30493 30494 30495 30496 30497 30500 30501 30502 30503 30504 30505 30506 Pos Preset 46 Pos Preset 47 Pos Preset 48 Pos Preset 49 Pos Preset 50 Pos Preset 51 Pos Preset 52 Pos Preset 53 Pos Preset 54 Pos Preset 55 Pos Preset 56 Pos Preset 57 Pos Preset 58 Pos Preset 59 Pos Preset 60 Pos Preset 61 Pos Preset 62 Pos Preset 63 Pos Return Pos Speed 0 Pos Speed 1 Pos Speed 2 Pos Speed 3 Pos Speed 4 Pos Speed 5 Pos Speed 6 Pos Speed 7 Pos Return Speed Pos CW Acc 0 Pos CW Acc 1 Pos CW Acc 2 Pos CW Acc 3 Pos CW Acc 4 Pos CW Acc 5 Pos CW Acc 6 Pos CW Acc 7 Pos Return Acc Pos CW Dec 0 Pos CW Dec 1 Pos CW Dec 2 Pos CW Dec 3 Pos CW Dec 4 Pos CW Dec 5 Pos CW Dec 6 Pos CW Dec 7 Pos Return Dec Pos CCW Acc 0 Pos CCW Acc 1 Pos CCW Acc 2 Pos CCW Acc 3 Pos CCW Acc 4 Pos CCW Acc 5 Pos CCW Acc 6 Pos CCW Acc 7 Pos CCW Dec 0 Pos CCW Dec 1 Pos CCW Dec 2 Pos CCW Dec 3 Pos CCW Dec 4 Pos CCW Dec 5 Pos CCW Dec 6 Pos CCW Dec 7 MPos 0 Progress MPos 1 Progress MPos 2 Progress MPos 3 Progress MPos 4 Progress MPos 5 Progress MPos 6 Progress floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point ENUM ENUM ENUM ENUM ENUM ENUM ENUM floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point floating point 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer -------------------F04 F04 F04 F04 F04 F04 F04 F04 F04 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 F02 -------- yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes SIEIDrive .XVy-EV User’s Guide Appendix .Fieldbus: Parameter List and conversion • 267 . IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 30507 30600 30601 30602 30603 30604 30605 30606 30607 30700 30701 30702 30703 30704 30705 30706 30707 30710 30711 30712 30713 30714 30715 30716 30717 30800 31000 31001 31002 31003 32000 32001 32002 32003 32004 32005 32006 32008 32009 32010 32011 32012 32013 32014 32015 32016 32020 32021 32090 32100 32101 32102 32103 32104 32105 32200 40113 40114 40191 40192 40193 40194 40195 40196 40197 40201 40202 40203 40204 MPos 7 Progress MPos 0 Dwell MPos 1 Dwell MPos 2 Dwell MPos 3 Dwell MPos 4 Dwell MPos 5 Dwell MPos 6 Dwell MPos 7 Dwell MPos 0 Event MPos 1 Event MPos 2 Event MPos 3 Event MPos 4 Event MPos 5 Event MPos 6 Event MPos 7 Event MPos 0 Next Pos MPos 1 Next Pos MPos 2 Next Pos MPos 3 Next Pos MPos 4 Next Pos MPos 5 Next Pos MPos 6 Next Pos MPos 7 Next Pos Pos Actual Event Back Lash En Back Lash Dir Delta Pos Speed Comp Els PPR Master Els Ratio 0 Els Ratio 1 Els Ratio 2 Els Ratio 3 Actual Ratio Els Ratio Index Els Delta Time Els Master Sel Els Mec Ratio Els FL Source ElsMec Ratio Mul ElsMec Ratio Div Els Delta Ratio FL Error Els Control Mode Els Ratio / Slip Els Slip Limit Els Ratio Range Els Max RB Speed Els RB Time Els RB Acc Els RB Dec Els RB Speed Ref Els RB Speed Sel AnOut MaxPosErr Field Bus Status FB Fail Cause FB Assign M->S 2 FB Assign M->S 3 FB Assign M->S 4 FB Assign M->S 5 FB Assign M->S 6 FB Assign M->S 7 FB Assign M->S 8 FB IPA M->S 2 FB IPA M->S 3 FB IPA M->S 4 FB IPA M->S 5 ENUM 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM floating point floating point 16 bit unsigned integer floating point floating point floating point floating point floating point 16 bit unsigned integer floating point ENUM floating point ENUM floating point floating point floating point 16 bit unsigned integer ENUM ENUM 16 bit integer ENUM floating point floating point floating point floating point floating point ENUM floating point ENUM 32 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer floating point 32 bit integer 16 bit unsigned integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 32 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer floating point 16 bit integer floating point floating point 32 bit integer 16 bit unsigned integer bool -> 16 bit integer 16 bit unsigned integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer -----------------------------F04 -F26 F26 F26 F26 F26 -F23 -----F26 -----F04 F23 F02 F02 F04 F04 F01 -------------- yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes yes no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 268 • Appendix .Fieldbus: Parameter List and conversion SIEIDrive .XVy-EV User’s Guide . XVy-EV User’s Guide Appendix .Fieldbus: Parameter List and conversion • 269 .IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 40205 40206 40207 40211 40212 40213 40214 40215 40216 40217 40221 40222 40223 40224 40225 40226 40227 40291 40292 40293 40294 40295 40296 40297 40301 40302 40303 40304 40305 40306 40307 40311 40312 40313 40314 40315 40316 40317 40321 40322 40323 40324 40325 40326 40327 40916 40917 40926 40927 40931 40932 41001 41199 41200 41201 41209 41210 41211 41219 41220 41221 41229 41230 41231 41299 41300 41301 41309 41310 FB IPA M->S 6 FB IPA M->S 7 FB IPA M->S 8 FB Format M->S 2 FB Format M->S 3 FB Format M->S 4 FB Format M->S 5 FB Format M->S 6 FB Format M->S 7 FB Format M->S 8 FB Exp M->S 2 FB Exp M->S 3 FB Exp M->S 4 FB Exp M->S 5 FB Exp M->S 6 FB Exp M->S 7 FB Exp M->S 8 FB Assign S->M 2 FB Assign S->M 3 FB Assign S->M 4 FB Assign S->M 5 FB Assign S->M 6 FB Assign S->M 7 FB Assign S->M 8 FB IPA S->M 2 FB IPA S->M 3 FB IPA S->M 4 FB IPA S->M 5 FB IPA S->M 6 FB IPA S->M 7 FB IPA S->M 8 FB Format S->M 2 FB Format S->M 3 FB Format S->M 4 FB Format S->M 5 FB Format S->M 6 FB Format S->M 7 FB Format S->M 8 FB Exp S->M 2 FB Exp S->M 3 FB Exp S->M 4 FB Exp S->M 5 FB Exp S->M 6 FB Exp S->M 7 FB Exp S->M 8 PDO 2 RX TYPE PDO 3 RX TYPE PDO 2 TX TYPE PDO 3 TX TYPE PDO 2 TX INH PDO 3 TX INH PLC Enable Key FB Assign M->S10 FB Assign M->S11 FB Assign M->S12 FB IPA M->S10 FB IPA M->S11 FB IPA M->S12 FB Format M->S10 FB Format M->S11 FB Format M->S12 FB Exp M->S10 FB Exp M->S11 FB Exp M->S12 FB Assign S->M10 FB Assign S->M11 FB Assign S->M12 FB IPA S->M10 FB IPA S->M11 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM ENUM ENUM ENUM ENUM 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ENUM ENUM ENUM 16 bit integer 16 bit integer 16 bit integer ENUM ENUM ENUM 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 32 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer ---------------------------------------------------------------------- yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes SIEIDrive . XVy-EV User’s Guide .Fieldbus: Parameter List and conversion SIEIDrive .IPA Description External format Internal format Conversion reference (1) R/W Write with drive enabled 41311 41319 41320 41321 41329 41330 41331 FB IPA S->M12 FB Format S->M10 FB Format S->M11 FB Format S->M12 FB Exp S->M10 FB Exp S->M11 FB Exp S->M12 16 bit unsigned integer ENUM ENUM ENUM 16 bit integer 16 bit integer 16 bit integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit unsigned integer 16 bit integer 16 bit integer 16 bit integer -------- yes yes yes yes yes yes yes yes yes yes yes yes yes yes 270 • Appendix . . +39 030 98881 Fax +39 030 9839063 info@gefran. 14A B-2250 OLEN Ph. 0.in GEFRAN SIEI Electric Pte Ltd Block B. +86 21 69169898 Fax +86 21 69169333 [email protected] GEFRAN SUISSE SA Rue Fritz Courvoisier 40 2302 La Chaux-de-Fonds Ph.com GEFRAN INDIA Pvt. +55 (0) 1155851133 Fax +55 (0) 1132974012 [email protected]. +34 934982643 Fax +34 932662713 comercial. No.com Ph.com www. 7 Pearson Road. Pune .A. TF2 9TX Ph.de SIEI AREG . +86 21 5866 7816 Ph. +91 22 2540 3384 Ph.GEFRAN BENELUX Lammerdries-Zuid. Via Sebina 74 25050 Provaglio d’Iseo (BS) ITALY Ph.br GEFRAN DEUTSCHLAND Philipp-Reis-Straße 9a 63500 SELIGENSTADT Ph. Fu Te Xi Yi Road.G. Beihe Road.in Branch office (Mumbai office) Laxmi Palace.MA 01890 Toll Free 1-888-888-4474 Ph. +39 02 967601 Fax +39 02 9682653 [email protected] GEFRAN FRANCE 4. Thane (W) 400602 Mumbai Ph. MH.411 042.SP Ph.GERMANY Gottlieb-Daimler-Strasse 17/3 D-74385 Pleidelsheim Ph. +41 (0) 329684955 Fax +41 (0) 329683574 office@gefran. +32 (0) 14248180 [email protected]. +1 (781) 7295249 Fax +1 (781) 7291468 [email protected]. Bhukum.BP 8237 69355 LYON Cedex 08 Ph.CHINA Ph. Ltd. +49 7144 89 736 0 Fax +49 7144 89 736 97 info@sieiareg. Paud road.cn GEFRAN SIEI Drives Technology No. 8 Lowell Avenue WINCHESTER . Central Park TELFORD. Survey No: 182/1 KH. +49 (0) 61828090 Fax +49 (0) 6182809222 vertrieb@gefran. 377/379 Vila Clementino 04042-032 SÂO PAULO . Road Naupada.p.co.com.in GEFRAN INDIA [email protected]. +39 02 96760500 Fax +39 02 96760278 1S3A43 .4 .de GEFRAN ESPAÑA Josep Pla. Jiading District 201821 Shanghai .com Customer Service : motioncustomer@gefran. M. MH.411 042.UK Ltd. +44 (0) 845 2604555 Fax +44 (0) 845 2604556 sales@gefran. Ltd. Paud road. Gr. INDIA Ph:+91-20-3939 4400 Fax: +91-20-3939 4401 gefran. Taluka – Mulshi. Pune . +91 22 2542 6640 Fax +91 22 2542 7889 support. rue Jean Desparmet . +86 21 5866 1555 info@gefransiei. Altino Arantes.com Manuale XVy-EV -EN Rev. +33 (0) 478770300 Fax +33 (0) 478770320 commercial@gefran. Bhukum.india@gefran. Wai Gao Qiao Trade Zone 200131 Shanghai .155. Head office (Pune office) Survey No: 182/1 KH.com Technical Assistance : [email protected] GEFRAN .CHINA Ph.india@gefran. 163 2°-6ª 08020 BARCELONA Ph.uk GEFRAN Inc. Taluka – Mulshi. INDIA Ph:+91-20-3939 4400 Fax: +91-20-3939 4401 gefran. +32 (0) 14248181 Fax.Flr.2010 Drive & Motion Control Unit Via Carducci 24 21040 Gerenzano [VA] ITALY Ph.19.be GEFRAN BRASIL ELETROELETRÔNICA Avenida [email protected] GEFRAN S.11.
Copyright © 2024 DOKUMEN.SITE Inc.