156214179 Water Quality Modeling Pdf1

March 25, 2018 | Author: Juan Manuel Sierra Puello | Category: Chemistry, Physical Sciences, Science, Mathematics, Chemicals


Comments



Description

Surface Water-Quality ModelingSteven C. Chapra Tufts University WAVELAND PRESS, INC. Long Grove, Illinois 4 Exponential Loading 4.2 Step Loading (New Continuous Source) 4. and Response Time 3. Steady-State Solution.3 Mathematical Models 1.5 Sinusoidal Loading 4.1 Reaction Fundamentals 2.2 Steady-State Solutions 3.4 Temperature Effects Problems LECTURE 3 Mass Balance.4 Historical Development of Water-Quality Models 1.2 Fundamental Quantities 1.1 Engineers and Water Quality 1.6 The Total Solution: Linearity and Time Shifts 4.3 Linear ("Ramp") Loading 4.1 Mass Balance for a Well-Mixed Lake 3.1 Impulse Loading (Spill) 4.3 Stoichiometry 2.2 Time Variable .5 Overview of This Book Problems LECTURE 2 Reaction Kinetics 3 4 6 10 14 19 20 24 24 29 38 40 42 47 2.3 Temporal Aspects of Pollutant Reduction Problems LECTURE 4 Particular Solutions 47 52 57 62 65 66 68 70 71 73 76 80 83 86 86 91 vii 4.1 Mass Balance and Steady-State 5.2 Analysis of Rate Data 2.7 Fourier Series (Advanced Topic) Problems LECTURE 5 Feedforward Systems of Reactors 5.CONTENTS Preface xvi i 1 PART 1 Completely Mixed Systems LECTURE 1 Introduction 1. 5 Reactions with Feedback Problems LECTURE 7 Computer Methods: Well-Mixed Reactors 101 103 107 111 113 117 120 7.2 Application of the PFR Model to Streams 9.1 Plug Flow 10. viii CONTENTS 5.1 Steady-State for Two Reactors 6.2 Solving Large Systems of Reactors 6.3 Application of the MFR Model to Estuaries Problems LECTURE 10 Distributed Systems (Time .2 Random (or "Drunkard's") Walk 10.3 Runge-Kutta Methods 7.3 Steady-State System Response Matrix 6.5 Additional Transport Mechanisms Problems LECTURE 9 Distributed Systems (Steady .1 Advection and Diffusion 8.Variable) 156 164 168 171 173 10.2 Experiment 8.3 Spill Models 173 177 180 .State) 137 137 138 141 143 149 153 156 9.4 Systems of Equations Problems PART II Incompletely Mixed Systems 121 124 126 128 131 135 LECTURE 8 Diffusion 8.3 Fick's First Law 8.4 Time-Variable Response for Two Reactors 6.4 Embayment Model 8.3 Feedforward Reactions Problems 95 99 101 LECTURE 6 Feedback Systems of Reactors 6.2 Heun's Method 7.1 Euler's Method 7.1 Ideal Reactors 9. 1 11.4 An Explicit Algorithm Stability The Control-Volume Approach Numerical Dispersion Problems 212 214 215 216 221 223 LECTURE 13 Advanced Time-Variable Solutions 13.4 10.5 14. and Segment Size Segmentation Around Point Sources Two.6 River Types Stream Hydrogeometry Low-Flow Analysis Dispersion and Mixing Flow.1 14.5 11.1 13.4 14.3 12.5 Tracer Studies Estuary Number Problems 186 189 190 192 LECTURE 11 Control-Volume Approach: Steady-State Solutions 11.2 14.3 Irnplicit Approaches The MacCormack Method Summary Problems 223 229 230 232 233 PART 111 Water-Quality Environments LECTURE 14 Rivers and Streams 235 14.8 Control-Volume Approach Boundary Conditions Steady-State Solution System Response Matrix Centered-Difference Approach Numerical Dispersion. Positivity.3 11.2 13. Depth.4 11.7 11. and Velocity Routing and Water Quality (Advanced Topic) Problems 235 238 243 245 247 250 257 .3 14.CONTENTS ix 10.2 12.6 11.1 12.and Three-Dimensional Systems Problems 192 194 195 197 198 201 207 208 209 212 LECTURE 12 Simple Time-Variable Solutions 12.2 11. 5 BOD Model for a Stream 347 348 351 353 355 .1 The Water-Quality-Modeling Process 18.2 The Dissolved Oxygen Sag 19.4 Simple Solids Budgets 17.1 Sediment Transport Overview 17.4 Biochemical Oxygen Demand 19.2 Model Sensitivity 18.3 The Bottom Sediments 17.x CONTENTS LECTURE 15 Estuaries 260 15.2 Lake Morphometry 16.5 Bottom Sediments as a Distributed System 17.3 Experiment 19.1 The Organic Production/Decomposition Cycle 19.3 Assessing Model Performance 18.1 Estuary Transport 15.4 Vertical Stratification Problems LECTURE 16 Lakes and lmpoundments 260 262 263 270 272 276 16.6 Resuspension (Advanced Topic) Problems LECTURE 18 The "Modeling" Environment 295 297 302 304 307 312 315 317 18.2 Net Estuarine Flow 15.3 Water Balance 16.1 Standing Waters 16.4 Near-Shore Models (Advanced Topic) Problems LECTURE17 Sediments 276 278 282 287 293 295 17.4 Segmentation and Model Resolution Problems 317 327 335 339 341 PART IV Dissolved Oxygen and Pathogens 345 LECTURE 19 BOD and Oxygen Saturation 347 19.2 Suspended Solids 17.3 Estuary Dispersion Coefficient 15. 2 Nitrification 23.3 Nitrogenous BOD Model 23. Concentrations.4 Measurement of Reaeration with Tracers Problems LECTURE 21 Streeter-Phelps: Point Sources 369 376 377 384 386 389 21.2 Oxygen Reaeration 20. and Rates 19.4 Multiple Point Sources 21.1 Experiment 21.2 No-Flow Sources 22.6 Nitrate and Ammonia Toxicity Problems LECTURE 24 Photosynthesis/Respiration 419 421 424 426 428 430 432 433 24.7 Anaerobic Condition 21.3 Diffuse Sources with Flow Problems LECTURE 23 Nitrogen 405 407 410 417 419 23.1 Gas Transfer Theories 20.8 Estuary Streeter-Phelps Problems LECTURE 22 Streeter-Phelps: Distributed Sources 389 391 391 393 396 398 399 401 403 405 22.1 Nitrogen and Water Quality 23.CONTENTS xi 19.3 Deficit Balance at the Discharge Point 21.8 Dissolved Oxygen Saturation Problems LECTURE20 Gas Transfer and Oxygen Reaeration 357 360 361 365 367 20.5 Nitrification and Organic Decomposition 23.5 Analysis of the Streeter-Phelps Model 21.1 Fundamentals 433 .1 Parameterization of Distributed Sources 22.7 Henry's Law and the Ideal Gas Law 19.2 Point-Source Streeter-Phelps Equation 21.6 BOD Loadings.3 Reaeration Formulas 20.6 Calibration 21.4 Modeling Nitrification 23. 1 Steady-State System Response Matrix 26.2 Measurement Methods Problems LECTURE 25 Sediment Oxygen Demand 437 448 450 25.6 Other SOD Modeling Issues (Advanced Topic) Problems LECTURE 26 Computer Methods 451 455 457 459 470 474 480 482 26.5 Protozoans: Giardia and Cryptosporidium Problems PART V Eutrophication and Temperature 519 LECTURE 28 The Eutrophication Problem and Nutrients 521 28.1 Vollenweider Loading Plots 29.xii CONTENTS 24.4 Sediment-Water Interactions 27.3 Plant Stoichiometry 28.1 The Eutrophication Problem 28.1 Observations 25.2 Budget Models 29.1 Pathogens 27.4 SOD Modeling (Analytical) 25.2 Indicator Organisms 27.5 Numerical SOD Model 25.3 Bacterial Loss Rate 27.4 Nitrogen and Phosphorus Problems LECTURE 29 Phosphorus Loading Concept 522 522 527 530 533 534 534 536 539 29.3 Trophic-State Correlations .2 Nutrients 28.2 A "Naive" Streeter-Phelps SOD Model 25.2 The QUAL2E Model Problems LECTURE 27 Pathogens 482 486 500 503 503 504 506 510 512 516 27.3 Aerobic and Anaerobic Sediment Diagenesis 25. 2 Simple Heat Balance 30.2 31.3 Lotka-Volterra Equations Phytoplankton-Zooplankton Interactions Zooplankton Parameters .1 34.1 31.3 32.4 Temperature Modeling Problems LECTURE 31 Thermal Stratification 31.2 34.5 33.4 29.1 Heat and Temperature 30.4 32.3 Surface Heat Exchange 30.3 Thermal Regimes in Temperate Lakes Estimation of Vertical Transport Multilayer Heat Balances (Advanced Topic) Problems LECTURE 32 Microbe/Substrate Modeling 32.CONTENTS xiii 29.3 33.2 33.1 32.Prey and Nutrient/Food-Chain Interactions 34.1 33.6 33.4 33.2 32.5 Sediment-Water Interactions Simplest Seasonal Approach Problems 545 551 558 560 561 563 565 571 575 577 577 580 585 588 590 LECTURE 30 Heat Budgets 30.5 Bacterial Growth Substrate Limitation of Growth Microbial Kinetics in a Batch Reactor Microbial Kinetics in a CSTR Algal Growth an a Limiting Nutrient Problems 590 592 596 598 600 602 603 603 605 607 609 612 613 615 621 622 622 626 629 LECTURE 33 Plant Growth and Nonpredatory Losses 33.7 Limits to Phytoplankton Growth Temperature Nutrients Light The Growth-Rate Model Nonpredatory Losses Variable Chlorophyll Models (Advanced Topic) Problems LECTURE 34 Predator . 3 Ionic Strength.2 Kinetic Segmentation 35.1 Local Equilibrium 38.1 Fast Reactions: Inorganic Carbon Chemistry 39.3 Modeling pH in Natural Waters Problems 683 686 689 691 .1 Chemical Units and Conversions 37.4 Future Directions Problems LECTURE 36 Eutrophication in Flowing Waters 633 634 637 641 642 644 36. and Activity 37.4 Nutrient/Food-Chain Interactions Problems LECTURE 35 Nutrient/Food-Chain Modeling 629 631 633 35.2 Chemical Equilibria and the Law of Mass Action 37.3 Fixed Plants in Streams Problems 644 649 658 663 PART VI Chemistry 665 LECTURE 37 Equilibrium Chemistry 667 37.1 Spatial Segmentation and Physics 35.4 pH and the Ionization of Water 37.3 Simulation of the Seasonal Cycle 35.2 Modeling Eutrophication with QUAL2E 36.xiv CONTENTS 34.1 Stream Phytoplankton/Nutrient Interactions 36.2 Local Equilibria and Chemical Reactions Problems LECTURE 39 pH Modeling 677 680 682 683 39.5 Equilibrium Calculations Problems LECTURE 38 Coupling Equilibrium Chemistry and Mass Balance 667 669 670 672 673 676 677 38.2 Slow Reactions: Gas Transfer and Plants 39. Conductivity. 2 Numerical Solutions 44.3 Nonpoint Sources Problems 769 769 778 779 782 .3 Biotransformation 42.3 Toxicant-Loading Concept Problems LECTURE 42 715 727 732 737 Reaction Mechanisms: Photolysis.CONTENTS xv PART VII Toxics 693 LECTURE 40 Introduction to Toxic-Substance Modeling 695 40.4 Hydrolysis 42. Hydrolysis.1 Inorganic Toxicants 43.1 Analytical Solutions 44.1 Photolysis 42.3 Metals Problems LECTURE 44 Toxicant Modeling in Flowing Waters 44.5 Other Processes Problems LECTURE 43 Radionuclides and Metals 739 739 751 751 753 755 756 757 757 758 761 768 43.2 Volatilization 41.5 Summary Problems LECTURE 41 695 697 700 705 713 713 715 Mass-Transfer Mechanisms: Sorption and Volatilization 41.3 Toxics Model for a CSTR 40.4 Toxics Model for a CSTR with Sediments 40.2 Radionuclides 43.1 The Toxics Problem 40.2 Solid-Liquid Partitioning 40.1 Sorption 41.2 Second-Order Relationships 42. and Biodegradation 42. 2 Food-Chain Model (Bioaccumulation) 45.5 Sediments and Food Webs (Advanced Topic) Problems Appendixes A Conversion Factors B Oxygen Solubility C Water Properties D Chemical Elements E Numerical Methods Primer F Bessel Functions G Error Function and Complement References Acknowledgments Index 784 785 788 790 794 795 797 798 798 801 802 803 805 817 820 821 834 835 .1 Direct Uptake (Bioconcentration) 45.3 Parameter Estimation 45.xvi CONTENTS LECTURE 45 Toxicant/Food-Chain Interactions 45.4 Integration with Mass Balance 45.
Copyright © 2024 DOKUMEN.SITE Inc.