06.Ensayo.jominy

March 23, 2018 | Author: Luis Gustavo Londoña Zavala | Category: Curve, Steel, Chemistry, Engineering, Science


Comments



Description

Ing.Jaime González Vivas La vida es un laberinto al cual entramos libres, caminamos por el y nos ensuciamos, pero al atravesarlo depende de nosotros lo que sembramos y la cosecha que recibimos . 1. ENSAYO DE JOMINY Esquemáticamente el ensayo consiste en enfriar una probeta normalizada (probeta de Jominy) en condiciones standard (equipo de Jominy) y obtener finalmente una curva de durezas que corresponde a las sucesivas velocidades de enfriamiento logradas a lo largo de la probeta (curva de Jominy). Analicemos los 3 aspectos del ensayo. 1.1 Probeta de J ominy La probeta es de forma cilíndrica con las dimensiones que se indican en la Fig. 28. Presenta en un extremo una pestaña que sirve para sujetarla cuando se la coloca en el dispositivo de enfriamiento. 1.2 Equipo Jominy Es en esencia un dispositivo de enfriamiento que consta de un accesorio para sujetar la probeta y de un chorro de agua con un caudal y temperaturas constantes para un mismo ensayo y para todos los ensayos. Como se observa en la Fig. 29, el chorro de agua incide sobre la base de la probeta cilíndrica. Dadas las condiciones standardizadas del ensayo, siempre lograremos en esa base la misma velocidad de enfriamiento cualquiera sea el acero. La Fig. 30 muestra el dispositivo en su conjunto Previo a la colocación de la probeta se regula la altura del chorro (Fig. 31). Siendo el diámetro de salida (boquilla) constante y la altura también constante, cuando se coloca la probeta el caudal de enfriamiento será constante. Se extrae la probeta del horno; se coloca rápidamente en el dispositivo en menos de 5 seg. Se deja enfriar con el chorro durante 10 minutos. Se saca del equipo y se enfría completamente en agua 1.3 Curva de J ominy Una vez enfriada la probeta se rectifican dos generatrices opuestas (0,4 mm de profundidad), refrigerando adecuadamente para evitar la trasformación de la estructura. Sobre esas superficies aplanadas se toman durezas Rockwell "C" a intervalos iguales de distancia, a partir del extremo enfriado. Si los resultados se expresan en medidas inglesas el espaciado de las durezas es cada 1/16 de pulgada en un tramo de 2 pulgadas. Si se expresan en el S.M.D., las dos primeras se toman a 1,5 mm, las 6 siguientes a 2 mm y las restantes a 5 mm hasta cubrir aproximadamente 50 mm. Si representamos ahora en un sistema de ejes las durezas (HR J ) obtenidas en función de su distancia al extremo de la probeta (dj) obtendremos una curva que llamamos "curva de Jominy" HR JI = f 2 (d JI , A C ) (25) donde: HR ji = dureza Rockwell "C" en el punto i de la probeta de Jominy. d ji = distancia del punto i al extremo en la probeta de Jominy. La curva será distinta para cada acero (Ac), Figs. 32a y b. La curva de Jominy nos muestra cómo cae la dureza de temple a medida que nos alejamos del extremo de la probeta. Es decir que de acuerdo con la definición de templabilidad, representa una forma de medirla (J). Un acero tendrá tanto más templabilidad cuanto menor sea su caída de dureza en la curva de Jominy. La Fig. 32b nos muestra las curvas de Jominy de 3 aceros; de su simple observación deducimos que: Jc >Ja >JB, donde J es la templabilidad Jominy. Teniendo en cuenta todas las consideraciones anteriores concluimos que: La curva de Jominy es una propiedad del acero, es decir que depende de su composición química y del tamaño de grano. Templabilidad Jominy (J) = curva de distribución de durezas (HR J ) en la probeta de Jominy. HR JI = f 1 (v e JI , v c ) (26) V eJI . = f 1 (H, Ø J, d fi ) (27) donde: H = severidad de temple; Ø J = forma de la probeta dji = distancia del punto i al extremo de la probeta; v c = f (C q , g) = f (Ac) Como en el ensayo de Jominy H = cte., pues siempre enfriamos con igual caudal de agua a igual temperatura. Ø J = cte., pues la forma de la probeta está normalizada, resulta Ve JI = f (d JI ) (28) o sea que en la probeta de Jominy la velocidad de enfriamiento en un punto depende exclusivamente de su distancia al extremo. Reemplazando (28) y (13) en (26) nos queda HR JI = f (d JI, Ac) (29) y como las dj¡ son constantes para cualquier acero pues están normalizadas concluimos que: (HR J ) dj = f (Ac) (30) Esto nos dice que la dureza en un punto dj¡ de la probeta de Jominy depende exclusivamente del acero de que está hecha la probeta: la curva de Jominy será en consecuencia función exclusiva del acero para las condiciones del ensayo. 3.- BANDAS DE TEMPLABILIDAD La composición química de todos los aceros normalizados en cualquier país están acotadas dentro de valores máximos y mínimos de sus elementos componentes. Eso hace que para un mismo tipo de acero tengamos un número enorme de curvas de Jominy según todas las posibles combinaciones que resultan de los valores que pueden tomar dichos elementos dentro del ámbito de composición. No obstante, todas esas curvas estarán comprendidas entre una de templabilidad máxima y otra de mínima. Ambas determinan una banda dentro de la cual se hallarán las curvas que podamos obtener con todas las composiciones posibles de ese tipo de acero. Debemos hacer notar que los límites de la banda no corresponden a las curvas Jominy de los límites de composición química del acero. En la Fig. 33a se puede ver la diferencia. Debido al desarrollo y utilidad del ensayo de Jominy en la selección de los aceros para construcciones mecánicas, el American Iron and Steel Institute (AISI) y la Society of Automotive Engineers (SAE), basándose en datos recogidos de varios cientos de coladas de todos los tipos de aceros han determinado las bandas de templabilidad de los aceros tipificados en sus normas. Las bandas se utilizan pues como especificaciones de recepción sustituyendo las especificaciones de composición química, insuficientes por sí solas en los problemas de aplicación práctica. En estos casos a la codificación del acero se le agrega la letra H. P ej.: SAE 4140 H. En la Fig. 33 b consignamos la forma en que esas bandas aparecen en el manual SAE pues ellas proporcionan una información importante en las aplicaciones que son de nuestro interés. A la izquierda de la banda se incluye una tabla donde figuran las durezas máxima y mínima correspondiente a las distintas distancias al extremo de las probetas. La Fig. 33c muestra la curva de un acero de composición definida (SAE 4140 H). EQUIVALENCIAS ENTRE REDONDOS Y PROBETA JOMINY De las consideraciones anteriores surge una relación muy importante. Veamos. Si tenemos un redondo de diámetro D y una probeta de Jominy construidos ambos con el mismo acero, tenemos que la dureza es un punto r¡ del redondo es según vimos: HR I = f (v e¡ , v c ) (18) y en un punto dj de la probeta Jominy HR ji = f 1 (V e¡i , v c ) (26) En los casos en que sea HR I = H Rji en virtud de que v c es la misma pues es el mismo acero, resulta: f (V ei ) = f1 (V eji ) (30) Si es posible definir la velocidad de enfriamiento de manera que f = f1 resultará: V ei = V eji (32) Luego: Los puntos de un redondo enfriado en un medio H y los puntos de la probeta Jominy de un mismo acero que tienen la misma dureza se enfrían con la misma velocidad y viceversa. Esta conclusión es sumamente importante para todo el desarrollo posterior. No obstante no es rigurosamente exacta pues depende de cómo se define la velocidad de enfriamiento el lograr leyes de equivalencia aceptables. Teóricamente se ha logrado establecer una equivalencia entre f y f 1 que permite considerar que la relación (v ei = v eji ), se cumple en la práctica con suficiente aproximación como para poder solucionar los problemas planteados (trabajos de T. F. Russell;y de M. Asimow, W. F. Craig y M. A. Grossmann). Por otra parte tenemos para un mismo acero que: v ei = f (H, D, r¡) (16) y v eji = (d ji ) (28) luego (H, D, r¡) = (d ji ) (33) d ji = (H, D, r i ) (34) Esta conclusión nos dice que se puede establecer una equivalencia entre las distancias al extremo de una probeta Jominy y los puntos interiores de un redondo de acero que se enfría con igual velocidad en distintas severidades de temple. Esta equivalencia fue calculada por J. L. Lamont en una serie de gráficos. Cada uno de los gráficos corresponde a una determinada posición del punto del redondo expresada por la relación r/R donde r es la distancia del punto al centro del redondo (r¡) y R es el radio del redondo (D/2). En cada gráfico se dan las distintas curvas de equivalencia entre los diámetros de las barras y los puntos de la probeta Jominy, correspondiendo cada curva a una severidad de temple determinada. Las Figs. 34 al 44 muestran las curvas de Lamont para los valores de r/R: 0,0; 0,1; 0,2. . . 0,9; 1,0. Estas curvas son de gran aplicación en los estudios de selección de aceros. Veamos para su mejor comprensión un ejemplo de aplicación directa de las mismas.
Copyright © 2021 DOKUMEN.SITE Inc.